
Learning Chemical Reactions from Simulated Data

A thesis submitted to the University of Manchester for the degree of
Master of Philosophy

in the Faculty of Science and Engineering 

2023

Ayana Mussabayeva
Department of Mathematics, School of Natural Sciences, Faculty of Science and 

Engineering



Contents

Contents 2

List of figures 3

List of tables 5

Abstract 6

1 Introduction 9
1.1 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Mechanism A1r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Simulating Chemical Reactions by Numerical Integration 18
2.1 Runge–Kutta Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Numerical Differentiation 23
3.1 Polynomial Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Spline Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Sparse Identification of Nonlinear Dynamics (SINDy) 32
4.1 SINDy Model and Regularization . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 SINDy Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Regularized Least Squares Solution 37
5.1 Unregularized Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Sequentially Thresholded Least Squares . . . . . . . . . . . . . . . . . . . . 39
5.3 Lasso Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Concluding Remarks 52

References 55

Appendices 60

A Mechanism A1r, 𝑘−2 = 0 61

B Mechanism A1r, 𝑘−2 = 1 68

Word Count: 9244

2



List of figures

1.1 Scheme of A1r reaction mechanism . . . . . . . . . . . . . . . . . . . . . 10
1.2 Diagrams of common kinetic mechanisms . . . . . . . . . . . . . . . . . . 10
1.3 Deriving a differential equation from kinetic cycle’s steps . . . . . . . . . . 11
1.4 General concept of automating the kinetic mechanism identification . . . . 13
1.5 General scheme for ODEs extraction from time-series data . . . . . . . . . 15
1.6 Mechanism A1r with different kinetic constants . . . . . . . . . . . . . . . 16

2.1 Number of points of the generated data depending on the error tolerance of 
RK45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Data trajectories generated by RKF45 . . . . . . . . . . . . . . . . . . . . 21
2.3 Data trajectories generated by RKF45 using three sets of initial conditions 

for 𝑘1 = 1, 𝑘−1 = 1, 𝑘2 = 1, 𝑘−2 = 0 . . . . . . . . . . . . . . . . . . . . 22

3.1 An interpolating spline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Ground truth 𝑋̇ for a single set of initial conditions . . . . . . . . . . . . . 29
3.3 Numerical approximated 𝑌 for a single set of initial conditions . . . . . . . 29
3.4 Points selection for spline approximation . . . . . . . . . . . . . . . . . . . 31

4.1 Regularization paths for regularization parameter 𝜆 in SINDy . . . . . . . . 34
4.2 Regularization paths for thresholding parameter𝛼 in SINDy . . . . . . . . . 35

5.1 Regularization paths for STLSQ (RKF45, 𝑌 = 𝑌FD, 𝑘−2 = 0) . . . . . . . . 40
5.2 Regularization paths for STLSQ (RKF45, 𝑌 = 𝑌S, 𝑘−2 = 0) . . . . . . . . 41
5.3 Regularization paths for STLSQ (RKF45, 𝑌 = 𝑌S, 𝑘−2 = 0) . . . . . . . . 41
5.4 Regularization paths for STLSQ (RKF45, 𝑌 = 𝑌FD, 𝑘−2 = 0) . . . . . . . . 43
5.5 Regularization paths for STLSQ (Chebyshev, 𝑌 = 𝑌S, 𝑘−2 = 0) . . . . . . 43
5.6 Regularization paths for STLSQ (Chebyshev, 𝑌 = 𝑌FD, 𝑘−2 = 0) . . . . . . 44
5.7 Regularization paths for Lasso regression (equispaced, 𝑌 = 𝑌FD, 𝑘−2 = 0) . 46
5.8 Regularization paths for Lasso regression (equispaced, 𝑌 = 𝑌FD, 𝑘−2 = 0) . 47
5.9 Regularization paths for Lasso regression (RKF45, 𝑌 = 𝑌FD, 𝑘−2 = 0) . . . 47
5.10 Regularization paths for Lasso regression (RKF45, 𝑌 = 𝑌S, 𝑘−2 = 0) . . . 48
5.11 Regularization paths for Lasso regression (Chebyshev, 𝑌 = 𝑌FD, 𝑘−2 = 0) . 49
5.12 Regularization paths for Lasso regression (Chebyshev, 𝑌 = 𝑌S, 𝑘−2 = 0) . . 50

A.1 Regularization paths for STLSQ (equispaced, 𝑌 = 𝑌FD, 𝑘−2 = 0) . . . . . . 62
A.2 Regularization paths for STLSQ (equispaced, 𝑌 = 𝑌S, 𝑘−2 = 0) . . . . . . 62
A.3 Regularization paths for STLSQ (RKF45, 𝑌 = 𝑌FD, 𝑘−2 = 0) . . . . . . . . 63

3



A.4 Regularization paths for STLSQ (RKF45, 𝑌 = 𝑌S, 𝑘−2 = 0) . . . . . . . . 63
A.5 Regularization paths for STLSQ (Chebyshev, 𝑌 = 𝑌FD, 𝑘−2 = 0) . . . . . . 64
A.6 Regularization paths for STLSQ (Chebyshev, 𝑌 = 𝑌S, 𝑘−2 = 0) . . . . . . 64
A.7 Regularization paths for Lasso (equispaced, 𝑌 = 𝑌FD, 𝑘−2 = 0) . . . . . . . 65
A.8 Regularization paths for STLSQ (equispaced, 𝑌 = 𝑌S, 𝑘−2 = 0) . . . . . . 65
A.9 Regularization paths for Lasso (RKF45, 𝑌 = 𝑌FD, 𝑘−2 = 0) . . . . . . . . . 66
A.10 Regularization paths for Lasso (RKF45, 𝑌 = 𝑌S, 𝑘−2 = 0) . . . . . . . . . 66
A.11 Regularization paths for Lasso (Chebyshev, 𝑌 = 𝑌FD, 𝑘−2 = 0) . . . . . . . 67
A.12 Regularization paths for Lasso (Chebyshev, 𝑌 = 𝑌S, 𝑘−2 = 0) . . . . . . . 67

B.1 Regularization paths for STLSQ (equispaced, 𝑌 = 𝑌FD, 𝑘−2 = 1) . . . . . . 69
B.2 Regularization paths for STLSQ (equispaced, 𝑌 = 𝑌S, 𝑘−2 = 1) . . . . . . 69
B.3 Regularization paths for STLSQ (RKF45, 𝑌 = 𝑌FD, 𝑘−2 = 1) . . . . . . . . 70
B.4 Regularization paths for STLSQ (RKF45, 𝑌 = 𝑌S, 𝑘−2 = 1) . . . . . . . . 70
B.5 Regularization paths for STLSQ (Chebyshev, 𝑌 = 𝑌FD, 𝑘−2 = 1) . . . . . . 71
B.6 Regularization paths for STLSQ (Chebyshev, 𝑌 = 𝑌S, 𝑘−2 = 1) . . . . . . 71
B.7 Regularization paths for Lasso (equispaced, 𝑌 = 𝑌FD, 𝑘−2 = 1) . . . . . . . 72
B.8 Regularization paths for STLSQ (equispaced, 𝑌 = 𝑌S, 𝑘−2 = 1) . . . . . . 72
B.9 Regularization paths for Lasso (RKF45, 𝑌 = 𝑌FD, 𝑘−2 = 1) . . . . . . . . . 73
B.10 Regularization paths for Lasso (RKF45, 𝑌 = 𝑌S, 𝑘−2 = 1) . . . . . . . . . 73
B.11 Regularization paths for Lasso (Chebyshev, 𝑌 = 𝑌FD, 𝑘−2 = 1) . . . . . . . 74
B.12 Regularization paths for Lasso (Chebyshev, 𝑌 = 𝑌S, 𝑘−2 = 1) . . . . . . . 74

4



List of tables

3.1 Derivatives approximation error at the equispaced points . . . . . . . . . . 30
3.2 Derivatives approximation error at the points chosen by RKF45 . . . . . . . 30
3.3 Derivatives approximation error at Chebyshev points . . . . . . . . . . . . 31

4.1 SINDy results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 Unregularized least squares results . . . . . . . . . . . . . . . . . . . . . . 39
5.2 STLSQ results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Lasso regression results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A.1 Simulation results for [cat]0 = [0.05; 0.1; 0.15], 𝑘−2 = 0 . . . . . . . . . . . 61

B.1 Simulation results for [cat]0 = 0.1, 𝑘−2 = 1 . . . . . . . . . . . . . . . . . 68

5



Abstract

Catalytic chemical reactions are intricate processes that can be represented as a system of 
ordinary differential equations (ODEs) by deriving the rate laws for each of the species in a 
reaction. Different kinetic mechanisms can be associated with these systems of ODEs.

A kinetic mechanism illustrates how the reaction rate depends on the kinetic constants 
and the concentrations of the species. Analyzing the kinetics of a reaction is crucial for 
understanding the behaviour of the reaction and for improving its performance. Chemists aim 
to automate this process by enabling extraction of the kinetics from time-series concentrations 
data. The problem is formulated as a least squares problem. The data used for the experiments 
is generated numerically using a fourth order Runge-Kutta method. Different data sampling 
is used to check how the distribution of the concentration data affects the final result. Three 
sampling options are used in the experiments: equispaced sampling, points adaptively chosen 
by Runge-Kutta-Fehlberg 4(5) and Chebyshev points.

Apart from receiving a solution that fits the data trajectories, it is important to obtain a 
sparse solution. This can be achieved through the use of iterative thresholding algorithms 
or regularization techniques. Therefore, the sequentially thresholded least squares (STLSQ) 
algorithm and Lasso regularization have been utilized to extract interpretable system of ODEs 
from the generated data trajectories.

The results obtained demonstrate that Lasso regularization is more robust against numer-
ical errors and more frequently identifies the correct “active” components (those with non-
zero coefficients on the right-hand side of the ODEs) compared to STLSQ. It has also been 
observed that the choice of numerical approximation for derivatives and data sampling sig-
nificantly impacts the results.
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1 Introduction

A chemical reaction is a transformative process in which one or more reactants undergo a 
conversion, resulting in the formation of one or more products. Some substances, known as 
catalysts, have the ability to facilitate or accelerate these reactions. Consequently, chemical 
reactions that involve catalysts are referred to as catalytic reactions. For example, a product 
P is obtained from initial substrate A catalyzed by cat:

  \ce {A ->[\ce {cat}] \ce {P} }. 


  (1.1)

Catalytic reactions are complex processes, as there may be different elementary reactions 
hiding under the above expression. The transformation of A into P proceeds through a series 
of elementary reactions that involve the collision of normally two species, for example:

\label {eq:steps} \ce {A + cat <=>[\ce {$k_1$}][\ce { $k_{-1}$}] \ce {catA} } \\ \nonumber \ce {catA <=>[\ce {$k_2$}][\ce { $k_{-2}$}] \ce {P + cat} }. 





 \label {eq:steps} \ce {A + cat <=>[\ce {$k_1$}][\ce { $k_{-1}$}] \ce {catA} } \\ \nonumber \ce {catA <=>[\ce {$k_2$}][\ce { $k_{-2}$}] \ce {P + cat} }.

\label {eq:steps} \ce {A + cat <=>[\ce {$k_1$}][\ce { $k_{-1}$}] \ce {catA} } \\ \nonumber \ce {catA <=>[\ce {$k_2$}][\ce { $k_{-2}$}] \ce {P + cat} }.





 

It is seen from the above that there are two intermediate catalysts cat and catA involved in 
the reaction. The coefficients 𝑘1, 𝑘−1, 𝑘2 and 𝑘−2 in the equation above determine how fast 
species react with each other. These constants are called kinetic constants. Catalytic reac-
tions can be represented in the form of a kinetic mechanism, which is a series of elementary 
reactions. A kinetic mechanism shows the steps leading from the starting solutions to the for-
mulation of intermediates and final products. In catalytic reactions a catalyst is regenerated at 
the end of a reaction, so it does not require a large amount of catalyst. A kinetic mechanism 
can be shown graphically as in Fig. 1.1. It is seen that the catalyst reacts with substrate A and 
the same catalyst is resulted at the end of the cycle, when catA reacts with P.

The kinetic mechanism and its equations show the dependency of the reaction’s rate with 
the kinetic constants and species’ concentrations. There are many different types of mecha-
nisms. Even a simple transition from reactant A to product P can be interpreted using differ-
ent kinetic mechanisms (see Fig. 1.2), so it is hard to analyse which one corresponds to some 
given set of time-series data.

Thus, a simple transformation of A into P can be interpreted as different mechanisms, 
and it is essential to understand which is the correct one. A precise analysis of reaction’s 
mechanism is necessary for its further usage, e.g. for its improvement, for using it in some 
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Figure 1.1. Scheme of A1r reaction mechanism

Figure 1.2. Diagrams of common kinetic mechanisms for one product and one reactant

industrial process or for stopping it in case if it is an undesired process.

Each kinetic mechanism can be represented as a system of ODEs. The differential equation 
for each element can be formed by observing the kinetic cycle and breaking it down into 
elementary steps. The direction of the step affects the sign of the step’s product in the resulting 
ODE. For instance, the equation for the rate of change of the concentration of [cat] is formed 
by observing two reversible transitions (1.2). As both of the reactions are reversible, each can 
be represented in two elementary steps. Thus, the resulting ODE is shown as the sum of the 
four steps (see Fig.1.3). The kinetic constants 𝑘1, 𝑘−1, 𝑘2, 𝑘−2 show how fast the transition 
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Figure 1.3. Deriving a differential equation from kinetic cycle’s steps

of each step is.

The same procedure can be done for each element in the reaction. For instance:

  \frac {d[\ce {P}]}{dt} = k_2[\ce {catA}] - k_{-2} [\ce {cat}]\ce {[P]}, 


  

is the rate of product formation, which depends on concentrations of [catA] and [cat][P] at 
time 𝑡. The kinetic coefficient 𝑘2 has positive sign because of the forward direction of the 
transition from catA to P, while 𝑘−2 has negative sign because of opposite direction in the 
reversible step (see Fig. 1.3).

By deriving the equations for each substrate in the reaction, we can describe the mecha-
nism A1r by a system of ODEs:

𝑑[A]
𝑑𝑡

= −𝑘1[A][cat] + 𝑘−1[catA] (1.3)

𝑑[P]
𝑑𝑡

= 𝑘2[catA] − 𝑘−2[cat][P]

𝑑[cat]
𝑑𝑡

= −𝑘1[A][cat] + 𝑘2[catA] + 𝑘−1[catA] − 𝑘−2[cat][P]

𝑑[catA]
𝑑𝑡

= 𝑘1[A][cat] − 𝑘2[catA] − 𝑘−1[catA] + 𝑘−2[cat][P].

Knowing that the catalytic reactions can be represented in a form of a system of ODEs, it 
is possible to formulate the problem mathematically. Further, if we were able to extract the 
information about the reaction directly from the system of ODEs, we would be able to identify 
the corresponding mechanism of the reaction. Analyzing the kinetics of a reaction is crucial 
for comprehending its nature and enhancing its performance. However, the current methods 
employed for kinetic analysis are highly limited as they often necessitate a manual comparison 
between the obtained time-series concentration profiles and the expected characteristics of 
plausible kinetic mechanisms. Among the most commonly used methods is the initial rates 
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method, which focuses on the rate change of a single reactant and assumes the concentrations 
of the remaining species to be constant. The primary drawback of this approach is that it 
tipycally provides only the information about the kinetics at the beginning of the reaction and 
does not consider the change of the reaction order. Over the last decades there have been 
several computational approaches proposed for biochemical data analysis. One of the early 
works in this area proposed correlation metric construction for time-series concentrations 
to draw the diagrams of chemical reactions [1]. This method required quite a lot of priori 
knowledge about the kinetic steps of the reaction, but as a result it provided possible kinetic 
cycles of the mechanism.

One of the most obvious ways to perform the kinetic analysis is to hold a number of ex-
periments with different starting conditions (such as initial concentrations of reactants, tem-
perature, etc). By observing the behaviour of the reaction with different starting conditions, 
chemists can define the type of mechanism and its kinetic properties. This is called the initial 
rates method. However, this classical method entails repeating the experiments, which can 
be both time-consuming and inefficient in terms of chemical reactant usage.

To overcome the described problem several methods such as reaction progress kinetic 
analysis (RPKA)  [2] were proposed. This method compares the rate trajectories and tries to 
minimize the number of experiments held for identifying the kinetics. The disadvantage of 
the RPKA method is that it uses not the time-series concentrations, but rate data obtained by 
isothermal calorimetry, which is not suitable for some reactions.

A related method called variable time normalization analysis (VTNA)  [3] can be used 
for inferring kinetics. It also performs the visual comparison of the chemical data, but un-
like RPKA it uses reaction concentration profiles. Both RKPA and VTNA are quite simple 
and the main advantage is that these methods minimize the number of experiments held to 
define the kinetics of a reaction. However, these methods still require several experiments 
to be carried out. The more complex the mechanism, the more experiments are required. In 
addition to that, visual kinetic analysis does not obtain precise values of kinetic constants [4], 
but measures the elasticities of the species, which show how much the rate of the reaction 
changes with the change of concentration for each species. The main drawback of these 
existing methods is that they generalize the whole information present in the kinetics over 
several experiments with different initial value of just one reaction component. Classical ini-
tial rates method and visual kinetic analysis compare the given kinetics with several possible 
mechanistic hypotheses, but they fail to represent complex mechanisms.

Extraction of reaction kinetics can be performed using general-to-specific (or “top-down”) 
and simple-to-general (or “bottom-up”) iterative approaches [5]. These methods construct the 
dictionary of possible components in the equation. General-to-specific model selection starts 
with the full dictionary of all possible components and further reduces it iteratively. By con-
trast, the bottom-up approach chooses a single initial component of the equation and then adds 
iteratively new ones. Both of these methods can be successfully applied for inferring kinetics 
from time-series data  [6]. The main drawback of these methods is their time-complexity and 
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inability to work with a large number of reacting species.

Some methods for reconstructing bio-chemical pathways solve inverse problems for dy-
namic models [7], [8]. Another possible approach is to use Bayesian inference in combination 
with Markov chain Monte Carlo method for uncertainty qualification when inferring the ki-
netics of a reaction [9]. However, most of these methods require a priori knowledge about 
the structure of a kinetic mechanism analyzed, which limits their applicability [10]. It is also 
noted, that even the most promising methods fail to infer kinetics of complex models. For in-
stance, the accuracy in the reconstruction of the reaction topology depends on the number of 
chemical species and their reaction kinetics when using MIKANA (method to infer kinetics 
and network architecture) [11].

Generally, the idea is to have time-series data, obtained during the catalytic reaction, as 
an input. These data should be processed by the algorithm, which can output a system of 
ODEs, a scheme of a corresponding kinetic mechanism and its type. This concept is shown 
in Fig. 1.4.

Figure 1.4. General concept of automating the kinetic mechanism identification

The application of neural networks can partly solve this problem and infer the type of 
mechanism from the measured data [12]. However, the main goal is not to just identify the 
mechanisms out of a “black box”, but to extract the differential equations, explaining the 
behaviour of the reaction.

1.1 Mathematical Formulation

Each ODE of the system can be written as:

  \label {eq:ode_mathform} \frac {d}{dt} x_j = F_j(x_1, \dots , x_n), 


     (1.4)

where 𝑗 ∈ {1, 2, ..., 𝑛}, 𝑛 is the number of species involved in a chemical reaction and 
𝑥𝑗 is the concentration of the 𝑗-th species changing over time 𝑡. The function 𝐹𝑗(𝑥1, ..., 𝑥𝑛)
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represents the dynamic constraints that define the equation.

The input data of concentrations is then defined as a tall skinny data matrix 𝑋 of size 
[𝑘 × 𝑛], where 𝑘 is the number of data points. The number of ODEs in a system is the same 
as the number of species. Then, the input data can be written as:

  X = \begin {bmatrix} x_1(t_1) & x_2(t_1) & \cdots &x_n(t_1) \\ x_1(t_2) & x_2(t_2) & \cdots & x_n(t_2) \\ \vdots & \vdots & \vdots & \vdots \\ x_1(t_k) & x_2(t_k) & \cdots & x_n(t_k)\\ \end {bmatrix} = \begin {bmatrix} | & | & \cdots & | \\ \mathbf {x}_1 & \mathbf {x}_2& \cdots & \mathbf {x}_n \\ | & | & \cdots & | \\ \end {bmatrix}. 






  
  

  
  












  
  

  





 (1.5)

The whole system of ODEs can be identified by introducing matrix 𝑋̇:

  \dot {X} = \begin {bmatrix} | & | & \cdots & | \\ F_1 & F_2 & \cdots & F_n \\ | & | &\cdots & | \\ \end {bmatrix}. \label {dotX} 




  
  

  





 (1.6)

The main goal is to recover each 𝐹𝑗, 𝑗 ∈ {1, 2, ..., 𝑛}, from the measured data, representing 
𝑋̇ as a combination of candidate functions. The candidate functions are presented using a 
feature dictionary 𝑋. Each column of 𝑋 is a candidate function of the columns of 𝑋. For 
inferring kinetic mechanism problem, the feature dictionary stores original data vectors of 
𝑋, its squared terms and its pairwise products. By defining 𝑋̄ as a matrix storing pairwise 
products of the original data vectors, it can be said that:

  \widetilde {X} = [X, \bar {X}, X^2] = \begin {bmatrix} | &... & | & | & ... & | & | & ... & |\\ \mathbf {x}_1 & ...& \mathbf {x}_n &\mathbf {x}_1\mathbf {x}_2 & ... & \mathbf {x}_{n-1}\mathbf {x}_n & \mathbf {x}_1^2 & ... & \mathbf {x}_n^2\\ | &... & | & | & ... & | & | & ... & |\\ \end {bmatrix}.    




       
     

 


       





 (1.7)

The number of column vectors in this features dictionary is 𝑚 = 𝑛2+3𝑛
2 , as the fea-

tures dictionary includes 𝑛 species, 𝑛 element-wise squared vectors and the unique pairwise 
Hadamard products of 𝑛 species. Not all of the possible features are “active” components, i.e. 
not all of them will be presented in the right-hand side of the ODEs. There are 𝑚 possible 
components (of features), but there are only 𝑠ex number of the correct active components, 
which should be presented in the right-hand side of the system. As not all of the 𝑚 features 
should appear in the ODE, it is necessary to determine their state by introducing the vectors 
of coefficients w = [𝑤1 𝑤2 ... 𝑤𝑚] for each equation. Those features which are not 
active will have zero coefficients. The active features should have the coefficients which can 
be interpreted as kinetic constants. For the whole system of ODEs we get a matrix of weights 
𝑊 of size [𝑚 × 𝑛], which satisfies the following expression:

  \label {eq_matrixProblem} \dot {X} = \widetilde {X}W.    (1.8)
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Figure 1.5. General scheme for ODEs extraction from time-series data

The general scheme for ODEs extraction process from chemical data is represented in 
Fig. 1.4.

The matrices 𝑋 and 𝑋 are constructed using the input data trajectories of chemical con-
centrations. But in order to find the coefficients 𝑊, firstly it is necessary to obtain the values 
of the derivatives matrix 𝑋̇ (1.6), which is also a skinny matrix of the same size as 𝑋. To 
do so, 𝑋̇ could be approximated numerically. The matrix 𝑌 is introduced for the numeri-
cal approximation of 𝑋̇, which can be obtained e.g. using finite difference method or spline 
approximation:

  Y \approx \dot {X}.   (1.9)

Finally, it can be said that the goal is to find the values of the sparse matrix 𝑊, such that:

  \label {eq_matrixProblem_Y} Y \approx \widetilde {X}W.   (1.10)

1.2 Mechanism A1r

In the following experiments we focus on the simplest mechanism with two intermedi-
ates called Mechanism A1r. The diagram of this mechanism is presented in Fig. 1.1 and its 
behaviour is described by (1.3).

When investigating the equations more closely we can spot that there are linear relations 
between the equations:
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̇[A] = −𝑘1[A][cat] + 𝑘−1[catA]
̇[P] = 𝑘2[catA] − 𝑘−2[cat][P] (1.11)
̇[cat] = −𝑘1[A][cat] + 𝑘−1[catA] + 𝑘2[catA] − 𝑘−2[cat][P]
̇[catA] = 𝑘1[A][cat] − 𝑘−1[catA] − 𝑘2[catA] + 𝑘−2[cat][P].

It can be concluded that for the mechanism A1r:

̇[cat] = ̇[A] + ̇[P] (1.12)
̇[catA] = − ̇[cat].

When rewriting the system of ODEs in matrix form, the exact matrix of weights for mech-
anism A1r is a [4 × 14] matrix:

  W_\text {ex} = \begin {bmatrix} 0 & 0 & 0 & k_{-1} & 0 & -k_1 & 0 & 0& ... & 0 \\ 0& 0& 0& k_2& 0& 0& -k_{-2}& 0& ...& 0 \\ 0& 0& 0& k_2+k_{-1}& 0& -k_1& -k_{-2}& 0& ... &0 \\ 0& 0& 0& -k_2-k_{-1}& 0& k_1& k_{-2}& 0& ...& 0 \\ \end {bmatrix}. \label {eq:w_ex} 






        
        
          
          







 (1.13)

Figure 1.6. Mechanism A1r: a) kinetic constants: 𝑘1 = 1, 𝑘−1 = 1, 𝑘2 = 1. 𝑘−2 = 0 b) kinetic constants: 
𝑘1 = 1, 𝑘−1 = 1, 𝑘2 = 1. 𝑘−2 = 1

There are two sets of kinetic constants chosen for data generation. The first set is 𝑘1 = 1, 
𝑘−1 = 1, 𝑘2 = 1. 𝑘−2 = 0. The kinetic cycle with these constants is shown in Fig. 1.6(a). 
Substituting these constants into (1.3) we get:

̇[A] = [catA] − [A][cat] (1.14)
̇[P] = [catA]
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̇[cat] = 2[catA] − [A][cat]
̇[catA] = −2[catA] + [A][cat].

In this case the exact number of active features (the number of components with non-zero 
coefficients) is 𝑠ex = 7.

The second set of kinetic constants is 𝑘1 = 1, 𝑘−1 = 1, 𝑘2 = 1. 𝑘−2 = 1. The kinetic 
cycle with this set of constants is shown in Fig. 1.6(b). By inserting these into (1.3), the 
following equations with 𝑠ex = 10 active components are obtained:

̇[A] = [catA] − [A][cat] (1.15)
̇[P] = [catA] − [cat][P]
̇[cat] = 2[catA] − [A][cat] − [cat][P]
̇[catA] = −2[catA] + [A][cat] + [cat][P].

Knowing the system of ODEs, it is possible to generate data concentrations using numer-
ical methods, such as Runge-Kutta, LSODA [13], etc.
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2 Simulating Chemical Reactions by 

Numerical Integration

In order to conduct the experiments within this work, and so that we are able to measure 
the error precisely, synthetically generated data can be used, rather than the experimentally-
obtained time- series concentrations obtained by chemists during a reaction. By knowing the 
pre-defined system of ODEs for a particular kinetic mechanism, one can generate the species 
concentrations by using different numerical integration methods, such as Euler methods or 
Runge-Kutta methods.

2.1 Runge–Kutta Method

The Runge–Kutta 4th order method is a popular method also called as classic Runge–Kutta 
method or RK45.

The basic idea of the method is to approximate the solution of the ODE at a discrete set of 
points in time. At each time step, the method uses a weighted average of four function eval-
uations to estimate the solution at the next time step. Knowing that each governing equation 
of the system can be written as an ODE (1.4), we can rewrite it in a vector form:

ẋ = F(x1,… , x𝑛) (2.1)

Then, by knowing the initial concentration x(0) for each ODE it is possible to find the next 
concentration values of x as:

  \mathbf {x}^{(k+1)} = \mathbf {x}^{(k)} + \frac {h}{6}(\mathbf {s}_1 + 2 \mathbf {s}_2 + 2\mathbf {s}_3 + \mathbf {s}_4), \label {eq:rk45}    

       (2.2)

where ℎ is the chosen initial step value, which can be be estimated optimally by calculating 
partial derivatives at 𝑡0 [14]. The step value ℎ depends on 𝑘, since it can be calculated as:

  h_k = t_{k+1} - t_{k}.      (2.3)

Nevertheless in order to keep the notation simple, the initial step value is used as ℎ = ℎ𝑘. 
The coefficients s1, s2, s3, s4 can be found as:
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s1 = 𝑓(x(𝑘), 𝑡𝑘) (2.4)

s2 = 𝑓(x(𝑘) + ℎ
2

s1, 𝑡𝑘 + ℎ
2
) (2.5)

s3 = 𝑓(x(𝑘) + ℎ
2

s2, 𝑡𝑘 + ℎ
2
) (2.6)

s4 = 𝑓(x(𝑘) + ℎs3, 𝑡𝑘 + ℎ). (2.7)

The coefficients in the weighted average (2.2) are chosen such that the method has fourth-
order accuracy, meaning that the error in the solution approximately decreases by a factor of 
16 as the time step is halved. In other words, the global error of the computed solution after 
several steps should be of order 4, while the truncation error accumulated at each iteration 
can be of order 5.

If the above expressions are expanded as Taylor series and substituted to (2.2), the error 
accumulated at each iteration is cancelled out to the 5th order, so it can be written as:

  \mathbf {x}^{(k+1)} = \mathbf {x}^{(k)} + \frac {h}{6}(\mathbf {s}_1 + 2 \mathbf {s}_2 + 2\mathbf {s}_3 + \mathbf {s}_4) + O(h^5).    

         (2.8)

It should also be noted that there can be many possible ways to compute x(𝑘+1) in such a 
way thatit results in the global error being of order 4. So, roughly speaking, Runge-Kutta of 
4th order is not a single method, but a general name for a number of methods.

Runge-Kutta 4(5) or RK45 method is based on the Dormand-Prince (4,5) pair [15]. It 
is a predictor-corrector method, which calculates four coefficients, but also introduces two 
additional terms to correct the solution for the 5th order method:

s1 = 𝑓(x(𝑘), 𝑡𝑘), (2.9)

s2 = ℎ𝑓(x(𝑘) + 1
4

s1, 𝑡𝑘 + 1
4
ℎ), (2.10)

s3 = ℎ𝑓(x(𝑘) + 3
32

s1 + 9
32

s2, 𝑡𝑘 + 3
8
ℎ), (2.11)

s4 = ℎ𝑓(x(𝑘) + 1932
2197

s1 − 7200
2197

s2 + 7296
2197

s3, 𝑡𝑘 + 12
13

ℎ), (2.12)

s5 = ℎ𝑓(x(𝑘) + 439
216

s1 − 8s2 + 3680
513

s3 − 845
4104

s4, 𝑡𝑘 + ℎ), (2.13)

s6 = ℎ𝑓(x(𝑘) − 8
27

s1 + 2s2 − 3544
2565

s3 + 1859
4104

s4 − 11
40

s5). (2.14)

Then the value of the solution at the given point is found as:
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x(𝑘+1) = x(𝑘) + 25
216

s1 + 1408
2565

s3 + 2197
4104

s4 − 1
5

s5, (2.15)

x′(𝑘+1) = x(𝑘) + 16
135

s1 + 6656
12825

s3 + 28561
56430

s4 − 9
50

s5 + 2
55

s6 (2.16)

The expected error can be now calculated as:

  R = \frac {1}{h} | \mathbf {x}'^{(k+1)}- \mathbf {x}^{(k+1)}|. 

   (2.17)

It is important to choose the time step size that is small enough to accurately approximate 
the solution, but not so small that the computation becomes too expensive. Runge-Kutta-
Fehlberg [16] or RKF45 uses step size control techniques during the computation. The main 
difference between the Runge-Kutta 4(5) and Runge-Kutta-Fehlberg methods is that the for-
mer is a fixed-step method, while the latter is an adaptive step-size method that estimates the 
error to adjust the step size in each iteration. The main idea of Runge-Kutta-Fehlberg is to 
start with a moderate step size and then, depending on how large is the expected error, either 
keep or recalculate the solution. If the error estimate exceeds the tolerance, the step size is 
adjusted to reduce the error. The specific adjustment of the step can vary depending on the 
algorithm’s implementation. If the expected error 𝑅 is less than or equal to the chosen toler-
ance 𝜀 then the current solution is kept and the algorithm moves to the next step with the step 
size 𝛿ℎ. The adjustment factor 𝛿 is calculated as:

  \delta = (\frac {\varepsilon }{R})^{p},  

 (2.18)

where 𝑝 defines how significantly the step size is adjusted based on the error and is usually 
chosen to be between 0.25 and 0.9. In our case 𝑝 = 0.25, which is a classical choice [16]. If 
the value of 𝑝 is set to be larger, then the step size is changed more drastically.

The RKF45 method proves to be valuable in solving mildly stiff ODEs. These are cases 
where the solution undergoes relatively rapid changes in certain parts of the time interval and 
slower changes in others. Traditional fixed-step methods may not be efficient in such situa-
tions, as they often require small step sizes throughout the entire domain to ensure accuracy. 
In contrast, the adaptive step size of the RKF45 method enables larger steps in regions where 
the solution changes slowly and smaller steps in regions with rapid changes, resulting in more 
efficient computational processes.

2.2 Data Generation

The RKF45 method provides adaptive stepping, meaning that the number of points for the 
solution is changing with the change of the error tolerance value 𝜀. Figure 2.1 represents the 
number of points for which RKF45 evaluated the solution depending on the tolerance value.

20



Figure 2.1. Number of points of the generated data depending on the error tolerance of RK45

In order to obtain an accurate solution during the data generation, the tolerance is fixed to 
be 𝜀 = 10−6, since the number of solution points does not change after decreasing the error 
further. The RKF45 implementation given in  [17] provides 86 data points when solving the 
system of ODEs with 𝜀 = 10−6.

For data generation each ODE of the pre-defined system of ODEs for mechanism 1 is 
solved using the RKF45 method. As a result the data vector x for each chemical component 
is generated.

By taking initial values as [A]0 = 1, [P]0 = 0, [cat]0 = 0.1 and [catA]0 = 0, we generate 
the data trajectories for the chosen constants. The data trajectories generated for the period 
starting from 𝑡1 = 0, 𝑡𝑘 = 100 are presented in Fig. 2.2.

Figure 2.2. Data trajectories generated by RKF45
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Research findings have revealed that employing multiple initial conditions proves to be 
more efficient in reconstructing mechanisms [18]. Consequently, we employ three sets of 
initial conditions with different starting concentration of intermediate [cat]0. For multiple 
initial conditions experiments we use:

• [A]0 = 1, [P]0 = 0, [cat]0 = 0.1, [catA]0 = 0;

• [A]0 = 1, [P]0 = 0, [cat]0 = 0.15, [catA]0 = 0;

• [A]0 = 1, [P]0 = 0, [cat]0 = 0.05, [catA]0 = 0.

The obtained data matrices for ℓ sets of initial conditions are stacked on top of each other, 
resulting a matrix of size [ℓ𝑘 × 𝑛]

  X = \begin {bmatrix} X_1\\X_2 \\\vdots \\X_\ell \end {bmatrix}. 



















 (2.19)

Figure 2.3. Data trajectories generated by RKF45 using three sets of initial conditions for 𝑘1 = 1, 𝑘−1 = 1, 
𝑘2 = 1, 𝑘−2 = 0

The objective is to obtain the same set of ODEs or the set of ODEs with the coefficients 
close to those of (1.14, 1.15) from the generated time-series data using the methods described 
in the following chapters.
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3 Numerical Differentiation

Various numerical differentiation methods can be applied to obtain 𝑌 ≈ 𝑋̇ from known 
values of 𝑋. One of the most straightforward approaches is finite difference approximation.

3.1 Polynomial Approximation

Derivatives of the concentrations can be approximated numerically. By knowing that the 
derivative 𝑑𝑥

𝑑𝑡 corresponds to the rate of change of 𝑥(𝑡), let us consider the points 𝑥(𝑡𝑖) and 
𝑥(𝑡𝑖 +Δ𝑡), where Δ𝑡 = 𝑡𝑖+1 − 𝑡𝑖.

The gradient between these points can be approximated as:

  \label {eq:ffd} \frac {dx}{dt} \approx \frac {x(t_i + \Delta t) - x(t_i)}{\Delta t}. 


   


 (3.1)

The above formula (or the forward difference approximation formula) can be derived by 
writing Taylor’s series:

  \label {eq:ffd_Taylor} x(t+\Delta t) = x(t) + \Delta t \frac {dx}{dt}(t) + \frac {\Delta t^2}{2!} \frac {d^2x}{dt^2}(t) + \frac {\Delta t^3}{3!} \frac {d^3x}{dt^3}(t) + ...      


 



  



    (3.2)

By rearranging (3.2): 

  \label {eq:ffd_Taylor1} \frac {dx}{dt}(t) = \frac {x(t+\Delta t) - x(t) }{\Delta t} - \frac {\Delta t}{2!} \frac {d^2x}{dt^2}(t) + \frac {\Delta t^2}{3!} \frac {d^3x}{dt^3}(t) - \cdots 


     






  



    (3.3)

The error of this approximation results from truncating other terms of Taylor series.

Analogically we can write Taylor series for 𝑥(𝑡 − Δ𝑡), Δ𝑡 = 𝑡𝑖 − 𝑡𝑖−1:

  \label {eq:bfd_Taylor} x(t-\Delta t) = x(t) - \Delta t \frac {dx}{dt}(t) + \frac {\Delta t^2}{2!} \frac {d^2x}{dt^2}(t) - \frac {\Delta t^3}{3!} \frac {d^3x}{dt^3}(t) + \cdots      


 



  



    (3.4)

The derivative 𝑑𝑥
𝑑𝑡 (𝑡) is found by rearranging the above series:

  \label {eq:bfd_Taylor1} \frac {dx}{dt}(t) = \frac {x(t)-x(t-\Delta t)}{\Delta t} + \frac {\Delta t}{2!} \frac {d^2x}{dt^2}(t) - \frac {\Delta t^2}{3!} \frac {d^3x}{dt^3}(t) + ... 


     






  



    (3.5)
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Truncating the above expression, we derive the backward difference approximation:

  \label {eq:bfd} \frac {dx}{dt} \approx \frac {x(t_i)- x(t_i - \Delta t)}{\Delta t}. 


   


 (3.6)

Now for equally spaced data Δ𝑡 = 𝑡𝑖+1 − 𝑡𝑖 = 𝑡𝑖 − 𝑡𝑖−1 we can subtract (3.4) from (3.2), 
which leads to:

  \frac {dx}{dt}(t) = \frac {x(t+\Delta t) - x(t - \Delta t)}{2\Delta t} - \frac {2\Delta t^2}{3!} \frac {d^3x}{dt^3}(t) + ... 


       






    (3.7)

The above expression can be truncated and used for a central difference approximation:

  \frac {dx}{dt} \approx \frac {x(t_i + \Delta t) - x(t_i - \Delta t)}{2\Delta t}. 


    


 (3.8)

The central difference approximation can be used for finding the derivatives numerically 
for all data points except for the boundary ones. Derivatives at the first and last point cannot 
be approximated, but one may use the forward difference for the initial point and backward 
difference for the last point.

The problem is that backward and forward difference approximation is not as accurate 
as central difference. Central difference has an error of order 𝑂(Δ𝑡2), while the error of 
backward and forward difference is 𝑂(Δ𝑡).

It is possible to consider the same problem from the polynomial point of view [19, Chap-
ter 1]. The derivatives can be approximated numerically by fitting the Lagrange polyno-
mial [20, Chapter 3] (using piecewise interpolation by Lagrange interpolating polynomials 
and differentiating them). The Lagrange basis polynomials are defined as:

  L_i(t) = \prod _{j=1, j\neq i}^k \frac {t-t_j}{t_i - t_j}. 





 

 
 (3.9)

The Lagrange interpolation polynomial is then given as a sum of local polynomials:

  p(t) = \sum _{i=1}^k x_i L_i(t). 





 (3.10)

When using linear interpolation, the polynomial is constructed using two neighbour points:

  p(t) = x(t_{i-1})\frac {(t - t_i)}{(t_{i-1} - t_i)} + x(t_i)\frac {(t - t_{i-1})}{(t_i - t_{i-1})}.  
 

 


 
 

 (3.11)

Assuming that the evaluation point is between 𝑡𝑖 and 𝑡𝑖−1. So now we can rewrite the 
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above formula as 

  p(t_i) = x(t_{i-1})\frac {(t_i - t_{i+1})}{(t_{i-1} - t_{i+1})} + x(t_{i+1})\frac {(t_i - t_{i-1})}{(t_{i+1} - t_{i-1})}.  
 
 


 
 

 (3.12)

The value of the polynomial 𝑝(𝑡𝑖) should follow the relation:

  p(t_i) = x_i.    (3.13)

Thus, by using the known points 𝑥𝑖−1 and 𝑥𝑖+1 we construct a linear polynomial as:

  p(t) = c_1 t + c_0,      (3.14)

such that

 p(t_{i-1}) = c_1 t_{i-1} + c_0 = x_{i-1} \\ p(t_{i+1}) = c_1 t_{i+1} + c_0 = x_{i+1}.     

 p(t_{i-1}) = c_1 t_{i-1} + c_0 = x_{i-1} \\ p(t_{i+1}) = c_1 t_{i+1} + c_0 = x_{i+1}.     

From the linear system above it is possible to find a slope of this polynomial:

  p'(t_i) = \frac {x_{i+1} - x_{i-1}}{t_{i+1} - t_{i-1}}. 
 
 



The slope can be found for any time-point by using the above expression. Thus, the ap-
proximated derivatives for the interior nodes can be expressed by the following matrix vector 
product:

  \begin {bmatrix} ?\\ p'(t_2)\\ p'(t_3)\\ \vdots \\ p'(t_{k-1})\\ ? \end {bmatrix} = \begin {bmatrix} ?\\ \frac {-1}{t_3-t_1} & 0 & \frac {+1}{t_3-t_1}\\ 0 & \frac {-1}{t_4-t_2} & 0 & \frac {+1}{t_4-t_2}\\ & & \ddots & \ddots & \ddots \\ & & & \frac {-1}{t_k-t_{k-2}} & 0 & \frac {+1}{t_k-t_{k-2}}\\ & & & & & ? \end {bmatrix} \begin {bmatrix} x_1\\ x_2\\ x_3\\ \vdots \\ x_{k-1}\\ x_k. \end {bmatrix} 



















































 















































(3.15)

Linear interpolation uses two points for evaluating the approximation somewhere between 
those points. Thus, we can not evaluate the approximation at the initial point 𝑡 = 𝑡1 or final 
point 𝑡 = 𝑡𝑘.

In order to find the derivative at the boundary points 𝑡1 and 𝑡𝑘, it is possible to apply 
quadratic interpolation, in which the second-order polynomial goes through each of three 
points:

p(t) = x(t_{i-1}) \frac {(t-t_i)(t-t_{i+1})}{(t_{i-1}-t_i)(t_{i-1} - t{i+1})} + x(t_{i})\frac {(t-t_{i-1})(t-t_{i+1})}{(t_i - t_{i-1})(t_i - t_{i+1})} - \\ \nonumber - x(t_{i+1})\frac {(t-t_{i-1})(t-t_i)}{(t_{i+1} - t_{i-1})(t_{i+1}{t_{i+1} - t_i})}.



p(t) = x(t_{i-1}) \frac {(t-t_i)(t-t_{i+1})}{(t_{i-1}-t_i)(t_{i-1} - t{i+1})} + x(t_{i})\frac {(t-t_{i-1})(t-t_{i+1})}{(t_i - t_{i-1})(t_i - t_{i+1})} - \\ \nonumber - x(t_{i+1})\frac {(t-t_{i-1})(t-t_i)}{(t_{i+1} - t_{i-1})(t_{i+1}{t_{i+1} - t_i})}. 
   

     


   
   

 p(t) = x(t_{i-1}) \frac {(t-t_i)(t-t_{i+1})}{(t_{i-1}-t_i)(t_{i-1} - t{i+1})} + x(t_{i})\frac {(t-t_{i-1})(t-t_{i+1})}{(t_i - t_{i-1})(t_i - t_{i+1})} - \\ \nonumber - x(t_{i+1})\frac {(t-t_{i-1})(t-t_i)}{(t_{i+1} - t_{i-1})(t_{i+1}{t_{i+1} - t_i})}.

p(t) = x(t_{i-1}) \frac {(t-t_i)(t-t_{i+1})}{(t_{i-1}-t_i)(t_{i-1} - t{i+1})} + x(t_{i})\frac {(t-t_{i-1})(t-t_{i+1})}{(t_i - t_{i-1})(t_i - t_{i+1})} - \\ \nonumber - x(t_{i+1})\frac {(t-t_{i-1})(t-t_i)}{(t_{i+1} - t_{i-1})(t_{i+1}{t_{i+1} - t_i})}.
   

   


Then the derivative 𝑝′(𝑥) can be expressed as:

p'(t) = x(t_{i-1}) \frac {2t - t_i - t_{i+1}}{(t_{i-1} - t_i)(t_{i-1}-t_{i+1})} + x(t_i) \frac {2t - t_{i-1} - t_{i+1}}{(t_{i} - t_{i-1})(t_{i}-t_{i+1})} - \\ \nonumber - x(t_{i+1}) \frac {2t - t_{i-1} - t_{i}}{(t_{i+1} - t_{i-1})(t_{i+1}-t_{i})}. 
   

   


   
   

 p'(t) = x(t_{i-1}) \frac {2t - t_i - t_{i+1}}{(t_{i-1} - t_i)(t_{i-1}-t_{i+1})} + x(t_i) \frac {2t - t_{i-1} - t_{i+1}}{(t_{i} - t_{i-1})(t_{i}-t_{i+1})} - \\ \nonumber - x(t_{i+1}) \frac {2t - t_{i-1} - t_{i}}{(t_{i+1} - t_{i-1})(t_{i+1}-t_{i})}.

p'(t) = x(t_{i-1}) \frac {2t - t_i - t_{i+1}}{(t_{i-1} - t_i)(t_{i-1}-t_{i+1})} + x(t_i) \frac {2t - t_{i-1} - t_{i+1}}{(t_{i} - t_{i-1})(t_{i}-t_{i+1})} - \\ \nonumber - x(t_{i+1}) \frac {2t - t_{i-1} - t_{i}}{(t_{i+1} - t_{i-1})(t_{i+1}-t_{i})}.
   

   


The usage of quadratic polynomial approximation provides the same order of accuracy for 
the derivative approximation at the boundary points as at the interior nodes.

3.2 Spline Interpolation

Another approach, which can be used to find the approximation of 𝑋̇, is spline interpola-
tion. A spline is defined as a numerical function, which is piece-wise-defined by a set of poly-
nomials [21]. Spline interpolation method constructs a spline interpolant 𝑠𝑖(𝑡), 𝑖 ∈ {1, ..., 𝑘}, 
through the data points. This spline interpolant is usually a lower degree polynomial. So in-
stead of fitting all of the points with one higher-degree polynomial, the method splits it to 
several intervals and fits lower polynomial spline on each interval. As an example one can re-
fer to Fig. 3.1, which represents some curve with uniform knot spacing which is interpolated 
using three splines.

When using the cubic spline, for an interval [𝑡𝑖−1, 𝑡𝑖] we can write: 

  s_i(t) = a_i + b_i(t - t_i) + c_i (t - t_i)^2 + d_i (t - t_i)^3. \label {eq:spline_gen}                (3.18)

The key advantage of spline interpolation over the finite difference method is its ability to 
provide a smooth approximation. This is achieved because the spline approximation requires 
the following conditions:

𝑠𝑖(𝑡𝑖−1) = 𝑠𝑖−1(𝑡𝑖−1), (3.19)

𝑠′
𝑖(𝑡𝑖−1) = 𝑠′

𝑖−1(𝑡𝑖−1), (3.20)

𝑠″
𝑖 (𝑡𝑖−1) = 𝑠″

𝑖−1(𝑡𝑖−1). (3.21)
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Figure 3.1. An interpolating spline

The above conditions mean that the approximated line will not have any breaks in the 
edges of the intervals, as it is twice continuously differentiable for each interval knots.

By using (3.18), we can find:

  s_i(t_i) = a_i + b_i(t_i-t_i) + c_i (t_i - t_i)^2 + d_i (t_i-t_i)^3 = a_i.                  (3.22)

The first derivative of the cubic polynomial at 𝑡𝑖 is

  s_i'(t_i) = \left . b_i + 2c_i(t-t_i) + 3d_i (t - t_i)^2 \right |_{t = t_i} = b_i. 
         


  (3.23)

Calculating the second and third derivatives, we can find that:

𝑠″
𝑖 (𝑡𝑖) = 2𝑐𝑖 (3.24)

𝑠″
𝑖 (𝑡𝑖) = 6𝑑𝑖. (3.25)

We can find the derivatives of the neighbouring splines at 𝑡𝑖−1:

𝑠″
𝑖−1(𝑡𝑖−1) = 2𝑐𝑖−1 (3.26)

𝑠″
𝑖 (𝑡𝑖−1) = 2𝑐𝑖 + 6𝑑𝑖(𝑡𝑖−1 − 𝑡𝑖). (3.27)

By using the conditions for continuity, from (3.21):

  2c_i - 6d_i (t_i - t_{i-1}) = 2c_{i-1}.        (3.28)
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Then the coefficient 𝑑𝑖 is found as: 

  d_i = \frac {c_i - c_{i-1}}{3(t_i - t_{i-1})}. 
 

 
 (3.29)

Defining the step ℎ𝑖 = 𝑡𝑖 − 𝑡𝑖−1, we can rewrite is as:

  d_i = \frac {c_i - c_{i-1}}{3h_i}. \label {eq:spline_di} 
 


 (3.30)

By using the continuity conditions and knowing (3.30), it is possible to find another coef-
ficient:

  b_i = \frac {a_i - a_{i-1}}{h_i} + \frac {(2c_i + c_{i-1})h_i}{3}. 
 


  


 (3.31)

The last one for natural cubic spline is:

  c_{i-1}h_i + 2c_i(h_i + h_{i+1}) + c_{i+1} h_{i+1} = 3(\frac {a_{i+1} - a_i}{h_{i+1}} - \frac {a_i - a_{i-1}}{h_i}),        
 


  


 (3.32)

where 𝑐𝑘 = 𝑠″(𝑡𝑘) = 0 and 𝑠″(𝑡0) = 𝑐1 − 3𝑑1ℎ1 = 0.

If we use natural cubic spline with 𝑐0 = 𝑐𝑘 = 0, then the coefficients 𝑐𝑖 can be found by 
solving a linear system with a tridiagonal matrix [22].

In the following simulations we will use cubic spline provided by UnivariateSpline class 
of scipy Python library.

3.3 Numerical Experiments

By knowing the system of ODEs and the set of coefficients, it is possible to calculate 𝑋̇
directly, by substituting the vectors of 𝑋 to (1.3). The obtained ground truth vectors of 𝑋̇ for 
single set of initial conditions are plotted in Fig. 3.2.

The approximated values of 𝑋̇ can be found without prior knowledge of the ODE system 
by either finite difference approximation or spline interpolation. Let 𝑌FD be the approxima-
tion found using finite difference method and 𝑌𝑠 be the approximation obtained using cubic 
univariate spline. The obtained approximations of derivatives are presented in Fig. 3.3.

To obtain the error between 𝑌FD and the ground truth 𝑋̇ we can find the absolute and 
relative residual. The absolute residual is just the Frobenius norm of the difference between 
the approximation 𝑌 and ground truth 𝑋̇:

  \varepsilon _{abs} = \| Y - \dot {X} \|_F.      (3.33)
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Figure 3.2. Ground Truth Derivatives 𝑋̇ of Species Concentrations for mechanism A1r with 𝑘1 = 1, 𝑘−1 = 1, 
𝑘2 = 1. 𝑘−2 = 0, [cat]0 = 0.1

Figure 3.3. Approximation of derivatives 𝑌 of species concentrations for mechanism A1r with 𝑘1 = 1, 
𝑘−1 = 1, 𝑘2 = 1. 𝑘−2 = 0, [cat]0 = 0.1: a) using finite difference; b) using cubic spline

The relative residual between the approximation and the ground truth vectors is found as :

  \varepsilon _{r} = \frac {\|Y - \dot {X}\|_F}{\|\dot {X}\|_F}.    


 (3.34)

Optimizing the error in numerical differentiation can be achieved by carefully selecting 
appropriate time points. One straightforward approach is to use equispaced points, where 
the number of points matches those chosen by the RKF45 method during the data generation 
process. In this case, each trajectory is approximated using a total of 87 equispaced points. 
The results of this approximation can be seen in Table 3.1.

The table clearly demonstrates that spline approximation yields significantly more accurate 
results compared to finite difference approximation. The obtained results indicate that spline 
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Table 3.1. Derivatives approximation error at the equispaced points

[cat]0 = 0.1 [cat]0 = {0.05, 0.1, 0.15}
Approximation 𝜀𝑎𝑏𝑠 𝜀𝑟 𝜀𝑎𝑏𝑠 𝜀𝑟

Finite Difference 0.11356 0.53534 0.21324 0.56913
Cubic Spline 0.07880 0.38963 0.14838 0.41751

approximation provides greater stability due to the smooth and continuous nature of spline 
functions. In contrast, finite difference approximation is sensitive to the chosen step size and 
the location of the approximation points.

Another possible option is to use the same points, which were selected by RKF45. In-
ferring kinetics using Runge-Kutta methods for sparse identification of nonlinear dynamics 
(RK4-SINDy) [23] is claimed to be more efficient than SINDy [24] for noisy data. Thus, 
using the points selected by adaptive RKF45 algorithm is expected to be efficient. RKF45 
selected 𝑘 = 87 points to generate the data trajectories from 𝑡1 = 0, 𝑡𝑘 = 100. The results 
obtained by calculating the derivatives approximation 𝑌 using either polynomial or spline 
interpolation at the points, selected by RK45 are presented in Table 3.2.

Table 3.2. Derivatives approximation error at the points chosen by RKF45

[cat]0 = 0.1 [cat]0 = {0.05, 0.1, 0.15}
Approximation 𝜀𝑎𝑏𝑠 𝜀𝑟 𝜀𝑎𝑏𝑠 𝜀𝑟

Finite Difference 0.06277 0.16409 0.11647 0.16406
Cubic Spline 0.00027 0.00078 0.00047 0.00073

By comparing the results in Table 3.2 with those presented in Table 3.1, we can see the 
advantage of using the RKF45-chosen points. When using finite difference approximation the 
absolute error became roughly two times smaller and the relative error roughly three times 
smaller for RKF45-chosen points. The most drastic difference however can be noticed when 
using the univariate cubic spline approximation, since the errors became roughly a hundred 
times smaller.

The density of the points selected by the RKF45 method is higher in regions of the data 
trajectory where the most significant changes occur. In contrast, when equispaced points 
are used, the density remains uniform throughout the entire trajectory, regardless of whether 
the concentration remains relatively stable or undergoes drastic changes. As a result, the 
approximation of the derivative 𝑌 is less accurate when equispaced points are employed.

Apart from the RKF45-chosen points, it is also possible to use Chebyshev points: 

  t_i = \cos (\frac {(2i - 1)\pi }{2k}), \quad i = 1, 2, \dots , k.    


       (3.35)

Chebyshev points are selected in a way that ensures the polynomial oscillates between 
the maximum and minimum distances from the function at each point. This characteristic of 
Chebyshev points results in the error being evenly distributed across the interval, rather than 
being concentrated at specific points.
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Chebyshev points are chosen based on the roots of certain orthogonal polynomials, which 
have desirable numerical properties  [25, Chapter 12]. Polynomial approximation using 
Chebyshev points is more stable than other types of points, meaning that small changes in 
the input data do not result in large changes in the approximation. Moreover, the convergence 
rate of polynomial approximation using Chebyshev points is faster than the convergence rate 
of the equispaced points or RKF45-chosen points [26].

The results obtained using Chebyshev points are presented in Table 3.3. It is seen that the 
results are a bit more accurate than when using RKF45-chosen points (see Table 3.2).

Table 3.3. Derivatives approximation error at Chebyshev points

[cat]0 = 0.1 [cat]0 = {0.05, 0.1, 0.15}
Approximation 𝜀𝑎𝑏𝑠 𝜀𝑟 𝜀𝑎𝑏𝑠 𝜀𝑟

Finite Difference 0.05936 0.15738 0.11144 0.16060
Cubic Spline 0.000131 0.00038 0.00025 0.00039

The advantage of using either RKF45 or Chebyshev points rather than equispaced points 
can be presented graphically (see Figure 3.4). Comparing the plots of the ground truth 𝑋̇
(plotted with the black line) and the approximated derivatives at the different points, it can 
be seen that the approximation at the equidistant points is much worse than the ones using 
Chebyshev and RKF45-chosen points.

Figure 3.4. Spline approximation of the derivatives for mechanism A1r with 𝑘1 = 1, 𝑘−1 = 1, 𝑘2 = 1. 
𝑘−2 = 0, [cat]0 = 0.1 for: a) equispaced points; b) RKF45-chosen points; c) Chebyshev points

The numerical experiments clearly demonstrate that the most accurate results are obtained 
by employing spline approximation at Chebyshev points. Approximation at the points se-
lected by adaptive RKF45 method also provides relatively good results, while using equidis-
tant points is not a favorable choice for the specific case at hand.
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4 Sparse Identification of Nonlinear 

Dynamics (SINDy)

The concept of extracting governing equations from measured data is not novel, as it plays 
a crucial role in modeling the nonlinear dynamics of a system. One of the existing methods, 
which is based on the least squares problem, is Sparse Identification of Nonlinear Dynamical 
Systems (SINDy) [24]. This method is capable of extracting models of dynamical systems 
from time series data.

4.1 SINDy Model and Regularization

The SINDy model assumes that the dynamics of a system can be expressed as a linear com-
bination of basis functions, often chosen as nonlinear functions of the system variables. The 
resulting dynamical system model is typically represented as a system of ordinary differential 
equations (ODEs) or partial differential equations (PDEs) [27]. One of the main strengths of 
this method is that it not only produces a model that fits the time-series data but also returns 
interpretable equations that describe the system’s behavior. These resulting ODEs usually 
contain only a small number of terms, making them more interpretable and easier to uti-
lize for prediction and control purposes. In other words, SINDy provides a low-dimensional 
and sparse model that captures the underlying dynamics of the system. However, as we will 
observe, this does not necessarily imply that the system identified by SINDy is identical or 
closely related to the system that generated the data.

SINDy offers the capability to identify accurate and interpretable systems, which holds 
significant importance in various scientific and engineering domains. Its applicability extends 
to modeling biological systems [28], nonlinear optics systems [29], and many other domains. 
Furthermore, SINDy has also proven to be effective in modeling chemical reactions [30].

SINDy uses the mathematical formulation as described in Section 1.1 and is implemented 
in the pySINDy python library  [31] [32]. In this study, the pySINDy package is employed to 
obtain the governing equations from the data of catalytic reactions.

The pySINDy library offers various optimizers, one of which is the sequentially thresh-
olded least squares algorithm (STLSQ), accessible through the “pysindy.optimizers.stlsq” 
module. This optimizer finds the least-squares solution for coefficients 𝑊. It eliminates 
all the coefficients which are smaller than the chosen 𝜆 threshold value. The procedure is 
repeated recursively until there are no non-zero coefficients with an absolute value less than 
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the threshold value left. Further details on the STLSQ method can be found in Section 5.2

To promote sparsity in the SINDy model, a Ridge regularization term can be incorpo-
rated [33]. Ridge regression is claimed to be effective when there are near-linear relation-
ships among the independent variables of the system. In the presence of such relationships, 
the data can be affected by multicollinearity, where variables are highly correlated with each 
other. Multicolliniarity in our case is caused by the model specification itself. Such source 
of multicollinearity was discussed in [34].

Ridge regression is a modified least squares regression with added ℓ2-norm regularization 
added. In order to tune the regularization, 𝜆 parameter is introduced:

  w_j= \mathop {\operatorname {argmin}}_{\hat {w_j}} \|y_j - \widetilde {X}\hat {w_j}\|_2^2 + \lambda \|\hat {w_j}\|_2^2,  


  
  

 (4.1)

where 𝜆 is the Ridge regularization parameter on the weight vector. By tuning this parameter 
it is possible to control the desired sparsity of the solution.

Ridge regression, in general, does not enforce coefficients in the matrix 𝑊 to be exactly 
zero. Instead, it shrinks the coefficients towards zero, resulting in relatively small values. 
This characteristic can be leveraged to promote sparsity in the solution.

When using pySINDy model, the differentiation for approximating 𝑋̇ is obtained using 
smoothed finite difference method, which is a built-in numerical differentiation method in 
pySINDy library [24].

4.2 SINDy Experimental Results

It has already been discovered, that the sparsity of the solution provided by SINDy can 
be achieved by using iterative thresholding method called STLSQ or by adding a ℓ2-norm 
regularization.

We can evaluate the performance of the SINDy model by calculating the number of non-
zero terms in the extracted system of ODEs (sparsity 𝑠) and the error between the obtained 
matrix of coefficients 𝑊 and the exact one 𝑊ex:

  \varepsilon _r(W) = \frac {\|W - W_{\text {ex}}\|_F}{\|W_{\text {ex}}\|_F}.   


 (4.2)

By trying different values of the thresholding parameter 𝛼 and Ridge regularization coef-
ficient 𝜆, it is seen how the sparsity of the obtained solution is changed (see Table 4.1).

Based on the results presented in Table 4.1, it is evident that adjusting the thresholding 
and regularization parameters has an impact on the level of sparsity, while the error remains 
constant for the obtained weight matrix. Furthermore, the error value is relatively high, reach-
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Table 4.1. SINDy results for 𝑘1 = 1, 𝑘−1 = 1, 𝑘2 = 1, 𝑘−2 = 0, [cat]0 = [0.1]

𝛼 𝜆 𝜀𝑟(𝑊) s

0.01 0.005 0.6746 49
0.01 0.05 0.6746 24
0.01 0.1 0.6746 25
0.05 0.01 0.6746 11
0.1 0.01 0.6746 10
0.1 0.1 0.6746 0

ing 0.6746. This suggests that although the SINDy algorithm can promote sparsity, it may 
struggle to accurately extract the correct active components of the system of ODEs.

The regularization paths can represent graphically how tuning the thresholding parameter 
𝛼 or Ridge regularization parameter 𝜆 changes the obtained solution and which components 
are extracted for the right-hand side of ODEs by SINDy. Plotting the regularization path is 
an efficient method to estimate the efficiency of the linear models with convex penalties [35].

Figure 4.1. Regularization paths for regularization parameter 𝜆 in SINDy: a) ̇[A]; b) ̇[P]; c) ̇[cat]; d) ̇[catA]

By trying different values of 𝜆 with the fixed value 𝛼 = 0.05, regularization paths are 
obtained for each ODE of the system (see Fig. 4.1). Regularization paths show how the 
coefficients are changed with the change of the parameter. The dashed lines represent the 
components of the feature matrix 𝑋, which should have zero coefficients according to the 
original set of equations (1.14) with the chosen coefficients. The solid lines represent the 
components of 𝑋, which should have non-zero coefficients.

If the value of 𝜆 is fixed, we can vary 𝛼 and see how it affects the results. The regularization 
paths for fixed 𝜆 = 0.015 and different 𝛼 values are presented in Fig. 4.2.
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Figure 4.2. Regularization paths for thresholding parameter 𝛼 in SINDy: a) ̇[A]; b) ̇[P]; c) ̇[cat]; d) ̇[catA]

It is seen from Fig. 4.1 that pySINDy with STLSQ and ℓ2 regularizer definitely proposes 
sparsity of the solution, however it fails to identify the correct non-zero components. The 
method does not eliminate the coefficients of the components which should be zero properly 
for small values of 𝜆.

It can be concluded, that the model fails to identify correct components with non-zero 
coefficients. From the regularization paths plotted it is hard to see how each of the parameters 
affects the results. The obtained system of ODEs can be written for each chosen pair of 
threshold and regularisation parameters. For instance, by choosing 𝛼 = 0.01 and 𝜆 = 0.05, 
the following system of ODEs is extracted from the data by SINDy:

̇[A] = 1.01[catA] − 1.00[A][cat] (4.3)
̇[P] = 1.01[catA] − 0.01[catA][cat] − 0.01[A][A]
̇[cat] = 2.03[catA] − 1.01[catA][cat] + 0.02[A][A]
̇[catA] = −2.03[catA] + 1.01[catA][cat] + 0.02[A][A].

It is easy to compare the above system of ODEs with the original system of ODEs for the 
chosen kinetic constants (𝑘1 = 1, 𝑘−1 = 1, 𝑘2 = 1. 𝑘−2 = 0), which is:

̇[A] = [catA] − [A][cat] (4.4)
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̇[P] = [catA]
̇[cat] = 2[catA] − [A][cat]
̇[catA] = −2[catA] + [A][cat].

Despite the fact that pySINDy provides sparse solutions, it is seen that it fails to extract 
the exact non-zero parameters. For instance, for the third equation of the system instead of 
having [A][cat] the result of pySINDy has [catA][cat]. Due to that, it would be impossible to 
define the type of mechanism correctly by the system of ODEs (4.3) extracted by pySINDy.

In the next chapter thresholding and regularization techniques are implemented without 
the pySINDy library, to make their usage more understandable and flexible.
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5 Regularized Least Squares Solution

5.1 Unregularized Least Squares

In our case the matrix 𝑋 is a tall skinny matrix of size [𝑘 × 𝑚], where 𝑘 > 𝑚. Since 
there are more data points than the number of parameters needed to be estimated, the system 
𝑋𝑤 = 𝑦 is overdetermined. Thus, it is not possible to find an exact unique solution 𝑤 that 
satisfies all the equations. That is why methods like least squares approximation can be used 
to find the best-fitting solution that minimizes the overall error between the equations and the 
unknowns.

Solving a least squares problem is a standard approach for regression problems. The basic 
idea behind least squares approximation is to minimize the sum of the squared differences 
between the observed values and the values predicted by the system of equations. This is 
done by adjusting the values of the unknowns to find the best-fit solution. The least squares 
approach is widely used for various problems and the analysis of kinetic data is not the ex-
ception [36].

The least squares method minimizes the Frobenius norm between 𝑌 and the product 𝑋𝑊:

  W = \mathop {\operatorname {argmin}}_{\hat {W}} \| Y - \widetilde {X}\hat {W}\|_F. 


    (5.1)

This is equivalent to minimizing the 2-norm of the difference between the column 𝑦𝑗 and 
𝑋𝑤𝑗 corresponding to each ODE:

  w_j = \mathop {\operatorname {argmin}}_{\hat {w}} \|y_j - \widetilde {X}\hat {w}_j\|_2.  


    (5.2)

We can perform a singular value decomposition of the feature matrix 𝑋 = 𝑈Σ𝑉 𝑇, where 
𝑈 ∈ ℝ𝑘×𝑘, 𝑉 ∈ ℝ𝑚×𝑚 are orthogonal and Σ = diag(𝜎1,… , 𝜎min(𝑚,𝑘)) ∈ ℝ𝑘×𝑚. The 
minimum norm least squares solution is then found as: 

  w_{j,i} = \sum _{i=1}^r (\frac {u_i^T y_i}{\sigma _i}) v_i, 










 (5.3)

where 𝑟 = rank(𝑋).

The scipy Python library [17] is applied to the data concentrations for solving the least 
squares problem. The least squares solver obtains the coefficients matrix 𝑊, which is used to 
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restore the equations. By solving the obtained equations using RKF45 it is possible to find 
the new concentrations matrix 𝑋. So, the new 𝑋 are the concentrations that fit the solution 
found by the solver. The relative error between 𝑋 and 𝑋 is computed as:

  \varepsilon _{r}(\widehat {X})= \frac {\|\widehat {X} - X\|_F}{\|X\|_F}.   


 (5.4)

By forwarding 𝑋 to the system of the obtained equations, we can find ̂𝑌. The analogical 
metrics can be used for finding the error between ̂𝑌 and the approximated 𝑌 found either by 
spline approximation (𝑌S) or by finite difference approximation (𝑌FD):

  \varepsilon _{r}'(\widehat {Y})= \frac {\|\widehat {Y} - Y\|_F}{\|Y\|_F}. 
       


 (5.5)

Analogically, we can compare ̂𝑌, which fits the least squares solution, with the ground 
truth 𝑋̇, which had been calculated previously numerically by forwarding 𝑋 to the original 
system of ODES. The error is calculated as follows:

  \varepsilon _{r}(\widehat {Y})= \frac {\|\widehat {Y} - \dot {X}\|_F}{\|\dot {X}\|_F}.       


 (5.6)

Obviously the error 𝜀𝑟( ̂𝑌 ) obtained for ground truth derivatives is expected to be greater 
than 𝜀′

𝑟( ̂𝑌 ) obtained for the approximated ones, because there is the additional error occuring 
during the numerical approximation (see Chapter 3.3).

The obtained matrix of coefficients 𝑊 can be compared to the exact matrix of coefficients 
𝑊ex (see (1.13)). The error then is found as:

  \varepsilon _{r}(W)= \frac {\|W - W_{\text {ex}}\|_F}{\|W_{\text {ex}}\|_F}.   


 (5.7)

Unregularized least squares solver does not provide sparse solution. In most cases for 
mechanism A1r unregularized least squares provide [14 × 4] matrix 𝑊 with 56 non-zero 
elements (see Appendix). In some cases, however, the coefficients are small enough to obtain 
a more sparse matrix. For instance, when using kinetic coefficients 𝑘1 = 1, 𝑘−1 = 1, 𝑘2 =
1, 𝑘−2 = 0 for three initial conditions with 𝑌 = 𝑌𝑠 obtained using spline approximation, 
unregularized least squares provides matrix 𝑊 with sparsity 𝑠 = 48 (see Table  5.1).

Overall, it can be observed that the unregularized least squares method provides a satis-
factory fit to the data. When using equispaced points and setting 𝑌 = 𝑌S, it is observed 
that the method achieves the best fit with 𝑋, resulting in a relative error of 𝜀𝑟(𝑋) = 0.0001. 
However, there is a notable discrepancy between the obtained coefficients matrix 𝑊 and the 
exact coefficients matrix 𝑊ex, indicating a lack of sparsity in the solution. As a result, the 
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Table 5.1. Unregularized least squares results for 𝑘1 = 1, 𝑘−1 = 1, 𝑘2 = 1, 𝑘−2 = 0, [cat]0 = 0.1

Sampling Approximation 𝜀′
𝑟( ̂𝑌 ) 𝜀𝑟( ̂𝑌 ) 𝜀𝑟(𝑋) 𝜀𝑟(𝑊) s 

RKF45 finite difference 0.2774 0.1025 0.0128 0.9933 56 
RKF45 spline 0.0008 0.0001 0.000002 1.0297 56 
Equispaced finite difference 0.4745 0.0229 0.0107 0.9995 56 
Equispaced spline 0.3216 0.0171 0.0043 0.9978 56 
Chebyshev finite difference 0.2641 0.0926 0.0140 0.9932 56 
Chebyshev spline 0.0004 0.0001 0.000003 1.0241 56 

obtained system of ODEs is not interpretable and cannot be used for kinetic analysis. In order 
to solve this issue several methods for promoting sparsity are discussed in the next sections.

5.2 Sequentially Thresholded Least Squares

Iterative thresholding methods are claimed to be quite efficient for finding an optimal 
sparse approximation  [37]. A simple iterative thresholding algorithm named sequentially 
thresholded least squares (STLSQ) is used in [24] for efficient extraction of governing equa-
tions for Lorenz system.

The algorithm iteratively computes the least squares solution while comparing the entries 
of the weight matrix 𝑊 column 𝑤𝑗 with the threshold value 𝛼. If a coefficient 𝑤𝑗,𝑖 is found 
to be smaller than 𝛼, it is set to zero, and only the indices of the non-zero coefficients are 
stored. The least squares solution is then recalculated using the remaining indices. This 
iterative process continues until convergence is achieved for the non-zero coefficients. The 
convergence properties of this algorithm have been studied by Zhang and Shaeffer [38].

Algorithm 1 Sequentially Thresholded Least Squares
𝑛 ← number of species
𝑚 ← 2𝑛 + 𝐶2

𝑛
[𝑘 × 𝑛] 𝑌 ← derivatives approximation
[𝑘 × 𝑚] 𝑋 ← feature matrix
𝛼 ← threshold parameter
[𝑚 × 𝑛] 𝑊

Input: 𝑋, 𝑌, 𝛼
Output: 𝑊

for i from 1 to n do
 integer [1 × 𝑚] 𝑖𝑑𝑥 ← [0, 1, 2, ...,𝑚 − 1]
 𝑤 ∶= argmin𝑤̂ ‖𝑌 [∶, 𝑖] − 𝑋𝑤̂‖2
 while len(𝑖𝑑𝑥) ≠ 0 do
 for j from 1 to m do:
 if |𝑤[𝑗]| < 𝛼 then
 𝑖𝑑𝑥 ∶= 𝑖𝑑𝑥.remove(𝑗)
 𝑤 ∶= argmin𝑤̂ ‖𝑌 [∶, 𝑖] − 𝑋[∶, 𝑖𝑑𝑥]𝑤̂‖2
 end if
 end for
 end while
 𝑊[𝑖, 𝑖𝑑𝑥] = 𝑤
end for

By manipulating the parameter 𝛼, the sparsity of the weights matrix 𝑊 can be adjusted. 
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Increasing the value of 𝛼 leads to a sparser solution. To determine the optimal value of the 
thresholding parameter 𝛼, regularization paths can be plotted and analyzed.

Tuning the value of 𝛼, however, may not always affect the solution. For instance, by 
observing the regularization paths for equispaced sampled solution with finite difference ap-
proximation (see Fig. 5.1), it is seen that the sparsity of the solution does not change and the 
algorithm provides the same coefficients 𝑊 no matter which value of 𝛼 is chosen. There is 
a slight change noticed in the regularization path for the second equation of the system (see 
Fig. 5.1(b)), however it is still not significant.

Figure 5.1. Regularization paths for STLSQ (equispaced points, finite difference approximation, 𝑘−2 = 0): a) 
̇[A] equation; b) ̇[P] equation; c) ̇[cat] equation; d) ̇[catA] equation

Changing the approximation method to that of spline approximation, does not provide 
sufficiently good results either, however it is seen from the regularization paths presented by 
Fig. 5.2 that changing 𝛼 affects the final result.

A good example of the regularization paths can be observed when the equispaced sampling 
is replaced with points adaptively selected by RKF45. The regularization paths plotted for 
RKF45 sampling with spline approximation are depicted in Fig. 5.3.

Fig. 5.3 represents regularization paths for four ODEs of the system, showing the active 
components which should have non-zero coefficients with solid lines and others with dashed 
lines. Whenever there is a region, where active component’s coefficients are non-zero and 
the dashed lines are zero, we mark it with green window, saying it is a “good” region,

It is seen from the regularization paths that the best result is achieved for 𝛼 ≈ 0.4. The 
results obtained using this threshold with different sampling and approximation methods are 
presented in Table 5.2.
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Figure 5.2. Regularization paths for STLSQ (equispaced points, spline approximation, 𝑘−2 = 0): a) ̇[A]
equation; b) ̇[P] equation; c) ̇[cat] equation; d) ̇[catA] equation

Figure 5.3. Regularization paths for STLSQ (RKF45 points, spline approximation, 𝑘−2 = 0): a) ̇[A] equation; 
b) ̇[P] equation; c) ̇[cat] equation; d) ̇[catA] equation

By observing Table 5.2, it can be concluded that STLSQ yields distinct outcomes for 
different sampling and approximation methods when a fixed thresholding parameter is em-
ployed. When using equispaced sampling STLSQ provides completely non-sparse solution 
with 𝑠 = 56.

The sampling chosen by RKF45 achieves 𝑠 = 54 when using the finite difference approxi-
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Table 5.2. STLSQ results for 𝑘1 = 1, 𝑘−1 = 1, 𝑘2 = 1, 𝑘−2 = 0, [cat]0 = 0.1

Sampling Approximation 𝛼 𝜀′
𝑟( ̂𝑌 ) 𝜀𝑟( ̂𝑌 ) 𝜀𝑟(𝑋) 𝜀𝑟(𝑊) s 

Equispaced finite difference 𝛼 = 0.4 0.4762 0.0267 0.0149 0.9995 56 
Equispaced spline 𝛼 = 0.4 0.3224 0.0163 0.0002 0.9978 56 
RKF45 finite difference 𝛼 = 0.4 0.2774 0.1025 0.0128 0.9932 54 
RKF45 spline 𝛼 = 0.5 0.0368 0.0368 1.4108 0.7562 5 
RKF45 spline 𝛼 = 0.4 0.0008 0.0001 0.000008 0.0003 7 
Chebyshev finite difference 𝛼 = 0.4 1.0269 0.8246 0.1891 0.9931 54 
Chebyshev spline 𝛼 = 0.4 0.7986 0.7984 0.1814 0.00004 7 

mation of the derivatives. The errors 𝜀𝑟(𝑋) and 𝜀𝑟(𝑊) do not significantly change compared 
to the equispaced sampling with finite difference approximation. However, when the deriva-
tives are calculated using spline approximation, RKF45 sampling achieves almost zero 𝜀𝑟(𝑋)
and the obtained weights matrix 𝑊 is very close to the exact one, since 𝜀𝑟(𝑊) = 0.0003. 
The obtained system of ODEs for this case is:

̇[A] = 0.999568[catA] − 0.999759[cat][A] (5.8)
̇[P] = 1.00004[catA]
̇[cat] = 1.999384[catA] − 0.999652[cat][A]
̇[catA] = −1.999384[catA] + 0.999652[cat][A].

It is evident that the method exhibits high sensitivity to errors. It demonstrates excellent 
accuracy when utilizing spline approximation, however, when employing finite difference 
approximation, the method struggles to identify the correct active components of the right-
hand side of the system of ODEs. This observation is further supported by the analysis of the 
regularization paths shown in Fig. 5.4.

It is seen from Fig. 5.4 that when using finite difference approximation of the derivatives, 
which is less accurate than spline approximation, STLSQ fails to identify correct components 
with nonzero coefficients, no matter which value of 𝛼 is chosen.

The same trend holds for Chebyshev sampling. The regularization paths for spline ap-
proximation case have good regions for all four equations (see. Fig. 5.5), meaning that the 
method correctly identifies the active components.

When using Chebyshev points and spline approximation of derivatives, STLSQ extracts 
the following system of the governing equations:

̇[A] = 1.000032[catA] − 1.000002[cat][A] (5.9)
̇[P] = 1.000013[catA]
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Figure 5.4. Regularization paths for STLSQ (RKF45 points, finite difference approximation, 𝑘−2 = 0): a) ̇[A]
equation; b) ̇[P] equation; c) ̇[cat] equation; d) ̇[catA] equation

Figure 5.5. Regularization paths for STLSQ (Chebyshev points, spline approximation, 𝑘−2 = 0): a) ̇[A]
equation; b) ̇[P] equation; c) ̇[cat] equation; d) ̇[catA] equation

̇[cat] = 2.000051[catA] − 1.000005[cat][A]
̇[catA] = −2.0000515[catA] + 1.000005[cat][A].

It is seen that the obtained ODEs are very close to the exact ones for 𝑘1 = 1, 𝑘−1 = 1, 
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𝑘2 = 1, 𝑘−2 = 0. The error between the obtained weights and the exact ones is now 𝜀𝑟(𝑊) =
0.00004, which is even smaller than it was for RKF45 sampling.

Based on this specific case, it can be anticipated that STLSQ is a promising method for 
inferring kinetics, offering a sparse and accurate solution. However, to attain such favorable 
outcomes, it is crucial to identify the optimal thresholding parameter and select appropriate 
data sampling and numerical approximation methods. When employing Chebyshev sampling 
with the same thresholding parameter 𝛼, but utilizing a different approximation method, the 
resulting solution is non-sparse (𝑠 = 54), and the relative error is 𝜀𝑟(𝑊) = 0.9931. Upon 
examining the regularization paths (refer to Fig. 5.6), it becomes evident that the method is 
highly sensitive to noise. In the case of finite difference approximation, the method failed to 
accurately identify the correct active components in all four equations.

Figure 5.6. Regularization paths for STLSQ (Chebyshev points, finite difference approximation, 𝑘−2 = 0): a) 
̇[A] equation; b) ̇[P] equation; c) ̇[cat] equation; d) ̇[catA] equation

The results for STLSQ using three sets of initial conditions are presented in Appendix A, 
and it can be observed that they are quite similar to those obtained using a single set of initial 
conditions. In the case where the kinetic constant 𝑘−2 is set to 1 (see Appendix B), STLSQ 
once again demonstrates better results when using either Chebyshev or RKF45-chosen points. 
However, the accuracy of the results for 𝑘−2 = 1 is slightly diminished due to the increased 
complexity of the system.

In summary, the experimental results indicate that STLSQ is capable of providing accurate 
and sparse solutions, achieving coefficients of the matrix with an error of only 𝜀𝑟(𝑊) =
0.00004 (when using Chebyshev sampling with spline approximation). However, the main 
limitation of the method is its sensitivity to noise. When less accurate approximations of the 
derivatives are employed, it fails to identify interpretable solutions.
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5.3 Lasso Regularization

Lasso, short for “least absolute shrinkage and selection operator,” was introduced by R. 
Tibshirani in the middle of 1990s [39]. The Lasso regularization technique incorporates a 
penalty term into the loss function of a model, which discourages large coefficient values and 
encourages them to approach zero. This regularization approach promotes the selection of 
the most significant features while disregarding irrelevant ones.

The ℓ1 penalty used in Lasso regularization has the effect of forcing some of the model 
coefficients to become exactly zero, thereby performing feature selection as well as regu-
larization. This makes Lasso regularization particularly useful in situations where there are 
many features, some of which may be irrelevant or redundant. Lasso regularization can be 
tuned by adjusting the strength of the penalty term, which controls the amount of regular-
ization applied. Lasso regularization term can be added to the least squares for proposing 
sparsity.

Lasso regularization minimizes the residual sum of squares subject to the sum of the ab-
solute value of the coefficients being less than some parameter 𝜆:

  w = \mathop {\operatorname {argmin}}_{\hat {w}} \|y - \widetilde {X}\hat {w}\|_2^2 + \lambda \|\hat {w}\|_1\. 


  
    (5.10)

When the parameter 𝜆 is set to zero, the algorithm behaves the same as an unregularized 
least squares solver, described earlier (see Section 5.1). By choosing a small value for 𝜆, 
it becomes possible to achieve a sparse yet accurate solution. For our implementation of 
Lasso, we utilized the CVXPY Python library [40], [41], which proved to be more efficient 
for convex optimization problems compared to the scipy library [17].

Again, the regularization paths can be plotted in order to investigate the appropriate values 
of 𝜆. For now we just observe the values manually and choose the best one, however it is also 
possible to implement a predictor-corrector method for adaptive 𝜆 selection in Lasso [42].

Using Lasso regularization with equispaced sampling does not yield efficient results. When 
employing finite difference approximation of 𝑋̇ to evaluate the solution, the model fails to 
correctly identify the active components of the reaction, as can be seen from Fig. 5.7. The 
model extracts incorrect components from the right-hand side of the ODEs. For instance, 
when using 𝜆 = 3 ⋅ 10−3, we can receive quite sparse system of ODEs, which is:

̇[A] = −0.03[A] − 0.01[A][A] (5.11)
̇[P] = 0.03[A] + 0.03[P][A]
̇[cat] = 0.02[P][A] − 0.02[A][A]
̇[catA] = −0.02[P][A] − 0.02[A][A].
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Figure 5.7. Regularization paths for Lasso regression (equispaced points, FD approximation, 𝑘−2 = 0): a) 
̇[A]; b) ̇[P]; c) ̇[cat]; d) ̇[catA]

Despite the fact that the extracted system of ODEs is sparse with 𝑠 = 8, it is completely 
different from the exact one (1.14), since the active components of right-hand side of the 
equations are wrong.

The same trend persists when using spline approximation for equispaced sampling (see 
Fig. 5.8). Despite the fact that using spline approximation significantly improves the appear-
ance of the regularization paths, it still mistakenly chooses certain components to be active. 
For instance, in the first equation [catA][A] is chosen to have non-zero coefficients, while it 
should be [catA] (see Fig. 5.8(a)).

The solution is noticeably improved by using the points adaprively selected by the RKF45 
instead of equispaced points. This improvement is evident from the regularization paths 
shown in Fig. 5.9. Even when using finite different approximation, which introduces a rela-
tively large error when approximating 𝑋̇, the method still provides quite good results. All of 
the equations exhibit a range of 𝜆 values that correctly identify the active components. How-
ever, it is observed that the range of 𝜆 values is relatively small in the case of finite difference 
approximation.

It is possible to get a wider range of appropriate 𝜆 values when using spline approximation 
for RKF45 selected points. Spline approximation usage prevents high error at the derivatives 
approximation step and provides better results. A perfect example of the regularization paths 
is presented by Fig. 5.10.

It is evident from the plots that the model accurately identifies the active components of 
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Figure 5.8. Regularization paths for Lasso regression (equispaced points, FD approximation, 𝑘−2 = 0): a) 
̇[A]; b) ̇[P]; c) ̇[cat]; d) ̇[catA]

Figure 5.9. Regularization paths for Lasso regression (RKF45 points, FD approximation, 𝑘−2 = 0): a) ̇[A]; b) 
̇[P]; c) ̇[cat]; d) ̇[catA]

the right-hand side of the equations starting from a value of 𝜆 ≈ 3 ⋅ 10−2. Additionally, for 
𝜆 = 10−4, the coefficients closely resemble those of the exact system of ODEs (1.14). By 
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Figure 5.10. Regularization paths for Lasso regression (RKF45 points, spline approximation, 𝑘−2 = 0): a) 
̇[A]; b) ̇[P]; c) ̇[cat]; d) ̇[catA]

using 𝜆 = 10−4 Lasso regression obtains the following governing equations:

̇[A] = 0.98[catA] − 0.99[cat][A] (5.12)
̇[P] = 0.97[catA]
̇[cat] = 1.98[catA] − 0.99[cat][A]
̇[catA] = −1.98[catA] + 0.99[cat][A].

If the 𝜆 value is decreased to 𝜆 = 10−5, the system of the equations is:

̇[A] = 1.00[catA] − 1.00[cat][A] (5.13)
̇[P] = 1.00[catA]
̇[cat] = 2.00[catA] − 1.00[cat][A]
̇[catA] = −2.00[catA] + 1.00[cat][A].

In this case the error between for concentrations fit is 𝜀𝑟(𝑋) = 0.00005, and for the matrix 
of coefficients 𝜀𝑟(𝑊) = 0.00164.
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Apart from using equispaced sampling and the points adaptively chosen by RKF45, we 
can also test the Lasso solver using Chebyshev points. However, when Chebyshev sampling is 
combined with finite difference approximation, it does not yield efficient results, as evidenced 
by the obtained regularization paths shown in Fig. 5.11.

Figure 5.11. Regularization paths for Lasso regression (Chebyshev points, FD approximation, 𝑘−2 = 0): a) 
̇[A]; b) ̇[P]; c) ̇[cat]; d) ̇[catA]

By comparing the obtained regularization paths with those plotted for RKF45-chosen 
points with finite difference approximation (see Fig. 5.9), it is evident that using Chebyshev 
points with finite difference approximation is not a good option, as the results worsen com-
pared to the RKF45 case.

However when changing the approximation type to spline method, the results, again, are 
significantly improved. Comparing the regularization paths for Chebyshev points with spline 
approximation in Fig. 5.12 with those presented in Fig. 5.10 for RKF45 points, it can be said 
that the results are almost the same.

The extracted ODEs for 𝜆 = 10−5 are the same for Chebyshev points and for RKF45-
chosen points (5.14). The error for the concentrations fit however is slightly higher for Cheby-
shev points, with this error equal to 𝜀𝑟(𝑋) = 0.00006. The error for the coefficients is a bit 
smaller, reaching 𝜀𝑟(𝑊) = 0.00132. However the difference between the results obtained 
for Chebyshev points and for RKF45 points is negligible.

The results obtained during the experiments for equispaced sampling, RKF45-chosen 
points and Chebyshev points are presented in Table 5.3. The table represent the results for 
different approximation types (finite difference approximation and spline approximation) and 
different 𝜆 values, in order to see how the change affects the final result.
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Figure 5.12. Regularization paths for Lasso regression (Chebyshev points, spline approximation, 𝑘−2 = 0): a) 
̇[A]; b) ̇[P]; c) ̇[cat]; d) ̇[catA]

Table 5.3. Lasso regression results for 𝑘1 = 1, 𝑘−1 = 1, 𝑘2 = 1, 𝑘−2 = 0, [cat]0 = 0.1

Sampling Approximation 𝜆 𝜀′
𝑟( ̂𝑌 ) 𝜀𝑟( ̂𝑌 ) 𝜀𝑟(𝑋) 𝜀𝑟(𝑊) s 

Equispaced finite difference 𝜆 = 0.001 0.4307 0.2757 0.0229 3.064 10 
Equispaced finite difference 𝜆 = 1e-05 0.9997 0.9997 1.2282 1.1272 20 
Equispaced spline 𝜆 = 0.001 0.9105 0.8904 0.0508 7.5710 11 
Equispaced spline 𝜆 = 1e-05 0.3219 0.0896 0.0025 1.9061 14 
RKF45 finite difference 𝜆 = 0.001 1.0732 0.8596 0.2589 0.7275 14 
RKF45 finite difference 𝜆 = 1e-05 1.0275 0.8181 0.2618 0.9990 16 
RKF45 spline 𝜆 = 0.001 0.8014 0.8011 0.2502 0.1486 7 
RKF45 spline 𝜆 = 1e-05 0.7800 0.7798 0.00005 0.0016 7 
Chebyshev finite difference 𝜆 = 0.001 0.2469 0.1211 0.0104 1.2316 13 
Chebyshev finite difference 𝜆 = 1e-5 0.2469 0.1211 0.0104 1.2316 13 
Chebyshev finite difference 𝜆 = 0.01 0.0366 0.0367 0.0076 0.1489 8 
Chebyshev spline 𝜆 = 1e-5 0.0365 0.0367 0.00006 0.0013 7 

Concluding the results obtained for Lasso regularization, it can be said that Lasso provides 
a very accurate results for non-equispaced data distributions, which include Chebyshev points 
and the points adaptively selected by RKF45. The equispaced data distribution provides very 
low accuracy, selecting the wrong active components. However, it is seen from the first four 
rows of Table 5.3 that even though the equispaced data usage provides a very erroneous so-
lution, Lasso still proposes sparsity quite efficiently. So for the equispaced data the obtained 
system of ODEs is wrong, but interpretable.

The same trend holds when using several initial conditions (see Appendix  A) and for 
another set of kinetic constants (see Appendix  B). According to the obtained results, it can 
be concluded that using Lasso regularization with spline approximation for adaptively se-
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lected points or for Chebyshev points provide the best result. RKF45-chosen points provide 
relatively good results even when using a finite difference approximation, which leads to ad-
ditional numerical error.

Comparing the results with those obtained by STLSQ, it can be concluded that the usage 
of Lasso regularization is much more preferable due to its lower sensitivity to noise. Further-
more, Lasso consistently provides interpretable and sparse solutions, whereas STLSQ only 
achieves sparsity when spline approximation is used.
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6 Concluding Remarks

The extraction of sparse coefficients for a system of ODEs from chemical time-series data 
has been implemented using the least squares approach, which is a commonly applied method 
for such problems [24]. Several experiments have been conducted by using pySINDy library 
for sparse identification of nonlinear dynamics [31]. However, the application of SINDy 
with the built-in STLSQ and Ridge regression did not yield relevant results, despite Ridge 
regression being claimed to be effective for systems with linear relationships [43].

In order to solve the given problem, we employed a simple least squares approach with 
various regularization techniques to promote sparsity in the solution. Additionally, we ex-
amined whether the sampling of the generated data influenced the final outcome. The results 
obtained for inferring the ODEs of the A1r mechanism, with 𝑘1 = 1, 𝑘−1 = 1, 𝑘2 = 1
𝑘−2 = 0, using a single set of initial conditions, are summarized in Table 6.1.

Table 6.1. Simulation results

Solver Sampling Approximation 𝜀𝑟(𝑋) 𝜀𝑟(𝑊) s

Unregularized Equispaced finite difference 0.0107 0.9995 56
Unregularized Equispaced spline 0.0043 0.9978 56
Unregularized RKF45 finite difference 0.0128 0.9933 56
Unregularized RKF45 spline 0.000002 1.0297 56
Unregularized Chebyshev finite difference 0.0140 0.9932 56
Unregularized Chebyshev spline 0.000003 1.0241 56
STLSQ, 𝛼 = 0.4 Equispaced finite difference 0.0149 0.9995 56
STLSQ, 𝛼 = 0.4 Equispaced spline 0.0002 0.9978 56
STLSQ, 𝛼 = 0.4 RKF45 finite difference 0.0128 0.9932 54
STLSQ, 𝛼 = 0.4 RKF45 spline 0.000008 0.0003 7
STLSQ, 𝛼 = 0.4 Chebyshev finite difference 0.1891 0.9931 54
STLSQ, 𝛼 = 0.4 Chebyshev spline 0.1814 0.00004 7
Lasso, 𝜆 = 1e-5 Equispaced finite difference 1.2282 1.1272 20
Lasso, 𝜆 = 1e-5 Equispaced spline 0.0025 1.9061 14
Lasso, 𝜆 = 1e-5 RKF45 finite difference 0.2618 0.9990 16
Lasso, 𝜆 = 1e-5 RKF45 spline 0.00005 0.0016 7
Lasso, 𝜆 = 1e-5 Chebyshev finite difference 0.0076 0.1489 8
Lasso, 𝜆 = 1e-5 Chebyshev spline 0.00006 0.0013 7

Research has discovered that employing Lasso regularization or STLSQ thresholding for 
least squares solvers can enhance the sparsity of the solution obtained. Compared to the un-
regularized least squares solver, which yields a dense coefficient matrix 𝑊 with 𝑠 = 56, both 
Lasso and STLSQ contribute to formulating more interpretable governing equations. Nev-
ertheless, STLSQ is highly sensitive to numerical errors, and fails to extract an interpretable 
system when employing finite difference approximation, leading to a non-sparse 𝑊 matrix 
with 𝑠 = 54. Lasso is more stable and proposes sparsity even when using a more erroneous 
approximation method.
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It should be emphasized that achieving sparsity is not the ultimate objective; we must also 
identify the correct components of the features matrix 𝑋 with non-zero coefficients. This fact 
is corroborated by the 𝜀𝑟(𝑊) error, which measures the discrepancy between the acquired 
matrix 𝑊 and the correct 𝑊ex. The 𝜀𝑟(𝑋) error provides an indication of how closely the 
derived solution aligns with the concentrations 𝑋.

The sampling of the generated 𝑋 concentrations significantly affects the accuracy and 
sparsity of the final result. All solvers yield inaccurate results characterized by high 𝜀𝑟(𝑊)
errors when employing equispaced points. However, adaptively chosen by RKF45 points and 
Chebyshev points yield considerably superior outcomes, as evidenced by Table 6.1.

It has been discovered that using several sets of initial conditions can be a bit more efficient 
(see Appendix A). The results derived from three sets of initial conditions with varying [cat]0
are marginally more accurate than those obtained from a single set of initial conditions.

When applying more intricate systems of ODEs, such as mechanism A1r with kinetic 
constant 𝑘−2 set to 1 rather than 0, the proposed methods frequently fail to extract the accurate 
ODEs. The findings outlined in Appendix B prove that the complexity of the mechanism 
directly increases the difficulty in extracting the correct governing equations.

In summary, it can be concluded that it is crucial to minimize the error in the numerical 
approximation step by employing more accurate techniques (such as using cubic spline in-
stead of finite difference approximation) and by augmenting the density of points at the onset 
of concentration trajectories. The impact of numerical error can be lessened through the use 
of a Chebyshev distribution or adaptive RKF45. However, while these options are viable 
when simulated data is employed, actual data may present more difficulties due to noise and 
differing sampling techniques.

In general, numerical differentiation is not a favorable option when dealing with real, noisy 
data. In future works, noise reduction may need to be performed prior to finding the approx-
imation of derivatives, or the integral form of the system could be used to mitigate errors.

An alternative solution could involve focusing on the system itself and eliminating linear 
relations within it. The Variance Inflation Factor could be measured to detect highly corre-
lated components. The removal of certain highly correlated independent variables could help 
avoid multicollinearity. Principal Component Analysis (PCA) may yield beneficial results in 
addressing multicollinearity [44].

The multicollinearity problem discussed in Section 4.1 may also be solved in the future 
by improving the thresholding and regularization method. For instance elastic net [45] might 
provide better results than Lasso, combining both Lasso and Ridge regularization. Though 
elastic net is more efficient for usage when the number of samples is smaller than the number 
of unknowns, which is not our case, it still might be worth trying, since elastic net is claimed 
to be efficient for highly correlated independent variables.

Yet another possible approach to solving the least squares problem involves the use of 
Basis Pursuit Denoising (BDPN) [46], which bears resemblance to Lasso regression, as it 
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also minimizes the ℓ1-norm such that |𝑋𝑊|2 is less than a predefined error value. BDPN 
proves to be more efficient than Lasso when applied to real noisy data.

In conclusion, the extraction of kinetic constants from time-series data of kinetic mecha-
nisms can be efficiently accomplished using Lasso regularization and adaptive RKF45 sam-
pling. Nevertheless, it cannot be confidently stated that the proposed method will provide 
satisfactory results for more complex kinetic mechanisms.

The implementation of the described methods can be found at https://github.com/
AyanaMussabayeva/Kinetic-Constants-Extraction.

54

https://github.com/AyanaMussabayeva/Kinetic-Constants-Extraction
https://github.com/AyanaMussabayeva/Kinetic-Constants-Extraction


References

[1] A. P. Arkin and J. Ross, “Statistical construction of chemical reaction mechanisms from 

measured time-series,” The Journal of Physical Chemistry, vol. 99, pp. 970–979, 1995.

doi: 10.1021/J100003A020.

[2] D. G. Blackmond, “Reaction progress kinetic analysis: A powerful methodology for 

mechanistic studies of complex catalytic reactions,” Angewandte Chemie International 

Edition, vol. 44, no. 28, pp. 4302–4320, doi: 10.1002/anie.200462544.

[3] J. Burés, “Variable time normalization analysis: General graphical elucidation of re-

action orders from concentration profiles,” Angewandte Chemie International Edition, 

vol. 55, no. 52, pp. 16 084–16 087, 2016. doi: 10.1002/anie.201609757.

[4] C. Nielsen and J. Burés, “Visual kinetic analysis,” Chemical Science, vol. 10, pp. 348–

353, Jan. 2019. doi: 10.1039/C8SC04698K.

[5] E. Crampin, P. Mcsharry, and S. Schnell, “Extracting biochemical reaction kinetics 

from time series data,” Sep. 2004, pp. 329–336, isbn: 978-3-540-23206-3. doi: 10.

1007/978-3-540-30133-2_42.

[6] J. Srividhya, E. J. Crampin, P. E. McSharry, and S. Schnell, “Reconstructing biochem-

ical pathways from time course data,” Proteomics, vol. 7, pp. 828–838, 2007. doi: 

10.1002/pmic.200600428.

[7] K.-H. Cho, S.-Y. Shin, K. Hyun Woo, O. Wolkenhauer, B. McFerran, and W. Kolch, 

“Mathematical modeling of the influence of RKIP on the ERK signaling pathway,” 

Lecture Notes in Computer Science, vol. 2602, pp. 127–141, Jan. 2003. doi: 10.1007/

3-540-36481-1_11.

[8] C. Moles, P. Mendes, and J. Banga, “Parameter estimation in biochemical pathways: 

A comparison of global optimization methods,” Genome Research, vol. 13, pp. 2467–

2474, Dec. 2003. doi: 10.1101/gr.1262503.

[9] N. Galagali and Y. M. Marzouk, “Bayesian inference of chemical kinetic models from 

proposed reactions,” Chemical Engineering Science, vol. 123, pp. 170–190, 2015, issn: 

0009-2509. doi: 10.1016/j.ces.2014.10.030.

55

https://doi.org/10.1021/J100003A020
https://doi.org/10.1002/anie.200462544
https://doi.org/10.1002/anie.201609757
https://doi.org/10.1039/C8SC04698K
https://doi.org/10.1007/978-3-540-30133-2_42
https://doi.org/10.1007/978-3-540-30133-2_42
https://doi.org/10.1002/pmic.200600428
https://doi.org/10.1007/3-540-36481-1_11
https://doi.org/10.1007/3-540-36481-1_11
https://doi.org/10.1101/gr.1262503
https://doi.org/10.1016/j.ces.2014.10.030


[10] I.-C. Chou and E. O. Voit, “Recent developments in parameter estimation and struc-

ture identification of biochemical and genomic systems,” Mathematical Biosciences, 

vol. 219, no. 2, pp. 57–83, 2009, issn: 0025-5564. doi: 10.1016/j.mbs.2009.03.

002.

[11] M. A. Mourão, J. Srividhya, P. E. McSharry, E. J. Crampin, and S. Schnell, “A graphical 

user interface for a method to infer kinetics and network architecture (MIKANA),” 

PLoS ONE, vol. 6, 2011. doi: 10.1371/journal.pone.0027534.

[12] W. Ji and S. Deng, “Autonomous discovery of unknown reaction pathways from data 

by chemical reaction neural network,” The Journal of Physical Chemistry, pp. 1082–

1092, Jan. 2021. doi: 10.1021/acs.jpca.0c09316.

[13] A. C. Hindmarsh and L. R. Petzold, “LSODA, Ordinary Differential Equation Solver 

for Stiff or Non-Stiff System,” 2005. [Online]. Available: http://inis.iaea.org/

search/search.aspx?orig_q=RN:41086668.

[14] A. Curtis, “The FACSIMILE numerical integrator for stiff initial value problems,” in 

Proceedings of the Conference on Computational Techniques for Ordinary Differential 

Equations, 1980, pp. 47–82.

[15] J. Dormand and P. Prince, “A family of embedded Runge-Kutta formulae,” Journal of 

Computational and Applied Mathematics, vol. 6, no. 1, pp. 19–26, 1980, issn: 0377-

0427. doi: 10.1016/0771-050X(80)90013-3.

[16] E. Fehlberg, “Low-order classical runge-kutta formulas with stepsize control and their 

application to some heat transfer problems,” NASA Technical Report R-315, 1969.

[17] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E.

Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, 

K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, 

İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I.

Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, 

P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for 

Scientific Computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020. doi: 

10.1038/s41592-019-0686-2.

[18] J. Srividhya, M. A. Mourão, E. J. Crampin, and S. Schnell, “Enzyme catalyzed reac-

tions: From experiment to computational mechanism reconstruction,” Computational 

Biology and Chemistry, vol. 34, no. 1, pp. 11–18, 2010, issn: 1476-9271. doi: 10.

1016/j.compbiolchem.2009.10.007.

[19] R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equa-

tions. Society for Industrial and Applied Mathematics, 2007. doi: 10.1137/1.9780898717839.

56

https://doi.org/10.1016/j.mbs.2009.03.002
https://doi.org/10.1016/j.mbs.2009.03.002
https://doi.org/10.1371/journal.pone.0027534
https://doi.org/10.1021/acs.jpca.0c09316
http://inis.iaea.org/search/search.aspx?orig_q=RN:41086668
http://inis.iaea.org/search/search.aspx?orig_q=RN:41086668
https://doi.org/10.1016/0771-050X(80)90013-3
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1016/j.compbiolchem.2009.10.007
https://doi.org/10.1016/j.compbiolchem.2009.10.007
https://doi.org/10.1137/1.9780898717839


[20] H. W. Press, P. Flannery, A. S. Teukolsky, and W. T. Vetterling, Numerical Recipes: The 

Art of Scientific Computing, Second. Cambridge, USA: Cambridge University Press, 

1992.

[21] G. Birkhoff and C. de Boor, “Piecewise polynomial interpolation and approximation,” 

Approximation of Functions, pp. 164–190, 1964.

[22] C. de Boor, A Practical Guide to Spline. Jan. 1978, vol. Volume 27. doi: 10.2307/

2006241.

[23] P. Goyal and P. Benner, “Discovery of nonlinear dynamical systems using a Runge-

Kutta inspired dictionary-based sparse regression approach,” vol. 478, no. 2262, p. 20 210 883, 

2022. doi: 10.1098/rspa.2021.0883.

[24] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations from data 

by sparse identification of nonlinear dynamical systems,” Proceedings of the National 

Academy of Sciences, vol. 113, no. 15, pp. 3932–3937, 2016, issn: 0027-8424. doi: 

10.1073/pnas.1517384113.

[25] L. N. Trefethen, Approximation Theory and Approximation Practice, Extended Edi-

tion. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2019. doi: 

10.1137/1.9781611975949.

[26] J. P. Boyd, “The Rate of Convergence of Chebyshev Polynomials for Functions Which 

Have Asymptotic Power Series About One Endpoint,” Mathematics of Computation, 

vol. 37, no. 155, pp. 189–195, Mar. 1981, issn: 00255718, 10886842. doi: 10.2307/

2007511.

[27] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Data-driven discovery of 

partial differential equations,” Science Advances, vol. 3, no. 4, e1602614, 2017. doi: 

10.1126/sciadv.1602614.

[28] N. M. Mangan, S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Inferring biological net-

works by sparse identification of nonlinear dynamics,” IEEE Transactions on Molecu-

lar, Biological and Multi-Scale Communications, vol. 2, no. 1, pp. 52–63, 2016. doi: 

10.1109/TMBMC.2016.2633265.

[29] M. Sorokina, S. Sygletos, and S. Turitsyn, “Sparse identification for nonlinear opti-

cal communication systems: Sino method,” Opt. Express, vol. 24, no. 26, pp. 30 433–

30 443, 2016. doi: 10.1364/OE.24.030433.

[30] M. Hoffmann, C. Fröhner, and F. Noé, “Reactive SINDy: Discovering governing reac-

tions from concentration data,” The Journal of Chemical Physics, vol. 150, Jan. 2019.

doi: 10.1063/1.5066099.

57

https://doi.org/10.2307/2006241
https://doi.org/10.2307/2006241
https://doi.org/10.1098/rspa.2021.0883
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1137/1.9781611975949
https://doi.org/10.2307/2007511
https://doi.org/10.2307/2007511
https://doi.org/10.1126/sciadv.1602614
https://doi.org/10.1109/TMBMC.2016.2633265
https://doi.org/10.1364/OE.24.030433
https://doi.org/10.1063/1.5066099


[31] B. de Silva, K. Champion, M. Quade, J.-C. Loiseau, J. Kutz, and S. Brunton, “Pysindy: 

A python package for the sparse identification of nonlinear dynamical systems from 

data,” Journal of Open Source Software, vol. 5, no. 49, p. 2104, 2020. doi: 10.21105/

joss.02104.

[32] A. A. Kaptanoglu, B. M. de Silva, U. Fasel, K. Kaheman, A. J. Goldschmidt, J. Calla-

ham, C. B. Delahunt, Z. G. Nicolaou, K. Champion, J.-C. Loiseau, J. N. Kutz, and 

S. L. Brunton, “Pysindy: A comprehensive python package for robust sparse system 

identification,” Journal of Open Source Software, vol. 7, no. 69, p. 3994, 2022. doi: 

10.21105/joss.03994.

[33] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation for nonorthog-

onal problems,” Technometrics, vol. 42, no. 1, pp. 80–86, 2000, issn: 00401706. [On-

line]. Available: http://www.jstor.org/stable/1271436 (visited on 06/13/2022).

[34] D. Montgomery, E. Peck, and G. Vining, Introduction to linear regression analysis, 3. 

ed, ser. Wiley series in probability and statistics. New York, NY [u.a.]: Wiley, 2001, 

XVI, 641, isbn: 0471315656. [Online]. Available: http://gso.gbv.de/DB=2.

1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+321916239&sourceid=fbw_

bibsonomy.

[35] J. H. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for generalized 

linear models via coordinate descent,” Journal of Statistical Software, vol. 33, no. 1, 

pp. 1–22, 2010. doi: 10.18637/jss.v033.i01.

[36] C. L. Perrin, “Linear or nonlinear least-squares analysis of kinetic data?” Journal of 

Chemical Education, vol. 94, no. 6, pp. 669–672, 2017. doi: 10.1021/acs.jchemed.

6b00629.

[37] T. Blumensath and M. E. Davies, “Iterative Thresholding for Sparse Approximations,” 

Journal of Fourier Analysis and Applications, vol. 14, no. 5, pp. 629–654, 2008, issn: 

1531-5851. doi: 10.1007/s00041-008-9035-z.

[38] L. Zhang and H. Schaeffer, “On the convergence of the sindy algorithm,” Multiscale 

Modeling & Simulation, vol. 17, no. 3, pp. 948–972, 2019. doi: 10.1137/18M1189828.

[39] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal 

Statistical Society: Series B (Methodological), vol. 58, no. 1, pp. 267–288, 1996. doi: 

doi.org/10.1111/j.2517-6161.1996.tb02080.x.

[40] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling language for con-

vex optimization,” Journal of Machine Learning Research, vol. 17, no. 83, pp. 1–5, 

2016.

58

https://doi.org/10.21105/joss.02104
https://doi.org/10.21105/joss.02104
https://doi.org/10.21105/joss.03994
http://www.jstor.org/stable/1271436
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+321916239&sourceid=fbw_bibsonomy
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+321916239&sourceid=fbw_bibsonomy
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+321916239&sourceid=fbw_bibsonomy
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1021/acs.jchemed.6b00629
https://doi.org/10.1021/acs.jchemed.6b00629
https://doi.org/10.1007/s00041-008-9035-z
https://doi.org/10.1137/18M1189828
https://doi.org/doi.org/10.1111/j.2517-6161.1996.tb02080.x


[41] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd, “A rewriting system for convex 

optimization problems,” Journal of Control and Decision, vol. 5, no. 1, pp. 42–60, 

2018.

[42] M. Y. Park and T. Hastie, “L1-regularization path algorithm for generalized linear mod-

els,” Journal of the Royal Statistical Society. Series B (Statistical Methodology), vol. 69, 

no. 4, pp. 659–677, 2007, issn: 13697412, 14679868. [Online]. Available: http://

www.jstor.org/stable/4623289 (visited on 04/18/2023).

[43] D. Schreiber-Gregory, “Ridge regression and multicollinearity: An in-depth review,” 

Model Assisted Statistics and Applications, vol. 13, pp. 359–365, Sep. 2018. doi: 10.

3233/MAS-180446.

[44] A. Gwelo, “Principal components to overcome multicollinearity problem,” Oradea 

Journal of Business and Economics, vol. 4, pp. 79–91, Mar. 2019. doi: 10.47535/

1991ojbe062.

[45] H. Zou and T. Hastie, “Regularization and variable selection via the elastic net,” Jour-

nal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 67, no. 2, 

pp. 301–320, 2005. doi: 10.1111/j.1467-9868.2005.00503.x.

[46] S. Chen and D. Donoho, “Basis pursuit,” in Proceedings of 1994 28th Asilomar Con-

ference on Signals, Systems and Computers, vol. 1, 1994, pp. 41–44. doi: 10.1109/

ACSSC.1994.471413.

59

http://www.jstor.org/stable/4623289
http://www.jstor.org/stable/4623289
https://doi.org/10.3233/MAS-180446
https://doi.org/10.3233/MAS-180446
https://doi.org/10.47535/1991ojbe062
https://doi.org/10.47535/1991ojbe062
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1109/ACSSC.1994.471413
https://doi.org/10.1109/ACSSC.1994.471413


Appendices

60



A Mechanism A1r, 𝑘−2 = 0

Initial conditions: [cat]0 = [0.05; 0.1; 0.15]

Table A.1. Simulation results for [cat]0 = [0.05; 0.1; 0.15], 𝑘−2 = 0

Solver Sampling Approximation 𝜀𝑟(𝑋) 𝜀𝑟(𝑊) s

Unregularized Equispaced finite difference 0.0109 0.9927 56
Unregularized Equispaced spline 0.0263 0.9598 56
Unregularized RKF45 finite difference 0.0128 0.9933 56
Unregularized RKF45 spline 0.000002 1.0297 56
Unregularized Chebyshev finite difference 0.0140 0.9932 56
Unregularized Chebyshev spline 0.000003 1.0241 56
STLSQ, 𝛼 = 0.4 Equispaced finite difference 0.0231 0.9952 56
STLSQ, 𝛼 = 0.4 Equispaced spline 0.0136 0.9423 23
STLSQ, 𝛼 = 0.4 RKF45 finite difference 0.0129 0.9921 54
STLSQ, 𝛼 = 0.4 RKF45 spline 0.00006 0.0011 7
STLSQ, 𝛼 = 0.4 Chebyshev finite difference 0.1887 0.9931 52
STLSQ, 𝛼 = 0.4 Chebyshev spline 0.1812 0.00003 7
Lasso, 𝜆 = 1e-5 Equispaced finite difference 0.0127 1.0545 30
Lasso, 𝜆 = 1e-5 Equispaced spline 0.0047 0.9693 12
Lasso, 𝜆 = 1e-5 RKF45 finite difference 0.2618 0.9990 16
Lasso, 𝜆 = 1e-5 RKF45 spline 0.00004 0.0013 7
Lasso, 𝜆 = 1e-5 Chebyshev finite difference 0.0079 0.1395 8
Lasso, 𝜆 = 1e-5 Chebyshev spline 0.00005 0.0012 7
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A.1 Regularization Paths for STLSQ

Equispaced points:

Figure A.1. Regularization paths for STLSQ (equispaced points, finite difference approximation, 𝑘−2 = 0, 
[cat]0 = [0.05; 0.1; 0.15]): a) ̇[A] equation; b) ̇[P] equation; c) ̇[cat] equation; d) ̇[catA] equation

Figure A.2. Regularization paths for STLSQ (equispaced points, spline approximation, 𝑘−2 = 0, 
[cat]0 = [0.05; 0.1; 0.15]): a) ̇[A] equation; b) ̇[P] equation; c) ̇[cat] equation; d) ̇[catA] equation
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RKF45-chosen points:

Figure A.3. Regularization paths for STLSQ (RKF45 points, finite difference approximation, 𝑘−2 = 0, 
[cat]0 = [0.05; 0.1; 0.15]): a) ̇[A] equation; b) ̇[P] equation; c) ̇[cat] equation; d) ̇[catA] equation

Figure A.4. Regularization paths for STLSQ (RKF45 points, spline approximation, 𝑘−2 = 0, 
[cat]0 = [0.05; 0.1; 0.15]): a) ̇[A] equation; b) ̇[P] equation; c) ̇[cat] equation; d) ̇[catA] equation
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Chebyshev points:

Figure A.5. Regularization paths for STLSQ (Chebyshev points, finite difference approximation, 𝑘−2 = 0, 
[cat]0 = [0.05; 0.1; 0.15]): a) ̇[A] equation; b) ̇[P] equation; c) ̇[cat] equation; d) ̇[catA] equation

Figure A.6. Regularization paths for STLSQ (Chebyshev points, spline approximation, 𝑘−2 = 0, 
[cat]0 = [0.05; 0.1; 0.15]): a) ̇[A] equation; b) ̇[P] equation; c) ̇[cat] equation; d) ̇[catA] equation
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A.2 Regularization Paths for Lasso

Equispaced points:

Figure A.7. Regularization paths for Lasso (equispaced points, finite difference approximation, 𝑘−2 = 0, 
[cat]0 = [0.05; 0.1; 0.15]): a) ̇[A] equation; b) ̇[P] equation; c) ̇[cat] equation; d) ̇[catA] equation

Figure A.8. Regularization paths for STLSQ (equispaced points, spline approximation, 𝑘−2 = 0, 
[cat]0 = [0.05; 0.1; 0.15]): a) ̇[A] equation; b) ̇[P] equation; c) ̇[cat] equation; d) ̇[catA] equation
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RKF45-chosen points:

Figure A.9. Regularization paths for Lasso (RKF45 points, finite difference approximation, 𝑘−2 = 0, 
[cat]0 = [0.05; 0.1; 0.15]): a) ̇[A] equation; b) ̇[P] equation; c) ̇[cat] equation; d) ̇[catA] equation

Figure A.10. Regularization paths for Lasso (RKF45 points, spline approximation, 𝑘−2 = 0, 
[cat]0 = [0.05; 0.1; 0.15]): a) ̇[A] equation; b) ̇[P] equation; c) ̇[cat] equation; d) ̇[catA] equation
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Chebyshev points:

Figure A.11. Regularization paths for Lasso (Chebyshev points, finite difference approximation, 𝑘−2 = 0, 
[cat]0 = [0.05; 0.1; 0.15]): a) ̇[A] equation; b) ̇[P] equation; c) ̇[cat] equation; d) ̇[catA] equation

Figure A.12. Regularization paths for Lasso (Chebyshev points, spline approximation, 𝑘−2 = 0, 
[cat]0 = [0.05; 0.1; 0.15]): a) ̇[A] equation; b) ̇[P] equation; c) ̇[cat] equation; d) ̇[catA] equation
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B Mechanism A1r, 𝑘−2 = 1

Initial conditions: [cat]0 = 0.1

Table B.1. Simulation results for [cat]0 = 0.1, 𝑘−2 = 1

Solver Sampling Approximation 𝜀𝑟(𝑋) 𝜀𝑟(𝑊) s

Unregularized Equispaced finite difference 0.0243 1.0023 56
Unregularized Equispaced spline 0.0141 0.9998 56
Unregularized RKF45 finite difference 0.0278 1.2235 56
Unregularized RKF45 spline 0.000002 1.0815 56
Unregularized Chebyshev finite difference 0.1823 1.2186 56
Unregularized Chebyshev spline 0.1393 1.1571 56
STLSQ, 𝛼 = 0.4 Equispaced finite difference 0.0211 1.0293 56
STLSQ, 𝛼 = 0.4 Equispaced spline 0.0142 0.9998 56
STLSQ, 𝛼 = 0.4 RKF45 finite difference 0.5329 0.9821 52
STLSQ, 𝛼 = 0.4 RKF45 spline 0.6528 0.7997 6
STLSQ, 𝛼 = 0.4 Chebyshev finite difference 0.7883 0.9991 48
STLSQ, 𝛼 = 0.4 Chebyshev spline 0.7108 0.7996 6
Lasso, 𝜆 = 1e-5 Equispaced finite difference 0.0173 1.3245 26
Lasso, 𝜆 = 1e-5 Equispaced spline 0.0148 3.3832 16
Lasso, 𝜆 = 1e-5 RKF45 finite difference 0.2913 0.8371 16
Lasso, 𝜆 = 1e-5 RKF45 spline 0.00006 0.6986 14
Lasso, 𝜆 = 1e-5 Chebyshev finite difference 0.0179 0.9395 16
Lasso, 𝜆 = 1e-5 Chebyshev spline 0.00006 0.6627 14
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B.0.1 Regularization Paths for STLSQ

Equispaced points:

Figure B.1. Regularization paths for STLSQ (equispaced points, finite difference approximation, 𝑘−2 = 1, 
[cat]0 = [0.05; 0.1; 0.15]): a) ̇[A] equation; b) ̇[P] equation; c) ̇[cat] equation; d) ̇[catA] equation

Figure B.2. Regularization paths for STLSQ (equispaced points, spline approximation, 𝑘−2 = 1, 
[cat]0 = 0.1): a) ̇[A] equation; b) ̇[P] equation; c) ̇[cat] equation; d) ̇[catA] equation
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RKF45-chosen points:

Figure B.3. Regularization paths for STLSQ (RKF45 points, finite difference approximation, 𝑘−2 = 1, 
[cat]0 = [0.05; 0.1; 0.15]): a) ̇[A] equation; b) ̇[P] equation; c) ̇[cat] equation; d) ̇[catA] equation

Figure B.4. Regularization paths for STLSQ (RKF45 points, spline approximation, 𝑘−2 = 1, [cat]0 = 0.1): a) 
̇[A] equation; b) ̇[P] equation; c) ̇[cat] equation; d) ̇[catA] equation
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Chebyshev points:

Figure B.5. Regularization paths for STLSQ (Chebyshev points, finite difference approximation, 𝑘−2 = 1, 
[cat]0 = [0.05; 0.1; 0.15]): a) ̇[A] equation; b) ̇[P] equation; c) ̇[cat] equation; d) ̇[catA] equation

Figure B.6. Regularization paths for STLSQ (Chebyshev points, spline approximation, 𝑘−2 = 1, [cat]0 = 0.1): 
a) ̇[A] equation; b) ̇[P] equation; c) ̇[cat] equation; d) ̇[catA] equation
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B.0.2 Regularization Paths for Lasso

Equispaced points:

Figure B.7. Regularization paths for Lasso (equispaced points, finite difference approximation, 𝑘−2 = 1, 
[cat]0 = [0.05; 0.1; 0.15]): a) ̇[A] equation; b) ̇[P] equation; c) ̇[cat] equation; d) ̇[catA] equation

Figure B.8. Regularization paths for STLSQ (equispaced points, spline approximation, 𝑘−2 = 1, 
[cat]0 = 0.1): a) ̇[A] equation; b) ̇[P] equation; c) ̇[cat] equation; d) ̇[catA] equation
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RKF45-chosen points:

Figure B.9. Regularization paths for Lasso (RKF45 points, finite difference approximation, 𝑘−2 = 1, 
[cat]0 = [0.05; 0.1; 0.15]): a) ̇[A] equation; b) ̇[P] equation; c) ̇[cat] equation; d) ̇[catA] equation

Figure B.10. Regularization paths for Lasso (RKF45 points, spline approximation, 𝑘−2 = 1, [cat]0 = 0.1): a) 
̇[A] equation; b) ̇[P] equation; c) ̇[cat] equation; d) ̇[catA] equation
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Chebyshev points:

Figure B.11. Regularization paths for Lasso (Chebyshev points, finite difference approximation, 𝑘−2 = 1, 
[cat]0 = [0.05; 0.1; 0.15]): a) ̇[A] equation; b) ̇[P] equation; c) ̇[cat] equation; d) ̇[catA] equation

Figure B.12. Regularization paths for Lasso (Chebyshev points, spline approximation, 𝑘−2 = 1, [cat]0 = 0.1): 
a) ̇[A] equation; b) ̇[P] equation; c) ̇[cat] equation; d) ̇[catA] equation
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