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Abstract 

Text summarisation is the task of converting a longer piece of text into a shorter text whilst 

communicating the same key points from the original document. The value of automatic text 

summarisation is derived from the efficiency saving gained through distilling long documents 

into shorter text. Despite this, most studies researching text summarisation, and the automated 

metrics used to assess its efficacy, have primarily been focused on short documents.  Recently, 

Pretrained Language Models (PLMs) have been used to improve the performance of text 

summarisation. However, PLMs are limited by their need of large corpora of data for pretraining 

(ideally in the domain of any anticipated downstream tasks), labelled training data for fine-tuning, 

and by their attention mechanism, which often makes them unsuitable for use on long documents. 

The computational complexity of their attention mechanisms means that if a document is long, it 

generally must be truncated to be computationally feasible to process. This work aims to develop 

methods which adapt PLMs in ways to make them suitable for summarisation of long documents.  

Three main novel contributions are proposed in this work. Firstly, GenCompareSum, a hybrid, 

unsupervised, abstractive-extractive method is developed, which cycles through a document 

generating salient textual fragments and uses these to guide an unsupervised extractive 

summarisation. This hybrid approach can be easily extended to any document length and out-

performs existing unsupervised methods, as well as state-of-the-art supervised methods, despite 

not needing labelled training data for the summarisation task. Secondly, since most long 

document data sets are highly domain-specific, a framework for injecting domain knowledge into 

PLMs is proposed: KeBioSum. Evaluation of this method shows that using an adapter-based 

framework to inject domain knowledge into PLMs improves performance of text summarisation. 

Lastly, maintaining factual consistency is a critical issue in abstractive text summarisation, but it 

cannot be assessed by traditional metrics, such as ROUGE scores. Recent efforts have been 

devoted to developing improved metrics for measuring factual consistency using PLMs. 

However, there is a lack of research on automatic metrics which can assess the factual consistency 

of long document summarisation. To this end, LongDocFACTScore (LDFACTS) is proposed. 

This metric extends an existing evaluation metric, BARTScore, by comparing each sentence in 

the generated summary with the most similar sections of the source document. It is designed to 

be extendable to any length document and demonstrates a strong correlation with the human 

judgement of factual consistency on long document summarisation data sets. In addition to these 

three main novel contributions, both intrinsic and extrinsic evaluation of different methods for 

the abstractive summarisation of long documents are conducted and discussed.   
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1 Introduction 

1.1 Background 

In the digital era through which we are living, there is an ever-increasing quantity of textual 

content available to us online. Although it is beneficial in providing us with sources of knowledge 

to help us with our work and daily lives, it also presents challenges in identifying and 

comprehending the relevant literature for a given task. As an illustrative example, in the 

biomedical domain, systematic reviews are generated for a given research topic to synthesise all 

research in a particular area, however, in the years between 2000 and 2019, there has been a 20-

fold increase in the numbers of systematic reviews published on PubMed1 daily, from 4 to 80 per 

day (Hoffman et al., 2021), making the task of synthesising all relevant research extremely 

difficult.  

Machine learning techniques are enabling the automation of many natural language processing 

(NLP) tasks, and in the future will be necessary tools for us to be able to retrieve and comprehend 

documents as the quantity of available resources to us continues to grow. In this context, an 

important NLP task for automating the comprehension of documents is text summarisation. Text 

summarisation is the transformation of a longer piece of text to a more succinct version, where 

the shortened version still conveys the key points of the original document. 

Text summarisation is generally divided into two types of approach, extractive and abstractive 

text summarisation, where the former directly selects sentences from the original document to 

form the summary, and the latter rewords the original document in a shorter format, in a similar 

fashion to the way a human would summarise a document. Traditional text summarisation 

approaches tend to be extractive and use features, such as sentence position and word frequency, 

to select the most relevant sentences (Luhn, 1958, Radev et al., 2004; Erken and Radev; 2004). 

State-of-the-art (SOTA) approaches generally use transformer (Vaswani et al., 2017) based 

models, often in the form of pretrained language models (PLMs), such as BERT (Devlin et al., 

2019). Extractive, abstractive and hybrid methods have been proposed using these types of 

models. These modern approaches have shown dramatically increased performance on text 

summarisation tasks. This is likely due to their ability to learn knowledge, linguistic, and semantic 

structures during their pretraining. However, these approaches have also introduced new 

limitations into NLP tasks. 

 
1 https://pubmed.ncbi.nlm.nih.gov 
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The attention mechanism which enables these models to learn relationships between words and 

phrases is extremely computationally expensive to train, thus, most PLMs restrict the context 

window of their input to a small number of tokens (Devlin et al., 2019; Lewis et al., 2020; Raffel 

et al., 2020). For this reason, most recent studies on text summarisation using PLMs focus on 

short documents from news domains (Lewis et al., 2020; Liu and Lapata, 2019). Since the value 

of text summarisation comes from making long documents more succinct, by summarising only 

short documents, or truncating a long document before summarisation, much of the value of the 

process is lost. The aim of this work is to harness the advancements made by use of PLMs for 

text summarisation, but to address some of the outstanding challenges and to explore practical 

methods for summarising long documents, without requiring documents to be truncated to only 

the first few hundred tokens or needing huge computational resource. In addition to the hardware 

and energy resources required to train large neural models, they additionally require vast amounts 

of training data, which are often unavailable or costly and resource-intensive to create. To this 

end, this work also explores unsupervised approaches for text summarisation of long documents, 

which do not need large, annotated data sets for the summarisation task.  

Most long document summarisation data sets are domain specific (Koh et al., 2022), however, 

most prior literature considers text summarisation for the general domain, rather than other 

domains such as science or biomedicine. Since these domains could greatly benefit from 

automated text summarisation to support tasks like the generation of systematic reviews, there is 

a need to explore the best methods for summarisation of domain-specific documents. In response, 

this work focuses on long document summarisation for the scientific and biomedical domains and 

discusses methods to improve performance of the task on domain-specific literature.  

Although abstractive summarisation has the potential to be more succinct and readable than its 

extractive counterpart, prior literature has shown that, in its current state, it cannot be trusted to 

be factually consistent (Wallace et al., 2021).  This makes it unsuitable in many practical 

applications, such as summarisation of biomedical articles for use by clinicians. One issue which 

is preventing SOTA methods from advancing in this space is that the primary evaluation metrics 

used to assess the efficacy of these methods consider only word-overlap (Lin, 2004), and do not 

correlate well with other important measures, such as factual consistency (Kryściński et al., 

2019). Although modern methods have been proposed to measure factual consistency (Scialom 

et al., 2021; Kryściński et al., 2020; Yuan, et al., 2021), these metrics are only designed to evaluate 

summarisation of short documents and do not extend well when they are used to evaluate long 

document summarisation (Koh et al., 2022). To address this gap in research, different abstractive 

methods, which provide coverage of entire long documents in their generated summaries, are 
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evaluated. Furthermore, LDFACTS, a metric for evaluating the factual consistency of long 

document abstractive summarisation, is proposed, and is shown to correlate better with human 

judgement than existing SOTA metrics for evaluating long document summarisation.  

1.2 Research Aims  

The aims of this MPhil were as follows: 

1. To evaluate existing SOTA extractive and abstractive approaches for long document text 

summarisation, and to propose novel summarisation methods to improve performance 

over these existing approaches in long document settings.  

2. To investigate text summarisation of domain-specific documents, and to propose novel 

methods to improve performance over existing SOTA approaches in these contexts. 

3. To conduct a study into the suitability of automated metrics for evaluation of long 

document text summarisation, specifically focusing on their ability to measure the 

factual consistency of summaries generated from long documents.  

1.3 Overview of this work 

Here, the structure of the thesis is outlined. Section 2 provides a literature review.  An overview 

of existing extractive and abstractive methods for summarisation of long documents is given, 

along with a review of methods which consider domain knowledge in their approach. 

Additionally, an overview of existing automated metrics for evaluating text summarisation is 

provided.  

Section 3 looks to address Research Aim 1, with a focus on extractive summarisation of long 

documents. In this section, a novel, two-step, unsupervised, hybrid abstractive-extractive 

summarisation method is proposed, which generates salient textual fragments (specifically, 

queries or document titles) that represent sections of a document and uses these to guide the 

extractive summarisation step. The method fuses state-of-the-art PLMs with unsupervised 

approaches, to achieve a summary which harnesses the semantic knowledge of transformer-based 

models, whilst being extendable to any length document, without requiring a large corpus of 

training data. Evaluation results demonstrate this hybrid method outperforms both existing 

unsupervised methods and state-of-the-art supervised methods, both on long and short 

documents. The ideas for the work in this section were generated, and experiments undertaken 

by the author of this MPhil, Jennifer Bishop. This research was supervised by Qianqian Xie and 
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Sophia Ananiadou. The research was published as part of the BioNLP workshop at ACL 2022 in 

Dublin (Bishop et al., 2022).  

Section 4 looks to address Research Aim 2 and explores summarisation methods for domain-

specific documents, with a focus on biomedical literature. In this section, an extractive approach 

is proposed which uses adapters (Houlsby et al., 2019) to infuse domain knowledge, specifically 

information about PICO elements, into PLMs during their fine-tuning for the summarisation task. 

The models developed in this research were shown to outperform SOTA summarisation methods 

for documents of the biomedical domain. The conceptualisation and methodology for the work 

in this section were created by Qianqian Xie, who led this research. Qianqian Xie, along with the 

author of this MPhil, Jennifer Bishop, wrote the software and ran the experiments for this work. 

Prayag Tiwari additionally ran some experiments for this work. The work was supervised by 

Sophia Ananiadou and was published in the Journal of Knowledge-Based Systems (Xie et al., 

2022). To the best of our knowledge, this is the first work incorporating PICO domain knowledge 

into PLMs for extractive summarisation on biomedical literature.  

Section 5 further addresses Research Aim 1, focusing on abstractive summarisation of long 

documents. For this research, intrinsic and extrinsic evaluation of a range of abstractive 

summarisation methods was conducted. Baseline and SOTA abstractive methods were compared 

to an abstractive method proposed in Section 5.2 of this work, which makes use of document 

zones for its prediction. For the intrinsic evaluation, a range of automated metrics were used, and 

for the extrinsic evaluation, human annotations were collected which assessed the measures 

coherence, fluency, and factual consistency. SOTA methods for abstractive summarisation of long 

documents are computationally expensive; however, the research in this section restricts 

computational consumption to a practical level, making the methods accessible to a wide range 

of researchers and institutions. The ideas for the work in this section were generated by, and the 

experiments for this work were conducted by the author of this MPhil, Jennifer Bishop. This 

research was supervised by Qianqian Xie and Sophia Ananiadou.  

Section 6 of this work evaluates the efficacy of different automated metrics for evaluating long 

document summarisation. In this section, it was found that existing automated metrics do not 

correlate well with human measures of factual consistency in long document settings.  In 

response, a novel metric is proposed which is shown to correlate better with human annotations 

of factual consistency than any existing metric evaluated in the long document setting.  The ideas 

for the work in this section were generated by, and the experiments for this work were conducted 

by the author of this MPhil, Jennifer Bishop. This research was supervised by Qianqian Xie and 

Sophia Ananiadou.  
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Section 7 of this work provides a conclusion, and suggestions for future directions of work to 

further research into text summarisation of long documents.  

2 Background 

2.1 Pretrained Language Models in NLP 

The proposal of the attention mechanism (Bahdanau et al., 2014) has transformed NLP research 

over recent years. In neural models which implement this mechanism for NLP tasks, textual pairs 

are tokenised, i.e., divided into smaller units such as words or punctuation, and are provided as 

training data to the model. During the training process, the attention mechanism learns the 

relationship between tokens in the two texts. Bahdanau et al., (2014) originally proposed this in 

the context of machine translation, where the textual pairs were made up of one text in the source 

language and another, equivalent, text in the target language. 

Building on this work, Vaswani et al., (2017) proposed the transformer model. This is an 

encoder-decoder model which uses an attention-based architecture, making use of both self-

attention mechanisms, where the input representation is compared to itself in the encoder and the 

target representation is also compared to itself in the decoder, and an encoder-decoder attention 

mechanism, which compares the input and target representations to each other.  

The transformer model is the foundation architecture used by many pretrained language models 

(PLMs). PLMs are large neural models, which are pretrained using large quantities of texts, 

generally using a self-supervised approach, such as masked language modelling (MLM), where 

words are randomly masked and the model’s training objective is to predict the hidden words. 

The approach taken with these models is to pretrain a PLM over a large corpus of data so that it 

learns a base level of knowledge and language understanding, and then to fine-tune it on a 

downstream task. These models have shown significant performance increases on a broad range 

of NLP tasks. PLMs tend to fall into one of three categories: auto-encoding models like BERT 

(Devlin et al, 2019), which make use of encoders and tend to be used for classification-style tasks, 

such as extractive summarisation; sequence-to-sequence models with encoder-decoder 

architectures, such as BART (Lewis et al., 2020) and T5 (Raffel et al., 2020), which are principally 

used for tasks which convert one piece of text to another, such as abstractive summarisation or 

machine translation; and models which make use of decoder architectures, also called auto-

regressive models, such as GPT-2 (Radford et al., 2019), which are used for text generation tasks.  
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However, even the latest, best performing PLMs, such as OpenAI’s ChatGPT2, have limitations 

on the number of tokens they can process, due to the quadratic computational complexity of the 

models’ attention mechanisms. More efficient attention mechanisms have been developed 

including LongT5 (Guo et al., 2021), BigBird (Zaheer et al., 2020), Longformer and LED 

(Beltagy et al., 2020) models; these all utilise different strategies to adapt their attention 

mechanisms to scale linearly, rather than quadratically, with sequence length. However, these 

models are still computationally expensive, requiring GPUs to train sequences of any significant 

length, and are therefore unable to fit textual inputs over a few thousand tokens onto a single 

GPU. Thus, running NLP tasks with PLMs on long documents remains a challenge.   

2.2 Extractive summarisation 

The earliest works researching text summarisation focus on extractive methods (Luhn, 1958). 

These methods tend to be unsupervised, i.e., they do not require labelled training data for the 

extractive summarisation task. Several early extractive methods are graph-based: LexRank 

(Erkan and Radev, 2004), and TextRank (Mihalcea and Tarau, 2004) are both based on Google’s 

PageRank algorithm (Brin and Page, 1998), which assumes that the sentences with the highest 

centrality are the most important and use these to form a summary. In contrast, SumBasic 

(Nenkova and Vanderwende, 2005) simply assumes that sentences containing the words which 

are used with the highest frequency across the whole document will be the most important, while 

LSA (Steinberger and Jezek, 2004) applies SVD to term-frequency matrices to identify sentences 

which capture the most important topics within a document. These techniques have the advantage 

that they are not restricted by document length and do not require training data, however, they do 

not benefit from the semantic knowledge instilled within modern neural models. Despite this, 

LexRank has been shown to have competitive performance when compared with modern, 

supervised approaches (Cohan et al., 2018; Pilault et al., 2020). 

More recently, PLM-based models have been proposed for supervised approaches to extractive 

summarisation. These methods generally treat the extractive summarisation task as a 

classification problem. BERTSum (Liu and Lapata, 2019) is one of the earlier PLM-based models 

proposed for text summarisation. In this work, BERT is adapted for the extractive and abstractive 

summarisation tasks by introducing a document-level encoder, and a positional embedding 

encoder, which enable supervised training to select the sentences to include in the summary, in 

the context of the surrounding document. MatchSum (Zhong et al., 2020) extends the extractive 

 
2 https://chat.openai.com/chat  

https://chat.openai.com/chat
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implementation of BERTSum (BERTSumExt) by first predicting candidate sentences to be 

included a summary using the BERTSumExt model and then training a secondary model to select 

the best sentences from the candidate list to include in the final summary by maximising similarity 

of the candidate summary to the overall document.  In these works, to overcome the memory 

implications of using a transformer architecture, the source documents are truncated to 512 

tokens. Thus, when used in a long document setting, these methods essentially only use the 

introduction of the source document to form the predictive summarisation.  

Several models have been proposed to extend PLM-based extractive summarisation methods 

to be suitable for long documents. As mentioned in Section 2.1, Beltagy, et al., (2020) propose 

Longformer, an autoencoder with an efficient attention mechanism which could be used for this 

purpose, for example, by replacing BERT in the BERTSum model with Longformer. Zhang et 

al., (2019a) propose HIBERT, a hierarchical pretraining strategy for long documents where two 

encoder layers are used: a first which follows BERT, using a pretraining strategy where individual 

tokens are masked, whilst a second encoder layer is trained by masking and predicting entire 

sentences. They then fine-tune this PLM on a downstream extractive summarisation task and 

show it to be a highly effective method for summarising long documents. Grail et al., (2021), 

Rohde et al., (2021), Xiao and Carenini (2019) and Ruan et al., (2022) similarly propose 

hierarchical approaches for the extractive summarisation task. Xiao and Carenini (2020) focus on 

a different aspect of improving models for long document summarisation, exploring methods to 

reduce redundancy in extractive summaries. These methods have all demonstrated improved 

performance in long document settings. However, being supervised methods, they all still require 

large amounts of labelled training data specific to the task and domain for which they are intended 

to be used.  

Modern unsupervised extractive approaches tend to build upon traditional graphical 

approaches: Liang et al., (2021) uses a PageRank-based model and incorporates a weighting 

between each sentence and the overall document, as well as weightings between the sentences to 

better represent documents which contain multiple facts. PacSum (Zheng and Lapata., 2019) and 

HipoRank (Dong et al., 2021) both use transformer-based embeddings to better represent the 

input document and incorporate additional information about the sentences’ positions when 

calculating centrality; the latter publication extends this by also incorporating document hierarchy 

into its calculations. Xu et al., (2020) trains a model to generate sentence and document 

embeddings hierarchically using unlabelled data, and then selects sentences based on several 

criteria which use the attention-based embeddings.  
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2.3 Abstractive summarisation 

Research into abstractive methods began relatively recently, with the popularity of research 

into this area growing in line with the proliferation of deep, neural machine learning models. 

Abstractive methods generally use encoder-decoder architectures, with early abstractive methods 

using feed-forward networks or RNNs for their models (Rush et al., 2015; Chopra et al., 2016).  

Since the introduction of PLMs, there has been a surge of research into abstractive 

summarisation. BART (Lewis et al., 2020), T5 (Raffel and al., 2020), and PEGASUS (Zhang et 

al., 2020a) utilise different pretraining strategies for sequence-to-sequence models which can be 

fine-tuned for the abstractive summarisation task. LongT5 (Guo et al., 2021), BigBird (Zaheer et 

al., 2020), and LED (Beltagy, et al., 2020) all contain more efficient attention mechanisms in their 

encoder-decoder architectures, but are still limited in the number of tokens they can process due 

to hardware limitations. Whereas for extractive summarisation, the main consideration in regards 

to memory consumption is the token limit of the source document, for abstractive text 

summarisation, both the input document length and the target generation length have implications 

for the memory consumption of the model, thus there is often a trade-off between the two for 

transformer-based encoder-decoder models.  

Akin to the extractive approaches mentioned earlier, there is an abundance of research into 

abstractive models which extend upon simply fine-tuning a PLM with the abstractive 

summarisation objective. Liu and Lapata (2019) propose BERTSumAbs and BERTSumExtAbs, 

which are summarisation models trained with an abstractive objective, where the latter uses 

weights initialized by pretraining the model with an extractive objective first. Liu and Liu (2021) 

propose a two-step approach using BART. They first fine-tune BART for the abstractive 

summarisation task which, given a source article, they use to generate a few canditiate summaries. 

They then apply a second model which uses contrastive learning with a ROUGE-based objective 

to select the best summary. As with extractive methods, there is prior literature which explores 

hierarchical approaches to summarise longer documents. HAT-BART (Rohde et al., 2021) adapts 

the traditional transformer by incorporating additional hierarchical learning steps within it, and 

by inserting additional special tokens between sentences. However, HAT-BART still limits the 

input token length to 3072 and the generation token length to 512 for the long document data sets. 

Hie-BART (Akiyama et al., 2021) and ‘Top Down Transformer’ (Pang et al., 2022) are other 

examples of hierarchical abstractive summarisation models. Other works propose different 

strategies for dealing with long documents in an abstractive setting. DANCER (Gidiotis and 

Tsoumakas, 2020) uses the concept of document zoning to split a longer text into smaller sections 
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and selects only the most relevant sections to feed into their model. DANCER is trained to learn 

to summarise the short, relevant, document sections, using beam search decoding to generate the 

summaries. The short summaries are then concatenated to form a longer summary. Liu et al., 

(2022) propose a similar method, making ‘local’ predictions from document sections which are 

then combined into a ‘global’ document prediction downstream. They experiment with spatial 

locality (i.e., splitting a document into pages), and discourse locality (i.e., splitting a document 

into its predefined sections).  

Factual inconsistency is a known limitation of abstractive text summarisation (Maynez et al., 

2020; Wallace et al., 2021) and several works to date have attempted to address this. A relatively 

early work exploring approaches to improve factual consistency used a pointer-generator network 

to copy words directly from the source text (See et al., 2017). Similarly, Mao et al., (2020) selects 

entities and key phrases from the source document which they require that the generated summary 

must include.  Cao et al., (2020) propose a method to correct factual inconsistencies in a 

secondary step after the summaries have been generated. Zhu et al., (2021) use knowledge graphs 

to help guide their summaries to be factual and also have a secondary stage, which is designed to 

correct factual inconsistencies after the initial generation. Cao et al., (2022) show that some 

hallucinated facts in abstractive summaries generated using PLMs are in fact correct and are a 

product of the knowledge learnt during their pretraining. They therefore propose a method to 

separate hallucinated true facts from incorrect ones. FACTPEGASUS (Wan and Bansal, 2022) is 

a pretraining strategy proposed to improve factual consistency in downstream tasks such as 

summarisation.  

2.4 Evaluation metrics 

ROUGE scoring (Lin et al., 2004) has long been the popular automated metric used for evaluation 

of text summarisation. ROUGE scoring compares a predicted summary to a reference summary 

and uses word overlap between the two summaries to calculate their similarity. Thus, to evaluate 

generated summaries using the ROUGE metric, test data sets which include reference summaries 

are required. ROUGE-1, -2 and -L F1 scores are the standard metrics reported in the evaluation 

of text summarisation in literature. ROUGE-1 compares individual word overlap between the 

predicted and target summaries, ROUGE-2 compares bigram overlap and ROUGE-L compares 

the overlap of the longest common subsequence. Despite being, by far, the most popular metric 

for evaluation of automatic text summarisation, ROUGE is well-known to be flawed (Yuan et al., 

2021; Huang et al., 2020; Kryściński et al., 2019). This is due to it only assessing whether the 

same words appear in two summaries, regardless of their ordering. It is unable to capture other 
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important measures when evaluating the quality of a generated summary, such as coherence, 

fluency, and factual consistency. 

As with advancements in the methods to generate the summaries, modern metrics for 

evaluation of text summarisation also use PLMs and have been shown to align better with human 

judgement than ROUGE. BERTScore (Zhang et al., 2019b), is a popular metric for evaluating 

text summarisation. In a similar vein to ROUGE, this metric also compares the predicted 

summary to a reference summary, and measures agreement at a token level between the two by 

calculating the cosine similarity between BERT-based token embeddings. BARTScore (Yuan et 

al., 2021) can also be used to compare a predicted summary to a reference summary but can 

additionally be used in a ‘reference-free’ setting, where the predicted summary is compared to 

the source document. BARTScore works by calculating the log probability of generating a 

sequence of text, given a second sequence. The ‘reference-free’ setting of BARTScore can be 

used to assess factuality of a predicted summary. Building on this work, T5SCORE (Qin et al., 

2022) uses T5-based models and combines the generative approach taken by BARTScore with a 

discriminative approach - i.e., fine-tuning a model to predict a quality score for a summary using 

human annotated summaries as training data. FACTGRAPH (Ribiero et al., 2022) builds 

knowledge graphs of source documents and predicted summaries and compares the two to assess 

factual inconsistencies. FactCC (Kryściński et al., 2020) is a reference-free metric designed to 

assess factual consistency of summaries. It uses a BERT-based model which is fine-tuned to make 

a classification of factual correctness for each sentence of the predicted summary, given the source 

document. QuestEval (Scialom et al., 2021) takes a question-answering approach, also aiming to 

measure factual consistency. This method uses T5-based models to generate questions from the 

entities in each of the predicted summary and source document and assesses whether the other 

text is able to answer the generated question. It does this by measuring the similarity between an 

answer generated by a question-answering model and the true answer (i.e., the entity used to 

generate the question). Several other works also propose question-answering based approaches 

for measuring factual consistency (Fabbri et al., 2021; Durmus et al., 2020). However, Kamoi et 

al., (2022) claims that these approaches are flawed as they miss factual errors which are not 

associated with the predefined entities from which the questions are generated.  

In prior literature these metrics have been evaluated on human annotations of short document 

data sets such as CNN/DM (Hermann, 2015), Newsroom (Grusky et al., 2018), XSUM (Narayan 

et al., 2018), and FRANK (Pagnoni et al. 2021).  Despite only being evaluated on short 

documents, some of the existing reference-free metrics for evaluating factual consistency were 

reported to be very computationally expensive. QAGS (Wang et al., 2020a) running on a single 
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NVIDIA v100 GPU will take over 4 days to process the CNN/DM data set (Nan et al, 2021). 

Although the automated metrics described here align better with human judgement than 

traditional metrics such as ROUGE scores, their PLM-based architectures and expensive 

computations restrict them from being applied to long documents; this is particularly problematic 

when attempting to assess factual consistency in reference-free settings, where the source 

documents are often well over the token limits of these PLMs (Koh et al., 2022). This results in 

them not extending well when being used directly to evaluate factual consistency of long 

documents (Koh et al., 2022).  

3 A hybrid abstractive-extractive approach 

3.1 Extractive approaches for long document summarisation 

Whilst PLMs have contributed to great advancements in NLP due to their ability to learn 

semantic knowledge, they have also introduced new limitations which are particularly apparent 

when processing long documents. They are restricted by the number of tokens that they can 

process at any one time and the computational cost of fine-tuning their attention mechanisms is 

expensive. Thus, to achieve text summarisation with PLMs, generally the input document is 

truncated (Liu and Lapata, 2019; Xu et al., 2020; Zhong et al., 2020). Since summarisation should 

be able to succinctly capture the meaning of very long documents in a few sentences, the 

requirement to truncate a document before summarisation is a disadvantage. As a result, recent 

works have shifted their attention towards addressing the issue of long document summarisation 

(Xiao and Carenini, 2020; Grail et al., 2021; Rohde et al., 2021; Xiao and Carenini, 2019). 

However, these are mostly supervised methods, requiring large amounts of labelled training data, 

which are often unavailable or time-consuming and costly to produce. In this section a hybrid 

abstractive-extractive unsupervised approach is proposed, where the PLMs are required only to 

act on short sections of the document at any time, meaning that this method can be extended to 

any document length. Furthermore, because it is an unsupervised approach, it does not require 

manually labelled training data for the extractive summarisation task. This method is named 

GenCompareSum.  

To-date, unsupervised methods for text summarisation have generally used graph-based 

approaches (Erkan and Radev, 2004; Mihalcea and Tarau, 2004; Liang et al 2021; Zheng and 

Lapata, 2019; Dong et al., 2021), the more recent of these using transformer-based embeddings 

to encode the source text (Zheng and Lapata, 2019; Dong et al., 2021).  The method proposed in 

this section differs from these previous approaches as it does not use a graph-based model, and 
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instead applies a novel approach: generating and using salient textual fragments to guide the 

extractive summarisation. Moreover, earlier unsupervised, graph-based methods have been 

criticised in their ability to effectively represent documents which present multiple facts (Liang 

et al., 2021). GenCompareSum addresses this by generating multiple salient texts per document, 

thus enabling it to represent multiple facts per document. Furthermore, this work differs from 

existing hybrid extractive-abstractive approaches as it uses transformer-based abstractive models 

for the generation of salient points, but ultimately, generates an extractive summarisation to 

ensure factual consistency.  

3.2 The GenCompareSum model 

This work proposes a hybrid abstractive-extractive model called GenCompareSum. This 

method makes use of transformer-based architectures but is extendable to any document length, 

can represent multiple facts, and does not require vast amounts of training data. The method is 

comprised of two steps: GenCompareSum first splits a document into sections of several 

sentences and walks through them, generating salient textual fragments which represent each 

section. In the second step, the salient text fragments are used to guide the selection of sentences 

to form an extractive summary.  

In this work, different models for generating salient text fragments are evaluated, which are 

fine-tuned to either predict queries or document titles that best represent a section of the 

document.  The aim of these models is to capture the key points of a section of text. In the case 

of models which generate document titles, a document section is entered to the model, and the 

model predicts titles which it thinks best represent the section of text. In the case of models which 

generate questions, a document section is used as an input and the model generates questions, the 

answers to which should be the key points of the input document section.  

GenCompareSum uses these generated textual fragments to guide an unsupervised extractive 

summarisation by calculating the BERTScore similarity between each of the generated texts and 

each of the sentences in the source document. Since the generated textual fragments aim to 

represent the key points of the input document, document sentences with the highest similarity to 

these fragments should be of high importance, and therefore, in GenCompareSum, are used to 

form the predicted extractive summary. 

A representation of GenCompareSum can be seen in Figure 1. In this diagram, the steps are as 

follows: (a) The document is split into sentences. (b) Sentences are combined into sections of 

several sentences. (c) Each section is fed into the generative text model to generate several text 

fragments per section. (d) The questions are aggregated, and redundant questions are removed by 
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using n-gram blocking. Where aggregation occurs, a count is applied to represent the number of 

textual fragments which were combined, and this count is used as a weighting going forwards. 

The highest weighted textual fragments are then selected to guide the summary.  (e) The similarity 

between each sentence from the source document and each selected textual fragment is calculated 

using BERTScore. (f) A similarity matrix is created from the scores calculated in the previous 

step. These are then summed over the textual fragments, weighted by the values calculated in step 

(d), to give a score per sentence. (g) The highest scoring sentences are selected to form the 

summary. The code for GenCompareSum has been made publicly available3. 

 

 

 
 

 

 

3.2.1 Text Splitting 

 
3 https://github.com/jbshp/GenCompareSum  

Figure 1. An overview of the GenCompareSum process, from the original document (a) to the 
extractive summary (g): (b) illustrates the document being split into sections, (c) the generation 
of salient text fragments from each section, (d) the weightings given by n-gram blocking, (e) 
and (f) the weighted BERTScore calculation between the sentences from the original document 
and generated salient text fragments. 

https://github.com/jbshp/GenCompareSum
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Given a document 𝐷, it is first split it into sentences 𝑠, such that 𝐷	 = {𝑠!, … , 𝑠"}, using the 

Stanford CoreNLP software package (Manning et al., 2014). The sentences are then combined 

into document sections, 𝑝 , of 𝑥  sentences, i.e., 𝐷 =	 {𝑝!, … , 𝑝#}	 ; 𝑚 = 𝑐𝑒𝑖𝑙 1"
$
2 . A design 

decision was made not to use any predefined sections already existing within the documents as, 

during inspection of the data sets, it was found that the documents sections were not always 

extracted well. Splitting the document into a consistent number of sentences per section removes 

the requirement for high quality text extraction into document sections. The number of sentences 

𝑥 used to form the short text sections was decided via experimentation on the validation data sets, 

as detailed in section 3.3.2. 

 

3.2.2 Salient Text Generation 

T5 (Raffel and al., 2020) is a sequence-to-sequence model, pretrained on a cleaned and pre-

processed version of the Common Crawl4 data set – a data set consisting of textual content 

scraped from the internet. T5-based models have been shown to be high performing sequence-to-

sequence models across a range of generative tasks, from question generation (Nogueira and Lin, 

2019), to graph-to-text generation (Ribeiro et al., 2021), generative common-sense reasoning 

(Yuchen Lin et al., 2020), to abstractive text summarisation (Goodwin, 2020). The T5 model uses 

an encoder-decoder architecture and is pretrained via an unsupervised task in which 15% of 

tokens are masked; the masked words can be individual words or a span of words; the target of 

the training objective is to predict these masked words, given the un-masked tokens and their 

respective positions. For downstream tasks, the pretrained T5 model is fine-tuned using pairs of 

input and output sequences. A diagram of the T5 architecture and its pretraining and fine-tuning 

settings can be seen in Figure 2. In this figure, the left diagram shows the unsupervised pretraining 

task, in which a tokenized text containing masked spans is passed to the encoder and the output 

target of the decoder is the prediction of the masked spans. The right diagram shows the 

supervised downstream task, where the pretrained model is fine-tuned on pairs of tokenized 

sequences for a query generation task. 

 

 
4 https://commoncrawl.org 
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For the generation of the textual fragments, first, an existing open source T5-based model, 

docTTTTTquery (Nogueira and Lin, 2019), was evaluated. This is a question generation model 

of the general domain, which was fine-tuned on a question-answer data set generated from Bing’s5 

search query logs called the MS-MARCO data set (Bajaj et al., 2018). Surita et al., (2020) showed 

this pretrained model to be effective at generating questions for long, biomedical texts.  

Second, the approach taken by Nogueira and Lin (2019) was followed and a T5 model was 

fine-tuned on data consisting of long-answer - query pairs curated from the biomedical domain. 

For this, four biomedical data sets were combined to make a large corpus of text-question pairs, 

where the questions can be answered by the long textual input. From the BioAsq data set (Nentidis 

et al., 2021) 3,433 ‘ideal answer’-question pairs were used, 2,720 text-question pairs from 

COVID-QA (Möller et al., 2020) were included (where the paragraph containing the answer was 

used as the textual input), 61,244 context-question pairs from PubMedQA (Jin et al. 2019) were 

used (where the ‘context’ refers to the abstract without its ‘conclusion’ section), and finally 27,722 

long answer-question pairs from the MASH-QA data set (Zhu et al., 2020) were included. The 

t5-base6 model was loaded and fine-tuned on this data set for 5 epochs, with a batch size of 8. In 

this work, this model is referred to as ‘t5-med-query’. 

 
5 https://www.bing.com  
6 https://huggingface.co/t5-base 

Figure 2. A diagram of the T5 architecture and its pretraining and fine-tuning settings. 

https://www.bing.com/
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A third open source T5-based model was also included in the evaluation, which had been 

trained with abstract-title pairs from the scientific domain7. The approach of fine-tuning a PLM 

to predict a title given an input document has shown to be an effective method for proxying highly 

abstractive summaries (Cachola et al., 2020). The model was applied to the GenCompareSum 

method by generating potential ‘titles’ for each document section.	In this work, this model is 

referred to as ‘t5-s2orc-title’. 

 

3.2.3 N-gram blocking 

N-gram blocking is a technique which is applied to reduce redundancy and improve coverage 

in summarisation models (Liu and Lapata, 2019).  In the GenCompareSum method, N-gram 

blocking is applied to the generated textual fragments, resulting in only a subset of the original 

generated texts remaining: 	𝑇∗ ⊆ 𝑇 , where 	𝑇∗ = 6𝑡!, … 𝑡&,&(#)8 . Where generated texts are 

removed by applying this technique, a count is kept of how many times a similar textual fragment 

was seen before n-gram blocking. This results in each remaining generated textual fragment 

having an associated count representing the number of similar textual fragments before n-gram 

blocking. These counts are then treated as weights, which can be described by 𝑤 = {𝑤!, … , 𝑤&}, 

such there is one weight associated with each generated textual fragment remaining after n-gram 

blocking. A visualisation of this can be seen in steps c and d of Figure 1. The top 𝑞; 𝑞 < 𝑙 

generated texts are then selected after ordering by the weight.  

 

3.2.4 Text vector comparison 

BERT-based comparisons have been shown to outperform traditional sentence comparative 

metrics like TF-IDF when used in unsupervised summarisation tasks (Dong et al., 2021). 

Furthermore, they have been shown to align better with human judgement of text similarity than 

n-gram matching approaches during evaluation, likely due to their ability to match based on 

semantic meaning and their penalisation of word reordering which changes a text’s meaning 

(Zhang et al,. 2019b). BERTScore (Zhang et al., 2019b) uses BERT-based token embeddings, 

calculates the cosine similarity between them and uses greedy matching to match each token in 

the first text to its most similar token in the second; these scores are averaged across the sentences 

to give precision, recall and F1 scores which quantify the similarity between two texts. The 

BERTScore between each sentence in the document and each selected generated text fragment is 

 
7 https://huggingface.co/doc2query/S2ORC-t5-base-v1 

https://huggingface.co/doc2query/S2ORC-t5-base-v1
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calculated. The score is weighted by 𝑤, the count representing the number of textual fragments 

which were aggregated during n-gram blocking to give: 

𝑠𝑐𝑜𝑟𝑒* =	?𝑤+ ∗ 𝐵𝐸𝑅𝑇𝑆𝑐𝑜𝑟𝑒(𝑠* , 𝑡+)				(2)
,-.

!

 

The sentences with the highest score are selected to form the predicted summary 𝑆∗ and they 

are reordered back into the sequence which they originally appeared within the source document. 

3.3 Experimental set-up 

3.3.1 Data sets 

The efficacy of the developed hybrid summarisation model was evaluated with four publicly 

available long document data sets from the biomedical and scientific domains. All four data sets 

consist of full-article research papers and their corresponding abstracts. In line with previous 

literature, their abstracts were used as the target summaries. The data sets included in the 

experiments are CORD-19 (Wang et al., 2020b), PubMed and ArXiv (Cohan et al. 2018), and 

S2ORC (Lo et al., 2020). The CORD-19 data set used is the version released on 2020-06-28, 

containing 57,037 articles relating to COVID-19. The S2ORC data set is a large corpus of 

scientific literature across several domains; from the subset of articles tagged as being from the 

biological and biomedical domains, 63,709 were randomly sampled. The PubMed and ArXiv data 

sets are from the biomedical and scientific domains respectively.  

For the S2ORC and CORD-19 data sets, the data set was split by sampling randomly to create 

training/validation/test sets using the ratio 75/15/10. For the PubMed and ArXiv data sets, the 

train/validation/test sets given in the resources associated with the original paper were used. 

Since most previous literature using transformer-based summarisation models either evaluates 

them on short or truncated texts (Liu and Lapata, 2019; Xu et al., 2020; Zhong et al., 2020), short 

data sets were also created and used in this evaluation for comparison. These data sets were 

created by truncating documents to the end of the sentence which contains their 512th token. The 

models were evaluated both on the short and full-text versions of the four data sets described 

above. Table 1 gives, for each data set, the mean number of tokens and sentences for the 

documents and their target summaries.  

As training is not required for unsupervised models, for these methods only the test data sets 

were used. BERTSumExt (Liu and Lapata, 2019) was implemented as a strong supervised 

baseline for comparison.  To train this method, the training and validation data sets were used to 

train the model and to select the best performing epoch for evaluation on the test set.  



 30 

 

3.3.2 Parameter selection 

To select the optimal parameters for the GenCompareSum models, a seeded random sample of 

1000 articles from the PubMed validation data set were selected. Different combinations of the 

parameters were experimented with, details of which can be found in Table 2.  

Different methods were compared for calculating the similarity between the generated salient 

text fragments and the document sentences. BERTScore, a method which uses word embeddings 

to calculate the similarity between texts, was compared with two other methods to calculate the 

similarity between texts using sentence embeddings. Sentence Transformers (Reimers and 

Gurevych, 2019) is trained with a triplet / siamese bert-based architecture and a training objective 

designed to minimise distances between similar sentences. This method was implemented with 

their python package8. Their suggested base model for the general domain ‘all-mpnet-base-v2’ 

and a model trained to calculate document-level similarity for scientific documents ‘allenai-

specter’ (Cohan et al., 2020) were compared. SimCSE (Gao et al., 2021), a method which 

generates sentence embeddings with a model trained using contrastive learning was also 

implemented and evaluated. For this method, the general-domain base model which is suggested 

to be the most performant in SimCSE’s documentation9 was used. For the BERTScore method, 

base models from the general domain were evaluated, namely ‘bert-base-uncased’10, and a base 

model pretrained on data from the scientific domain (Beltagy et al., 2019), 

‘allenai/scibert_scivocab_cased’. For this experiment, GenCompareSum was implemented with 

the s2orc-title generative model and the different methods for the text comparison step were 

evaluated. In Table 3, the results for the ROUGE metrics are reported, calculated for the extractive 

summarisation task on the PubMed ‘Short Document’ data set. In Table 3, and tables of results 

 
8 https://github.com/UKPLab/sentence-transformers 
9 https://github.com/princeton-nlp/SimCSE  
10 https://huggingface.co/bert-base-uncased  

Data set 

 

Instances 
Input length: 

Truncated 

Input length: 

Full 
Target length 

Train Val Test Tokens Sentences Tokens Sentences Tokens Sentences 

PubMed 117108 6631 6658 525 20 3209 124 208 9 

S2ORC 47474 9490 6631 523 19 4312 154 250 9 

CORD-19 31505 6299 4202 525 18 5240 206 232 8 

ArXiv 202917 6436 6440 528 20 6515 249 279 11 

Table 1. A description of the four data sets used in the extractive summarisation experiments. 

https://github.com/UKPLab/sentence-transformers
https://github.com/princeton-nlp/SimCSE
https://huggingface.co/bert-base-uncased
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throughout this work, bold font indicates the best result and underlined text indicates the second-

best result. The similarity method is given in the table’s first column, with the base model used in 

its implementation given in brackets. Despite the data set on which the different methods were 

evaluated being of the biomedical domain, BERTScore, implemented with a ‘bert-base-uncased’ 

PLM, outperformed all other methods compared. This is a promising result as it suggests the 

method is more likely to generalise to other domains. 

 

Parameter Parameter Definition Experimental Range 
Selected 

Parameter 

T5 model 

temperature 

Controls randomness of generative 

text model predictions 
0.2-1 0.5 

T5 input size (𝑥) # of sentences in input section 2-12 4 

T5 predictions 

(𝑘) 

# of salient texts generated per 

section 
2-6 3 

T5 prediction n-

gram blocking 

# of consecutive word matches used 

to determine whether a generated text 

should be removed due to redundancy 

No n-gram blocking, 

n=3, n=4 
4 

T5 generated 

texts for 

comparison (𝑞) 

# of generated texts used for 

comparison to the original document 

sentences 

4-12 10 

BERTScore 

embedding model 

Base model used in BERTScore 

package for word-embedding 

comparison 

bert-base-uncased11, 

facebook/bart-large-mnli12, 

allenai/longformer-large-409613, 

allenai/scibert_scivocab_uncased14 

 

bert-base-

uncased 

Score weighting 
Option to multiply scores by 

frequency of question occurrence 
True/False True 

Sentence selecton 

n-gram blocking 

# of consecutive word matches used 

to determine whether a selected 

sentence should be removed due to 

redundancy 

No n-gram blocking, 

n=3, n=4 
4 

 
11 https://huggingface.co/bert-base-uncased 
12 https://huggingface.co/facebook/bart-large-mnli 
13 https://huggingface.co/allenai/longformer-base-4096 
14 https://huggingface.co/allenai/scibert_scivocab_uncased  

Table 2. Parameters experimented with, and selected for use, in the GenCompareSum models. 

https://huggingface.co/bert-base-uncased
https://huggingface.co/facebook/bart-large-mnli
https://huggingface.co/allenai/longformer-base-4096
https://huggingface.co/allenai/scibert_scivocab_uncased
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Text similarity method R1 R2 RL 

BERTScore (bert-base-uncased) 39.19 14.35 35.65 

BERTScore (allenai/scibert_scivocab_cased) 37.78 13.40 34.45 

SentenceTransformer (all-mpnet-base-v2) 39.03 14.20 35.45 

SentenceTransformer(allenai-specter) 38.20 13.41 34.67 

SimCSE (princeton-nlp/sup-simcse-roberta-large) 38.62 13.73 35.07 

 

3.3.3 Implementation details 

All experiments requiring GPUs were run on NVIDIA Quadro RTX 6000 hardware. The 

results are reported in terms of ROUGE-1, ROUGE-2, and ROUGE-L scores (Lin, 2004), 

which were calculated using the pyrouge15 python package.  

Several extractive text summarisation methods were compared across the short and full-text 

versions of the four scientific data sets. For the short-text data sets, 6 sentences were selected to 

generate the predictive summary. Results are given on a short-text summary for a fair comparison 

against supervised methods, which are restricted by the length of document that they can easily 

summarise. For the full-text articles, the number of sentences that were selected for the predictive 

summary is the same as the average number of sentences in the target summaries for a given data 

set, shown in Table 1. e.g., for the PubMed data set, 9 sentences were selected to summarise the 

full text article. 

ORACLE summaries indicate the upper bound for extractive text summarisation. ORACLE 

summaries were generated by adapting code from Liu and Lapata (2019), which applies greedy 

sentence selection to maximise ROUGE scores. As baseline methods for comparison, the LEAD 

method, taking the first 𝑛 sentences to form the summary, and the RANDOM method, taking a 

random sample of 𝑛 sentences to form the summary, were implemented. Unsupervised extractive 

methods, LexRank (Erkan and Radev, 2004), TextRank (Mihalcea and Tarau, 2004) and 

SumBasic (Nenkova and Vanderwende, 2005), were also implemented as baselines, all of which 

were implemented using the sumy16 package. LexRank (Erkan and Radev, 2004) and TextRank 

(Mihalcea and Tarau, 2004) are both graph-based models, based on Google’s PageRank 

algorithm (Brin and Page, 1998), which assume that the sentences with the highest centrality are 

 
15 https://github.com/bheinzerling/pyrouge 
16 https://github.com/miso-belica/sumy  

Table 3. A comparison of different methods for calculating text similarity between generated 
salient texts and the document’s sentences. 

https://github.com/bheinzerling/pyrouge
https://github.com/miso-belica/sumy


 33 

the most important and use these to form a summary. SumBasic simply assumes that sentences 

containing the words which are used with the highest frequency across the whole document will 

be the most important. Additionally, BERTSumExt (Liu and Lapata, 2019), a state-of-the-art 

supervised method using BERT-based transformer models was implemented for comparison. For 

evaluation on the short data sets, where the documents were truncated at the end of the sentence 

containing the 512th token, the original implementation of BERTSumExt was used without 

modification to train and evaluate the models. For the full-text article, this code was adapted (and 

is thus denoted BERTSumExt*) to cycle through the article in 512 token-length blocks and 

predict the best sentences to select from across this cycle. However, due to hardware limitations 

and the computational intensity of the attention calculation, truncation of the document to its first 

1024 tokens was required to evaluate this method. Lastly, GenCompareSum was implemented, 

and its performance was evaluated using the different generative text models described in Section 

3.2.2: docTTTTTquery, t5-med-query, and t5-s2orc-title. 

3.4 Evaluation of the unsupervised hybrid abstractive-extractive approach 

3.4.1 Automatic Evaluation 

The results of the unsupervised hybrid abstractive-extractive method on the extractive 

summarisation task are reported in Table 4.  

For the short documents, GenCompareSum (t5-s2orc-title) performed best across three out of 

four of the data sets, and second-best for the fourth data set. There was no clear ‘second-best’ 

model out of the methods compared for the short data sets. Interestingly, for the S2ORC data set, 

the method that outperformed all others was LEAD, i.e., taking the first sentences from the 

document as the predictive summary. However, in evaluation of the full-text version of the 

S2ORC data set, it did not hold that LEAD was the best method, and it was outperformed by 

several other methods. 

For the long document data sets, GenCompareSum (t5-s2orc-title) outperformed all other 

unsupervised models. A strong unsupervised baseline, LexRank, has been shown in prior 

literature to give competitive performance when compared to supervised approaches (Cohan et 

al., 2018; Pilault et al., 2020). In-line with these works, LexRank was shown to be the best-

performing unsupervised method after GenCompareSum. 

The method proposed in this work, GenCompareSum (t5-s2orc-title), outperformed LexRank 

by an average of ∆𝑅1, ∆𝑅2, ∆𝑅𝐿  of 2.35, 1.47, 2.27 across the four data sets. A slight 

performance increase over BERTSumExt* (the strong supervised baseline which was adapted to 

run over longer documents) can be seen, with an ∆𝑅1, ∆𝑅2, ∆𝑅𝐿 of 0.36, 0.56, 0.06 across the 
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four data sets. Given that GenCompareSum is unsupervised, and therefore does not require 

labelled training data and can be extended to any document length, it is arguably a favourable 

method.  

Considering the different implementations of GenCompareSum, as expected, the results show 

that using a generative model fine-tuned on in-domain data gives notable performance increases. 

Table 4 shows that on the CORD-19 biomedical data set, the ∆𝑅1 between an out-of-domain 

query generation model (docTTTTTquery) and a query generation model trained on biomedical 

data (t5-med-query) was as high as 3 and 2.49 for the short and long articles respectively. 

However, for the ArXiv data set, which consists of predominantly physical and computer science 

related research articles, the performance decreased when using the t5-med-query generative 

model instead of the general domain docTTTTTquery model.  

The best-performing GenCompareSum model, t5-s2orc-title, uses a generative PLM fine-

tuned on document-title pairs from the S2ORC data set to guide the extractive summarisation. In 

many ways, a title can be considered as a highly abstractive summarisation (Cachola et al., 2020). 

A major advantage of this finding is that, although it does require training data to fine-tune this 

generative model, document-title pairs are readily available across many domains, thus a model 

can easily be trained for a specific task without needing extensive manual labelling effort. 

Furthermore, this model, although fine-tuned on biomedical and scientific data, is fine-tuned on 

a very broad range of documents within these fields. This work demonstrates that, despite the 

broad coverage of fields in its training data, it performs very well when applied to data from a 

more specific domain, e.g., biomedicine in the PubMed and CORD-19 data sets.  

Lastly, it can be observed that there are big differences in ORACLE scores between the short 

and full text data sets. Although GenCompareSum outperformed all other methods evaluated for 

both short and full text documents, the gap between the best predictive scores in the experiments 

and the ORACLE upper bound is large for long documents, suggesting that much more research 

could be done in this space. Furthermore, based on this observation, one can hypothesise that 

predicting summaries from short documents is a significantly easier task than doing the same for 

long documents. This is supported by TextRank performing worse on the long documents than 

on the truncated versions. This may be explainable by the fact that there are much fewer sentences 

to choose from within a shorter document (approximately 32% of all sentences in truncated 

documents are selected to form the summary vs 5% of sentences in full documents), thus less 

room for error.  
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3.4.2 Qualitative analysis 

Table 5 shows a randomly sampled PubMed document, the associated generated salient 

fragments, and the predicted extractive summary given by each of the three GenCompareSum 

methods.  The gold summary (the document abstract) is also given for comparison. Table 6 gives 

the same for a randomly sampled document from the ArXiv data set. In this subsection, the 

Model 
 PubMed S2ORC CORD-19 ArXiv 

R1 R2 RL R1 R2 RL R1 R2 RL R1 R2 RL 
Short Document 

ORACLE  47.27 22.85 43.20 49.29 25.42 45.52 43.47 17.75 39.28 47.29 18.49 41.90 

RANDOM 34.98 10.82 31.37 34.69 11.06 31.30 31.64 7.91 28.10 34.53 8.88 30.26 

LEAD 35.39 12.07 32.28 40.50 16.72 37.68 34.80 10.17 31.67 34.35 8.75 30.61 

LexRank  38.48 13.05 34.92 39.44 14.57 36.13 35.65 10.17 32.11 38.98 11.44 34.64 

TextRank 38.15 12.99 34.77 40.17 14.84 36.63 36.25 10.61 32.53 37.97 11.58 33.53 

SumBasic 36.11 11.06 32.67 35.99 11.99 32.87 33.63 8.82 30.22 37.14 9.83 33.06 

BERTSumExt 38.78 14.47 35.43 39.41 16.14 36.38 34.68 10.34 31.42 39.36 11.74 35.09 

GenCompareSum 
(docTTTTTquery) 

37.82 
 13.12 32.41 38.31 14.27 35.17 33.77 9.73 30.66 38.59 11.49 34.50 

GenCompareSum   
(t5-med-query) 38.54 13.67 35.06 38.96 14.78 35.80 36.77 11.24 33.29 38.92 11.59 34.76 

GenCompareSum   
(t5-s2orc-title) 39.19 14.35 35.65 40.16 15.84 36.91 36.84 11.35 33.35 39.66 12.30 35.38 

Long Document 

ORACLE  61.76 36.78 57.61 64.11 39.21 60.16 59.10 32.09 54.63 60.16 32.17 54.97 

RANDOM 37.26 11.19 33.66 37.12 10.23 33.73 33.37 7.70 29.98 34.20 8.70 30.64 

LEAD 37.23 11.11 33.67 40.50 16.72 37.68 34.61 10.17 31.68 34.70 10.27 31.37 

LexRank  41.02 15.83 37.18 42.60 15.84 38.97 39.50 12.65 35.68 33.94 12.09 30.62 

TextRank 34.53 12.98 30.99 36.58 13.23 33.10 32.99 10.39 24.47 26.57 9.20 23.74 

SumBasic 40.61 12.42 36.54 36.63 10.43 33.68 33.88 8.24 30.86 33.18 7.75 30.29 

BERTSumExt* 41.87 16.01 38.51 43.56 17.85 40.40 38.95 12.17 35.48 40.65 14.01 36.89 

GenCompareSum 
(docTTTTTquery) 40.54 14.77 36.83 40.78 14.24 37.43 36.84 11.19 33.51 38.19 12.76 34.55 

GenCompareSum   
(t5-med-query) 41.60 15.67 37.79 41.84 15.10 38.35 39.33 12.31 35.74 37.17 11.97 33.95 

GenCompareSum   
(t5-s2orc-title) 42.10 16.51 38.25 43.39 16.84 39.82 41.02 13.79 37.25 39.96 15.15 36.19 

Table 4. Results of the extractive summarisation task on the PubMed, ArXiv, S2ORC and 
CORD-19 data sets. Bold font indicates the best results and underlined font indicates the 
second-best results.  
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differences between the texts generated by the various T5-based models are compared and 

hypotheses are given about how they may influence the extractive summary.  

The docTTTTTquery model produced questions which were relatively general and implied 

little biomedical knowledge when given the PubMed document as input., producing textual 

fragments such as “what is nlrp3”. Interestingly, it did manage to produce more complex texts 

from sections of the ArXiv data set, such as: “what is the contribution of the spiral arm to the 

resonant structure in the solar neighborhood?”. 

In comparison, the t5-med-query model, whilst also generating questions, better encapsulated 

biomedical concepts when given a document from the PubMed data set, e.g., “what is the role of 

nuclear and mitochondrial dna damage and repair in people with depression?”. However, in line 

with the ROUGE results given in Section 4.1, it seemed to perform less well on out-of-domain 

(i.e., scientific rather than biomedical) literature, and appeared to default to a more general 

question generation model, generating texts for the ArXiv document such as “what is the effect 

of a spiral arm?”.  

The t5-s2orc-title model generated texts which read much more like very short, highly 

abstractive summaries. E.g., for the PubMed article, it generated the textual fragment: “the role 

of the nuclear and mitochondrial dna in depression” and for the ArXiv article it generated: “the 

spiral arm contribution to the resonant structure of the solar neighborhood”.  

Although outperformed by the title-generation model t5-s2orc-title in the automatic 

evaluation, on analysis of the generated textual fragments, the query generation models did seem 

to effectively represent the important facts from an article, especially in the biomedical domain. 

It is hypothesised that the use of BERTScore to calculate the similarity between salient texts and 

document sentences favours the title generation model due to it calculating the similarity between 

words in different texts and not being designed to answer questions. In future work, it would be 

interesting to experiment further with the combination of the query generation models and 

extractive question answering approaches for the extractive summarisation task.  

3.5 Discussion of GenCompareSum 

In this section, existing approaches for extractive summarisation of long documents was 

discussed and an unsupervised extractive method for the summarisation of long documents using 

PLMs was developed. Experiments were conducted on long document data sets from the 

biomedical and scientific domains and the results showed that the unsupervised method 

proposed, GenCompareSum, outperformed both strong supervised and unsupervised baselines 

on long and short documents. This method can be extended to any length of document and does 
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not require a corpus of annotated training data for the summarisation task. Furthermore, it was 

shown that the best-performing model used title-document pairs for the generative task, which 

are readily available across many domains without the need for manual labelling effort. Future 

work could be done to evaluate different PLMs for the generation task, including different base 

models, such as BART (Lewis et al., 2020). This method could also be extended to, and evaluated 

on, articles from other, non-scientific, domains. An additional interesting direction for this work 

would be to combine it with the concept of zoning, which is discussed in Section 5.  
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PubMed Sample Document and Predictions 

PubMed Sample 
Document 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4329942/  

PubMed Sample 
Abstract (Target 
Summary) 

depressive disorder ( dd ) , including recurrent dd ( rdd ) , is a severe psychological di
sease , which affects a large percentage of the world population . although pathogene
sis of the disease is not known , a growing body of evidence shows that inflammation
 together with oxidative stress may contribute to development of dd . since reactive o
xygen species produced during stress may damage dna , we wanted to evaluate the ex
tent of dna damage and efficiency of dna repair in patients with depression. material /
 we measured and compared the extent of endogenous dna damage single - and doubl
e - strand breaks , alkali - labile sites , and oxidative damage of the pyrimidines and p
urines in peripheral blood mononuclear cells isolated from rdd patients ( n = 40 ) and 
healthy controls ( n = 46 ) using comet assay . we also measured dna damage evoked 
by hydrogen peroxide and monitored changes in dna damage during repair incubation
. we found an increased number dna breaks , alkali - labile sites , and oxidative modif
ication of dna bases in the patients compared to the controls . exposure to hydrogen p
eroxide evoked the same increased damage in both groups . examination of the repair
 kinetics of both groups revealed that the lesions were more efficiently repaired in the
 controls than in the patients. the first time we showed that patients with depression , 
compared with non - depresses individuals , had more dna breaks , alkali - labile sites
 , and oxidative dna damage , and that those lesions may be accumulated by impairme
nts of the dna repair systems . more studies must be conducted to elucidate the role of
 dna damage and repair in depression .  

Salient Texts - 
GenCompareSum 
(docTTTTTquery) 

• what is nlrp3 
• how long does it take for dna damage to be repaired 
• what is the oxidative modification of purines 
• what is the main activator of nlrp3 
• what is the damage caused by dna repair 
• what is the role of mitochondrial dna in depression 
• what is oxidative damage in dna 
• does oxog cause depression 
• what is the dna damage response 
• what is the oxidative damage of pyrimidines and purines? 

Predicted Summary - 
GenCompareSum 
(docTTTTTquery) 

• since the findings described above are inconsistent , we wanted to determine
 if the oxidative modification of purines , like 8 - oxog , and pyrimidines are 
present in a higher degree in patients with depression than in controls .  

• to achieve these objectives , we measured and compared the extent of endog
enous dna damage single - and double - strand breaks , alkali - labile sites , a
nd oxidative damage of the pyrimidines and purines in pbmcs isolated from 
dd patients and healthy controls .  

• we evaluated the level of basal endogenous dna damage by subjecting pbmc
s to comet assay procedure immediately after isolation from blood .  

• moreover , we estimated the extent of oxidative dna damage by employing 
modified comet assay with 2 glycosylases : nth removing oxidized pyrimidi
nes and hogg1 excising oxidized purines .  

• figure 3 shows mean dna damage changes in pbmcs of the patients with depr
ession and the controls without psychiatric disturbances during the repair inc
ubation .  

• the goal of our research was to examine the susceptibility of rdd patients to 
dna damage induced by oxidative stress by measuring the level of endogeno
us dna damage , including oxidative dna damage , the amount of dna damag
e induced by h2o2 , and efficiency of dna damage repair in the patients as co
mpared to the controls without psychological disturbances .  

• apart from measuring the extent of endogenous dna damage , we also estima
ted the amount of dna damage induced by the incubation of pbmcs with h2o
2 and efficiency of its repair .  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4329942/
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• additionally , we monitored the repair efficiency of the induced dna damage 
  

• moreover , nlrp3 inflammasome , activation of which was detected in the pat
ients pbmcs , was also found to inhibit dna repair after induction of oxidativ
e stress . 

Salient Texts - 
GenCompareSum 
(t5-med-query) 

• what was the purpose of the study? 
• what is the alkaline version of the comet assay? 
• what is the effect of pbmcs on basal endogenous dna damage? 
• what is the incubation time for dna repair? 
• what is the role of nuclear and mitochondrial dna damage and repair in peop

le with depression? 
• is it possible to study the susceptibility of rdd patients to dna damage induce

d by oxidative stress? 
• what is recurrent depressive disorder? 
• what is the association between 8 - oxog and depression in japanese office w

orkers? 
• which is the most versatile nlr? 
• what enzymes are bifunctional glycosylases? 

Predicted Summary - 
GenCompareSum 
(t5-med-query) 

• moreover , we also wanted to know if the patients have elevated levels of ot
her kinds of dna damage , such as strand breaks .  

• we evaluated the level of basal endogenous dna damage by subjecting pbmc
s to comet assay procedure immediately after isolation from blood .  

• figure 2 shows basal endogenous dna damage and the damage induced after 
10 - min incubation with 20 m h2o2 in pbmcs isolated from the patients and 
controls without psychiatric disturbances .  

• figure 3 shows mean dna damage changes in pbmcs of the patients with depr
ession and the controls without psychiatric disturbances during the repair inc
ubation .  

• figure 5 compares basal endogenous dna damage and the level of this param
eter at the end of the repair incubation in pbmcs of the patients and the contr
ols measured by the alkaline version of comet assay .  

• the goal of our research was to examine the susceptibility of rdd patients to 
dna damage induced by oxidative stress by measuring the level of endogeno
us dna damage , including oxidative dna damage , the amount of dna damag
e induced by h2o2 , and efficiency of dna damage repair in the patients as co
mpared to the controls without psychological disturbances .  

• apart from measuring the extent of endogenous dna damage , we also estima
ted the amount of dna damage induced by the incubation of pbmcs with h2o
2 and efficiency of its repair .  

• additionally , we monitored the repair efficiency of the induced dna damage 
. 

• there is a need for further studies to define the role of nuclear and mitochond
rial dna damage and repair in people with depression , and their implications
 for clinical outcome . 

Salient Texts - 
GenCompareSum 
(t5-s2orc-title) 

• dna damage in patients with depression. 
• oxidative dna damage in depression 
• the oxidative dna damage in patients with renal failure 
• activation of nlrp3 by oxygen species in pbmc patients. 
• activation of mitochondrial nlrp3 in patients with pbmcs. 
• urinary 8-oxog in japanese office workers 
• the use of the alkaline version of comet assay for assessing dna damage in p

bmcs 
• the role of the nuclear and mitochondrial dna in depression. 
• the role of the dna repair rate in the repair of pbmcs in patients with squamo

us cell carcinoma. 
Predicted Summary -
 GenCompareSum (t
5-s2orc-title) 

• in agreement with this , activation of nlrp3 in pbmcs of the patients was acco
mpanied by increased lipid peroxidation , which can be attributed to increas
ed oxidative stress and elevated mitochondrial ros ( mtros ) production .  
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• moreover , we induced oxidative dna damage in those pbmcs by incubating t
hem with hydrogen peroxide , measured the kinetics of removing of such da
mage , and compared the results between the patients and the controls .  

• we evaluated the level of basal endogenous dna damage by subjecting pbmc
s to comet assay procedure immediately after isolation from blood .  

• figure 2 shows basal endogenous dna damage and the damage induced after 
10 - min incubation with 20 m h2o2 in pbmcs isolated from the patients and 
controls without psychiatric disturbances .  

• figure 3 shows mean dna damage changes in pbmcs of the patients with depr
ession and the controls without psychiatric disturbances during the repair inc
ubation .  

• it is possible that increased oxidative dna damage occurs only in patients wit
h more severe forms of depression , or in later stages of the disease develop
ment .  

• these results indicate that in the patients , oxidative dna damage is less effici
ently removed than in the controls .  

• moreover , nlrp3 inflammasome , activation of which was detected in the pat
ients pbmcs , was also found to inhibit dna repair after induction of oxidativ
e stress .  

• for the first time , we showed that patients with depression had elevated leve
ls of dna breaks , alkali - labile sites , and oxidative dna damage , and that th
ese lesions may be accumulated by impairments of dna repair pathways . 

 

 

 

 

 

 

 

  

Table 5. Comparison of salient texts and extractive summaries generated by different 
implementations of GenCompareSum on an article sampled from the PubMed data set.  
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ArXiv Sample Document and Predictions 
ArXiv Sample 
Document 

https://arxiv.org/abs/0906.4682  

ArXiv Sample 
Abstract (Target 
Summary) 

we study the phase space available to the local stellar distribution using a galactic pot
ential consistent with several recent observational constraints .  
 we find that the induced phase space structure has several observable consequences .
  
 the spiral arm contribution to the kinematic structure in the solar neighborhood may 
be as important as the one produced by the galactic bar .  
 we suggest that some of the stellar kinematic groups in the solar neighborhood , like 
the hercules structure and the kinematic branches , can be created by the dynamical re
sonances of self - gravitating spiral arms and not exclusively by the galactic bar .  
 a structure coincident with the arcturus kinematic group is developed when a hot stel
lar disk population is considered , which introduces a new perspective on the interpre
tation of its extragalactic origin .  
 a bar - related resonant mechanism can modify this kinematic structure .  
 we show that particles in the dark matter disk - like structure predicted by recent lcd
m galaxy formation experiments , with similar kinematics to the thick disk , are affect
ed by the same resonances , developing phase space structures or dark kinematic grou
ps that are independent of the galaxy assembly history and substructure abundance .  
 we discuss the possibility of using the stellar phase space groups as constraints to no
n - axisymmetric models of the milky way structure .  

Salient Texts - 
GenCompareSum 
(docTTTTTquery) 

• what is the role of the bar in the local kinematic structure 
• what is the effect of the non axisymmetric galactic structure on the solar nei

ghborhood kinematic distribution? 
• what is the shape of the solar structure at @xmath27 
• what is the structure of the hercules branch 
• what is the effect of a spiral arm 
• what is the hercules structure 
• how does the kinematics of the disk affect the galaxy? 
• which of the following structure is a contribution to the solar neighborhood 

kinematics? 
• what type of spiral arm is used to measure observations made in the solar ne

ighborhood 
• what is the contribution of the spiral arm to the resonant structure in the sola

r neighborhood? 
Predicted Summary - 
GenCompareSum 
(docTTTTTquery) 

• however , it is unclear whether there is any dependence of the induced local 
solar neighborhood kinematics on the detailed galactic structure .  

• in order to study the effect of the non - axisymmetric galactic structure on th
e solar neighborhood kinematic distribution , we have performed numerical i
ntegrations of test particle orbits on the galactic plane , adopting the initial c
onditions discussed in sect .  

• the induced kinematic distribution at the end of the simulation is studied by 
considering the particles inside a circle of radius @xmath7 centered at the so
lar position .  

• therefore we focused on the recently induced kinematic structure in the solar
 neighborhood .  

• with these initial conditions , we can study the relatively rapid induced effec
ts of the non - axisymmetric component on the local kinematics .  

• we conclude that the contribution of the spiral arms to the solar neighborhoo
d kinematics may be comparable to that of the bar .  

• in our simulations the positions of these kinematic arches are modified when
 the bar is added to the model .  

• furthermore , these simulations show the important role of the bar in the dev
elopment of the local kinematic structure .  

• the spiral arm contribution to the resonant structure in the solar neighborhoo
d may be comparable to that of the galactic bar .  

• in summary , the imprints of the non - axisymmetric galactic structure on the
 local stellar kinematics are strong . 

https://arxiv.org/abs/0906.4682
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Salient Texts - 
GenCompareSum 
(t5-med-query) 

• what is the effect of dark matter kinematics on the bar - and spiral arm - ind
uced phase space structure? 

• what is the main argument of @xcite? 
• what is the structure of the hercules? 
• what is the solar neighborhood? 
• what is the kinematic distribution of the particles? 
• what is the relationship between spiral arms and stellar behavior? 
• what is the galactic potential? 
• what is the required condition for a thick disk? 
• what is the difference between ic3 and ic2? 
• why is the observed velocity field a useful parameter for predicting the beha

vior of galaxies? 
Predicted Summary - 
GenCompareSum 
(t5-med-query) 

• however , it is unclear whether there is any dependence of the induced local 
solar neighborhood kinematics on the detailed galactic structure .  

• moreover , the initial conditions hardly consider the evolution of the mw .  
• the induced kinematic distribution at the end of the simulation is studied by 

considering the particles inside a circle of radius @xmath7 centered at the so
lar position .  

• therefore we focused on the recently induced kinematic structure in the solar
 neighborhood .  

• we conclude that the contribution of the spiral arms to the solar neighborhoo
d kinematics may be comparable to that of the bar .  

• in our simulations the positions of these kinematic arches are modified when
 the bar is added to the model .  

• another unexpected aspect of the bar - and spiral arm - induced phase space 
structure is the effect on the local dark matter kinematics .  

• the spiral arm contribution to the resonant structure in the solar neighborhoo
d may be comparable to that of the galactic bar .  

• the main differences to previous studies are the arm force contrast and force 
field shape?  

• in summary , the imprints of the non - axisymmetric galactic structure on the
 local stellar kinematics are strong . 

Salient Texts - 
GenCompareSum 
(t5-s2orc-title) 

• dark matter kinematics in the solar neighborhood 
• a note on the arcturus structure in a $xmath26$ plane 
• dark kinematic groups in the dark disk 
• the spiral arm contribution to the resonant structure of the solar neighborhoo

d 
• the birth of stars in the disk with small velocity dispersion 
• the solar neighborhood kinematics and the spiral arms 
• spiral arms in the mw-type galaxies 
• the hercules branch of a galactic model using only a bar 
• theoretical study of the bar and spiral arm perturbations in the xci model 
• dark matter currents in the galactic dark disk 

 
Predicted Summary -
 GenCompareSum (t
5-s2orc-title) 

• in @xcite we presented a study of the solar neighborhood kinematic groups 
using a sample of 24,190 stars .  

• lastly , we investigate effects on the local dark matter kinematics , in particul
ar in the disk - like dark matter structure recently predicted by lcdm models .
  

• the induced kinematic distribution at the end of the simulation is studied by 
considering the particles inside a circle of radius @xmath7 centered at the so
lar position .  

• therefore we focused on the recently induced kinematic structure in the solar
 neighborhood .  

• we conclude that the contribution of the spiral arms to the solar neighborhoo
d kinematics may be comparable to that of the bar .  

• another unexpected aspect of the bar - and spiral arm - induced phase space 
structure is the effect on the local dark matter kinematics .  
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• our results show that these models generate dark matter currents inside the g
alactic dark disk .  

• the spiral arm contribution to the resonant structure in the solar neighborhoo
d may be comparable to that of the galactic bar .  

• we show that the galactic non - axisymmetric potential develops dark kinem
atic groups in the dark disk predicted in cosmological simulations of galaxy 
formation .  

• in summary , the imprints of the non - axisymmetric galactic structure on the
 local stellar kinematics are strong . 

 

  

Table 6.  Comparison of salient texts and extractive summaries generated by different 
implementations of GenCompareSum on an article sampled from the ArXiv data set.  

 



 44 

4 Injecting external knowledge into summarisation 

4.1 Domain-specific knowledge in NLP 

Whilst short document summarisation data sets are largely from general domains such as news 

articles (Hermann et al., 2015; Grusky, et al., 2018; Narayan, et al., 2018), long document 

summarisation data sets are often highly domain specific. Scientific research articles are common 

examples of long document data sets (Wang et al., 2020b; Cohan et al. 2018; Lo et al., 2020), in 

addition to data sets of patent data (Sharma et al., 2019), US legislative documents (Kornilova 

and Eidelman, 2019), and government reports (Huang et al., 2021). Since long document data 

sets are generally more domain specific, they contain a relatively high proportion of out-of-

vocabulary words for PLMs trained with data of the general domain (Gu et al., 2020).  In the 

biomedical domain, much of the domain-specific vocabulary used can be tied to the PICO 

annotation model.  

 

4.1.1 PICO annotations 

PICO is a popular framework in the biomedical field for defining four key elements of 

biomedical knowledge: Population, Intervention, Comparison and Outcome. It is commonly 

used to tag and structure biomedical documents as well as for formulating search queries over 

documents in the domain (Brockmeier et al., 2019).   

In the field of NLP, several works have been proposed to detect PICO elements. Demner-

Fushman and Lin (2007) proposed rule-based methods and simple classifiers to identify PICO 

elements at the sentence level. Modern approaches use deep-learning models and formulate the 

problem as an entity recognition task, identifying PICO spans in randomised controlled trial 

documents (Kang et al., 2019) and biomedical abstracts (Brockmeier et al., 2019). Figure 3 gives 

an illustrative example of span-level tagging of PICO elements in biomedical literature.  

 
 

Figure 3. An example of PICO element detection in biomedical text (Stenetorp et al, 2012). 
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4.1.2 Existing methods for injecting domain knowledge into downstream NLP tasks 

There have been several prior studies which use pretraining strategies with in-domain data to 

adapt PLMs for use in domain-specific applications. These PLMs have been shown to be highly 

effective for downstream domain-specifc NLP tasks (Gu et al., 2021; Beltagy et al., 2019).  

However, pretraining is a hugely computationally expensive task. For example, PubMedBERT 

(Gu et al., 2021) required 10 GPUs and 5 days to train. In the biomedical domain, strategies have 

been proposed to inject biomedical knowledge graphs (Meng et al., 2021) or PICO elements 

(Wallace et al., 2021) for downstream NLP tasks to improve performance on domain-specific 

applications.  There is some prior literature combining PICO elements with the text 

summarisation task: Bui et al., (2016) use a rules-based approach to create a tabular structured 

summary of information relating to PICO elements. Afzal et al., (2020) propose an extractive 

multi-document and query-focused summarisation approach which extracts PIO elements from 

relevant documents, and then uses Word2Vec embeddings (Mikolov et al., 2013) of sentences 

containing these elements to calculate similarity with the original query and to select the most 

relevant sentences to form the extractive summary. Zhang et al., (2020b) use an active learning 

approach to train a deep-learning model to detect PICO sentences, and then use TextRank 

(Mihalcea and Tarau, 2004) and informativeness metrics to select which of these sentences to 

include in the final extractive summary. However, there is little research exploring how PICO 

elements can be incorporated into PLMs to improve the performance of text summarisation of 

biomedical documents. 

4.2 The KeBioSum Model 

In this section, methods to incorporate domain specific knowledge into summarisation models 

for long documents from the biomedical domain are explored. Specifically, a novel method, 

KeBioSum is proposed17. This method uses adapters (Houlsby et al., 2019) to infuse SOTA 

PLMs with span-level PICO element information for the text summarisation task. This differs 

from prior approaches by making use of PLMs rather than traditional models for injecting fine-

grained biomedical knowledge. The proposed approach shows improved performance over 

strong baselines for extractive text summarisation on the biomedical data sets evaluated. 

 
17 https://github.com/xashely/KeBioSum 



 46 

 
 
 

4.2.1 Method overview 

Figure 4 gives a high-level view of the method. The fine-grained biomedical knowledge is 

injected via generative and discriminative adapters. In KeBioSum, the fine-grained biomedical 

knowledge injected into the PLM consists of PICO element detections, output from an 

independent SciBERT-based model (Beltagy et al., 2019), fine-tuned on the EBM-NLP data set 

(Nye et al., 2018). The overall extractive summarisation task is structured as a binary 

classification task, where each sentence in the source document is classified as to whether it 

should be included in the summary (class 1) or not included (class 0).   

As with the unsupervised extractive approach outlined in Section 3, the method starts by 

dividing a document 𝐷 it into its sentences 𝑠, such that 𝐷	 = {𝑠!, … , 𝑠"}, using the Stanford 

CoreNLP software package (Manning et al., 2014). The problem is formulated as a classification 

task, such that each sentence 𝑠* in 𝐷 is classified with a label 𝑟* ∈ {0,1}, resulting in a predicted 

summary 𝑆∗ that consists of the 𝑚 sentences selected from 𝐷 where 𝑟 = 1 , and 𝑚 ≪ 𝑛.  

 

4.2.2 PICO detection model 

Knowledge derived from PICO elements was injected into KeBioSum because PICO elements 

are known to have a high correlation with the information that clinicians look for when reading 

a new piece of research. For example, in documents they shared with us in 2021, the National 

Institute of Clinical Excellence18 had fields for ‘Population’, ‘Study setting’, ‘Treatment’, and 

‘Outcome’ on the forms they used to summarise new Random Controlled Trial research articles.   

 
18 https://www.nice.org.uk 

Figure 4. An overview of KeBioSum (Xie et al., 2022).  
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Figure 5 gives the model architecture used for making the PICO span predictions. To train the 

model, SciBERT (Beltagy et al., 2019) is used to encode the input document. These 

representations are then fed into a SoftMax classification layer to predict the label. The model 

was trained using the EBM-NLP data set (Nye et al., 2018), which consists of 5000 PubMed 

abstracts, annotated with P, I, and O tags. In this data set, a single class I represents both 

Intervention and Comparison and the P, I, O elements are represented by ‘I-P’, ‘I-I’ and ‘I-O’ 

tags. An additional tag ‘O’ was used to represent non-PICO tokens. The data set was split into 

train, validation, and tests splits with the number of documents in each being 4300, 500, and 200 

respectively. The model was optimised with a cross-entropy loss and the best model was selected 

using the performance on the validation data set. As shown in Figure 4, in KeBioSum, the 

resulting fine-tuned model is used to predict PIO tags which are fed into the extractive 

summarisation model.  

4.2.3 Adapter fusion for extractive summarisation 

Adapters (Houlsby et al., 2019) are lightweight-frameworks for fine-tuning transformer-

based models and provide an alternative to directly fine-tuning a PLM with many parameters. 

They work by introducing a small number of trainable parameters into the PLMs, whilst the rest 

of the weights within the PLM are frozen. They have been shown in prior literature to be able to 

successfully provide the ability to transfer knowledge into PLMs (Wang et al., 2021; Pfeiffer et 

al., 2020). Inspired by prior works (Clark et al., 2019; He et al., 2020) knowledge is injected via 

complimentary generative and discriminative adapters.  

In KeBioSum, the generative adapter works to predict a partially masked input. Given an input 

sentence made up of 𝑡 tokens, such that 𝑡* =	 {𝑥!, … , 𝑥/}, 𝑤 ≪ 𝑡 tokens are masked. All tokens, 

masked and unmasked, are then fed into the generative adapter, which is trained to predict the 

masked tokens.  

Figure 5. PICO detection model (Xie et al., 2022) 
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To train both the generative and discriminative adapters, all tokens detected to be PICO 

elements, and 15% of non-PICO tokens were masked. The approach taken is different to the 

random masking strategy of BERT (Devlin et al., 2019).  The intention of this masking strategy 

was to guide the model to focus on learning the biomedical knowledge pivotal to the 

comprehension of the biomedical document. The loss of the generative adapter is the negative 

log-likelihood of predicting a token, given the masked input 𝑥N: 

                                                 ℒ0 =	−∑ logU𝑥1V/
1-! 𝑥N)       (3). 

In contrast, the discriminative adapter works to predict the I-P, I-I, I-P and O tags for each token 

of the same partially masked input 𝑥N . In this model, the masked input is fed into the 

discriminative adapter to get a contextualised embedding for each token and a linear layer with 

a SoftMax function is then used to calculate the probability of each token being of PIO 

Figure 6. The architecture of the KeBioSum extractive summarisation model (Xie et al., 
2022). 
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class. The adapter maximises the probability of the expected category for each token in 

the input sentence:  

                                          ℒ0 =	−∑ 𝑦2X 	log(𝑦1)/
1-!        (4), 

where 𝑦2X 	∈ {𝐼 − 𝑃, 𝐼 − 𝐼, 𝐼 − 𝑂, 𝑂}	is the ground truth PICO label for token 𝑥1 . In addition to 

the discriminative and generative adapters which capture PICO information, an additional fine-

tune adapter is used to retain the contextual information learnt in the PLM’s pretraining. 

Following Pfeiffer et al., (2021) the adapter fusion strategy was implemented using an attention-

based approach and implemented this using the adapter-transformers library19.  

The overall architecture of the summarisation model can be found in Figure 6. As shown in 

this figure, [CLS] tokens are inserted to separate sentences. Token embeddings (vectors 

representing the tokens), position embeddings (indices representing a token’s position) and 

segment embeddings (indices used to represent a tokens segment position within the overall 

document) were calculated and fed into the PLMs. Sentence representations were calculated by 

taking the outputs of the [CLS] tokens from the adapter fusion layer. A final sentence 

classification, to predict the 𝑚  sentences to be included in the predictive summary 𝑆∗ , was 

calculated by feeding the sentence representations into an inter-sentence transformer, and then 

applying a sigmoid classification layer over these final representations. Thus, in KeBioSum, the 

weights being learnt are only of the adapter, adapter fusion and additional transformer layers, 

rather than the entire large PLM models.  

4.3 Experimental set-up 

4.3.1 Data sets 

The same three biomedical data sets used to evaluate GenCompareSum in Section 3 were used 

to evaluate the efficacy of KeBioSum against baseline extractive methods: CORD-19 (Wang et 

al., 2020b), PubMed (Cohan et al. 2018), which is referred to in this section as PubMed-Long, 

and S2ORC (Lo et al., 2020). To effectively evaluate this method against baseline method 

MatchSum (Zhong et al., 2020), a PubMed-Short data set was additionally included in the 

evaluation. This data set consists of the PubMed data released with the MatchSum code, which 

uses a subset of articles of PubMed-Long and truncates the articles to use the introduction only. 

As in Section 3, the input to the summarisation model was a scientific publication, and the article 

abstract was used as the target summary. The numbers of samples included in each data set’s 

 
19 https://github.com/adapter-hub/adapter-transformers  

https://github.com/adapter-hub/adapter-transformers
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splits, in addition to the number of sentences selected to form the extractive summary, can be 

found in Table 7.  

 

Data set Train Valid Test Ext 

CORD-19 31,162 6,232 4,155 3 

PubMed-Long 119,924 6,633 6,658 3 

PubMed-Short 83,233 4,946 5,025 6 

S2ORC 47,782 9,556 6,371 3 

4.3.2 Experimental set up 

The KeBioSum model was implemented with Pytorch20, HuggingFace21 and the adapter-hub22 

software packages. To train the SciBERT-based PICO detection model, the ‘scibert-scivocab-

uncased model’23 was used, which was fine-tuned on the EBM-NLP data set for a maximum of 

75 epochs, with a learning rate of 0.002, a batch size of 32, and a dropout of 0.1.  

For the KeBioSum extractive summarisation model, code was adapted from BERTSumExt 

(Liu and Lapata, 2019) to implement the adapter fusion method. A variety of different base PLMs 

were experimented with: BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019), which are 

pretrained on corpora of the general domain; BioBERT (Lee et al., 2020) and PubMedBERT (Gu 

et al., 2021), which are pretrained on corpora from the biomedical domain. For the generative 

adapter, the hyperparameters were set as follows: learning rate: 1e-4, warm-up steps: 500, 

epochs: 12, weight decay: 0.001, batch size: 24. For the discriminative adapter, the 

hyperparameters were: learning rate: 5e-5, warm-up steps: 500, epochs: 12, weight decay: 0.001, 

batch size: 24. Perplexity was the metric used to select the best generative adapter and F1 was 

the metric used to select the best discriminative adapter. Two-layer transformers were used to 

create sentence representations in the final layers of the model. As in Section 3, the 

summarisation models were evaluated using ROUGE metrics (Lin, 2004), implemented using 

the pyrouge24 package.  

 

 
20   https://pytorch.org 
21 https://github.com/huggingface 
22   https://github.com/adapter-hub/adapter-transformers 
23 https://huggingface.co/allenai/scibert_scivocab_uncased  
24   https://github.com/bheinzerling/pyrouge 

Table 7. Statistics of the biomedical summarisation data sets used to evaluate KeBioSum and 
other extractive methods. 

https://pytorch.org/
https://github.com/huggingface
https://github.com/adapter-hub/adapter-transformers
https://huggingface.co/allenai/scibert_scivocab_uncased
https://github.com/bheinzerling/pyrouge


 51 

4.3.3 Baseline methods 

As in Section 3, ORACLE was implemented as an upper bound, LEAD as a crude baseline 

and BERTSumExt (Liu and Lapata., 2019) as a strong extractive baseline. BERTSumExt was 

additionally implemented with a PubMedBERT, rather than a BERT-based model, which is 

referred to as PubMedBERTSumExt in this work. The results were also compared to those of 

MatchSum (Zhong et al., 2020), a SOTA extractive summarisation technique which uses 

BERTSumExt to generate candidate sentences for the summaries, then generates candidate 

summaries by using different combinations of the selected sentences and selects a final summary 

from the candidate summaries by comparing the similarity of each candidate summary with the 

source document. In these experiments, all documents were truncated to 512 tokens, as the focus 

of the work in this section was on evaluating the efficacy of injecting knowledge into 

summarisation models for domain-specific documents, which long documents tend to be, rather 

than explicitly the summarisation of long documents.  

4.4 Evaluation of the KeBioSum model 

The experimental ROUGE F1 results are reported in Table 8, 9 and 10. Table 8 gives the 

performance on the CORD-19 and PubMed-Long data sets. Table 9 gives results for the S2ORC 

data set and Table 10 gives the results for the PubMed-Short data set. In Table 10, the results are 

additionally compared to the results reported by Zhong et al., (2020) for their MatchSum model. 

For completeness, scores are given for different adapters when used independently: ‘-fine-tune’ 

indicates that only a fine-tune adapter was used in the model, ‘-gen’ indicates that only a 

generative and fine-tune adapter were used, ‘-dis’ indicates that a discriminative and fine-tune 

adapter were used. Where ‘-all’ is written, this indicates that all adapters were used, and ‘all-full’ 

indicates where all adapters were used, and all PLM weights were updated during fine-tuning. 

‘∗’ indicates where a model significantly outperformed BERTSumExt (p < 0.05) and ‘†’ indicates 

where the “-all” model outperforms models with a subset of the adapters (p < 0.05). 

 Overall, in these tables of results, it can be observed that the ‘-all-full’ KeBioSum models 

fine-tuned using a PubMedBERT base model outperformed all other models. Additionally, the 

KeBioSum ‘-all’ models can be seen to outperform SOTA BERTSumExt, as well as its 

implementation with the PubMedBERT base, for all data sets. This indicates that the inclusion 

of the adapter fusion approach, which uses adapters to inject PICO knowledge, increases 

performance over SOTA approaches for summarisation of domain-specific documents, even for 

SOTA approaches where a base model which has been pretrained on in-domain data is used. This 

suggests that PICO elements capture important information in biomedical documents and that 
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PICO elements are seen in a document’s target summary. This follows as the abstracts of 

biomedical literature, which are used as the target summaries in this experiment, are often 

structured into ‘Background’. ‘Methods’, ‘Results’ and ‘Conclusion’ sections, which are aligned 

to PICO concepts. The advantage of the ‘-all’ method is that a smaller number of parameters need 

to be fine-tuned and most of the weights in the PLM are frozen.  

On inspection of the results of the ‘-gen’, ‘-dis’, and ‘-all’ models, both the generative and 

discriminative adapters, which inject the PICO domain knowledge, increased performance even 

when isolated, over only using the fine-tune adapter. This further supports the theory that 

injecting domain knowledge improves summarisation on domain-specific documents. However, 

using all three adapters together gave increased performance over using any subset of adapters 

experimented with, thus indicating that the different adapters are complimentary to one another, 

and each inject different information to one another.  

Although unsurprisingly the ROUGE scores when using PubMedBERT were seen to be higher 

than when using base PLMs from the general domain (e.g., BERT, RoBERTa), the greatest 

performance increases when using the adapters to inject domain knowledge were seen for the 

BERT and RoBERTa models. This suggests that injecting domain knowledge through adapters 

can significantly help summarisation of domain-specific articles, when a domain-specific PLM 

is unavailable.  

Lastly, it is worth noting that the ROUGE scores on PubMed-Short are higher in Table 10 than 

they are for PubMed-Long in Table 8. This is simply because, following the work by Zhong et 

al., (2020), 6 sentences rather than 3 were selected for the predictive summary. However, as these 

models truncate a document to 512 tokens, by taking 6 sentences rather than 3, this often results 

in the entire truncated article being used as the summary. In this case, the results are no different 

to the LEAD method, hence the closeness of LEAD’s scores to the other, more advanced, 

methods in Table 10 than in Table 8 and 9. This therefore highlights the need for study into 

summarisation of full long documents, which Section 3 and 5 of this work investigate.  
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Table 8. Rouge F1 results of different models on CORD-19 and PubMed-Long data sets. Bold 

font indicates the best results, underlined font indicates the second-best results; ‘∗’ indicates 

where a model outperformed BERTSumExt and ‘†’ indicates where “-all” model outperforms 

models with only a subset of the adapters. 

  

 CORD-19 PubMed-Long 

Metrics R1 R2 RL R1 R2 RL 

LEAD 24.90 7.11 22.29 27.92 8.57 24.99 

ORACLE 32.40 12.97 30.30 36.62 16.54 33.44 

BERTSumExt 30.01 9.86 26.86 34.00 13.42 30.69 

PubMedBERTSumExt 30.65 10.17 27.11 34.98 14.22 31.37 

BERT-fine-tune 28.15 8.74 22.99 32.42 12.60 29.38 

BERT-gen 29.75 9.25 24.02 34.12 13.54 30.78 

BERT-dis 29.67 9.23 24.01 33.76 13.35 30.78 

BERT-all 30.79† 10.37† 25.13† 35.12† 14.54† 31.80† 

RoBERTa-fine-tune 29.58 9.53 26.40 34.00 13.44 30.69 

RoBERTa-gen 30.01 9.61 26.77 34.06 13.54 30.76 

RoBERTa-dis 30.02 9.63 26.76 34.07 13.69 30.78 

RoBERTa-all 30.10† 10.72† 27.81† 35.08† 14.69† 31.78† 

BioBERT-fine-tune 29.53 9.36 26.46 34.01 13.42 30.71 

BioBERT-gen 30.04 9.67 26.72 34.05 13.59 30.80 

BioBERT-dis 30.08 9.71 26.78 34.06 13.59 30.79 

BioBERT-all 31.11† 10.74† 27.82† 35.09† 14.62† 31.82† 

PubMedBERT-fine-tune 29.77 9.53 26.56 34.31 13.86 31.03 

PubMedBERT-gen 30.75 9.98 27.42 34.47 13.99 31.16 

PubMedBERT-dis 30.77 9.97 27.43 34.47 13.98 31.16 

PubMedBERT-all 30.85 11.01 28.53 35.94 15.39 32.59 

PubMedBERT-all-full 32.04†∗ 12.61†∗ 29.10†∗ 36.39†∗ 16.27†∗ 33.28†∗ 
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Model R1 R2 RL 

LEAD 26.45 10.35 24.19 

ORACLE 37.62 17.72 34.21 

BERTSumExt 32.94 14.02 29.08 

PubMedBERTSumExt 34.69 15.06 32.30 

BERT-fine-tune 29.61 12.07 26.99 

BERT-gen 33.25 14.25 30.25 

BERT-dis 33.19 14.27 30.20 

BERT-all 33.27† 14.33† 30.29† 

RoBERTa-fine-tune 33.61 14.48 30.56 

RoBERTa-gen 33.52 14.59 30.51 

RoBERTa-dis 33.57 14.55 30.54 

RoBERTa-all 33.45 15.59† 30.46 

BioBERT-fine-tune 32.53 14.41 30.27 

BioBERT-gen 33.12 14.45 30.41 

BioBERT-dis 33.20 14.57 30.49 

BioBERT-all 34.47† 15.62† 31.51† 

PubMedBERT-fine-tune 34.01 14.81 30.94 

PubMedBERT-gen 34.06 14.84 30.97 

PubMedBERT-dis 34.07 14.85 30.98 

PubMedBERT-all 36.58 15.75 33.19 

PubMedBERT-all-full 37.44†∗ 16.72†∗ 34.08†∗ 

 

  

Table 9. Rouge F1 results of different models on the S2ORC data set. Bold font indicates 
the best results, underlined font indicates the second-best results; ‘∗’ indicates where a model 
outperformed BERTSumExt and ‘†’ indicates where “-all” model outperforms models with 
only a subset of the adapters. 
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Model R1 R2 RL 

LEAD 37.58 12.22 33.44 

ORACLE 45.12 20.33 40.19 

MATCH-ORACLE 42.21 15.42 37.67 

BERTSum 41.05 14.88 36.57 

-3gram-Blocking 38.81 13.62 34.52 

-4gram-Blocking 40.29 14.37 35.88 

PubMedBERTSum 42.14 16.17 37.86 

MatchSum 41.21 14.91 36.75 

BERT-fine-tune 40.20 14.60 36.42 

BERT-gen 40.41 14.74 36.61 

BERT-dis 40.43 14.76 36.63 

BERT-all 40.48 14.76 36.68 

RoBERTa-fine-tune 40.52 14.81 36.70 

RoBERTa-gen 40.55 14.85 36.74 

RoBERTa-dis 40.56 14.87 36.76 

RoBERTa-all 40.61 14.89 36.81 

BioBERT-fine-tune 40.52 14.78 36.70 

BioBERT-gen 40.59 14.87 36.78 

BioBERT-dis 40.58 14.84 36.76 

BioBERT-all 40.60 14.89 36.80 

PubMedBERT-fine-tune 41.25 15.42 37.40 

PubMedBERT-gen 41.31 15.50 37.47 

PubMedBERT-dis 41.32 15.51 37.57 

PubMedBERT-all 42.36 16.54 38.66 

PubMedBERT-all-full 43.98†∗ 18.27†∗ 39.93†∗ 

 

4.5 Future work  

Long document data sets are often highly domain specific, however, to-date, most research 

focuses on short document data sets from the general domain (Koh et al., 2022). In this section 

methods for injecting domain-specific knowledge into SOTA PLM models for extractive text 

Table 10. Rouge F1 results of different models on the PubMed-Short data set. Bold font 
indicates the best results, underlined font indicates the second-best results; ‘∗’ indicates where 
a model outperformed BERTSumExt and ‘†’ indicates where “-all” model outperforms models 
with only a subset of the adapters. 
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summarisation were explored. It was shown that using an adapter-based method can be effective, 

particularly in cases where a PLM pretrained on domain-specific data is unavailable. Future steps 

would be to combine the adapter-methods proposed in this section with methods for extending 

models to long documents, as explored in Section 3 and 5 of this work.  

5 Abstractive text summarisation methods 

This section details an evaluation of current state-of-the-art methods for long document 

abstractive text summarisation implemented in a realistic setting. Specifically, a single NVIDIA 

V100 GPU was used to implement a range of abstractive summarisation methods on long 

documents of the scientific domain. Intrinsic (i.e., automated) and extrinsic (i.e., human) 

evaluations were conducted of the generated abstractive summaries. In this section, a novel 

method for summarisation of long documents is proposed, which makes use of zoning and 

conditioning to apply structure to a generated summary. It is shown that this method is regarded 

highly by human annotators in terms of fluency and coherence but does not perform particularly 

well on measures of factuality. It is also shown that an existing method, DANCER (Gidiotis and 

Tsoumakas, 2020) performs well across several automated and human annotated measures.  

 

5.1 Background and existing methods 

As stressed throughout this work, the value derived from text summarisation comes from the 

timesaving in making a long document more succinct and therefore more easily consumable by 

a reader. Despite this, to-date, most studies researching abstractive text summarisation, and the 

automatic metrics used to evaluate its efficacy, have focussed on the CNN/DM (Hermann, 2015), 

Newsroom (Grusky et al., 2018) and XSUM (Narayan et al., 2018) data sets, all of which consist 

of relatively short documents. However, documents in long document data sets (Cohan et al., 

2018; Sharma et al., 2019; Kornilova and Eidelman, 2019; Koupaee and Yang Wang., 2018) are 

on average 8.3x longer than their short document counterparts (Koh et al., 2022).  

As with the extractive methods mentioned previously, transformer-based PLMs are used in the 

majority of SOTA abstractive summarisation methods (Liu and Lapata., 2019; Lewis et al., 2020; 

Zhang et al., 2020a; Beltagy et al., 2020). One can speculate that the lack of research into 

abstractive summarisation for long documents is largely due to the expense associated with fine-

tuning the attention mechanisms embedded in the PLMs used in SOTA abstractive text 

summarisation methods. This is even more problematic for abstractive than extractive methods 

as, while extractive methods are often framed as classification tasks where each sentence can be 
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treated semi-independently, abstractive summarisation is a generative task which requires 

sentences within the text to be considered together.  

To overcome the often prohibitively expensive computation of fine-tuning an attention 

mechanism of a PLM on a long-document summarisation data set, LongT5 (Guo et al., 2021) 

BigBird (Zaheer et al., 2020) and LED (Beltagy et al., 2020) models all have their attention 

mechanisms efficiently adapted to support both the local and global contexts of a document. 

However, although they can in theory support much longer sequence lengths than the default 512 

tokens which traditional PLMs are restricted to (Devlin et al., 2019), in practise, it is often still 

necessary to truncate documents significantly due to GPU memory limitations. Other approaches 

for abstractive summarisation of long documents include hybrid extractive-abstractive methods 

(Gehrmann et al., 2018; Liu and Lapata, 2019), which have been shown to provide good coverage 

of the source document but suffer badly from factual inconsistency (Huang et al., 2020).   

Text zoning is an NLP task which aims to classify a larger body of text into different zones or 

sections. This concept has been shown to be effectively applied across a range of domains, such 

as emails (Repke and Krestel, 2018), job advertisements (Gnehm, 2018) and scientific literature 

(Teufel, 2002) and has been utilised in various downstream NLP tasks.  For the summarisation 

task, Stede et al., (2006) used zones to ensure the most important sections of movie reviews were 

included in the summary, whilst Contractor et al., (2012) used zone classification of a sentence 

as an input feature when predicting extractive summaries of scientific documents.  More recently, 

for abstractive summarisation, text zoning has been used to select sections of documents in order 

to generate summaries from sections at a time, thus providing a strategy for extending abstractive 

summarisation to long documents without requiring huge computational resource. Gidiotis and 

Tsoumakas (2020) use only certain sections of scientific articles for their summary, whilst Liu et 

al., (2022) explore different methods for sectioning documents and find that for long documents 

of the scientific domain, summarisation using discourse locality (i.e., document zones) performs 

well.  

5.2 Abstractive summarisation method using conditional zoning 

Here, a method for abstractive summarisation of long documents is proposed. This method 

generates a predictive summary with a consistent structure and, by using zoning techniques, 

reduces the memory requirements on the training hardware by shortening both the length of the 

input text and the target text per training step. The proposed training and inference methods can 

be seen in Figure 7 and 8 respectively. Figure 7 shows that at training time, both the source 

document and target summary are split into sections. Sections which belong to the document 
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zones deemed most important to the summary are matched between the source and target and 

used as training pairs to a single LED model. Each input section has text prepended to it which 

conditions the summary prediction on the zone of the document. Figure 8 shows that at inference 

time, a source document is split into sections. Important sections are selected and are used as 

inputs to the fine-tuned LED model. Again, each input section has text prepended to it which 

conditions the summary prediction on the zone of the document. Predicted summary sections are 

combined, and the name of the zone is prepended to the prediction for each section. In both 

settings, non-important sections are discarded.  

 

 
 

 

 

 

 
 

 

Figure 7. The abstractive method using zoning during training. 

Figure 8. The abstractive method using zoning during inference. 
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5.2.1 Source document zoning 

Zone analysis has been shown to be an effective mechanism for improving information 

extraction in long documents (Mizuta et al., 2006). The method proposed in this section extends 

this idea for use in abstractive summarisation. The method creates training pairs from zones of a 

document and what is determined to be their corresponding zone in the summary. At inference 

time, the predicted summaries for each zone are combined to create one overall document 

summary. 

Given a document 𝐷, it is first split it into its sections 𝑆, such that 𝐷	 = {𝑆!, … , 𝑆"}, and each 

section 𝑆* has associated section heading ℎ*. The words in each of the section headings ℎ* are 

matched against a pre-defined list to classify the section 𝑆*  into one of five zone classes: 

introduction and aims 𝐼, methods 𝑀,  results and discussion 𝑅 , conclusion 𝐶, none 𝑂. Sections 

with the same zone classification are then concatenated, in the order they appear in the original 

document, resulting in a maximum of four larger sections: 𝑋/	; 𝑡	 ∈ {𝐼,𝑀, 𝑅, 𝐶} which represent 

the most useful parts of the document. Any sections with a classification of 𝑂 are discarded.  

 

5.2.2 Reference summary zoning 

To find corresponding sections in the document’s reference summary 𝑅,	to use as the target 

section summaries, the reference summary is divided into these sections  𝐴3 , 𝐴4 , 𝐴5 , 𝐴6 again 

using keyword matching and by assuming that sections will appear in the order 𝐼,𝑀, 𝑅, 𝐶. In 

Figure 7, the type of keywords used to predict the zones within the summary are underlined. 

Document sections 𝑋3 , 𝑋4 , 𝑋5 , 𝑋6 are mapped to their corresponding abstract summary sections. 

Any section 𝑋"  without a corresponding abstract section 𝐴"  is discarded, leaving document 

section-abstract section training pairs. At training time, each section-abstract training pair is 

treated individually.  

 

5.2.3 Conditional generation 

A design choice was made to include all section-summary pairs (regardless of their zone 

classification) as training data for fine-tuning a single PLM model, rather than fine-tuning 

separate models for each zone class. This is due to the improved generalisability that comes with 

using large amounts of training data for PLMs. Thus, if 𝐴∗ is the predicted summary section, the 

generative task can be described as: 

𝐴∗ = 𝑃𝐿𝑀(𝑋)        (5). 
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However, this design choice also presents challenges at inference time in ensuring the correct 

zone is selected for the type of input section. For example, without knowing the input section 

zone, a model may start the summary with “in conclusion…” despite the input zone being the 

methods section. When the predicted summary sections are combined at inference time, this 

would result in a lack of fluency and coherence in the target document, despite potentially 

achieving high ROUGE scores.  

To overcome this challenge, a prior is introduced on the zone summary generation, meaning 

that the generation is conditioned on the current and previous document sections, i.e.,  

𝐴!∗ = 𝑃𝐿𝑀(𝑋!|	𝑋!#$, 𝑡)     (6). 

In practise, this is achieved by prepending each section 𝑋  with its heading ℎ  before 

concatenating any sections from the same zone together to form input 𝑋. In addition, the method 

makes use of the overall document structure, assuming it to always follows the pattern 𝐼,𝑀, 𝑅, 𝐶, 

by prepending 𝑋 with the phrase “The previous section was [𝑡 − 1]. This section is [𝑡].”, as 

illustrated in Figure 7 and 8. This is implemented regardless of whether a section 𝑋/7! is found 

in the input document, as each pair is treated independently. 

 

5.2.4 Inference 

At inference time, the same steps defined in 5.2.1 and 5.2.3 are followed, however, the steps 

in 5.2.2 to find matching reference summary sections are not required. As shown in Figure 8, 

each zone 𝑋/	which is deemed to be of importance is fed into the fine-tuned sequence-to-

sequence model. Predicted summary sections 𝐴/∗ are concatenated, to create an overall predicted 

document summary 𝑆∗. The name of the zone category is also prepended to the beginning of each 

predicted section of the summary, as illustrated in Figure 8. 

 

5.3 Generation of abstractive summaries 

5.3.1 Data sets 

The abstractive summarisation methods were evaluated against the same PubMed and ArXiv 

data sets (Cohan et al., 2018) as were used in Sections 3 and 4. In line with the extractive methods, 

their abstracts were used as the reference summaries. For the test data sets, the subset of 

documents for which it is possible to find at least three out of the four zones in the source 

document were taken, using the method described in 2.1. Training, validation and test data set 

sizes can be found in Table 11.  To allow for a fair comparison, the test data sets for evaluation 
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of all summarisation methods were restricted to this subset, hence the differences between Table 

11 and the counts of documents reported in the extractive methods in previous sections. 

 Train Val Test 

PubMed 117108 6631 4011 

ArXiv 202917 6436 2875 

 

As described in Section 5.2, each document section-summary pair was treated independently 

during training. Table 12 gives the number of training and validation samples used in this method. 

For zoning methods, at test time, the summaries for each document zone were concatenated and 

evaluated against the complete reference summary.  

 

 Train Val 

PubMed 157817 8955 

ArXiv 62393 2098 

In Table 13, the average number of tokens in each data set is given. For the original documents, 

the input was the full article, and the target was the document abstract. For the document divided 

into zones, the input was the source document section, and the target was the matched zone of 

the reference summary. As can be seen in Table 13, zoning methods significantly reduced the 

length of input and target tokens required in each training step, thus reducing memory 

requirements of the training hardware.  

 

 Input tokens Target tokens 

Original 
PubMed 3209 208 

ArXiv 6515 279 

Zoned 
PubMed 1070 103 

ArXiv 2493 177 

Table 11. Counts of numbers of articles in each data set. 

Table 12. Counts of numbers of training and validation samples in each data set for the zoning 
methods. 

Table 13. The average number of tokens in each data set. 
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5.3.2 Computational set up 

All experiments were run on NVIDIA V100 instances, allocating one GPU instance per 

experiment. A decision was made to restrict GPU usage to this scale as the aim of this work was 

to understand how to derive value from abstractive text summarisation in a realistic setting, 

considering both environmental and economic resource consumption. Although more recent 

NVIDIA A100 instances have higher memory specifications and similar power consumption to 

V100s (Schoonhoven et al., 2022), they are still significantly more expensive than V100s, costing 

a minimum of $32.77/hr vs $3.06/hr when using AWS EC2 instances, as shown in the screenshots 

taken from their website in Figure 9 and 1025. Therefore, the use of A100s is not economically 

feasible for many people at present.     

 

  

 

 

  

 
25 https://aws.amazon.com/ec2/pricing/on-demand/ (accessed on 28/01/2023) 

Figure 9. Table giving the cost of on-demand pricing of AWS EC2 instances with NVIDIA 
A100 GPUs for the US East (N. Virginia) region. 

Figure 10. Table giving the cost of on-demand pricing of AWS EC2 instances with NVIDIA 
V100 GPUs for the US East (N. Virginia) region. 

https://aws.amazon.com/ec2/pricing/on-demand/
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5.3.3  Implementation of abstractive methods 

As baselines, several SOTA methods from prior literature were implemented. In addition, the 

abstractive method defined in Section 5.2 was implemented.  Firstly, shown to have strong 

performance on the abstractive summarisation task, BERTSumExtAbs and BERTSumAbs 

methods (Liu and Lapata, 2019) were implemented. These methods both work by fine-tuning a 

BERT-based (Devlin et al., 2019) PLM for the summarisation objective. BERTSumAbs fine-

tunes the BERT based model with an abstractive training objective, whilst BERTSumExtAbs first 

fine-tunes a BERT-based PLM with an extractive objective, and then fine-tunes the model further, 

from a saved checkpoint, with an abstractive objective. Since these models are BERT-based, the 

input document is truncated to 512 tokens.  

DANCER (Gidiotis and Tsoumakas, 2020) was also implemented. Like the method proposed 

in Section 5.2, it splits the source document into sections for summarisation, but unlike the 

method proposed in this work, does not make use of the structure of the document or reference 

summary. DANCER splits a document into zones using keyword matching, then finds 

corresponding sections of the target abstract using ROUGE matching (Lin, 2004). It uses beam 

search decoding with 4 beams to generate the section summaries of a maxiumum of 120 tokens 

and combines the generated summaries of each section to form the complete article summary. . 

The original implementation, which fine-tunes a PEGASUS-based PLM, was followed. This 

method also truncates the text at 512 tokens, however, since the DANCER method splits the long 

document into sections, the truncation does not have a significant impact, and text from across 

the length of the input document is still considered in the generation. In addition, LED, a PLM 

designed to efficiently extend to long documents, is directly fine-tuned. However, on the NVIDIA 

v100 GPU, it was found that the document must be truncated to 1024 tokens for training. A hybrid 

extractive-abstractive method was also implemented. An extractive-abstractive model, which will 

be referred to as LEDExtAbs in this work, was trained using ORACLE extractive summaries as 

an input, optimised for the ROUGE recall metric, but limiting the number of sentences selected 

so that the total number of input tokens was less than 1024. At test time, the implemented 

unsupervised, extractive method GenCompareSum (Bishop et al.,  2022) was used instead of the 

ORACLE method. GenCompareSum does not truncate the source document and has previously 

shown strong performance on the PubMed and ArXiv data sets. Lastly, the method outlined in 

Section 5.2 was implemented. For this, an LED PLM was fine-tuned with the zoned document 

section-summary pairs. For all models where an LED PLM was fine-tuned, a batch size of 3 was 

used and the model was trained for 3 epochs with a maximum input length of 1024 tokens and 

maximum generation length of 250 tokens.  
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5.4 Human evaluation study 

The experiments were evaluated using summaries generated from the long document, English-

language PubMed and ArXiv data sets described in Section 5.4.1. For the human evaluation, the 

summaries were generated using three different abstractive summarisation methods: DANCER, 

LEDExtAbs, and the method proposed in this work, described in Section 5.2. These methods are 

all able to consider text from across the entire length of a long document when generating a 

summary.  

As the PubMed and ArXiv data sets included in the study are highly domain specific, six expert 

annotators were recruited (three per data set) to review the automatically generated summaries. 

The expert annotators reviewing the PubMed data set all had English as their first language and, 

at the time of evaluation, were, or were in the final years of study to be, qualified clinicians. The 

expert annotators for the ArXiv data set had all achieved a minimum of an undergraduate degree 

in a physical science. Although all annotators were fluent in English, two out of three annotators 

of the ArXiv data set did not have English as their first language. The annotators who participated 

in this study were all friends or colleagues of the author and therefore volunteered to participate 

in the study without payment. It was made clear to the annotators that the purpose of this 

evaluation was scientific research on abstractive summarisation and there was an intention to use 

the results for scientific publication.  

In-line with prior literature (Fabbri et al., 2021), the abstractive summarisation methods were 

evaluated with respect to the coherence, fluency, consistency (factuality). The definitions 

provided to annotators were as follows: 

1. Coherence: Whether the text is well structured and is non contradictory to itself. "The 

summary should be well-structured and well-organised. The summary should not just 

be a heap of related information but should build from sentence to sentence to a coherent 

body of information about a topic." (Fabbri et al., 2021) 

2. Fluency: How well the text flows and the quality of the individual sentences. The text 

"should have no formatting problems, or obviously ungrammatical sentences (e.g., 

fragments, missing components) that make the text difficult to read" (Fabbri et al., 

2021). Annotators are also instructed to penalise summaries that contain repetition. 

Note, all summaries are in lower-case so please ignore capitalization. 

3. Factuality: “The factual alignment between the summary and the summarised source. 

A factually consistent summary contains only statements that are entailed by the source 
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document. Annotators are also asked to penalise summaries that contained hallucinated 

facts (facts that cannot be found in the source document)” (Fabbri et al., 2021). The 

main types of consistency errors which annotators should be made aware of (Huang et 

al., 2021) are: 

o Intrinsic error: A fact that is contradicted to the source document, which is also 

referred to as “intrinsic hallucination”, e.g., a numerical value in the source 

document being repeated in the wrong fact in the summary. 

o Extrinsic error: A fact that is neutral to the source document (i.e., the content 

that is neither supported nor contradicted by the source document), i.e., a 

statement which seems to have been completely made up. 

 

For each data set, each human annotator evaluated the same three summaries generated from 

the same fifteen randomly sampled documents, thus resulting in two-hundred and seventy scored 

summaries over the two data sets. A ranking-based metric for coherence and fluency was chosen 

due to ranking scales having been shown to be more effective than rating scales in prior literature 

(Kiritchenko and Mohammad, 2017), and particularly in cases where the metric is not easily 

quantifiable, e.g., coherence (Steen and Markert, 2021). For the factuality metric, a binary 

classification metric (entailed vs not entailed) was used and annotators to mark a sentence as ‘not 

entailed’ if there were any factual inconsistencies. The annotators were unaware of which method 

created each summary.  

Given the nature of the domain-specific, long-document data sets, it is extremely laborious to 

thoroughly evaluate the summaries manually. This is especially true for the factuality metric; if a 

reviewer had simply been provided with the source document and predicted summary, they would 

have had to manually go through the several thousands of words in each source document to 

attempt to locate the source and assess entailment for each statement in the generated summary. 

To address this challenge, the following strategy was used for each measure: 

1. Coherence: Ranked 1-3, where 1 indicates the most coherent summary and 3 indicates 

the least coherent. The generated summaries were assessed against each other with no 

reference. An example of the coherence ranking by one annotator on the PubMed data 

set is given in Figure 11.  

2. Fluency: Ranked 1-3, where 1 indicates the most fluent summary and 3 indicates the 

least fluent. The generated summaries were assessed against each other with no 
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reference. An example of the fluency ranking by the same annotator for the same article 

is given in Figure 12.  

3. Factuality:  Three sentences were sampled from each generated summary and, for each, 

a sentence embedding (Reimers and Gurevych, 2019) was generated. Sentence 

embeddings were also generated for each sentence in the source document and the most 

similar two sentences from the source document to each sampled sentence were selected 

by comparing cosine similarity of their sentence embeddings. For the two sentences 

selected from the source document, the prior and following sentences from the source 

document were concatenated to them to create two longer text snippets. The reader was 

then given the three sentences sampled from the generated summary and two text 

snippets from the source document for each of these three sentences. The reader was 

then asked to decide whether, given the text snippets, if each sentence was entailed (and 

thus given a score of 1) or not entailed (and given a score of 0). As there were three 

sentences evaluated for each generated summary, the scores were averaged to give one 

score per summary. Screenshots of the factuality scoring for the three summaries in this 

PubMed sample are given in Figure 13, 14 and 15. 

 

 

 

Figure 11. Screenshot of coherence rankings by one annotator on a sample from the PubMed 
data set. 
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Figure 12. Screenshot of fluency rankings by one annotator on a sample from the PubMed 
data set. 

Figure 13. Screenshot of factual consistency annotations by one annotator for the extractive-
abstractive method, LEDExtAbs, on a sample from the PubMed data set.
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Figure 14. Screenshot of factual consistency annotations by one annotator for the DANCER 
method (Gidiotis and Tsoumakas, 2020) on a sample from the PubMed data set. 

Figure 15. Screenshot of factual consistency annotations by one annotator for the zoning 
method, outlined in Section 5.2, which generates a highly structured summary on a sample 
from the PubMed data set. 



 69 

5.5 Evaluation of abstractive summarisation methods 

5.5.1 Automatic metrics 

Here, the results from extrinsic and intrinsic evaluations conducted to compare different 

abstractive summarisation methods in long document contexts are shown. ROUGE-1, -2, and -L 

metrics (Lin, 2004), and the BERTScore metric (Zhang et al., 2019b) are reported in Table 14. 

ROUGE-L scores are significantly lower than those reported in previous studies (Gidiotis and 

Tsoumakas, 2020) because new line tokens were not included between each summary sentence. 

This approach was taken, despite resulting in lower reported ROUGE-L scores, as including new 

line tokens between sentences seems like an artificial way to increase the automated score for the 

purpose of ranking highly on summarisation leader boards. BARTScore’s recall, precision and 

F1 metrics, between the predicted and reference summary, are given in Table 15, along with the 

LDFACTS metric, details of which can be found in Section 6, which compares the predicted 

summary to a source document to measure factual consistency.  

 
PubMed ArXiv 

REC PREC F1 LDFACTS REC PREC F1 LDFACTS 

BERTSumAbs -11.58 -3.2 -7.40 -4.10 -11.86 -3.15 -7.51 -4.14 

BERTSumExtAbs -11.62 -3.15 -7.38 -4.09 -11.63 -3.10 -7.40 -4.31 

LED (1024) -6.54 -3.74 -5.14 -4.18 -6.82 -4.95 -5.89 -4.56 

LEDExtAbs -6.57 -4.03 -5.30 -4.00 -6.19 -5.43 -5.81 -4.37 

DANCER -4.71 -4.64 -4.67 -1.63 -5.81 -5.34 -5.57 -2.15 

THIS WORK -4.98 -5.18 -5.08 -3.74 -4.92 -8.46 -6.69 -4.49 

 PubMed ArXiv 

R1 R2 RL BERTScore R1 R2 RL BERTScore 

BERTSumAbs 32.67 13.6 21.21 61.15 32.67 10.47 20.18 61.15 

BERTSumExtAbs 32.92 13.73 21.34 61.6 33.24 10.73 20.3 61.4 

LED (1024) 41.38 15.36 24.14 65.04 39.39 11.6 21.23 63.17 

LEDExtAbs 41.09 14.1 22.43 64.64 39.88 12.22 21.47 63.21 

DANCER 46.13 20.76 26.89 66.97 41.79 16.00 23.08 64.02 

THIS WORK 44.93 17.97 25.85 66.94 35.97 10.29 18.32 61.76 

Table 14. Results for the automatically generated abstractive summaries, evaluated with the 
ROUGE-1, -2, -L and BERTScore metrics. Bold font indicates the best results and underlined 
font indicates the second-best results. 

Table 15. Results for the automatically generated abstractive summaries, evaluated with 
BARTScore recall (REC), precision (PREC), F1 and LDFACTs metrics. Bold font indicates 
the best results and underlined font indicates the second-best results. 
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5.5.2 Human evaluation 

Steen and Markert (2019) and Krishna et al., (2023) both criticised the majority of studies 

researching text summarisation for not including any human evaluation despite ROUGE being 

knowingly flawed. Where human evaluation is conducted, they state that most studies do not 

give details of the annotation design. In response, as part of this work an extrinsic evaluation of 

abstractive summarisation methods for long document summarisation was conducted and in 

Section 5.4, details of the human evaluation study were given. 

As mentioned in Section 5.4, only the methods which could use text from the entire length of 

the document to generate their summaries were included in the human evaluation study – i.e., the 

methods which either use zoning or extractive-abstractive methods. In Table 16 the results of 

each method are reported, with respect to the human annotated coherence, fluency and factual 

consistency measures included in the study. As described in Section 5.4, the summaries were 

ranked between 1-3 for the coherence and fluency measures, with a score of 1 being the best and 

3 the worst. Therefore, for these measures, the method will have a score between 1 and 3, with a 

lower score representing a better summary. For the factual consistency measure, the annotators 

gave sentences a score of 0 if it was not entailed by the section of the source document provided, 

and a score of 1 if it was. Therefore, for the factual consistency measure, scores will be between 

0-1, with a higher score representing a more factually consistent method.  

 

 

PubMed ArXiv 

COH FLU FAC COH FLU FAC 

LEDExtAbs 2.42 2.44 0.28 1.62 1.67 0.22 

DANCER 1.78 1.91 0.75 2.31 2.22 0.78 

THIS WORK 1.8 1.64 0.42 2.06 2.11 0.13 

 

5.5.3 Discussion and analysis of results 

Figure 16 and 17 give summaries generated for each method, for one article sampled from the 

PubMed and ArXiv data sets respectively. In these figures, the different styles of the six methods 

becomes apparent. BERTSumExtAbs and BERTSumAbs both produce short summaries, whilst 

the zoning method proposed in Section 5.2 (denoted ‘THIS WORK’) produces a highly 

Table 16. Results of the human evaluation study. Bold font indicates the best results and 
underlined font indicates the second-best results. 
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structured, longer summary. DANCER, LED and LEDExtAbs tend to produce summaries 

consisting of long blocks of text.  

In Table 14, DANCER scored best in terms of ROUGE and BERTScore metrics across both 

data sets. The method proposed in Section 5.2 was the second highest performing on the PubMed 

data set, whilst the LEDExtAbs method was the second best performing for the ArXiv data set. 

It is noticeable that, across the three tables of results, models tended to perform better on the 

PubMed data set than on the ArXiv data set. This could be due to the noise in the ArXiv data set. 

Koh et al., (2022) found that over 60% of the ground truth summaries that they sampled from the 

ArXiv data set contained noise and over 15% of their samples were unreadable because of the 

noise. Additionally, on inspection of this data set, there are LaTeX artifacts present, as shown in 

Figure 17, making the text difficult to comprehend. 

It is also of note that DANCER outperformed other methods significantly when evaluated with 

the LDFACTS metric. This metric compares the generated summary with the source document 

to assess factuality. Additionally, human evaluators scored DANCER significantly better for the 

factual consistency measure than the other methods included in the human evaluation. On 

inspection of the task for evaluating factual consistency it was found that, although DANCER is 

an abstractive method, it has extractive properties, and often phrases or sentences are directly 

copied from the source text. Consequently, it follows that DANCER is highly consistent with the 

source document. An example of this can be seen in Figure 14, where the first two sentences 

sampled for human annotation are direct copies of the source text, given on the right-hand side 

of the table.  

For the BARTScore based evaluation metrics, the two methods which make use of zoning 

performed best on the recall metric. This is likely due to their ability to generate summaries from 

the most important sections across the source document. In terms of precision, BERTSumExtAbs 

and BERTSumAbs performed best. As BERTSumExtAbs and BERTSumAbs generate 

summaries which are significantly shorter than the other methods, it follows that they performed 

well with regards to the precision metric, but not as well on the other BARTScore metrics which 

consider recall in their calculations. Across all automated metrics, it can be observed that directly 

fine-tuning the LED model did not perform particularly well. 

For the coherence and fluency measures, there was no clear winner across the methods 

evaluated by human annotators. However, the inter-annotator agreement score was low (see 

Table 17), suggesting that they were difficult measures to assess. Overall, DANCER and the 

method proposed in this work performed best on the PubMed data set and the LEDExtAbs 

performed best on the ArXiv data set.  This could be due to the PubMed data set being more 
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consistently structured and therefore more suitable for zoning approaches that classify the 

sections into zones based on keywords in their headings. It is likely that if more advanced zoning 

methods were used, e.g., a probabilistic model for classifying the text itself, better performance 

would be achieved on data sets such as ArXiv, which do not have consistently named section 

headings. Using a more advanced zoning approach would also enable the processing of more 

documents as, in the current methodology, whole documents are discarded where there are not 

enough sections which can be classified.   

Some common errors were observed when the generated summaries for each method were 

inspected. For all methods apart from this work’s zoning method, the final sentence of the 

generated summaries was often only half complete. This can be seen in Figure 16 and 17. This 

is likely due to the token limit for generation causing the reference summary to be truncated at 

training time. This could be overcome by increasing the token generation limit.  However, since 

there is a trade-off between the maximum input token limit and the maximum generation token 

limit, to increase the token generation limit and still fit the training job on a single NVIDIA V100 

GPU, the method would be required to truncate the long document further than the 1024 tokens 

used these experiments. For the DANCER method, it was observed that it occasionally copies 

the same phrase or sentence repeatedly, resulting in redundancy and reducing its fluency and 

coherence. This can be seen in Figure 17 where the phrase “we focus on the role of two – body 

currents…” is repeated several times. Occasionally with the method proposed in Section 5.2, one 

or more summarised zones are very short and do not make a lot of sense. This is likely due to the 

method for pairing the document sections with their corresponding section of the reference 

summary, which sometimes will only include one sentence in the section summary; thus, the 

model learns to occasionally generate a single, non-coherent sentence.  

Overall, these results show that there is still work to do to make abstractive summarisation of 

long documents fit-for-purpose, with good enough performance for it to be deployed in a 

production setting with users trusting its outputs. The results of this study indicate that the 

DANCER method was the strongest method evaluated, and that future work could look to extend 

this method by using more advanced zoning techniques, as well as potentially combining it with 

other methods, such as that proposed in Section 5.2, which looks to make the generated 

summaries more structured and therefore easier to comprehend.  
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Figure 16. Automatically generated summaries for an article from the PubMed data set.
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Figure 17. Automatically generated summaries for an article from the ArXiv data set. 
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6 Automatic evaluation of long document abstractive summarisation 

6.1 Challenges in the evaluation of abstractive summarisation of long documents 

It is widely acknowledged within the community that, despite ROUGE scoring (Lin, 2004), 

being the traditional metric for automatic evaluation of text summarisation, it is flawed and does 

not correlate well with human judgement (Yuan, et al., 2021; Huang et al., 2020; Kryściński et 

al., 2019), due to not effectively capturing semantic, grammatical, and factual errors.  

Factual inconsistency, i.e., when a generated summary is not entailed by its source document, 

is a well-documented limitation of modern abstractive summarisation methods (Maynez et al., 

2020; Wallace et al., 2021). There have been efforts to develop improved, reference-free, metrics 

for measuring factual consistency (Scialom et al., 2021; Kryściński et al., 2020; Yuan, et al., 

2021). A reference-free metric is a metric which does not require gold summaries for its 

evaluation of generated summaries and instead compares predicted summaries to their source 

documents. However, as PLMs are used in SOTA reference-free methods, the source document 

must be truncated due to hardware memory limitations. Thus, studies proposing these metrics run 

their evaluations on short document summarisation data sets (Hermann et al., 2015; Grusky et al., 

2018; Narayan et al., 2018; Ribeiro et al., 2022) and the automated metrics they propose do not 

extend well when applied to evaluation of long document summarisation (Koh et al., 2022).   

In addition to the limitations around memory complexity for SOTA automated metrics, the 

effort required to manually annotate long documents is likely a large contributing factor to the 

lack of long document summarisation data sets with human annotations which would enable 

research into automated metrics for evaluation of long document summarisation. This is 

particularly apparent for reference-free measures, such as factual consistency, where the annotator 

needs to read the long source document to assess whether a summary is factual.  

To this end, in this work, the LDFACTS metric is proposed. This metric is intended for 

assessing the factual consistency of abstractive summarisation of long documents. LDFACTS is 

reference-free and was developed by adapting an existing metric, BARTScore (Yuan, et al., 2021), 

to consider an entire source document. The efficacy of the metric is assessed by evaluating the 

correlation of it and other automated metrics with human judgement. It is shown that that 

LDFACTS achieves a strong correlation with human annotations of factuality.  

6.2 The LDFACTs metric 

BARTScore (Yuan, et al., 2021) uses BART (Lewis et al., 2020) to calculate the log probability 

of generating a sequence of text, given a second sequence. It is a flexible framework which can 
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either be used to compare a predicted and reference summary to calculate precision, recall and F1 

scores, or to compare a predicted summary with its source document to measure factual 

consistency. However, the source documents in long document data sets are on average 8.3x 

longer than their short document counterparts (Koh et al., 2022). Consequently, the PLMs used 

in SOTA metrics for assessing factuality, including in BARTScore, must truncate, on average, 

over half of the tokens of a source document in long document data sets (Koh et al., 2022). This 

makes them unsuitable for evaluating factual consistency of long documents. In this section, a 

metric LongDocFACTScore (LDFACTS), an adaptation of BARTScore’s reference-free setting, 

is proposed. This metric is intended for the evaluation of factual consistency of long document 

abstractive summarisation.  

The source document 𝐷  is split into sentences using the nltk library 26 , such that 𝐷	 =

〈𝑠* 	, 𝑖	 ∈ 𝐼〉 and the same is done for the generated summary 𝑆 = 〈𝑠1 	, 𝑗 ∈ 𝐽〉. For each of these 

sentences, sentence embeddings (Reimers and Gurevych, 2019) are generated using the sentence-

transformers library 27  initialised with the ‘bert-base-nmli-mean-tokens’ model 28 . For each 

sentence in the predicted summary 𝑠1 	,	the cosine similarity between its sentence embedding and 

the sentence embedding of each sentence in the source document 𝑠*  is calculated. 𝐷  is then 

reindexed by the cosine similarity scores, so that the new index 𝑘  is sorted by 

	argmax
*∈3

	1𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦U𝑠1 , 𝑠*o2 . The 𝐾 = 3 most similar source document sentences are 

selected. These three highest scoring sentences are each concatenated with their preceding and 

following sentences, thus giving 𝑠)∗ = 𝑠)7! +	𝑠) +	𝑠)9! , to create the sequence of slightly 

longer text snippets .  For each text snippet 𝑠)∗ , BARTScore is calculated between it and the 

generated sentence 𝑠1. The maximum BARTScore value (as they are negative, this means the 

score closest to zero) is taken as the assigned score for the sentence 𝑠1 . The method, applied to an 

individual sentence 𝑠1  of the generated summary, is illustrated in Figure 18. The method is 

repeated for each sentence, 𝑠1, in 𝑆, and the average score for the summary is calculated by:  

                         					𝐿𝐷𝐹𝐴𝐶𝑇𝑆 = 	 !
:
∑ 	:
1-! max

)-{!,<,=}
(BARTScore( 𝑠1|𝑠)∗))	    (7). 

Consequently, there are two fundamental differences between LDFACTS and BARTScore. The 

first difference is that LDFACTS considers sections of text from the full length of the source 

document in its calculation whereas BARTScore truncates the source document to the first 1024 

 
26https://www.nltk.org 
27https://github.com/UKPLab/sentence-transformers 

28 https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens  

https://github.com/UKPLab/sentence-transformers
https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens
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tokens. If a predicted summary includes content from the latter part of a long document, it will be 

ignored with BARTScore, which is a problem when assessing factual consistency of long 

document summarisation. The second significant difference between the two metrics is that in 

LDFACTS the BARTScore calculation is done on short sections of text at one time, comparing 

one sentence in the predicted summary to a short section of the source document. In contrast, 

BARTScore’s original implementation compares a full predicted summary with a full source 

document (or as much of it as it can fit within its token limit). 

 

 

6.3  Extrinsic evaluation metrics for long document summarisation 

6.3.1 Computational set up 

As baselines to which to compare LDFACTS, ROUGE29 (Lin, 2004), BERTScore (Zhang et 

al., 2019b) and BARTScore’s (Yuan, et al., 2021) F1, precision and recall metrics were 

implemented, which all compare predicted and reference summaries. ROUGE scores measure 

the overlap in sequences of words between two texts, whilst BERTScore uses measures of cosine 

similarity between BERT-based (Devlin et al., 2019) token embeddings to assess the similarity. 

Additionally, other SOTA reference-free metrics, which have previously shown improved 

 
29https://huggingface.co/spaces/evaluate-metric/rouge  

Figure 18. Calculation of the score for an individual sentence of a generated summary. 

https://huggingface.co/spaces/evaluate-metric/rouge
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correlation with the human judgement of factual consistency for short documents, were 

implemented. FactCC (Kryściński et al., 2020) uses a fine-tuned BERT-based classifier to predict, 

for each sentence of a summary, whether it is correct or incorrect, given its source document. 

QuestEval (Scialom et al., 2021) uses T5-based models (Raffel et al., 2020) for a question 

generation and answering approach. BARTScore’s factuality metric was implemented as well as 

LDFACTS. BARTScore and LDFACTS were implemented with the ‘bart-large’ model30. The 

default settings were used for all metrics. All experiments were run on a single NVIDIA v100 

GPU and all metrics, apart from ROUGE, make use of the GPU compute.  

 

6.3.2 Inter-annotator agreement 

Table 17 shows the inter-annotator agreement (IAA) of the human annotated data, calculated 

using the Krippendorff’s alpha metric31 (Krippendorff, 2011). The IAA for factual consistency 

was shown to be relatively high, averaging at 0.65 across the two data sets.  In contrast, IAA for 

the coherence and fluency rankings was variable and significantly lower. This could be due to 

these measures being more subjective than the factual consistency measure. Overall, the 

agreement in the ArXiv data set is lower than for PubMed. This could be due to the noise in the 

ArXiv data set (Koh et al., 2022), e.g., the LaTeX artifacts present in the dataset, and the highly 

domain-specific nature of the data set.  

 COH FLU FAC Avg. 

PubMed 0.33 0.44 0.76 0.51 

ArXiv 0.44 0.28 0.54 0.42 

Avg. 0.39 0.36 0.65  

 
Metric PubMed ArXiv 
FactCC -0.06 -0.16 

QuestEval 0.25 0.23 
BARTScore (Factuality) 0.39 0.49 

LDFACTS 0.61 0.61 

 

6.3.3 Correlation between metrics on long document summarisation 

 
30https://huggingface.co/facebook/bart-large  
31https://github.com/grrrr/krippendorff-alpha 

Table 17. IAA of the human-annotated data for the coherence (COH), fluency (FLU) and 
factuality (FAC) metrics. 

Table 18. Kendall’s tau correlations between the human factual consistency annotations and the 
four metrics which aim to measure factual consistency. 

https://huggingface.co/facebook/bart-large
https://github.com/grrrr/krippendorff-alpha


79 
 
 
 

Figure 19 gives a matrix of pairwise Kendall’s tau (Kendall, 1938) correlations32, calculated 

for all automated and human evaluation metrics included in this study. In this analysis, Kendall’s 

tau correlations were calculated instead of Spearman correlations due to being more robust for 

data sets with smaller sample sizes. In Figure 19, BARTSc denotes BARTScore. 

To calculate the correlations between human measures of performance and automatic metrics, 

for each measure, the scores were averaged over the three different annotators for each unique 

summary, thus giving a single score for each unique summary. The scores for each metric were 

then compared per each unique summary. Consequently, for each pair of metrics, the correlation 

was calculated between 90 summaries (3 unique summaries generated by different methods, 

created for 15 source documents, for 2 data sets).  

Table 18 breaks down, by data set, the correlations between the human factual consistency 

annotations and the SOTA reference-free, automated metrics which aim to measure factual 

consistency.  In both Table 18 and Figure 19, LDFACTS can be seen to have correlated better 

with the human judgement of factual consistency than any other metric. As Table 15 is split by 

data set, the lower IAA reported on the ArXiv data set can be taken into consideration when 

inspecting the results. In this table, the BARTScore results were higher on the ArXiv data set, 

where IAA was lower, whereas LDAFACTS performed consistently across both the PubMed and 

ArXiv data sets.  

Comparatively, it was found that both FactCC and QuestEval showed a low correlation with 

human judgement. BARTScore’s faithfulness metric had a reasonable correlation with the human 

factual consistency annotations, however, since it is required to truncate the source document, 

one could expect that it would become decreasingly correlated with human judgement as it is 

used to score texts of increasing length.  No strong correlation can be seen between ROUGE or 

BERTScore metrics and any human annotated measures. Furthermore, only weak correlations 

between human measures of coherence and fluency and automated metrics were found in this 

long document study, thus indicating a need for further research into automated metrics which 

capture these measures. 

Table 19 compares the average time taken, in seconds, to run each reference-free automated 

metric that aims to measure factual consistency. The time taken to score fifteen summaries is 

reported. Table 19 shows that LDFACTS is second fastest metric, despite evaluating the generated 

summary against the entire source document, rather than a truncated version.  

 
32https://scipy.org 
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Metric Time taken (s) 

FactCC 24 

QuestEval 95 

BARTScore 1 

LDFACTS 8 

6.3.4 Parameter study 

In this section, the effects that different parameter settings have on the LDFACTS metric are 

studied. Table 20 and 21 provide Kendall’s tau correlations of different implementations of 

BARTScore and LDFACTS with the human measure of factuality.  

Figure 19. Pairwise Kendall’s tau correlations between human and automated metrics. 

Table 19. Average time taken (s) to run each factuality metric over 15 long document summaries. 
Bold font indicates the best results and underlined font indicates the second-best results. 
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Table 20 shows the effect of varying 𝐾, the maximum number of candidate similar source 

sentences used for the BARTScore calculation. In LDFACTS, the maximum scoring BARTScore 

over the 𝐾 candidate sentences is used at the score for the reference summary sentence. As in the 

original implementation of LDFACTS, each candidate similar source sentence was concatenated 

with a surrounding sentence from either side in this experiment. Row 1 of Table 20 gives the 

BARTScore results, and row 2 gives results of a baseline, which was implemented by excluding 

the sentence similarity calculation all together. Where the similarity calculation step was 

removed, BARTScore was simply calculated between each sentence of the predicted summary 

and the original source article, truncated to 1024 tokens; the scores were then averaged over each 

sentence of the predicted summary. In Table 20, all settings of LDFACTS are shown to 

outperform the baselines of BARTScore and LDFACTs (-sentence similarity). This is expected 

as neither BARTScore nor LDFACTs (-sentence similarity) consider the full length of a source 

document. Overall, the effects of varying 𝐾 were seen to be small. Again, this is expected as the 

maximum BARTScore value of the 𝐾 sentences is used in the LDFACTS metric, and it is likely 

that the highest scoring sentences with BARTScore correlate well with the most similar sentence 

embeddings. 𝐾 = 3 averages as the best parameter across the two data sets.  

Although not explicitly calculated, it is of note that by selecting the K=3 candidate sentences, 

BARTScore was calculated for around 1-2% of sentences in the PubMed and ArXiv data sets. By 

increasing the number of candidate similar sentences, the metric would become increasingly less 

efficient and, by extension, less suitable for use on long documents.   

In Table 21, the number of candidate sentences was kept constant at 𝐾 = 3 and the effect of 

concatenating the source sentence with the previous and following sentence(s) was examined. 

The correlation on the PubMed data set improved when no sentences were concatenated while 

the correlation on the ArXiv data set improved when one or two sentences were concatenated 

either side of the selected sentence. However, on average over the two data sets, there was little 

variation in the Kendall’s tau correlation.  
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Method PubMed ArXiv Average 

LDFACTS (𝑠)∗ = 		𝑠) 0.63 0.58 0.605 

LDFACTS (𝑠)∗ =	𝑠)7! +	𝑠) +	𝑠)9!) 0.61 0.61 0.610 

LDFACTS (𝑠)∗ =	𝑠)7< +	𝑠) +	𝑠)9<) 0.58 0.61 0.595 

 

6.3.5 Correlation between metrics on short document summarisation 

Although the intended use of LDFACTS is to evaluate the factual consistency of abstractive 

summarisation for long documents, the analysis conducted by Yuan et al. (2021) was repeated to 

evaluate LDFACTS against other automated metrics on a variety of human annotated, short 

document, abstractive summarisation data sets, to validate its performance in this setting. Their 

human annotated data and adapted code33 was used to report the Spearman correlation results on 

three data sets, RealSumm (Bhandari et al., 2020); SummEval (Fabbri et al., 2021); and NER18 

(Grusky et al., 2018) in Table 22. In this analysis, Spearman correlations, rather than Kendall’s 

tau correlations were calculated to enable a direct comparison with the original analysis conducted 

by Yuan et al., (2022). BARTScore was re-implemented with a BART-large PLM and the scores 

for each summary in the data sets were regenerated. In addition to LDFACTS and the re-

 
33 https://github.com/neulab/BARTScore  

Method PubMed ArXiv Average 

BARTScore 0.39 0.49 0.440 

LDFACTS ( -sentence similarity) 0.44 0.37 0.405 

LDFACTS K=1 0.61 0.60 0.605 

LDFACTS K=3 0.61 0.61 0.610 

LDFACTS K=5 0.60 0.60 0.600 

LDFACTS K=7 0.59 0.61 0.600 

LDFACTS K=9 0.59 0.61 0.595 

LDFACTS K=11 0.57 0.61 0.590 

Table 20. The effect of varying the number of similar sentences considered for the LDFACTS 
calculation on Kendall’s tau correlation with human judgements of factuality. Bold font 
indicates the best results and underlined font indicates the second-best results. 

Table 21. The effect of varying the number of source document sentences concatenated for the 
LDFACTS calculation on Kendall’s tau correlation with human judgement of factuality. Bold 
font indicates the best results and underlined font indicates the second-best results. 

https://github.com/neulab/BARTScore
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implemented BARTScore results, the scores for other metrics are taken directly from Yuan et al., 

(2021) and included. Following implementation by Yuan et al., (2019), the coverage metric 

(COV) was calculated with BARTScore’s recall metric (𝑆∗|	𝑅, 𝜃) , where 𝑆∗	 represents the 

system generated summary and 𝑆 the reference summary.  Coherence (COH), factuality (FAC), 

fluency (FLU), informativeness (INFO) and relevance (REL) are all calculated using what they 

describe as a faithfulness (or factuality) metric 𝑝(𝑆∗|	𝐷, 𝜃) , where 	𝐷	 represents the source 

document. Table 23 shows a similar analysis, in which the factuality metric was also used. Here, 

the accuracy scores calculated on human annotated data are given for the Rank19 data set (Falke 

et al., 2019). Additionally, the Pearson correlation between the automated metrics and the human 

factuality annotations for the two QAGS data sets (Wang et al., 2020b) are shown. For both tables, 

where the BARTScore results are taken directly from the original paper, this is denoted 

BARTScore*. Where the results from the re-implemented version are reported, this is denoted 

BARTScore (this work). These tables show that BARTScore and LDFACTS perform comparably 

in their ability to align to human judgment when used to evaluate abstractive summaries generated 

from short documents. 

 

 RealSumm SummEval NER18 

 COV COH FAC FLU INFO COH FLU INFO REL 

ROUGE-1 0.498 0.167 0.16 0.115 0.326 0.095 0.104 0.13 0.147 

ROUGE-2 0.423 0.159 0.157 0.129 0.318 0.161 0.12 0.188 0.195 

ROUGE-L 0.488 0.128 0.115 0.105 0.311 0.064 0.072 0.089 0.106 

MoverScore 0.372 0.184 0.187 0.159 0.29 0.026 0.048 0.079 0.091 

BERTScore 0.440 0.284 0.11 0.193 0.312 0.147 0.17 0.131 0.163 

BARTScore* 0.441 0.322 0.311 0.248 0.264 0.679 0.67 0.646 0.604 

BARTScore 
(this work) 0.451 0.308 0.313 0.250 0.265 0.689 0.672 0.666 0.606 

LDFACTS 0.402 0.356 0.349 0.296 0.252 0.589 0.59 0.536 0.524 

  

Table 22. Spearman correlation results between automated metrics and human annotated data 
on the RealSumm, SummEval and NER18 data sets. Bold font indicates the best results and 
underlined font indicates the second-best results. 
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 Rank19 Accuracy 
QAGS_CNN 

Pearson 

QAGS_XSUM 

Pearson 

ROUGE-1 0.587 0.338 -0.008 

ROUGE-2 0.63 0.459 0.097 

ROUGE-L 0.568 0.357 0.024 

MoverScore 0.713 0.414 0.054 

BERTScore 0.713 0.576 0.024 

FactCC 0.700 - - 

QAGS 0.721 0.545 0.175 

Human 0.839 - - 

BARTScore* 0.684 0.661 0.009 

BARTScore (this work) 0.681 0.657 0.006 

LDFACTS 0.681 0.648 0.036 

 

6.3.6 Discussion of LDFACTS 

In this section, it has been shown that, in line with previous research (Koh et al., 2022), existing 

automated metrics for assessing factual consistency which have previously shown good 

performance on short document data sets do not extend well to long document settings. However, 

the LongDocFACTScore (LDFACTS) metric, a reference-free metric for evaluating factual 

consistency of long document abstractive summarisation, has a stronger correlation with the 

human judgement of factual consistency for the long document data sets included in the study 

than any other metric evaluated.   

For this evaluation, expert annotators were recruited as the long document data sets evaluated 

were domain specific. It is difficult to recruit large numbers of expert annotators and therefore 

work building on this should consider conducting a larger human evaluation study with more 

annotators evaluating more documents.  One issue for both LDFACTS and BARTScore is that 

the raw scores are negative numbers, with scores closer to zero indicating a better summary. These 

scores are useful when comparing different summarisation methods against each other, but when 

calculated for an individual summary, could be difficult to interpret. Therefore, future research 

should investigate what constitutes a ‘good score’ for these metrics, to enable the use of these 

metrics to evaluate models for putting into production. 

There were differences between the methods by which LDFACTS was evaluated and by which 

the human evaluation of factuality was conducted. Firstly, the human annotators were presented 

Table 23. Accuracy scores and Pearson correlations for the Rank19 and QAGS data sets. Bold 
font indicates the best results and underlined font indicates the second-best results. 
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with only three sentences sampled from the predicted summary, while LDFACTS considers all 

generated sentences when evaluating a predicted summary. Additionally, the human reviewers 

were asked to consider both text snippets presented to them to make a judgement on entailment, 

whereas LDFACTS only considers the maximum scoring text snippet, therefore it only considers 

one in its calculation. However, it is acknowledged that there are some similarities between the 

way that the human evaluation was conducted and the method that LDFACTS takes, which could 

raise concerns about bias of results. The reason for conducting the human analysis in this way 

was due to the source documents for these data sets being extremely long. Asking an annotator to 

go through all source documents searching for each fact would be highly labour intensive and it 

is likely they would have missed facts due to the quantity of information they would need to 

comprehend.  As the annotators were asked to mark something as ‘entailed’ when they were 

confident a statement in the predicted summary was true given the text snippets presented to them, 

it’s unlikely entailed documents were marked incorrectly. However, admittedly, there is a risk that 

both the LDFACTS metric and the human evaluation missed a sentence in the similarity 

calculation which would have supported a document being entailed. In future work, a more 

thorough analysis of the source documents should be done in the cases where annotators marked 

summaries as ‘not entailed’. 

Furthermore, recently, a long document human evaluation framework and data set for the 

summarisation task has been proposed (Krishna et al., 2023). Future work should look to evaluate 

LDFACTS against this framework.  

 

 

7 Conclusion 

This work begins to address some of the limitations of automatic long document text 

summarisation. Pretrained language models (PLMs) have enabled vast improvements across an 

array of natural language processing tasks, including text summarisation. However, they have 

also introduced limitations, many of which are around the computational resources required to 

train and deploy such models. This has resulted in most of the research on automatic text 

summarisation to date focusing on the comprehension of short documents. Since the value of 

automatic text summarisation comes from distilling long documents into shorter texts, whilst still 

communicating the same key information, by truncating documents before summarising them, or 

only summarising short documents, much of the value is lost. 
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 The aims of this research were: (1) to evaluate existing methods for extractive and abstractive 

long document text summarisation and to propose novel summarisation methods, (2) to study and 

propose methods for domain-specific summarisation, and (3) to research the efficacy of automatic 

evaluation metrics for assessing factual consistency of long document abstractive summarisation. 

In this work, methods were explored which make use of SOTA PLMs, but which also use 

strategies to overcome some of the limitations that they traditionally impose. To address Research 

Aim 1, in Section 3, extractive methods were evaluated and an unsupervised hybrid abstractive-

extractive model, GenCompareSum. This model harnesses the semantic understanding of PLMs 

but uses a strategy which does not impose a token limit on the document length. Furthermore, 

being an unsupervised approach, it does not require human annotated training data for the 

summarisation task. This method showed strong performance compared to unsupervised and 

SOTA supervised extractive baselines. Additionally, in Section 5, intrinsic and extrinsic 

evaluation was conducted to assess the efficacy of abstractive methods for the summarisation of 

long documents. Since many long document data sets are highly domain-specific, but most PLMs 

are trained on data of the general domain, in this work a lightweight framework for injecting 

domain knowledge, KeBioSum, was proposed, addressing Research Aim 2. Again, this approach 

demonstrated improved performance over strong extractive baselines, and was shown to be 

particularly useful when a PLM fine-tuned on in-domain data is unavailable. Throughout this 

work, to evaluate the different summarisation methods, the ROUGE scoring metric was used – 

the standard and most popular metric for evaluating text summarisation. However, this metric is 

understood to be flawed, particularly when being used to evaluate abstractive summarisation 

methods. Therefore, to answer Research Aim 3, in Section 6, the LDFACTS metric was proposed 

for evaluating the factual consistency of long documents. It was shown that LDFACTS correlated 

better with human annotations of factual consistency than any existing metric evaluated in a long 

document setting.  

In Section 5 of this work, it is shown that the abstractive methods evaluated are not factually 

consistent and it is apparent that there is much more work to be done to develop reliable models 

suitable for deployment in high-risk production settings, such as healthcare. Furthermore, in fields 

such as healthcare, where factual consistency is vital, extractive approaches are advantageous in 

that they allow for a reader to quickly refer back to the source document and check the context of 

the text which appears in the summary. Future work should look to explore more advanced 

summarisation methods which can use extractive techniques to improve factual consistency and 

trust in high-risk settings. As Large Language Models (LLMs) have shown promise in their ability 

to be able to cite sources and summarise extractive content, an interesting future direction of 
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research could be to use sentence embeddings to find relevant sections in long documents (or 

even multiple documents) and use a LLM to summarise them, citing their sources.  

Another interesting direction for future work would be to understand how the methods 

proposed in this work could extend to other domains and settings. For example, GenCompareSum 

should easily extend to multi-document settings, however, in order to make the final summary 

coherent to a user, some thought should be put in to how to communicate the origins of each 

extractive segment. Furthermore, it would be interesting to see how the adapter-fusion approach 

in KeBioSum extends to other technical domains, such as legal or technical scientific 

documentation. LDFACTS should extend to other domains and multi-document summarisation 

data sets, however, an interesting direction for future work would be to explore how it can 

effectively evaluate highly abstractive but factually consistent summaries of multiple sources, as 

currently the score it produces will favour more extractive and single-document approaches.  

Although this work begins to address some limitations of PLMs for long document 

summarisation and follow-on research for each of the methods explored is suggested in this thesis, 

there are some bigger, more general challenges in the field of text summarisation which need 

addressing to enable significant advances. Firstly, one can hypothesise that issues with fluency, 

coherence and factual consistency are at least partly a result of noisy training data (for example a 

fact appearing in the summary of a training example which doesn’t appear in its source 

document). Due to the quantity of data required to train a neural supervised summarisation model, 

data sets for text summarisation tend to be automatically created, and a proxy is used for the target 

summary, e.g., the abstract is used in data sets of scientific papers, and titles are used as reference 

summaries in some news article summarisation data sets. In all domains of machine learning, 

clean, curated, in-domain data is required to train the best models. Therefore, to make significant 

advancements in text summarisation, methods for curation of better-quality data sets are vital. An 

interesting future direction of work could be to use methods such as LDFACTS to curate training 

data and remove noisy examples where target summaries are factually inconsistent with a source 

document. Furthermore, as highlighted in Section 6, improved metrics are required for capturing 

human measures of quality, particularly fluency and coherence. Until we have strong metrics that 

can capture these measures, we will struggle to know whether to performance of our models is 

adequate. Lastly, although this research attempted to keep GPU utilization at a practical level 

during the experiments conducted, this level of compute is not environmentally or economically 

sustainable if we expect all companies, researchers, and institutions to use the technologies we 

are developing. Therefore, to significantly progress the field of text summarisation, and deep-
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learning more generally, new, less resource-intensive strategies must be developed for the training 

and usage of these models.  
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