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Abstract

Organisms have evolved molecular clocks to track 24-hour day/night light cycles which regulate all 
important physiological functions including metabolism, immunity, and cell-cycle. Cell-autonomous 
molecular clocks operate as a transcription-translation feedback loop (TTFL) driven by CLOCK:BM-
AL1, driving rhythmic transcription of genes including the negative repressors Cry and Per. Delayed 
negative feedback is initiated by CRY1 directly inhibiting BMAL1, followed by PER1/2 mediating 
removal of CLOCK:BMAL1 from target E-box DNA sites. Thus, protein-protein interactions are the 
key rate limiting steps which ensure correct phasing and periodicity. Previous studies have shown 
that the circadian clock is driven by impressively low abundance mRNA and protein copy number, 
but how the clock robustly generates cycles with low molecular numbers is unclear. The current 
TTFL model is based largely on qualitative genetic-based studies and lacks quantitative validation 
of how specific components of the cellular clockwork interact in time and space within the cell.

I investigated how a finite pool of BMAL1 proteins regulate thousands of target sites over 24 
hours. From this, I developed a quantitative model of CLOCK:BMAL1 binding DNA using single-cell 
data for fluorescent fusion protein dynamics and interactions measured using live-cell microscopy and 
Fluorescence Correlation Spectroscopy (FCS). I found that the approximately 1000 CLOCK:BMAL1 
complexes are highly mobile, likely rapidly moving between the far greater number of DNA target 
sites. Modelling showed that CRY1 complex formation with PER2 regulates the DNA residence 
time, and that these PER:CRY complexes play a dual role as both transcriptional repressors and 
enhancers of CLOCK:BMAL1 mobility. This mechanism therefore allows low copy-number clock 
proteins to regulate a wide repertoire of thousands of gene targets.

Despite the clear importance of interactions in the circadian circuit, ex vivo measurements of 
the affinities of protein-protein interaction are lacking. I therefore undertook a study to measure 
these for all major components of the molecular clock. This demonstrated that many of the protein-
protein interactions in the circadian clock are remarkably strong and well conserved over multiple 
cell-types and different protein concentrations. Combining these data with modelling, I found that 
most interactions were direct, without the need for additional facilitating partner proteins, showing 
the clock operates as a set of serial pairwise interactions.

To facilitate the use of FCS, I developed new analytical tools which improve accuracy and robust-
ness of fit. I derived an approximate likelihood model and applied maximum likelihood estimation 
to directly analyse raw unprocessed FCS data to increase the available data density by three orders 
of magnitude. This new methodology can infer concentrations and diffusion rates with as little as a 
few milliseconds of data rather than the current several seconds.

Lastly, I present a new application, Network Designer, to enable quicker exploration of models by 
graphically constructing networks with automated generation of differential and stochastic equations. 
I used this software throughout this body of work to create mathematical models of the circadian 
clock.

By combining quantitative experiments and modelling of circadian proteins, I have offered new 
insights into when and how protein-protein and protein-DNA interactions may define the operation 
and generation of circadian rhythms in mammalian cells. 
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Chapter 1

Introduction

1.1 The circadian clock

1.1.1 What is the clock?

Darwin (1859) first described in ‘The Origin of Species’ that natural selection is the pressure placed on 
flora and fauna to adapt to changes in their environment. The rotation of our planet is no exception, 
driving 24-hour cycles of available sunlight and temperature, dramatically altering the conditions 
for life to flourish. Most organisms have adapted and thrived to these evolutionary pressures by 
evolving biological mechanisms to track and adapt to these 24-hour cycles (Pittendrigh, 1993). Jean 
Jacques d’Ortous de Mairan made the first recorded observations of circadian (Latin for ‘about a 
day’) rhythms in 1729 by noting the continued folding/unfolding of the leaves of a mimosa plant 

Figure 1.1: Jean Jacques d’Ortous de Mairan noted that the leaves of a mimosa plant unfolded in the morning and 
folded at night. When placed in a dark room the leaves continued this circadian rhythm for several days suggesting 
this is an innate feature of the cells within the plant. Adapted from Nobel Prize Outreach (2023).

16



placed in a dark room following normal daily light exposure (Kreitzman and Foster, 2011), see 
Figure 1.1. It has since been shown that plants regulate their metabolism over the day to optimise 
energy production given available sunlight, and animals modify their behaviour such as sleep/wake 
timings as well as locomotor activity, in the case of diurnal and nocturnal animals, to anticipate 
accessible food sources and energetic requirements (Wang et al., 2015). Are these clocks exogenous, 
simply tracking daily variations, or are they endogenous, capable of entrainment and anticipation of 
daily light rhythms? After observing cycles in his body-temperature, Aschoff (1960) showed through 
constant light exposure that circadian clocks are endogenous oscillators that ‘free run’ when all 
timing cues, or Zeitgebers, are removed. Persistent rhythms in the absence of external cues are a key 
feature of circadian clocks. Additionally, entrainment to the environment, often occurring in a phase 
dependent manner, closely mimics the synchronisation of a simple pendulum to external vibrations.

Organisms have evolved molecular circadian clockwork, common to almost all cells, which are 
built upon cycles of proteins repressing their own production and activity in a delayed manner. 
Simple single cell organisms such as Cyanobacteria as well as multi-cellular plants directly entrain 
cellular oscillators with day/night cycles (Ahmad et al., 1998; Leypunskiy et al., 2017). In contrast, 
mammals make use of a central pacemaker in the brain known as the Suprachiasmatic Nucleus (SCN). 
The SCN receives light input via the retina through intrinsically photosensitive retinal ganglion cells 
(ipRGCs) to synchronise a group of approximately 20,000 coupled oscillatory cells, which further 
distribute timing cues to downstream peripheral oscillators throughout the body via neuroendocrine 
cues (Meyer-Bernstein et al., 1999; Buijs et al., 2003). Myriad studies have linked the circadian 
clock to innate, physiological functions across numerous organisms, with mammals exhibiting daily 
rhythms in body-temperature (Buhr et al., 2010), cell-cycle (Matsuo et al., 2003; Bieler et al., 2014), 
hormones (Lightman et al., 2016), metabolism (Green et al., 2008), and immunity (Scheiermann 
et al., 2018).

The discovery of genetic circuits driving the circadian clock mechanism lead to the award of the 
Nobel Prize in Physiology or Medicine in 2017 to Jeffrey C. Hall, Michael Rosbash and Michael W. 
Young (Bargiello et al., 1984; Zehring et al., 1984). Despite significant advances in the genetic 
understanding of the circadian clock, quantitative knowledge is lacking on how this network of 
molecular interactions generates robust 24-hour cycles.

1.1.2 Discovery of the endogenous molecular clock

Circadian components were first identified via genetics

How do endogenous circadian rhythms, that free run in the absence of external stimuli, arise? Follow-
ing studies in the fruit fly Drosophila that demonstrated that single genes could control physical traits, 
Benzer hypothesised that there may be genes that control circadian behaviour in flies. Konopka and 
Benzer went on to use a mutagenic screen on Drosophila to discover the first circadian gene, Period, 
in 1971, which when modified shortened (19 h), lengthened (28 h), or introduced arrhythmia to lo-
comotor activity as well as eclosion (Konopka and Benzer, 1971). Despite this breakthrough it took 
until the late 80s for Hall and Rosbash to reveal a rhythm in the amount of dPER protein, detected 
using antibodies, in the visual system of Drosophila (Siwicki et al., 1988), leading to the subsequent 
discovery that dPer mRNA transcripts cycle with a peak a few hours prior to a peak in dPER protein 
(Hardin et al., 1990). Additionally, overexpression of dPER supresses dPer mRNA transcription, a 
discovery which lead to the development of what is now known as a transcription-translation feed-
back loop (TTFL) model of the clock. In this, transcription factor proteins rhythmically feedback 
to repress their own transcription (Zeng et al., 1994), resulting in the generation of rhythmic mRNA 
and protein. In Drosophila, dTIM (gene Timeless) was identified and found to oscillate as well as 
gate nuclear entry of PER providing a crucial mechanism required for generating 24 h cycles (Gekakis 
et al., 1995; Myers et al., 1995; Sehgal et al., 1995).

In the 1990s the first mammalian clock gene, mClock (Circadian Locomotor Output Cycles Ka-
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put), was found by Takahashi’s group in mice. Clock was discovered via mutagenesis screening for 
disrupted circadian phenotypes and subsequent positional cloning (Vitaterna et al., 1994; Antoch 
et al., 1997). This was followed shortly by the discovery of Brain and Muscle ARNT-Like 1 (Bmal1) 
independently by Hogenesch and colleagues and Ikeda and Nomura (Hogenesch et al., 1997; Ikeda 
and Nomura, 1997). Shortly after, biochemical studies showed that the protein products of these 
genes, CLOCK and BMAL1, were found to partner with one another to regulate the transcription 
of PERIOD1 protein via 6 base-pair DNA sequences, CANNTG, termed Enhancer Boxes (E-Box) 
which are present in promoter of the mPer1 gene (Gekakis et al., 1998). Later, whilst searching 
for proteins responsible for environmental light sensing in the clock, van der Horst and colleagues 
identified a role for CRYPTOCHROME proteins. These proteins in plants serve as photolyases, and 
are important in DNA repair. Genetic studies in mice showed that when knocked-out independently, 
Cryptochrome1 and Cryptochrome2 (mCry1 and mCry2) accelerated (22.5 h) and delayed (24.6 h) 
the clock respectively, thus demonstrating an antagonistic relationship between the two which is crit-
ical to proper timekeeping (van der Horst et al., 1999). Crucially knocking-out both alleles of mCry
gene rendered mice arrhythmic under constant dark conditions. Interestingly, mice still retained the 
ability to entrain their locomotor activity when under standard light-dark cycles, suggesting CRYs 
are not light-sensing and in mammals have been adopted as essential core clock components regulat-
ing timing. Melanopsin expressed in the intrinsically photosensitive retinal ganglion cells (ipRGCs) 
was later shown to pass light cues to the SCN independent of rods and cones (Freedman et al., 1999; 
Hattar et al., 2002), providing further essential insight into how molecular re-setting of the circadian 
clock by light/dark cycles is achieved.

Multiple subsequent studies in mammals have identified additional ancillary interconnected loops 
that modify TTFL timing and output. For example, Preitner et al. (2002) demonstrated that mBmal1
mRNA and protein oscillations are due to repression of orphan nuclear receptor REV-ERBα binding 
to RORE sites in the promoter of the mBmal1 gene. REV-EBRα was further shown to be itself 
negatively regulated by PER/CRY, elucidating how mBmal1 oscillates in anti-phase to mPer1 and 
mPer2 (Preitner et al., 2002). Discovery of these additional loops working in conjunction with the 
core TTFL has thrown important light into how tissue specific repertoires of circadian timing are 
achieved.

How can cells generate 24-hour cycles?

A dominant model in our thinking of how biological rhythms are generated is the concept of delayed 
negative feedback. In this, robust circadian oscillations are generated by the expression of repressive 
components (PER, CRY and REV-ERB in mammals) which exhibit delayed feedback to repress 
transcription (Gonze and Ruoff, 2021). A clear prediction is that tuning of the life-expectancy of 
these repressive elements will have profound effects on period generation, and here, protein degrading 
kinase enzymes play a crucial role. Transcription and translation are biologically rapid processes, 
on a time scale of seconds to minutes (Shamir et al., 2016). Thus, the pace of the clockwork is 
set by the regulation of protein metabolism in the cell. An early candidate for this emerged in 
Drosophila with the discovery that Casein Kinase 1 (CK1, encoded in the Doubletime gene) plays 
a key in the regulation of PERIOD protein degradation of PER through phosphorylation, leading 
to ubiquitination and proteasomal degradation. Mutations in Doubletime have a profound impact 
on the Drosophila clock. Mammals possess a closely related CK1 kinase which is also implicated 
in regulating mammalian PER proteins (Kloss et al., 1998; Xu et al., 2005; Keesler et al., 2000; 
Narasimamurthy and Virshup, 2021). A gain of function mutation of CK1ϵ, known as tau in mice 
and Syrian hamsters, is responsible for the significant acceleration of rhythms from 24 to 20 hours, 
demonstrating the important rate setting role of kinases in the clock (Ralph and Menaker, 1988; 
Lowrey et al., 2000; Meng et al., 2008). Subsequently, mutations of the CK1ϵ binding domain of 
human PER2 leads to perturbed rhythms and a striking 4-hour advance of sleep onset in the case of 
familial advanced sleep phase syndrome (FASPS) (Toh et al., 2001). In all cases, phosphorylation of 
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PER2 is perturbed, leading to increased degradation by the ubiquitin–proteasome system.
It is hypothesised that post-translational modifications, including phosphorylation by kinases, 

define an evolutionarily conserved mechanism for circadian clock function across species regardless of 
specific separately evolved TTFL components (Wong and O’Neill, 2018). Different organisms have 
evolved diverse components underlying the core mechanisms driving circadian clocks, with convergent 
evolution leading to multiple homologues of the molecular clock (Young and Kay, 2001). In addition 
to mammals and Drosophila, Clocks in Cyanobacteria (Johnson et al., 1996), Neurospora (Merrow 
et al., 2001), monarch butterflies (Froy et al., 2003), have all been extensively studied. The clocks of 
all of these organisms operate on the same principal of oscillating biochemical reactions (Young and 
Kay, 2001). Initially, it was thought that prokaryotes like Cyanobacteria are too simple to support a 
clock as they possess a genome of only 4.5 million base pairs (Alvarenga et al., 2017). Hence, instead 
of a clock based on transcription as found in eukaryotes, Cyanobacteria use a mechanism of cyclic 
protein phosphorylation of the key KaiC protein. Strikingly, the Cyanobacteria clock has been shown 
to oscillate in vitro, requiring only the presence of Kai proteins and ATP, with no additional cell 
machinery required (Nakajima et al., 2005). Crucially, even through protein dynamics operate on a 
sub-second timescale, a 24-hour period is produced by the slow ATPase activity of KaiC. The rate 
of this catalytic process is closely tied to the period of the cyanobacterial clock (Abe et al., 2015). 
This underscores the importance of delays in establishing 24-hour circadian rhythms, especially when 
assembled from components that have naturally fast dynamics.

This raises the important questions as to what the key components of the mammalian clock are, 
and how they couple with other cellular systems to confer timing information.

1.1.3 Time conventions

Conventionally, the intrinsic time of circadian oscillators, whether they are cells or whole animals, is 
defined by circadian time, abbreviated to CT. CT references the time of an organism’s endogenous 
circadian clock without regard to environmental cues or other entraining cues, otherwise known as 
zeitgebers (German for ‘time giver’) (Xie et al., 2019). CT0 defines the onset of activity in diurnal 
animals and CT12 marks the onset of activity in nocturnal animals. CT is periodic, so CT24 is 
equivalent to CT0 for organisms with an intrinsic circadian period of 24 hours (Karatsoreos and 
Silver, 2017). Zeitgeber time (ZT) is useful in defining the start of a zeitgeber which represents 
an external time cue used to perturb circadian rhythms. For instance, in the context of light/dark 
cycles, ZT0 would signify when the lights turn on. It therefore follows that for organisms with a 
24-hour period under regular 12:12 light/dark cycles, ZT and CT are equivalent to one another.

1.2 Mammalian clocks

1.2.1 Why should we study mammalian clocks?

Circadian clocks are a ubiquitous feature of many organisms and thus the study of clocks is wide 
and varied. Core elements found in mammalian clocks, such as mClock, mBmal1, and mPer, have 
the orthologs dClock, dCycle (Cyc), and dPer respectively in Drosophila. However, in Drosophila
the key partner for PER is TIMELESS (TIM) rather than CRY, which whilst TIM is present, it 
is not essential for rhythm generation in mammalian clocks (Gotter et al., 2000). Additionally, in 
Dosophila, CRY is light sensitive and part of the light resetting response. In this thesis, I restrict 
my studies to the molecular workings of the mammalian clock, using the mouse Mus musculus as 
a model organism. Mammals share many similar features in how they generate and organise circa-
dian rhythms across the body; a central pacemaker residing the brain known as the SCN receives 
timing information in the form of light impulses which are then subsequently passed to autonomous 
peripheral oscillators residing in the rest body’s cells. Handily, many of the key elements comprising 
cell autonomous clocks are conserved across mammals (Young and Kay, 2001). Currently, there is 
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much interest in the medical treatment of circadian disorders through combinations of light therapy 
and pharmaceutical interventions such as the hormone melatonin (Cederroth et al., 2019). Beyond 
the direct treatment of circadian disorders, there is emerging evidence that emphasises the signifi-
cance of circadian timing in pharmacological treatments. A variety of studies have indicated that the 
timing of drug dosing, especially in the context of cancer treatments, can lead to improved health 
outcomes. This chronopharmacological approach suggests that by aligning drug administration with 
specific times in the circadian cycle, tissues can be exposed to drugs when they are most able to tol-
erate toxicity, thereby maximising therapeutic efficacy and minimising side effects (Lévi et al., 2010; 
Annabelle Ballesta et al., 2017; Cederroth et al., 2019; Ruben et al., 2019). Thus, research findings 
made whilst studying mice could indicate new routes of research of clinical relevance which may be 
pursued to improve health outcomes in humans. Further characterisation of how the components 
of the circadian clock come together and interact to generate daily rhythms can elucidate effective 
targets for these interventions.

Figure 1.2: Light cues enter the eyes via the retina and are passed directly to the suprachiasmatic nucleus (SCN) 
in the brain which coordinates timing throughout the body. Entrainment of peripheral oscillators, such as fibroblast 
cells, is achieved by direct innervation, hormonal cues and body temperature. Additional entrainment by external 
cues such as feeding also occurs in the liver. Both peripheral tissues and the neurons comprising the SCN possess 
autonomous molecular oscillatory systems known as the transcription-translation feedback loop.

1.2.2 The Suprachiasmatic Nucleus is the central pacemaker

In mammals the circadian clock is known to be coordinated in a hierarchical manner, see Figure 1.2. 
A collection of approximately 20,000 neurons within the suprachiasmatic nucleus (SCN) in the ven-
tral hypothalamus entrains peripheral autonomous oscillators in cells and tissues throughout the 
body. The SCN is synchronised to environmental light cues entering the eyes via the retina, where 
melanopsin expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) detect light expo-
sure and project directly from the eyes to the SCN. Without melanopsin, mice have been shown to 
have reduced photoentrainment ability (Panda et al., 2002b). Key output mechanisms synchronising 
peripheral tissues include direct autonomic innervation (van der Horst et al., 1999), and hormonal 
cues (i.e. glucocorticoids) (Kaneko et al., 1981; Meyer-Bernstein et al., 1999). But crucially, metabolic 
cues driven by rhythmic feeding are dominant, such that the impact of the SCN “brain-clock” can 
be bypassed by imposition of timed feeding (Bass and Lazar, 2016). Lesioning of the SCN in rats 
has been shown to abolish both entrainment to light and free running circadian rhythms in the hor-
mone adrenal corticosterone (Moore and Eichler, 1972) as well as in locomotor activity and drinking 
(Stephan and Zucker, 1972). An early key demonstration of the dominant role of the SCN in regu-
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lating behaviour came from studies where grafts of foetal donor SCNs into hamsters with previously 
lesioned SCNs rescued circadian wheel-running rhythms (Lehman et al., 1987). When SCN tissue 
from short period tau (τ) mutants was transplanted into wild type animals, the recipient exhibited 
circadian periods identical to the donor, 22 hours from heterozygous tau SCNs (τ/WT) or 20 hours 
for homozygous tau SCNs (τ/τ) (Ralph et al., 1990). Interestingly, transplant studies such as these 
are effective in rescuing behavioural activity rhythms, but ineffective in rescue of most other outputs, 
including endocrine, sleep and temperature rhythms. This shows that the mechanisms of entrain-
ment by the SCN are complex and involve both humoral signals (behaviour) as well as “hard-wired” 
outputs. Thus, the SCN plays a crucial role in controlling circadian rhythms across the body.

Individual neurons within the SCN have been shown to possesses an autonomous TTFL oscil-
lator whereby CLOCK:BMAL1 activates transcription of PER/CRY which in turn attenuates the 
transcriptional capability of CLOCK:BMAL1 (Hastings et al., 2018). The neurons of the SCN form 
a highly coupled system which is spatially organised into dorsal neurons in the ‘shell’ and ventral 
neurons at the ‘core’ (1.2). These autonomous oscillators, capable of differential cycling to one an-
other, spatially synchronise by passing timing information between each other via γ-aminobutyric 
acid (GABA) in the dorsal shell and vasoactive intestinal polypeptide (VIP) in the core (Hastings 
et al., 2003). When this coupling is removed by dispersing neurons in vitro or treating with inhibitors 
such as tetrodotoxin (TTX) neurons lost cycling over days, as measured by the PER2::LUC inte-
grated reporter gene (Yoo et al., 2004), whereas when allowed to couple in intact tissue explants, the 
neurons of the SCN can oscillate almost indefinitely for weeks and even months outside of the body 
in the right culture conditions (Webb et al., 2009). These experiments combined with modelling 
studies have shown that intercellular coupling between the individual weak neuronal oscillators aids 
in the generation of robust rhythms tissue-wide by buffering against molecular noise (Gonze and 
Goldbeter, 2006).

1.2.3 Peripheral oscillators

The role of the SCN is to synchronize the internal clockwork to the phase of the external light-dark 
cycle and individual cellular clocks are capable of self-sustained oscillations in culture without SCN 
input. A key early observation using fibroblast cells (Balsalobre et al., 2000) demonstrated that 
peripheral cellular clocks are as competent as neurons in terms of robust time-keeping, but that they 
are not coupled, as demonstrated by Welsh and colleagues in studies of PER2::LUC in dispersed 
fibroblasts cells. In this latter case, cells oscillated in culture for prolonged periods, sometimes up to 
months at a time (Welsh et al., 2004; Yoo et al., 2004).

Mammals possess multiple copies of some of their core clock genes. In each case, deletion of a 
single paralog in mammals of core the clock components Per1, Per2, Cry1, Cry2, Nr1d1 (Rev-erbα) 
and Nr1d2 (Rever-erbβ), and Clock causes disruption of period and robustness, but not complete 
loss of circadian-like oscillations. There is one exception, Bmal1 (also known as Mop3). This gene 
has a paralog, Bmal2, but the two genes are not homologous in function. Targeted deletion of 
Bmal1 causes loss of circadian rhythmicity in cells, and as such is the only member of the TTFL 
family in mammals which is not compensated for by another protein (Bunger et al., 2000; Ikeda 
et al., 2000). Deletion has profound health implications and in mice lacking Bmal1 in the liver 
hepatocytes exhibiting hypoglycemia during fasting, increased hyperlipidaemia, and atherosclerosis 
(Lamia et al., 2008; Pan et al., 2016). In Bmal1 deficient macrophages, there is a gain in phagocytic 
activity (Kitchen et al., 2020). Rhythmic circadian gene and protein expression occur throughout the 
body due to these internal oscillators within each cell, with approximately 10% of the transcriptome 
cycling. Constitutively expressed CLOCK (Lee et al., 2001) and its paralog neuronal PAS domain-
containing protein 2 (NPAS2) both interact with BMAL1 to maintain circadian function (Huang 
et al., 2012), with NPAS2 compensating for CLOCK in its absence (DeBruyne et al., 2007).

The circadian clock exerts control over many cellular functions, with variable phase and strength. 
However, which mRNA and protein are rhythmically controlled by the clock changes from tissue to 
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tissue. Additionally, outside of the core clock components, multiple studies have found <1% match 
between which transcripts cycle in SCN, liver, heart, and skeletal muscle tissues (Panda et al., 2002a; 
Storch et al., 2002). These differences in clock-controlled outputs occurs despite each cell possessing 
the same molecular machinery. Hence, internal clocks within each organ have an essential role to 
play in proper cellular regulation and tissue function.

1.2.4 Molecular clock architecture

CLOCK:BMAL1 drives oscillations by binding DNA target sites

At the core of the mammalian TTFL, the heterodimeric transcription factor complex CLOCK:BMAL1 
form part of the basic helix-loop-helix transcription factor family, which searches the genome to bind 
proximal consensus E-box DNA sites upstream of transcription starts sites (TSS) of many genes. 
These include mPer1-3 and mCry1-2 (Yoo et al., 2005; Fustin et al., 2009), see Figure 1.3. E-box 
binding by CLOCK:BMAL1, alongside recruitment of co-activators CREB-binding protein (CBP) 
and Histone acetyltransferase p300, primarily induces transcription of core clock genes mPer1-3 and 
mCry1-3 during the day in mice as well as several hundred clock-controlled genes (CCGs) differen-
tially over the whole circadian 24-hour cycle (Takahashi, 2017). In addition to E-boxes, chromatin 
immuno-precipitation (ChIP) studies have revealed synchronous binding of CLOCK:BMAL1 to 2000-
6000 (tissue dependent) target sites in genes (Rey et al., 2011; Koike et al., 2012; Chiou et al., 2016; 
Oishi et al., 2017; Wu et al., 2017; Dyar et al., 2018; Beytebiere et al., 2019). Binding amplitudes – 
globally and per gene – oscillate over the day, with gene to gene transcriptional output of CLOCK 
and BMAL1 targets being highly heterogenous (Trott and Menet, 2018), likely owing to gene spe-
cific co-factors and different partner proteins, for example Hypoxia-inducible factor 1-alpha (HIF1α) 
(Wu et al., 2017). DNA binding varies over the day as a function of CLOCK:BMAL1 abundance, 
chromatin accessibility, and the CLOCK:BMAL1 affinity for DNA. Intriguingly, quantitative mass 
spectrometry studies show CLOCK and BMAL1 cycles around 20,000 protein copies per cell, suggest-
ing after dimerization that the number of available CLOCK:BMAL1 is likely less than the estimated 
number of target sites (Narumi et al., 2016). For this reason, CLOCK:BMAL1 is hypothesised to be 
highly mobile, moving from site to site in contrast with the stationary constitutively bound model 
proposed by Lee et al. (2001). This is consistent with imaging experiments measuring a short DNA 
residence time of ∼ 10 s on for CLOCK:BMAL1 on E-boxes within transfected concatemers of the 
D-Box Binding PAR BZIP Transcription Factor (Dbp) gene (Stratmann et al., 2012). Moreover, 
theoretical models and data place target DNA site residency times for transcription factors, such as 
GR, P53, and Stat1, in the range of few seconds to tens of seconds (Hettich and Gebhardt, 2018; 
Azpeitia and Wagner, 2020). CLOCK:BMAL1 binding and transactivation of repressors Per1-3 and 
Cry1-2 defines the start of the feedback loop, and following translation of their mRNA, resultant 
CRYPTOCHROME (CRY) and PERIOD (PER) proteins accumulate in the cytoplasm, get phospho-
rylated, bind to one another, and then translocate into the nucleus to inhibit their own transcription 
by repressing CLOCK:BMAL1 complexes (Takahashi, 2017). Importantly, as PERs and CRYs re-
press their own transcription through CLOCK:BMAL1 in a dose dependent manner, this requires 
precise control of protein copy number in each cell, as the repressive action of these proteins define 
the pace of the clock.

Post-translational processes set the pace of the clock

Predicted delays between Per mRNA levels and PER proteins were first observed in Drosophila using 
techniques such as RNA hybridisation and protein-detecting antibodies respectively, (Siwicki et al., 
1988; Hardin et al., 1990). However, this masks the true underlying dynamics of the clock required 
for rhythmic feedback. Typically, protein levels rise in quick succession with mRNA as there is 
little delay added by RNA processing, nuclear export, and translation. It is also likely that the phase 
difference between mRNA and protein for core clock components is due to complex post-translational 
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Figure 1.3: The architecture of the mammalian circadian clock operates as a transcription-translation feedback loop. 
At the core of the circadian network is the heterodimeric transcription factor made up from the proteins CLOCK 
and BMAL1 which bind and activate E-Box DNA elements. Importantly, these E-Boxes are present in the genes 
of Per1, Per2, Cry1, and Cry2, which are transcribed and translated into proteins which repress CLOCK:BMAL1. 
This PER and CRY mediated repression is key to the generation of circadian rhythms and occurs via trimerisation 
with CK1δ/ϵ in the cytoplasm followed by nuclear translocation, and ultimate removal of CLOCK:BMAL1 from E-
Boxes by phosphorylation. Recent studies have demonstrated that CRY1 also directly represses CLOCK:BMAL1 
without PER proteins. Additional modulating feedback loops are encoded by D-box DNA sites, bound by DBP and 
NFIL3, and RORE sites, regulated by RORs and REV-ERBα/β, which combine to confer rhythmicity upon BMAL1 
as well as downstream clock controlled genes (CCGs). Degradation of PERs and CRYs alleviates repression to begin 
anew the cycle of transcription and translation. SCF:β-TrCP mediates 26S proteasomal degradation of PER via 
ubiquitination (Ub) following phosphorylation (P) by CK1δ/ϵ. Whereas, the F-Box binding proteins FBXL21 and 
FBXL3 antagonistically regulate the degradation of CRY proteins, with FBXL3 importantly promoting degradation 
of CRYs in the nucleus. Reproduced with permission from Springer Nature and adapted from Takahashi (2017).

regulatory processes (Narumi et al., 2016). One possible answer to this apparent contradiction is 
that the antibodies might preferentially bind phosphorylated versions of their protein targets and as 
such protein levels as measured by antibodies are a combined function of both protein abundance and 
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phosphorylation status. The main source of delay and related pacesetting of the clock is mediated by 
Casein Kinases 1δ/ϵ (CK1δ/ϵ, encoded by Csnk1d/e). PER proteins are bound by CK1δ/ϵ which in 
turn phosphorylates PERs, marking them for degradation by further promoting polyubiquitination by 
the Skp1-Cul1-F-box protein and β-transducin repeat-containing protein (SCF:β-TrCP) E3 ubiquitin 
ligase complex and ultimate degradation by the 26S proteasome (Eide et al., 2005; Shirogane et al., 
2005; Reischl et al., 2007), see Figure 1.3. This degradation of PER2 is temperature compensated 
by a so-called ‘phosphoswitch’ whereby higher temperatures activates a slow degradation pathway 
to compensate for generally quicker biochemical reactions (Zhou et al., 2015). Additionally, the 
ability of PERs to repress transcriptional activity of CLOCK:BMAL1 is also dependent on CK1δ/ϵ
(Makoto et al., 2002; Cao et al., 2021). Crucially, nuclear localisation is time-dependent with CRY1 
and CRY2 necessary for nuclear entry of PER and CK1𝜖, without which repression by multimeric 
PER:CRY:CK1 complexes cannot take place, and circadian oscillations cease when both CRYs are 
absent (van der Horst et al., 1999; Lee et al., 2001; Smyllie et al., 2022). Nuclear localisation of PER1 
has also been shown to be inhibited by CK1δ/ϵ dependent phosphorylation of a proximal nuclear 
localisation signal (NLS) on PER1 close to the CK1 binding site, altering protein confirmation and 
masking the NLS (Erica et al., 2000). Like PER, the degradation of CRYs ultimately occurs via 
the 26S proteasome and is also regulated by phosphorylation. Cyclic nuclear entry of nutrient-
responsive AMP-activated protein kinase (AMPK) phosphorylates CRY prompting ubiquitination 
by the SCF:FBXL3 (F-box/LRR-repeat protein 3) E3 complex, further linking metabolism to the 
clock (Lamia et al., 2009). FBXL3 provides the specificity for degradation as CRY1-2 have been 
shown to be its substrates, with knock-down of FBXL3 leading to accumulation of CRYs and removal 
of daily oscillations (Gatfield and Schibler, 2007). In summary, phosphorylation processes modulate 
protein accumulation, localisation, and function and as such are ultimately responsible for alleviating 
repression of CLOCK:BMAL1 by PERs and CRYs, beginning the circadian cycle anew. As previously 
described, mutations to the CK1, such as FASPS or the gain of function tau mutation in the CK1ϵ
isoform, drastically alter clock speed, from around 24 hours to 20 hours as the rate of phosphorylation 
and therefore degradation are increased (Ralph and Menaker, 1988; Lowrey et al., 2000; Vanselow 
et al., 2006).

Repression by PERIODs and CRYPTOCHROMEs happens in 2 stages

In the nucleus, the principal negative feedback of the core circadian TTFL is repression of tran-
scription activating CLOCK:BMAL1 heterodimers by PER1/2 and CRY1/2 which proceeds via two 
distinct mechanisms to create three distinct phases of transcription; active, early repressive, and late 
repressive phases of transcription (Gustafson and Partch, 2015). Evidence shows that PER3 defi-
cient mice do not demonstrate substantial changes in locomotor activity or transcriptional output 
of key TTFL genes, hence PER3 is not functionally redundant with PER1/2 and has little role in 
the core TTFL as a transcriptional repressor (Shearman et al., 2000; Spiller et al., 2010; Bae et al., 
2001). AT CT8 the active phase of CLOCK:BMAL1 transcription proceeds as described previously 
by recruitment of transcriptional co-factors CBP and p300, upon alleviation of previous late phase 
repression by CRY1 through its degradation. Active transcription ends at CT12 with binding by 
PER:CRY:CK1δ/ϵ complexes which repress CLOCK:BMAL1 by directly lifting it from DNA and 
inhibiting binding (Koike et al., 2012; Cao et al., 2021). Finally, from around CT0 to CT8, CRY1 initi-
ates the late repressive phase by binding simultaneously to CLOCK PAS-B domain and the c-terminal 
transactivation domain (TAD) of BMAL1 to block CBP and p300 recruitment to CLOCK:BMAL1 
creating a ‘poised’ state of DNA bound, but transcriptionally inactive, CLOCK:BMAL1 (Ye et al., 
2011; Xu et al., 2015). The end of the TAD in BMAL1 appears to be highly conserved amongst 
vertebrates and insects with vertebrate-like clocks, suggesting this repressive action by CRY is crucial 
(Yuan et al., 2007). Emerging evidence of differential repressive actions of PERs and CRYs fits well 
with studies showing spatiotemporal separation of these two repressors.
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Ancillary loops

Further feedback loops (Figure 1.3) encompassing Rev-Erbα-β (genes Nr1d1 and Nr1d2), retinoid-
related orphan receptors α-γ (RORα-γ), D-box binding protein (DBP), hepatic leukaemia factor 
(HLF), thyrotroph embryonic factor (TEF), and nuclear factor interleukin-3 regulated (NFIL3, also 
known as E4bp4) tune the core circadian TTFL and facilitate cross-talk with other cellular systems. 
Whilst cyclic BMAL1 is not strictly required for generating circadian rhythms it does improve ro-
bustness and coupling with output genes (Liu et al., 2008). In brief, CLOCK:BMAL1 drive rhythmic 
expression of the repressors Rev-Erbα/β which compete with activating RORs at retinoic acid-related 
orphan receptor (ROR) binding elements in the promoter of Bmal1 (Sato et al., 2004) to yield cyclic 
BMAL1 protein in antiphase with PER expression (Preitner et al., 2002). Rev-Erb couples BMAL1 
to the core TTFL as it is itself activated and repressed by CLOCK:BMAL1 and CRYs/PERs respec-
tively (Preitner et al., 2002). Completing the ancillary loops is DBP, TEF, HLF activating D-box 
elements, competing with the repressor NFIL3, which has been shown to regulate transcriptional 
activity of PER1 (Mitsui et al., 2001). These extra loops expand the temporal control that the 
clock can exert thorough varied phasing via supplemental protein-protein interactions and RORE 
and D-Box cis-regulatory elements in genes, with regulation by E-boxes central to circadian control 
of transcriptional (Ueda et al., 2005). Experimentally, these loops have been implicated in coupling 
with other signalling systems such as immunity (Gibbs et al., 2012) and metabolism (Zhang et al., 
2015).

Figure 1.4: Transcription of clock controlled genes by CLOCK:BMAL1 complexes proceeds in 3 distinct phases; 
active, early repressive, and late repressive phases. PER:CRY complexes act to remove CLOCK:BMAL1 from DNA 
whereas CRY1 acts alone during the late repressive phase to block transcriptional co-factor CBP and p300 from 
associating with CLOCK:BMAL1 thus preventing transcription and placing CLOCK:BMAL1 in a ‘poised’ state. 
During the active phase CLOCK:BMAL1 can activate transcription of E-Box sites as the repressors have been removed 
by degradation. Circadian time (CT) refers to the subjective time of the clock, with CT0 defined as the start of activity 
(lights on for diurnal animals).
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1.3 Mathematical modelling

1.3.1 Overview

Mathematical modelling approaches have been used in many previous studies to investigate molec-
ular networks in numerous cell-signalling circuits, spanning inflammatory responses, DNA damage, 
hypoxic-response, cell cycle, apoptosis, and neuronal differentiation amongst others (Goldbeter, 1991; 
Fussenegger et al., 2000; Nelson et al., 2004; Bagnall et al., 2014; Chong et al., 2015; Phillips et al., 
2016). Depending on what is desired from a model, there are different approaches that may be taken, 
spanning from models of single molecule interactions (Forger and Peskin, 2003; Gonze and Ruoff, 
2021) to whole organisms. Recent studies have used light intensity, heart rate, activity, and tem-
perature measurements taken from personal monitoring devices to predict an individual’s circadian 
rhythms and phase (Huang et al., 2021; Lévi et al., 2020). Each of these systems may be modelled 
in a variety of ways, such as by solving systems of differential equations, stochastic modelling, and 
simple oscillatory models (Strogatz, 2018; Forger, 2017). The cellular circadian circuitry has been 
mathematically modelled in several studies across the last decade in many different organisms. These 
studies have used both deterministic and stochastic approaches, with notable models by Gonze and 
Goldbeter (2006) and Forger and Peskin (2003). In this thesis, I build upon the ideas from these 
models, focusing on how molecules move and interact to generate circadian rhythms as part of the 
cell autonomous clock mechanism, primarily within fibroblast cells.

To build effective mathematical models, it is essential to appropriately apply statistics, as sta-
tistical techniques are used to fit models, decide which models to use, and infer the parameters of 
a model. One of the main uses of statistics within this thesis is for estimating the parameters of a 
model based on observed data. I also utilise statistics to discriminate which model out of a set of 
candidate models best explain the data.

1.3.2 Modelling molecular processes in biology

Mathematically modelling biomolecular processes, such as gene regulatory networks, can aid in un-
derstanding the topology (structure) of interactions, infer unseen species, and predict outcomes. It 
is now understood that regulatory networks are made up of collections of many different motifs that 
repeat throughout nature, such as simple feed-forward and negative feedback loops (Alon, 2007). At 
the lowest level, biomolecules can be modelled as particles moving through time and space, which 
may interact with other molecules depending on their proximity and their electrostatic affinity. The 
binding of proteins has also been modelled by considering the ensemble of electrostatic forces orig-
inating from their constituent amino acids. However, this level of detail is prohibitively difficult 
to model and simulate for all but the simplest cases. As such, abstractions of these processes are 
required to fully capture the immense number of molecules present within a cell and the interactions 
between them. Typically, rates of reaction and collections of molecules are used to simplify models 
by aggregating individual processes into an average. In this manner, spatial dynamics can be ignored 
and reactions can be modelled purely in time.

Molecular processes are most often modelled as either mass action kinetics or abstractions of 
multiple steps such as via Micaelis-Menten or Hill dynamics (Figure 1.5), which define rates of 
reaction that can be used to construct systems of coupled ordinary differential equations. In the 
simple case of the law of mass action, the kinetics of a reaction producing species 𝑍 from species 𝑋
and 𝑌 binding one another is proportional to the product of the concentration of 𝑋 and 𝑌, such that

𝑑𝑍
𝑑𝑡

= 𝑘𝑋𝑌 (1.1)

where 𝑘 is the rate constant (Voit et al., 2015). This is often used to represent dimerization reac-
tions. Reactions may also be enhanced by catalysts such as enzymes, which speed up the process of 
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producing 𝑍 from 𝑌, with the rate of reaction dependent on the concentration of 𝑋 (𝑋 is not used up 
during this reaction). The rate of this reaction was derived for enzymatic activity by Michaelis and 
Menten in 1913 (Briggs and Haldane, 1925; Johnson and Goody, 2011) and has since been known 
as Michealis-Menten dynamics. Michaelis-Menten dynamics are a special case of the Hill function 
whereby the reaction is further mediated by cooperativity, 𝑛, between molecules of 𝑋 such that 
activation typically only proceeds when n molecules of 𝑋 act at once. The Hill function is given by

𝑍 = 𝑋𝑛

𝐾𝑛 + 𝑋𝑛 𝑌 (1.2)

for a Michaelis constant 𝐾 defining the concentration at which 𝑋 rapidly promotes the reaction, see 
Figure 1.5. Michaelis-Menten dynamics are recovered from the Hill function when 𝑛 = 1.

Figure 1.5: Models of reaction rate kinetics. Different rates of reaction over concentrations of X. Mass action is 
linear in 𝑋, whereas non-linear Michaelis-Menten and Hill functions saturate for large values of 𝑋 compared with the 
rate constant 𝐾. Hill functions become more ‘switch-like’ as the cooperativity index n increases as seen in the black 
(𝑛 = 1), orange (𝑛 = 2), and purple (𝑛 = 4) lines. 50% activation is achieved when 𝑋 = 𝐾 and can be seen by the 
black dashed line.

Explicit time delays may also be added to models to represent processes such as expression of 
a gene following transcription, or a delay in repression after production (Novák and Tyson, 2008). 
However, pure delays often lead to artefacts and over prediction of phenomena like oscillations as 
well as being difficult to numerically solve. Recent progress has been made to address these issues 
using delay adapted Kalman filters (Calderazzo et al., 2019; Burton et al., 2021).

If molecular species abundance is low, as is the case for the usual 2 copies of a genes or a low 
expression transcription factor, then stochasticity prevails. Commonly used systems of deterministic 
ODEs cannot capture these heterogenous processes, instead reactions can be translated into sets of 
reaction processes described by propensities and simulated using a stochastic simulation algorithm 
such as the Gillespie algorithm (Gillespie, 1976). Alternatively, the hybrid approach provided by the 
chemical Langevin equations can model stochastic processes as they add a noise terms to ordinary 
differential equations (Gillespie, 2000).

1.3.3 Parameter estimation and model fitting

When model parameters are not known we may use data to constrain them. This model fitting can 
be used to find unknown parameters in order to create a predictive model or to infer parameters as an 
end goal, i.e. finding diffusion rates from confocal microscopy fluorescence recovery after bleaching 
(FRAP) experiments (Sprague and McNally, 2005). Model fitting, also known as parameter inference, 
is mathematically defined as an ‘inverse problem’ where the objective is to determine the parameters 
of a model that produced the data that we observe. The ‘forward problem’ of making predictions from 
a model for a specific set of parameters can often be done quickly either analytically or numerically 
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solved on a modern computer, however the inverse problem is typically non-trivial for all but the 
simplest models. Many combinations of parameters often give rise to the same predictions.

In the simplest instance, linear models can be fit with well-defined least squares minimisation 
algorithms which find the optimal gradient and intercept along with an estimation of the variance 
on both (Miller, 2006). When models become non-linear they can be fit in a similar manner, but 
this procedure is especially prone to getting trapped in local minima, overfitting to noise, and un-
derestimation of errors (Motulsky and Ransnas, 1987), especially for high dimensional models with 
many unknown parameters. Algorithms like simulated annealing and genetic algorithms can over-
come issues of fitting to local minima by randomly generating initial parameter guesses (Bertsimas 
and Tsitsiklis, 1993; Mirjalili, 2019).

Both Frequentist and Bayesian approaches can overcome some of these challenges by implementing 
a more principled mathematical framework for parameter inference. Statistics provides a set of tools 
to that can be used to find the most likely parameter values given data or the distribution of potential 
values in the case of frequentist and Bayesian paradigms respectively (Wood, 2015).

Bayesian inference

The Bayesian approach treats the parameters 𝜃 as random variables that follow a probability dis-
tribution (Wood, 2015). Initial beliefs about these parameters are also encoded in the ‘prior’, 𝑝(𝜃), 
which when combined and normalised by the ‘evidence’, 𝑝(𝑦), according to Bayes’ theorem gives the 
‘posterior’

𝑝(𝜃│y) = 𝑝(y|𝜃)𝑝(𝜃)
𝑝(y)

, (1.3)

where 𝑝(y|𝜃) is known as the likelihood. In simple terms, this is the probability over the parameters 
given the data and our prior beliefs. The likelihood can be thought of as the model of the system, 
taking in parameters 𝜃 and yielding a distribution of possible data 𝑦. Additionally, the evidence is 
given by

𝑝(y) = ∫
𝜃

𝑝(y│𝜃)𝑝(𝜃)𝑑𝜃 (1.4)

and in many cases it is hard or even impossible to integrate this term. Fortunately, as it only 
normalises the posterior, the marginal likelihood is commonly ignored. Defining the likelihood, 
𝑝(y|𝜃), is often the most difficult task when utilising this framework as the model may not be 
analytically tractable as it often defined by an integral. When this typically high dimensional integral 
cannot be solved in closed form it may instead be sampled via Markov chain Monte Carlo techniques 
such as Metropolis-Hastings random walks (Hastings, 1970) or Hamiltonian Monte Carlo (HMC) 
(Betancourt, 2017). In MCMC, a Markov chain is constructed that explores the parameter space 
and generates a set of samples from the posterior distribution. The samples can then be used to 
make inferences about the parameters, such as the mean and variance of the posterior distribution. 
MCMC is guaranteed to provide the solution given enough iterations, however it is non-trivial to 
setup and is computationally intensive (Betancourt, 2017).

Inferring parameters in this fashion has gained popularity in recent years for its principled mathe-
matical underpinnings and promise of truthful uncertainty quantification given noisy data. Bayesian 
inference has been applied in many areas and - closer to the aims of this thesis - for inferring param-
eters governing transcription of mRNA (Jenkins et al., 2013; Hey et al., 2015; Featherstone et al., 
2016; Gómez-Schiavon et al., 2017).
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Frequentist approach: maximum likelihood estimation

In the frequentist approach, parameters are estimated based on the maximum likelihood principle 
such that parameter values that make the observed data more probable are more likely to be true. 
Hence the name maximum likelihood estimation (MLE). Similarly to Bayesian inference, in the 
frequentist framework, probability distributions, are also used to the model the chance of observing 
the data, y ∈ 𝑌, given the parameters, 𝜃 ∈ Θ, where 𝑌 and Θ are Banach spaces (Stuart, 2010). This 
probability is often written as 𝑝(y|𝜃) (Wood, 2015). As the data is a known quantity that is fixed, 
the probability distribution of 𝜃 given y, known as the likelihood 𝐿(𝜃|y), is equal to the model, such 
that

𝐿(𝜃|y) = 𝑝(y|𝜃). (1.5)

When considering complex models, 𝑝(y|𝜃) may be made up from joint distributions, thus it is common 
to work with the log-likelihood, 𝑙(𝜃|y) = log 𝐿(𝜃|y), to convert multiplicative terms into summations 
of logarithms of distributions. Finally, the point estimate for the parameters 𝜃 is found by maximising 
this log-likelihood

̂𝜃 = argmax
𝜃∈Θ

𝑙(𝜃|y). (1.6)

In practice this procedure is often accomplished via computational methods. However, if the likeli-
hood is differentiable over the space Θ, then the maxima of 𝑙 with respect to 𝜃 can be determined 
by differentiating as

𝜕𝑙
𝜕𝜃

∣
̂𝜃
= 0 (1.7)

(Haynes, 2013). MLE is generally equivalent to the maximum a posteriori (MAP) estimation with 
uniform prior distributions when viewed within a Bayesian inference framework. In general, MLE 
is asymptotically normal and is an efficient estimator as the sample size tends to infinity (Pfanzagl, 
1994).

Choosing the right model with model selection

When constructing a predictive mathematical model of a process, there are often a number of possible 
candidate models that might explain the data. Some models can describe the data more effectively by 
employing a larger number of parameters to capture the underlying process more precisely. However, 
highly complex models tend to face identifiability issues; the true value of certain parameters may 
remain elusive, even with infinite observations. One solution is to increase the dimensionality of 
the data, enabling the model to fit to more of the outputs of the process being modelled. If that 
approach is unfeasible, a simpler model that can adequately fit the available data becomes preferable. 
Identifying the most parsimonious model presents a non-trivial problem, and it often falls to the 
modeller’s intuition to strike an appropriate balance between model complexity in the context of 
available data (Forger, 2017). Various statistical techniques exist to find the most optimal model 
through model selection. One notable measure is the Akaike Information Criterion (AIC), which 
assigns higher scores to models based on their data fit, adjusted for the number of free parameters. 
The AIC score is defined as

AIC = 2𝑘 − 2 ln �̂� (1.8)

where 𝑘 is the number of free parameters and �̂� is the maximum likelihood (Akaike, 1974). In the 
case of non-linear least squares fitting where errors are distributed according to independent and 
identical normal distributions, �̂� is equal to the sum of squared errors. Lower AIC scores indicate 
the candidate model is more suitable as models with too many parameters are penalised. A similar 
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measure called the Bayesian Information Criterion (BIC) was developed shortly after by Schwarz
(1978) and is a harsher measure on the number of free parameters by increasing the penalty with 
the number of data points 𝑛 from 2𝑘 to 𝑘 log (𝑛), where 𝑛 is the number of data points. As such BIC 
reduces the likelihood of overfitting to data, a common problem in high dimensional models with 
lots of data. The BIC is similar to the AIC, but places a stronger emphasis on model complexity. 
The BIC rewards models that fit the data well and heavily penalises models with a large number of 
parameters. The advantage of BIC is that it is less biased towards models with many parameters 
than the AIC. However, it can be overly stringent and may not be suitable for all types of data. Both 
the AIC and BIC are based on the maximum likelihood principle and assume that the likelihood 
provides a valid approximation. Both AIC and BIC are asymptotically unbiased and perform well 
for large sample sizes. For small sample sizes, the corrected AIC score, AICc, with an extra penalty 
for the number of parameters, is used (Hurvich and Tsai, 1989). AIC consistently selects models 
with better predictive power. However, it is not guaranteed to choose the true model from a set of 
candidate models, even with an infinite number of observations. In contrast, BIC excels at selecting 
the true model, as it is guaranteed to do so given enough data (Chakrabarti and Ghosh, 2011). In 
either case, the uncertainty in the estimates of the parameters is not accounted for. In summary, 
solely relying on these criteria can lead to the selection of an inappropriate model. It’s essential to 
choose models that not only are useful but also capture uncertainty accurately.

Cross-validation can also be used to assess the ability of a model to generalise to new data. 
Data are divided into a training and validation sets, with the model fit to the training set and its 
predictions evaluated on the validation set. The advantage of cross-validation is that it provides an 
estimate of model performance on new data, but it can be computationally intensive for complex 
models and requires a large sample size. Obtaining a large enough sample size for cross-validation 
from biological experiments is often difficult, limiting its use. All of these techniques have their 
advantages and disadvantages when used in practice. It has been shown that leave-one-out cross-
validation is asymptotically equivalent to AIC (Stone, 1977). BIC is also asymptotically equivalent 
to leave-k-out cross-validation (Shao, 1997).

1.3.4 Current mathematical models of the clock

Analysing oscillatory timeseries data

How can we use oscillatory models to deepen understanding and answer research questions? In the 
study of biological rhythms, we are often concerned with whether timeseries data, such as from ChiP-
seq (Koike et al., 2012) or bioluminescent tagged proteins (Yoo et al., 2004), are cycling and if so 
with what period, amplitude, and phase. Several tests and computer algorithms have been developed 
for this purpose, such as the statistical models based on based on spectrum resampling (Costa et al., 
2013), Fisher’s G statistical test (Fisher, 1929; Wichert et al., 2004) and JTK_CYCLE (Hughes 
et al., 2010) as well as those fitting cosine functions such as COSOPT (Panda et al., 2002a) and 
ARSER (Yang and Su, 2010). These types of analyses are useful in exploratory analyses of putative 
oscillatory data, as they do not make assumptions about the underlying oscillatory structure arising 
from molecular or cellular interactions. Insights gained from this can be used to inform hypotheses, 
further experimentation, and mechanistic models.

Biological oscillators and limit cycles

Lotka and Volterra studied oscillations in biological and chemical systems by deriving differential 
equations with undamped solutions from examining the interactions between a predator and prey 
species as well as the law of mass action respectively (Lotka, 1920). In the 1960s Brian Goodwin 
began studying biological oscillators in mathematical detail following reports of feedback inhibition 
of genes (Jacob and Monod, 1961). Goodwin constructed an ODE model of two variables, 𝑋 and 𝑌, 
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which represented mRNA, 𝑋, and its protein product, 𝑌, evolving through time, see Figure 1.6(A-
C), in which 𝑌 represses the production of 𝑋 according to the non-linear term 𝐾/(𝐾 + 𝑌 ), for 
constant 𝐾 (Goodwin, 1965). Numerical integration of these equations, such as via the Runge-Kutta 
method, yields oscillations, see Figure 1.6D. The non-linearity of repression is vitally important 
as the level of repression is initially small for small 𝑌, rapidly increasing when 𝑌 ≈ 𝐾, and then 
saturating, without which there is insufficient delay in the system to sustain oscillations (Novák 
and Tyson, 2008). Goodwin went on to model how two oscillators may couple and interact, finding 
that, depending on specific choices of parameters, the two may entrain one another, synchronise 
in different phases or quench the other, foreshadowing many experimental findings to come from 
coupled biological oscillators such as cells in the SCN.

Figure 1.6: The two-variable Goodwin model. (A) Model of an mRNA, X, translated into protein, Y, which 
represses the production of X. (B) Coupled ordinary differential equations defining the model in (A) with linear 
degradation terms. (C) A modified form of the model in (B) whereby degradation follows Michaelis-Menten dynamics. 
(D) Oscillations obtained by numerical integration of the two-variable model given in (B), for the following parameter 
values: 𝛼1  =  2, 𝛼2  =  1, 𝛿1  =  𝛿2  =  1, 𝐾  =  0.5. At time t�=�30 the value of the variable X was increased. 
Reproduced with permission from Springer Nature and adapted from Gonze and Ruoff (2021).

Stable biological oscillators, like the circadian clock, should be insensitive to small perturbations 
and not overly reliant on the initial conditions of the system. Goodwin’s original two state oscilla-
tor does not fulfil these conditions, see Figure 1.6, as any perturbation will permanently shift the 
oscillator into a new regime, hence Goodwin sought to correct this problem. Goodwin solved these 
issues by adding in a third component, 𝑍, which conferred the system self-sustaining oscillations that 
are protected against perturbations. This type of oscillatory regime is known as a stable limit cycle, 
whereby a stable orbit exists that trajectories close to will decay to (Strogatz, 2018). Stable limit 
cycles are now widely accepted to describe many biological oscillators (Goldbeter, 1996; Forger, 2017) 
and have been used to explain counterintuitive phenomena. Stochastic phasing of the circadian clock 
between individual Cyanobacteria after temperature pulses has been explained by the proximity of 
the trajectory to the singularity after perturbation, leading to either close or random phasing of 
individual oscillators depending on the phase when the pulse was given (Gan and O’Shea, 2017).
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Non-linearity, cooperativity, and multiple loops are required for stable oscillations

Part of Goodwin’s successful creation of a stable limit cycle oscillator with 3 variables was the use 
of a Hill function (𝑓 = 𝐾𝑛/(𝐾𝑛 + 𝑍𝑛)), which modified the Michaelis-Menten type dynamics (when 
𝑛 = 1) by the degree of cooperativity (defined by 𝑛) required to repress production of 𝑋, see Fig-
ure 1.5. Cooperativity is the simultaneous number of components required to initiate or repress 
a process and in the 3 component Goodwin oscillator it has been shown that an implausibly high 
degree of cooperativity (𝑛 > 8) is required for the limit cycle to exist (Griffith, 1968). Fortunately, 
modification and addition of non-linear terms in degradation, production, and repression all aid in 
reducing required cooperativity. In the case of gene regulatory networks, cooperativity represents 
multiple possible processes, examples include multiple binding sites within a genes promoter, forma-
tion of complexes to either activate or repress the gene (Keller, 1995), and multi-site phosphorylation 
(Gunawardena, 2005). It is perhaps no surprise then that we find significant use of phosphorylation 
in cellular control mechanisms in addition to dimerization in many biological systems from NF-κB 
binding its repressor IκB to CLOCK:BMAL1 binding with PERs and CRYs.

In practice it is rare to find a bio-molecular process that represents a Hill exponent higher than 
4, hence additional components and loops are often included to widen the parameters over which an 
oscillator will function. Adding in additional steps that are required before repression, improves the 
likelihood of oscillations by reducing the minimum required cooperativity. The greatest reduction 
in the required cooperativity is seen when two or more oscillators are coupled together (Kurosawa 
et al., 2002). A study comparing saturation of ‘in-loop’ kinetics and addition of new processes 
to the loop such as degradation or nuclear import/export – so called branching processes – found 
branch reaction steps best promotes oscillations (Kurosawa and Iwasa, 2002). This has been further 
observed in countless other studies where additional coupled negative or positive loops aid stability 
and generation of rhythms as well as conferring specific properties. Negative feedback loops have 
been shown to have higher sensitivity to amplitude perturbations whilst exhibiting lower period 
sensitivity than positive feedback loops (Baum et al., 2016). Hence, stable biological oscillators are 
usually delayed negative feedback loops as it is hard to perturb their period, whereas rhythms in 
the heart and cell cycle instead utilise feedforward loops to tune their frequency whilst maintaining 
consistent output amplitude (Tsai et al., 2008). Combinations of positive and negative feedback loops 
can expand the range of parameters over which oscillations are permitted, explaining the combination 
of negative feedback (PERs and CRYs) and positive feedforward loops (Rev-Erbs and RORs) in the 
circadian clock (Relógio et al., 2011). Overall, these studies demonstrate how long period circadian 
oscillations – much longer than the half-life of the most long-lived oscillatory component – are built 
up from multiple fast processes occurring on the order of seconds to minutes.

Are circadian clocks damped noisy oscillators?

All molecular processes demonstrate noise, also known as stochasticity, resulting from both intrinsic 
and extrinsic sources. Biological oscillators are no exception, which under normal operation are 
stable against small perturbations as previously discussed. However, when molecular numbers are 
low, random noise can become comparable to the mean abundance or significantly perturb the future 
trajectory of the system. Gonze and Goldbeter demonstrated via stochastic simulations that as the 
system size (or total molecular abundance) of a simple 3 component oscillator reduced, the greater 
the relative noise became. Thus increase in noise also increased the variance of the period and 
eventually removed rhythms altogether (Gonze and Goldbeter, 2006). Interestingly, noise can also 
play a part in the emergence of self-sustained oscillations as stochastic transcription, translation, and 
degradation may permit Hill exponents of 1 (Tiwari and Fraser, 1973). The limit of 2 gene copies per 
cell and measurements of low molecular abundance for the clock (Narumi et al., 2016; Smyllie et al., 
2016) suggests that stochasticity must indeed play a role in the circadian clock (Li et al., 2020).

Damped oscillations are often observed in dispersed cells in culture, and in decoupled SCN neurons 
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it has been shown to improve entrainment to a wide range of periods (Webb et al., 2012). It has 
been theoretically argued that a damped oscillator is better able to entrain to external cues than 
one with a stable limit cycle which can oscillate forever without external input (Woller et al., 2014). 
This has a clear interpretation for circadian clocks within multicellular eukaryotes (i.e. mammals); 
weak, coupled, and easily entrainable oscillators possess superior qualities for coordinating 24-hour 
processes rather than strong and rigid oscillators (Gonze et al., 2005; Komin et al., 2011). A recent 
study by Unosson et al. (2021) demonstrates that the circadian oscillations of cells in the dorsal 
region of the SCN shift more upon entrainment when compared with the central region. This finding 
highlights the balance between robust rhythms and the ability to entrain to environmental cues.

Models of the mammalian clock predict rapid DNA binding and strong protein-protein interactions

Biologically accurate and expansive mathematical models of the mammalian circadian clock have re-
vealed common motifs and design principles upon which these clocks are built (Leloup and Goldbeter, 
2003; Mirsky et al., 2009). As previously discussed, combinations of additional loops and coupling 
improve robustness of the clock and its tunability, which seems essential for proper clock regulation 
in mammals (Becker-Weimann et al., 2004; Relógio et al., 2011). Forger and Peskin also introduced 
a deterministic ODE model (Forger and Peskin, 2003) of the mammalian clock which included the 
core TTFL (PER/CRY), which was followed up by a stochastic version (Forger and Peskin, 2005). 
Interestingly, for their stochastic model to produce robust 24-hour rhythms, similar to the original 
deterministic model, required fast kinetics on the promoter in the order of seconds, accurately pre-
dicting findings that came years later that showed CLOCK:BMAL1 binding to the DBP promoter 
of approximately 10 seconds (Stratmann et al., 2012). Moreover, duplications of similar genes with 
similar functions such as the two isoforms of PERs and CRYs further improved this effect. Forger and 
Peskin also found that decreasing the number of nuclear transcription factors (TFs) exponentially 
increased the variance of the period from around 1 hour for 4000 nuclear TFs to approximately 3 for 
500 TFs. Kim and Forger (2012) also showed that for the mammalian TTFL the 1-1 stoichiometry 
between repressors (PERs and CRYs) and activators (BMAL1, CLOCK/NPAS2) is vital to robust 
circadian rhythms. Outside of a narrow range of stoichiometries the clock is rendered arrhythmic. 
Strikingly, the tighter the binding, 𝐾𝐷 = 100 − 103 nM, between the repressors to the activators 
the wider the range of allowed stoichiometries. Furthermore, strong affinities between repressive and 
activating proteins confers ultra-sensitivity to changing levels of repressors, permitting fast switching 
from repression to activation.

1.3.5 Diffusion: modelling molecular over time and space

All molecules, including proteins and RNA, must diffuse across the cellular environment to perform 
their necessary functions. This molecular movement can be modelled by its diffusion characteristics, 
defined by the diffusion coefficient 𝐷 and anomalous parameter 𝛼. The diffusion coefficient links the 
mean squared displacement (positional variance) with the elapsed time as

MSD = 4𝜋𝐷(Δ𝑡)𝛼. (1.9)

Normal diffusion occurs when 𝛼 = 1 (Einstein, 1905; von Smoluchowski, 1906). Anomalous diffusion, 
characterised by 𝛼 ≠ 1, describes both sub- and super-diffusion, the former being due to confinement 
and molecular interactions with slow or immobile substrates whereas super-diffusion is due to active 
transport or flow (Höfling and Franosch, 2013), see Figure 1.7A. Thus, quantifying the diffusion of 
different molecules within living cells can elucidate how these molecules are interacting with the 
cellular environment.

Contrary to normal diffusion (known as Brownian motion), molecules can interact with the cellular 
environment in complex ways. This can include interactions with other molecules, barriers, obstacles, 
and active transportation mechanisms. Within the cytoplasm molecules can be crowded out, confined 
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to membranes, or actively transported. In the nucleoplasm molecules must contend with packed DNA 
and the nuclear matrix crowding the space. If a molecule binds DNA then it will interact with the 
long and winding DNA strands in complex patterns by sliding, hopping, and transferring between 
strands (Schmidt et al., 2014), see Figure 1.7B.

Figure 1.7: Diffusion. (A) Mean squared displacement (MSD) from an initial position is characterised by the 
elapsed time, Δ𝑡, diffusion coefficient 𝐷, and anomalous exponent 𝛼 as ⟨𝑟2⟩ = 4𝜋𝐷(Δ𝑡)𝛼. Inserts show representative 
molecular trajectories for super-diffusion (teal), normal diffusion (black), and sub-diffusion (purple). (B) Modes of 
DNA binding proteins diffusing in the nucleus, including normal 3D diffusion, molecular crowding in 3D, 1D sliding 
and hopping, and 2D intersegmental transfer. Adapted from Schmidt et al. (2014).

DNA binding molecules sub-diffuse with anomalous exponents below one, decreasing in relation to 
their extent of interaction with DNA, see Figure 1.7B. Even without binding DNA, molecules within 
the nucleus are confined by the crowded conditions. Several modes of movement for DNA binding 
molecules exist, with the simplest defined by histones which semi-permanently bind DNA, and the 
most complex by transcription factors (TFs). TFs search the genome for their complimentary binding 
sites by executing a ‘linear search’, landing on DNA and sliding along the DNA in 1 dimension. TFs 
may also hop along strands of DNA or transfer between different strands to further speed up their 
search for their binding sites. Without these much faster 1D and 2D modes TFs would likely be 
incapable of properly regulating the full repertoire of genes across the billions of base pairs found in 
mammalian genome if they only relied on normal 3D diffusion (Schmidt et al., 2014).

1.4 Experimentally quantifying molecular systems

1.4.1 Fluorescence microscopy: observing protein with molecule ‘light bulbs’

Live-cell protein reporters give researchers access to longitudinal measurements in bulk or single 
cells, without the multiple drawbacks of antibody based biochemical protein assays such as western 
blotting and immunohistochemistry. Both luminescent and fluorescent protein reporters provide 
dynamic, temporal assays of protein abundance.

The luminescent protein luciferase (LUC) has been extensively used to track protein expression 
or promoter activity when measured using sensitive photomultiplier tubes (PMT) and provide the 
most sensitive tag for imaging as the only signal in dark conditions will be due to the luciferase in-
teracting with its substrate luciferin, ATP, and oxygen to produce photons (Spiller et al., 2010). Yet, 
luciferase imaging is limited by its long integration times (∼10 minutes) reducing its applicability for 
studying fast processes. Fluorophores are far more useful when investigating protein dynamics due 
to the superior spatial and temporal resolution in addition to a multitude of colours available for tag-
ging. Furthermore, powerful confocal microscopes are now capable of detecting less abundant tagged 
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proteins by using very sensitive detectors and overcoming issues of auto-fluorescence by spectral or 
fluorescent lifetime separation. Fluorescent proteins are also amenable to study through quantita-
tive techniques, such as fluorescence recovery after photobleaching (FRAP), fluorescence correlation 
spectroscopy (FCS), and fluorescence cross-correlation spectroscopy (FCCS).

The first fluorescent protein, Green Fluorescent Protein (GFP), was isolated from the jellyfish 
Aequorea Victoria, which exhibited green fluorescence (emission 𝜆max = 509 nm) when exposed to 
UV/blue light (Prasher et al., 1992). Shortly after it was shown that GFP could be fused to another 
protein via genetic manipulation to create stable fluorescent fusion proteins (Chalfie et al., 1994). 
The discovery and development of GFP as a reporter earned Roger Y. Tsien, Osamu Shimomura, 
and Martin Chalfie the Nobel prize in Chemistry in 2008. A wide-ranging catalogue of fluorescent 
proteins now exists for imaging over a wide range of wavelengths from blue to far-red that are codon 
optimised for expression in mammalian cells (Lambert, 2019).

Figure 1.8: Confocal microscopy images of primary fibroblasts in culture that have been genetically engineered to 
express (left) PER2:LUC luminescence, (middle) PER2::VENUS fluorescence, and (right) BMAL1::VENUS fluores-
cence.

Luminescence and fluorescence have been utilised to visualise several components of the circadian 
clock. Circadian experiments often used the fusion reporter PER2::LUC, with oscillations in bio-
luminescence found in explants of the SCN as well as peripheral tissues, including liver, lung and 
heart (Yoo et al., 2004; Liu et al., 2007; van der Veen et al., 2012). Imaging of tissue explants over 
6-weeks have revealed robust oscillations that don’t dampen over time, merely becoming desynchro-
nised within a population (Leise et al., 2012). Recently, quantification by FCS of key proteins PER2 
and BMAL1 has been facilitated via fusion with the fluorescent protein Venus (Smyllie et al., 2016; 
Yang et al., 2020), see Figure 1.8.

1.4.2 Measuring protein binding to DNA by watching its movement using Fluorescence 
Recovery After Photobleaching

Fluorescence Recovery After Photobleaching (FRAP) is a single-cell bulk measurement of the be-
haviour of fluorescent molecules (here typically fluorescent fusion proteins) developed in 1976 (Ax-
elrod et al., 1976; Koppel et al., 1976) and has since seen successful used for in vivo measurements 
(Sprague and McNally, 2005). In FRAP, high intensity laser light is used to permanently bleach 
fluorescent molecules within a region of interest (ROI) to observe the resulting recovery of fluores-
cence into the ROI, Figure 1.9A. This recovery reveals kinetic information about the molecules as 
they diffuse into the ROI from surrounding non-bleached areas. Fluorescence Loss in Photobleaching 
(FLIP) is a derivative of this technique which examines loss of florescence in a non-bleached portion 
of the cell, i.e. the cytoplasm, after bleaching a different cellular compartment such as the nucleus, 
which in this example would yield the nuclear import rate (Spiller et al., 2010).
Exact recovery profiles for FRAP vary due to the size of the bleached ROI and how labelled pro-
teins move, slower diffusing proteins (larger molecules) recover slower than those with high diffusion 
coefficients. Furthermore, different regimes of molecular movement, such as DNA binding and con-
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Figure 1.9: Fluorescence recovery after photobleaching. (A) Confocal microscopy images of BMAL1:EGFP 
before and after photobleaching of a region (white dotted circle) (B) Representative recovery of fluorescence within the 
bleached region. The speed of recovery is related to the diffusion of BMAL1:EGFP binding with relatively immobile 
DNA.

finement, also alter recovery profiles in a distinguishable manner (Sprague and McNally, 2005). For 
example, free GFP recovers in under a second and is well fit by a simple diffusion model, whereas 
when fused with certain proteins fluorescence can take seconds or even minutes to recover (Carrero 
et al., 2003). Processes like DNA binding can uncouple diffusion from the recovery process as the 
rate of binding is significantly slower than diffusion. This can be understood as non-observable fluo-
rescent fusion proteins that have bleached fluorophores ‘blocking’ binding sites until they vacate the 
site according to their characteristic off rate 𝑘OFF. Diffusion can often be neglected when fluorescent 
molecules move across the ROI much faster than the binding kinetics, in which the recovery curve is 
fit by

𝑓(𝑡) = 1 − 𝑘ON
𝑘ON + 𝑘OFF

𝑒−𝑘OFF𝑡 (1.10)

where 𝑘ON is the association rate (Sprague et al., 2004), see Figure 1.9B. In this regime the two 
rates rates are strictly positive, with the effective on-rate 𝑘ON typically between 102 − 108 M−1

s−1. Additionally, the off-rate 𝑘OFF has been measured to be of the order 10−4 to 100 s−1 for 
chromatin remodelling proteins and transcription factors respectively (Hettich and Gebhardt, 2018). 
In most analyses of DNA binding by FRAP finding the association rate is neglected and only 𝑘OFF
is considered.

As FRAP is a bulk measurement of many proteins across a significant proportion of the cell 
(>10%), it can suffer from identifiability issues when selecting a model. Proteins that exhibit different 
modes of movement at similar frequencies will be averaged over, obscuring which model is the best fit 
to the data. Hence, knowledge about expected dynamics and controls involving unfused fluorescent 
molecules are crucial to reliable quantification of FRAP measurements (Sprague and McNally, 2005).

1.4.3 Fluorescence Correlation Spectroscopy: counting photons from fluorescent pro-
teins to quantify their concentration, diffusion, and interactions

Fluorescence correlation spectroscopy

Fluorescence correlation spectroscopy (FCS) is a powerful microscopy technique that determines the 
absolute count of fluorescent molecules in a solution or within a cell. This determination is achieved 
by analyzing the fluctuations in the number of photons observed within a small confocal volume, 
approximately 1 fL (Schwille et al., 1997) (Figure 1.10A). In the FCS setup, a pinhole blocks out-
of-focus light, ensuring that fewer than 1000 molecules contribute to the observable signal at any 
given moment (Liu et al., 2015). Intuitively, the total rate of observable photons is directly propor-
tional to the number of molecules, 𝑁, and the brightness per molecule. This principle is employed 
by the closely related photon counting histogram (PCH) technique (Chen et al., 1999). However, 
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accurately measuring molecular brightness presents challenges, primarily because it necessitates cali-
bration against known fluorophore concentrations. Consequently, the applicability of PCH in in vivo 
studies is restricted as the brightness of a fluorescent molecule can be influenced by its surroundings. 
For instance, fluorescent proteins display varying emission characteristics across different pH levels 
(Kneen et al., 1998).

Figure 1.10: Fluorescence correlation spectroscopy. (A) Schematic of green fluorescent molecules diffusing in 
a small illuminated confocal volume (shaded). (B) Binned photon counts detected from fluorescent particles diffusing 
within the illuminated confocal volume. (C) Auto-correlation of the counts over progressively longer lag times. an 
interacting pair of proteins. The dark line represents the model fit to the auto-correlation data.

FCS addresses the challenge of molecular brightness by analyzing the fluctuations in the photon 
signal over time, as illustrated in Figure 1.10B. It uses these fluctuations to infer the number of 
molecules and their diffusion rate, eliminating the need to know the brightness of individual molecules. 
The technique involves auto-correlating the signal across successive lag-times, specifically excluding 
a lag time of zero to avoid self-correlation. In this auto-correlation process, the number of observable 
photons shows a high correlation at shorter lag times, diminishing as the lag time between the 
compared time bins increases, as depicted in Figure 1.10C. This diminishing correlation arises from 
molecules diffusing in and out of the observation volume. The auto-correlation at short lag times 
inversely relates to the average number of molecules in the confocal volume. Meanwhile, the declining 
slope of the auto-correlation provides insights into the diffusion rate, 𝐷, of the molecules. Particles 
that diffuse more slowly remain correlated for extended durations, causing a rightward shift in the 
curve. If the fluorescent particles diffuse slower then they remain more highly correlated for longer 
periods of time, thus shifting the curve to the right. The auto-correlation, 𝐺(𝜏), of the photon 
intensity, 𝐼, at time 𝑡 as a function of different lag times 𝜏 is calculated as

𝐺(𝜏) = ⟨𝐼(𝑡)𝐼(𝑡 + 𝜏)⟩
⟨𝐼(𝑡)⟩

− 1 (1.11)

where angled brackets, ⟨⋅⟩, denote the time average. The lag times are greater than 0, thus ensuring 
that 0 < 𝐺(𝜏) < 1. In the case of simple 3D Brownian motion, the auto-correlation of photons given 
a lag of 𝜏 can be modelled as

𝐺(𝜏) = 1
⟨𝑁⟩

(1 + 𝜏
𝜏𝐷

)
−1

(1 + 𝜏
𝑆2𝜏𝐷

)
− 1

2

(1.12)

where 𝜏𝐷 is the diffusion dwell time, 𝑆 defines the shape of the confocal volume such that 𝑆 = 𝑤𝑧/𝑤𝑥𝑦, 
and ⟨𝑁⟩ is the average number of particles in the detection volume (Tian et al., 2011). The radii of 
the Guassian confocal volume in the horizontal axes, 𝑥 and 𝑦, is symmetrical and given by 𝑤𝑥𝑦, with 
the radius in the vertical, 𝑧, direct given by 𝑤𝑧. The diffusion dwell time is related to the diffusion 
rate as

𝐷 =
𝑤2

𝑥𝑦

4𝜏𝐷
. (1.13)
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Models of the auto-correlation are typically fit to data via least squares 𝜒2 minimisation, thus giving 
a point estimate of the parameter values. Beyond simple normal diffusion, there exist a number of 
different theoretical models of correlation curves that can be used to estimate, anomalous diffusion 
coefficients (Höfling and Franosch, 2013), chemical relaxation times (Haupts et al., 1998), triplet 
states (Widengren et al., 1995), and protein-DNA binding kinetics (Michelman-Ribeiro et al., 2009).

Measuring interactions with fluorescence cross-correlation spectroscopy

Figure 1.11: Fluorescence cross-correlation spectroscopy. (A) Schematic of green and red labelled fluorescent 
molecules diffusing in a small illuminated confocal volume (shaded) with the resulting count trace to the right. When 
particles interact the green and red signals are similar. (B) Correlation curves for an interacting pair of proteins. As 
the proteins interact more the cross-correlation between the signals (purple) increases and becomes a greater fraction 
of the auto-correlated curves (green and red).

FCS can be extended to measure molecular interactions by performing FCS simultaneously on 
two interacting molecules labelled with different coloured fluorophores. This dual colour method is 
called fluorescence cross-correlation spectroscopy (FCCS) (Bacia et al., 2006), whereby two spectrally 
distinct fluorophores, typically green and red, are measured simultaneously and auto-correlated in-
dependently (Figure 1.11A). These two sets of photon counts are then cross-correlated according to 
the equation

𝐺Cross = ⟨𝐼𝐺(𝑡)𝐼𝑅(𝑡)⟩
⟨𝐼𝐺(𝑡)⟩⟨𝐼𝑅(𝑡)⟩

, (1.14)

where 𝐼𝐺(𝑡) and 𝐼𝑅(𝑡) are the intensity of green and red photons respectively at time 𝑡. This 
cross-correlation follows a similar pattern to the auto-correlation, i.e. a diminishing correlation over 
progressively longer lag times, see Figure 1.11B. The cross-correlation is greater if the two signals are 
closely matched, which in this instance indicates that the two different sets of particles are moving 
together, from which it can be concluded that the proteins have complexed (Figure 1.11A). Analysing 
the fraction of free to bound components can then be used to determine the dissociation constant as,

𝐾𝐷 = [𝐺Free][𝑅Free]
[𝐺𝑅]

(1.15)

where [𝐺𝑅] = 𝐺cross
𝐺𝐺(0)𝐺𝑅(0)𝑁𝐴𝑉eff

is the concentration of the complex of red and green fluorescent 
molecules. The concentrations of the free green and red complexes are given by [𝐺Free] = 1

𝐺𝐺(0)𝑁𝐴𝑉eff

and [𝑅Free] = 1
𝐺𝑅(0)𝑁𝐴𝑉eff

respectively (Sadaie et al., 2014). Here, 𝑁𝐴 represents the Avogadro con-
stant and the effective confocal volume is given by 𝑉eff = 𝜋 3

2 𝑤2
𝑥𝑦𝑤𝑧. By plotting multiple repeat 

measurements of [𝐺Free][𝑅Free] on the vertical axis against the [𝐺𝑅] the horizontal axis, the 𝐾𝐷 can 
be found from the slope of a line fitted to this data.
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1.5 Aims and objectives

Daily rhythmic processes regulate many cellular, physiological, and behavioural processes in mam-
mals, with their dysfunction leading to adverse health outcomes. Despite clear experimental deter-
mination of key molecular components of the mammalian circadian clock through genetic knock-out 
and mutation experiments, a comprehensive quantitative understanding of the relative contribution, 
role, and importance of these components is yet to be defined. Until recently the necessary tools 
to quantify the clock have been incomplete, namely knock-in fluorescent protein tags at the endoge-
nous circadian gene loci via CRISPR/Cas9 and sensitive microscopy techniques necessary to quantify 
them. Live-cell imaging of proteins in time and space, alongside mathematical modelling, can aid 
our understanding by elucidating the critical rate-limiting constituents and mechanisms. Thus, pre-
dictive models informed by experimental data on top of a solid qualitative understanding of network 
architecture, can deepen understanding and inform future experiments through hypothesis gener-
ation. Furthermore, modelling may uncover experimentally inaccessible parameters and molecular 
species, such as the number of DNA bound molecules and protein-protein complexes. In this project 
I sought to improve and apply quantitative confocal imaging techniques to measuring key clock com-
ponents to inform predictive mathematical models of the circadian clock. Specifically, my aims are 
to:

1. Quantify the abundance of, and interactions between, key circadian clock proteins comprising 
the core molecular circadian clock

2. Mathematically model the circadian clock to understand design principles behind the transcription-
translation feedback loop driving oscillations, to generate new hypotheses and predictions of 
molecular behaviour

3. Develop and implement analytical tools for FCS and FCCS to improve techniques for quantifying 
fluorescently labelled proteins

1.6 Structure

This thesis is presented in the alternative (journal) format and thus three out of the four main results 
chapters (2-4) are presented as scientific articles that are either in-preparation or published following 
peer-review. The final chapter is presented as a traditional body of work that has not been written 
up in the format of a paper. Specifically, the results chapters are:

Chapter 2 Regulation of CLOCK:BMAL1 DNA binding
Contains the article published in eLife Quantification of protein abundance and inter-
action defines a mechanism for operation of the circadian clock (Koch et al., 2022).
In this paper, we present the use of quantitative microscopy methods and mathe-
matical modelling to analyse rhythmic changes in CLOCK:BMAL1-DNA binding and 
its regulation by key repressor proteins, CRY1 and PER2. The quantification of 
CLOCK and BMAL1 proteins through FCS showed that the number of DNA targets 
was approximately 2-10 times more than CLOCK:BMAL1, indicating that this crucial 
transcription factor must rapidly move from site to site. Modelling demonstrated that 
PER2 plays a crucial role in enhancing the mobility of CLOCK:BMAL1 and facilitates 
its binding to new DNA target sites. Additionally, the results from modeling revealed 
that the oscillation of central circadian proteins, including CLOCK:BMAL1, CRY1, 
and PER2, occurs within an optimal range of concentrations and interaction affinities 
to modulate CLOCK:BMAL1-DNA binding. A significant aspect of this publication is 
my custom FCS analysis pipeline, built on traditional time-lagged correlation analysis 
techniques, which plays a crucial role in providing insights into these interactions.
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Chapter 3 Protein-protein interactions in the circadian clock
Contains the in preparation article Anatomy of circadian clock protein complexes in 
live cells. 
In this article in-preparation, we utilise Fluorescence Cross-Correlation Spectroscopy 
(FCCS) to assess the dynamic interactions between 15 key circadian clock proteins 
in live cells. Our findings reveal that the PER2-CRY1 and CRY1-BMAL1 protein 
pairs are the strongest interactors in the circadian network, with dynamic interaction 
strengths that are conserved across various cell types and protein expression levels. To 
determine the direct and facilitated interactions, we introduced new modelling frame-
works and found that the majority of proteins in the circadian network directly bind to 
one another. In some cases, PER2 and BMAL1 were identified as central facilitators, 
forming scaffolds for multi-protein complexes in the repressive phase of the circadian 
cycle. Our results were validated by measuring three-way interactions through FCCS, 
which showed that strong PER2-CRY interactions can strongly stabilise CRY proteins 
and maintain post-translational rhythms of CRY2, independent of transcription. This 
study provides novel insights into the dynamic interactions of various circadian protein 
components within living cells and highlights the pivotal role of key interactions in 
the circadian clock network.

Chapter 4 Improving analysis fluorescence correlation spectroscopy
Contains the in preparation article Accelerated analysis of fluorescence correlation 
spectroscopy.
In this chapter, I introduce new analytical methods for FCS. The limitations of tradi-
tional curve-fitting approaches in FCS analysis are addressed, and alternative meth-
ods based on probabilistic models of molecular diffusion and photon emissions are 
discussed. This culminates in an article, in preparation, that develops an approximate 
likelihood function for FCS measurements, which can be used to estimate molecu-
lar concentration and diffusion rate. The estimators obtained from maximising this 
likelihood function provide improved inferences of these parameters by increasing the 
density of the data. Furthermore, these inferences are based on raw data from FCS 
experiments in the form of photon arrival times, which results in a higher number of 
data points, from approximately 100 to approximately 100,000.

Chapter 5 Designing biological networks with ease: Network Designer
In this concluding chapter, I introduce my new modelling tool, Network Designer. 
This application provides a user-friendly graphical interface for modeling and gen-
erating associated equations to facilitate rapid prototyping of various mathematical 
models. This significantly reduces the likelihood of committing errors commonly en-
countered when manually writing complex systems of coupled ordinary differential 
equations. Network Designer was utilised to generate models of crucial components of 
the circadian system, including the CLOCK:BMAL1 transcription factor binding to 
DNA in chapter 2 and protein-protein interactions leading to ternary complex forma-
tion in chapter 3. I elaborate on the design principles of Network Designer, provide 
illustrative examples of its application, and discuss how it can be adapted for future 
release.
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Chapter 2

Regulation of CLOCK:BMAL1 DNA 
binding

2.1 Journal paper: Quantification of protein abundance and interaction 
defines a mechanism for operation of the circadian clock

Title Quantification of protein abundance and interaction defines a mechanism for oper-
ation of the circadian clock

Journal eLife

Year 2022

Authors Alex A Koch∗, James S Bagnall∗, Nicola J Smyllie, Nicola Begley, Antony D 
Adamson, Jennifer L Fribourgh, David G Spiller, Qing-Jun Meng, Carrie L Partch, 
Korbinian Strimmer, Thomas A House, Michael H Hastings, Andrew SI Loudon

doi 10.7554/eLife.73976

∗ These authors contributed equally

2.1.1 My contributions

My contribution to this paper consisted of conceptualisation, data gathering, software, writing, 
reviewing, and editing. Alongside James Bagnall, I assisted with generation of fluorescent fusion 
cells and performed FCS experiments. I defined the mathematical models and I carried out all 
computational modelling work. Furthermore, I was responsible for programming the FCS analysis 
software with conceptual input from David Spiller, James Bagnall, Thomas House, and Korbinian 
Strimmer.

41

https://doi.org/10.7554/eLife.73976


Koch, Bagnall, et al. eLife 2022;0:e73976. DOI: https://doi.org/10.7554/eLife.73976  1 of 30

Quantification of protein abundance 
and interaction defines a mechanism for 
operation of the circadian clock
Alex A Koch1†, James S Bagnall1†, Nicola J Smyllie2, Nicola Begley1, 
Antony D Adamson1, Jennifer L Fribourgh3, David G Spiller1, Qing- Jun Meng1, 
Carrie L Partch3, Korbinian Strimmer4, Thomas A House4, Michael H Hastings2, 
Andrew SI Loudon1*‡

1Faculty of Biology, Medicine and Health, University of Manchester, Manchester, 
United Kingdom; 2MRC Laboratory of Molecular Biology, Cambridge, United 
Kingdom; 3Department of Chemistry and Biochemistry, University of California, 
Santa Cruz, Santa Cruz, United States; 4Department of Mathematics, University of 
Manchester, Manchester, United Kingdom

Abstract The mammalian circadian clock exerts control of daily gene expression through cycles 
of DNA binding. Here, we develop a quantitative model of how a finite pool of BMAL1 protein 
can regulate thousands of target sites over daily time scales. We used quantitative imaging to 
track dynamic changes in endogenous labelled proteins across peripheral tissues and the SCN. 
We determine the contribution of multiple rhythmic processes coordinating BMAL1 DNA binding, 
including cycling molecular abundance, binding affinities, and repression. We find nuclear BMAL1 
concentration determines corresponding CLOCK through heterodimerisation and define a DNA 
residence time of this complex. Repression of CLOCK:BMAL1 is achieved through rhythmic changes 
to BMAL1:CRY1 association and high- affinity interactions between PER2:CRY1 which mediates 
CLOCK:BMAL1 displacement from DNA. Finally, stochastic modelling reveals a dual role for 
PER:CRY complexes in which increasing concentrations of PER2:CRY1 promotes removal of BMAL1:-
CLOCK from genes consequently enhancing ability to move to new target sites.

Editor's evaluation
The transcriptional negative feedback loop of the mammalian circadian clock is mainly regulated by 
interactions among BMAL1, CLOCK, PER1/2 and CRY1/2 in the nucleus. While the binding of CRY 
with BMAL1:CLOCK is known to block the transcriptional activity of BMAL1:CLOCK and the binding 
of PER:CRY dissociates BMAL1:CLOCK from DNA have been known, our understanding is limited 
in qualitative level. Koch et al., quantified the dynamic interactions among the core clock molecules 
such as their diffusion coefficients, binding affinity, and abundances in the nucleus. This greatly 
improves our understanding of the mammalian circadian clock. Importantly, this dynamic information 
is incorporated via a mathematical model to understand BMAL1- CLOCK binding to the target site 
(e.g., circadian proteins operate within an optimal range to modulate E- box binding), providing a 
coherent view on the mechanism driving the oscillation.

Introduction
The 24  hr light- dark cycles inherent to our planet have led to the evolution of molecular circuits 
capable of conveying time of day information, commonly known as circadian clocks. In mammals, 
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cell- autonomous circadian clocks operate in virtually all cells across tissues and enables coordination 
of numerous biological processes, including metabolism, immunity, and cell cycle progression (Bhadra 
et  al., 2017; Gibbs et  al., 2014). Autonomous cellular clocks are characterised by transcription- 
translation feedback loops (TTFLs), leading to cycles in protein and mRNA tuned to the 24 hr rhythms 
of the day- night cycle. Central to the mammalian circadian clock is the heterodimeric transcription 
factor comprised of CLOCK (circadian locomotor output cycles protein kaput) and BMAL1 (brain and 
muscle ARNT- like 1) that searches the genome to bind consensus sequence E- box sites (CANNTG), 
inducing expression of several hundred clock- controlled output genes every day. Targets include key 
circadian negative feedback regulators, Period (Per1, Per2, Per3), Cryptochrome (Cry1 and Cry2) and 
a secondary loop regulated by Nr1d1 and Nr1d2 (Buhr and Takahashi, 2013; Gekakis et al., 1998; 
Huang et al., 2012; Liu et al., 2008). These proteins act to repress the activity of CLOCK:BMAL1 to 
form a delayed negative feedback loop driving daily oscillations. In a current model, it is proposed that 
PER and CRY proteins dimerise to form a repressive complex with CK1 (casein kinase 1) to promote 
the removal of CLOCK:BMAL1 from DNA and thereby repress transactivation of target genes, while 
CRY1 independently binds the PAS domain core of CLOCK:BMAL1 and the BMAL1 transactivation 
domain leaving DNA binding intact whilst repressing recruitment of additional transcriptional coacti-
vators (Chiou et al., 2016; Xu et al., 2015). An additional feedback loop is conferred by the protein 
REV- ERBα, which operates as a transcriptional repressor of Bmal1, resulting in a cycle of BMAL1 
protein abundance (Liu et al., 2008).

Ultimately, a prerequisite for generation and output of cellular circadian rhythms is the ability of a 
finite pool of CLOCK:BMAL1 heterodimer protein to bind rhythmically to specific target sequences 
leading to the regulation of circadian gene expression in cells (Koike et al., 2012). Currently, we have 
very little insight into the quantitative biology of this process. Heterodimeric formation of transacti-
vating and repressive complexes is a well- defined feature of the circadian molecular circuit, including 
the formation of CLOCK:BMAL1 and PER:CRY complexes (Chiou et al., 2016; Huang et al., 2012; Xu 
et al., 2015). Recently, PER:CRY proteins have been described as part of very large macromolecular 
complexes within the cell (Aryal et al., 2017). We have previously visualised several core circadian 
proteins, and from this measured the spatiotemporal profile and protein abundance for BMAL1 and 
PER2 (Smyllie et al., 2016; Yang et al., 2020). PER2 was found to cycle with a maximum amplitude 
of 12,000 copies per cell in fibroblasts and without circadian gating of nuclear localisation, contrary 
to observations in the Drosophila clock (Shafer et al., 2002; Smyllie et al., 2016). Only a relatively 
small amount of CRY1 is needed to localise PER2 to the nucleus, as shown in live SCN studies, with 
PER2 localisation remaining predominantly nuclear throughout the day (Smyllie et al., 2022). A recent 
study using a cancer cell line model has also shown that CRY1 protein remains nuclear at all circadian 
phases and at markedly higher abundance than its partner protein PER2 (Gabriel et al., 2021). In 
order to gain insight into the operation of core circadian clock proteins, we generated a genetically 
modified mouse in which CRY1 has been C- terminally fused with a fluorescent protein. We crossed 
this line to a previously described strain of mice expressing fluorescent- tagged BMAL1. We then used 
advanced imaging in both ectopically transformed cell lines and endogenously modified mice to char-
acterise governing parameters in the regulation of CLOCK:BMAL1 DNA binding, including repression 
by PER2 and CRY1. We constructed mathematical models of the complex interactions and phased 
timings from multiple molecular species and experimentally inaccessible complexes, demonstrating 
how DNA binding in the peripheral circadian clock is regulated.

Using a combination of mathematical modelling and experimental validation, our data reveal that 
high- affinity interactions between circadian protein complexes serve to offset the low abundances 
of circadian proteins. In this way, the abundance of key components of the molecular clockwork is 
positioned optimally to regulate E- box binding. This is partly facilitated through PER2:CRY1 mediated 
displacement of CLOCK:BMAL1, such that PER2 protein serves a dual role, acting as both a compo-
nent of the negative feedback arm but also to redistribute CLOCK:BMAL1 to new target sites. Thus, 
the stochiometric balance of PER:CRY with CLOCK:BMAL1 is critical for the elucidation of the full 
cellular circadian repertoire.
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Results
BMAL1 determines nuclear localisation and mobility of CLOCK
To quantify the properties of BMAL1 and CLOCK proteins (Figure 1A), we first used NIH/3T3 fibro-
blasts expressing fluorescent fusion proteins via a ubiquitin ligase C promoter, delivered by lentiviral 
transduction either singly (LV1) or as two sequential transductions (LV2) (Figure 1B; Bagnall et al., 
2015). Expression of the transgene was in >10 fold excess over the native unfused protein, as deter-
mined by single molecule Fluorescence In Situ Hybridisation (Figure  1—figure supplement 1B). 
Confocal microscopy of tagRFP::CLOCK or BMAL1::EGFP showed BMAL1 expression to be strongly 
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Figure 1. Short- lived DNA binding of BMAL1 and CLOCK. (A) Schematic representation of parameters regulating CLOCK:BMAL1 dimers binding to 
target DNA sites. (B) NIH/3T3 cells are either singularly or sequentially transduced to express fluorescent fusions with CLOCK or BMAL1 (wildtype and 
mutant variants).(C) Confocal microscopy images of cells solo- expressing (LV1) either tagRFP::CLOCK or BMAL1::EGFP or co- expressing (LV2) them 
together (including BMAL1 L95E DNA- binding mutant). (D) Confocal microscopy images for photobleaching of LV2BMAL1::EGFP- RFP::CLOCK labelled 
cells, either with wild- type or BMAL1 L95E DNA binding mutant. Images show nuclei and highlight region of bleaching. (E) Representative fluorescence 
recovery curves of bleach region for B. following normalisation. (F) Residence time calculated as the inverse of kOFF ( s−1 ), determined from fitting the 
recovery data with a single component binding model (n = 69, 58, and 51 cells). Bar represents median values. Source data for panel F available as 
Figure 1—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. BMAL1 residence times.

Figure supplement 1. Ectopically expressed mRNA is the major form in a lentivirus transduced system.

Figure supplement 1—source data 1. Summary statistics.

Figure supplement 2. Binding plays a significant role in BMAL1 mobility.
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localised to the nucleus, whereas CLOCK was predominantly cytoplasmic when expressed alone 
(Figure 1C). Co- expression of both proteins in the same cells caused localisation of tagRFP::CLOCK to 
move to the nucleus, in agreement with earlier studies which showed cytoplasmic CLOCK localisation 
in BMAL1- deficient cells, and that circadian regulation of nuclear localisation of CLOCK correlated 
with BMAL1 availability (Kondratov et al., 2003; Stratmann et al., 2012). We also transduced cells 
with a fluorescent fusion of a DNA- binding mutant of BMAL1, in which a leucine is substituted for 
glutamic acid in the basic helix- loop- helix region of the protein; referred to as L95E. The mutant 
BMAL1 also re- localised tagRFP::CLOCK protein to the nucleus from the cytoplasm in an manner 
equivalent to WT BMAL1 (Figure 1C; Huang et al., 2012). We next performed Fluorescence Recovery 
After Photobleaching (FRAP) experiments to test the impact of CLOCK on the recovery dynamics of 
a bleached nuclear region of BMAL1::EGFP, by comparing responses with or without co- expressed 
tagRFP::CLOCK (Figure 1D–F). BMAL1 recovery half- life was found to be insensitive to the diameter 
of the bleached region, indicating that binding contributes to the recovery profile rather than this 
being a solely diffusion- led process (Figure 1—figure supplement 2; Sprague and McNally, 2005). 
Reaction binding equations were fitted to determine the rate of dissociation,  kOFF , for BMAL1::EGFP, 
the reciprocal of which equates to an average characteristic duration of binding or residence time. 
Residence time of BMAL1::EGFP was increased in the presence of tagRFP::CLOCK (p < 0.0001), 
consistent with a requirement for CLOCK to bind DNA (Figure 1F). The mean residence time for the 
fluorescent CLOCK:BMAL1 complex was 4.13 s (95% CI, 0.57), a value consistent with DNA residence 
times for similar transcription factors (Hettich and Gebhardt, 2018; Stratmann et al., 2012). Using 
the L95E DNA- binding mutant protein, we saw significantly reduced residence time of 2.83 s (95% CI, 
0.54; p = 0.0002). Notably, the initial publication of the BMAL1 L95E mutant showed a twofold reduc-
tion in PER2::LUC expression and so suggests a strong relationship between DNA binding and tran-
scriptional output (Huang et al., 2012).

To investigate this further we used Fluorescence (Cross) Correlation Spectroscopy (F(C)CS) (Yu 
et al., 2021), a technique used to determine live- cell concentration and diffusion properties of individ-
ually fluorescent- labeled BMAL1 and CLOCK proteins, as well as their interactions when co- expressed 
(Figure  2A). A normal diffusion model fitted the majority of data collected from cells expressing 
free EGFP or nuclear only NLS::EGFP proteins, as previously reported (Dross et al., 2009), whereas 
anomalous diffusion models – sub- diffusion caused by a range of factors such as DNA interactions 
and molecular crowding – accounted for a > 20% fraction, which in this instance may be explained 
by molecular crowding (Tsekouras et al., 2015). In comparison, for the fusion proteins, anomalous 
diffusion models accounted for >80% of all BMAL1 data sets (Figure 2—figure supplement 1). We 
used an anomalous diffusion model for all further analyses of circadian proteins to calculate diffusion 
coefficients and protein concentrations.

Singly expressed fluorescent BMAL1 and CLOCK were found to diffuse rapidly with a median 
coefficient of 9.2  m2 s−1  (SD, 3.3) and 12.6  m2 s−1  (SD, 6.1), respectively. In contrast, co- expression 
significantly reduced the rate of diffusion to 1.9  m2 s−1  (SD, 1.3; p < 0.0001) and 4.7  m2 s−1  (SD, 3.2; 
p < 0.0001) for BMAL1 and CLOCK ,respectively (Figure 2B). The L95E mutant diffused more rapidly 
than WT BMAL1, consistent with fewer interactions with DNA in the nucleus (Figure  2C). When 
co- expressed, WT BMAL1 and CLOCK exhibited a 2:1 concentration ratio in the nucleus (Figure 2D, 
Figure 2—figure supplement 2E), presumably arising from a combination of differences in protein 
turnover, shuttling and direct interaction. F(C)CS was then used to observe this interaction and deter-
mine a live- cell dissociation constant ( KD ; reciprocal measure of affinity) (Krieger et al., 2015). A posi-
tive cross correlation curve was observed between BMAL1::EGFP and tagRFP::CLOCK that was not 
apparent in cells expressing NLS::EGFP with tagRFP::CLOCK (Figure 2E). To calculate  KD , we fitted 
a one- site saturating binding curve to the relationship between heterodimer and monomer which 
yielded a value of 148  nm  (SD, 9.8) for WT BMAL1::EGFP and tagRFP::CLOCK (Figure 2F). The  KD  was 
measured for cells with the reverse fluorescent protein labelling, namely EGFP::CLOCK and BMAL1::-
tagRFP, finding similar a value of 145  nm  (SD, 4.8), although a stronger interaction was found in 
vitro by surface plasmon resonance (Figure 2—figure supplement 2F). Previous work found that the 
V435R mutation of BMAL1 in the PAS- B domain, leads to reduced dimerisation with CLOCK (Huang 
et al., 2012). We used the V435R mutation to confirm our F(C)CS measurements by co- expressing 
V435R- BMAL1 and WT- CLOCK. This elicited a ≈1.5- fold reduction in interaction affinity, resulting in 
a  KD  of 201  nm  (SD, 14) (Figure 2G) and a reduction from 2:1 to a 4:1 ratio of BMAL1 and CLOCK in 
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Figure 2. Live- cell interaction measurements demonstrate BMAL1 and CLOCK mobility is regulated by dimerisation and DNA binding. (A) Schematic of 
confocal volume used in FCCS with corresponding photon count traces. Interaction may be seen by correlation between both channels. Representative 
auto- and cross- correlation data showing raw data and fit lines for monomeric and complexed fluorescent proteins. (B) FCS data showing diffusion 
for BMAL1 and CLOCK in solo- and co- expressed conditions (n = 173, 152, 198, and 185 cells). (C) FCS results for BMAL1::EGFP diffusion for NIH/3T3 
cells that co- express tagRFP::CLOCK. Data shown is for comparison of BMAL1 as either wild- type of L95E DNA- binding mutant. Bars show median and 
interquartile range. (D) Correlation of nuclear protein quantification showing relationship of BMAL1::EGFP with tagRFP::CLOCK for both wildtype and 
DNA binding mutant (n = 221 cells from three biological replicates). (E) Average cross- correlation curves for BMAL1::EGFP (WT) with tagRFP::CLOCK 
(n = 140) compared to a non- interacting control of NLS::EGFP co- expressed with tagRFP::CLOCK (n = 408). (F) Dissociation plot from FCCS data for 
BMAL1::WT and tagRFP::CLOCK. (G) Summary of calculated dissociation constants across all conditions, including BMAL1 dimerisation mutant, V435R 

Figure 2 continued on next page
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the nucleus (Figure 2—figure supplement 2E). In contrast, the BMAL1 L95E DNA binding mutant 
showed no difference in interaction affinity compared to WT BMAL1 protein. These data demonstrate 
that BMAL1 is a critical determinant of the localisation, mobility and concentration of CLOCK in the 
nucleus.

From this, we can infer the abundance of nuclear CLOCK from measurements of BMAL1, and 
make use of available endogenously labelled Venus::BMAL1 mice to measure remaining DNA binding 
parameters. First, we confirmed our cell line measurements for binding rates and diffusion using 
the Venus::BMAL1 mice (Yang et al., 2020), finding that they remain within a similar range across a 
number of primary cell types, including macrophages and pulmonary fibroblasts (Figure 3—figure 
supplement 1). We also measured protein number of the endogenous BMAL1, observing that total 
copies per nucleus vary from 1000 to 10,000 between individual cells, likely due to desynchrony and 
differing nuclear volumes. Moreover, a large overlap in nuclear copy numbers was observed across all 
cell types despite substantial changes in the mean. These data are critical in our understanding of the 
ratio of BMAL1 to target sites, effectively determining the capacity to regulate the full repertoire of 
target genes within a specific cell type.

Quantification of strong rhythmic interaction of BMAL1 with CRY1
The ability to measure BMAL1 amounts to infer copy number of CLOCK, allows us to measure other 
critical pairings with BMAL1. This includes the repressive action of CRY1 binding to CLOCK:BMAL1, 
resulting in reduced transactivation. To explore the interaction between BMAL1 and CRY1, we gener-
ated a genetically modified mouse in which CRY1 has been C- terminally fused with the red fluorescent 
protein mRuby3 using CRISPR- mediated genomic editing to insert the coding sequence, replacing the 
endogenous CRY1 stop codon (Figure 3—figure supplement 3A; Bajar et al., 2016; Bennett et al., 
2021). First, to test any potential impact on circadian pace- making, we measured CRY1::mRuby3 
fluorescence in whole- field organotypic SCN slices (Figure 3—figure supplement 3B) which exhib-
ited regular cycles in red fluorescence with a period of 23.9 hr (SD, 0.6) (Figure 3—figure supple-
ment 3C; Smyllie et al., 2016). Additionally, wheel running measurements of these mice confirmed 
normal behavioural rhythmicity (Figure  3—figure supplement 2). We next crossed these mice to 
the Venus::BMAL1 mouse line (Yang et  al., 2020), previously inter- crossed with a PER2::LUCIF-
ERASE background (Yoo et al., 2004) to provide an independent circadian phase- reference marker 
(referred to as BMAL1xCRY1 labelled mouse). Using isolated lung fibroblasts from BMAL1xCRY1 mice 
we assessed bioluminescence in response to dexamethasone (DEX) synchronisation, and observed 
23.3 hr cycles (SD, 0.6) which were sustained for >4 days (Figure 3—figure supplement Figure 3—
figure supplement 3D, E). From this, we are confident that the fluorescent fusion proteins do not 
disrupt the normal operation of the circadian pacemaker.

Using the same synchronisation approach, we then measured BMAL1xCRY1 fluorescence in single 
cells every 4 hr from 24 to 48 hr post- DEX synchronisation, using F(C)CS (Figure 3A- B). Both fluores-
cent signals were localised to the nucleus. Venus::BMAL1 showed a consistent diffusion pattern over 
a circadian cycle, with a mean diffusion coefficient of 0.58  m2 s−1  (SD, 0.03), whereas CRY1 mobility 
exhibited circadian variance, with slow diffusion 28 hr post- DEX and elevated diffusion rates 12 hr 
later (Figure 3C). Interestingly, this change in mobility is consistent with a binding to a mass equiva-
lent to the molecular weight of PERIOD2. Peak protein concentrations of BMAL1 and CRY1 had an 
approximate and appropriate phase- separation of 8 hr (Fustin et al., 2009). Auto- correlation analyses 

(n = 156, 274, and 244). Mann- Whitney non- parametric test to determine significance (values are denoted as p > 0.05 ns, p < 0.05 *, p < 0.01 **, p < 
0.001 *** and p < 0.0001 ****). Source data for panels B,C available as Figure 2—source data 1 and panel E as Figure 2—source data 2.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. BMAL1 and CLOCK FCS diffusion rates. 

Source data 2. BMAL1 and CLOCK paired FCS concentrations. 

Figure supplement 1. Anomalous diffusion best fits protein movement.

Figure supplement 2. Fluorescent BMAL1 and CLOCK proteins behave similarly when colours are swapped.

Figure 2 continued
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revealed the concentration of BMAL1 is on average 1.92 fold (SD, 0.32) higher than CRY1, with a 

mean concentration of 29.3  nm  and 13.4  nm  respectively (equating to approximately 16,000 and 7000 

molecules per nucleus), consistent with the range we reported earlier for PER2 (Smyllie et al., 2016). 

The amplitude of CRY1 was found to be shallow, cycling from 11.9  nm  (SD, 5.7) at T28 to 15.2  nm  (SD, 

14.0) at T32, comparable to the approx. 25% amplitude observed for CRY1 in the SCN (Figure 3—
figure supplement 3C). BMAL1 demonstrated a larger amplitude, cycling from 20.1  nm  (SD, 7.1) at 

T28 to a peak of 33.3  nm  (SD, 13.6) 40 hr after DEX (Figure 3D).
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Figure 3. A rhythmic and strong interaction observed between slow- diffusing BMAL1 and CRY1 facilitates repression. (A) Schematic of triple- labelled 
mice from which primary lung fibroblasts were isolated (B) Confocal images of two cells shown for Venus::BMAL1 and CRY1::mRuby3 over time. FCS 
determined measurement for diffusion coefficient (C) and protein concentration (D) of Venus::BMAL1 and CRY1::mRuby3 (n = 136, 143, 173, 131, 158, 
121, and 132; line shows the mean and error envelopes show the SEM). (E–F) Interaction strength between BMAL1 and CRY1 was also measured over 
time as illustrated by the schematic of affinity as well as plotted values of dissociation constant (error envelope shows the standard deviation). Kruskal- 
Wallis test used to determine significance (values are denoted as p > 0.05 ns, p < 0.05 *, p < 0.01 **, p < 0.001 *** and p < 0.0001 ****). Source data for 
panels B,C available as Figure 3—source data 1, Figure 3—source data 2, Figure 3—source data 3, Figure 3—source data 4.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. CRY1 FCS diffusion rates.

Source data 2. BMAL1 FCS diffusion rates.

Source data 3. BMAL1 FCS concentration.

Source data 4. CRY1 FCS concentration.

Figure supplement 1. BMAL1 concentration and DNA binding parameters minimally vary across cell types.

Figure supplement 1—source data 1. CRY1::mRuby3 mouse genotyping.

Figure supplement 2. Generation of CRY1::mRuby3 mouse line.

Figure supplement 3. Triple endogenous labelled mice used to assay rhythms in SCN and peripheral lung fibroblasts.
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We then analysed the interaction affinity between BMAL1 and CRY1 over time (Figure 3F). This 
interaction exhibited significant changes over a 24 hr cycle (p = < 0.0001), with the strongest inter-
action at T28,  KD  = 38.8  nm  (SD, 2.1), and weakest at T40,  KD  = 65.1  nm  (SD, 3.4) (Figure  3F). 
These profiles were found to correlate with the diffusion profile of CRY1 (Figure 3C). Intriguingly, the 
mean interaction strength between BMAL1 and CRY1 is >2 fold stronger than that between BMAL1 
and CLOCK (Figure 2G). A similar relationship was found in vitro when measuring interactions using 
biolayer interferometry (Fribourgh et al., 2020). Although, these interaction measurements do not 
distinguish between whether either proteins are complexed with other partners, diffusion data is 
consistent with BMAL1 being bound to CLOCK, and are compatible with a model in which the low 
abundance of the CRY1 repressor is offset by a high affinity for the CLOCK:BMAL1 heterodimer.

The changes in the diffusion profile of CRY1 are consistent with its association with an additional 
binding partner, such as PER2, thereby altering the affinity of CRY1 for CLOCK:BMAL1 (Fribourgh 
et al., 2020; Ye et al., 2014). To measure the interaction between CRY1 and PER2 directly, we trans-
duced NIH/3T3 cells with lentivirus so that cells constitutively express EGFP::PER2 or CRY1::tagRFP 
fusion proteins. In both cases, the expressed protein was found to localise predominately to the 
nucleus, although some cytoplasmic fluorescence was observed. When co- expressed, subcellular 
localisation was unchanged, although large punctate aggregates of signal were observed (Figure 4A). 
PER2 was found to have the slowest diffusion coefficient recorded within all our F(C)CS measure-
ments, when in the non- aggregate space. PER2 mobility was not altered following co- expression with 
CRY1, whereas CRY1 exhibited reduced mobility in the presence of ectopic EGFP::PER2 (Figure 4B). 
The diffusion coefficient for CRY1 co- expressed with PER2 was similar to measurements of the endog-
enous protein (Figure 3C), suggesting PER2 and CRY1 exhibit similar stoichiometry within these cells. 
The anomalous diffusion model fit the majority of data sets, including LV1CRY1, LV1PER2, and LV2PER2. 
However, normal diffusion models accounted for >50% of LV2CRY1 correlation analyses suggesting a 
distinct change in CRY1 following interaction with PER2 (P < 0.0001), potentially from a loss of signif-
icant DNA binding of the CLOCK:BMAL1 complex (Figure 4—figure supplement 1). Best fit models 
for each data set demonstrated a strong affinity between PER2 and CRY1 with a  KD  of 81.8  nm  (SD, 
4.9) (Figure 4C) and consistent with previous in vitro measurements (Schmalen et al., 2014).

Figure 4. PER2 modulates CRY1 mobility via a high- affinity association. (A) Confocal images of transduced NIH/3T3 cells that either solo- or co- express 
PER2 and CRY1. (B) FCS data showing diffusion for PER2 and CRY1 in solo- and co- expressed conditions (n = 165, 174, 274, and 274 cells; diffusion rate 
means of 0.2, 0.2, 1.1, 0.2). (C) Dissociation plot from nuclear FCS measurements for EGFP::PER2 and CRY1::tagRFP (n = 274). Significance determined 
by Mann- Whitney test (values are denoted as p > 0.05 ns, p < 0.05 *, p < 0.01 **, p < 0.001 *** and p < 0.0001 ****). Source data for panels B available 
as Figure 4—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. PER2 and CRY1 FCS diffusion rates.

Figure supplement 1. CRY1 mobility is affected by co- expression with PER2.
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Quantitative data are an enabling and often essential component of stringent mathematical 
modelling of cell signalling (Bagnall et al., 2018). Having quantified the necessary parameters, we 
then sought to use them in developing a mathematical model of CLOCK:BMAL1 DNA binding, with 
the aim of understanding how the multiple regulatory motifs of changing molecular concentrations, 
interactions and binding kinetics coalesce to regulate DNA binding and transcriptional activation of 
BMAL1. We explored multiple topologies that were able to fit BMAL1 binding rhythms, carrying the 
simplest model forward that incorporated our measured data. We modelled the system using a set of 
ordinary differential equations (ODEs) to depict a current understanding of the system; BMAL1 dime-
rises with CLOCK, which may subsequently bind and unbind to DNA target sites. To model repres-
sion, CRY1 may either inactivate CLOCK:BMAL1 via direct binding or, via dimerisation to PER2, form 
PER2:CRY1 (mimicking complexes with CK1) to displace CLOCK:BMAL1 from DNA (Figure 5A; Chiou 
et al., 2016; Huang et al., 2012; Koike et al., 2012; Xu et al., 2015). The latter would presumably 
lead to rhythmic changes in the residence time of BMAL1 and provide a sensible option to fit and 
complete the model.

To assess dynamic changes in inferred DNA binding rates of BMAL1, we isolated lung fibroblasts 
from BMAL1xCRY1 mice and determined the  kOFF  values by FRAP following DEX synchronisation. 
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Figure 5. PER2 acts via CRY1 to mediate rhythmic displacement of CLOCK:BMAL1 from DNA. (A) Schematic representation of model topology used 
for the deterministic model of CLOCK:BMAL1 DNA binding. (B) Primary lung fibroblasts from BMAL1 x CRY1 x PER2 mice were synchronised with 
dexamethasone. Plot shows PER2 concentration as measured via FCS by Smyllie et al., 2016 as well as mean BMAL1 binding time (showing SEM 
error envelope). Binding time was measured by confocal FRAP measurements performed on the Venus::BMAL1 fluorescence. Orange line shows the 
inverse of kOFF (s-1), determined from fitting the recovery data with a single component model (n = 48, 70, 82, 63, 82, 64, and 65 cells). (C) ODE model 
was fit to FRAP binding data from E. and using a measured input for PER2 nuclear concentration previously determined in Smyllie et al., 2016. Model 
output showing (D) inferred nuclear concentrations for molecular complexes (E) and CLOCK:BMAL1 without and with CRY1 bound to target sites (see 
supplementary materials for parameters). Panel B has been adapted from Figure 3C from Smyllie et al., 2016.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. ODE model of CLOCK:BMAL1 DNA binding using measured inputs and modelled perturbations.
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Measurements of BMAL1 protein recovery were taken every 4  hr from 24 hr to 48 hr post- DEX, 
showing  kOFF  to be rhythmically regulated (Figure 5B). The BMAL1  kOFF  profile was in antiphase to 
recordings of nuclear PER2 concentrations from Smyllie et al., 2016 (Figure 5B). To fit all parame-
ters to the model (Table 1), the measured concentrations of PER2 (Smyllie et al., 2016), CRY1 and 
BMAL1 were used as inputs, using data described 
in (Figs. Figures 3D and 5C). On/Off rates were 
constrained to measured dissociation constants 
from F(C)CS (Table 1), with the  KD  value between 
BMAL1 and E- box sites set at 10  nm , as measured 
by Huang et al., 2012. Using a mean value from 
multiple published ChIP- Seq data, the potential 
number of DNA target sites was set as 3,436 
(Table 2).

The ODE model was then fitted by simulating 
FRAP so that a model- derived  kOFF  could be used 
against our experimental data (Figure  5B) via 
Chi2 minimisation (Chi2, 7.46) to mean and stan-
dard error on the mean (Figure 5C, Table 1). In 
order to confirm identifiability of the unknown 
parameters, we calculated the eigenvalues of 
the Hessian matrix of the fit, finding that it is 
non- singular and reasonably well conditioned 
(Table  1). Next, we used this model to infer 

Table 1. Summary of ordinary differential equation model parameters.
Model fit  χ

2 = 7.46 .

Input parameters

Parameter Unit Description Value±SD

 KD(C:B - E-Box) nM CLOCK:BMAL1 - E- Box dissociation constant 10 (Huang et al., 2012)

 KD(C-B) nM CLOCK - BMAL1 dissociation constant 147.6 ± 9.8

 KD(B-C1) nM BMAL1 - CRY1 dissociation constant Time- point dependent, Figure 3F

 KD(C1-P2) nM CRY1 - PER2 dissociation constant 81.8 ± 4.9

Fitted parameters

Parameter Unit Description Value±SD (Inverse Hessian eigenvalue of fit)

 kON  nm−1 s−1 CLOCK:BMAL1 - DNA binding on rate  0.027 ± 1.034 (1.96) 

 dON  nm−1 s−1 BMAL1 - CRY1 binding rate  0.237 ± 1.003 (3.42 × 10−2) 

 aON  nm−1 s−1 PER2 - CRY1 binding rate  6.34 ± 1.00 (6.79 × 10−8) 

 ROFF  s−1 CLOCK:BMAL1:CRY1:PER2 - DNA unbinding rate  (1.23 ± 0.33) × 101 (1.00) 

 bON  nm−1 s−1 CLOCK - BMAL1 binding rate  9.17 ± 1.29 (1.00) 

Derived parameters

Parameter Unit Description Value±SD

 kOFF  s−1 

CLOCK:BMAL1 - DNA binding unbinding 
rate  kON × KD(C:B - E-Box) = 0.27 ± 10.34 

 bOFF  s−1 CLOCK - BMAL1 unbinding rate  bON × KD(C-B) = (1.35 ± 0.21) × 103
 

 dOFF  nm−1 s−1 BMAL1 - CRY1 unbinding rate Time-point dependent, dON × KD(B:C1) 

 aOFF  s−1 PER2 - CRY1 unbinding rate  aON × KD(C1-P2) = (5.19 ± 0.88) × 102
 

Table 2. BMAL1 ChIP reports.

No. Tissue BMAL1 peaks Reference

1 Liver 2049 Rey et al., 2011

2 Liver 5952 Koike et al., 2012

3 U2OS 2001 Wu et al., 2017

4 PECS 2026 Oishi et al., 2017

5 Liver 4813
Beytebiere et al., 
2019

6 Kidney 4034
Beytebiere et al., 
2019

7 Heart 2520
Beytebiere et al., 
2019

8 NIH3T3 4740 Chiou et al., 2016

9 Skeletal muscle 2787 Dyar et al., 2018

Mean average 3436
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experimentally inaccessible complexes, specifically PER2:CRY1, CLOCK:BMAL1, and CLOCK:B-
MAL1:CRY1 (Figure 5D). We find that free CLOCK:BMAL1 (unbound to DNA) cycles in remarkably 
low abundance from 0.9  nm  to 2.4  nm , which equates to a change of ca. 809 molecules, similar to that 
of the PER2:CRY1 complex. Furthermore, predicted DNA binding of CLOCK:BMAL1 has an average 
baseline of 194 sites bound at any one time, rising to 526 sites at the peak, in agreement with the 
expected ≈2- fold peak enrichment from ChIP reports (Beytebiere et al., 2019; Koike et al., 2012; 
Figure 5E). The model also suggests ≈50% of the available transcription factor complex is engaged 
with site- specific interactions with availability predominantly limited by the  KD  with CLOCK. Finally, 
DNA- bound CLOCK:BMAL1:CRY1 complex was persistent, with low abundance cycling from 32 to 69 
target sites (accounting for 11% of total BMAL1 bound sites).

Circadian proteins are within an optimal expression range to modulate 
E-Box binding
The topology of the circadian molecular circuit is preserved across all cell types, yet it is also known 
that different cell types have widely differing repertoires of target genes and accessible genomic 
target sites for CLOCK:BMAL1 to bind (Beytebiere et al., 2019). We therefore pursued the extent to 
which varying the number of target sites may have an impact on the available pool of CLOCK:BMAL1 
to bind target sequences, as calculated by site occupancy (the % sites occupied at any given moment). 
We simulated the model over a biological range of binding sites (1000 – 10,000), informed by multiple 
BMAL1 and CLOCK ChIP data sets (Figure 6A; Beytebiere et al., 2019; Koike et al., 2012). We 
found target site occupancy decreased marginally from 16.2% to 13.6%, showing that any variance 
between different numbers of available target sites has minimal impact. We then explored how 
varying binding parameters affected site occupancy, relating them to the variability observed in our 
data sets but considering values beyond these limits. The CLOCK:BMAL1 unbinding rate accounted 
for a 21.5% change when residence times across the observed physiological range are considered 
(Figure 6B); outside of this range occupancy begins to saturate so that a further 30 s increase in resi-
dence time only accounts for an additional 12.5% binding. Therefore, the unbinding rate, as measured 
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Figure 6. Circadian proteins operate within an optimal range to modulate E- Box binding. Sensitivity analysis of the deterministic binding model 
showing relationship of measured parameters (bottom) against model for occupancy of active BMAL1:CLOCK on target sites (top). (A) Changing 
number of target sites with data matched to BMAL1 ChIP data sets. (B) From left to right, the effect of changing residence time of CLOCK:BMAL1, or 
protein concentrations. Histograms show measured concentrations for corresponding proteins across all conditions/cells. The 10th to 90th percentile is 
highlighted. Source data available as Figure 6—source data 1.

The online version of this article includes the following source data for figure 6:

Source data 1. Model OAT outputs.
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experimentally, is optimally positioned to regulate target site occupancy in a manner consistent with 
the displacement mechanism governed by PER:CRY.

Additionally, protein concentrations vary across circadian time as well as individual cells and cell 
types (Figure 3—figure supplement 1). We therefore simulated target- site occupancy across varied 
biologically plausible concentrations for CRY1, PER2, and CLOCK:BMAL1 and calculated the fraction 
of occupied sites (Figure 6B). Increasing CRY1 and PER2 led to a reduction in target- site occupancy, 
whereas a rise in CLOCK:BMAL1 led to a substantial increase and in both cases. Moreover, the biolog-
ically observed range occupied the most sensitive part of the curve, such that oscillations in protein 
copy number can evoke significant changes of occupancy. Hence, the system is positioned to make 
efficient use of the biological concentrations of the constituent proteins.
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Figure 7. Mathematical modelling demonstrates dual function of PER:CRY mediated repression. Stochastic binding model outputs using parameters 
corresponding to T28, T32 or T40 post dexamethasone BMAL1 x CRY1 data sets. (A) Shows a promoter corresponding to the average binding rate 
of CLOCK:BMAL1, (B) the time to visit 95% of target sites once and (C) number of visits to a single promoter over time. Shaded error envelope shows 
standard deviation. (D) Average number of visits per minute to a target site showing active and CRY1 repressed CLOCK:BMAL1 visits. (E). Comparison 
of the contribution of BMAL1 concentration (blue) and PER2 facilitated displacement (green) on the visits per minute to a target site. Percentage 
contribution indicated. (F) Relationship of PER2 protein concentration to site visitations per minute and occupancy by CLOCK:BMAL1 using parameters 
for T40 explored over different concentrations of PER2. Error bars represent standard deviation. (G) The action of CRY:PER leads to short- lived transient 
binding of CLOCK:BMAL1 to DNA, working as both a repressive action whilst also facilitating binding to new target sites.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Stochastic binding model using experimentally measured parameters (A) Stochastic model showing the average binding (with 
SD) of CLOCK:BMAL1 bound target sites using input measurements from all time points for both WT and without PER2 simulations.
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Mathematical modelling demonstrates dual function of PER2:CRY1 
mediated repression
Site occupancy is a function of the average residence time of transcription factors bound to DNA; 
consequently, highly frequent and short events would appear the same as infrequent and long binding 
events. To infer these masked kinetics, which are obscured in our mean based ODE model, we use a 
stochastic binding model to simulate individual molecules of CLOCK:BMAL1 binding to target DNA 
sites in a well- mixed system (Gillespie, 1976). For our simulations, we have used the average number 
of molecules and effective dissociation rates determined for T28, T32, and T40 hr post- DEX for lung 
fibroblasts (Figure  7A) arising from our previously described ODE model. T28 and T40 represent 
trough and peak of BMAL1 (Figure 3D) respectively, whereas T32 and T40 represent the trough and 
peak of PER:CRY protein amounts (Figure 5D).

Alongside binding of active CLOCK:BMAL1, we also considered target sites bound by CLOCK:B-
MAL1:CRY1, which are thought to be transcriptionally inactive whilst also blocking target site 
access to active molecules. At T40, when there is the maximum amount of CLOCK:BMAL1, 95% of 
the 3,436 target sites would be bound at least once within a minute, changing to ca. 2 minutes at 
T28 (Figure 7B), contributing towards a small degree of heterogeneity. From the perspective of a 
single promoter at T40 there are ≈3.2 visits per minute by CLOCK:BMAL1, which is reduced down 
to ≈1.4 visits per minute at T28 (Figure 7C), with further reductions in individual cells with lower 
concentrations of CLOCK:BMAL1 protein (Figure 7—figure supplement 1). We then separated 
the total visits per minute into those occurring as CLOCK:BMAL1 compared to those occurring 
as the CLOCK:BMAL1:CRY1 complex, finding the latter to remain relatively persistent across time 
points and making up ≈15% of total visits, mirroring results for our ODE model. Our stochastic 
model therefore predicts that oscillating amounts of BMAL1 and CRY1 protein amounts, as well 
as the changing interaction affinity, may actually help preserve the concentration of CLOCK:B-
MAL1:CRY1 target binding events across circadian time (Figure 7D).

Repression of CLOCK:BMAL1 activity by CRY1 requires continuous interaction and hence 
is limited by concentration. We hypothesised that this would be different for the PER2:CRY1- 
mediated displacement of CLOCK:BMAL1 from target DNA sites. To test this, we first investigated 
how the number of visits per minute would be affected by clamping the input values of  kOFF  and 
protein to different time points across different observed nuclear volumes. From this, we found 
that both concentration of protein and  kOFF  make a substantial contribution to the number of 
target site binding events (Figure 7—figure supplement 1). We then separated the contribution 
of changing amounts of CLOCK:BMAL1 protein and PER2:CRY1 mediated displacement to visits 
per minute by calculating the impact of removal of PER2. We find that changing BMAL1 protein 
abundance accounts for the most variation in number of target site visitations, changing from 
1.3 visits at the nadir to 2.7 visits at peak BMAL1 protein (Figure 7E). CLOCK:BMAL1 mobility 
is supported by the action of PER2:CRY1 across all time points, accounting for a maximum 15% 
of visits at the trough of PER2 protein levels (T40). To explore this relationship further, we tested 
the impact of altering the levels of PER2 in the stochastic model, choosing four PER2 concentra-
tions, ranging from absent to greater than observed physiological levels (0, 10, 20, and 50  nm ) 
(Figure 7F). In the complete absence of PER2, BMAL1 mobility is hampered so that it visits less 
than three sites per minute. When PER2 spans the physiological range and beyond, a strong rela-
tionship in the visits per minute is forecast, rising by a third and in the opposite relationship to 
site occupancy. Our modelling demonstrates dual modes of action of PER2:CRY1, repression via 
displacement of CLOCK:BMAL1 from target sites and facilitation of CLOCK:BMAL1 mobility to 
promote new target site binding (Figure 7G). In this sense, PER2 acts both as part of a transcrip-
tional repressor complex and as a facilitator of CLOCK:BMAL1 mobility to bind new target sites 
(Cao et al., 2021).

Discussion
The circadian molecular circuit responds to and modulates an extraordinary number of biological 
processes, broadly imparted through DNA binding of CLOCK:BMAL1 to E- box sites (Koike et al., 
2012). Through live cell microscopy of fluorescent ectopically and endogenously expressed circadian 
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proteins we have sought to understand how the autonomous molecular clock regulates CLOCK:BMAL1 
binding to DNA.

Protein abundance and stoichiometry of the circadian circuit
Mathematical modelling demonstrates that low molecular abundances, as observed for core circa-
dian components, lead to rapid internal and cell- to- cell desynchrony, which may be compen-
sated for by strict control of stoichiometries and interactions (Gonze and Goldbeter, 2006). In 
the first instance, protein concentrations of both activators and repressors exert significant influ-
ence on amplitude as well as robustness of daily DNA- binding cycles. We found approximately 
16,000 BMAL1 and 8000 CRY1 proteins per nucleus, consistent with our earlier reports for PER2 
which found 12,000 proteins per nucleus in skin fibroblasts (Smyllie et al., 2016). Interestingly, 
a recent study by Gabriel et al. found approximately an eight- fold difference between CRY1 and 
PER2 using the U20S, osteocarinoma cancer cell line, highlighting how different cell types and 
cell lines may diverge and influence the circadian network (Gabriel et  al., 2021). Similarly, we 
observed significant disparities of endogenous BMAL1 across a range of cell types, with fibro-
blasts exhibiting a > 2 fold increase in BMAL1 concentration when compared with chondrocytes 
(Figure 3—figure supplement 1). The impact of cell type variation in protein concentrations and 
stoichiometries is difficult to discern but may confer tissue- specific sensitives to clock control 
of output genes without the need for additional regulatory components, or could compensate 
the system, as evidenced by similar single site visitations despite a fourfold decrease in nuclear 
volume (Figure 7—figure supplement 1C).

Balance in affinity between BMAL1 and CLOCK may facilitate crosstalk
CLOCK was found to be cytoplasmic when ectopically expressed without BMAL1, with nuclear 
localisation restored upon addition of BMAL1. This suggests BMAL1 oscillations could affect avail-
ability of nuclear CLOCK, consistent with several studies (Kondratov et al., 2003; Kwon et al., 
2006). Our measures of total BMAL1 and CLOCK reveal a concentration ratio of 2:1, possibly 
reflecting differences in turnover rate, import and export of these two proteins. Strikingly, only 
10% of BMAL1 was bound in complex with CLOCK. This ratio of 2:1 is compatible with recent 
modelling studies defining stoichiometric relationships within the nucleus (Lee et al., 2011; Kim 
and Forger, 2012). Low availability of heterodimeric transcription factor for DNA interactions, 
when compared with free protein, severely limits the potential to bind DNA, yet this is consistent 
with allowing other interactions to occur, including those reported with Hypoxia- inducible factor 
(HIF) and Aryl hydrocarbon receptor (AhR) (Bagnall et al., 2014; Jaeger and Tischkau, 2016). 
Balancing availability of monomeric BMAL1 and CLOCK may therefore enable crosstalk with other 
pathways, or modulate interactions that have different affinities for monomeric versus heterod-
imeric CLOCK:BMAL1, as has been reported for CRY1 (Michael et al., 2017; Xu et al., 2015).

Impact of cycling CRY1 concentration, binding affinities and mode of 
repression on the clock
Substantive evidence for direct repression of BMAL1 transactivation by CRY1 now exists (Gustafson 
et al., 2017; Xu et al., 2015). Here, we have shown in live cells that this interaction is not only 
rhythmic but remarkably strong, with a higher affinity than any other protein pairings we have 
measured. This strong repression of CLOCK:BMAL1 by CRY1 balances against its low abundance. 
When acting without PER2, CRY1 exhibits near- persistent repression over 24 hr, likely owing to its 
regulated interaction with CLOCK and BMAL1, as evidenced by modelling the effect of removal 
of either cycling BMAL1, CRY1 or binding affinity between the two (Figure 3F, Figure 5—figure 
supplement 1F). This cycle in affinity provides evidence that the mammalian circadian clock also 
relies on oscillations in the ability of key proteins to heterodimerise one another. The exact mech-
anisms underlying this regulation of affinity are yet to be determined but could be hypothe-
sised to be an outcome of dimerisation with another partner that hinders or aids binding to 
CLOCK:BMAL1, such as PER2, or post- translational modifications leading to changes in affinity 
with CLOCK:BMAL1 (Ye et al., 2011; Fribourgh et al., 2020; Schmalen et al., 2014). A ≈25% 
shift in the diffusion of CRY1 equating to a change in mass close to that of, and in phase with the 
peak of, PER2 hints at the former proposition but further study is required (Figures 2G and 3E).
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Individual genes exhibit a range of residence times
We found an average short residence time of 3  s for CLOCK:BMAL1, similar to other DNA 
binding transcription factors including GR, p53, p65, and STAT1 (Hettich and Gebhardt, 2018), 
potentially optimised to reduce gene expression noise (Azpeitia and Wagner, 2020). Here 
we modelled CLOCK:BMAL1 binding to a number of sites using an average off rate resulting 
in all sites behaving the same and demonstrating how DNA binding is globally regulated, in 
contrast with evidence from ChiP- seq, whereby different sites are differentially bound (Koike 
et  al., 2012). Presumably, robustly detected peaks found by ChIP- seq represent genes with 
a slow unbinding rate, such as the E- box sites found in the DBP gene, which is supported by 
previous live cell imaging characterising a longer 8- s residence time for BMAL1 on a DBP E- box 
concatemer (Stratmann et al., 2012). Altering the unbinding rates leads to a non- linear scaling 
in the occupation frequency (Figure 5—figure supplement 1B), highlighting the importance of 
regulating this parameter through post- translational modifications such as via phosphorylation 
of the CLOCK:BMAL1 complex as reported by Qin et al., 2015. Residence time may be tuned 
individually for different genes to ensure optimal transactivation, especially when considering 
recruitment of critical co- factors which do not interact with CLOCK:BMAL1 outside of DNA, as 
the probability of co- occupation increases with binding time. Ultimately, a considerable temporal 
gulf exists between the elaboration of a circadian rhythm (days) with the time- scale of DNA 
binding (seconds), altered by the accumulation of protein (hours). Daily changes in BMAL1 protein 
are moderate, remaining as high as 10,000 molecules per nucleus even at the nadir of expres-
sion, resulting in many non- transcriptionally productive interactions of CLOCK:BMAL1 with DNA 
throughout the circadian cycle; these interactions however may be important, contributing to 
pioneer factor activity and allowing others genes to activate at a different phase to BMAL1 
protein levels (Klemz et al., 2021; Menet et al., 2014).

Compromise between E-box visitations and occupancy via PER:CRY 
mediated displacement
Whereas CRY1 inhibits BMAL1 transactivation via binding and blocking productive interactions with 
transcriptional coactivators, PER:CRY complexes permit an alternative mode of repression (Cao et al., 
2021; Xu et al., 2015). We demonstrate that increasing PER:CRY leads to an overall reduction in the 
ability for CLOCK:BMAL1 to remain bound through direct dimerisation and manipulation of DNA 
unbinding. Work by Cao and Wang et al revealed PER2 removes CLOCK:BMAL1 in a CRY- dependent 
manner from E- Boxes via recruitment of CK1 and subsequent phosphorylation of CLOCK, effectively 
reducing affinity for DNA (Cao et al., 2021). Displacive repression of this kind reduces residency time 
on DNA sites and thus the number of sites bound at any one time. However, reducing residency time 
increases the rate at which a limited pool of transcription factors can move onto new sites, hence 
increasing the likelihood of any one gene to be bound and reducing possible cell- to- cell variation. 
Site- specific residence times, most likely due to cofactor recruitment or chromatin modifications, 
coupled with this phenomenon would permit some gene targets to exhibit maximal CLOCK:BMAL1 
binding beyond the time of the global peak. This supports findings by Menet and colleagues, who 
highlight groups of genes that have maximal binding events, as determined via ChIP- seq, outside of 
the zenith of total genome CLOCK:BMAL1 binding (Menet et al., 2014). Furthermore, evidence of 
CLOCK:BMAL1 behaving as a so- called ‘kamikaze’ transcription factor, a factor most transcriptionally 
potent when phosphorylated and marked for degradation, implies that in addition to an increase in 
visitations per minute, transcriptional potency is also upregulated (Stratmann et al., 2012). Therefore, 
despite the relatively high efficiency of CLOCK:BMAL1 binding to DNA, it may spend much of its 
life performing transcriptionally non- productive tasks until modified via complexes such as PER:CRY. 
PER:CRY displacement played a significant role, even at its nadir of expression, contributing to 15% 
of visitations per minutes at the height of DNA binding and CLOCK:BMAL1 concentration (T40). 
Thus, PER:CRY plays a hidden role of enhancing the mobility of CLOCK:BMAL1 to new DNA sites 
(Figure 7G).

Materials and methods
Key resources table 
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Reagent type 
(species) or 
resource Designation Source or reference Identifiers

Additional 
information

Genetic reagent 
(M. musclus)

C57BL/6 
Venus::BMAL1 Yang et al., 2020

Venus sequence 
inserted before 
BMAL1 start codon.

Genetic reagent 
(M. musclus)

C57BL/6 
Cry1::mRuby3 This paper

CRY1 stop codon 
replaced with 
mRuby3

Genetic reagent 
(M. musclus)

C57BL/6 
Venus::BMAL1 x 
CRY1::mRuby3 This paper

Crossed from 
Venus::BMAL1 and 
CRY1::mRuby3 mice

Cell line (M. 
musculus) NIH/3T3 ATCC CRL- 1658

Transfected 
construct (M. 
musculus) pLNT- NLS::EGFP

Vector Builder 
VB900119- 0501njq

Lentiviral construct 
to express nuclear 
EGFP.

Transfected 
construct (M. 
musculus)

pLNT- BMAL1::EGFP 
or pLNT- BMAL1::RFP This paper NCBI reference: NM_007489.4

Lentiviral construct to 
express fluorescent 
BMAL1.

Transfected 
construct (M. 
musculus)

pLNT- BMAL1- 
L95E::EGFP This paper NCBI reference: NM_007489.4

Lentiviral construct to 
express fluorescent 
BMAL1 L95E mutant.

Transfected 
construct (M. 
musculus)

pLNT- BMAL1- 
V435R::EGFP This paper NCBI reference: NM_007489.4

Lentiviral construct to 
express fluorescent 
BMAL1 V435R 
mutant.

Transfected 
construct (M. 
musculus)

pLNT- EGFP::CLOCK 
or pLNT- RFP::CLOCK This paper NCBI reference: NM_007715.6

Lentiviral construct to 
express fluorescent 
CLOCK.

Transfected 
construct (M. 
musculus) pLNT- EGFP::PER2 This paper NCBI reference: NM_011066

Lentiviral construct to 
express fluorescent 
PER2.

Transfected 
construct (M. 
musculus) pLNT- CRY1::RFP This paper NCBI reference: NM_007771.3

Lentiviral construct to 
express fluorescent 
CRY1.

Chemical 
compound, drug Dexamethasone Sigma Aldrich D4902

Software, 
algorithm GraphPad Prism GraphPad Prism Version 9

Software, 
algorithm

FCCS analysis 
pipeline This paper

https://github.com/LoudonLab/FcsAnalysisPipeline,
(copy archived at 
swh:1:rev:b12e9007ed7f8a033485e57c8605e27c67df74f1; Koch, 
2021)

Plasmids
A set of lentivirus transfer plasmids encoding fluorescent fusions of circadian proteins were gener-
ated utilising the gateway cloning system as previously described Bagnall et al., 2015. In brief, an 
initial entry vector was cloned, containing murine coding sequences for: Bmal1 (NM_007489.4), 
Clock (NM_007715.6), Cry1 (NM_007771.3), and Per2 (NM_011066.3). These vectors were then 
recombined with a target destination vector containing a fluorescent protein sequence to generate 
a terminal lentivirus vector, in which expression is regulated from the constitutive ubiquitin ligase C 
promoter. The NLS::EGFP, BMAL1 L95E, and BMAL1 V435R encoding plasmids were all purchased 
from VectorBuilder.

Primary cell isolates and cell lines
Fibroblasts were isolated from lungs of adult mice. Lung tissue was dissected and homogenised 
before collagenase- 1A (1.5  mg ml−1

 , Cat no. C2674) treatment for 2 hr. The cell suspension was then 
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filtered using 40  m  cell strainers before plating into DMEM (Cat no. D6429) supplemented with 10% 
fetal bovine serum (HyClone), penicillin- streptomycin (10  U/ml ) and amphotericin B (2.5  g ml−1

 ). Media 
was refreshed every 2–3 days for 1 week before sub- culturing or experimentation. Cells were sub- 
cultured for a maximum of 4 passages. SCN slice cultures were prepared as previously described 
(Smyllie et al., 2016) and imaged after 2–3 days after preparation for confocal imaging, or kept for 
7 days in culture prior to bioluminescence recording. Cultures derived from separate mice were used 
as biological replicates.

NIH/3T3 (ATCC CRL- 1658) cells were cultured in DMEM supplemented with 10% fetal bovine 
serum (HyClone).The cells were tested for the absence of mycoplasma using MycoAlert mycoplasma 
detection kit (Cat. No. LT07- 418). Cells were passaged every 2–3 days, maintaining cells till passage 
30. Lentivirus transduced derivatives of these cells were made using low passage cultures (6- 12). 
Production of 3rd generation lentivirus and subsequent transduction of NIH/3T3 cells was carried out 
as previously described (Bagnall et al., 2015). Singly transduced cells are referred to with a super-
script LV1 prefix before the transgene. Sequential transductions were carried out a minimum of 2 
weeks later and derived cells are then termed LV2. Circadian synchronisation of cells was achieved by 
stimulation with 200  nm  dexamethasone (Sigma D4902) for 1 hr before PBS washes and then switched 
to fresh culture media. Cultures were passaged for biological replicates.

Confocal microscopy
For 2D culture imaging experiments, cells were plated into 35  mm  glass bottomed imaging dishes 
(Greiner Bio- one) at least 6 hr prior to imaging. Measurements were performed using either a ZEISS 
LSM880 or ZEISS LSM780 microscope equipped with a stage mounted incubator to maintain cells at 
37 °C in humidified 5% CO2; fluorescence image capture was performed using either ZEN 2.1 SP3 
FP2 or ZEN 2010b SP1 software, respectively. Fluorescence samples were excited using the most 
appropriate lasers; making use of an Argon- Ion laser to produce 488  nm  or 514  nm  excitation or diode 
laser to produce 561  nm  excitation. The appropriate emitted fluorescence spectra were then collected 
using Quasar GasP array detectors. All images were made using a FLUAR 40 x NA 1.3 oil immersion 
objective. Nuclear volume recordings were made by collecting a z- stack of images at nyquist rate 
using a one airy unit pinhole diameter and then analysing images using Imaris (version 7.4). Time- lapse 
imaging of SCN: fluorescence timelapse recordings of CRY1::mRuby3 in SCN organotypic slices were 
acquired using Zeiss LSM780/880 inverted confocal system (Zeiss), and maintained at 37 °C. Samples 
were placed in air- tight glass- bottom dishes (Mattek). Images were acquired using 10 x objective, 30 s 
scan time per frame, 2 frames per hour, for 6 days for longer time lapse or 60–70 hr for shorter time 
lapse.

Real-time population bioluminescence recordings
Lung fibroblasts were plated into 35  mm  plastic tissue culture dishes (Corning). Cell media was 
replaced with a HEPES buffered and phenol free DMEM. Additionally, D- luciferin was supplemented 
into the media 4–24 hr prior to recordings. To prevent gas- exchange, dishes were sealed with grease 
applied around the edges of the coverslips. Bioluminescence was then recorded by photomultiplier 
tubes (PMTs; Hamatasu) housed in an enclosed incubator at 37  °C and without CO2 as described 
previously (Loudon et al., 2007).

Single-molecule fluorescence in situ hybridisation
Clock and Bmal1 mRNA were visualised using custom probes designed against Clock and Bmal1 
murine coding sequences via the Stellaris FISH Probe Designer (Biosearch Technologies Inc). Clock 
and Bmal1 probes were labeled with the Quasar- 570 and Quasar- 670 dyes, respectively. Samples 
were imaged with a wide- field DeltaVision microscope as previously described and spot counting was 
performed with FISH- quant (Bagnall et al., 2018; Mueller et al., 2013).

Fluorescence recovery after photo-bleaching
FRAP was performed by time- lapse imaging of cells prior to and after photobleaching to visualise fluo-
rescence recovery. Photobleaching of EGFP and Venus signals was performed using 488  nm  or 514  nm  
laser lines respectively using circular regions of 5  m  diameter (approximately 10% nuclear area) and 
wholly within the nuclei of cells. Images were recorded every 0.262 s for up to 60 s.
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We have used FRAP to infer DNA unbinding rates for BMAL1, see Figure 1—figure supplement 2. 
The principle of the approach assumes that a combination of diffusion and binding to an unseen immo-
bile substrate affects the speed in which fluorescent proteins move into the recovery area. Different 
trajectories of recovery therefore inform how the balance between binding and diffusion contributes 
to the apparent diffusion of the observed molecule. This approach has been utilised many times to 
characterise the binding times of transcription factors to DNA, including GR, STAT1, p53, and p65 and 
has been additionally cross validated against single molecule imaging (Groeneweg et al., 2014). For 
our data, the recovery curves of BMAL1::EGFP (co- expressed alongside tagRFP::CLOCK) remained 
consistent when bleaching different sized nuclear regions indicating that binding contributes to the 
recovery profile rather than a solely diffusion- led process (Figure 1—figure supplement 2). For all 
subsequent measurements, a circular bleach region was used that was kept consistent across cells 
and accounted for approximately 10% of nuclear area. FRAP was performed and analysed using the 
appropriate ZEN software version with recovery curves from the bleached region normalised to total 
cell fluorescence as well as background fluorescence (empty spaces away from cells). The normalised 
recovery curve of fluorescence within the bleached region over time,  t , was then fit with a reaction 
binding model

 f(t) = IE − I1e−
t
τ ,  (1)

where  τ   is the residence time (reciprocal of unbinding rate  kOFF ),  IE  and I1 is the immobile and 
mobile fraction, respectively (Sprague and McNally, 2005).

Fluorescence correlation spectroscopy
Experimental setup
FCS measurements were performed in each cell nucleus using acquisition times of 20 s and a collec-
tion volume of 1 airy unit (approximately 0.722  fl  and 1.10  fl  for 488  nm  and 561  nm  excitation 
respectively when using the FLUAR 40 x NA 1.3 oil immersion objective) calibrated in the x- y plane for 
maximum signal intensity. The effective confocal volumes were calculated via the equation

 
Veff = (2π)

3
2 w2

xywz = (2π)
3
2

(
0.61λ

NA

)2 ( 2nλ
NA2

)
,
  

(2)

where  wxy  and wz is the beam width in the  xy  plane and  z  axis respectively, with NA as the numer-
ical aperture ( NA = 1.3  for our 40 x objective),  λ  the wavelength of exciting laser and  n  the refractive 
index of the immersion oil ( n = 1.515  in all experiments). The appropriate spectra were collected for 
each different fluorophore. Laser power was reduced to minimise photo- bleaching whilst maintaining 
counts per molecule greater than 0.3  kHz .

Fitting
Auto- correlation curves extracted from the  Zeiss. fcs files were fit over two rounds using a program 
written in Python 3; first a global parameter fit executed using a genetic algorithm differential evolu-
tion (SciPy [Virtanen et al., 2020]) generating initial guesses within reasonable parameter bounds 
was performed, followed by a final stage of non- linear least- squares regression implemented via the 
curve fit (SciPy) package with an arctan loss function. The non- linear regression was regularised using 
the standard deviation following the calculations by Saffarian and Elson, 2003 which incorporates 
systematic sources of error at short and long lag times due to the multi- tau correlation algorithm used 
to compute the correlation curve; at short lag times the averaging introduces uncertainty whilst at the 
long lag times less data points exist to correlate due to the finite time over which the experiment was 
run. Poor fits arising from samples expressing only auto- fluorescence or no fluroescence from focus 
shifts can result in highly non- plausible parameter measurements (diffusion >100 um/s) and concentra-
tions ( > 1000 nM) which were removed by robust regression and outlier removal (ROUT) (Motulsky 
and Brown, 2006).

Model selection
The Akaike Information Criterion (AIC) (Akaike, 1974) was used to score and select the best fit model 
with the lowest score, defined as
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 AIC = 2k − 2 ln(L̂),  (3)

where  k  is the number of fitted parameters and  ̂L  the maximum likelihood, equal to the sum of 
squared errors when using non- linear least squares regression to fit the curves. Results of the model 
selection for all FCS data sets performed in this study can be found in Figure 2—figure supplement 
1.

Interactions: fluorescence cross-correlation spectroscopy
Care was taken for fluorescence cross- correlation spectroscopy (FCCS) measurements to avoid the 
green channel signal spilling up into the red channel causing false cross- correlation by reducing 
the laser power and observing the far- red part of the second channel. Control measurements were 
performed by selectively turning off either 488 or 561  nm  lasers and tuning the red channel spectra 
until there was no cross- correlation due to spill- over. We analysed both sets of auto- correlation and 
cross- correlation curves from the same measurement and used the same procedure as Sadaie et al., 
2014 to calculate the disassociation constant  KD . We again used non- linear least squares regression 
upon this data, fitting the function

 
[Complex]

[A::GFP]TOTAL
= [B::RFP]TOTAL−[Complex]

KD+[B::RFP]TOTAL−[Complex] ,  (4)

where  [A::GFP]TOTAL  is the total concentration of the protein  A  fused to a green or yellow fluores-
cent protein,  [B::RFP]TOTAL  is the total of protein  B  fused to a red fluorophore and  [Complex]  is the 
concentration of the dimer of  A  and  B  proteins. The standard deviation upon  KD  was also provided 
by this algorithm.

Maturation correction
Fluorescent proteins may take minutes or hours to fold correctly before becoming visible, with the 
invisible fraction becoming substantial if the degradation rate of the protein is comparable to the 
maturation rate, hence leading to misreports in protein number as measured by FCS. The red fluores-
cent protein, mRuby3 is known to have a long maturation time of 2.28 (Balleza et al., 2018) and CRY1 
to have a half- life of approximately 2.1 (Yoo et al., 2013), therefore we applied a scaling correction to 
CRY1::mRuby3 FCS concentration data. To account for the unseen portion, we model the protein in 
two states; an invisible state,  P , and a mature visible fraction,  M  . Assuming a constant rate of produc-
tion, kp, for the immature protein, a maturation rate for the fluorophore of km, and a degradation rate 
for both protein states of kd we get the set of ordinary differential equations

 

dP
dt

= kp − kdP − kmP,
dM
dt

= kmP − kdM.
  

(5)

These equations may be solved analytically using an integrating factor assuming zero of both 
protein states at  t = 0  and so long as the rate constants km and kd are greater than zero. The unknown 
production rate, kp, is divided out when computing the ratio of both states by  M   and taking the limit 
of the solution as  t −→ ∞  to yield the correction factor

 
c = limt→∞

(
P(t)+M(t)

M(t)

)
= kd+km

km
= τm

τd
+ 1,

  (6)

where  τm  and  τd  are the doubling- time and half- life of the maturation and degradation respectively. 
Using Equation (6), the half- life for CRY1 and the maturation time of mRuby3 we find a multiplica-
tive factor of  c = 2.083 , which may multiply the observed protein to yield the total concentration of 
CRY1::mRuby3.

Diffusion rate as a function of mass
When considering normal diffusion due to Brownian motion the diffusion rate,  D , may be modelled 
using the Stokes–Einstein equation (Einstein, 1905)

 D = kBT
8πηr ,  (7)
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where  kB  is the Boltzmann constant,  T   the temperature in kelvin,  η  the dynamic viscosity, and  r  
as the radius of the diffusing molecule. Assuming a constant density of spatially equally distributed 
constituent amino acids, the mass of the molecule grows like  r3  and hence the diffusion rate will be 
related to the mass of the molecule by

 D ∝ m−1/3,  (8)

hence a halving in mass will equate to an approximate increase of 1.26 times the diffusion rate.

In vitro binding assays
Expression and purification of recombinant proteins
Biotin Acceptor Peptide (BAP)- tagged CLOCK PAS- AB (mouse CLOCK residues 93–395) was 
expressed as a His6- NusA- XL- tagged protein in Escherichia coli (E. coli) Rosetta2 (DE3) cells. The E. 
coli biotin ligase BirA was expressed as a GST- tagged protein in BL21 (DE3) cells. Protein expression 
was induced with 0.5 mM isopropyl- β - D- thiogalactopyranoside (IPTG) at an OD600 of approximately 
0.8 and grown for an additional 16 hr at 18 °C. Cells were centrifuged at 4 °C at 3200 x g, resuspended 
in 50 mM Tris pH 7.5, 300 mM NaCl, 5% (vol/vol) glycerol, and 5 mM- mercaptoethanol (BME) and 
lysed using a microfluidizer followed by brief sonication on ice. After clarifying lysate by centrifugation 
at 4 °C at 140,500 x g for 1 hr, proteins were captured using Ni- NTA resin (Qiagen) or Glutathione 
Sepharose 4B resin (GE Life Sciences). After extensive washing in in 50 mM Tris pH 7.5, 300 mM NaCl, 
5% (vol/vol) glycerol, and 5 mmM BME, the affinity and solubility tags (e.g. His6- NusA- XL or GST) 
were cleaved on resin using GST- TEV or His6- TEV protease at 4 °C overnight. Cleaved proteins were 
collected from the flow- through; GST- BirA was further purified using size exclusion chromatography 
(SEC) on a Superdex75 column (GE Healthcare) in 50 mM Tris, pH 8.0, 300 mM NaCl, 1 mM dithioth-
reitol (DTT), and 5% (vol/vol) glycerol, while CLOCK PAS- AB was further purified using SEC in 20 mM 
HEPES pH 7.5, 125 mM NaCl, 5% (vol/vol) glycerol, and 2 mM Tris(2- carboxyethyl)phosphine (TCEP).

BMAL1 PAS- AB (mouse BMAL1 residues 136–441) was expressed in Sf9 suspension insect cells 
(Expression systems) as a GST- tagged protein using the baculovirus expression system. Sf9 cells were 
infected with P3 virus at  1.2 × 106  cells per milliliter and grown for 72 hr at 27 °C before harvesting. 
Cells were resuspended in resuspension buffer (50 mM HEPES pH 7.5, 300 mM NaCl, 5% (vol/vol) 
glycerol, and 5 mM- mercaptoethanol (BME)). Cells were lysed using a microfluidizer followed by brief 
sonication on ice. After clarifying lysate by centrifugation at 140,500 x g for 1 hr at 4 °C, the lysate 
was bound in batch- mode to Glutathione Sepharose 4B resin (GE Healthcare), washed in resuspen-
sion buffer and eluted with 50 mM HEPES pH 7.5, 150 mM NaCl, 5% (vol/vol) glycerol, 5 mM BME, 
and 25 mM reduced glutathione. The protein was desalted into 50 mM HEPES pH 7, 150  mm  NaCl, 
5% (vol/vol) glycerol, and 5 mM BME using a HiTrap Desalting column (GE Healthcare) and incubated 
with GST- TEV protease overnight at 4 °C. The cleaved GST- tag and GST- tagged TEV protease were 
removed by Glutathione Sepharose 4B chromatography (GE Healthcare) and the BMAL1 PAS- AB was 
further purified by SEC on a Superdex75 column (GE Healthcare) in 20  mm  HEPES pH 7.5, 125 mM 
NaCl, 5% (vol/vol) glycerol, and 2 mM TCEP. For long- term storage, small aliquots of proteins were 
frozen in liquid nitrogen and stored at –70 °C.

Biotinylation of CLOCK PAS- AB. For the biotinylation reaction, 100 m BAP- CLOCK PAS- AB was 
incubated in 20 mM HEPES pH 7.5, 125 mM NaCl, 5% (vol/vol) glycerol, and 2 mM TCEP with 2 mM 
ATP, 1 m GST- BirA, and 150 m biotin at 4 °C overnight. GST- BirA was removed after the reaction using 
Glutathione Sepharose 4B resin (GE Healthcare) and excess biotin was separated from the labeled 
protein by SEC on a Superdex75 column in 20  mm  HEPES pH 7.5, 125 mM NaCl, 5% (vol/vol) glyc-
erol, and 2 mM Tris(2- carboxyethyl)phosphine (TCEP). Biotinylation of CLOCK PAS- AB was essentially 
complete, as determined by incubating the protein with excess streptavidin and resolving complexes 
on SDS- PAGE. For long- term storage, small aliquots of the biotinylated protein were frozen in liquid 
nitrogen and stored at –70 °C.

Surface plasmon resonance binding assays
Kinetic binding experiments were conducted on a Biacore X100  +instrument (GE Healthcare) 
capturing biotinylated CLOCK PAS- AB on a streptavidin- coated SA sensor chip at 100–150 Response 
Units (RUs). Serial dilutions of BMAL1 PAS- AB from 0.25 to 10  nm  were injected in phosphate buff-
ered saline (PBS) over 250 s and dissociated into buffer over 250 s to determine binding kinetics. 
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Sensorgram data were globally fit to a 1:1 biomolecular binding model with Biacore Evaluation 
software X100  +version 2.0.1 (GE Healthcare) to determine  kON ,  kOFF  and  KD .  χ

2
  values lt1 and 

 Rmax ≤ 100  were established as quality cutoffs for acceptable data. See Figure 2—figure supple-
ment 2F for surface plasmon resonance results between BMAL1 PAS- AB and CLOCK PAS- AB 
domains.

Animal lines
A previously established Venus::BMAL1 mouse line was used (Yang et al., 2020). Additionally, two 
more mouse lines were generated which included CRY1::mRuby3 (Figure 3—figure supplement 1) 
and a subsequent cross with mice expressing Venus::BMAL1 and PER2::LUC (Bagnall et al., 2015). 
The CRY1::mRuby3 mice were made using a CRISPR- mediated genomic editing approach to intro-
duce a fluorescent sequence via homology- directed repair. Details of methodology and validation of 
animals can be found in the supplementary materials. Eight- to 10- week- old mice were housed in indi-
vidual cages in light- tight cabinets (Tecniplast), equipped with activity mouse wheel cages (Actimet-
rics). Activity was recorded by ClockLab data collection software in 6- min bins (Actimetrics). The mice 
were maintained at LD cycles (light on at 7 am; light off at 7 pm) for 2 weeks. Activity profiles were 
generated using ClockLab (Actimetrics) and used to apply Non- Parametric Circadian Rhythm Analysis 
(NPCRA) to 10 circadian days of wheel- running data, as described previously (Reppert and Weaver, 
2002), to calculate: Intra- daily Variability (IV): Non- parametric frequency of activity- rest transitions 
within a day, with a range of between 0 and 2 (e.g. a Sine wave would have a value of 0 and Gaussian 
noise would have a value of 2). Inter- daily Stability (IS): Matching of activity patterns on day- to- day 
basis, ranging from 0 (Gaussian noise) to 1 (high- stability). Robust behavioural activity is characterised 
by low IV and high IS. ClockLab (Actimetrics) was used to generate double- plotted actograms with 
onsets of activity and phase angle of entrainment was calculated from 10 days of wheel- running data 
measuring the difference in time of the point in the entraining cycle (lights on) against the onset of 
activity.

Generation of CRY1::mRuby3 mouse line
We used CRISPR- Cas9 to generate C terminally tagged alleles for Cry1, see Figure 3—figure supple-
ment 2. Two sgRNA targeting the STOP codon of the gene were selected using the Sanger WTSI 
website (Hodgkins et al., 2015) that adhered to our criteria for off target predictions (guides with 
mismatch (MM) of 0, 1 or 2 for elsewhere in the genome were discounted, and MM3 were tolerated if 
predicted off targets were not exonic). sgRNA sequences, wih PAM site indicated in italics, (aact gata 
cggt aaat actt - AG G and cggc agag cagt aact gata - CG G) were purchased as crRNA oligos, which were 
annealed with tracrRNA (both oligos supplied by IDT) in sterile, RNase free injection buffer (TrisHCl 
1 mM, pH 7.5, EDTA 0.1 mM) by combining 2.5 mg crRNA with 5 mg tracrRNA and heating to 95ºC, 
which was allowed to slowly cool to room temperature.

For our donor repair template, we used the EASI- CRISPR long- ssDNA strategy (Quadros et al., 
2017), which comprised of the mRuby3 gene with linker flanked by 132 and 143 nt homology arms 
synthesised by a Biotinylation PCR and on- column denaturation method (Bennett et  al., 2021; 
Figure 3—figure supplement 3A). For embryo microinjection, the annealed sgRNA was complexed 
with Cas9 protein (New England Biolabs) at room temperature for 10 min, before addition of long 
ssDNA donor (final concentrations; sgRNA 20  ng/ml, Cas9 protein 20  ng/ml, lssDNA 10  ng/ml). 
CRISPR reagents were directly microinjected into C57BL6/J (Envigo) zygote pronuclei using standard 
protocols. Zygotes were cultured overnight and the resulting two- cell embryos surgically implanted 
into the oviduct of day 0.5 post- coitum pseudopregnant mice. Potential founder mice were screened 
by PCR (Figure 3—figure supplement 2A), using primers that flank the sgRNA sites (Cut test F taca 
ctat gctc acgg ggac  and Cut test R acca cgtc ctct tcag aacc ), which both identifies editing activity in the 
form of InDels from NHEJ repair, and can also detect larger products indicating HDR (Figure 3—
figure supplement 2A). Pups 18, 19, and 22, which gave positive products in PCR reactions, were 
sequenced by amplifying again with the cut test F/R primers using high fidelity Phusion polymerase 
(NEB), gel extracted and subcloned into pCRblunt (Invitrogen) and Sanger sequenced with M13 
Forward and Reverse primers. All pups showed perfect sequence integration and were bred with a 
WT C57BL6/J to confirm germline transmission.
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Mathematical modelling
Modelling aims and assumptions
We sought to model how the core circadian transcription factor, CLOCK:BMAL1, binds to specific 
E- BOX DNA sites over daily cycles in concentration and interactions with the key repressors CRYP-
TOCHROME1 (CRY1) and PERIOD2 (PER2). We have opted to neglect explicitly modelling the non- 
specific DNA interactions, such as sliding, hopping and intersegmental transfer, as we have no direct 
measurements of these properties. Instead we chose to allow the specific site on rate ( kON ) to repre-
sent all protein- DNA processes required to achieve binding to an specific site by fitting  kON  alongside 
other ON rates. CRY1 and PER2 repress the activity of BMAL1 through direct binding of the trans-
activation domain (TAD) to block transcriptional potential and the promotion of weaker binding to 
DNA, respectively. We have assumed that PER2 may interact with BMAL1 and CLOCK:BMAL1 only via 
CRY1 with the same affinity that CRY1 alone has for BMAL1. To constrain the on rates during fitting, 
we have used the measured disassociation constants,  KD , between CLOCK- BMAL1 (Figure  2G), 
CLOCK:BMAL1- EBOX (Huang et al., 2012), CRY1- PER2 (Figure 4C), and the rhythmic CRY1- BMAL1 

 KD  (Figure 3F). All protein- protein and protein- DNA interactions are modelled as explicit dimerisation 
events leading to a new species dependent on an ON and OFF rate. A summary of the parameters, 

 KD  values and which parameters were proposed during fitting is given in Table  1. Following the 
convention when defining chemical reactions, square brackets are used to signify concentrations of 
the species within. To aid understanding of the reactions being modelled we describe the species 
participating in reactions as familiar initialisations, for example [CB] represents the concentration of 
the CLOCK:BMAL1 heterodimer and [C1] for CRY1. Consequently, further dimerisations or bound 
states are denoted by concatenations of these initialisations, for example [CBC1P2] for the CLOCK:B-
MAL1:CRY1:PER2 tetramer or [CBS] for CLOCK:BMAL1 bound to a specific DNA ( S ) site.

Dimerisation
Hetero- dimerisation of two species  [A]  and  [B]  proceeds to the dimer  [AB]  via the reaction

 [A] + [B] ⇌kON
kOFF

[AB],  (9)

where where  kON  ( nm−1 s−1 ) and  kOFF  ( s−1 ) are the forward and backwards rates respectively 
(Sadaie et al., 2014), often referred to as the association and dissociation rate constants. In equi-
librium, the forward rate of reaction is equal to the backward rate resulting in the definition of the 
disassociation constant

 KD = [A][B]
[AB] ,  (10)

defined in terms of the ON and OFF rates as

 KD = kOFF
kON

.  (11)

A stronger interaction is represented as a smaller  KD  value as the rate to the disassociated is 
smaller than the association rate. In the limit of long times,  t → ∞ , the concentration of the dimer  [AB]  
in equilibrium becomes

 
[AB]eq = [A]0 + [B]0 + KD −

√
([A]0 + [B]0 + Kd)2 − 4[A]0[B]0

2
,
  

(12)

where a subscript 0 denotes the initial concentration. Alternatively, assuming no production or 
degradation terms exist we may simulate analytically intractable multiple interactions by simulating a 
coupled ODE model until equilibrium concentrations are reached. For all ODE modelling, we defined 
equilibrium as less than a 1% deviation in molecular concentrations over the last 20% of simulated 
time points. In all cases equilibrium was established in less than 30 min of simulated time, smaller than 
the window over which experimental FCS time point measurements were performed.

Ordinary differential equation model of DNA binding
Systems of ordinary differential equations (ODE), modelling the concentrations of molecular species, 
were solved in the Python three programming language to reflect measured interactions between 
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different molecules and DNA. All interactions are modelled as explicit dimerisation events yielding a 
new molecular species. ODEs were solved in time as an initial value problem using the LSODA solver 
as implemented in the SciPy odeint function (Virtanen et al., 2020) and ran until equilibrium concen-
trations were reached, typically reached in less than 30 min of simulated time. The system of ODEs are

 

d[CB]
dt

= −dON[CB][C1P2]+dOFF[CBC1P2]−dON[CB][C1]+dOFF[CBC1]−kON[CB][S] +kOFF[CBS]+

bON[C][B] − bOFF[CB],
d[S]
dt

= −kON[CB][S] + kOFF[CBS] − kON[CBC1P2][S] + ROFF[CBC1P2S] − kON[CBC1][S] +

kOFF[CBC1S],
d[CBS]

dt
= kON[CB][S] − kOFF[CBS] − dON[CBS][C1] + dOFF[CBC1S] − dON[CBS][C1P2] +

dOFF[CBC1P2S],
d[C1]

dt
= −dON[CB][C1]+dOFF[CBC1]−dON[CBS][C1]+dOFF[CBC1S]−aON[C1][P2] +aOFF[C1P2]−

dON[B][C1] + dOFF[BC1],
d[CBC1]

dt
= −aON[CBC1][P2] + aOFF[CBC1P2] + dON[CB][C1] − dOFF[CBC1] − kON[CBC1][S] +

kOFF[CBC1S] + bON[C][BC1] − bOFF[CBC1],
d[CBC1S]

dt
= dON[CBS][C1]−dOFF[CBC1S]−aON[CBC1S][P2] + aOFF[CBC1P2S] + kON[CBC1][S]−

kOFF[CBC1S],
d[P2]

dt
= −aON[CBC1][P2] + aOFF[CBC1P2] − aON[C1][P2] + aOFF[C1P2] − aON[CBC1S][P2] +

aOFF[CBC1P2S] − aON[BC1][P2] + aOFF[BC1P2],
d[C1P2]

dt
= −dON[CB][C1P2] + dOFF[CBC1P2] + aON[C1][P2] − aOFF[C1P2] − dON[CBS][C1P2] +

dOFF[CBC1P2S] − dON[B][C1P2] + dOFF[BC1P2],
d[CBC1P2S]

dt
= kON[CBC1P2][S] − ROFF[CBC1P2S] + aON[CBC1S][P2] − aOFF[CBC1P2S] +

dON[CBS][C1P2] − dOFF[CBC1P2S],
d[CBC1P2]

dt
= aON[CBC1][P2] − aOFF[CBC1P2] + dON[CB][C1P2] − dOFF[CBC1P2] −

kON[CBC1P2][S] + ROFF[CBC1P2S] + bON[C][BC1P2] − bOFF[CBC1P2],
d[C]

dt
= −bON[C][B] + bOFF[CB] − bON[C][BC1] + bOFF[CBC1] − bON[C][BC1P2] + bOFF[CBC1P2],

d[B]
dt

= −bON[C][B] + bOFF[CB] − dON[B][C1] + dOFF[BC1] − dON[B][C1P2] + dOFF[BC1P2],
d[BC1]

dt
= dON[B][C1] − dOFF[BC1] − bON[C][BC1] + bOFF[CBC1] − aONBC1[P2] + aOFF[BC1P2],

d[BC1P2]
dt

= dON[B][C1P2] − dOFF[BC1P2] − bON[C][BC1P2] + bOFF[CBC1P2] + aON[BC1][P2] −

aOFF[BC1P2].   

A genetic algorithm, implemented in differential evolution (SciPy [Virtanen et  al., 2020]), was 
utilised to fit the unknown parameters in the ODE model via Chi- squared minimisation to experi-
mental  kOFF  mean and standard error on the mean using an in silico value,  ̄kOFF , generated by the 
model. All non- dimerised species concentrations, as measured experimentally, were introduced for 
each of the seven time- points – a 24 hr time span sampled every 4 hr – into the model as inputs 
alongside measured disassociation constants to constrain fitted OFF rates as a function of proposed 
ON rates, reducing the number of fitted parameters. A summary of the parameters in the model is 
given in Table 1. During fitting the in silico  kOFF  value was calculated by allowing all species to reach 
equilibrium after setting all DNA bound species to zero following an initial run of the model, the 
resultant equilibrium concentrations of bound and free molecules were used to calculate the off rate 
(Figure 5—figure supplement 1A). The average apparent DNA unbinding rate  ̄kOFF , which is anal-
ogous to the same rate as experimentally measured in FRAP, is simulated following the method by 
Röding et al., 2019 through rearranging Equation (11) for the off rate

 
k̄OFF = kONKD = kON

[Unbound CB][Unbound Sites]
[Bound Sites]

,
  

(13)

with
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 [Unbound CB] = [CB]eq + [CBC1]eq + [CBC1P2]eq,  (14)

 [Unbound Sites] = [S]eq,  (15)

 [Bound sites] = [CBS]eq + [CBC1S]eq + [CBC1P2S]eq  (16)

where eq denotes concentrations at equilibrium as  t → ∞ . The apparent  ̄kOFF  is an average of 
the CLOCK:BMAL1- DNA binding OFF rate  kOFF  and CLOCK:BMAL1:CRY1:PER2- DNA OFF rate  ROFF  
weighted by their respective relative concentrations, with increasing levels of CRY1:PER2 increasing 

 ̄kOFF  as  kOFF < ROFF . The fitted parameters are given in Table 1 and predicted in silico  ̄kOFF  values for 
WT and PER2 KO can be seen in (Figure 5—figure supplement 1C). Knocking out PER2 (keeping 
all other species and parameters the same as wild type values) removes all rhythmic regulation of 

 ̄kOFF  and ensures that CLOCK:BMAL1 is bound for longer at all time points such that the number of 
bound specific sites (S) also increases for all time points (Figure 5—figure supplement 1E). Locking 
BMAL1, CRY1, PER2 and the interaction between BMAL1 and CRY1 to their mean value between 24 
and 48 hr post- dexamethosone (DEX) treatment, reveals that setting BMAL1 to its mean value signifi-
cantly alters both bound and free from DNA CLOCK:BMAL1:CRY1 whilst locking the other rhythmic 
components has little impact (Figure 5—figure supplement 1F).

Upper and lower bounds on one- at- a- time (OAT) sensitivity analysis (Figure 6A–B) were generated 
by running the fitted model for both an estimate of the smallest and largest number of target sites, 
1000 and 10,000 respectively, with the mean representing the mean number of target sites from ChIP 
data, namely 3,436. We may estimate the number of target sites for CLOCK:BMAL1 from previous 
studies investigating high confidence sites that BMAL1 binds to in ChIP- seq, with Table 2 outlining the 
reports and peaks measured via ChIP- seq that were used in estimating the number of target sites used 
in our mathematical modelling. In addition to the OAT analyses in Figure 6A–B we also examined how 
changing amounts of CRY1:PER2 alters the residence time of CLOCK:BMAL1 on DNA, demonstrating 
how CRY1:PER2 readily promotes removal from DNA in a non- linear fashion over a physiologically 
plausible range of concentrations (Figure 5—figure supplement 1B).

Stochastic DNA binding model
Stochastic binding simulations in Python three utilised the Gillespie algorithm (Gillespie, 2002) 
through the StochPy library (Maarleveld et al., 2013) to simulate a reduced topology, considering 

Table 3. Stochastic model reactions and propensities.
Counter for arrivals by CLOCK:BMAL1 ( CB ) without CRY1 ( C1 ) to previously unbound sites  S  
converting them to S0 given by  ACB  as well as counters for marked site  M   binding represented by 

 BX , and unbinding,  UX , by species  X  . The size of the system is given by  Ω = 1 × 10−9NAV  , where  V   is 
the volume in liters and is used to convert ON rate quantities with dimensions nm–1s–1 into particle–1 

s–1.  kON   is the same value as previously fitted for the ODE model given in Table 1.

No. Reaction Propensity

1  CB + S −→ CBS + ACB  (kON/Ω) · CB · S 

2  CB + S0 −→ CBS  (kON/Ω) · CB · S0 

3  CBS −→ CB + S0  kOFF · CBS 

4  CBC1 + S −→ CBC1S  (kON/Ω) · CBC1 · S 

5  CBC1S −→ CBC1 + S  kOFF · CBC1S 

6  CBC1 + S0 −→ CBC1S0  (kON/Ω) · CBC1 · S0 

7  CBC1S0 −→ CBC1 + S0  kOFF · CBC1S0 

8  CB + M −→ CBM + BCB  (kON/Ω) · CB · M  

9  CBM −→ CB + M + UCB  kOFF · CBM  

10  CBC1 + M −→ CBC1M + BCBC1  (kON/Ω) · CBC1 · M  

11  CBC1M −→ CBC1 + M + UCBC1  kOFF · CBC1M  
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only CLOCK:BMAL1 and CLOCK:BMAL1:CRY1 binding to sites with the addition of 1 extra marked 
site,  M  , and using the fitted ON/OFF rates from the ODE model. The Table 3 gives the reactions and 
propensities that are modelled.

Thirty runs over 60 min were used to generate mean and standard deviations with times to reach 
95% of all sites at least once determined via fitting of an inverse exponential to the number of unique 
site visits counted via the variable  ACB . The time for available CLOCK:BMAL1 complexes to bind 
95% of all binding sites at least once is calculated by fitting the recovery curve  f(t) = 1 − exp(−λt)  to 
normalised stochastic trajectories of  Stot − S  ( Stot = 3436 ), see Figure 7—figure supplement 1B, and 
then converting the recovery rate  λ  using the equation

 τ95% = ln(20)
λ .  (17)

Visits per minute to a single site were calculated by counting binding and unbinding to  M  , which 
possesses the same ON and OFF rates as other target- sites. Assessment of the contribution of PER2 
mediated displacement was performed by setting PER2 concentration to zero (KO) in the ODE model 
and using the simulated OFF rate in a parallel run to wild- type (WT) runs (Figure 5—figure supplement 
1B), with the reduced number of visits attributed to the slower OFF rate. Furthermore, we observed 
the same behaviour in this reduced stochastic model, when compared to the full ODE model, for PER2 
KO as the mean and standard deviation of the number of sites bound by CLOCK:BMAL1 in both WT 
and KO conditions, Figure 7—figure supplement 1A, being comparable to the ODE model results 
in (Figure 5—figure supplement 1E). Finally, to assess the differences that would be induced by 
different nuclear volumes, as seen between different cell types, we ran the stochastic model at the 
same molecular concentrations over two volumes; a small volume of 240  fl  representative of a typical 
mouse embryonic fibroblast (MEF) or various immune cell types (see Figure 3—figure supplement 
1E) and 926  fl  as measured for our lung fibroblasts used throughout this study, Figure 7—figure 
supplement 1C. We note little difference in the rate at which CLOCK:BMAL1 visits the single marked 
site  M  , indicating that the increase in DNA sites comparatively to the number of molecules at a smaller 
nuclear volume was balanced by the increase in ON rate due to the now higher concentration of DNA.
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Figure 1. Short- lived DNA binding of BMAL1 and CLOCK. (A) Schematic representation of parameters regulating CLOCK:BMAL1 dimers binding to 
target DNA sites. (B) NIH/3T3 cells are either singularly or sequentially transduced to express fluorescent fusions with CLOCK or BMAL1 (wildtype and 
mutant variants).(C) Confocal microscopy images of cells solo- expressing (LV1) either tagRFP::CLOCK or BMAL1::EGFP or co- expressing (LV2) them 
together (including BMAL1 L95E DNA- binding mutant). (D) Confocal microscopy images for photobleaching of LV2BMAL1::EGFP- RFP::CLOCK labelled 
cells, either with wild- type or BMAL1 L95E DNA binding mutant. Images show nuclei and highlight region of bleaching. (E) Representative fluorescence 
recovery curves of bleach region for B. following normalisation. (F) Residence time calculated as the inverse of kOFF ( s−1 ), determined from fitting the 
recovery data with a single component binding model (n = 69, 58, and 51 cells). Bar represents median values. Source data for panel F available as 
Figure 1—source data 1.
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Figure 1—figure supplement 1. Ectopically expressed mRNA is the major form in a lentivirus transduced system. (A) NIH/3T3 cells were stained 
for CLOCK mRNA by single- molecule fluorescent in situ hybridisation (smFISH). (B) Mature mRNA was counted from images of many single cells to 
determine the mRNA content per cell for both non- transduced and cells transduced to express EGFP::CLOCK from a ubiquitin ligase C promoter (n = 
2177 cells for WT and n = 155 cells for LV1). Increased nuclear bright dots can be seen for the transduced cells. These bright dots correspond to sites of 
transcription which is increased beyond two copies due to the multiple sites of integration following transduction. Full details for summary statistics can 
be found in Figure 1—figure supplement 1—source data 1.
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Figure 1—figure supplement 2. Binding plays a significant role in BMAL1 mobility. Fluorescence recovery after photobleaching for NIH/3T3 cells 
transduced with tagRFP::CLOCK and BMAL1:EGFP. (A) Imaging protocol was performed on BMAL1::EGFP signal. Regions of photobleaching are shown 
as a red- dotted line which is increased in size. (B) The bleached region recovery curves are shown as averages of all cells with an SEM error envelope (n 
= 14, 20, and 15).
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Figure 2. Live- cell interaction measurements demonstrate BMAL1 and CLOCK mobility is regulated by dimerisation and DNA binding. (A) Schematic of 
confocal volume used in FCCS with corresponding photon count traces. Interaction may be seen by correlation between both channels. Representative 
auto- and cross- correlation data showing raw data and fit lines for monomeric and complexed fluorescent proteins. (B) FCS data showing diffusion 
for BMAL1 and CLOCK in solo- and co- expressed conditions (n = 173, 152, 198, and 185 cells). (C) FCS results for BMAL1::EGFP diffusion for NIH/3T3 
cells that co- express tagRFP::CLOCK. Data shown is for comparison of BMAL1 as either wild- type of L95E DNA- binding mutant. Bars show median and 
interquartile range. (D) Correlation of nuclear protein quantification showing relationship of BMAL1::EGFP with tagRFP::CLOCK for both wildtype and 
DNA binding mutant (n = 221 cells from three biological replicates). (E) Average cross- correlation curves for BMAL1::EGFP (WT) with tagRFP::CLOCK 
(n = 140) compared to a non- interacting control of NLS::EGFP co- expressed with tagRFP::CLOCK (n = 408). (F) Dissociation plot from FCCS data for 
BMAL1::WT and tagRFP::CLOCK. (G) Summary of calculated dissociation constants across all conditions, including BMAL1 dimerisation mutant, V435R 

Figure 2 continued on next page
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(n = 156, 274, and 244). Mann- Whitney non- parametric test to determine significance (values are denoted as p > 0.05 ns, p < 0.05 *, p < 0.01 **, p < 
0.001 *** and p < 0.0001 ****). Source data for panels B,C available as Figure 2—source data 1 and panel E as Figure 2—source data 2.

Figure 2 continued
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Figure 2—figure supplement 1. Anomalous diffusion best fits protein movement. (A) Representative normal and anomalous model fits for 
BMAL1::EGFP FCS data sets for cells transduced with lentivirus to express BMAL1, CLOCK or control fluorescent proteins. (B) Summary data sets for 
all five models considered. Each model was fit to each measurement and the fit with the lowest AIC score selected. A single pie chart was generated 
for cells carrying a single fluorescent label whereas two pie charts are plotted for cells with multiple labels, corresponding to the analysed green or red 
fluorescence.
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Figure 2—figure supplement 2. Fluorescent BMAL1 and CLOCK proteins behave similarly when colours are swapped. (A) Confocal images of 
NIH/3T3- LV2 EGFP::CLOCK- BMAL1::tagRFP cells. (B) Average auto- and cross- correlation curves shown as mean (line) and standard deviation (error 
envelope) for NIH/3T3 cells transduced to express BMAL1::EGFP and tagRFP::CLOCK. (C) Same as previous for colour swapped cells so that they 
express BMAL1::tagRFP and EGFP::CLOCK (n = 1158). (D) Dissociation plot to determine  KD  for data from C. (E) Ratio calculations for number of 
nuclear molecules of BMAL1::EGFP/NLS::EGFP to tagRFP::CLOCK. (F) Surface plasmon resonance (SPR) analysis of heterodimer formation with 
immobilised biotinylated CLOCK PAS- AB in the presence of increasing concentrations of BMAL1 PAS- AB from 0.25 to 10  nm  (light to dark blue). Data 
were fitted using a 1:1 binding model (global fit in black, association rate  kON = 6.47 × 105

 , dissociation rate  kOFF = 8.98 × 10−4
 ,  KD = 1.39 × 10−9

 , 

 χ
2 = 0.230 ). Kruskal- Wallis test used to determine significance (values are denoted as p > 0.05 ns, p < 0.05 *, p < 0.01 **, p < 0.001 *** and p < 0.0001 

****).
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Figure 3. A rhythmic and strong interaction observed between slow- diffusing BMAL1 and CRY1 facilitates repression. (A) Schematic of triple- labelled 
mice from which primary lung fibroblasts were isolated (B) Confocal images of two cells shown for Venus::BMAL1 and CRY1::mRuby3 over time. FCS 
determined measurement for diffusion coefficient (C) and protein concentration (D) of Venus::BMAL1 and CRY1::mRuby3 (n = 136, 143, 173, 131, 158, 
121, and 132; line shows the mean and error envelopes show the SEM). (E–F) Interaction strength between BMAL1 and CRY1 was also measured over 
time as illustrated by the schematic of affinity as well as plotted values of dissociation constant (error envelope shows the standard deviation). Kruskal- 
Wallis test used to determine significance (values are denoted as p > 0.05 ns, p < 0.05 *, p < 0.01 **, p < 0.001 *** and p < 0.0001 ****). Source data for 
panels B,C available as Figure 3—source data 1, Figure 3—source data 2, Figure 3—source data 3, Figure 3—source data 4.
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Figure 3—figure supplement 1. BMAL1 concentration and DNA binding parameters minimally vary across cell types. (A) Confocal microscopy images 
of primary cultures isolated from Venus::BMAL1 mice. (B) Characteristic bound time calculated from FRAP measurements of primary cultures from A. 
Chondrocyte data was previously measured by Yang et al., 2020 and reanalysed for bound time (n = 73, 87, 61, 42, and 35 cells). (C) Cell cultures were 
measured using FCS and the auto- correlation data used to determine Venus::BMAL1 diffusion coefficient and (D) protein concentration (n = 107, 142, 
156, 1597, 243, and 172 cells). (E) To determine total molecular abundance per nuclei, cultures were stained with Hoechst 33,342 and then imaged. 
Nuclear volumes were then determined (n = 84, 115, 27, 169, 9 and 30). (F) Total BMAL1 molecules calculated from average nuclear concentration and 
average nuclear volume. Kruskal- Wallis test was used to determine significance (values are denoted as p > 0.05 *, p < 0.01 **, p < 0.001 *** and p < 
0.0001 ****). Panels B and D have been adapted from Figure 4E and 5A, B from Yang et al., 2020.
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Figure 3—figure supplement 2. Generation of CRY1::mRuby3 mouse line. (A) Genotyping of pups by PCR. Images are PCR reactions run on Qiaxcel 
with red arrows indicating correct HDR product size, blue asterisks indicate mice in which InDels resulting from NHEJ are observed. (B) Actogram traces 
for wild- type and genetically modified CRY1::mRuby3 mice. (C) Mean ± SEM circadian periods for wheel- running in light- dark conditions (12 h/12 h) (+/+ 
= 10; +/R = 10; R/R = 13). Mean ± SEM circadian periods for wheel- running in constant dark (+/+ = 6; +/R = 10; R/R = 10). (D) Mean correlation curve 
for FCS measurements of BMAL1 x CRY1 x PER2::luc lung fibroblasts 24 hr after dexamethasone synchronisation (n = 144, BMAL1 and n = 135, CRY1). 
(E) FCS model selection results (pooling 24–48 hr post- dexamethasone measurements). One- way ANOVA test used to determine significance (values are 
denoted as p > 0.05 ns, p < 0.05 *, p < 0.01 **, p < 0.001 *** and p < 0.0001 ****).
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Figure 3—figure supplement 3. Triple endogenous labelled mice used to assay rhythms in SCN and peripheral lung fibroblasts. (A) Schematic 
representation of newly made transgenic mouse engineered to express CRY1::mRuby3, Venus::BMAL1, and PER2::LUC. (B) Confocal microscopy image 
of SCN organotypic slice expressing CRY1::mRuby3. (C) Quantification of mRuby3 fluorescence over time for the whole SCN, with mean and standard 
deviation of period. (D) Experimental set up to measure isolated primary lung fibroblasts from Venus::BMAL1 x CRY1::mRuby3 x PER2::LUC labelled 
mice synchronised with dexamethasone. Parallel cell cultures were analysed for luminescence and also by FCS over a time- course, measured every 4 hr. 
(E) Luminescence recordings of isolated primary lung fibroblasts from BMAL1 x CRY1 x PER2 labelled mice synchronised with dexamethasone. Data 
shown is for three independent replicates, with mean and standard deviation of period shown.
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Figure 4. PER2 modulates CRY1 mobility via a high- affinity association. (A) Confocal images of transduced NIH/3T3 cells that either solo- or co- express 
PER2 and CRY1. (B) FCS data showing diffusion for PER2 and CRY1 in solo- and co- expressed conditions (n = 165, 174, 274, and 274 cells; diffusion rate 
means of 0.2, 0.2, 1.1, 0.2). (C) Dissociation plot from nuclear FCS measurements for EGFP::PER2 and CRY1::tagRFP (n = 274). Significance determined 
by Mann- Whitney test (values are denoted as p > 0.05 ns, p < 0.05 *, p < 0.01 **, p < 0.001 *** and p < 0.0001 ****). Source data for panels B available 
as Figure 4—source data 1.
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Figure 4—figure supplement 1. CRY1 mobility is affected by co- expression with PER2. (A) Average auto- and cross- correlation curves shown as mean 
(line) and standard deviation (error envelope) for NIH/3T3 cells transduced to express EGFP::PER2 and CRY1::tagRFP. Measurements were made in the 
nuclei. (B) FCS model selection results for cells that either solo- express CRY1/PER2 or co- express both.
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Figure 5. PER2 acts via CRY1 to mediate rhythmic displacement of CLOCK:BMAL1 from DNA. (A) Schematic representation of model topology used 
for the deterministic model of CLOCK:BMAL1 DNA binding. (B) Primary lung fibroblasts from BMAL1 x CRY1 x PER2 mice were synchronised with 
dexamethasone. Plot shows PER2 concentration as measured via FCS by Smyllie et al., 2016 as well as mean BMAL1 binding time (showing SEM 
error envelope). Binding time was measured by confocal FRAP measurements performed on the Venus::BMAL1 fluorescence. Orange line shows the 
inverse of kOFF (s-1), determined from fitting the recovery data with a single component model (n = 48, 70, 82, 63, 82, 64, and 65 cells). (C) ODE model 
was fit to FRAP binding data from E. and using a measured input for PER2 nuclear concentration previously determined in Smyllie et al., 2016. Model 
output showing (D) inferred nuclear concentrations for molecular complexes (E) and CLOCK:BMAL1 without and with CRY1 bound to target sites (see 
supplementary materials for parameters). Panel B has been adapted from Figure 3C from Smyllie et al., 2016.
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Figure 5—figure supplement 1. ODE model of CLOCK:BMAL1 DNA binding using measured inputs and modelled perturbations. (A) Normalised 
model simulated FRAP using ODE model by counting recovery of site bound BMAL1 species after removal. (B) Model determined residence time of 
DNA bound CLOCK:BMAL1 across different concentrations of CRY1:PER2 using parameters from T40. (C) Modelled residence time of DNA bound 
CLOCK:BMAL1 across circadian time calculated for WT and without PER2. Without PER2 model data over a circadian cycle showing (D) non DNA- bound 
complexes and (E) DNA bound CLOCK:BMAL1. (F) Plots showing the CLOCK:BMAL1:CRY1 complex across several simulated conditions, including 
removal of rhythmicity from BMAL1, CRY1, or PER2 protein levels or the interaction between BMAL1:CRY1 (fixing them to their mean concentration).
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highlighted. Source data available as Figure 6—source data 1.
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Figure 7. Mathematical modelling demonstrates dual function of PER:CRY mediated repression. Stochastic binding model outputs using parameters 
corresponding to T28, T32 or T40 post dexamethasone BMAL1 x CRY1 data sets. (A) Shows a promoter corresponding to the average binding rate 
of CLOCK:BMAL1, (B) the time to visit 95% of target sites once and (C) number of visits to a single promoter over time. Shaded error envelope shows 
standard deviation. (D) Average number of visits per minute to a target site showing active and CRY1 repressed CLOCK:BMAL1 visits. (E). Comparison 
of the contribution of BMAL1 concentration (blue) and PER2 facilitated displacement (green) on the visits per minute to a target site. Percentage 
contribution indicated. (F) Relationship of PER2 protein concentration to site visitations per minute and occupancy by CLOCK:BMAL1 using parameters 
for T40 explored over different concentrations of PER2. Error bars represent standard deviation. (G) The action of CRY:PER leads to short- lived transient 
binding of CLOCK:BMAL1 to DNA, working as both a repressive action whilst also facilitating binding to new target sites.
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Figure 7—figure supplement 1. Stochastic binding model using experimentally measured parameters (A) Stochastic model showing the average 
binding (with SD) of CLOCK:BMAL1 bound target sites using input measurements from all time points for both WT and without PER2 simulations. 
(B) The time to visit every E- Box site once for T28 showing fit. (C) Model simulation plots showing CLOCK:BMAL1 visits to a single promoter over 
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Anatomy of circadian clock protein complexes in live
cells
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Abstract
Circadian rhythms (∼24 hour) play a critical role in regulating a variety of physiological functions across time, and are
driven by a cell-autonomous clock that relies on multiple protein-protein interactions. Yet, how these interactions come
together in time and space within living cells is largely unexplored. Here, we quantified the dynamic interactions between
15 pairs of core circadian clock proteins in live cells, using Fluorescence Cross-Correlation Spectroscopy (FCCS). Remarkably,
we found that the protein pairs PER2-CRY1 and CRY1-BMAL1, were the strongest interactors with very similar dissociation
constants (KD). Moreover, the strengths of these interactions were well-conserved across different cell types and protein
expression levels. We developed new methodologies to establish which interactions are direct or facilitated by a third
partner, finding that most proteins in the circadian network directly bind with one another. In a limited number of cases,
PER2 and BMAL1 were found to play a central role in facilitating complex formation, acting as scaffolds for multi-protein
complexes involved in the repressive phase of the circadian cycle. We validated our findings by measuring three-way
interactions by FCCS. From this, we show that the strong PER2-CRY1 and PER2-CRY2 interactions can stabilise CRY
proteins and are sufficient to maintain post-translational rhythms of CRY2, independently of transcription. This study
provides new insight into how multiple protein components interact in time and space within the living cell and offers a
general quantitative approach applicable to other biological systems.

Introduction

The circadian clock is a fundamental adaptive feature
for virtually all living organisms. Circadian clocks are
cell-autonomous, and in mammals, organise multiple

physiological functions, as diverse as immunity (Scheier-
mann et al., 2018), metabolism (Buhr and Takahashi, 2013),
and behaviour (Konopka and Benzer, 1971).

The mammalian circadian system is coordinated in a
hierarchical manner. Retinal photic input entrains a spe-
cialised hypothalamic structure (suprachiasmatic nucleus,
SCN), outflow from which impacts on multiple peripheral
autonomous oscillators throughout the body through a di-
verse range of cues (Meyer-Bernstein et al., 1999; Buijs et al.,
2003). At the cellular level, a molecular network of inter-
connected feedback loops drives rhythmic oscillations in a
small number of canonical clock genes, in a process defined
as a transcription-translation feedback loop (TTFL). At the
centre of the TTFL is the heterodimeric transcription fac-
tor comprised of the proteins Circadian Locomotor Output
Cycles protein Kaput (CLOCK) and Brain and Muscle ARNT-
like 1 (BMAL1). Genetic disruption of either of these pro-
teins leads to abnormal circadian function and arrhythmia
(Vitaterna et al., 1994; Haque et al., 2019). CLOCK:BMAL1

regulate gene expression of core rhythmic negative feedback
protein regulators of the circadian clock, PERIODs (PER1-
3) and CRYPTOCHROMEs (CRY1-2), with ancillary loops
encoded by Rev-Erbα/β and RAR-related orphan receptors
(RORα − γ). Once translated into their respective proteins,
PERs and CRYs act to inhibit their own transcription by form-
ing multimeric protein complexes encompassing many com-
ponents, including PER1-3, CRY1/2, Casein Kinases 1δ/ϵ
(CK1δ/ϵ), CLOCK, and BMAL1 (Aryal et al., 2017; Cao et al.,
2023). Critically, nuclear translocation requires dimeriza-
tion of PER and CRY proteins and in the absence of CRYs,
PERs are unable to repress CLOCK:BMAL1 (Smyllie et al.,
2022). Once in the nucleus, repression by CRYs and PERs
proceeds in two modes, "blocking" and "displacement" type
repressions (Partch, 2020). In the initial repressive phase,
PER:CRY complexes bind to, and remove, CLOCK:BMAL1
from DNA by initiating phosphorylation of CLOCK:BMAL1
by CK1δ/ϵ ("displacement" type) (Cao et al., 2021, 2023;
Koch et al., 2022). In the second stage, CRY1 competitively
binds to, and inhibits, the c-terminal transactivation domain
of BMAL1, thereby blocking recruitment of co-factors such
as CBP and p300 required for initiation of transcription (Xu
et al., 2015). Degradation of CRYs and PERs leads to allevia-
tion of repression, and initiation of active CLOCK:BMAL1
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mediated transcription (Koike et al., 2012).
Protein-protein interactions described above are known

to be crucial in the functioning of the circadian clock. A num-
ber of studies have characterised protein interactions using
in-vitro methods, including immunoblotting and autora-
diograms (Cao et al., 2021), isothermal titration calorime-
try, fluorescence polarization (Xu et al., 2015) and yeast
two-hybrid systems (Wallach et al., 2013). A single particle
electron microscopy study by Aryal et al. (2017) has sug-
gested these complexes incorporate multiple proteins simul-
taneously in large megadalton macromolecular complexes.
However, a technical difficulty with all of these approaches
is that protein-protein interactions are studied in vitro or
within fixed tissues and they lack details of the behaviour
of proteins in living cells, sub-cellular localisations, normal
post-translational modifications, or insight into protein tem-
poral dynamics over the course of the circadian cycle. To
address this, we previously used the advanced microscopy
technique of Fluorescence Cross-Correlation Spectroscopy
(FCCS). This method permits the study of protein complex
formation in its biological context non-destructively over
time (Bacia et al., 2006; Sadaie et al., 2014) and from this
we have measured two spectrally distinct fluorescently la-
belled proteins (BMAL1 and CRY1) in order to define protein-
protein complex formation in living cells (Koch et al., 2022).

Here, we comprehensively extend these approaches to
define interactions of all core proteins of the circadian TTFL
clockwork mechanism, encompassing 15 protein pairs and
6 monomers. Many of these interactions were found to be
strong, rhythmic, and conserved across different cell types
as well as expression levels. In order to extend this to mul-
tiple protein complexes, we developed mathematical mod-
els and measurement of three-way FCCS. Strikingly, this
demonstrated that the circadian clock primarily operates via
a temporally organised series of pair-wise protein-protein
interactions, with only a small number of complexes facil-
itated by an additional third partner. By measuring three
proteins simultaneously, we further characterised the im-
pact of complex formation on each constituent protein, and
from this showed that stabilisation by PER protein of CRY
is sufficient to generate rhythmicity, even in the absence
of rhythmic transcription. Here, our live-cell methodolo-
gies provide new insights into how multiple proteins form
complexes within in time and space as well as presenting a
general quantitative approach to investigate other biological
systems.

Results
Live-cell measurement of interaction between PER2
and CRY1 in primary fibroblasts

We employed FCCS, to assess the molecular properties of
multiple fluorescent fusion proteins in living cells (Bacia

et al., 2006; Komatsubara et al., 2019). Issues can arise in
FCCS, as the two differently coloured fluorescent proteins
may be subject to different illumination volumes (Figure sup-
plement 1), as well as differences in photochemical proper-
ties, such as triplet states, blinking, bleaching sensitivities,
and maturation rates (Koch et al., 2022; Hess and Webb, 2002;
Schönle et al., 2014; Lambert, 2019). To account for this, we
first calibrated FCCS by measuring cells which expressed
enhanced green fluorescent protein (EGFP) fused with the
red fluorescent protein tagRFP (Figure supplement 1A), so
that each expressed protein has both fluorescent moities.
Thus, any discrepancies in observed concentrations and dif-
fusion rates should be due to differences in their respective
excitation confocal volumes or fluorescent photo-physical
properties (Figure supplement 1B). We developed a correc-
tion, dependent on excitation wavelength (see Equation 1)
Materials and Methods) for differences in confocal volumes,
and thereby concentration (Figure supplement 1C vs D) and
diffusion (Figure supplement 1E). These corrected estimates
demonstrated a consistent 1:1 relationship, confirming the
accuracy and suitability of this approach for subsequent
use.

PER2 and CRY1 are well-defined circadian proteins in-
volved in rhythmic repression, and yet their interaction
across circadian time in living cells was untested. To address
this, we utilised the previously established CRISPR-modified
double knock-in PER2::Venus x CRY1::mRuby3 mouse (Koch
et al., 2022; Smyllie et al., 2022). Using skin fibroblasts in
culture, which were then circadian-synchronised using dex-
amethasone (DEX), we undertook a time-course study 24-
48h post-DEX synchronisation, with FCCS measurements
every four hours (Figure 1A, B). Within the nucleus proteins
diffuse slower than expected by classical Brownian motion
due to the highly crowded and heterogenous environment.
The movement of these proteins is primarily constrained
by interactions with other molecules, including DNA. Thus,
FCCS auto-correlation data were analysed using a previ-
ously described anomalous diffusion model that captures
the sub-diffusive behaviour of nuclear proteins (Koch et al.,
2022).

Owing to cell-to-cell variation and uncertainty inher-
ent to FCCS analysis, robust quantification requires many
repeat measures, as shown for example in Figure 1C. Here, in-
teraction strength was quantified as a dissociation constant
KD, an inverse measure of complex formation that repre-
sents the concentration at which 50% of the partner proteins
will be in complex. Hence, a lower KD represents a stronger
interaction. KD was determined from a linear fit obtained
by quantile regression, relating the concentration of protein
in complex, [PER2:CRY1], to the concentrations of unbound
constituent proteins, [PER2]Free and [CRY1]Free (Figure 1D).
We denote complexes between proteins as PER2:CRY1 show-
ing that PER2 protein is bound with CRY1. Analysis of the
time-course revealed PER2 protein to be more abundant
than CRY1, by approximately 2-fold at peak. PER2 protein
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Figure 1: FCCS Measurements of endogenous PER2 and CRY1 protein molecules in primary skin fibroblasts isolated from
knock-in mice. (A) Skin fibroblasts were isolated from knock-in mice expressing fluorescent PER2::Venus and CRY1::mRuby3. Cells were
then stimulated with a 1-hour dexamethasone shock prior to imaging and FCCS measurements. (B) Confocal microscopy images of a cell
across 24 hours expressing nuclear PER2 and CRY1. Images show a merge of signal (yellow or red) and an autofluorescence channel
(white). FCCS measurements were performed in the nucleus across >100 cells per time point every four hours, with biological replicates
coming from cells isolated from four separate mice. (C) Example average FCCS correlation data for a single time-point 24-hours post-DEX
made in cells labelled with PER2::Venus (yellow) and CRY1::mRuby3 (red). Overlaid black lines show the fits to these data used to calculate
concentrations and diffusion coefficients. When proteins interact and form a complex, they move together such that their signals are
well correlated yielding a non-zero cross-correlation curve (purple). (D) Strength of complex formation is measured by the ratio of the
concentration of free proteins to complex, known as the disassociation constant (KD). KD is calculated as the slope of a linear fit between
the product of free protein concentrations and complex, here shown for the 24-hour post-DEX time-point. Plots show measurements
for median fluorescent (E) protein concentration with 95% confidence envelope, (F) diffusion and (G) disassociation constant with 95%
confidence envelope displayed. Concentration (E) and diffusion rates (F) for both PER2 and CRY1 oscillated significantly, determined
from ANOVA p-values of < 0.001. (H) Percentage of total PER2::Venus and CRY1::mRuby3 proteins bound in complex.

abundance cycled with a 2-fold amplitude of over 24h. In
contrast CRY1 exhibited a lower amplitude cycle (Figure 1E).
Measures of protein mobility (diffusion rate) showed PER2
to move on average, at half the rate of CRY1 overall (Fig-
ure 1F), and slower than our previous reports for BMAL1

(Koch et al., 2022). When mutually bound in complex, PER2
and CRY1 will diffuse at the same rate, however our FCS
measurements of diffusion rates are averages for all PER2
and CRY1 proteins in nucleus and thus include faster dif-
fusing free proteins. We next assessed live-cell interaction
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Figure 2: Expanding analyses to pairwise cell models (LV2) to study localisation and live-cell interactions of circadian proteins.
(A) Mouse embryonic fibroblasts (MEFs) are either singularly or sequentially transduced to express fluorescent fusions of key circadian
proteins with either EGFP or tagRFP. A nuclear localised EGFP (NLS) and Histone H2B::tagRFP were used as negative controls. Single
transduced cells are denoted as LV1 and co-expressed as LV2. Representative confocal microscopy images in asynchronous timing
conditions of MEFs either solo-expressing EGFP (LV1) or co-expressing EGFP and tagRFP fluorescent proteins (LV2). (B) Quantification of
nuclear to cytoplasmic ratio (N:C) in asynchronous timing conditions from cells expressing a single fluorescent protein ordered from most
cytoplasmic to most nuclear. Black bars indicate standard deviation. Majority of solo-expressed proteins were predominately nuclear, with
key exceptions for the cytoplasmic localisations of CK1δ and CLOCK. Notably, under co-expression with BMAL1, CLOCK is localised into
the nucleus. Statistical analysis was carried out using Kruskal-Wallis (values are denoted as p < 0.05 *, p < 0.001 *** and p < 0.0001 ****).

data over time revealing a very tight association between
PER2 and CRY1, with an average KD of 20 nM, with a sig-
nificant but low amplitude cycle of 20% (Figure 1G). The
proportion of proteins bound over 24h was approximately
50% vs 20% for CRY1 and PER2 respectively, (Figure 1H) . For
comparison, we measured non-synchronised (i.e. non-DEX
treated cells) and found similar values for both diffusion
and interaction compared with circadian synchronised cells
(Figure supplement 2). Additionally, the steady state con-
centrations of PER2 and CRY1 were within the same range
as those observed following circadian synchronisation (Fig-
ure supplement 2F). Thus, PER2 and CRY1 exhibit a circadian
anti-phasic relationship for abundance and the proportion
of protein bound in complex.

Over and out of context-expression of paired fluores-
cent proteins to study live-cell protein-protein interac-
tions of the circadian clock

CRISPR engineering of multiple modified lines of mice to
knock-in fluorescent labels within the endogenous locus of
many pairs of proteins is expensive and time consuming. To
overcome this hurdle, we developed a method to assay mul-
tiple paired interactions of core components of the circadian
clock using a lentiviral expression system. All these fluores-
cent fusion proteins were expressed from the non-circadian
Ubiquitin C (UbC) promoter. Using mouse embryonic cells
we established an initial series of 7 lines, transduced to ex-
press PER2, CRY1/2, BMAL1/2, CLOCK and CK1δ labelled
with EGFP, denoted as LV1 (labelled proteins use the nomen-
clature :: to denote fusion i.e. BMAL1::EGFP; Figure 2A). Ap-
propriate sub-cellular localisation of each fluorescent fusion
was assessed by measuring the nuclear/cytoplasmic (N:C)
ratio of fluorescence. This showed CRY1 and CRY2 to be
strongly nuclear, (with CRY2 most nuclear), confirming our
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Figure 3: CRY1/2 and CLOCK localisation is dependent on expression of interaction partners. (A) Confocal microscopy images
of MEFs transduced to express PER2 and CRY paralogs alone (single panel images) or together (dual panel images). (B) Quantification of
nuclear to cytoplasmic (N:C) ratio calculated by the intensity of nuclear fluorescence divided by cytoplasmic fluorescence across single
and dual labelled conditions. Black bar indicates median value. Blue boxes denote N:C ratio for EGFP labelled proteins and red boxes
correspond to proteins fused to tagRFP. Statistical analysis was carried out using one-way ANOVA (values are denoted as p < 0.0001 ****).

prior observations in SCN organotypic slices (Figure supple-
ment 3A) (Smyllie et al., 2022). BMAL1 and PER2 were also
primarily nuclear in expression, consistent with our previous
findings across multiple cell types (Smyllie et al., 2022; Yang
et al., 2020; Koch et al., 2022) but with a lower N:C ratio
than for CRY proteins. In contrast, CLOCK, BMAL2, and
the pace setting kinase CK1δ were mostly cytoplasmic when
over-expressed in isolation (Figure 2B).

Next, we introduced additional proteins fused with the
red fluorescent protein tagRFP to 6 of the above cell lines
by a second transduction, establishing a further 15 lines
covering all pairwise combinations, and denoted as LV2
(Figure 2A, Figure supplement 3B). Two additional non-
interacting negative control cell lines were established for
nuclear localised EGFP (NLS) with either Histone H2B (H2B)
or BMAL1 fused with tagRFP (Figure 2A). As FCCS measures
interactions in a small sub-cellular volume, it was important
to determine the localisation of each pair of proteins, and
where they may interact prior to measurement. By these
means, we extended our nuclear/cytoplasmic fluorescence
assay to every fluorescent pair. This showed that some pro-
teins change localisation upon co-expression (Figure supple-
ment 4). For example, nuclear localisation of both CRY1 and
CRY2 was strongly dependent on PER2. Since differences
in autofluorescence backgrounds across EGFP and tagRFP
recordings makes comparison of N:C ratio across two colours
difficult, we produced an additional 2 single labelled LV1
cell lines expressing red labelled CRY1 and CRY2 without
a green partner to compare with the previous cells express-
ing EGFP labelled PER1/2 and red CRY1/2 (Figure 3A). This
clearly showed a significant increase in nuclear CRY1 and

CRY2 in the presence of PER2, with CRY2 demonstrating a
striking 5-fold increase in nuclear localisation (Figure 3B).
Additionally, we show that CLOCK is a cytoplasmic protein,
unless expressed with BMAL1 (Figure 3B), a recapitulation
of our previous findings using NIH/3T3 fibroblast cells (Koch
et al., 2022).

We next measured the affinity of interaction (KD) be-
tween protein pairs as assessed by FCCS, across all 15 cell
lines. This showed a greater than one order of magnitude
range, from ca. 20 nM to 230 nM for PER2:CRY1 and CLOCK
:CRY1 respectively (Figure 4A). Notably, affinity between
PER2 and CRY1/2 was the strongest at 22.6 ± 1.3 nM (SD)
and 30.1 ± 1.2 nM (SD) respectively. Additionally, PER2
showed an approximately 2-fold stronger affinity than PER1
did for both CRY proteins. PER2 readily formed homodimer
complexes (KD = 52.2 ± 5.6 nM, SD), with a moderate in-
teraction also between CRY1 and CRY2 (KD = 128.6 ± 6.7
nM, SD). In contrast, CLOCK and BMAL1 showed a rel-
atively weak interaction in MEFs when compared to the
circadian repressors PER and CRY, with a KD of 82.9 ± 3.3
nM (SD). This accords with our previous measurements in
NIH/3T3 cells (Koch et al., 2022). Remarkably, the affinity of
CLOCK for BMAL1 was 3-fold greater than for the paralog
BMAL2 (Figure 4A), which was predominately cytoplasmic
(Figure 2A). Despite increased levels of expression in cell
lines using lentiviral transduction, we observed generally a
close concordance with the KD values when measured from
circadian-synchronised endogenously expressed proteins
using primary fibroblasts derived from CRISPR-modified
PER2xCRY1 and BMAL1xCRY1 mice (Figure 4A). Further,
the affinity of these protein pairs changed significantly over
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Figure 4: Live-cell interaction measurements of circadian protein pairs by FCCS (A) Live-cell FCCS measurements of interaction
strength for pairs of fluorescent fusion proteins. Measurements were performed in four cell models; lentivirus transduced MEFs and
NIH/3T3 cells (LV2) and dexamethasone synchronised primary cells lung fibroblasts isolated from BMAL1 x CRY1 fluorescent knock-in
(KI) mice or skin fibroblasts isolated from PER2 x CRY1 fluorescent KI mice. Quantification of KD for BMAL1 x CRY1 time-course and
NIH/3T3 (PER2:CRY1) are a re-analysis of previous data in Koch et al. (2022). (B) Quantification of PER1/2 and CRY1/2 diffusion rates
from FCCS measurements in NIH/3T3 fibroblasts. Statistical analysis was carried out using Kruskal-Wallis (values are denoted as p <
0.001 *** and p < 0.0001 ****).

the circadian cycle, and with near identical temporal pattern
for PER2/CRY1 (measured here), and BMAL1/CRY1 (Koch

et al., 2022).
In addition to binding strength (KD), we assessed whether

6



Anatomy of circadian clock protein complexes in live cells

PER1 CRY1 CRY2BMAL1

B

cr
BM

AL1

cr
PER1

cr
CRY1

cr
CRY2

0

50

100

150

C
o

n
ce

n
tr

at
io

n
(n

M
) ✱ ✱ ✱ ✱

✱ ✱ ✱ ✱✱ ✱ ✱ ✱

CRISPR MEF cell lines

cr
BM

AL1

cr
PER1

cr
CRY1

cr
CRY2

0

1

2

3

4

D
if

fu
si

o
n

(m
m

2 s-1
)

✱ ✱ ✱

✱ ✱ ✱ ✱✱ ✱ ✱ ✱

0 50 100 150 200 250

0.0

0.5

1.0

Time after dexamethasone (h)

L
u

m
in

es
ce

n
ce

(A
.U

.) WT

CRPER1

C D E

A

Figure 5: Framework to determine indirect and direct interactions using quantification of endogenous proteins. (A) Concept
for calculating expected KD from a series of paired interactions assuming that A and C do not interact. In this example, when A, B, and
C are at comparable concentration the apparent KD would be 40 nM, which is reduced to 1039 nM when proteins are over-expressed
10-fold as the intermediate partner, B, is limited. (B) Confocal microscopy images of polyclonal MEF-PER2::LUC cells genetically modified
using CRISPR to express circadian target proteins C-terminally fused to EGFP. (C) To check for normal circadian rhythms after insertion
of PER1::EGFP, PER2::LUC bioluminescence of clonal cells were measured following synchronisation by dexamethasone shock against
unmodified WT MEF-PER2::LUC cells. FCCS was performed on nuclear fluorescence of all CRISPR modified cells, determining diffusion
(D) and (E) concentration of EGFP labelled molecules. Statistical analysis was carried out using Kruskal-Wallis (values are denoted as p <
0.001 *** and p < 0.0001 ****).

protein-protein interactions may relate to changes in protein
mobility, since larger complexes move slower (Konopka et al.,
2006). As we observed changes to the fraction of CRY1 in
complex with PER2 (Figure 1G,H), we hypothesised that the
cycling in the diffusion rate of endogenous CRY1 (Figure 1F)
could be caused by rhythmic binding with PER proteins. We
assessed diffusion rates of CRY1/2 upon co-expression with
PER1/2 in NIH/3T3 cells (Figure 4B), with MEF diffusion
data for PER2 with CRY1 or CRY2 shown in Figure supple-
ment 5. PER2 protein exhibited remarkably low diffusion
rates, compatible with proteins with either high intrinsic
disorder (Pelham et al., 2020) or as components in larger
protein complexes (Aryal et al., 2017), nor was this altered
by additional co-transduction with either CRY1 or CRY2
(Figure 4B). In contrast, the mobility of both CRY proteins
was significantly affected by the addition of PER proteins, in-
dicating CRY1/2 proteins are incorporated into slow moving
complexes with PER1/2 (Figure 4B). Similarly, we observed
a decrease in protein mobility for both BMAL1 and CLOCK
when co-expressed (Figure supplement 5), compatible with
a model involving direct DNA binding (Koch et al., 2022).
Thus, we find high affinity interactions between circadian
clock-regulating proteins impact on their mobility in the
cell.

Determination of direct and indirect interaction topol-
ogy from observed dissociation constants

Proteins can interact with one another directly or through
intermediate partners, such as scaffold proteins, to form
larger complexes. These intermediate partners can facilitate
the formation of protein complexes, as well as modulate the
activity and function of the interacting proteins. Here, we
have quantified interactions between pairs of over-expressed
proteins, but this fails to detect possible roles of additional
proteins. These unseen partners could be involved in multi-
valent interactions, which would allow them to bind multiple
proteins simultaneously, altering the strength of binding be-
tween the original partners. To understand better the role
of these facilitating intermediate partners, we developed
a modelling-based approach to explore the formation of
three-protein complexes. In this framework we compared a
KD derived from a model of two proteins being brought to-
gether by a third protein to the observed KD measurements
(Figure 5A). If the predicted KD arising from a new three-way
interaction accords well with the observed measurements
then the probability of a 3-way interaction is high. In con-
trast, if an additional partner protein fails to match mea-
sured KD values, we conclude that the original two partner
model is most likely.

In this framework, we require measurements of the con-
centrations and pairwise KD between each of the three pro-

7



Anatomy of circadian clock protein complexes in live cells

Figure 6: Calculating likelihood of indirect versus direct interactions from observed data. (A) A schematic of comparing a
direct binding model versus a facilitated binding arrangement. If the calculated facilitated KD matches the observed KD closely then
this arrangement is plausible. Example shows proposed models of direct and indirect interactions between CLOCK and CRY1. Indirect
interactions occur via an intermediate partner, here shown as PER2. (B) Most KD values arising from facilitated arrangements did not
match the observed KD, as assessed by the difference score Δ (see materials and methods). This was calculated assuming an indirect
interaction model simulated using coupled ordinary differential equations (ODEs), an apparent KD between a protein pair, A & C, was
found for a middle partner, B, that facilitates the interaction. All concentration and KD values were taken from experiments. (C) 60
three-protein arrangements were calculated to derive a difference ratio Δ between apparent KD and experimentally observed KD. Values
closer to 0 indicate calculated KD closely matches the experimental observed KD. Chart shows data binned by difference ratio score Δ on
the left- and right-hand side. Difference ratio values are plotted with 1 standard deviation (light orange) and 3 standard deviations (dark
orange). Highly likely arrangements are highlighted in blue and are defined as calculated KD values being within 3 standard deviations of
the measured value.

teins. Our FCCS data provided the KD values and concen-
trations of over-expressed partners required for these cal-
culations (Figure 4A). However, in the model the additional
partner protein would be expressed at endogenous concen-
trations. We therefore next set out to assess the behaviour
of the endogenous proteins. We used CRISPR-mediated
genetic editing to modify MEF-PER2::LUC cells to express
either BMAL1, PER1, CRY1 or CRY2 fused with EGFP (Fig-
ure 5B). These modifications did not impact on molecular cir-
cadian oscillations, as assessed using PER2::LUC oscillations
(Figure 5C). The diffusion rates for endogenous-tagged pro-
teins were very similar to those in over-expressed lentiviral-
transduced MEF cell lines (Figure supplement 5, Figure 5D,E).
Our measures of endogenous concentration of circadian pro-
teins in MEFs were a bit lower than the primary fibroblasts
derived from genetically modified mice (compare Figure 5E
vs Figure 1E, Figure supplement 2). Thus, protein behaviour

as assessed by diffusion was consistent across genetically
modified mice, CRISPR modified cell lines, and in lentiviral
over-expressed proteins in MEF cells. In the case of PER2,
genomic editing and quantification was complicated due
to the insertion of luciferase to one PER2 allele, so to ad-
dress this we used measures of endogenous PER2 protein
concentration from fibroblasts derived from PER2::Venus
mice. Hence, in the model, we used data for endogenous
protein concentrations from the PER2 x CRY1 fibroblasts
(Figure supplement 2F).

In order to develop a 3-way binding model (Figure 5A),
an ordinary differential equation (ODE) was used to simu-
late the binding of proteins A and B through an intermediary
protein C (Figure 6A), using our FCCS measurements for
KD and endogenous concentration values (Figure 5E). In
total 60 protein combinations were used, modelling all pos-
sible non-repetitive three-way permutations. A difference

8



Anatomy of circadian clock protein complexes in live cells

KD between A:C in presence of B

+

A

CLOCK CRY1 BMAL1

No
BFP

+
BM

AL1

+
PER1

0

50

100

150

200

K
D

(n
M

)

KD for CLOCK:CRY1

No
BFP

+
BM

AL1

+
PER1

0

100

200

300

400

500

K
D

(n
M

)

KD for CRY1:CRY2

Over-expression of PER1
reduces PER2 disrupting

CRY1:CRY2 complex

A C B

B

0

1

2

3

4

5

F
o

ld
in

d
u

ct
io

n
o

f
m

R
N

A

OE PER1: - -+ +

CLOCK:CRY1
+ PER1

CLOCK:CRY2
+ PER1

- -+ +

PER1

PER2

C D

W
ea

ke
r

S
tr

o
n

g
e

r

CRY1 CRY2 PER1

PER1

PER2

CRY1

CRY2

or
PER1

CRY1

CRY2

PER1

CRY1

CRY2

or
PER1

CRY1

CRY2

PER2

PER2

PER2

Figure 7: Three protein imaging reveals over-expression of PER1 can disrupt circadian macromolecular complex. (A) Confocal
images of MEFs expressing EGFP and tagRFP fluorescent fusion proteins transduced to express an additional third blue tagBFP fusion
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which loss of PER2 reduces measured indirect interaction between CRY1::EGFP and CRY2::tagRFP.

score, Δ, was used to rank the most likely indirect interac-
tions, such that a score of 0 indicates that the calculated
KD arising from the indirect arrangement matches the exper-
imentally observed KD between those proteins A and C. A
three-standard deviation (SD) uncertainty on the difference
score, Δ, was propagated from the error on KD values and
concentrations. From these possible 60 combinations, only
5 had predicted Δ values within 3SD of 0. Strikingly, this
suggests that the majority of protein-protein interactions
are best defined as a pair-wise model, and without the need
to propose involvement of an additional partner (Figure 6B).
Nevertheless, these data support previous work showing
a role for BMAL1 in enhancing CLOCK:CRY1 interactions,
and for PER2 for in CK1δ:CLOCK interactions (Michael et al.,
2017; An et al., 2022). Our data also show that CRY1:CRY2,
and CLOCK:CRY2 depend upon additional partner proteins
for complex formation (Figure 6C). Notably, out of the five
triplet proteins here, PER2 was the key missing factor in
four and BMAL1 in one (Figure 6C).

This modelling approach predicts possible three-way fa-
cilitated binding arrangements based on direct measures of
the behaviour of two of the three components. In order to di-
rectly validate the model, we used our genetically modified
LV2 MEF cells, expressing either CRY1::EGFP/CRY2::tagRFP
or CLOCK::EGFP/CRY1::tagRFP, and then further trans-
duced these cells to express a third protein, either BMAL1

or PER1, labelled with the blue fluorescent protein tagBFP.
In this way, we were able to study the behaviour of pro-
teins using 3 different fluorophores at different wavelengths
denoted as LV3 cells (Figure 7A). From this we then mea-
sured KD values between CLOCK and CRY1, finding the
interaction to strengthen upon addition of PER1 or BMAL1
(Figure 7B). Under the same conditions, the affinity for CRY1
and CRY2 slightly increased, whereas added PER1 dimin-
ished the CRY1:CRY2 interaction complex by 4-fold (Fig-
ure 7B). Despite CRY1:PER2:CRY2 appearing at the top of
predicted facilitated interactions in Figure 6C, the addition
of PER1 reduced the formation of complexes incorporat-
ing CRY1 and CRY2. This suggests that any binding sur-
face between CRY1 and CRY2 is interrupted by additional
PER1. Thus, either PER1 may operate as a weaker partner
than PER2 for CRY1:CRY2 complexes or that CRY1:CRY2
is brought together in four-way arrangements involving an-
tagonistic PER proteins (Figure 7D). This is supported by
RT-PCR, showing that overexpression of PER1 protein had
significantly reduced endogenous Per2 mRNA (Figure 7C).
Therefore, our data suggests that PER proteins are central
mediators of macromolecular organisation of larger circa-
dian complexes, with PER2 acting in a different roles to that
of PER1.
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Post-translational rhythms in CRY are generated by
high affinity interactions that balance stoichiometry

The formation of protein complexes through protein-protein
interactions can result in enhanced stability compared to
the individual monomeric protein constituents. In our exper-
iments using double-labelled, constitutively over-expressed
LV2 MEFs, we observed significant correlations of protein
abundance between several pairs of proteins. PER2 con-
centration was the strongest predictor of both CRY1 and
CRY2 concentrations closely followed by BMAL1 (Figure 8A).
Other pairwise protein combinations, including non-correlat-
ed controls, can be found in the full data set in Figure sup-
plement 6. We investigated the correlations between green,
red, and blue protein fluorescence in our triple labelled
CLOCK:CRY1:(PER1 or BMAL1) and CLOCK:CRY2:(PER1 or
BMAL1) LV3 lines. Upon co-expression with either PER1::tag-
BFP or BMAL1::tagBFP, red CRY1 fluorescence was markedly
increased (Figure 8B). This was not a generalised responses
to transduction, as we did not observe this effect with cells
that expressed H2B::tagBFP (Figure 8B). As we have pre-
viously shown, BMAL1 re-localised CLOCK into the nu-
cleus (Figure 8B) (Koch et al., 2022). Elevated PER1 pro-
tein strongly increased both CRY1 and CRY2 protein con-
centrations, regardless of CLOCK protein copy-numbers
(Figure 8C), contrasting with the strong three-way corre-
lation between BMAL1, CLOCK, and CRY1/2 expression
(Figure 8D). As can be seen in Figure 8E, elevated PER1 and
BMAL1 protein increased CRY1/2 concentrations to a near
identical extent.

PER2 has been shown to bind and stabilise CRY2 pro-
tein (Schmalen et al., 2014; Nangle et al., 2014; Xing et al.,
2013). If CRY protein stability depends on PER2 through
high affinity interactions, it would be expected that CRY
may oscillate without the requirement for rhythmic expres-
sion from its promoter. To test this, we performed simulta-
neous time-lapse measurements of fluorescence and biolu-
minescence following circadian synchronisation with DEX
in our single labelled constitutively expressed CRY2::EGFP
LV1 MEFs. This showed that CRY2 was both rhythmic
and phase-lagged when compared with PER2 biolumines-
cence (Figure 8F). This phase-lag is consistent with our ear-
lier published data derived from organotypic SCN slices of
PER2::Venus and CRY1::mRuby3 mice (Smyllie et al., 2022)
(Figure 8G). Although CRY1 may behave differently to CRY1.
Thus, we propose two mechanisms driving rhythmic pro-
duction of CRY, arising from transcription (Edwards et al.,
2016) and as shown here, PER-mediated stabilisation of CRY
through high-affinity interactions (Figure 8H).

Discussion
In this study, we aimed to shed light on the critical role of
protein-protein interactions and multimeric complex forma-

tion in the functioning of the mammalian circadian clock.
To this end, we introduced a novel approach using Fluores-
cence Cross-Correlation Spectroscopy (FCCS) to analyse
the interactions of full-length proteins in their native cel-
lular environment. Our approach allowed us to maintain
normal and post-translational modifications and enabled us
to assess protein localization, which are often lost in in-vitro
studies. Our results revealed significant changes in pro-
tein localization upon co-expression with partner proteins
PER-CRY and CLOCK-BMAL1. The data obtained from this
study showed that the circadian clock operates primarily
through pair-wise protein-protein interactions without the
need for additional third partners. Our findings also re-
vealed that the lifetime of CRY is dependent on PER2 and
that a circadian clock protein (CRY2) can oscillate without
the requirement for rhythmic transcriptional control. Our
novel approach to dissect protein-protein interactions us-
ing FCCS has provided new insights into the functioning
of the mammalian circadian clock, highlighting the impor-
tance of protein-protein interactions in regulating circadian
rhythmicity. The use of live-cell methodologies in this study
has offered a fresh perspective on the formation of protein
complexes over time and space and has also opened the
possibility of using this quantitative approach to explore
other biological systems.

A growing model of the circadian clock proposes that the
negative feedback on CLOCK:BMAL1 transcription factors,
responsible for driving circadian rhythms, occurs via two
modes of repression (Koike et al., 2012; Cao et al., 2021, 2023;
Koch et al., 2022). The first mode, called "displacement", oc-
curs when the PER:CRY complex translocates CK1δ/ϵ into
the nucleus to phosphorylate CLOCK:BMAL1 dimers and
remove them from DNA. The second mode, called "block-
ing", takes place after PER degradation and involves CRY1
binding to CLOCK:BMAL1 and blocking the recruitment of
transcriptional co-factors to the c-terminal transactivation
domain of BMAL1 (Xu et al., 2015). Hence, this model places
the relative abundance of protein complexes through time
and space as a key mechanism for the regulation of circadian
transcriptional activity. In vitro studies have found a vast
array of the repressive CK1-PER-CRY ternary complexes are
made up of differing ratios of protein paralogs, whose, dif-
ferential functions are hard to tease apart (Aryal et al., 2017;
Cao et al., 2021, 2023). The differential identities of this key
complex are due to the many possible combinations of PER1-
3 and CRY1/2 proteins which is modulated by differences in
protein expression and divergent affinities of these paralogs
for their key partner proteins. In our study, we find that both
CRY2 and PER1 are weaker interactors for CLOCK, BMAL1,
and CK1δ than CRY1 and PER2 respectively. Furthermore,
PER1 is expressed 2-fold over PER2 on average confirming
the findings by (Zheng et al., 2001), whereas CRY1 and CRY2
protein abundances are equal. Taken together, this shows
that both protein abundance and protein-protein affinity
balance and tune the stoichiometric identity of key CK1-
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Figure 8: High affinity interactions and stochiometric balancing ensure post-translational rhythms of CRY. (A) Analysis
of protein correlations from FCCS measurements. LV2 MEF cells used to measure interactions, were re-analysed for nuclear protein
concentrations, looking for correlations between the two proteins despite coming from separate transductions and expressed from the
constitutive ubiquitin ligase C promoter. Spearman correlation score is shown alongside linear regression. (B) Cells expressing CLOCK and
CRY as green EGFP and red tagRFP fluorescent fusion proteins were transduced to express a third blue fluorescent fusion protein (referred
to as LV3 cells). Multivariate correlation of fluorescence between EGFP, tagBFP, and tagRFP, with tagRFP levels indicated by colour
intensity for (C) CRY1::tagRFP (D) and CRY2::tagRFP.(E) Quantification of CRY fluorescence after transduction with third blue fusion
protein. (F) Timelapse confocal images of MEF-PER2::LUC LV1 cells constitutively expressing CRY2::EGFP following dexamethasone
shock circadian synchronisation. (G) Quantification of single cell nuclear fluorescence for three CRY2::EGFP cells (blue lines) shown
alongside superimposed separate recordings of PER2::LUC bioluminescence (green line) also made in CRY2::EGFP cells. (H) Proposed
model for PER protein accumulation and high affinity PER:CRY interactions results in stabilisation of CRY proteins providing a tuning
mechanism for the clock. Statistical analysis was carried out using Kruskal-Wallis (values are denoted as p < 0.001 *** and p < 0.0001 ****).

PER-CRY repressive complexes over circadian cycles.
Our results show that both CRYs and PERs are capa-

ble of tightly associating with CLOCK:BMAL1. However,
it is not yet clear whether PER1/2 is capable of directly
binding CLOCK or BMAL1, or if CRY1/2 brings PER1/2
into multi-meric complexes with CLOCK and BMAL1. The

lack of in vitro evidence for direct binding of PER1/2 with
CLOCK:BMAL1 and strong interaction between CRY1-PER2,
as well as CRY1-BMAL1, points to the latter model. Overall,
These interactions are remarkably strong and occur in the
low nanomolar range, comparable with pharmacological lev-
els of affinity (Ma et al., 2018). As such, the majority of these
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proteins are bound in complex, rarely existing as monomers,
confirming in vitro observations (Aryal et al., 2017; Cao et al.,
2021, 2023). Strikingly, the interaction of PER2 with CRY1
was found to be almost indistinguishable in strength when
compared with our previously characterised BMAL1-CRY1
interaction over 24 hours (Koch et al., 2022), with the ratio of
these proteins in complex oscillating in phase up to the point
at which CRY1 “blocking” repression began to dominate. In
accordance with this, the expression of CRY1 phase-lags
that of PER2 (Smyllie et al., 2022). This provides the first
direct evidence in living cells for the operation of the tem-
poral shift between blocking and displacement modes of
CLOCK:BMAL1 repression.

We find that, with the exception of CLOCK-BMAL1 in-
teractions, circadian proteins form tight association with
one another, and this is conserved irrespective of cell-type
or the abundance of protein. This accords with the fact that
the spatiotemporal regulation of CK1δ/ϵ and PER (FRQ
in Neurosprora) complex formation is conserved across eu-
karyotes (Wong and O’Neill, 2018). Additionally, evidence
shows that the transactivation domain (TAD) of BMAL1,
which is bound by CRY1, is highly conserved amongst verte-
brates and also in insects with vertebrate-like clocks (Yuan
et al., 2007). Similarly, PAS domains of PER proteins share
significant similarity in Drosophila and mammalian clocks
and basic-Helix-Loop-Helix (bHLH)-PAS transcription fac-
tors (CYC, BMAL, CLK, and NPAS2) (Huang et al., 1993).
Together with our data, this suggests that protein-protein
interactions are an evolutionarily conserved mechanism for
circadian rhythm generation, with differences in protein
components and expression levels providing a tuning mech-
anism between species and cell-types.

Prior studies have shown a high degree of variance in
BMAL1 expression within cultures and between cell-types
(Yang et al., 2020; Koch et al., 2022). BMAL1 is well estab-
lished as a key driver of the circadian clock, with its deletion
abolishing circadian rhythms (Haque et al., 2019). Further-
more, when BMAL1 is expressed constitutively (i.e. non-
rhythmically), normal circadian rhythms may still occur
(Preitner et al., 2002). Taken with our finding that BMAL1
plays an important trafficking role allowing nuclear entry
by CLOCK, and that the interaction with its repressors gen-
erates oscillations, BMAL1 operates as a key nodal point of
the circadian system.

PERs possess distinct binding sites for CK1δ/ϵ and CRY1-
/2 to act as a scaffold for crucial CK1:PER:CRY ternary com-
plexes (Vielhaber et al., 2000; Cao et al., 2021). One of these
sites is the PAS domain of PER, which permits homodimer-
ization as well as heterodimerisation between PER1 and
PER2 (Yagita et al., 2000; Hennig et al., 2009; Kucera et al.,
2012). Removal of the core PAS-B in the Per2Brdm mutant
leads to loss of circadian function (Zheng et al., 1999). We
report here the first direct evidence in the mammalian clock
that PER2:PER2 homodimers are readily detectable, which
possibly supports the formation of CRY1:CRY2 complexes.

Given that this interaction is ablated upon over-expression
of PER1 and reduction of PER2 we conclude that PER:PER
homo- and hetero-dimers may likely incorporate one or
more CRY proteins into a tetramer complex. In this model
PER2 homodimerization would enable macromolecular as-
sembly, exemplified by CRY1-CRY2 binding.

In this study, we find that protein abundance is regulated
by complexing with partner proteins. Simultaneous over-
expression demonstrates that levels of CRY1/2 protein are
correlated with BMAL1 and PER2, proteins despite their con-
stitutive expression from UbC promoters. These strong cor-
relations provide evidence of post-translational regulation
of protein stability. This confirms reports of PER2 stabilising
CRY2 by blocking degradation of CRY2 by FBXL3 (Nan-
gle et al., 2014; Parlak et al., 2022). Stabilisation of CRY1/2
when co-expressed alongside BMAL1, with or without extra
CLOCK, may represent a novel mechanism of BMAL1 di-
rectly protecting CRY1/2 from degradation. We show how
PER regulates both localization, diffusion, and stability of
CRY through a very high affinity interaction, which is able
to confer rhythmicity to CRY even in the absence of cycling
Cry mRNA. This defines a PER2 mediated post-translational
mechanism for generating rhythmic CRY. In this model,
CRY proteins would have two sources of rhythmicity, which
can be tuned to one another: regulated transcription and
regulated degradation. Both of these work together to con-
fer rhythmicity to CRY, and may act in phase (constructive
interference) or out of phase (destructive interference) to
tune circadian rhythms.

Since the discovery of post-translational circadian rhyth-
ms in phosphorylation of KaiC in Cyanobacteria (Nakajima
et al., 2005), a number of studies have explored whether a
classical transcription-translation feedback loop (TTFL) or
post-translational oscillator (PTO) forms the fundamental
core circadian mechanism in eukaryotes (Wong and O’Neill,
2018; Partch, 2020; Crosby and Partch, 2020). In this study,
we find that the interplay between post-translational mech-
anisms and expression levels set by transcription are closely
related and operate together reciprocally to generate robust
circadian rhythms.

Materials and Methods
Plasmids

A collection of lentivirus transfer plasmids was cloned al-
lowing constitutive expression of fluorescent fusion proteins
from the Ubiquitin ligase C promoter. Plasmids were cloned
using the gateway cloning system as previously described.
In brief, an initial ‘entry’ vector was cloned containing the
murine coding sequences for: Csnk1d (NM_139059.3), and
Cry2 (NM_009963.4) and Per1 (NM_011065.5) adding to an
existing library of several entry vectors encoding Bmal1
(NM_007489.4), Clock (NM_007715.6), Cry1 (NM_007771.3)
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and Per2 (NM_011066.3). Destination vectors were then
produced by recombining an entry vector with a target des-
tination vector encoding a fluorescent protein, either EGFP,
tagRFP or tagBFP as described in (Bagnall et al., 2015). Both
the pLNT-H2B-RFP and NLS::EGFP vectors were published
previously (Bagnall et al., 2015; Koch et al., 2022).

Animal lines and isolated primary cells

Mice were maintained in the University of Manchester Bio-
logical Services Facility. Skin fibroblasts were isolated from
a previously described C57BL/6 mouse knock-in line ex-
pressing PER2::Venus and CRY1::mRuby3 (Koch et al., 2022;
Smyllie et al., 2022). In brief, ear punches were taken, ho-
mogenised by scalpel blade, and resuspended in DMEM
(SIGMA; Cat no. D6429) supplemented with 10% fetal bovine
serum (HyClone; Cat No. 12379802) and penicillin/streptom-
ycin (10 U/ml). Cultures were then left to grow over the
course of 2 weeks replacing media every 3-4 days, with ad-
ditional care to agitate or remove large tissue pieces. To
prepare cells for experimentation, cells were detached from
culture vessels using trypsin and plated at 2 × 105 cells per
35 mm dish.

Maintenance and generation of transduced cell lines

Mouse embryonic fibroblasts containing the heterozygous
PER2::LUC fusion were cultured in DMEM/F12 (Gibco; Cat.
No. 11320033) supplemented with 10% bovine fetal calf
serum. MEFs were derived from previously reported PER2::L-
UC mouse (Yoo et al., 2004, 2017). Cells were seeded into T25
flasks and sub-cultured every 3-4 days. Cells were tested for
the absence of mycoplasma using MycoAlert mycoplasma
detection kit (Cat. No. LT07-418). MEF cells were used to
produce fluorescent labelled cells via lentivirus transduc-
tion or CRISPR modification. Lentivirus was produced as
previously reported (Bagnall et al., 2015), transfecting a third-
generation plasmid set into HEK293T cells and harvesting
virus 3 days later by ultracentrifugation. Virus was then ei-
ther immediately used to transduce by directly pipetting on
to 150,000 MEFs in 2ml culture media or frozen at -80°C for
later use. Transduction of the first fluorescent protein was
then confirmed by confocal microscopy. Cells transduced
once to express a single fluorescent protein were termed LV1.
A second sequential transduction was used on cells after
a minimum of 2 weeks to introduce a further fluorescent
protein (termed LV2 cells) and this was continued to a third
transduction to produce green, red, and blue LV3 cells.

Generation of knock-in cell lines

We used CRISPR-Cas9 to tag endogenous genes with flu-
orescent fusion genes. A generic reporter vector was gen-
erated, comprising linker-EGFP-T2A-mScarletI-Destabilis-
ationDomain-Loxp-pgk-Puro-LoxP. Homology arms (∼ 800

bp) directed to the 3’ end of each target gene was HiFi
assembled (NEB) into the vector. This donor was then co-
transfected with Cas9 and sgRNA (IDT) designed to generate
a double strand break over the Stop codon of the target gene
into MEF Per2-Luc cells. Knock-in cells were selected for by
Puromycin selection (2.5 µ/ml; Gibco Cat No. A1113803).

Circadian synchronization

Circadian synchronisation of cells was achieved by stim-
ulation with 200 nm dexamethasone (Sigma D4902) for 1
hr before PBS washes and then switched to fresh culture
media. Cultures were passaged for biological replicates.

Confocal microscopy

Imaging was performed by confocal microscopy using a
ZEISS LSM880 microscope equipped with equipped with a
stage mounted incubator to maintain cells at 37°C in humid-
ified 5% CO2. Fluorescence image capture was performed
using ZEN 2.1 SP3 FP2 software and all images were made
using a FLUAR 40 x NA 1.3 oil immersion objective. Samples
were prepared by plating cells on to 35 mm glass bottomed
imaging dishes (Greiner Bio-one) then imaging cells 24-48
hours later. A range of fluorescent proteins were imaged by
different excitation lasers; 405 nm excitation was used for
tagBFP, 488 nm for EGFP & Venus, and 561 nm for tagRFP
and mRuby3. Array detectors were used to select and col-
lect the appropriate emitted fluorescence. Analyses of nu-
clear/cytoplasmic localisation were made using cell tracker
ver 0.1 to segment signals (Du et al., 2010).

Fluorescence Cross Correlation Spectroscopy

Images of cells by confocal microscopy were made as above
and were used to select a point to measure in the nucleus of
fluorescent labelled cells. FCCS measurements were made
using 40x objective set to 1 airy unit after calibrating and
adjusting pinhole through software, resulting in a approxi-
mate measurement volume of 0.722 fl and 1.10 fl for EGFP
(488 nm excitation) and tagRFP (561 nm excitation) respec-
tively. Measurements were performed for 20 seconds per
nuclei, with care to minimize bleaching and maintain sig-
nal counts above 0.3 kHz. Auto- and cross-correlation data
was then analysed using our previously reported FCS Anal-
ysis Pipeline in Python 3.9.7 described in Koch et al. (2022)
(GitHub: github.com/LoudonLab/FcsAnalysisPipeline), to
determine concentration and diffusion amongst other pa-
rameters. Several updates were made to the analysis script
available as version 2 through GitHub. In brief, models de-
scribed anomalous diffusion were fit to all correlation traces
and interaction strength determined by robust linear fit-
ting free and complexed concentrations. The approximate
confocal volumes were calculated via the equation
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where 𝑤𝑥𝑦 and 𝑤𝑧 is the beam width in the 𝑥𝑦 plane and 𝑧
axis respectively, with NA as the numerical aperture (NA =

1.3 for our 40x objective), _ the wavelength of exciting laser
and 𝑛 the refractive index of the immersion oil (𝑛 = 1.515
in all experiments). The appropriate spectra were collected
for each different fluorophore. Laser power was reduced to
minimise photo-bleaching whilst maintaining counts per
molecule greater than 0.3 kHz. Care was taken for Fluores-
cence cross-correlation spectroscopy (FCCS) measurements
to avoid the green channel signal spilling up into the red
channel causing false cross-correlation by reducing the laser
power and observing the far-red part of the second chan-
nel. Control measurements were performed by selectively
turning off either 488 or 561 nm lasers and tuning the red
channel spectra until there was no cross-correlation due to
spill-over. To calculate the disassociation constant KD we
plotted FCCS data according to the model

KD =
[A]Free [B]Free

[Complex] (2)

where [·] denotes Molar concentration. This is in accor-
dance with the same linear fit procedure as Sadaie et al.
(2014). Concentrations of free fluorescent proteins were cal-
culated from the green and red auto-correlations and the
concentration of complex as

[X]Free = [X]Total − [Complex] (3)

where [X]Total is the total concentration of the protein X as
assessed from each auto-correlation. Linear fits to these
data were achieved through robust quantile regression for
an intercept of zero and taking the median slope. The slope
and its standard deviation were calculated by the Quan-
tileRegressor algorithm implemented in the Python pack-
age statsmodels (ver. 0.13.5) (Seabold and Perktold, 2010).
Other standard numerical algorithms were performed using
SciPy (ver. 1.9.3) and NumPy (ver. 1.24.1) (Virtanen et al.,
2020; Harris et al., 2020). The percentages of the proteins
𝐴 and 𝐵 bound in complex was calculated from the ratio
of total protein to complex as 𝐴Bound = [𝐴𝐵]eq/[𝐴]Tot and
𝐵Bound = [𝐴𝐵]eq/[𝐵]Tot. The concentration [𝐴𝐵]eq was
found using the formula

[𝐴𝐵]eq =
1
2
(
[𝐴]Tot + [𝐵]Tot + 𝐾𝐷

−
√︁
( [𝐴]Tot + [𝐵]Tot + 𝐾𝑑)2 − 4[𝐴]Tot [𝐵]Tot

)
, (4)

where [𝐴]Tot and [𝐵]Tot are the total concentrations of each
protein, and 𝐾𝐷 is the dissociation constant between them
(Koch et al., 2022). The uncertainty on these bound fractions,
𝐴Bound and 𝐵Bound, was found by propagating the error on
[𝐴𝐵]eq, [𝐴]Tot, and [𝐵]Tot assuming Gaussian error.

PMT recordings

MEFs expressing PER2::luciferase were plated into 35 mm
plastic tissue culture dishes (Corning). D-luciferin (1 mM)
was supplemented into the media 4–24 hr prior to recordings
and dishes were sealed with parafilm. Bioluminescence was
then recorded every minute by photomultiplier tubes (PMTs;
Hamatasu) housed in an enclosed incubator at 37°C and
without CO2 as described previously (Loudon et al. 2007).

RT-PCR

Cells were plated in 35-mm tissue culture dishes (2x105
cells per dish) before isolation the following day. Total RNA
was extracted from the cells with the ReliaPrepTM RNA
miniprep kit (Promega) in accordance with manufacturer’s
instructions. RNA-to-cDNA conversion was achieved using
High-Capacity RNA-to-cDNA™ Kit (Applied Biosystems).
Real-time qPCR was performed on the StepOnePlus™ Real-
Time PCR System using the KAPA SYBR® FAST qPCR Mas-
ter Mix (2X) Kit (Sigma-aldrich). Relative quantification of
mRNA abundance was conducted by normalization to Cy-
clophillin A mRNA. The primers used are specified in Table 1
Oligonucleotides sequences used in this study are as follows
(5’ to 3’): PER etc.

Gene Primer sequence
Per1 Forward AGGTGGCTTTCGTGTTGG
Per1 Reverse CAATCGATGGATCTGCTCTGAG
Per2 Forward CCTACAGCATGGAGCAGGTTGA
Per2 Reverse TTCCCAGAAACCAGGGACACA
Bmal1 Forward GGCTGTTCAGCACATGAAAAC
Bmal1 Reverse GCTGCCCTGAGAATTAGGTGTT
Cry1 Forward GTGGATCAGCTGGGAAGAAG
Cry1 Reverse CACAGGGCAGTAGCAGTGAA
Cry2 Forward CCCACGGCCCATCGT
Cry2 Reverse TGCTTCATTCGTTCAATGTTGAG

Table 1: Sequences of primers used in RT-PCR

Statistical analysis

The data presented was analysed GraphPad Prism version
9.5 for Windows, GraphPad Software, San Diego, California
USA, www.graphpad.com. An appropriate normality test
was performed to assess whether the data fit a Gaussian
distribution. Non-parametric and parametric tests were
used as appropriate and indicated in figure legends.

Mathematical modelling of facilitated interactions

We used ODEs to model indirect binding of species A and
C, facilitated by an intermediate protein B, to create an
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observable complex, A:B:C. This incorporates A, B, and C
all within the same trimer protein complex. In this model
A binds with B into the dimer A:B, and B binds with C to
make dimer B:C. Subsequently, both A:B and B:C can bind
with C and A respectively to create the final complex A:B:C.
We make use of the definition of KD between species A and
B

𝐾𝐷 (𝐴, 𝐵) = 𝑘𝑑

𝑘𝑎
=

[𝐴] [𝐵]
[𝐴𝐵] (5)

to equate the backwards rate of reaction as 𝑘𝑑 = 𝑘𝑎𝐾𝐷 (𝐴, 𝐵)
(Zhou and Bates, 2013; Sadaie et al., 2014). Here, concentra-
tions of each species are denoted at [·], i.e. [𝐴] represents
the concentration of A. As we are only concerned with the
equilibrium concentrations of monomers and complexes, we
set all association rates to be equal and place all the differ-
ences in interaction rates in the KD between each pairing.
This gives us the set of ODEs

𝑑 [𝐴]
𝑑𝑡

= 𝑘𝑎 ( − [𝐴] [𝐵] + 𝐾𝐷 (𝐴, 𝐵) [𝐴:𝐵]

− [𝐴] [𝐵:𝐶] + 𝐾𝐷 (𝐴, 𝐵) [𝐴:𝐵:𝐶]),
𝑑 [𝐵]
𝑑𝑡

= 𝑘𝑎 ( − [𝐴] [𝐵] + 𝐾𝐷 (𝐴, 𝐵) [𝐴:𝐵]

− [𝐵] [𝐶] + 𝐾𝐷 (𝐵,𝐶) [𝐵:𝐶]),
𝑑 [𝐶]
𝑑𝑡

= 𝑘𝑎 ( − [𝐵] [𝐶] + 𝐾𝐷 (𝐵,𝐶) [𝐵:𝐶]

− [𝐴:𝐵] [𝐶] + 𝐾𝐷 (𝐵,𝐶) [𝐴:𝐵:𝐶]),
𝑑 [𝐴:𝐵]
𝑑𝑡

= 𝑘𝑎 ( + [𝐴] [𝐵] − 𝐾𝐷 (𝐴, 𝐵) [𝐴:𝐵]

− [𝐴:𝐵] [𝐶] + 𝐾𝐷 (𝐵,𝐶) [𝐴:𝐵:𝐶]),
𝑑 [𝐵:𝐶]
𝑑𝑡

= 𝑘𝑎 ( + [𝐵] [𝐶] − 𝐾𝐷 (𝐵,𝐶) [𝐵:𝐶]

− [𝐴] [𝐵:𝐶] + 𝐾𝐷 (𝐴, 𝐵) [𝐴:𝐵:𝐶]),
𝑑 [𝐴:𝐵:𝐶]

𝑑𝑡
= 𝑘𝑎 ( + [𝐴:𝐵] [𝐶] − 𝐾𝐷 (𝐵,𝐶) [𝐴:𝐵:𝐶]

+ [𝐴] [𝐵:𝐶] − 𝐾𝐷 (𝐴, 𝐵) [𝐴:𝐵:𝐶]),

(6)

where we have made use of the definitions 𝐾𝐷 (𝐴, 𝐵:𝐶) =
𝐾𝐷 (𝐴, 𝐵) and 𝐾𝐷 (𝐴:𝐵,𝐶) = 𝐾𝐷 (𝐵,𝐶). This is because
B facilities the interaction between A and C as there is
no interaction between A and C, such that 𝐾𝐷 (𝐴,𝐶) = 0.
We numerically solve these equations from an initial time
𝑡 = 0 until an equilibrium is established using the SciPy
(ver. 1.9.3) odeint integrator in Python (ver. 3.9.2) (Virtanen
et al., 2020). Initial concentrations of all complexes A:B, B:C,
and A:B:C are set to zero and concentrations monomers of
monomers are set as total concentrations of each protein
from our data. For each arrangement of A, B, and C we
have used concentrations derived from FCS of LV2 lines
for proteins A and C, and endogenous FCS measurements
from CRISPR engineered MEFs for B. For example in the

arrangement CLOCK:BMAL1:CRY1, CLOCK and CRY1 con-
centrations and KD values (Figure 4A and Figure supple-
ment 6) are taken from LV2 measurements whereas BMAL1
was set at the concentrations measured for CRISPR MEFs,
see Figure 5E. KD values were similarly taken from FCCS
measurements made in over-expressed LV2 MEFs. In the
case of arrangements involving PER2 as the mediator, B,
no CRISPR MEF cell-line was available for FCS measure-
ments, hence nuclear concentrations were determined from
non-DEX asynchronous skin fibroblasts isolated from the
PER2::Venus CRY1::mRuby3 double knock-in mouse. The dif-
ference score, Δ, which represents how close the calculated
𝐾

(calc)
𝐷

is the the observed 𝐾 (obs)
𝐷

is calculated as

Δ =
𝐾

(calc)
𝐷

𝐾
(obs)
𝐷

− 1. (7)
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Supplementary materials

Figure supplement 1: Calibration of FCS using a direct fusion of two fluorescent proteins. (A) MEF cells were transduced to
express EGFP and tagRFP as a single fused protein. FCS measurements of EGFP::tagRFP fusion were performed on MEF cells. Data was
fit using a correlation model incorporating normal diffusion and an offset. (B) Illustration showing how confocal volume differs depending
on the wavelength of the excitation laser, affecting calculation of number of molecules and diffusion across colours. Green EGFP and red
tagRFP fluorescence is excited by 488 nm and 561 nm laser light respectively. Plots show (C) the number of molecules measured, (D)
concentration calculated using the theoretical confocal volumes for each colour channel, and (E) diffusion of each protein.
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Figure supplement 2: Analysis of isolated skin fibroblasts from PER2 x CRY1 fluorescent knock-in mice without synchronising stimuli.
(A) Knock-in mice were culled and isolated cells grown for two weeks prior to (B) confocal imaging. Image shows two cells expressing
CRY1::mRuby3 and PER2::Venus nuclear fluorescence in separate channels as well as a merge channel. FC(C)S of nuclear fluorescence
of PER2::Venus and CRY1::mRuby3 quantified (C) concentration, (D) diffusion rates of both proteins, and (E) disassociation constant
KD as a measure of interaction affinity. (F) Concentration data for unstimulated cells is plotted as a dotted line compared to seven
time-point measurements made in dexamethasone synchronised cells replotted from Figure 1F. Statistical analysis was carried out using
Kruskal-Wallis (values are denoted as p > 0.05 ns and p < 0.0001 ****).
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Figure supplement 3: (A) Localisation of CRY1::mRuby3 and CRY2::EGFP in single cells from organotypic SCN slices derived from
PER1-/- PER2-/- global KO mice. CRY1::mRuby3 and CRY2::EGFP delivered into cells via transduced with adenovirus. (B) Merge confocal
microscopy images of mouse embryonic fibroblasts expressing lentivirus transduced pairs of circadian proteins fused with either green
EGFP or red tagRFP fluorescent proteins.
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Figure supplement 5: Co-expression reduces the mobility of binding partners FCCS measurement of protein mobility performed
in MEF cells transduced to express fluorescent PER2 and CRY paralogs alone or together as well as BMAL1 and CLOCK alone or together
(denoted with ‘+’ for transduced). Statistical analysis was carried out using Kruskal-Wallis (values are denoted as p < 0.001 *** and p <
0.0001 ****).
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Figure supplement 6: Protein concentration correlations in lenti-viral MEFs Correlations between nuclear protein in MEF cells
sequentially transduced to over-express pairs of fluorescent fusion proteins. (A) FCCS was performed on the nucleus of each cell line to
determine concentration of protein showing concentrations of the EGFP and tagRFP fusions on horizontal and vertical axes, respectively.
Each scatter plot shows linear regression model fits. (B) Spearman correlation was applied to all data and correlation score and p-values
calculated.
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Chapter 4

Improving analysis of fluorescence 
correlation spectroscopy

4.1 Overview

Molecular movement is inherently stochastic and as such is naturally described using probability 
theory. The probability behind the individual processes that describe a fluorescent molecule diffusing 
from one place to another and then emitting a photon that arrives at the detector is known. The 
difficulty here is to combine this knowledge into a complete probabilistic model of an FCS experiment 
connecting the observed photon arrival times to the parameters governing diffusion and subsequent 
photon emission. Jazani et al. (2019), Tavakoli et al. (2020), and colleagues in the Pressé group at 
Arizona State University proposed an alternative framework for analysing FCS data using Bayesian 
non-parametrics to define a likelihood that could then be found from observed photon data using 
Markov Chain Monte Carlo (MCMC). This allowed them to accurately infer molecular number, 
diffusion, and emission parameters directly from photon counts given enough computation time. 
However, these methods are difficult to use in practice on bulk data due to the > 106 MCMC 
iterations required to achieve convergence on most FCS datasets, a task that often takes many 
hours on a desktop computer. Their algorithm is computationally slow as it directly simulates 
approximately 50 molecules over plausible molecular trajectories over 1000s of time steps for each of 
the MCMC iterations prior to selecting which trajectories contribute to the likelihood.

Here I lay out the probabilistic underpinnings of a model of an FCS experiment and derive how 
the variance of changes in photon counts is dependent on the molecular parameters. Through Monte 
Carlo simulations of FCS experiments (see section 4.2 for details) and theoretical arguments, I find in 
section 4.4 that distributions of intermediate variables linking parameters to data to be well-behaved 
and readily approximated. This motivated the work in section 4.2 where I derive an approximate 
likelihood of observing the photon data parameterised by the diffusion rate, molecular number, and 
per molecule emission rate. My maximum approximate likelihood method (FCS-MAL) replaces the 
slow computation step found in the algorithms of Jazani et al. (2019) and Tavakoli et al. (2020) with 
an equation that may be maximised to infer the molecular parameters orders of magnitude faster 
with minimal loss of accuracy.
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4.2 Journal paper: Accelerated analysis of fluorescence correlation spec-
troscopy

Title A parametric probabilistic model for Fluorescence Correlation Spectroscopy

Journal Manuscript in preparation

Year N/A

Authors Alex A Koch, James S Bagnall, Bailey Winstanley, David G Spiller Korbinian 
Strimmer, Andrew SI Loudon, Thomas A House

doi N/A

4.2.1 My contributions

I conceived of and developed this work with James Bagnall, David Spiller, Korbinian Strimmer and 
Thomas House. Mathematical calculations were completed by me with help from Bailey Winstanley, 
Korbinian Strimmer, and Thomas House. Along with James Bagnall I prepared fluorescent cells and 
performed FCS measurements. Finally, all computational work was carried out by myself.
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Article

FCS-MAL: Accelerated analysis of fluorescence
correlation spectroscopy
Alex A Koch1, James S Bagnall1, Bailey Winstanley2, David G Spiller1, Korbinian Strimmer3, Andrew S I Loudon1, and
Thomas A House3, *

1Faculty of Biology, Medicine and Health, University Manchester, UK
2Department of Physics and Astronomy, University of Manchester, UK
3Department of Mathematics, University of Manchester, UK
*Correspondence: thomas.house@manchester.ac.uk

ABSTRACT Fluorescence Correlation Spectroscopy (FCS) is a widely employed microscopy technique to quantitatively derive
concentration and diffusion coefficients from fluorescent molecules diffusing within a small volume illuminated by focused light.
Standard FCS requires relatively high illumination and/or measurement times, exacerbating photobleaching issues, limiting its
use in the life sciences. Kinetic parameters of these fluorescent molecules are inferred from time-lagged correlations which
effectively averages large amounts available data, reducing data density to as low as ∼ 102 correlation points from the original
∼ 105 photon arrival times. Furthermore, commonly applied least-squares curve fitting approaches to these data are prone to
poor fits and underestimation of uncertainty on fitted parameters. Here, we derive a probabilistic likelihood model for a typical
FCS experiment from first principles, and demonstrate how dynamical parameters may be inferred directly from information rich
photon arrival time data by maximising this approximate likelihood. We denote this FCS-Maximum approximate likelihood (FCS-
MAL). This approach allows simultaneous and rapid evaluation of concentration, diffusion coefficient, and molecular brightness
from fewer data points than other FCS analyses.

SIGNIFICANCE Fluorescence correlation spectroscopy analysis is limited to high signal to noise and relatively long
measurement times. Here we demonstrate how diffusion rates, molecular numbers, and molecular brightness of fluorescent
molecules may be quantified directly from unprocessed single photon arrival times collected during an FCS experiment to
improve inferences whilst reducing required measurement times. Our approximate likelihood of observing these photons
is both as accurate and computationally quicker than both FCS and new Bayesian non-parameteric approaches.

Introduction

Fluorescence Correlation Spectroscopy (FCS) is a
widely utilised microscopy technique that quantifies
the concentration, diffusion, and interactions of fluo-

rescent molecules. With its high temporal resolution, ranging
from nanoseconds to seconds, FCS sensitively records fluctu-
ations in photon intensity resulting from single molecules en-
tering and exiting a small confocal volume of approximately
1 femtoliter, Figure 1A. The first application of FCS was in
the analysis of fluorescent dyes binding to DNA in solution
(Magde et al., 1972), and since then it has become a crucial
tool in the life sciences for the study of fluorescently labelled
molecules and proteins in vitro and in vivo (Schwille, 2001;
Yu et al., 2021).

FCS works by using the non-linearities in the optics of the
microscope to gather time-resolved information about the
fluorescent molecules. The confocal microscope is setup so
that the illumination is unevenly distributed, with the greatest
likelihood of detecting a photon located at center of the illu-

minated area (Qian, 1990), Figure 1B. Fluorescent molecules
that enter this volume become brighter as they move towards
the center of the beam and fade as they leave, providing
information about their behaviour (Elson and Magde, 1974),
Figure 1C. The emitted photons contain dynamic information
about the fluorescent molecules, which is used to estimate im-
portant properties, such as concentration, diffusion (Höfling
et al., 2011), and protein-protein binding affinity (Bacia et al.,
2006; Sadaie et al., 2014). This information is extracted by
auto-correlating the fluctuating intensity traces over different
lag-times and then fitting theoretical models via non-linear
regression, Figure 1D,E. These models have been used to
study a variety of molecular properties, including normal
and anomalous diffusion coefficients (Höfling et al., 2011),
chemical relaxation times (Haupts et al., 1998), photochemi-
cal triplet states (Widengren et al., 1995), and protein-DNA
binding kinetics (Michelman-Ribeiro et al., 2009).

Traditional FCS analyses face a number of technical chal-
lenges that arise from the experimental setup and analysis.
These challenges are primarily due to the use of multi-tau cor-
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Figure 1: Fluorescence correlation spectroscopy resolves single photon arrivals. (A) Schematic of an FCS experiment. Fluorescent
molecules (grey and green) diffuse in and out of the laser illuminated (blue) confocal volume fluorescing (green) with increasing strength
closer to the centre over time steps sampled from 𝑘 = 1 to 𝑘 = 𝐾 . (B) One dimensional slice of a Gaussian point spread function that
defines the probability over space of emission and detection of a photon. This is mirrored for the 𝑦 and 𝑧 dimensions. (C) Photons arriving
at the detector (green) are resolved through ultra-fast 106 Hz sampling at the detector, carrying with them dynamical information about
the particles which emitted them. (D) Millisecond-binned time trace of photon detection for a slow diffusing (0.1μm2s−1) molecule at a
concentration of (17.30 nM). (E) Photon emissions are well correlated over short time intervals, becoming increasingly less correlated over
longer times as particles diffuse out of the volume. FCS analysis fits theoretical correlation models (dark line) through these data to obtain
estimates for the dynamical parameters of the system. (F) Residuals for the fit to data in (E) demonstrates increased uncertainty (noise) at
short (𝜏 < 10−4 s) and long (𝜏 > 10−1 s) lag times.

relators, intrinsic noise, and non-linear regression. In the early
stages of FCS development, calculating the auto-correlation
of photon intensities was a computationally intensive task,
leading to the popularity of multi-tau correlators as a solu-
tion. These correlators reduced the computational demands,
making FCS analysis more efficient and accessible (Schwille
et al., 1999; Rigler et al., 1993). Multi-tau correlators work
by sub-sampling the auto-correlation by averaging over in-
creasingly wider time bins of logarithmic density (Schätzel
et al., 1988). This compresses the data, leading to loss of
information and introduction of systematic uncertainty, (Saf-

farian and Elson, 2003). Multi-tau correlation vastly reduces
the number of data points available for fitting and parameter
inference from around 105 − 106 photon arrivals to ∼ 102

auto-correlation values. These correlators can also exacer-
bate the large variance in the auto-correlations at short and
long lag-times, see Figure 1F. At very short lag-times the
density of data is low due to sampling rates being compara-
ble with average emission rates (shot noise). Whereas at long
lag-times the ‘particle noise’ becomes dominant and results
from the observed photons becoming less likely to originate
from the same particles (Koppel, 1974; Qian, 1990; Kask
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et al., 1997; Saffarian and Elson, 2003). Finally, the chal-
lenges posed by high variance and a limited number of data
points are exacerbated by the prevalent use of non-linear least
squares regression in fitting these correlation curves. While
regularisation schemes can be incorporated during fitting to
counter problems, such as bias towards outliers (Koch et al.,
2022), least squares regression does not provide insights into
alternative solutions, if they exist (Stuart, 2010). As a result,
traditional FCS analyses reliant on least squares regression
might offer constrained accuracy and reliability. A promis-
ing solution to these hurdles in traditional FCS analyses is
the introduction of a new analytical method that draws on
Bayesian or maximum likelihood techniques and leverages
the raw photon arrival data.

Despite its first introduction by Magde et al. (1972), FCS
remains technically challenging to implement in biological
applications due to several limitations. To obtain sufficient
data without bleaching or causing photo-toxic damage to
cells (Magidson and Khodjakov, 2013), measurements must
be taken over relatively long periods of time (> 1s), which lim-
its the technique to bright or high-concentration molecules.
The low abundance of many proteins, such as transcription
factors, results in a low photon emission rate when fluores-
cently labelled, exacerbating systematic errors as the signal
becomes comparable to noise. Given these technical and bio-
logical limitations, there is a need for enhanced FCS analysis
techniques that are sensitive, accurate, reliable, and require
less acquisition time.

To address many of the technical challenges faced in FCS,
Jazani et al. (2019) and Tavakoli et al. (2020) from the Pressé
group proposed an alternative framework based on Bayesian
non-parametrics to quantify the distribution of the molecular
number and diffusion rates from FCS data. As their model
relating distributions over molecular positions and collected
photons cannot be integrated analytically, they used Markov
Chain Monte Carlo (MCMC) to compute this likelihood in-
tegral by simulating multiple plausible molecular trajecto-
ries and selecting the trajectories that best explain the data.
The diffusion rates and concentrations are then inferred from
these trajectories. This approach is advantages of accurately
inferring low numbers of molecules from short time traces
(∼ 1 ms) and rigorous quantification of uncertainties. How-
ever, when analysing multiple FCS experiments on a typical
computer, this method can be prohibitively slow.

We aimed to address the limitations and challenges in
FCS by calculating a likelihood function that was parame-
terised by molecular number and diffusion coefficient. To
do so, we applied carefully controlled approximations, in-
cluding Laplace’s method (Murray, 1984), to compute the
likelihood function in closed form. We then maximised this
approximate likelihood equation for the full unprocessed pho-
ton arrival time data, resulting in a new method we denote
as maximum approximate likelihood (MAL). Our FCS-MAL
approach takes advantage of the increased data density to ex-
tract molecular parameters from FCS experiments with im-

proved accuracy and reliability, using simple formulae. Our
proposed method yields the same high-accuracy inferences
from short measurements as the alternative Bayesian non-
parametric framework proposed by the Pressé group (Jazani
et al., 2019; Tavakoli et al., 2020), while still maintaining the
fast computation time of traditional FCS analysis.

Materials and Methods

Model formulation
Our goal is to estimate the parameters defining an FCS exper-
iment, primarily the diffusion coefficient, 𝐷, and number of
molecules in the confocal volume, 𝑁 . Mirroring the approach
of Tavakoli et al. (2020), we wish to know the posterior dis-
tribution, 𝑃(𝜃 |𝚫𝒕), of the parameters 𝜃 given a data set of
times between detected photons 𝚫𝒕 = (Δ𝑡1,Δ𝑡2, . . . ,Δ𝑡𝐾−1)
for Δ𝑡𝑘 = 𝑡𝑘+1 − 𝑡𝑘 . To compute the posterior, we require the
likelihood, 𝑃(𝚫𝒕 |𝜃), of observing the data given the parame-
ters, which is impossible to solve in closed form. Hence, our
aim is to approximate the likelihood in terms of the parame-
ters 𝜃. For normal Brownian motion in the absence of back-
ground photon emission, 𝜃 is the set {𝜇m,𝐷, 𝑁 ,𝑤𝑥𝑦 ,𝑤𝑧}
where 𝑤𝑥𝑦 and 𝑤𝑧 define the size of the confocal volume,
and the per-molecule emission rate is given by 𝜇m. The
number of detected photons depends on the positions of the
molecules and their diffusion rates. Diffusion defines how the
number of photons collected at the detector change over time
as molecules move in and out of the confocal volume. Thus,
to construct our model we need to expand the likelihood in
terms of the molecular positions 𝒓. Here, a single underline
𝒓𝑘 defines the set of 3D positions, 𝒓𝑛,𝑘 = (𝑥𝑛,𝑘 , 𝑦𝑛,𝑘 , 𝑧𝑛,𝑘), at
time step 𝑘 for 𝑁 total molecules, such that a double under-
line, 𝒓, defines the full set of positions for 𝑁 molecules over
𝐾 time steps. It can be shown (see appendix for full details
of calculations) that the likelihood is a marginal integral over
all positions

𝑃(𝚫𝒕 |𝜃) =
∫
𝒓
𝑃(𝚫𝒕 |𝒓, 𝜃)𝑃(𝒓 |𝜃)𝑑𝒓. (1)

By assuming that photons at time 𝑘 only depend on the po-
sitions and parameters at time 𝑘 , the first term becomes a
product of the probability of observing each time interval
between photons, Δ𝑡𝑘 ,

𝑃(𝚫𝒕 |𝒓, 𝜃) =
𝐾−1∏
𝑘=1

𝑃(Δ𝑡𝑘 |𝒓𝑘 , 𝜃). (2)

As normal diffusion is a Markovian process, the second term
can be similarly expanded over each time step

𝑃(𝒓 |𝜃) =
(
𝐾−1∏
𝑘=1

𝑃(𝒓𝑘+1 |𝒓𝑘 , 𝜃)
)
𝑃(𝒓1 |𝜃), (3)
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for an initial set of molecular positions 𝒓1. In this study,
we assume that 𝒓1 is uniformly distributed and we consider
molecules diffusing through normal Brownian motion, such
that the positions in each direction update according to a nor-
mal distribution. Thus 𝑃(𝒓𝑘+1 |𝒓𝑘 , 𝜃) is a multivariate normal
distribution with mean centered on the previous position 𝒓𝑘 ,
and variance dependent on diffusion rate 𝐷 as 2𝐷Δ𝑡𝑘 . In 3D
and without complex fluorophore dynamics such as blinking
caused by triplet states, 𝑃(Δ𝑡𝑘 |𝒓𝑘 , 𝜃) follows an exponential
distribution with parameter

𝜇𝑘 = 𝜇𝑚
𝑁∑
𝑛=1

PSF(𝒓𝑛,𝑘). (4)

The point spread function (PSF) determines the normalised
probability of a molecule fluorescing under focused laser light
and is defined by the optics of the system (Schwille, 2001).
The molecular brightness 𝜇𝑚 is the rate of photons emission
per second and is a function of the excitation probability,
quantum yield, detection efficiency, and laser intensity (Chen
et al., 1999). In this study, we have chosen to complete the
calculation of Equation 1 for optics defined by a 3D Gaussian
point spread function (PSF) (Schwille, 2001; Zhang et al.,
2007), Figure 1B,

PSF3G (𝒓𝑛,𝑘) = exp

[
−2

(
𝑥2
𝑛,𝑘 + 𝑦2

𝑛,𝑘

𝑤2
𝑥𝑦

+
𝑧2𝑛,𝑘

𝑤2
𝑧

)]
. (5)

Other common point spread functions in 3D include
Lorentzian and Gaussian-cylindrical functions. In all these
cases, the PSF contains an exponential term leading to a dou-
ble exponential in 𝑃(Δ𝑡𝑘 |𝒓𝑘 , 𝜃) in at least one direction, i.e.
𝑒𝑒
𝑥 . These double exponential terms prohibit the likelihood

integral from being solved analytically. Fortunately, for an ap-
propriately large 𝜇𝑘 , 𝑃(Δ𝑡𝑘 |𝒓𝑘 , 𝜃) is highly peaked, as such
we may apply the Laplace approximation (Murray, 1984),
which transforms 𝑃(Δ𝑡𝑘 |𝒓𝑘 , 𝜃) into a readily integrable Gaus-
sian function, Figure 2. This approximation is valid when
Δ𝑡 < 1

𝜇𝑚
, i.e. there is on average more than one molecule

within the confocal volume significantly contributing to the
signal. The application of the Laplace approximation yields

𝑃(Δ𝑡𝑘 |𝒓𝑘 , 𝜃) ≈ 𝜇𝑚

(
𝑁∑
𝑛=1

(
𝑒𝑁

𝑁∏
𝑛′=1

PSF3G (𝒓𝑛′,𝑘)
)−𝜇𝑚Δ𝑡𝑘

× PSF3G (𝒓𝑛,𝑘)
)
. (6)

By applying Equation 6 to equation Equation 2, the likeli-
hood can now be integrated over all positions for 𝐾 times
and 𝑁 molecules using standard Gaussian integrals. See the
appendix for full details. The final result of the combination
of integrals is
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Figure 2: Laplace approximation is valid for frequent photon
emissions. The Laplace approximation models the full double ex-
ponential function as a Gaussian function that is asymptotically
equivalent to 𝑃(Δ𝑡𝑘 |𝒓𝑘 , 𝜃) as 𝜇𝑚Δ𝑡 → 0. Insets show the Laplace
approximation in purple (dashed) and the original model in orange
(solid) for a 1D Gaussian PSF for three values of 𝜇𝑚Δ𝑡 given a
confocal width of 𝑤 = 0.2 arb. units. For values of 𝜇𝑚Δ𝑡 < 0.3 the
percentage error between the approximation and full model over all
space is below 1%. The number of molecules is given along the top
axis and is proportional to 1/𝜇𝑚Δ𝑡.

𝑃(𝚫𝒕 |𝜃) ≈
𝛽2
𝑥𝑦𝛽𝑧

𝑉eff

(
𝐾−1∏
𝑘=1

𝜇𝑚𝑁
3𝑒−𝜇𝑚𝑁Δ𝑡𝑘

)
(7)

where the effective volume 𝑉eff = 𝜋
3
2𝑤2

𝑥𝑦𝑤𝑧 defines the size
of the confocal volume within which observed photons are
collected from and is dependent on the optical setup (see
Experimental FCS setup for details). Outside of this volume
the rate of photon emission from each particle is negligible
and thus the number of molecules quantified by 𝑁 is strictly
the number of observed molecules within𝑉eff. This allows us
to estimate the concentration of the fluorescent molecules in
solution. Furthermore,

𝛽𝑑 = 1 − 2𝐷
𝑤2
𝑑

𝐾−1∑
𝑘=1

Δ𝑡𝑘

[
𝑁

(
𝑘∑
𝑘′=1

𝜇𝑚Δ𝑡𝑘

)
− 𝑘

]

− 8𝐷2

𝑤4
𝑑

©«
𝐾−1∑
𝑖, 𝑗=1
𝑖≠ 𝑗

𝑖 𝑗Δ𝑡𝑖Δ𝑡 𝑗 +
𝐾−1∑
𝑘=1

(𝑘 − 1) (Δ𝑡𝑘)2
ª®®®¬ . (8)
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for 𝑑 = {𝑥𝑦, 𝑧}. Note that the finite number of time indices
𝑘 range from 𝑘 = 1 to 𝑘 = 𝐾 − 1 due to the definition of
Δ𝑡𝑘 = 𝑡𝑘+1 − 𝑡𝑘 . This approximate likelihood may be used to
estimate parameters of the model using Bayesian inference,
alongside priors for each parameter in 𝜃, or via maximum
likelihood techniques. Here we demonstrate the efficacy of
this likelihood model using maximum likelihood estimation.

Maximum approximate likelihood estimation

Estimators for each of the parameters 𝜃 (𝑖)MAL may be found
by maximising the logarithm of the approximate likelihood
in Equation 7. The estimators, 𝜃 (𝑖)MAL, are defined such that
they maximise the approximate log-likelihood. Hence, the
maximum likelihood estimate can be found by solving for
𝜃 (𝑖)MAL when the derivative with respect to each estimator is
zero, i.e. 𝜕𝜃𝑖 ln (𝑃(𝚫𝒕 |𝜃)) = 0. We denote this procedure as
Maximum Approximate Likelihood (MAL) estimation. MAL
yields the estimator for Molar concentration,

�̂�MAL =
�̂�MAL

𝑁𝐴𝑉eff
=

3𝜀
𝑁𝐴𝑉eff𝜇m⟨𝚫𝒕⟩

, (9)

up to a correction factor 𝜀, where 𝑁𝐴 is Avrogadro’s num-
ber. This also depends on the average difference in arrival
times which is ⟨𝚫𝒕⟩ = 1

𝐾−1
∑𝐾−1
𝑘=1 Δ𝑡𝑘 . The factor, 𝜀, corrects

the effective volume 𝑉eff and must be determined for each
experiment. The estimator for the diffusion coefficient, 𝐷, is

�̂�MAL =
𝛼(𝐾 − 1)

4(𝑤−2
𝑥𝑦 + 2𝑤−2

𝑧 )𝜇𝑚𝑁
∑𝐾−1
𝑖=0 Cov(𝚫𝒕𝑘 ,𝚫𝒕𝑘+𝑖)

+ 𝜂,

(10)
where 𝛼 and 𝜂 are constants to be determined for each set
of measurements. The covariance between Δ𝑡𝑘 values is cal-
culated over shifts, i.e. we are comparing values close to
one another and then over progressively larger time intervals.
This closely mirrors the traditionally correlative FCS analy-
ses. Here, MAL has a natural intuitive interpretation that the
average number of molecules, given in Equation 9, depends
on the ratio of the average frequency of detected photons to
the per-molecule emission rate. Furthermore, the diffusion
rate 𝐷 relies on how photon emissions vary over time. Stan-
dard errors on each of these estimators is calculated via boot-
strapping such that each estimator is sampled multiple times
from the available data with replacement using the bootstrap
function from SciPy (version 1.11.1) (Virtanen et al., 2020;
Efron et al., 1994).

Synthetic data generation
To validate our model, synthetic data was gener-
ated by a Python 3 program (FCS sample generator;
github.com/LoudonLab/FcsAnalysisPipeline) that was based
on the MATLAB algorithm created by Jazani et al. (2019).

We simulated 𝑁 molecules diffusing in 3D space, with posi-
tions drawn from a normal distribution with variance 2𝐷𝛿𝑡.
At each time-step, 𝛿𝑡, the number of emitted photons were
drawn from a Poisson distribution with a mean dependent on
the molecular brightness, 𝜇𝑚, and point spread function of the
molecular positions relative to the centre of the confocal vol-
ume. Times between photon arrivals, Δ𝑡𝑘 , were calculated
from the interval between these arrivals. Unless otherwise
stated we performed simulations with similar parameters as
Jazani et al. (2019), specifically 𝑤𝑥𝑦 = 0.3 μm, 𝑤𝑧 = 1.5 μm,
𝜇𝑚 = 22500 s−1 photons per molecule, and 𝛿𝑡 = 10−7 s. The
confocal widths, 𝑤𝑥𝑦 and 𝑤𝑧 , are slightly larger than those
present in our experiments, but allow for faster generation of
synthetic data without violating any of the key assumptions
of our model. See the appendix for a full description of the
simulation scheme. Auto-correlations were calculated using
the multiple tau Python package (Müller, 2012).

FCS analysis
Experimental FCS data extracted from the Zeiss .fcs files
was analysed using the same software pipeline as previously
described in Koch et al. (2022). In the case of synthetic data,
the same software pipeline was utilised to fit models to auto-
correlation curves obtained from generated .sim files.

Experimental FCS setup
For imaging experiments, cells were plated into 35 mm glass
bottomed imaging dishes (Greiner Bio-One) at least 6 hours
prior to imaging. FCS measurements were performed in the
nucleoplasm of each cell over an acquisition time of 10-20
seconds on a Zeiss LSM 880 confocal microscope with the
ConfoCorr3 module running ZEN 2.1 SP3 FP2 or ZEN 2010b
SP1 software following the same protocol as (Koch et al.,
2022). An effective volume of 1 airy unit was used after
calibrating the pinhole in the x-y plane for maximal signal
intensity. When using the FLUAR 40x NA 1.3 oil immersion
objective, this volume is approximately 0.72 fL for 488 nm
laser excitation. This effective confocal volume was calcu-
lated usting the equation

𝑉eff = 𝜋
3
2𝑤2

𝑥𝑦𝑤𝑧 = 𝜋
3
2

(
0.61𝜆
NA

)2 (
2𝑛𝜆
NA2

)
, (11)

where 𝑤𝑥𝑦 and 𝑤𝑧 are the beam widths in the 𝑥, 𝑦, and 𝑧
axes respectively. NA is the numerical aperture (NA = 1.3
for our 40x objective), 𝜆 the wavelength of the laser, and 𝑛
the refractive index of the immersion oil (𝑛 = 1.515 in all
experiments). Laser power was reduced to minimize photo-
bleaching whilst maintaining counts per molecule greater
than 0.3 kHz.
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Fluorescent cell generation and maintenance
Mouse embryonic fibroblasts (MEF) (Yoo et al., 2017)
derived from previously reported Per2::Luc mouse (Yoo
et al., 2004) were cultured in Gibco DMEM/F-12 (Cat. No.
11320033) with 10% fetal bovine serum (HyClone). These
cells were tested for the absence of mycoplasma using My-
coAlert mycoplasma detection kit (Cat. No. LT07-418). Cells
were passaged every 3-4 days, maintaining cells until passage
30. Production of 3rd generation lentivirus was performed ac-
cording to the same protocol described in (Bagnall et al.,
2015). At low passage (6-12) lentivirus transduction was per-
formed to express a fusion of enhanced green fluorescent
protein (EGFP).

Plasmids
Lentivirus transfer plasmid encoding for EGFP (pLNT-
EGFP) was generated via the gateway cloning system as
previously described (Bagnall et al., 2015). Vectors were
recombined with a target destination vector containing a flu-
orescent protein sequence to generate a terminal lentivirus
vector, in which expression is regulated from the constitutive
ubiquitin ligase C promoter (UbC).

Results

Overview
Our aim is to infer molecular concentrations and diffusion
coefficients from data collected in a typical FCS experiment.
In the previous section we set out how to estimate these quan-
tities from the intervals between photon arrival times at the
detector, 𝚫𝒕, from our approximate likelihood model using
maximum approximate likelihood (MAL). We first validate
our method using synthetic data from Monte Carlo simula-
tions of an FCS experiment. We then demonstrate this method
upon real in vivo measurements of fluorescent proteins in
cells.

Validation by simulated data
We validated our model against synthetic data by finding esti-
mates of molecular concentrations and diffusion rates using
our maximum approximate likelihood technique (MAL). As
expected, the simple formula in Equation 9 estimates molec-
ular concentrations well when molecular brightness, 𝜇𝑚, is
known (Figure 3A). Mirroring traditional FCS analysis, the
estimator �̂�MAL is insensitive to the diffusion rate of the
molecules. However, to calculate the concentration, we must
know the effective confocal volume 𝑉eff and it’s correction
factor 𝜀. Here, following calibration over all of the data the
correction factor was determined to be 𝜀 = 1.39. In experi-
ments this corrective factor is determined from performing
FCS calibration measurements on solutions of fluorophores

with known concentrations such as recombinant fluorescent
proteins or fluorescent reference dye (Politi et al., 2018). As
expected, estimations of the molecular concentration improve
as the number of data points increases. Strikingly, �̂�MAL con-
verges towards the true value after only 104 photon arrivals,
which in this experiment is equivalent to a collection time
of just 100 ms (Figure 3B). Similarly diffusion rates can be
inferred using the estimator �̂�MAL, (Figure 3C). Calculated
values for the diffusion coefficient also rapidly converge as
data density increases (Figure 3D). Due to the unstable na-
ture of the sums and ratios in �̂�MAL, we find that our data
sets require a minimum of 103 data points to avoid infinities
caused by divisions by zero.

Application to biological data
To demonstrate FCS-MAL on real biological data we trans-
duced mouse embryonic fibroblasts (MEF) with a lentivirus
carrying enhanced green fluorescent protein (EGFP) driven
by the constitutive ubiquitin ligase C promoter (UbC) (Fig-
ure 4A). FCS measurements over 10 seconds were performed
in the nucleus of 35 cells. These data gave MAL estimates of
the concentration that were well correlated with those from
standard FCS auto-correlation fits (Figure 4B). Remarkably,
within single cells the concentration can be found with fewer
than 10,000 data points, which corresponds to less than 0.1 s
of measurement time (Figure 4).

Discussion
High resolution fluorescent microscopy reveals the dynam-
ics of single molecules from information encoded in emitted
photons. Correlative methods for quantifying abundance and
movement of fluorescent molecules have seen extensive use
since their inception (Magde et al., 1972; Yu et al., 2021).
However, to obtain robust estimates of molecular number
and diffusion rates with reasonable uncertainties, analyses
using these auto-correlations require long individual traces
and large data-sets. This is exacerbated for in vivo measure-
ments where intrinsic biological noise, propensity for cell
movement, fluorophore bleaching, and avoidance of photo-
toxic exposure places limits on measurements. As such, mea-
surement times between 5 − 60 s with over 30 replicate mea-
surements are typically required to properly characterise a
fluorescent protein in vivo.

These problems have been addressed by the use of
Bayesian non-parametrics on raw FCS data by Jazani et al.
(2019) and Tavakoli et al. (2020). They used MCMC methods
regularised by a Kalman filter to computationally integrate
the likelihood function within their Bayesian model. Whilst
this method is accurate and provides rigorous quantification
of uncertainties upon inferred parameters, it requires a large
amount of MCMC iterations to converge, often over 106,
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Figure 3: MAL accurately infers concentration and diffusion rates for synthetic data with only 104 collected photons. Inferred
concentration of molecules from simulations over differing concentrations of molecules (8.65, 17.30, 34.60, 69.19 nM) and diffusion
coefficients (0.1 − 35.0 μm2s−1) for a fixed molecular brightness of 𝜇𝑚 = 22500 (A) A one-to-one relationship of simulated to inferred
concentration using the MAL estimator for �̂�MAL found from Equation 9 over all available data. (B) Inferred concentration converges to
true simulated value as the number of data points in ⟨𝚫𝒕⟩ from the same simulation increases. Corresponding measurement times in seconds
for these data are given along the top axis. These data were generated from molecules at a concentration of 𝐶 = 34.60 nM and diffusion
rate of 𝐷 = 4.0 μm2s−1. (C) The MAL estimator for diffusion coefficient �̂�MAL also accurately derives diffusion rates. (D) Estimated
diffusion rates also converge to the true value as the number of data points (collected photons) increases. Error bars represent standard errors
calculated via bootstrapping.

Figure 4: MAL accurately estimates concentrations in vivo (A) Mouse embryonic fibroblasts (MEF) expressing EGFP. Scale bar is 50
μ m (B) The MAL estimator for concentration �̂�MAL is well correlated with estimates of concentration using standard FCS over 10 seconds
of measurement (n=35). (C) MAL estimate of concentration over increasing number of data points demonstrates accurate inference can be
made with only a few data points. Error bars represent standard errors calculated via bootstrapping.

which corresponds to hours of computational time. These
long times limit the utility of this type of analysis.

In this study we introduced a new methodology for
analysing FCS data, FCS-Maximum Approximate Likeli-
hood (FCS-MAL), based upon an approximate likelihood
model of an FCS experiment that draws inferences on the
raw data. We applied carefully controlled approximations,

namely Laplace’s method, to solve the likelihood integral
analytically. As such, FCS-MAL can both accurately quan-
tify concentration and diffusion rates whilst maintaining the
computational speed of traditional FCS analyses. Using FCS-
MAL we can quantify molecular concentration and diffusion
rates accurately with significantly less data. For a reasonably
bright molecule fluorescing a few thousand times a seconds
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MAL can successfully estimate these molecular parameters
with as few as 10,000 collected photons, which corresponds
to less than a 0.1 s of measurement time. This striking reduc-
tion in required measurement time for the same accuracy as
standard FCS analyses requires no hardware modifications
and is rapidly calculated on the fly from the raw photon ar-
rivals data that is often deleted in most FCS experiments.

The methodology behind FCS-MAL is applicable to more
complex models of molecular dynamics within an FCS ex-
periment and presents a new framework to analysis pro-
cesses such as anomalous and polydisperse diffusion (Höfling
et al., 2011), photo-chemical processes like dark triplet states
(Widengren et al., 1995), molecular interactions (Bacia et al.,
2006), and DNA binding (Michelman-Ribeiro et al., 2009).
Traditional FCS models for these processes already exist, yet
remain difficult to implement as parameters such as triplet
states and multiple diffusing species are hard to identify
within the correlation curves is due to the low data density.
Incorporating an anomalous parameter, 𝛼, would be possible
by altering the variance in position to 𝜎𝑘 = 2𝐷 (Δ𝑡𝑘)𝛼, fol-
lowed by calculating the diffusion estimator alongside a new
estimator for 𝛼. Therefore, our framework for approximating
the likelihood opens up the possibility of robustly quantifying
a greater range of molecular behaviours in vivo.
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Appendix

Synthetic data generation
Monte Carlo simulations of FCS experiments were performed in the Python 3 programming language by modelling molecules
moving within a defined volume 𝑉box = 𝐿2

𝑥𝑦𝐿𝑧 as a random walk according to the same scheme as Jazani et al. (2019). The
code of the main loop of the random walk algorithm code was compiled via Cython to improve computational performance.
Initial positions within the volume are drawn from a uniform distribution as

𝑥𝑛,0, 𝑦𝑛,0 ∼ Uniform(−
𝐿𝑥𝑦

2
,
𝐿𝑥𝑦

2
), 𝑧𝑛,0 ∼ Uniform(− 𝐿𝑧

2
,
𝐿𝑧
2
). (12)

Molecular positions in each direction, 𝑥, 𝑦, and 𝑧 are updated by adding random variables drawn from a normal distribution of
mean zero and variance 2𝐷𝛿𝑡 according to

𝑥𝑛,𝑘+1 ∼ 𝑥𝑛,𝑘 + Normal(0, 2𝐷𝛿𝑡)
𝑦𝑛,𝑘+1 ∼ 𝑦𝑛,𝑘 + Normal(0, 2𝐷𝛿𝑡)
𝑧𝑛,𝑘+1 ∼ 𝑧𝑛,𝑘 + Normal(0, 2𝐷𝛿𝑡).

(13)

If the proposed new position takes is beyond the bounding box, 𝑉box, then the position of the particle is reassigned to the other
side, i.e. if the particle is now to the right of the boundary 𝐿𝑥𝑦

2 in the positive 𝑥 direction then 𝑥𝑛,𝑘+1 → 𝑥𝑛,𝑘+1 − 𝐿𝑥𝑦 . Finally,
the number of photons emitted in the interval 𝛿𝑡 is determined from the distribution

𝛾𝑘 ∼ Poisson(𝜆𝑘), (14)

where the average number of photons emitted from N molecules at their current positions is the sum

𝜆𝑘 = 𝜇𝑚𝛿𝑡
𝑁∑
𝑛=1

PSF(𝑥𝑛,𝑘 , 𝑦𝑛,𝑘 , 𝑧𝑛,𝑘). (15)

Here, the point spread function (PSF) models the optics of the system and computes the normalised probability of a photon
being emitted at the current position of the molecule (Chen et al., 1999). The molecular brightness per unit time 𝜇𝑚 encodes
the probability of excitation by the laser, quantum yield of the fluorophore, and likelihood of detection, hence when multiplying
the sum of PSFs produces the average rate of detected photons. In this study we exclusively use a 3D Gaussian PSF defined as

PSF3G (𝑥𝑛,𝑘 , 𝑦𝑛,𝑘 , 𝑧𝑛,𝑘) = exp

(
−2

(
𝑥2
𝑛,𝑘 + 𝑦2

𝑛,𝑘

𝑤2
𝑥𝑦

+
𝑧2𝑛,𝑘

𝑤2
𝑧

))
(16)

where 𝑤𝑥𝑦 and 𝑤𝑧 are the radial and axial radii of the confocal volume, and 𝑤𝑧 > 𝑤𝑥𝑦 . Finally, the number of photon emissions
is a random variable within each time interval 𝛿𝑡 drawn from the Poisson distribution defined in Equation 14. In practice the
sampling time step 𝛿𝑡 is chosen to be small enough such that 𝛾𝑘 ≤ 1 to avoid over sampling. We subsequently calculate the
time intervals between photons, Δ𝑡𝑘 = 𝑡𝑘+1 − 𝑡𝑘 , from these data.

Detailed calculation of approximate likelihood distribution
Here we infer the quantity and diffusion of fluorescent molecules within a FCS experiment. We begin with a similar approach
as Tavakoli et al. (2020) by calculating the likelihood of observing the time intervals between detected photons 𝚫𝒕𝑘 for the set
of parameters 𝜽; 𝑃(𝚫𝒕 |𝜽). In general 𝜽 is a vector of all time steps 𝑘

𝜃 = (𝜃1, 𝜃2, . . . , 𝜃𝐾 ), (17)

𝜃𝑘 = {𝜇 (𝑘)𝑚 ,𝐷𝑘 , 𝑁𝑘 ,𝑤 (𝑘)
𝑥𝑦 ,𝑤 (𝑘)

𝑧 }; 𝑘 = 1, 2, . . . ,𝐾 (18)

which we will simplify by assuming the parameters are constant over the experiment such that

𝜃𝑘 = 𝜃 = {𝜇𝑚,𝐷, 𝑁 ,𝑤𝑥𝑦 ,𝑤𝑧} (19)

for all 𝑘 and
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𝑃(𝚫𝒕 |𝜃) = 𝑃(𝚫𝒕 |𝜃). (20)

The difficulty in moving forward is that the unobserved intermediate positions of each of the 𝑁 particles, 𝒓, have been
marginalised out. Therefore, let’s expand the likelihood as a marginal integration over the possible values of 𝒓. To be clear
let’s define the possible positions over 3 dimensions, 𝐾 time steps and 𝑁 particles as

Over dimensions 𝑥, 𝑦, 𝑧 : 𝒓𝑛,𝑘 = (𝑥𝑛,𝑘 , 𝑦𝑛,𝑘 , 𝑧𝑛,𝑘)
Over particles 𝑁 : 𝒓𝑘 = (𝒓1, 𝒓2, . . . , 𝒓𝑁 ); 𝑛 = 1, 2, . . . , 𝑁
Over time steps 𝐾 : 𝒓 = (𝒓𝑛,1, 𝒓𝑛,2, . . . , 𝒓𝑛,𝐾 ); 𝑘 = 1, 2, . . . ,𝐾 .

(21)

Using Total Probability 𝑃(𝐴) =
∫
𝐵
𝑃(𝐴|𝐵)𝑃(𝐵)𝑑𝐵 and Conditional Probability 𝑃(𝐴, 𝐵) = 𝑃(𝐴|𝐵)𝑃(𝐵), the likelihood is the

marginal integral

𝑃(𝚫𝒕 |𝜃) = 𝑃(𝚫𝒕, 𝜃)
𝑃(𝜃)

=
∫
𝒓

𝑃(𝚫𝒕, 𝜃 |𝒓)𝑃(𝒓)
𝑃(𝜃) 𝑑𝒓

=
∫
𝒓

𝑃(𝚫𝒕, 𝒓, 𝜃)
𝑃(𝜃) 𝑑𝒓

=
∫
𝒓

𝑃(𝚫𝒕 |𝒓, 𝜃)𝑃(𝒓, 𝜃)
𝑃(𝜃) 𝑑𝒓

=
∫
𝒓
𝑃(𝚫𝒕 |𝒓, 𝜃)︸      ︷︷      ︸

Photon emission
and detection

𝑃(𝒓 |𝜃)︸ ︷︷ ︸
Diffusion

𝑑𝒓

(22)

Inside the integrand, the first term describes how times between arrivals depends on the positions of the molecules and
parameters 𝜃, whereas the second terms defines how molecular positions are distributed over time and space. We may expand
𝑃(𝚫𝒕 |𝒓) over each time step using conditional probability

𝑃(𝚫𝒕 |𝒓, 𝜃) =
𝑃(Δ𝑡𝐾−1,Δ𝑡𝐾−2, . . . ,Δ𝑡1, 𝒓, 𝜃)

𝑃(𝒓, 𝜃)

=
𝑃(Δ𝑡𝐾−1 |Δ𝑡𝐾−2, . . . ,Δ𝑡1, 𝒓, 𝜃)𝑃(Δ𝑡𝐾−2, . . . ,Δ𝑡1, 𝒓, 𝜃)

𝑃(𝒓, 𝜃)

=
𝑃(Δ𝑡𝐾−1 |Δ𝑡𝐾−2, . . . ,Δ𝑡1, 𝒓, 𝜃)𝑃(Δ𝑡𝐾−2 |Δ𝑡𝐾−3, . . . ,Δ𝑡1, 𝒓, 𝜃)

𝑃(𝒓, 𝜃) . . .

×
𝑃(Δ𝑡2 |Δ𝑡1, 𝒓, 𝜃)𝑃(Δ𝑡1 |𝒓, 𝜃)𝑃(𝒓, 𝜃)

𝑃(𝒓, 𝜃)
=𝑃(Δ𝑡𝐾−1 |Δ𝑡𝐾−2, . . . ,Δ𝑡1, 𝒓, 𝜃)𝑃(Δ𝑡𝐾−2 |Δ𝑡𝐾−3, . . . ,Δ𝑡1, 𝒓, 𝜃) . . .

× 𝑃(Δ𝑡2 |Δ𝑡1, 𝒓, 𝜃)𝑃(Δ𝑡1 |𝒓, 𝜃).

(23)

This can then be simplified by assuming that photon emissions are memoryless (Markovian), such that the current probability
of a photon being emitted is only dependent on the current molecular positions and emission parameters. Time between
emissions in the interval 𝑘 → 𝑘 + 1 (Δ𝑡𝑘) only depend on the current positions of the particles 𝒓𝑘 and are non-interacting. i.e.
time between photon emissions is a Markovian process

𝑃(Δ𝑡𝑘 |Δ𝑡𝑘−1, . . . ,Δ𝑡1, 𝒓, 𝜃) = 𝑃(Δ𝑡𝑘 |𝒓𝑘 , 𝜃). (24)

Thus, Equation 23 becomes
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𝑃(𝚫𝒕 |𝒓, 𝜃) =
𝐾−1∏
𝑘=1

𝑃(Δ𝑡𝑘 |𝒓𝑘 , 𝜃). (25)

Again using conditional probability, the diffusive term of Equation 22, 𝑃(𝒓 |𝜃), may be expanded as

𝑃(𝒓 |𝜃) =
𝑃(𝒓𝐾 , 𝒓𝐾−1, . . . , 𝒓1, 𝜃)

𝑃(𝜃)

=
𝑃(𝒓𝐾 |𝒓𝐾−1, . . . , 𝒓1, 𝜃)𝑃(𝒓𝐾−1 |𝒓𝐾−2, . . . , 𝒓1, 𝜃) . . . 𝑃(𝒓2 |𝒓1, 𝜃)𝑃(𝒓1 |𝜃)𝑃(𝜃)

𝑃(𝜃)
= 𝑃(𝒓𝐾 |𝒓𝐾−1, . . . , 𝒓1, 𝜃)𝑃(𝒓𝐾−1 |𝒓𝐾−2, . . . , 𝒓1, 𝜃) . . . 𝑃(𝒓2 |𝒓1, 𝜃)𝑃(𝒓1 |𝜃).

(26)

As before, we now assume that the diffusive process is Markovian, only dependent on the previous molecular positions and
not the full positional history of the molecules

𝑃(𝒓𝑘+1 |𝒓𝑘 , . . . , 𝒓1, 𝜃) = 𝑃(𝒓𝑘+1 |𝒓𝑘 , 𝜃). (27)
Hence, 𝑃(𝒓 |𝜃) is the product

𝑃(𝒓 |𝜃) =
(
𝐾−1∏
𝑘=1

𝑃(𝒓𝑘+1 |𝒓𝑘 , 𝜃)
)
𝑃(𝒓1 |𝜃). (28)

In summary, we have now defined the likelihood in Equation 22 as

𝑃(𝚫𝒕 |𝜃) =
∫
𝒓

(
𝐾−1∏
𝑘=1

𝑃(Δ𝑡𝑘 |𝒓𝑘 , 𝜃)𝑃(𝒓𝑘+1 |𝒓𝑘 , 𝜃)
)
𝑃(𝒓1 |𝜃)𝑑𝒓. (29)

We define the integration measure 𝑑𝒓 as simply a product over times, 𝐾 , particles, 𝑁 , and dimensions, 𝑥, 𝑦, 𝑧

𝑑𝒓 =
𝑁∏
𝑛=1

𝐾∏
𝑘=1

𝑑𝑥𝑛,𝑘𝑑𝑦𝑛,𝑘𝑑𝑧𝑛,𝑘 . (30)

Therefore, the likelihood from Equation 29 becomes

𝑃(𝚫𝒕 |𝜃) =
∫
𝒓

(
𝐾−1∏
𝑘=1

𝑃(Δ𝑡𝑘 |𝒓𝑘 , 𝜃)𝑃(𝒓𝑘+1 |𝒓𝑘 , 𝜃)
)
𝑃(𝒓1 |𝜃)

(
𝑁∏
𝑛=1

𝐾∏
𝑘=1

𝑑𝑥𝑛,𝑘𝑑𝑦𝑛,𝑘𝑑𝑧𝑛,𝑘

)
, (31)

which represents the furthest we can go without specifying the optics of the system or the model of diffusion. Specifying these
requires us to define the distributions for 𝑃(Δ𝑡𝑘 |𝒓𝑘 , 𝜃) and 𝑃(𝒓𝑘+1 |𝒓𝑘 , 𝜃).

3D normal diffusion in a 3D Gaussian Point Spread Function with multiple particles
A straightforward model for 3D molecular movement within a solution is that of molecules diffusing according to normal
diffusion. Additionally, the optics of many confocal microscopes are well described by a 3D Gaussian point spread function.
Here, photon emissions from the fluorescent molecules are distributed by an exponential distribution 𝑃(Δ𝑡𝑘 |𝒓𝑘 , 𝜃) conditioned
on molecular positions and emission parameters

𝑃(Δ𝑡𝑘 |𝒓𝑘 , 𝜃) = Exponential(𝜇𝑘) (32)
such that with the same 3D Gaussian PSF (3G) defined in Equation 16 we get

𝜇𝑘 = 𝜇𝑚
𝑁∑
𝑛=1

PSF3G (𝒓𝑘). (33)

Therefore,

𝑃(Δ𝑡𝑘 |𝒓𝑘 , 𝜃) = 𝜇𝑘 exp (−𝜇𝑘Δ𝑡𝑘)

= 𝜇𝑚
𝑁∑
𝑛=1

exp

[
−2

(
𝑥2
𝑛,𝑘 + 𝑦2

𝑛,𝑘

𝑤2
𝑥𝑦

+
𝑧2𝑛,𝑘

𝑤2
𝑧

))
− Δ𝑡𝑘𝜇𝑚

𝑁∑
𝑛′=1

exp

(
−2

(
𝑥2
𝑛′,𝑘 + 𝑦2

𝑛′,𝑘

𝑤2
𝑥𝑦

+
𝑧2𝑛′,𝑘

𝑤2
𝑧

)]
(34)
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Laplace approximation for 𝑃(𝚫𝒕 |𝜃)

Given the double exponential terms it is clear we cannot calculate 𝑃(Δ𝑡𝑘 |𝒓𝑘 , 𝜃) in closed form as the integral over 𝒓 is
non-trivial. Fortunately, as the form of Equation 34 is highly peaked and symmetrical we may approximate it using Laplace’s
method as a Gaussian function centered on the maxima at 𝒓 = 0. This approximation is valid when 𝜇𝑚Δ𝑡𝑘 < 1 over all 𝑘 , and
asymptotically approaches the true value of 𝑃(Δ𝑡𝑘 |𝒓𝑘 , 𝜃) as 𝜇𝑚Δ𝑡𝑘 → 0. We apply this method to each term in the sum

𝑃(Δ𝑡𝑘 |𝒓𝑘 , 𝜃) = 𝜇𝑚
𝑁∑
𝑛=1

𝑒ℎ𝑛 (𝒓𝑘 ) . (35)

Key to Laplace’s method is the construction of a Gaussian function via a Taylor expansion to second order of the exponent
ℎ𝑛 (𝒓) around the maxima. In the case of 𝜇𝑚Δ𝑡𝑘 < 1 the maxima occurs at the centre of the confocal volume 𝒓0 = 0. To simplify
notation in further calculations let’s define 𝑀𝑘 = 𝜇𝑚Δ𝑡𝑘 , 𝑎𝑑 = 2

𝑤2
𝑑

for dimension 𝑑 = 𝑥𝑦 or 𝑑 = 𝑧, and 𝐶𝑑,𝑘 = 𝑎𝑑 (1 − 𝑀𝑘).
Omitting the time interval 𝑘 subscript for now gives

ℎ𝑛 (𝒓) = −𝑎𝑥𝑦𝑥2
𝑛 − 𝑎𝑥𝑦𝑦2

𝑛 − 𝑎𝑧𝑧2𝑛 − 𝑀
𝑁∑
𝑛′=1

exp
(
−𝑎𝑥𝑦𝑥2

𝑛′ − 𝑎𝑥𝑦𝑦2
𝑛′ − 𝑎𝑧𝑧2𝑛′

)
(36)

The Taylor expansion for ℎ𝑛 is

ℎ𝑛 ( 𝒑) ≈ ℎ𝑛 ( 𝒑0) +
3𝑁∑
𝑗=1

𝜕ℎ𝑛 ( 𝒑0)
𝜕𝑝 𝑗

(𝑝 𝑗 − 𝑝 𝑗,0) +
1
2

3𝑁∑
𝑖=1

3𝑁∑
𝑗=1

𝜕2ℎ𝑛 ( 𝒑0)
𝜕𝑝𝑖𝜕𝑝 𝑗

(𝑝𝑖 − 𝑝𝑖,0)(𝑝 𝑗 − 𝑝 𝑗,0) + O(( 𝒑 − 𝒑0)3), (37)

where for ease we have redefined the vector 𝒓 with 𝑁 components into a flat vector 𝒑 with 3𝑁 element. The first 𝑁 indices are all
the 𝑥’s, 𝑁 +1 to 2𝑁 are the 𝑦’s, and finally 2𝑁 +1 to 3𝑁 are the 𝑧’s such that 𝒑 = (𝑥1, 𝑥2, . . . , 𝑥𝑁 , 𝑦1, 𝑦2, . . . , 𝑦𝑁 , 𝑧1, 𝑧2, . . . , 𝑧𝑁 ).
As the function we are approximating is symmetrical and is stationary at the maxima 𝒑0 we get ℎ𝑛 (𝒑0)

𝜕𝑝 𝑗
= 0. The non-zero

terms are also readily computed, with ℎ𝑛 ( 𝒑0) = −𝑀𝑁 and

𝜕2ℎ2
𝑛 ( 𝒑0)

𝜕𝑝𝑖𝜕𝑝 𝑗
=


−2𝑎𝑑 (1 − 𝑀) 𝑖 = 𝑗 = 𝑛

2𝑎𝑑𝑀 (𝑖 = 𝑗) ≠ 𝑛
0 otherwise

(38)

where 𝑑 = 𝑥𝑦 if 𝑛 ≤ 2𝑁 otherwise 𝑑 = 𝑧. As 𝑀 < 1 this ensures that the curvature of the function is negative at the maxima.
Putting all these terms together gives

ℎ𝑛 ( 𝒑) ≈ −𝑀𝑁 − 𝑎𝑥𝑦𝑥2
𝑛 − 𝑎𝑥𝑦𝑦2

𝑛 − 𝑎𝑧𝑧2𝑛 + 𝑀
(
𝑁∑
𝑛′=1

𝑎𝑥𝑦𝑥
2
𝑛′ + 𝑎𝑥𝑦𝑦2

𝑛′ + 𝑎𝑧𝑧2𝑛′
)

, (39)

All together this gives

𝑃(Δ𝑡𝑘 |𝒓𝑘 , 𝜃) ≈ 𝜇𝑚

𝑁∑
𝑛=1

exp

(
−𝑀𝑁 − 𝑎𝑥𝑦𝑥2

𝑛 − 𝑎𝑥𝑦𝑦2
𝑛 − 𝑎𝑧𝑧2𝑛 + 𝑀

(
𝑁∑
𝑛′=1

𝑎𝑥𝑦𝑥
2
𝑛′ + 𝑎𝑥𝑦𝑦2

𝑛′ + 𝑎𝑧𝑧2𝑛′
))

. (40)

This can be factored using the original definition of PSF3G (𝒓𝑛,𝑘) as

𝑃(Δ𝑡𝑘 |𝒓𝑘 , 𝜃) ≈ 𝜇𝑚

(
𝑁∑
𝑛=1

PSF3G (𝒓𝑛,𝑘)
) (
𝑒𝑁

𝑁∏
𝑛=1

PSF3G (𝒓𝑛,𝑘)
)−𝜇𝑚Δ𝑡𝑘

. (41)

Diffusion and molecular positions distributions

The term 𝑃(𝒓𝑘 |𝒓𝑘−1, 𝜃) describes how positions update in 3 dimensions over each time interval. In this study we focus on
normal 3D diffusion with diffusion coefficient 𝐷. Particle positions at a later time 𝑘 + 1 are a multivariate normal distribution
with means conditioned on positions at the previous time 𝑘 for 𝐾 > 1

13
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𝑃(𝒓𝑘+1 |𝒓𝑘 , 𝜃) =
1√

8𝜋𝜎3
𝑘

exp
(
− 1
𝜎𝑘

[
(𝑥𝑛,𝑘+1 − 𝑥𝑛,𝑘)2 + (𝑦𝑛,𝑘+1 − 𝑦𝑛,𝑘)2 + (𝑧𝑛,𝑘+1 − 𝑧𝑛,𝑘)2] ) (42)

for 𝜎𝑘 = 2𝐷Δ𝑡𝑘 . However, this only describes how the particle moves and not its initial spatial distribution. Therefore, we will
assume that particles are uniformly distributed on a line of length 𝐿. Particle positions are initially Uniformly distributed in
each orthogonal dimension at time 𝑘 = 1

𝑃(𝒓1 |𝜃) =
1

𝐿2
𝑥𝑦𝐿𝑧

. (43)

Thus, the full set of positions over time is

𝑃(𝒓 |𝜃) =
(
𝐾−1∏
𝑘=1

𝑃(𝒓𝑘+1 |𝒓𝑘 , 𝜃)
)
𝑃(𝒓1 |𝜃)

=
1

𝐿2
𝑥𝑦𝐿𝑧

𝐾−1∏
𝑘=1

𝑁∏
𝑛=1

1
(2𝜋𝜎𝑘)

3
2

exp
(
− 1
𝜎𝑘

[
(𝑥𝑛,𝑘+1 − 𝑥𝑛,𝑘)2 + (𝑦𝑛,𝑘+1 − 𝑦𝑛,𝑘)2 + (𝑧𝑛,𝑘+1 − 𝑧𝑛,𝑘)2] )

=
1
𝑉box

𝐾−1∏
𝑘=1

1
(2𝜋𝜎𝑘)

3𝑁
2

𝑁∏
𝑛=1

exp
(
− 1
𝜎𝑘

[
(𝑥𝑛,𝑘+1 − 𝑥𝑛,𝑘)2 + (𝑦𝑛,𝑘+1 − 𝑦𝑛,𝑘)2 + (𝑧𝑛,𝑘+1 − 𝑧𝑛,𝑘)2] )

(44)

Calculating the integral

We now have all the necessary components to complete the computation of the likelihood. Explicitly the likelihood integral is

𝑃(𝚫𝒕 |𝜃) = 𝜇𝐾−1
𝑚

𝑉box

∫
𝒓

𝐾−1∏
𝑘=1

1
(2𝜋𝜎𝑘)

3𝑁
2

(
𝑁∑
𝑛=1

exp
[
− 𝜇𝑚𝑁Δ𝑡𝑘 − 𝑎𝑥𝑦𝑥2

𝑛,𝑘+1 − 𝑎𝑥𝑦𝑦2
𝑛,𝑘+1 − 𝑎𝑧𝑧2𝑛,𝑘+1

+ 𝑀
( 𝑁∑
𝑛′=1

𝑎𝑥𝑦𝑥
2
𝑛′,𝑘+1 + 𝑎𝑥𝑦𝑦2

𝑛′,𝑘+1 + 𝑎𝑧𝑧2𝑛′,𝑘+1

)]
× exp

[
− 1
𝜎𝑘

[
(𝑥𝑛,𝑘+1 − 𝑥𝑛,𝑘)2 + (𝑦𝑛,𝑘+1 − 𝑦𝑛,𝑘)2 + (𝑧𝑛,𝑘+1 − 𝑧𝑛,𝑘)2] ]

𝑑𝒓. (45)

Some terms can be taken outside the integral and the directions, 𝑥, 𝑦, and 𝑧 can be separated out as

𝑃(𝚫𝒕 |𝜃) = 𝜇𝐾−1
𝑚

𝑉box

(
𝐾−1∏
𝑘=1

𝑒−𝜇𝑚𝑁Δ𝑡𝑘

(2𝜋𝜎𝑘)
3𝑁
2

) ∫
𝑥

𝐾−1∏
𝑘=1

(
𝑁∑
𝑛=1

exp

(
−𝑎𝑥𝑦𝑥2

𝑛,𝑘 + 𝜇𝑚Δ𝑡𝑘
𝑁∑
𝑛′=1

𝑎𝑥𝑦𝑥
2
𝑛′,𝑘

)
exp

(
− (𝑥𝑛,𝑘+1 − 𝑥𝑛,𝑘)2

𝜎𝑘

))
𝑑𝑥︸                                                                                                    ︷︷                                                                                                    ︸

𝑃
(𝑥)
𝑁 ,𝐾

×
∫
𝑦

𝐾−1∏
𝑘=1

(
𝑁∑
𝑛=1

exp

(
−𝑎𝑥𝑦𝑦2

𝑛,𝑘 + 𝜇𝑚Δ𝑡𝑘
𝑁∑
𝑛′=1

𝑎𝑥𝑦𝑦
2
𝑛′,𝑘

)
exp

(
− (𝑦𝑛,𝑘+1 − 𝑦𝑛,𝑘)2

𝜎𝑘

))
𝑑𝑦︸                                                                                                     ︷︷                                                                                                     ︸

𝑃
(𝑦)
𝑁 ,𝐾

×
∫
𝑧

𝐾−1∏
𝑘=1

(
𝑁∑
𝑛=1

exp

(
−𝑎𝑧𝑧2𝑛,𝑘 + 𝜇𝑚Δ𝑡𝑘

𝑁∑
𝑛′=1

𝑎𝑧𝑧
2
𝑛′,𝑘

)
exp

(
− (𝑧𝑛,𝑘+1 − 𝑧𝑛,𝑘)2

𝜎𝑘

))
𝑑𝑧︸                                                                                                ︷︷                                                                                                ︸

𝑃
(𝑧)
𝑁 ,𝐾

. (46)

Here each of the integrals, 𝑃 (𝑥)
𝑁 ,𝐾 , 𝑃 (𝑦)

𝑁 ,𝐾 , and, 𝑃 (𝑧)
𝑁 ,𝐾 over 𝑥, 𝑦, and 𝑧 respectively are independent of one another. Thus, we can

factor the integrals

14
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𝑃(𝚫𝒕 |𝜃) = 𝜇𝐾−1
𝑚

𝑉box

(
𝐾−1∏
𝑘=1

𝑒−𝜇𝑚𝑁Δ𝑡𝑘

(2𝜋𝜎𝑘)
3𝑁
2

)
𝑃 (𝑥)
𝑁 ,𝐾𝑃

(𝑦)
𝑁 ,𝐾𝑃

(𝑧)
𝑁 ,𝐾 . (47)

To calculate the integrals we initially focus on 𝑃 (𝑥)
𝑁 ,𝐾 . Using the definitions 𝐶𝑑,𝑘 = 𝑎𝑑 (1 − 𝑀𝑘) where 𝑑 is either 𝑥𝑦 or 𝑧, and

𝑀𝑘 = 𝜇𝑚Δ𝑡𝑘 we can rearrange 𝑃 (𝑥)
𝑁 ,𝐾 as

𝑃 (𝑥)
𝑁 ,𝐾 =

∫
𝑥

𝐾−1∏
𝑘=1

(
𝑁∑
𝑛=1

exp

(
−𝐶𝑥𝑦,𝑘𝑥

2
𝑛,𝑘 + 𝑎𝑥𝑦𝑀𝑘

𝑁∑
𝑛′≠𝑛=1

𝑥2
𝑛′,𝑘

) (
𝑁∏
𝑛′=1

exp

(
−
Δ𝑥2

𝑛′,𝑘

𝜎𝑘

)))
𝑑𝑥

=
∫
𝑥
−1

𝐾−1∏
𝑘=2

. . . 𝑑𝑥
−1

∫
𝑥1

𝑁∑
𝑛=1

exp

(
−𝐶𝑥𝑦,1𝑥

2
𝑛,1 + 𝑎𝑥𝑦𝑀1

𝑁∑
𝑛′≠𝑛=1

𝑥2
𝑛′,1

) (
𝑁∏
𝑛′=1

exp

(
−
Δ𝑥2

𝑛′,1

𝜎1

))
𝑑𝑥1

=
∫
𝑥
−1

𝐾−1∏
𝑘=2

. . . 𝑑𝑥
−1

𝑁∑
𝑛=1

∫
𝑥1

exp

(
−𝐶𝑥𝑦,1𝑥

2
𝑛,1 + 𝑎𝑥𝑦𝑀1

𝑁∑
𝑛′≠𝑛=1

𝑥2
𝑛′,1

) (
𝑁∏
𝑛′=1

exp

(
−
Δ𝑥2

𝑛′,1

𝜎1

))
𝑑𝑥1︸                                                                                    ︷︷                                                                                    ︸

𝐼𝑛,1

.

(48)

Succinctly, this may be written as

𝑃 (𝑥)
𝑁 ,𝐾 =

𝐾−1∏
𝑘=1

(
𝑁∑
𝑛=1

𝐼𝑛,𝑘

)
. (49)

Practically this means that each 𝑃 (𝑥)
𝑁 ,𝐾 is a sum over all possible combinations of integrals over molecules 𝑛 at time steps 𝑘 .

This is such that 𝑁 chains of integrals follow the same particle over all time steps, whereas others swap over from as little as
one time to 𝑁 times. The full set of 𝑁𝐾−1 sets of integrals for 𝑃 (𝑥)

𝑁 ,𝐾 can be written as

𝑃 (𝑥)
𝑁 ,𝐾 = 𝐼1,𝐾 𝐼1,𝐾−1 . . . 𝐼1,1 + 𝐼2,𝐾 𝐼2,𝐾−1 . . . 𝐼2,1 + · · · + 𝐼𝑁 ,𝐾 𝐼𝑁 ,𝐾−1 . . . 𝐼𝑁 ,1

+𝐼1,𝐾 𝐼2,𝐾−1 . . . 𝐼1,1 + 𝐼2,𝐾 𝐼1,𝐾−1 . . . 𝐼2,1 + · · · + 𝐼𝑁 ,𝐾 𝐼1,𝐾−1 . . . 𝐼𝑁 ,1

...
+𝐼1,𝐾 𝐼2,𝐾−1 . . . 𝐼𝑁 ,1 + 𝐼2,𝐾 𝐼1,𝐾−1 . . . 𝐼𝑁 ,1 + · · · + 𝐼𝑁 ,𝐾 𝐼𝑁−1,𝐾−1 . . . 𝐼1,1

...
+𝐼1,𝐾 𝐼1,𝐾−1 . . . 𝐼𝑁 ,1 + 𝐼2,𝐾 𝐼2,𝐾−1 . . . 𝐼𝑁 ,1 + · · · + 𝐼𝑁−1,𝐾 𝐼𝑁−1,𝐾−1 . . . 𝐼𝑁 ,1

(50)

For now, let’s consider the integral for the particle 𝑛 at the first time step 𝑘 = 1

𝐼𝑛,1 =
∫
𝑥1

exp

(
−𝐶𝑥𝑦,1𝑥

2
𝑛,1 + 𝑎𝑥𝑦𝑀1

𝑁∑
𝑛′≠𝑛=1

𝑥2
𝑛′,1

) (
𝑁∏
𝑛′=1

exp

(
−
Δ𝑥2

𝑛′,1

𝜎1

))
𝑑𝑥1

=
∫
𝑥1

exp
(
−𝐶𝑥𝑦,1𝑥

2
𝑛,1

) (
𝑁∏

𝑛′≠𝑛=1
exp

(
𝑎𝑥𝑦𝑀1𝑥

2
𝑛′,1

)) (
𝑁∏
𝑛′=1

exp

(
−
Δ𝑥2

𝑛′,1

𝜎1

))
𝑑𝑥1

=

(
𝑁∏

𝑛′≠𝑛=1

∫ ∞

−∞
exp

(
−
Δ𝑥2

𝑛′,1

𝜎𝑘
+ 𝑎𝑥𝑦𝑀1𝑥

2
𝑛′,1

)
𝑑𝑥𝑛′,1

) ∫ ∞

−∞
exp

(
−𝐶𝑥𝑦,1𝑥

2
𝑛,1 −

Δ𝑥2
𝑛,1

𝜎1

)
𝑑𝑥𝑛,1

(51)

Where we have taken the domain of 𝑥1 for all particles to be over all space from −∞ to ∞. This approximation holds well in
our model as the volume of the container, i.e. a cell, 𝑉box is much larger than the confocal volume, 𝑉eff, within which we are
measuring. Let’s expand Δ𝑥2

𝑛,1 = 𝑥2
𝑛,2 − 2𝑥𝑛,2𝑥𝑛,1 + 𝑥2

𝑛,1 as well as define 𝛽𝑥𝑦,1 = 1
𝜎1

+ 𝐶𝑥𝑦,1 and 𝛽′𝑥𝑦,1 = 1
𝜎1

− 𝑎𝑥𝑦𝑀1 to get

𝐼𝑛,1 =

(
𝑁∏

𝑛′≠𝑛=1

∫ ∞

−∞
exp

(
−𝛽′𝑥𝑦,1𝑥

2
𝑛′,1 +

2𝑥𝑛′,2
𝜎1

𝑥𝑛′,1 −
𝑥2
𝑛′,2

𝜎1

)
𝑑𝑥𝑛′,1

) ∫ ∞

−∞
exp

(
−𝛽𝑥𝑦,1𝑥

2
𝑛,1 −

2𝑥𝑛,2

𝜎1
𝑥𝑛,1 −

𝑥2
𝑛,2

𝜎1

)
𝑑𝑥𝑛,1. (52)

This can then finally be integrated using the standard Gaussian integral
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∫ ∞

−∞
𝑒−𝑎𝑥

2+𝑏𝑥+𝑐𝑑𝑥 =

√
𝜋

𝑎
𝑒
𝑏2
4𝑎 𝑒𝑐, (53)

to integrate 𝐼𝑛,1 as

𝐼𝑛,1 = ©«
𝑁∏

𝑛′≠𝑛=1

√
𝜋

𝛽′𝑥𝑦,1
exp

(
−

(
1
𝜎1

− 1
𝜎2

1 𝛽
′
𝑥𝑦,1

)
𝑥2
𝑛′,2

)ª®¬
√

𝜋

𝛽𝑥𝑦,1
exp

(
−

(
1
𝜎1

− 1
𝜎2

1 𝛽𝑥𝑦,1

)
𝑥2
𝑛,2

)

=
√

𝜋

𝛽𝑥𝑦,1

(
𝜋

𝛽′𝑥𝑦,1

) 𝑁−1
2

︸                    ︷︷                    ︸
Constants

(
𝑁∏

𝑛′≠𝑛=1
exp

(
−

(
1
𝜎1

− 1
𝜎2

1 𝛽
′
𝑥𝑦,1

)
𝑥2
𝑛′,2

))
exp

(
−

(
1
𝜎1

− 1
𝜎2

1 𝛽𝑥𝑦,1

)
𝑥2
𝑛,2

)
︸                                                                                       ︷︷                                                                                       ︸

Carry forward terms

(54)

This demonstrates that we can integrate the first part of the full likelihood integral. Despite the complicated nature of this
intermediate result it has a relatively simple interpretation that for every time step, 𝑘 , we pick up constants and carry forward
exponents into the next set of 𝑘 +1 integrals. The 𝛽𝑥𝑦,1 and 𝛽′𝑥𝑦,1 terms are more complex as they encompass the constants 𝜇𝑚,
𝑎𝑥𝑦 , and 𝑎𝑧 as well as the data point Δ𝑡1. To complete the full likelihood integral means integrating over all of the positions for
all time steps. Further complication arises in the full set of integrals as mixing of particle identities between time steps gives
different results. When the particle identity is the same we get

𝐼𝑛,2𝐼𝑛,1 =

(
𝑁∏

𝑛′≠𝑛=1

∫ ∞

−∞
exp

(
−𝛽′𝑥𝑦,2𝑥

2
𝑛′,2 +

2𝑥𝑛′,3
𝜎2

𝑥𝑛′,2 −
𝑥2
𝑛′,3

𝜎2

)
𝑑𝑥𝑛′,2

) ∫ ∞

−∞
exp

(
−𝛽𝑥𝑦,2𝑥

2
𝑛,2 −

2𝑥𝑛,3

𝜎2
𝑥𝑛,2 −

𝑥2
𝑛,3

𝜎2

)
𝑑𝑥𝑛,2

= ©«
𝑁∏

𝑛′≠𝑛=1

√
𝜋

𝛽′𝑥𝑦,2
exp

(
−

(
1
𝜎2

− 1
𝜎2

2 𝛽
′
𝑥𝑦,2

)
𝑥2
𝑛′,3

)ª®¬
√

𝜋
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𝑛,3

)
,

(55)

where the 𝛽 terms that arise as the results of these integrals are defined as

𝛽𝑥𝑦,1 = 𝐶𝑥𝑦,1 +
1
𝜎1

,

𝛽𝑥𝑦,𝑘 = 𝐶𝑥𝑦,𝑘 +
1
𝜎𝑘

+ 1
𝜎𝑘−1

− 1
𝜎2
𝑘−1𝛽𝑥𝑦,𝑘−1

; 1 < 𝑘 < 𝐾

𝛽𝑥𝑦,𝐾 =
1

𝜎𝐾−1
− 1
𝜎2
𝐾−1𝛽𝑥𝑦,𝐾−1

.

(56)

If the particle identity changes, i.e. 𝑛 ≠ 𝑚, then the results of the integrals, 𝛽, are modified. This can be seen when calculating
the integral

𝐼𝑚,2𝐼𝑛,1 =

(
𝑁∏

𝑛′≠𝑛≠𝑚=1

∫ ∞

−∞
exp
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−𝛽 (2)𝑥𝑦,2𝑥

2
𝑛′,2 +

2𝑥𝑛′,3
𝜎2

𝑥𝑛′,2 −
𝑥2
𝑛′,3

𝜎2

)
𝑑𝑥𝑛′,2

)
×

∫ ∞
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exp
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−𝛽 (1)𝑥𝑦,2𝑥

2
𝑚,2 −

2𝑥𝑚,3

𝜎2
𝑥𝑚,2 −

𝑥2
𝑚,3

𝜎2

)
𝑑𝑥𝑚,2

∫ ∞

−∞
exp

(
−𝛽𝑥𝑦,2𝑥

2
𝑛,2 −

2𝑥𝑛,3

𝜎2
𝑥𝑛,2 −

𝑥2
𝑛,3

𝜎2

)
𝑑𝑥𝑛,2 (57)

which once integrated becomes
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√
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(58)

When integrals from one time step to another do not match we pick up primed terms in 𝛽, such that the number of changes
in particle identity, 𝑝, are tracked by the superscript (𝑝) , such that 𝛽′ = 𝛽 (1) , 𝛽′′ = 𝛽 (2) , etc. Additionally, even when these
integrals are calculated in different orders we pick up the same numbers of primed and un-primed 𝛽 terms. The primed terms
are defined as

𝛽 (1)𝑥𝑦,1 = 𝐶𝑥𝑦,1 +
1
𝜎1

,

𝛽 (𝑝)𝑥𝑦,𝑘 = 𝐶𝑥𝑦,𝑘 +
1
𝜎𝑘

+ 1
𝜎𝑘−1

− 1
𝜎2
𝑘−1𝛽

(𝑝−1)
𝑥𝑦,𝑘−1

; 1 < 𝑘 < 𝐾 ,

𝛽 (𝑝)𝑥𝑦,𝐾 =
1

𝜎𝐾−1
− 1
𝜎2
𝐾−1𝛽

(𝑝−1)
𝑥𝑦,𝐾−1

,

(59)

with the 𝛽𝑧,𝑘 and 𝛽 (𝑝)𝑧,𝑘 terms arising from the integrals in the 𝑧 direction defined similarly. It can be shown that by using
binomial expansions for the 1

𝜎𝑘−1𝛽𝑥𝑦,𝑘−1
terms that the 𝛽 terms at each time step become

𝛽 (𝑝)𝑥𝑦,𝑘 =
1
𝜎𝑘

(
1 + 𝑎𝑥𝑦𝜎𝑘

(
(𝑘 − 𝑝) −

𝑘∑
𝑖=1

𝑀𝑖

))
. (60)

Finally, upon multiplication, summation, and removal of terms higher than second order in Δ𝑡𝑘 , i.e. (Δ𝑡𝑘)3 ≈ 0, we get

𝑃 (𝑥)
𝑁 ,𝐾 = 𝛽𝑥𝑦 (61)

where

𝛽𝑑 = 1 − 1
2
𝑎𝑥𝑦

(
𝐾−1∑
𝑘′=1

𝑘 ′𝜎𝑘′

)
+ 1

2
𝑎𝑑𝑁

(
𝐾−1∑
𝑘′=1

𝜎𝑘′𝑆𝑘′

)
− 1

2
𝑎2
𝑑
©«
𝐾−1∑
𝑖, 𝑗=1

𝜎𝑖𝜎𝑗
ª®¬ (62)

for 𝑑 = 𝑥𝑦, 𝑧, and 𝑆𝑘 =
∑𝑘
𝑘′=1 𝜇𝑘′Δ𝑡𝑘′ . Therefore, the final result for the likelihood is

𝑃(𝚫𝒕 |𝜃) ≈
𝛽2
𝑥𝑦𝛽𝑧

𝑉eff

(
𝐾−1∏
𝑘=1

𝜇𝑚𝑁
3𝑒−𝜇𝑚𝑁Δ𝑡𝑘

)
(63)

Maximum approximate likelihood estimation
Maximum likelihood estimation procedure

The estimators, 𝜃 (𝑖)MAL, are defined such that they maximise the approximate log-likelihood. Here we calculate this by finding
the value of 𝜃 (𝑖)MAL that defines where the derivative with respect to each estimator is zero, i.e. 𝜕𝜃𝑖 ln (𝑃(𝚫𝒕 |𝜃)) = 0. For ease
we work with the log of the likelihood
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ln (𝑃(𝚫𝒕 |𝜃))) = ln (𝜇𝐾−1
𝑚 ) − ln (𝑉box) − 𝜇𝑚𝑁

(
𝐾−1∑
𝑘=1

Δ𝑡𝑘

)
+ ln
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𝑁 ,𝐾

)
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𝑁 ,𝐾

)
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𝑃 (𝑧)
𝑁 ,𝐾

)
= ln (𝜇𝐾−1

𝑚 ) − ln (𝑉box) − 𝜇𝑚𝑁
(
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Δ𝑡𝑘
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+ ln

(
𝑁 𝑘𝛽𝑥𝑦
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+ ln

(
𝑁 𝑘𝛽𝑥𝑦

)
ln

(
𝑁 𝑘𝛽𝑧

)
= ln (𝜇𝐾−1

𝑚 ) − ln (𝑉box) − 𝜇𝑚𝑁
(
𝐾−1∑
𝑘=1

Δ𝑡𝑘

)
+ 3(𝐾 − 1) ln (𝑁) + 2 ln (𝛽𝑥𝑦) + ln (𝛽𝑧)

(64)

𝜕𝑁 ln (𝛽𝑥𝑦) =
𝑎𝑥𝑦

(∑𝐾−1
𝑘′=1 𝜎𝑘′𝑆𝑘′

)
2𝛽𝑥𝑦

(65)

Concentration

The estimator for the Molar concentration �̂�MAL is found from the estimator for the number of molecules, �̂�MAL, within
the effective confocal volume 𝑉eff using the maximum approximate likelihood estimation procedure outlined previously.
Specifically, partial differentiation of Equation 64 gives

0 = 𝜕𝑁 ln (𝑃(𝚫𝒕 |𝜃))

= −𝜇𝑚

(
𝐾−1∑
𝑘=1

Δ𝑡𝑘

)
+ 3(𝐾 − 1)

𝑁
+
𝑎𝑥𝑦

(∑𝐾−1
𝑘′=1 𝜎𝑘′𝑆𝑘′

)
𝛽𝑥𝑦

+
𝑎𝑥𝑦

(∑𝐾−1
𝑘′=1 𝜎𝑘′𝑆𝑘′

)
2𝛽𝑧

≈ −𝜇𝑚

(
𝐾−1∑
𝑘=1

Δ𝑡𝑘

)
+ 3(𝐾 − 1)

𝑁
.

(66)

where the last two terms have been neglected as 𝛽𝑥𝑦 and 𝛽𝑧 are approximately 1 and the numerators are small for typical
values of 𝑎𝑥𝑦 , 𝑎𝑧 , and 𝜎. Thus, the estimator for the molecular number within the confocal volume becomes

𝑁 =
3(𝐾 − 1)

𝜇𝑚

(∑𝐾−1
𝑘=1 Δ𝑡𝑘

)
=

3
𝜇𝑚⟨𝚫t⟩ ,

(67)

which may be converted into concentration via the effective volume 𝑉eff, volume correction factor 𝜀 and Avrogadro’s number
as

�̂�MAL =
�̂�MAL

𝑁𝐴𝑉eff
=

𝜀

𝑁𝐴𝑉eff𝜇m⟨𝚫𝒕⟩
. (68)

The factor, 𝜀, corrects the effective volume 𝑉eff and must be determined for each experiment.

Diffusion

From simulations of synthetic FCS data, the estimator for the diffusion coefficient is close to

�̂�MAL =
𝛼(𝐾 − 1)

4(𝑤−2
𝑥𝑦 + 2𝑤−2

𝑧 )𝜇𝑚𝑁
∑𝐾−1
𝑖=0 Cov(𝚫𝒕𝑘 ,𝚫𝒕𝑘+𝑖)

+ 𝜂, (69)

where 𝛼 and 𝜂 are constants to be determined during calibration. When applying the same maximum likelihood procedure as
before an estimator without these correction constants cannot currently be found.
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4.3 Limitations of current FCS analyses

4.3.1 Low data density and high uncertainty

Fluorescence correlation spectroscopy (FCS) is used to determine the absolute number of fluorescent 
molecules in solution or cells by exploiting the information in the fluctuations of the number of 
photons observed in a very small confocal volume of ∼ 1 fl, see Figure 4.1A. The intensity at time 𝑡, 
𝐼(𝑡), is found from binning these collected photons, which can then be auto-correlated over successive 
lag times (𝜏) via the equation

𝐺(𝜏) = ⟨𝐼(𝑡)𝐼(𝑡 + 𝜏)⟩
⟨𝐼(𝑡)⟩

− 1. (4.1)

Figure 4.1: (A) Simulated photon counts binned into equal bins of 1 ms over a total of 5 s for a total of 1000 particles 
diffusing at 0.1µm2s−1. (B) Correlation curve generated from the count data in (A). (C) Residuals for the fit to data 
in (B) demonstrates poor fitting at short (𝜏 < 10−4 s) and long (𝜏 > 10−1 s) lag times.

This correlation is then fit to a model function to infer diffusion, concentration, and in some cases 
photo-kinetic parameters. Figure 4.1B shows a representative correlation curve and it’s fit via a 
normal diffusion model

𝐺(𝜏) = 1
⟨𝑁⟩

(1 + 𝜏
𝜏𝐷

)
−1

(1 + (
𝑤𝑥𝑦

𝑤𝑧
)

2 𝜏
𝜏𝐷

)
− 1

2

, (4.2)

for an average of 𝑁 molecules, diffusion rate 𝐷, and confocal radii 𝑤𝑥𝑦 and 𝑤𝑧. Direct convolution of 
the full set of correlation values in Equation 4.1 is a computationally expensive task of order 𝒪(𝑛2) for 
𝑛 photons, and thus grows rapidly for increasing numbers photons. In practical applications of FCS, 
multi-tau algorithms are used to reduce down the number of calculations by binning the intensity 
data with progressively larger bin-widths following logarithmic density. The lag times start at the 
smallest possible, 𝜏0 ∼ 1µs, growing as powers of 2 to preserve detail at low lag times and improve 
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computational speed at longer lag times. Hence, multi-tau lowers memory usage and is much quicker, 
with a computational complexity of 𝒪(𝑛 log (𝑛)), producing around a few hundred correlation points 
from the roughly 105 − 106 photons collected in a typical FCS experiment (Schätzel et al., 1988). 
As FCS analysis infers parameters by fitting models to correlation points, the data density available 
for fitting is reduced by at least 3 orders of magnitude when using multi-tau algorithms. Thus, the 
reliability and accuracy of inferences is reduced as can be seen in the far left and right of the fit in 
Figure 4.1. These fitting issues manifest themselves in a number of ways, with the most pernicious 
being rogue data points at short and long lag times drastically altering the fit. Introducing arbitrary 
cut offs at both ends is not a viable way of rectifying this issue as any aberrations in remaining data 
points would make a larger contribution during fitting. Additionally, the necessary use of non-linear 
least squares regression to fit the data underestimates uncertainty on inferred parameters (Motulsky 
and Ransnas, 1987). Additional uncertainty in the data points is also introduced from using multi-
tau as it averages over the data by re-binning it into increasingly larger bins (Saffarian and Elson, 
2003). This manifests as shot noise at short lag times, see Figure 4.1C, and at longer lag times 
particles have moved out of the volume and thus the signal becomes uncorrelated. In summary, as 
correlation analyses explicitly depend on examining data over both small and large averages, FCS 
analysis is susceptible to poor inferences arising low data density and large uncertainties in some 
data points.

4.3.2 Pragmatic solutions

Previously, when fitting the FCS data for the DNA binding paper in chapter 2 and FCCS inter-
action measurements in chapter 3, I overcame these issues by increasing the number replicate FCS 
experiments so that poor fits may be discarded, as well as improving the reliability of fitting auto-
correlation curves. I achieved this by implementing two rounds of fitting, an initial round using a 
genetic algorithm global optimiser (SciPy differential evolution) and a second round of gradient de-
scent (SciPy curve fit), with the standard deviation on the data assigned according to the theoretical 
variance calculated by (Saffarian and Elson, 2003).

4.4 An alternative FCS framework

4.4.1 Probabilistic models of an FCS experiment

Distribution of photon counts

Jazani et al. (2019) defined that the number of observed photons within the time interval 𝛿𝑡𝑘 (𝑘 =
1, 2, ..., 𝐾) is drawn from a Poisson distribution

𝛾𝑘 ∼ Poisson(𝜆𝑘), (4.3)

with mean 𝜆𝑘. The parameter 𝜆𝑘 is a function of two components, the background photon emission 
rate, 𝜇𝑏, and the sum of the molecular emissions, 𝜇𝑘, as

𝜆𝑘 = 𝛿𝑡𝑘 (𝜇𝑏 + 𝜇𝑘) . (4.4)

It should be noted that 𝛿𝑡𝑘 is the interval over which photons have been binned and can be variable 
to allow a minimum number of photons in each bin to be imposed. Unlike Jazani and colleagues, 
my analyses assume all time bins are of equal width and thus 𝛿𝑡 = 𝛿𝑡𝑘 ∀ 𝑘. Molecular emissions, 𝜇𝑘, 
is a sum of all molecules emitting detectable photons, with each molecule contributing to the signal 
dependent on its position with respect to the effective observation volume, otherwise known as the 
confocal volume (CV), according to the point spread function (PSF). By definition, the origin, i.e. 

134



(𝑥, 𝑦, 𝑧) = (0, 0, 0) is located at the centre of the confocal volume. Thus, the molecular emissions 
may be approximated as

𝜇𝑘 = 𝜇𝑚

𝑁

∑
𝑛=1

PSF(𝑥𝑘,𝑛, 𝑦𝑘,𝑛, 𝑧𝑘,𝑛). (4.5)

where 𝑁 is the total number of molecules in the whole system. Here, 𝜇𝑚 defines a per molecule 
emission rate and encodes the likelihood of each particle emitting a photon per second and is thus 
dependent on the intensity of laser illumination (Qian, 1990). When measuring in a cell or solution 
in an FCS experiment 𝑁 is a very large number of order of 1015 for a concentration of a few nM. 
Thankfully, the PSF is a sharply peaked function, thus only molecules close to the centre of the PSF 
contribute to this summation. Jazani et al. (2019) considered a finite number of molecules which 
may contribute to the signal, 𝑁Sim, selected by a binary value on each simulated molecule, 𝑏𝑛. The 
molecular number can then be inferred from the number of 𝑏𝑛 values equal to 1. In summary, the 
model for the mean photons emitted in the interval 𝑘 in Equation 4.4 becomes

𝜇𝑘 = 𝛿𝑡𝑘 (𝜇𝑏 + 𝜇𝑚

𝑁Sim

∑
𝑛=1

𝑏𝑛PSF(𝑥𝑘,𝑛, 𝑦𝑘,𝑛, 𝑧𝑘,𝑛)) , (4.6)

Typically, the PSF is defined as a 3D Gaussian confocal observation volume with the signal contri-
bution of each molecule as a function of position given by

PSF(𝑥, 𝑦, 𝑧) = exp (−2 ( 𝑥2

𝑤2
𝑥𝑦

+ 𝑦2

𝑤2
𝑥𝑦

+ 𝑧2

𝑤2
𝑧
)) (4.7)

where 𝑤𝑥𝑦 and 𝑤𝑧 denote the characteristic radii in the x-y and z directions of the observation volume 
respectively whereby probability of detecting a photon emitted at that position drops to 𝑒−2 when 
the displacement of the particle is equal to these radii. Clearly, the PSF does not have a hard cut 
off and hence the effective volume

𝑉eff = 𝜋 3
2 𝐶𝑤2

𝑥𝑦𝑤𝑧 (4.8)

is used to calculate concentrations. Note that a correction factor 𝐶 is dependent on the optics has 
been added as the effective volume is typically larger than 𝜋 3

2 𝑤2
𝑥𝑦𝑤𝑧. The correction factor, 𝐶, may 

be found for each FCS setup by using a known concentration of fluorescent molecules in solution to 
calibrate 𝑉eff.

Time between photon arrivals

Tavakoli et al. (2020), proposed an updated model to Jazani et al. (2019) which infers the same 
molecular parameters but from the individual photon arrival times. The arrival times are the rawest 
form of data from the detectors in an FCS experiment. These data can be used to create an array 
times between arrivals without arbitrary binning and pre-processing as

Δ𝑡 = (Δ𝑡1, Δ𝑡2, ..., Δ𝑡𝐾−1) (4.9)

where Δ𝑡𝑘 = 𝑡𝑘+1 − 𝑡𝑘 for a total of 𝐾 photons collected. The times between successive photons is 
the waiting period between two Poisson distributed events and as such is drawn from an exponential 
distribution

Δ𝑡𝑘 ∼ Exponential(𝜇𝑘), (4.10)

with 𝜇𝑘 having the same interpretation and form as in the Jazani model (Equation 4.6) except for 
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the lack of 𝛿𝑡, namely

𝜇𝑘 = 𝜇𝑏 + 𝜇𝑚

𝑁

∑
𝑛=1

PSF(𝑥𝑘,𝑛, 𝑦𝑘,𝑛, 𝑧𝑘,𝑛). (4.11)

Diffusion

In 1 dimension the diffusion of a particle labelled with position 𝑥 at times indexed by 𝑘 is governed 
by Fick’s second law (Fick, 1855; Du and Kou, 2020)

𝜕𝑓(𝑥, 𝑡)
𝜕𝑡

= 𝐷𝜕2𝑓(𝑥, 𝑡)
𝜕𝑥2 , (4.12)

where 𝑓(𝑥, 𝑡) is the probability density of finding a particle at position 𝑥 at time 𝑡. When considering 
no spatial boundaries and starting at the origin, a solution to Equation 4.12 is

𝑓(𝑥, 𝑡) = 1√
4𝜋𝐷𝑡

exp (− 𝑥2

4𝐷𝑡
). (4.13)

The particle has an equal probability of jumping left or right and as such the mean displacement 
from the origin, ⟨𝑥(𝑡)⟩, is zero. Only, the variance of this distribution, also know as the mean squared 
displacement (MSD) increases over time, defined by

MSD = ⟨𝑥(𝑡)2⟩ = ∫
∞

−∞
𝑥2𝑓(𝑥, 𝑡)𝑑𝑥 = 2𝐷𝑡. (4.14)

When considering more complex dynamics than normal Brownian motion, the MSD will depend on 
time in a non-linear fashion, with examples being confinement, interactions, and active transport. 
The probability density of the particles position at a later time 𝑡𝑘′ is

𝑓(𝑥𝑘, 𝑡𝑘′) = 1
√4𝜋𝐷(𝑡𝑘′ − 𝑡𝑘)

exp (− (𝑥𝑘′ − 𝑥𝑘)2

4𝐷(𝑡𝑘′ − 𝑡𝑘)
) . (4.15)

Thus, the position of a particle at a later time 𝑡𝑘′ representing a time step of Δ𝑡𝑘 = 𝑡𝑘′ − 𝑡𝑘 is 
normally distributed with mean 𝑥𝑘 and variance 2𝐷Δ𝑡𝑘. Which may be rewritten as

𝑓(𝑥𝑘|𝑥𝑘′ , 𝐷) = Normal(𝑥𝑘′ , 2Δ𝑡𝑘𝐷). (4.16)

This is easily extended to three dimensions as each direction can be considered to be independent and 
as such is drawn from its own independent and identical normal distribution, forming a multivariate 
normal distribution with zero covariance between each direction.

Photon emission rates depend on concentration and diffusion

Photon emission rates drawn from a Poisson (Equation 4.3) conditioned on its mean (Equation 4.5) 
are a sum over the contribution of each molecule determined from the point spread function on 
their positions with respect to the centre of the confocal volume. Thus, only molecules close to 
the centre of illumination within the confocal volume will significantly contribute to the number of 
observed photons. Intuitively, the brighter the signal the more molecules must be present. However, 
dynamical information about the movement of the molecules, encoded by its diffusion coefficient, 
𝐷, can only come from changes in the point spread function. Monte Carlo simulations simulations 
of FCS experiments demonstrate that the distribution of PSF values follows a Poisson distribution 
with mean and variance dependent on the number of molecules, Figure 4.2A. This is in agreement 
with Photon Counting Histogram (PCH) analysis (Müller et al., 2000) which proposed that the 
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distribution of molecules in a small volume situated within a larger reservoir is

𝑁 ∼ Poisson(𝑁𝐶𝑉), (4.17)

where 𝑁𝐶𝑉 is the average number of molecules what would be found in the observation volume. If 
the molecules in solution are homogeneous then 𝑁𝐶𝑉 will be equal to the average concentration of 
molecules in solution.

Figure 4.2: (A) Histograms of photon emission rates, 𝜇, for simulations over three different molecular concentrations: 
𝑁𝑇 𝑜𝑡 = 200, 𝑁𝑇 𝑜𝑡 = 800, and 𝑁𝑇 𝑜𝑡 = 1600. These closely follow a Poisson distribution with means dependent on 
molecular abundance. (B) The distribution of 𝑆 for increasing numbers of total molecules and a lag of 1 bin width, 
𝛿𝑡. Variance increases for higher concentrations of molecules within the confocal Volume. (C) The variance of 𝑆 also 
increases with diffusion rates ranging from 1 µm2s−1 to 10 µm2s−1. Time lag is again equal to 𝛿𝑡.

For any snap shot in time the positions of the molecules can be considered to be drawn from a 
uniform distribution in each dimension. Instinctively, diffusion should cause changes to the value of 
each PSF in time and in turn the photon emission rates such that time shifted sums of PSFs over 
the molecules within the volume will vary over time. Defining

𝑆𝑘 =
𝜇𝑘+1 − 𝜇𝑘

𝜇m
𝑘 = 1, 2, ..., 𝐾 − 1 (4.18)

as the shifted contribution to the signal, the effect of different molecular numbers of total simulated 
molecules can be investigated. The distribution of 𝑆 is approximately normal, with increasing vari-
ance from higher numbers of molecules (Figure 4.2B) and faster diffusion rates (Figure 4.2C). The 
change between 𝜇𝑘 and 𝜇𝑘+1 is due to changes in the magnitude of the PSF at each of these times 
and is the brought about by molecular movement. It should be noted that the PSF is symmetric 
in at least 2 axes, usually x-y. Hence, there are some symmetries and configurations of molecular 
numbers and diffusion rates that appear the same. Namely, slower moving molecules around the 
periphery of the observable volume will appear similar to a small number of fast moving molecules in 
the centre. Monte Carlo simulations of the variance of 𝑆 suggests that diffusion rates and molecular 
numbers may be approximately calculated from the variance of 𝑆 as

Var(S) ∝ 𝐷𝑁TotΔ𝑡 (4.19)

where Var(S) is the variance of the distribution of 𝑆, 𝑁Tot is the total number of molecules simulated, 
and Δ𝑡 = 𝛿𝑡(𝑘′ − 𝑘). Variance in this shift Var(S) is strongly linear with 𝑁Tot and 𝐷 following a 
gradient of ≈ 0.088, Figure 4.3. The gradient value likely corresponds to missing constants to be 
found and to the ratio of the effective observation volume 𝑉eff to bounding volume used during 
simulations, which relates the actual number of particles in the volume 𝑁𝐶𝑉 to total simulated 𝑁Tot. 
In reality we do not have direct access to the PSF value over time and thus to reliably infer molecular 
numbers as well as diffusion rates, a formal model is required that can equate shifts in the PSF to 
the observed photon count data.
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Figure 4.3: (A) Inferred diffusion rates 𝐷 and molecular numbers (B) calculated via Equation 4.19 shows a linear 
relationship. 𝑁Tot = 800 for simulations in (A) and 𝐷 = 5µm2s−1 in (B).

4.4.2 The properties of changes in photon counts

Pulling this knowledge together, the changes in photon counts can be related to the physical param-
eters of the system. Photons binned in intervals of 𝛿𝑡 labelled with index 𝑘 are Poisson distributed 
as 𝛾𝑘 ∼ Poisson(𝜇𝑘). To observe dynamic properties, the differences in photon counts between 𝑘
and 𝑘′ over a time 𝛿𝑡(𝑘′ − 𝑘) is denoted as

Δ𝑘,𝑘′ = 𝛾𝑘′ − 𝛾𝑘. (4.20)

Figure 4.4: Distribution of differences photon counts in interval 𝛿𝑡 = 1 ms from simulations with 𝑁Total = 800 over 
three diffusion rates: 1 µm2s−1, 5 µm2s−1, and 40 µm2s−1. The change in photon counts has a mean of zero and a 
variance that increases with diffusion rate.

When calculated, this shift in photon counts is a difference between two Poisson distributions, oth-
erwise known as the Skellam distribution (Skellam, 1946) with mean 𝜇𝑘′ − 𝜇𝑘 and variance 𝜇𝑘′ + 𝜇𝑘. 
This distribution maps well to simulations of the change in counts as seen in Figure 4.4. To con-
firm this is correct I have calculated the mean and variance of Δ𝑘,𝑘′ in terms of the physical pa-
rameters; molecular number 𝑁, diffusion coefficient 𝐷, molecular brightness 𝜇𝑚, and background 
emission rate 𝜇𝑏. As before, the mean of the photons within each bin is 𝜇𝑘, and for brevity I define 
Γ𝑘 = PSF(𝑥𝑛,𝑘, 𝑦𝑛,𝑘, 𝑧𝑛,𝑘).

Mean change in photon counts

The expectation value of Δ𝑘,𝑘′ is found to be

E[Δ𝑘,𝑘′ ] = E[𝛾𝑘′ − 𝛾𝑘] = 𝐸[𝛾𝑘′ |𝜇𝑘′ ] − E[𝛾𝑘|𝜇𝑘] = 𝐸[𝜇𝑘′ ] − E[𝜇𝑘] = 0, (4.21)

138



using the Law of Iterated Expectations (LIE) (Billingsley, 2008), E[𝑋] = E[E[𝑋|𝑌 ]], with

E[𝛾𝑘] = E[E[𝛾𝑘|𝜇𝑘]] = E[E[Poi(𝜇𝑘)|𝜇𝑘]] = E[𝜇𝑘] (4.22)

because the mean of a Poisson distribution is simply its parameter 𝜇𝑘. As it is assumed that no 
changes in the molecular emission parameters, diffusion rates or average number of molecules occur 
over the experiment, it follows that the mean of 𝜇𝑘 is is same over all 𝑘. Hence, 𝐸[Δ𝑘,𝑘′ ] = 0 is to be 
expected because on average there should the same number of counts from one interval to another 
and therefore the average of the difference should be zero up to some amount of drift. This can be 
seen in Figure 4.5A.

Figure 4.5: The mean (A) and variance (B) of Δ𝑘,𝑘′ = 𝛾𝑘′ − 𝛾𝑘 over increasing values of the shift 𝛿𝑡(𝑘′ − 𝑘) from 
Monte Carlo simulations of FCS experiments over a range of diffusion rates from 𝐷 = 0.1 − 10 µm2s−1 and total 
molecules 𝑁Tot = 500 − 4000. The mean is on average zero with some drift seen in individual FCS experiments. 
Var(Δ𝑘,𝑘′) is zero for a zero time shift and grows quickly for larger time shifts. (C) The covariance between 𝛾𝑘 and 
𝛾𝑘′ starts high and rapidly decreases as time between 𝑘 and 𝑘′ increases.

This may be verified by computing the expectation using LIE and the definition of 𝜇𝑘 given in 
Equation 4.5 to yield

E[𝜇𝑘] = E[E[𝜇𝑘|𝜇𝑏, 𝜇𝑚, 𝑁, Γ𝑘]]

= E [𝛿𝑡 (𝜇𝑏 + 𝜇𝑚

𝑁

∑ Γ𝑘)]

= 𝛿𝑡 (E[𝜇𝑏] + E[𝜇𝑚]E [
𝑁

∑ Γ𝑘])

= 𝛿𝑡 (E[𝜇𝑏] + E[𝜇𝑚]E[𝑁]E [Γ𝑘]) .

(4.23)

Here it is assumed that the mean sum over Γ𝑘 is simply the expected number of molecules 𝑁
multiplied by E[Γ]. It is reasonable to assume that the distributions for the number of molecules, 
background rate, molecular brightness and molecular positions (encoded in Γ) are all independent 
of one another and are identically distributed random variables (i.i.d) over all intervals 𝑘 during the 
experiment. Additionally, in the case of a Gaussian point spread function then E[Γ𝑘] becomes

E[Γ𝑘] = ∭
𝑉

exp (−2𝑥2
𝑘

𝑤2
𝑥𝑦

) exp (− 2𝑦2
𝑘

𝑤2
𝑥𝑦

) exp (−2𝑧2
𝑘

𝑤2
𝑧

) 1
𝐿𝑥

1
𝐿𝑦

1
𝐿𝑧

𝑑𝑥𝑑𝑦𝑑𝑧

≃ 1
𝑉

∭
∞

−∞
exp (−2𝑥2

𝑘
𝑤2

𝑥𝑦
) exp (− 2𝑦2

𝑘
𝑤2

𝑥𝑦
) exp (−2𝑧2

𝑘
𝑤2

𝑧
) 𝑑𝑥𝑑𝑦𝑑𝑧

≃
𝜋 3

2 𝑤2
𝑥𝑦𝑤𝑧

2 3
2 𝑉

(4.24)

where I have made use of the Law of the Unconscious Statistician (LOTUS) in the first line, with the 
positions in each direction distributed according to a uniform distribution over the bounding box, 
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i.e. 𝑥𝑘 ∼ Uniform(−𝐿𝑥
2 , 𝐿𝑥

2 ). Despite total volume in an FCS experiment being finite and defined as 
𝑉 = 𝐿𝑥𝐿𝑦𝐿𝑧, the definite integral may be approximated and expanded over space to infinity as the 
contribution of the Gaussian terms are negligible outside the confocal volume provided 𝐿𝑥𝑦 ≫ 𝑤𝑥𝑦

and 𝐿𝑧 ≫ 𝑤𝑧. According to my Monte Carlo simulations, this approximation holds for 𝐿𝑖
𝑤𝑖

> 4, below 
which edge effects are observed. In the case of a solution or large cellular compartment such as the 
nucleus, the volume to effective volume 𝑉eff is much greater than 4 and as such the approximation 
holds up well. We may therefore conclude that E[Γ𝑘] is a constant and independent of the interval 
𝑘 such that

E[Γ𝑘] = E[Γ𝑘′ ] ∀ 𝑘. (4.25)

Hence, from this and Equation 4.23 it can be concluded,

E[𝜇𝑘] = E[𝜇𝑘′ ] ∀ 𝑘. (4.26)

Variance of change in photon counts

As previously discussed, in contrast to the mean, the variance of Δ𝑘,𝑘′ is non-zero due to particles 
diffusing within in the confocal volume. This can be seen in Figure 4.5B-C where variance of Δ𝑘,𝑘′

and covariance between the photon counts 𝛾𝑘 and 𝛾𝑘′ are non-zero and are functions of the time shift 
𝛿(𝑘′ − 𝑘). Using the Law of Iterated Variances (Weiss, 2005) Var(𝑌 ) = E[Var(𝑌 |𝑋)] +Var(E[𝑌 |𝑋]),

Var(Δ𝑘,𝑘′) = E[Var(Δ𝑘,𝑘′ |𝜇𝑘, 𝜇𝑘′)] + Var(E[Δ𝑘,𝑘′ |𝜇𝑘, 𝜇𝑘′ ]), (4.27)

with the first term expanded as

E[Var(Δ𝑘,𝑘′ |𝜇𝑘, 𝜇𝑘′)] =E[Var(𝛾𝑘|𝜇𝑘, 𝜇𝑘′) + Var(𝛾𝑘′ |𝜇𝑘, 𝜇𝑘′)
− 2Cov(𝛾𝑘, 𝛾𝑘′ |𝜇𝑘, 𝜇𝑘′)]

=E[𝜇𝑘 + 𝜇𝑘′ − 2Cov(𝛾𝑘, 𝛾𝑘′ |𝜇𝑘, 𝜇𝑘′)],
(4.28)

making use of the property Var(𝛾|𝜇) = Var(Poi(𝜇)) = 𝜇. To complete this part of the calculation, 
the covariance between the counts is

Cov(𝛾𝑘, 𝛾𝑘′ |𝜇𝑘, 𝜇𝑘′) = E[𝛾𝑘𝛾𝑘′ |𝜇𝑘, 𝜇𝑘′ ] − E[𝛾𝑘|𝜇𝑘]E[𝛾𝑘|𝜇𝑘′ ]
= E[𝛾𝑘(𝛾𝑘′ − 𝛾𝑘 + 𝛾𝑘)|𝜇𝑘, 𝜇𝑘′ ] − 𝜇𝑘𝜇𝑘′

= E[𝛾𝑘(𝛾𝑘′ − 𝛾𝑘)|𝜇𝑘, 𝜇𝑘′ ] + E[𝛾2
𝑘 |𝜇𝑘] − 𝜇𝑘𝜇𝑘′

= E[𝛾𝑘|𝜇𝑘]E[(𝛾𝑘′ − 𝛾𝑘)|𝜇𝑘, 𝜇𝑘′ ] + 𝜇2
𝑘 + 𝜇𝑘 − 𝜇𝑘𝜇𝑘′

= 𝜇𝑘(𝜇𝑘′ − 𝜇𝑘) + 𝜇2
𝑘 + 𝜇𝑘 − 𝜇𝑘𝜇𝑘′

= 𝜇𝑘

(4.29)

where I have made use of the fact that the difference of two Poisson distributed processes is inde-
pendent of the photon counts. Hence, Equation 4.28 becomes

E[Var(Δ𝑘,𝑘′ |𝜇𝑘, 𝜇𝑘′)] = E[𝜇𝑘 + 𝜇𝑘′ − 2Cov(𝛾𝑘, 𝛾𝑘′ |𝜇𝑘, 𝜇𝑘′)]
= E[𝜇𝑘 + 𝜇𝑘′ − 2𝜇𝑘]
= E[𝜇𝑘′ − 𝜇𝑘]
= E[𝜇𝑘′ ] − E[𝜇𝑘]
= 0

(4.30)

This is again zero as the mean photon counts between intervals 𝑘 and 𝑘′ are the same. Unlike the 
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first term, the second term of the variance in Equation 4.27 is non-zero and can be expanded as

Var(E[Δ𝑘,𝑘′ |𝜇𝑘, 𝜇𝑘′ ]) =Var(𝜇𝑘 − 𝜇𝑘′)
=Var(𝜇𝑘) + Var(𝜇𝑘′) − 2Cov(𝜇𝑘, 𝜇𝑘′)
= E[𝜇2

𝑘] − E[𝜇𝑘]2⏟⏟⏟⏟⏟⏟⏟
𝐴

+ E[𝜇2
𝑘′ ] − E[𝜇𝑘′ ]2⏟⏟⏟⏟⏟⏟⏟

𝐵

− 2(E[𝜇𝑘𝜇𝑘′ ] − E[𝜇𝑘]E[𝜇𝑘′ ]⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐶

)

(4.31)

where 𝐴 is

𝐴 =E ⎡⎢
⎣

(𝛿𝑡)2 (𝜇𝑏 + 𝜇𝑚

𝑁

∑ Γ𝑘)
2

⎤⎥
⎦

− E [𝛿𝑡 (𝜇𝑏 + 𝜇𝑚

𝑁

∑ Γ𝑘)]
2

=(𝛿𝑡)2 ⎛⎜
⎝

E ⎡⎢
⎣

(𝜇𝑏 + 𝜇𝑚

𝑁

∑ Γ𝑘)
2

⎤⎥
⎦

− E [(𝜇𝑏 + 𝜇𝑚

𝑁

∑ Γ𝑘)]
2

⎞⎟
⎠

=(𝛿𝑡)2(E[𝜇2
𝑏 + 2𝜇𝑏𝜇𝑚𝑁Γ𝑘 + 𝜇2

𝑚𝑁2Γ2
𝑘] − E[𝜇𝑏]2

− 2E[𝜇𝑏]E[𝜇𝑚𝑁Γ𝑘] − E[𝜇𝑚𝑁Γ𝑘]2)
=(𝛿𝑡)2 (Var(𝜇𝑏) + Var(𝜇𝑚𝑁Γ𝑘)) .

(4.32)

Here, it is again assumed that the expectation of the sum is

E [
𝑁

∑ Γ𝑘] ≃ E [Γ𝑘

𝑁

∑ 1]

≃ E[𝑁]E[Γ𝑘]
(4.33)

as Γ𝑘 is not dependent on the sum variable, hence E[Γ𝑘] is simply multiplied by the expected number 
of molecules E[𝑁]. 𝐵 is expanded similarly and by E[Γ𝑘] = E[Γ𝑘′ ] it can be concluded that 𝐴 = 𝐵. 
Again expanding in the same manner as 𝐴, the last term 𝐶 is

𝐶 =(𝛿𝑡)2(E[𝜇2
𝑏 + 𝜇𝑏𝜇𝑚𝑁Γ𝑘 + 𝜇𝑏𝜇𝑚𝑁Γ𝑘′ + 𝜇2

𝑚𝑁2Γ𝑘Γ𝑘′ ]
− E[𝜇𝑏]2 − E[𝜇𝑏]E[𝜇𝑚𝑁Γ𝑘] − E[𝜇𝑏]E[𝜇𝑚𝑁Γ𝑘′ ] − E[𝜇𝑚𝑁]2E[Γ𝑘]E[Γ𝑘′ ])

=(𝛿𝑡)2(E[𝜇2
𝑏 ] − E[𝜇𝑏]2 + E[𝜇2

𝑚𝑁2]E[Γ𝑘Γ𝑘′ ] − E[𝜇𝑚𝑁]2E[Γ𝑘]E[Γ𝑘′ ])
=(𝛿𝑡)2(Var(𝜇𝑏) + E[𝜇2

𝑚𝑁2]E[Γ𝑘Γ𝑘′ ] − E[𝜇𝑚𝑁]2E[Γ𝑘]E[Γ𝑘′ ]).

(4.34)

Higher moments of Γ𝑘, namely E[Γ2
𝑘], possess the same property as E[Γ𝑘], see Equation 4.25, and as 

such

Var(E[Δ𝑘,𝑘′ |𝜇𝑘, 𝜇𝑘′ ]) =𝐴 + 𝐵 − 2𝐶
=2(𝛿𝑡)2(Var(𝜇𝑚𝑁Γ𝑘) − E[𝜇2

𝑚𝑁2]E[Γ𝑘Γ𝑘′ ]
+ E[𝜇𝑚𝑁]2E[Γ𝑘]E[Γ𝑘′ ])

=2(𝛿𝑡)2(E[𝜇2
𝑚𝑁2Γ2

𝑘] − E[𝜇𝑚𝑁Γ𝑘]2

− E[𝜇2
𝑚𝑁2Γ𝑘Γ𝑘′ ] + E[𝜇𝑚𝑁Γ𝑘]2)

=2(𝛿𝑡)2E[𝜇2
𝑚𝑁2](E[Γ2

𝑘] − E[Γ𝑘Γ𝑘′ ]).

(4.35)

The term E[𝜇2
𝑚𝑁2] is known and it can be readily calculated that E[Γ2

𝑘] = 𝜋
3
2 𝑤2

𝑥𝑦𝑤𝑧
8𝑉 . However, to 

complete the calculation E[Γ𝑘Γ𝑘′ ] must be determined. Progress can be made by noting that each 
direction is independent of one another and the position at a later interval 𝑘′ is random variable 
drawn as 𝑥𝑘′ = 𝑥𝑘 + Normal(0, 𝜎2) from the earlier position during the interval 𝑘. The 𝑦 and 𝑧
directions are similarly drawn from their respective previous positions with the same variance of 𝜎
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as the particle may move freely in all directions at the same rate. The variance of these normal 
distributions are related to the diffusion rate as 𝜎2 = 2𝐷𝛿𝑡(𝑘′ − 𝑘) and using 𝒩𝑖 = Normal(0, 𝜎2)
to denote a normal distribution used to draw random variables in the direction 𝑖, the term E[Γ𝑘Γ𝑘′ ]
becomes

= E [∭
𝑉

𝑒
−

2(𝑥2
𝑘+𝑥2

𝑘′)

𝑤2𝑥𝑦 𝑒
−
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∞
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= 1
𝑉
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(4.36)

where on the first line (∗) LOTUS was used for 𝑥𝑘, 𝑦𝑘, 𝑧𝑘, and on the fourth line (†) LOTUS was 
applied to 𝒩𝑥, 𝒩𝑦, 𝒩𝑧. Finally, by substituting in the definition for 𝜎2, the variance of the difference 
in binned photon counts, Equation 4.27, between intervals 𝑘 and 𝑘′ becomes
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, (4.37)

for Δ𝑘 = 𝑘′ − 𝑘.

Variance in Δ𝑘,𝑘′ is simply related to Var(S)

Var(Δ𝑘,𝑘′) may be approximated using a binomial expansion when 4𝐷𝛿𝑡Δ𝑘
𝑤2 is small as
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where higher order terms (H.O.Ts) that are quadratic in (4𝐷𝛿𝑡Δ𝑘
𝑤2 )2 have been neglected as they are 

very small. The photon counts are related to the point spread function by 𝛿𝑡𝜇𝑚 and as such to 
obtain a theoretical approximation of Var(S) then Equation 4.38 should be divided by (𝛿𝑡)2E[𝜇𝑚]2
to get

Var(S) ≈
𝜋 3

2 𝑤2
𝑥𝑦𝑤𝑧𝑁𝐷Δ𝑡

𝑉
( 1

𝑤2
𝑥𝑦

+ 1
2𝑤2

𝑧
) , (4.39)

as Var(𝑏𝑋) = 𝑏2Var(𝑋) for a constant 𝑏. For the particular parameters used during my Monte Carlo 
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simulations, 𝑉 = 96 µm3, 𝑤𝑥𝑦 = 0.3µm, and 𝑤𝑧 = 1.5µm then Var(S) is approximately

Var(S) ≈ 0.0887𝐷𝑁Δ𝑡. (4.40)

This has the same linear relationship on 𝑁 and 𝐷 as the approximation made before in Equation 4.19
and has a constant of proportionality that is close to those found from simulations (0.0877 and 
0.0885), see Figure 4.3. In summary, we know that the change in photon counts counts follows a 
Skellam distribution, with a mean of zero and a variance that scales with molecular numbers, 𝑁, 
and diffusion rate, 𝐷, see Equation 4.40. Furthermore, as the time interval between observed counts 
increases, they become less correlated and their differences vary more broadly in a linear fashion 
(Figure 4.6).

Figure 4.6: Skellam distribution with mean zero and variance as calculated from Equation 4.37 for the parameters 
𝑁tot = 500, 𝐷 = 5 µm2/s, 𝜇mol = 22500 s−1, 𝑤𝑥𝑦 = 0.3 µm, 𝑤𝑧 = 1.5 µm, 𝐿𝑥𝑦 = 4 µm, 𝐿𝑧 = 6 µm, 𝛿𝑡 = 50 μs, over 
increasing time intervals of Δ𝑡 = 𝛿𝑡, 5𝛿𝑡, 50𝛿𝑡, and 100𝛿𝑡.
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Chapter 5

Designing biological networks with ease: 
Network Designer

5.1 Overview and current difficulties in mathematical modelling

Mathematical modelling is a powerful tool that can be used to understand and explore the dynamics of 
biological systems. These models can be used to; make predictions about the behaviour of biological 
processes, infer experimentally inaccessible parameters, and test hypotheses about the underlying 
mechanisms that drive these systems. A wide variety of biological systems have been modelled 
mathematically, including population dynamics, neural networks, and gene regulatory networks.

In my studies I have focused on modelling how DNA, mRNA, and proteins move and interact 
with one another to generate circadian rhythms. Whilst trying to construct models of the circadian 
clock, I encountered a number of difficulties and inefficiencies. Chief amongst these issues was that 
large mathematical models became difficult to prototype quickly and cumbersome to alter. Simple 
models involving feedback mechanisms typically generates systems of coupled ordinary differential 
equations (ODEs) with tens to hundreds of subtly different terms. Thus, when writing down these 
equations incorrect terms and typo errors frequently occurred. Misdefining even one of these terms 
leads to software crashes and hard to spot false results. Hence, I sought to address these issues 
through my software Network Designer, by enabling quicker exploration of models through graphical 
manipulation of reaction networks combined with automated generation of differential and stochastic 
equations. Whilst this software took significant time to develop, it vastly reduced the time it took 
me to define new models. Adding or deleting nodes became trivial rather than an arduous process of 
checking through coupled equations. Network Designer was used throughout my work and was used 
to develop the models of DNA binding regulation seen in chapter 2 and facilitated protein-protein 
complexing in chapter 3. Throughout it’s conception, I have been working with other researchers to 
improve the usability of Network Designer, with an aim to release the software to the wider research 
community.

Other software solutions, such as VCell, CellNetAnalyzer, and SBML Editor, exist for assisting 
with the mathematical modeling of biological systems (Blinov et al., 2017; Klamt et al., 2007; Hucka 
et al., 2003). I found that these programs did not provide the level of efficiency I was seeking when 
defining reaction equations. Additionally, the Kappa language also has a graphical user interface for 
defining models. However, Kappa focuses on rule-based models, rather than traditional mathematical 
models, thus is unsuitable for my work. As a result, I developed Network Designer to streamline my 
modelling workflow. Network Designer focuses on having a user-friendly interface to interact with a 
network graph that auto-generates the system of ODEs and rate equations. These features enables 
quick prototyping of new models and exploration of multiple models without requiring extensive 
programming or mathematical knowledge.
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5.2 My solution: Network Designer

Network Designer, is a user-friendly computer application that enables researchers in the life-sciences 
to easily create, simulate, and fit mathematical models of biological systems. My goal was to provide 
a tool that allows users to quickly prototype new models in a matter of minutes, without the need 
for specialist programming or mathematical knowledge. By leveraging the power of open-source 
libraries such as SciPy (Virtanen et al., 2020), Numpy (Harris et al., 2020), StochPy for simulations 
(Maarleveld et al., 2013), Cytoscape for network visualisation (Shannon et al., 2003), and the Plotly 
Dash framework for a browser-based interface (Inc, 2015), Network Designer aims to provide a 
streamlined and accessible solution for creating, simulating, and analyzing mathematical models of 
biological systems (Figure 5.1). Additionally it is cross-platform compatible, and can be easily hosted 
on a web server. The main objectives of Network Designer are to;

1. Be user-friendly,

2. Allow models to closely reflect diagrams of biological system,

3. Reduce the need for writing and checking equations by hand,

4. Enable rapid exploration of multiple models.

Figure 5.1: Screenshot of Network Designer. In Network Designer the user interacts with a Cytoscape network 
diagram to create mathematical models of biological processes. In the network tab of Network Designer the user can 
manipulate the graph of species and reactions using the dropdown menus and pop-up modals for altering species, 
parameters, and equations.

5.2.1 Software architecture

I implemented Network Designer in Plotly’s Dash considering it was already built in Python and thus 
compatible with other modelling code I had already written. Furthermore, Dash is particularly suited 
to build a data dashboard application with a customised user interface. Network Designer operates 
with a user interface comprised of dropdown menus, buttons, and a intractable Cytoscape network 
graph all within a browser window (Figure 5.1). These interactable elements take user input and 
execute a series of call back functions. These call backs save/load data, update the network graph, 
generate equations, perform simulations, and produce plots. Figure 5.2 summarises the software 
architecture of Network Designer .
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Figure 5.2: Diagram of the Network Designer Software Architecture. A visual representation of the software 
architecture for Network Designer, demonstrating how the user can interact with the Cytoscape graph and tables to 
define reactions, species, and parameters. These four elements are all interdependent, updating each other in real time 
as the user alters any parameters or features of the model. These inputs are then utilised to simulate the underlying 
model equations, save the network graph, as well as export equations and parameters. Arrows indicate overall flow of 
information between each element of the program.

The user interface (UI) of Network Designer was designed to be easy to use. I used CSS and HTML 
to customise the UI, making use of three tabs displayed at the top of the application to allow the 
user to toggle between the network, simulations, and settings. Within the network tab the user 
can manipulate all aspects of the model. I used pop-up modals for various functionalities, including 
saving and loading models, defining parameters, species names, and reactions. Interactable tables are 
provided so that reaction equations, parameters, and species can all be easily modified (Figure 5.3a). 
Within the parameters (Figure 5.3b) and equations modals (Figure 5.3c), users can import and 
export parameters as well as reactions respectively. Pictures for nodes are used to enhance the 
visual representation of the model in the Cytoscape network graph, with users having the option of 
uploading scalable vector graphics files (svg) to use as pictures for each node using the class system.
In the settings tab, the user can customise how the ODE equations are displayed as well as toggle 
between light and dark display modes for the UI (Figure 5.4). Finally, in the simulations tab, the user 
can run different deterministic and stochastic simulations, with the total simulation time defined by 
the user within a table. Each simulation is given a unique identification number, making it possible 
to plot and compare different runs of the model. Plots of deterministic and stochastic simulations can 
be overlaid by the user utilising the interactable table and dropdown menu. In addition, histograms 
of variables over multiple stochastic trajectories are also displayed. The user also has the ability 
to upload data for the model to be fitted against, with the resulting parameters being stored and 
assigned a unique ID for later use. This allows the different fitted parameters to be applied to the 
model at a later time.

5.2.2 Key features of Network Designer

One of the key features of Network Designer is auto-equation generation, which enables the user to 
automatically generate mathematical equations based on the Cytoscape network diagram. As users 
manipulate the network by adding, removing, redefining, and renaming the nodes and edges, the 
corresponding equations and parameters also automatically update. Crucially, parameter names are 
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(a)

(b)

(c)

Figure 5.3: Pop-up modals are used to define species, parameters, and equations. Any changes of the 
model are automatically shared between the network graph and these modals containing tables. (a) The nodes of 
the network graph can be manipulated within the species modal via the table. Classes may be defined to change the 
pictures of each node as well as add a description of what it represents. (b) The pop-up for parameters is where the 
user can define the names of parameters, their values fitting conditions, as well as import/export parameters to and 
from excel files. (c) All edges in the network represent reactions and are represented within the table of the equations 
pop-up modal. The rates of reaction, also known as the propensity, are converted into ordinary differential equations 
formatted and displayed in LaTex.
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Figure 5.4: Settings tab. The user can define how ordinary differential equations are displayed in the settings tab 
as well as toggle between light and dark modes.

linked to the reactions and species they are part of to ensure no typos occur and that it is easier to 
attribute parameters to the variables they modify. Additionally, extra classes and descriptions can be 
added to each edge and node by the user so that the user can keep track of features of interest, making 
it easier to curate equations, molecular numbers, and parameters within one space. These automated 
features reduce errors and the need for specialist programming and mathematical knowledge, making 
it easier for researchers in the life-sciences to transform biological network diagrams into fully-fledged 
models. The equations used within the auto-equation feature are discussed in detail below.

Classes are also used to define pictures for each node, enhancing the ease of understanding. This 
makes the Cytoscape graph look like network diagrams often used by researchers to depict biological 
systems, see Figure 5.1. This network graph can then be exported as a picture in jpg, png, svg file 
formats. The equations can also be output to LaTex or Python to continue modelling outside of 
Network Designer.

Another important feature of Network Designer is simulating models both deterministically and 
stochastically. The user can easily convert between concentrations and copy numbers by defining 
the volume of the system, making it possible to simulate both deterministic and stochastic models 
simultaneously. The outputs of these simulations are then plotted in a variety of ways including line 
plots, average plots of stochastic simulations, and histograms of stochastic simulations.

Finally, users also have the ability to fit models to data using a genetic algorithm, with users able 
to fit both parameters and concentrations. To avoid fitting all initial concentrations and parameters, 
the user can define a subset of these that can also be fixed to certain values during fitting.

In Network Designer, each node of the graph represents the concentration of a molecular species 
and each edge a reaction between nodes. In addition to transformative reactions, each edge can also 
represent regulation of another reaction. For example, transcription factors and repressors can act as 
a catalyst or inhibitor to increase and decrease the rate of transcription respectively despite not be 
being used up in the overall reaction. Changes in the abundance of molecular species (nodes of the 
graph) can be modelled using an ordinary differential equation as a sum of its positive and negative 
reactions, represented as edges originating and terminating at the node. For a node representing 
species 𝑋 the ODE of its rate of change is the sum over positive and negative reactions,

𝑑𝑋
𝑑𝑡

= ∑ Positive reactions − ∑ Negative reactions. (5.1)

Here, positive reactions are processes that increase the amount of 𝑋 whereas negative reactions 
decrease 𝑋. It should be noted that nodes can represent concepts other than whole numbers of 
biomolecules and can instead represent concepts such as modifications to existing molecules like 
phosphorlyations or the number of co-factors bound to a promoter element of DNA. Let’s consider a 
simple example of how Network Designer models the network graph for constant transcription and 
degradation of an mRNA, 𝑀, originating from the gene 𝐺 which is then translated in a protein 𝑃
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that is also degraded. The mRNA 𝑀 evolves according to the ODE

𝑑𝑀
𝑑𝑡

= 𝑘𝑡𝑥𝐺 − 𝑘𝑑𝑚𝑀 , (5.2)

where 𝑘𝑡𝑥𝐺 is the positive rate of reaction and 𝑘𝑑𝑚 is the rate of degradation. The abundance of 𝑀
increases according to the transcription rate 𝑘𝑡𝑥 and the concentration of the gene 𝐺, and decreases 
proportionally to its own abundance by the degradation rate 𝑘𝑑𝑚𝑀. The protein 𝑃 proceeds this 
and its concentration is modelled as

𝑑𝑃
𝑑𝑡

= 𝑘𝑡𝑙𝑀 − 𝑘𝑑𝑝𝑃 , (5.3)

where 𝑘𝑡𝑙 and 𝑘𝑑𝑝 are the translation and degradation rates respectively. As you can see this ODE 
depends explicitly on 𝑀 and thereby is coupled with equation (Equation 5.2) forming the complete 
system of equations. This is modelled in Network designer as a graph with nodes for the gene 𝐺, 
mRNA 𝑀, protein 𝑃, and the pool, ∅, with edges between each node (Figure 5.5).

G M X

Pool

Figure 5.5: Simple transcription-translation model. A representative graph of a simple model of transcription 
of an mRNA, 𝑀, from a gene, 𝐺, that is subsequently translated into a protein 𝑃. Both the mRNA and protein are 
eventually degraded into a non-specific pool.

Here, the symbol, ∅, represents a pool from which species can be created from or degraded into. 
The pool is infinite and as such its concentration and copy number are not tracked. These edges 
representing with reactions can be simulated stochastically using Gillepies algorithm via the Python 
library StochPy by converting the ODEs to rate equations. These reactions are modelled individually 
and occur according to probabilities commonly referred to as propensities. The nodes are altered to 
explicitly track the copy number, here 𝑀, at each time-point and equations (5.2-5.3) are converted 
to the rate equations

Reaction Propensity
∅ ⟶ 𝑀 𝑘𝑡𝑥𝐺

𝑀 ⟶ ∅ 𝑘𝑑𝑚𝑀

∅ ⟶ 𝑃 𝑘𝑡𝑙𝑀

𝑃 ⟶ ∅ 𝑘𝑑𝑝𝑃

𝑀 is created from the pool as the gene 𝐺 here promotes the creation of 𝑀 and is not used up in the 
reaction. The protein 𝑃 is similarly created from and degraded into the pool.

Biological processes including transcription, translation, degradation, and dimerisation, can all 
be modelled using ODEs and rate equations. Often simple mass action kinetics are used, but more 
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complex Micheaelis-Menten type dynamics can also be used to represent activation (increasing rate) 
or repression (decreasing rate) dynamics dependent on the concentration of regulating factors. In 
Network Designer the reactions that each edge represent are defined by the user with the equations 
automatically assigned and given a class. The reactions currently implemented in the auto-equation 
feature of Network Designer are transformation, transcription, translation, degradation, and dimeri-
sation. The rate parameters of each reaction are similarly automatically generated with different 
types of reactions/edges differentiated by colour. These reactions are discussed in detail below. In 
its current iteration Network Designer provides models of mass action kinetics using its auto-equation 
feature, with other models needing to be specified manually. However, working outside of the auto-
equation feature is currently discouraged as consistency across the network cannot be guaranteed. 
In the future I hope to expand the number of biological processes that can be modelled using the 
automated features I have implemented within Network Designer.

Transformation

Transformation can encompass a variety of biochemical phenomena, including translocation between 
sub-cellular compartments, maturation of fluorophores, post-transcriptional modifications of RNA, 
and post-translational modifications of proteins (i.e. phosphorylation, ubiquitination, etc). Here, 
transformation is modelled as a process in which a molecular species is converted into a different 
species at constant forward and backwards rates, 𝑘𝑓 and 𝑘𝑏 respectively (Figure 5.6).

U P

Figure 5.6: Transformation. Representative graph of a transformation process, in which molecule 𝑈 is converted 
into 𝑃 and vice versa.

When a transformation process occurs at a constant rate, the temporal evolution of a transformed 
molecule, denoted as P, can be accurately modelled using the coupled ODEs

𝑑𝑃
𝑑𝑡

= 𝑘𝑓𝑈 − 𝑘𝑏𝑃 ,

𝑑𝑈
𝑑𝑡

= 𝑘𝑏𝑃 − 𝑘𝑓𝑈,
(5.4)

where 𝑈 is the unprocessed molecule. Note that at equilibrium the forward rate of reaction is equal 
to the backwards rate. In certain biological systems, processes such as mRNA splicing and peptide 
cleavage, may not be able to be reversed and thus, the reverse reaction rate is considered to be zero. 
𝑘𝑏 = 0. The corresponding rate equations of a transformation process are auto-generated in Network 
Designer and can be seen in Figure 5.7.

Transcription

Transcription is the process by which the genetic information stored in DNA is converted into RNA 
(Figure 5.8). In mathematical modeling of transcription, various kinetic equations and rate laws are 
used to describe the rate at which the transcription process occurs, taking into consideration factors 
such as the affinity of transcription factors for the DNA, the availability of the RNA polymerase 
enzyme, and other molecular interactions. Within the auto-equation feature of Network Designer, 
transcription is simply modelled using mass action kinetics, where the rate of mRNA production, 𝑀, 
from a gene, 𝐺, is proportional to the concentrations of the gene and a rate constant, 𝑘𝑡𝑥, as

𝑑𝑀
𝑑𝑡

= 𝑘𝑡𝑥𝐺. (5.5)
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Figure 5.7: Transformation equations. Screenshot of automatically generated equations corresponding to (Equa-
tion 5.4) of a simple transformation process.

This equation is automatically converted into the rate equations by Network Designer (Figure 5.9).

G M

Figure 5.8: Transcription Representative graph of transcription of an mRNA 𝑀 from a gene 𝐺.

Figure 5.9: Transcription equations. Screenshot of transcription equation auto-generated by Network Designer 
corresponding to Equation 5.5.

Translation

Translation is the process by which ribosomes translate messenger RNA (mRNA) into functional 
protein (Figure 5.10). Several biochemical reactions occur during translation, including initiation, 
elongation, and termination.

M P

Figure 5.10: Translation. A graph of mRNA, 𝑀, translated into a protein 𝑃.

To describe the underlying kinetic process, simple mass action kinetics is often used, where the rate 
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of reaction is proportional to the concentration of the reactants. This is the approach used by the 
auto-equation feature in Network Designer. In this, translation from mRNA, M, into protein P can 
be modeled without considering the consumption of the mRNA in the reaction because one mRNA 
molecule can be translated multiple times such that the amount of protein produced in the cell is 
typically much higher than the amount of mRNA, meaning that the mRNA concentration can be 
considered to remain constant during the translation process. This approach allows for a simplified 
mathematical representation of the translation process, where the change in protein concentration 
is determined by the rate of translation, rather than the rate of mRNA consumption. Thus the 
constant rate of production of a protein 𝑃 via translation of mRNA, 𝑀, at a rate 𝑘𝑡𝑙 can be modelled 
as the ODE

𝑑𝑃
𝑑𝑡

= 𝑘𝑡𝑙𝑀. (5.6)

My application converts these equations into rate equations as can be seen in Figure 5.11.

Figure 5.11: Translation equations. Screenshot of Network designer generated equation for an mRNA 𝑀 being 
translated into protein 𝑃, corresponding to Equation 5.6.

Degradation

Degradation is the process of breakdown or removal of proteins, RNA, and other biomolecules (Fig-
ure 5.12).

X Pool

Figure 5.12: Degradation. Graph of the degradation of molecule 𝑋 into a non-specific pool ∅.

This process is crucial in the regulation of cellular processes, such as regulating the abundance of 
cellular components, including proteins, lipids, and nucleic acids. The degradation process helps 
maintain the balance of these components, allowing cells to respond to internal and external signals 
and adapt to changing conditions. Additionally, degradation helps ensure that damaged or misfolded 
proteins are removed from the cell, preventing them from causing further harm. Degradation is espe-
cially important in an oscillatory system like the circadian clock to relieve repression to reinitiate the 
active phase of transcription. In cells, degradation depends on factors such as enzymatic degrada-
tion, autophagy, and other processes that lead to the removal of biomolecules. In Network Designer 
degradation is modelled as a first order process whereby the constant degradation of a molecule 𝑋
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at rate 𝑘𝑑 can be modelled as the ODE

𝑑𝑋
𝑑𝑡

= −𝑘𝑑𝑋. (5.7)

This leads to exponential decay of the molecule 𝑋, with larger numbers of 𝑋 increasing the rate 
of degradation. Network Designer automatically converts this equation into the rate equations in 
Figure 5.13.

Figure 5.13: Degradation equations. Screen shot of auto-generated equations for the degradation of a protein 𝑋
at rate 𝑘𝑑𝑝.

Dimerisation

Dimerization is the process by which two separate molecules bind together to form a dimer, a single 
unit consisting of two identical or non-identical subunits. This process is a crucial step in many 
biological processes and is involved in a variety of physiological functions, including protein-protein 
interactions, signal transduction, and gene regulation. Dimerization can occur between identical 
molecules, known as homodimerization, or between different molecules, known as heterodimerization 
(Figure 5.14a). Heterodimerisation can be modelled using ODEs as

𝑑𝐷
𝑑𝑡

= 𝑘𝑎𝑋𝑌 − 𝑘𝑑𝐷,

𝑑𝑋
𝑑𝑡

= 𝑘𝑑𝐷 − 𝑘𝑎𝑋𝑌 ,

𝑑𝑌
𝑑𝑡

= 𝑘𝑑𝐷 − 𝑘𝑎𝑋𝑌 ,

(5.8)

where 𝑘𝑎 is the rate of association and 𝑘𝑑 is the rate of dissociation. These rates are often hard to 
individually measure within experiments. Thus, the dissociation constant, 𝐾𝐷, is commonly used to 
represent the strength of dimerisation and is given by

𝐾𝐷 = 𝑘𝑑
𝑘𝑎

= 𝑋𝑌
𝐷

. (5.9)

𝐾𝐷 is an inverse measure of affinity and represents the concentration of 𝑋 and 𝑌 at which 50% of 
each will be bound within the dimer 𝐷. The dissociation constant is typically the value reported 
for protein-protein interactions within literature and is quantified by techniques such as fluorescence 
cross-correlation spectroscopy (Bacia et al., 2006). In Network Designer, 𝑘𝑑 is replaced by the 𝐾𝐷
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Figure 5.14: Dimerisation. Graphs of (a) 𝑋 and 𝑌 heterodimerising to from a dimer 𝐷 and (b) of two 𝑋 molecules 
homodimerising into the homodimer 𝐷.

and the association rate using Equation 5.9 to convert Equation 5.8 into

𝑑𝐷
𝑑𝑡

= 𝑘𝑎(𝑋𝑌 − 𝐾𝐷𝐷),

𝑑𝑋
𝑑𝑡

= 𝑘𝑎(𝐾𝐷𝐷 − 𝑋𝑌 ),

𝑑𝑌
𝑑𝑡

= 𝑘𝑎(𝐾𝐷𝐷 − 𝑋𝑌 ).

(5.10)

This framework is especially useful when modelling the steady state equilibrium of dimerisation as 
knowing the true value of 𝑘𝑎 is not required. Instead 𝑘𝑎 now models how quickly the dimer forms 
and not the fraction of binding. Thus, the ratio of monomer to dimer is purely modelled by the 𝐾𝐷. 
The automatically generated rate equations for dimerisation are given in Figure 5.15.

Figure 5.15: Heterodimerisation equations. Screenshot of auto-generated heterodimerisation equations corre-
sponding to Equation 5.10.

In contrast to heterodimers (Figure 5.14b), if a molecular species can bind itself it may form homod-
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imers according to the rate

𝑑𝐷Homo
𝑑𝑡

= 𝑘𝑎𝑋 − 𝑘𝑑𝐷Homo,

𝑑𝑋
𝑑𝑡

= 𝑘𝑑𝐷Homo − 𝑘𝑎𝑋.
(5.11)

These ODEs can be transformed into the rate equations in Equation 5.2.2. Larger networks of multi-
meric protein complex formation can be modelled using a series of these dimerisation reactions.

Reaction Propensity
2𝑋 ⟶ 𝐷Homo 𝑘𝑎𝑋
𝐷Homo ⟶ 2𝑋 𝑘𝑑𝐷Homo

Table 5.1: Rate equations for homodimerisation of two molecules 𝑋 into the homodimer 𝐷Homo.

5.2.3 Numerical simulation and fitting

In network designer, user-defined models are simultaneously represented as differential equations 
and rate equations, hence both deterministic and stochastic numerical simulations can be performed. 
Once the model has been defined, network designdefineder can numerically simulate the model over a 
specific time interval from an initial set of concentrations. The user can perform multiple simulations 
over different combinations of parameters, allowing them to compare the results of these simulations. 
This enables the user to explore the impact of different parameter combinations on the behaviour of 
the system. For example, different combinations of parameter values can be used to represent different 
biological conditions, or to test different hypotheses about the system. After each simulation has 
been performed, network designer saves the results, allowing the user to easily compare the results 
of multiple simulations (Figure 5.16).

Figure 5.16: Simulation tab. Screenshot of simulations tab in Network Designer where the user can run deter-
ministic and stochastic simulations as well as fit models to data. Users can name simulations for later referencing and 
plotting. Users upload data to fit the model via the ‘Add data’ button which is then added to the table below, the 
user can then select which variables of the model that the data represents.

Simulated over a specified time interval, the deterministic simulation process involves solving the 
ordinary differential equations (ODEs) that represent the model and calculating the state of the 
system at each time point within the defined interval. This is accomplished through the use of the 
odeint function from the Python package SciPy.
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Stochastic simulations are achieved by transforming the deterministic ODE model into a set of 
rate equations, which can then be used to make a ‘.psc’ file for stochastic simulations performed by the 
Python package StochPy. In these simulations, random fluctuations are introduced into the system, 
reflecting the inherent variability and uncertainty in biological processes. The stochastic simulation 
algorithm generates multiple simulation runs, or trajectories, which can then be averaged to produce 
an ensemble of simulations. This approach provides a more comprehensive and realistic representa-
tion of biological systems compared to deterministic simulations. This is because it accounts for the 
inherent variability and stochasticity in biological processes. Furthermore, the ability to generate 
multiple simulation runs and average the results allows the user to account for the effects of ran-
dom fluctuations on the overall behaviour of the system. Overall, the integration of StochPy with 
Network Designer offers a powerful tool for simulating and analyzing biological systems, providing a 
more complete and realistic representation of biological processes and their underlying mechanisms.

Fitting to data

In Network Designer, deterministic ordinary differential equation (ODE) models are fit using the 
genetic algorithm differential_evolution from the SciPy Python package. The goal of this process 
is to find the best set of model parameters that fit the data and capture the underlying biological 
processes being modeled. The differential_evolution algorithm uses a population-based search, where 
a group of candidate solutions is iteratively evolved to minimize the discrepancy between the model 
predictions and the data. Users have the option to specify certain parameters of the model to be 
fixed at a user-defined value, which can help constrain the solution space and improve the fitting 
process. This is particularly useful when certain parameters are known a priori or when a model has 
multiple local minima, and fixing certain parameters can help prevent the optimisation algorithm 
from being trapped in a sub-optimal solution. Users can input multiple data sets corresponding to 
different parameters of the model, such as smFISH data for mRNA counts and FCS concentration 
data for protein abundance, all within a transcription-translation model.

5.3 Discussion and future work

I developed Network Designer with the goal of streamlining the mathematical modeling process in 
biological systems by curating models, data, and experiments into one application. I would like to 
further develop Network Designer for gathering data, exploring model topologies, testing hypotheses 
with data, and outputting useful simulations, values, and diagrams. It is my hope that Network 
Designer will in the future prove to be a valuable tool for researchers in the field of biological 
modelling. To support these aims, I would like to expand Network Designer by incorporating a 
number of new features to the software to improve its functionality and usability. These features are:

1. Expand auto-generated equations. I would like to expand the equations offered by the auto-
equation feature beyond mass-action kinetics to include more complex dynamics like Michaelis-
Menten terms.

2. In silico experiments. Increasing the variety of simulations that can be performed would 
allow users to perform in silico experiments as well as further analyse their models. For example, 
sensitivity analysis could highlight the most sensitive points of the model. Furthermore, models 
could be better linked to experiments by adding special nodes that represent processes such 
as observing photon counts emitted from a fluorophore or averaging over many cells during 
end-point sample collection.

3. Additional fitting options. Currently, Network Designer only allows for fitting of parameters 
and concentrations by a genetic algorithm. I want to include other types of modelling and fitting 
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that better account for uncertainty, such as likelihood models, chemical Langevin equations, and 
Monte-Carlo simulations.

4. Library of existing models. I wish to integrate Network Designer into a library of commonly 
used and previously defined models such as the BioModels database (Malik-Sheriff et al., 2020). 
This would allow users to quickly access previously defined models and reduce the time spent 
on model construction.

5. Define models using natural language. I wish to incorporate natural language model 
definition using something like ChatGPT, a natural language model by OpenAI. This would 
allow users to define models in words, using more intuitive and natural language. Thus making 
it easier to understand and construct models.

6. Version history. Version history using a system like Git, so that users can see branch points 
and keep track of changes made to their models.

7. Check identifiablity. Include automatic identifiablity checking of models. This would examine 
whether certain components of the model are redundant and if they can be appropriately defined 
during fitting. This could help users identify if it is possible to infer certain parameters and if 
the model outstrips their data.

8. Integrate with existing frameworks. Integrate Network Designer within existing frame-
works, such as by importing/exporting to and from the Systems Biology Markup Language 
(SBML) (Hucka et al., 2003; Finney and Hucka, 2003). This would allow users to apply their 
models in other applications, and allow for better collaboration and sharing of models.

9. Filter and manipulate by classes. Allowing the user to filter and view nodes/edges of the 
network by classes would to improve organisation and management of models.

10. Sub-cellular compartments. Add the ability to explicitly define different sub-cellular local-
isations via compartments such as the nucleus and cytoplasm. This would allow the users to 
model how molecules interact within specific sub-cellular regions and how they traffic between 
compartments.

11. Lookup bio-molecular data. It would be highly useful if users should search large data 
repositories for data on the biomolecules they are building models from. Amongst others, these 
databases could include UniProt for protein data (The UniProt Consortium, 2022), AlphaFold 
for protein structure (Jumper et al., 2021; Varadi et al., 2021), and National Center for Biotech-
nology Information (NCBI) for other databases (Sayers et al., 2021).
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Chapter 6

Discussion

6.1 Summary

In this thesis, I have established a new understanding of the operation of the circadian clock. I 
achieved this by developing novel quantitative approaches, which enabled modelling of the molecular 
mechanisms responsible for generating circadian rhythms in cells. Quantitative microscopy tech-
niques, including Fluorescence Recovery After Photobleaching (FRAP) and Fluorescence Correlation 
Spectroscopy (FCS), were used to study these fundamental mechanisms. I constructed mathemat-
ical models to further explore the data, shed light on experimentally inaccessible complexes, and 
elucidate the repressing mechanisms of the key transcription factor CLOCK:BMAL1. I tested these 
experimentally. To support these extensive FCS measurements, I created a bespoke analysis pipeline 
to improve inferences and reduce analysis time from hours to minutes. A new methodology, FCS-
Maximum Approximate Likelihood (FCS-MAL), was introduced to address the issues prevalent in 
traditional FCS analysis and to infer the same values with up to 1000 times less data. Finally, I 
created a new graphical modelling tool, Network Designer, to enable the construction of mathe-
matical models of biological systems in an intuitive way, which reduced the human error in model 
construction.

6.2 Quantifying and modelling the circadian clock

6.2.1 Mechanisms of CLOCK:BMAL1 DNA binding

The molecular circadian clock drives the expression of a large number of genes through binding of 
CLOCK:BMAL1 to E-Box sites. This imposes a time-signature on an extraordinary number of biolog-
ical processes (Koike et al., 2012). Using FRAP (chapter 2), I demonstrated daily rhythmic binding 
of the CLOCK:BMAL1 transcription factor to a range of DNA binding sites, which accorded well 
with previous findings from chromatin immunoprecipitation sequencing studies (ChIP-seq) (Koike 
et al., 2012). I showed that CLOCK is a cytoplasmic protein, and that BMAL1 regulates CLOCK 
nuclear entry at a 2:1 ratio through direct dimerisation. Individually these proteins are unable to 
effectively bind DNA. However once incorporated as a CLOCK:BMAL1 dimer they resided on DNA 
for an average of ∼ 3 s. This is in accordance with other known transcription factors such a GR, 
p53, p65, and STAT1 (Hettich and Gebhardt, 2018). This residence represents an average time of 
CLOCK:BMAL1 on DNA as FRAP is a bulk measurement of 10-50 % of the nucleus. Crucially, it is 
shorter than the ∼ 8 s residence time measured for a set of short strands of the DBP gene (Stratmann 
et al., 2012). Thus, the measurements made here accord well with the distribution of peak amplitudes 
in the ChIP-seq data that places almost all genes bound by CLOCK:BMAL1 less strongly bound 
than DBP (Koike et al., 2012). This short 3 s binding time, is hypothesised to reduce noise in gene 
expression. In combination with FCS/FCCS measurements of concentrations, diffusion, and inter-
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actions, I then constructed a mathematical model to link the PER2:CRY1 complex as the regulator 
of this rhythmic DNA binding and showed that the PER2:CRY1 complex binds to CLOCK:BMAL1 
to alter its affinity for DNA. This mechanism reduces the global occupancy of CLOCK:BMAL1 on 
target E-box DNA sites. However, modelling also revealed that, despite the reduction in overall 
binding, this mechanism also increases the frequency of CLOCK:BMAL1 visits to target sites. Thus, 
PER2 acts both as a repressor and indirectly as an activator. Intriguingly, CLOCK:BMAL1 was 
found to cycle between 500 and 1500 available dimers over the course of a circadian day, far fewer 
than the estimated number of tissue-dependent 2,000 to 6,000 high-confidence CLOCK:BMAL1 DNA 
targets identified by ChIP-seq (Rey et al., 2011; Koike et al., 2012; Wu et al., 2017; Oishi et al., 2017; 
Beytebiere et al., 2019; Chiou et al., 2016; Dyar et al., 2018). As a result, in order to perform its 
role as a transcription factor on these sites, CLOCK:BMAL1 must be a highly mobile transcription 
factor. Modelling further revealed that the changing DNA binding capabilities of CLOCK:BMAL1 
through its binding with PER2:CRY1 performs a dual role: increasing the rate of DNA unbinding 
reduces the global number of bound DNA sites, while increasing the rate at which CLOCK:BMAL1 
visits these sites. As such, CLOCK:BMAL1, along with site-specific binding profiles and co-factors, 
is capable of performing rhythmic transcriptional control that is out of phase with its global binding 
kinetics. This is consistent with a “hit-and-run” model of frequent short duration DNA binding by 
transcription factors (Shah et al., 2019).

I also provided the first direct measures of CRY1 protein binding affinity in living cells, finding that 
this protein forms a strong complex with BMAL1 and hence presumably the dimer CLOCK:BMAL1. 
This fits well with substantive evidence for direct repression of BMAL1 transactivation capabilities 
by CRY1 (Gustafson et al., 2017; Xu et al., 2015). In this study I showed that this interaction is not 
only strong but also rhythmic. Strikingly, CRY1 exhibits near-persistent binding with BMAL1 over 
24 h owing to rhythmic interaction strengths countering changes in abundance. However, the exact 
mechanism that underlies this modulation of protein-protein interaction is yet to be determined. 
Binding with third partners, such as PER2, or post-translation modifications could explain the 
change in BMAL1-CRY1 affinity (Ye et al., 2011; Fribourgh et al., 2020; Schmalen et al., 2014).

In summary, this study examined the rhythmic interactions of CLOCK:BMAL1 for DNA as well as 
cycling protein-protein interactions of CRY1 for BMAL1. Mathematical modelling further explored 
the experimentally inaccessible complexes and revealed mechanisms for regulating this rhythmic 
DNA binding.

6.2.2 Protein-protein interactions in the circadian clock

I then used FCS/FCCS to examine the interaction between PER2 and CRY1 in a double knock-in 
mouse, finding that the interaction between PER2 and CRY1 was strong, rhythmic, and closely 
followed the 24-hour dynamics of the BMAL1-CRY1 interaction (chapter 3). To further expand 
the understanding of the interactions between key circadian clock proteins, I went on to study 
15 different protein complexes comprising CLOCK, BMAL1, PER2, CRY1/2, and CK1δ, using a 
lentiviral expression system in fibroblast cell lines. Such an abitious clock-wide comparison has never 
been undertaken before. My findings showed that the majority of these protein-protein interactions 
were conserved across different cell types and protein expression levels.

By using mathematical modelling, I compared the suitability of a direct binding model or a 
three-way facilitatory binding arrangement to explain the data, and found that most proteins in the 
circadian network directly bind to each other in a pair-wise fashion with only a few key interactions 
facilitated by a third partner. These latter cases included CRY1/2 binding with CLOCK via both 
BMAL1 and PER2, as well as CK1δ binding CLOCK via PER2. This modelling placed BMAL1 and 
PER2 as central players in the network of protein-protein interactions in the circadian clock, likely 
acting as scaffolds for further multimeric complex formation.

These results were further experimentally validated through FCCS measurements of three-way 
interactions, which provided evidence of how circadian proteins reciprocally regulate each other’s 
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protein abundance to maintain a stoichiometric balance. An outcome of this study was the demon-
stration that high affinity interactions between PER2 and CRY2 were sufficient both to stabilise 
CRY2 proteins and maintain post-translational rhythms of CRY2 independently of transcription. 
This offers novel insights into the dynamic interactions between various circadian protein compo-
nents within living cells and underscores the crucial role that key interacting partners play in the 
circadian clock network.

This study could be extended in several directions, the most straight forward would be to expand 
the set of pairwise interaction measurements to other proteins in the circadian clock network such as 
the interaction of FBXL3 with CRY1/2, CK1ϵ with PER1/2, and BMAL1 with NPAS2. Additionally, 
exploring interactions of the core circadian components with proteins from other molecular systems 
in this manner is crucial to understanding cross-talk between these systems and the clock. For exam-
ple, it is known that BMAL1 is able to dimerise with other Per-Arnt-Sim (PAS)-domain-containing 
proteins that form basic Helix-Loop-Helix transcription factors such as the oxygen sensing Hypoxia 
Inducible Factor (HIF) and metabolic regulator Aryl hydrocarbon Receptor (AhR) (Peek et al., 
2017; Jaeger and Tischkau, 2016). The strength of these interactions are yet to be fully defined in 
living cells. The three-way protein expression data in this study clearly demonstrates the important 
of complex formation for additional post-translational modulation of circadian protein abundance. 
Prior studies have shown that PER2 can complex with and protect CRY2 from FBXL3 mediated 
degradation (Nangle et al., 2014). However, we also saw CRY1/2 ‘stabilise’ following co-expression 
of BMAL1. This potentially novel mechanism of BMAL1 stabilisation of CRY1/2 requires further 
experimental validation. For example, measuring protein abundances after treatment with cyclohex-
imide that are singly or co-expressed alongside partners should demonstrate whether or not these 
partnerships protect against degradation. Additionally, some of these two, and possibly three-way 
interactions, should be measured in the cells which lack other interacting proteins, i.e. measuring 
the interaction of the PERs for CLOCK and BMAL1 in CRY1 and CRY2 deficient cells. The issue 
of identifying and quantifying multivalent interactions between three or more proteins at once in live 
cells is non-trivial. In this study we focused on a small subset of possible multivalent interactions 
which could be expanded upon through combinations of pairwise FCCS in triple or even quadru-
ple lentiviral over expression regimes both on wild type and different gene knock-out backgrounds. 
Additionally, FCCS may be adapted to identify possible multivalent interactions as the data should 
curve above or below the straight direct line if there is a required intermediate binding partner or 
competition respectively.

6.3 Analysis of fluorescence correlation spectroscopy data

6.3.1 Improving traditional FCS analysis pipelines

To support the extensive use of FCS and FCCS in studies of CLOCK:BMAL1-DNA binding (chap-
ter 2) and protein-protein interactions (chapter 3), I developed a bespoke FCS analysis pipeline that 
addresses the problems of arbitrary analysis choices, excessive user interactions, and software issues 
prevalent in existing software such as PyCorrFit (Müller et al., 2014) and Fluctuation Analyzer 4G 
(Wachsmuth et al., 2015). The pipeline, described in the Materials and Methods section of chapter 2, 
reads and analyses multiple FCS files at once from a directory, streamlining the analysis process.

I created this custom Python software to enable me to experiment and refine the FCS analysis 
for my data sets. To avoid the possibility of fitting local minima and obtaining incorrect values, 
I implemented an initial round of fitting using a genetic algorithm, followed by a least squares 
minimisation algorithm to obtain uncertainty estimates for the fitted parameters. Additionally, I 
applied a model of systematic technical uncertainty on the auto- and cross-correlation curves arising 
from molecular processes, as described by Saffarian and Elson (2003). This model accounted for 
increased variability in the correlation at long and short lag-times, and made the least squares 
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regression less sensitive to high variance at the extremes of long and short lag-times, without resorting 
to the common practice of removing these high variance data.

Since inference techniques can only be as accurate as the data used, I removed outliers in the 
data sets that would arise from poor FCS measurements caused by out of focus light or low photon 
counts. These outliers can result in the correlation values being smaller than the uncertainty values, 
leading to unphysical values for concentrations and diffusion rates. With this bulk approach, I can 
now fit multiple models simultaneously to each correlation curve, and assign an Akaike Information 
Criterion Score (AIC) to each plausible model for each FCS experiment. This allows me to determine 
the optimal model, as well as explore changes in protein behaviour, such as how a protein changes 
from normal diffusion to anomalous diffusion when co-expressed with its binding partner.

This pipeline underwent changes between chapter 2 and chapter 3, as robust inferences of in-
teraction strength from FCCS measurements were challenging. To determine the dissociation con-
stant, 𝐾𝐷, in FCCS between partners 𝐴 and 𝐵, good fits are required for both auto-correlation 
and cross-correlation channels. If any of these three fits are incorrect, the linear formula 𝐾𝐷 =
[𝐴]Free[𝐵]Free/[𝐴𝐵] becomes corrupted. This is particularly problematic for cross-correlations, as we 
are comparing both signals. Unless the signals are strongly correlated due to strong complexing 
between the partners, the cross-correlation will be low and comparable to noise across most lag-
times, often resulting in poor fits with a very low concentration for the complex [𝐴𝐵]. When the 
concentration [𝐴𝐵] is small, the fraction comprising 𝐾𝐷 becomes very large, reducing the apparent 
interaction strength.

In my first paper Koch et al. (2022) (chapter 2), these issues were mostly avoided due to the 
strong interactions between CLOCK-BMAL1 and PER2-CRY1 partners, as well as the hundreds of 
measurements taken. In this study, the 𝐾𝐷 was also estimated by fitting the non-linear equation 
[𝐴𝐵]/[𝐴] = [𝐵]Free/(𝐾𝐷 + [𝐵]Free). However, when investigating the many combinations of partners 
in chapter 3, this approach became impractical, as interaction affinity varied widely and screening 
poor measurements became very time-consuming. Additionally, non-linear fitting underestimated 
the uncertainty on fitted parameters too much and did not properly capture the true variance in 𝐾𝐷
that was apparent when examining the plots.

I therefore switched to a linear fit, [𝐴𝐵] = 𝐾𝐷[𝐴]free[𝐵]free, and replaced the non-linear least 
squares regression with a robust linear regression through a quantile regressor (Koenker and Hallock, 
2001). This type of robust regression is insensitive to outliers in the data, as it fits the inter-quartile 
ranges and median of the data, systematically ignoring parts of the data. Outlier data that exists 
outside of the middle 50% of data makes no contribution to the median estimate. I used this regressor 
to estimate the median slope of the line to determine 𝐾𝐷 and its standard deviation. Quantile 
regression enabled the simultaneous robust estimation of 𝐾𝐷 values and concentrations for multiple 
interacting partners. This allowed me to explore three-way interactions by changes in 𝐾𝐷 between a 
pair of red and green proteins as a third blue partner was introduced. This change to a linear model 
and use of robust regression in chapter 3 led to lower measured 𝐾𝐷 values, representing stronger 
complex formation, compared to those originally measured in chapter 2. Despite this discrepancy 
in absolute strength, the relative relationships of interaction strengths was preserved across both 
studies.

This pipeline currently exists as an executable Python script without a user interface. In the 
future, it could be adapted into a more user-friendly form by incorporating a graphical user interface. 
Additionally, the software could be easily adapted to work with a wider range of data from different 
microscopes, as it is currently limited to analysing Zeiss ‘.fcs’ file types. It may also serve as a 
template from which alternative FCS analyses can be developed to analyse bulk FCS data.

6.3.2 New approaches

Throughout these two experimental studies, I observed that FCS was particularly prone to incorrect 
fitting of data, especially when examining low abundance fluorescent proteins. This issue was partially 
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alleviated by measuring more cells for longer and carefully adjusting laser intensities to prevent 
bleaching. However, poor fitting remained prevalent, requiring robust removal of outliers following 
fitting. The cause of these issues is that time correlating the data using multi-tau correlators leads 
to a large compression of data, from around 105 − 106 points down to ∼ 102 data points with widely 
varying uncertainties. Least squares fitting to these ∼ 100 data therefore becomes very sensitive to 
a few outliers, making it unreliable even when measuring for longer. This highlights the need for 
an alternative FCS solution. Ideally, gathering more data points should improve inferences. Both 
principled Bayesian and maximum likelihood (a frequentist approach) statistical techniques meet 
this criterion.

I started with computational simulations of an FCS experiment to create synthetic data, by 
modelling 𝑁 particles diffusing in 3D space according to standard normal distribution. The rate of 
photon emission was then calculated from the summation of the position of the 𝑁 particles relative to 
the origin, the optical properties of the system and the per molecule emission rate. I examined how 
varying concentrations and diffusion rates influenced the distributions of intermediate parameters, 
such as the point spread function and emission rates of photons. I found that these distributions 
were well-behaved and could be predictably parameterised by both molecular abundance and diffusion 
rate. However, in this initial analysis, these parameters were related to summary statistics of the 
data, such as the mean and variance of the changes in photon counts over time. While this was an 
important step forward, these methods for inferring concentrations and diffusion rates still relied on 
binning the raw photon arrival time data into time bins, making them not reliable enough.

To address these issues, I sought to find a principled solution by deriving a relationship be-
tween the parameters we wished to infer and the set of raw, unprocessed photon arrival time data, 
Δ𝑡. I began by calculating an approximate likelihood of observing the differences in arrival times, 
parameterised by the molecular brightness, concentration, and diffusion rate. By maximising this 
approximate likelihood, denoted as FCS-MAL, I succeeded in creating estimators that can accurately 
infer concentration and diffusion rates from FCS data, using only a few milliseconds of data rather 
than several seconds. These estimators relate the concentration rates to the average differences in 
photon arrival times, ⟨Δ𝑡⟩, and the sum of covariances between these arrivals, ∑𝑗 Cov(Δ𝑡𝑖, Δ𝑡𝑖+𝑗), 
respectively. This new methodology combines the computational efficiency of traditional FCS with 
the accuracy and reduced data requirements of recent Bayesian non-parametric techniques introduced 
by Jazani et al. (2019) and Tavakoli et al. (2020).

Further work is required to fully complete my model prior to publication. Specifically, the estima-
tor for the diffusion rate has not yet been fully mathematically derived. As a result, the constants 
relating the covariance over Δ𝑡 values to the diffusion rate must currently be found through calibra-
tion and fitting. This is down to the complexity of the model and the order of integrals I have chosen 
to complete first. Due to the nature of summing up all the contributions from each of the 𝑁 molecules 
into one emission rate, an unavoidable mixing occurs. This leads to 𝑁𝐾 possible combinations, for 𝐾
possible photon arrival times, of subtly different integrals, whose results must be coherently summed 
up within the final likelihood. As such, the work presented in this thesis serves as a proof of concept 
for FCS-MAL until a complete expression for the diffusion estimator can be derived. Furthermore, 
the uncertainties associated with these estimators have yet to be defined, and methods for doing so 
are currently being sought. With collaborators, I intend to redo this work within a new mathemat-
ical framework that uses matrix representations and applies the Laplace approximation at a later 
stage in the calculation of the model likelihood. This representation allows us to greatly simplify 
the calculation as we can make use of established techniques for computing logarithms of matrix 
determinants. This will provide a more complete and accurate representation of the model.

Alternatively, this diffusive system could have been represented using a birth/death process as 
described by (Davis, 1965). In this approach, particles enter and exit the confocal volume based on 
both the diffusion rate and the current number of particles within the volume. However, a significant 
consideration is that the probability of detecting each particle is influenced by its spatial position 
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relative to the confocal volume’s center. To accurately simulate this system, a spatial position grid 
would be required, introducing complexity to both simulation and subsequent inference. Instead, I 
chose to adopt the modeling approach delineated by Jazani et al. (2019) and Tavakoli et al. (2020). 
By directly modeling the diffusive behavior of the particles, I was able to generate synthetic data, 
which served to validate the estimators derived from the statistical model I previously discussed. I 
believe the approach I have employed offers a more intuitive model of an FCS experiment.

6.4 Making modelling easier with Network Designer

Mathematical models play a critical role in our understanding of biological systems. By creating 
mathematical representations of biological systems, researchers can gain insights into the underlying 
mechanisms that govern cellular processes, such as the interactions between DNA, mRNA, and 
proteins. These models can help to identify key pathways, predict outcomes, and test hypotheses 
that would otherwise be difficult or impossible to study experimentally. To aid in the creation of 
complex interaction networks, I developed a new tool called Network Designer. This tool provides 
an easy graphical interface for modelling and generating the associated equations, enabling rapid 
prototyping of different mathematical models. This reduces the risk of making small mistakes that 
are common when writing down large systems of coupled ordinary differential equations. Network 
Designer was used to model key elements of the circadian system, including the CLOCK:BMAL1 
transcription factor binding to DNA in chapter 2 and facilitated protein-protein interactions leading 
to ternary complex formation in chapter 3. The software is designed to be adaptable, allowing users 
to incorporate a wide range of models and simulations into their work.

In the future, I aim to expand the capabilities and accessibility of Network Designer so that it 
can become a valuable tool for researchers to apply mathematical modelling to their systems. To 
achieve this, I plan to expand the auto-equation feature and library of existing models, as well as 
allowing users to define models in new and different ways, such as through new natural language AI 
systems. A benefit of mathematical models is that they can provide a framework for integrating and 
synthesising data from multiple sources, I envision Network Designer becoming a central repository 
for defining and curating models of biomolecular systems. This would allow the user to bring together 
experimental data and models in one place.

6.5 A new multistage model of the circadian clock

While substantial progress has been made in the genetic understanding of the circadian clock, a 
comprehensive understanding of how the molecular interactions within the network contribute to 
the generation of stable 24-hour rhythms have been lacking. Recent studies and the work presented 
in this thesis present new understandings of the clock and mechanistic models which underpin the 
generation of robust 24-hour rhythms. The circadian clock uses molecules, primarily comprising 
DNA, RNA, and proteins, to drive daily cycles. The abundance of these molecules as well as the 
sequence and types of interactions between them are key to defining how these oscillations persist 
and their properties. In the circadian clock compromises are made between characteristics such 
as energetic requirements vs robustness, and plasticity vs stability during cross-talk. Stochastic 
modelling by Gonze and Goldbeter (2006) demonstrated that for simple circadian networks, whilst 
maintaining the stoichiometric relationship between the molecular components, reducing the overall 
‘size’ of the oscillator impacts robustness of rhythms as well as the ability to effectively couple with 
other cells. Given that other studies and data within this thesis place circadian molecular components 
as low abundance, namely 10-100 mRNA and 1,000 - 20,000 proteins per cell (Phillips et al., 2021; 
Smyllie et al., 2016; Narumi et al., 2016), a key question to ask is why are the numbers so low? 
Whilst further studies are required to fully answer this question at an evolutionary level, we can shed 
light on how the circadian clock can operate in this regime.
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Since the first mathematical descriptions by Goodwin, circadian clocks are thought to operate as 
stable limit cycles that are insensitive to small perturbations and not solely dependent on their initial 
conditions (Goodwin, 1965; Gonze and Ruoff, 2021). The clock accounts for this through constant 
entrainment to the external environment starting with photic cues entering the retina to synchronise 
the Suprachiasmatic Nucleus (SCN), followed by SCN coordinating timing in peripheral tissues via 
neuroendocrine and other cues (Panda et al., 2002b; van der Horst et al., 1999; Kaneko et al., 1981; 
Meyer-Bernstein et al., 1999). In tissue explants, free running circadian rhythms generally rapidly 
desynchronise. An exception is the robust SCN which can oscillate for months ex vivo due to strong 
inter-cellular coupling (Webb et al., 2009; Welsh et al., 2004). Additionally, non-linearity, delayed 
repression, and multiple loops have all been shown to be vital in creating a functional intracellular 
clock mechanism (Kim and Forger, 2012; Heidebrecht et al., 2020).

Emerging models of the clock have demonstrated how the molecular circadian clock operates via 
multiple complimentary and competitive mechanisms, leading to a model in which the circadian 
clock operates as an intricate oscillator made up of multiple feedback loops. These mechanisms 
are thought to operate primarily as a transcription translation feedback loop (TTFL) with negative 
repression of CLOCK:BMAL1 by PERs and CRYs, as well as additional modulating positive and 
negative loops comprising Rev-Erbs, RORs, and others (Takahashi, 2017). Evidence shows that all-
important PER/CRY repression occurs via three distinct mechanisms: displacement, sequestration, 
and blocking (Xu et al., 2015; Ye et al., 2011, 2014; Cao et al., 2021; Kim, 2016; Jeong et al., 2022). 
Specifically, PER proteins work with the CRYs to displace and sequester CLOCK:BMAL1 from DNA, 
whereas CRY1 is capable of directly binding BMAL1 to block transactivation. Modelling has shown 
combinations of these mechanisms creates ultra-sensitivity, which rapidly ‘switches on’ repression 
over very small changes in the concentrations of the repressor proteins PER and CRY (Jeong et al., 
2022). My work supports this model as I have shown that the residency of CLOCK:BMAL1 on 
E-Box DNA sites scales exponentially with the concentration of PER and CRY (chapter 2). Thus, 
although transcription can be repressed by any one of these three mechanisms alone, this and other’s 
studies have presented evidence for the circadian clock operating synergistically via all three (Xu 
et al., 2015; Ye et al., 2011, 2014; Cao et al., 2021; Kim, 2016; Jeong et al., 2022).

Prior to transcriptional repression, protein-protein interactions define when, where, and how many 
of each of the components can come together to affect their function. Models of the circadian clock 
have suggested that there is a requirement of one-to-one stoichiometry between repressors PER/CRY 
and activators CLOCK/BMAL1, which is relaxed by strong binding (< 25 nM) (Kim and Forger, 
2012; Heidebrecht et al., 2020). Quantitative data of the concentration of all four of these proteins 
does not support this strict one-to-one stoichiometric requirement, but is reconciled by data in this 
thesis of very strong binding between CLOCK-BMAL1 (38 − 83 nM), PER-CRY (20 − 60 nM), 
and BMAL1-CRY1 (15 − 26 nM) (chapter 3). Strong affinities between these repressive and ac-
tivating proteins confers ultra-sensitivity to changing levels of repressors, enabling rapid switching 
from repression to activation. Studies of theoretical oscillatory models have shown that robust cycles 
are promoted by negative feedback loops with delay primarily made up from ‘branching’ reactions, 
i.e. degradation and nuclear export of proteins, rather than ‘in-loop’ kinetics such as synthesis and 
phosphorylation (Kurosawa and Iwasa, 2002). In this thesis, BMAL1 was found to mediate CLOCK 
nuclear entry as well as the PERs and CRYs reciprocally altering each other’s sub-cellular localisa-
tions. Additionally, PER1 and BMAL1 also up regulated both CRY1 and CRY2 protein expression, 
which was capable of generating circadian cycles without the need for rhythmic transcriptional con-
trol of CRY2. Again, modelling has shown that dimerisation plays a key role in stabilising the 
limit cycle of the clock as coupling two separate oscillators, here PER and CRY, can generate the 
required ultra-sensitivity (Kurosawa et al., 2002). Remarkably, interaction measurements suggest 
both PERs and CRYs homo- and hetero-dimerise strongly, and also readily form three-way com-
plexes with CK1δ (chapter 3). This is the first direct evidence of these homo- and hetero-dimers 
in mammalian cells. The ternary CK1-PER-CRY complex is essential for displacement type repres-
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sion of CLOCK:BMAL1, and represents one of the few abundant multi-meric protein complexes in 
the circadian clock (Ye et al., 2011, 2014; Cao et al., 2021). The requirement for protein complex 
formation for effective negative repression buffers against the significant molecular noise within and 
between cells, and explains how oscillations can be generated even when rhythmic transcription of 
BMAL1, CRY1, or CRY2 is removed (Liu et al., 2008; McManus et al., 2022) (chapter 3).

This thesis therefore utilises new analytical tools and approaches to provide missing quantitative 
data on many components and process of the circadian clock. Moreover, modelling of my data reveals 
how long 24-hour circadian rhythms – much longer than the half-life of the most long-lived oscilla-
tory component – are built up from combinations of series of multiple rapid biochemical processes 
occurring on the order of seconds to minutes.

While the work contained in this thesis does not address medical translational potential or broader 
applications, there are major potential benefits from use of the tools and reagents developed in the 
course of my work. There is much current interest in the potential use of small-molecule activa-
tors/inhibitors of the circadian clock in relation to the clinical treatment of circadian disorders, in 
addition other pathologies. Additionally, a variety of studies have indicated the the timing of drug 
dosing, particularly in the case of cancer treatments, can lead to improved health outcomes by only 
exposing tissues to drugs when they will be most able to tolerate toxicity (Lévi et al., 2010; Annabelle 
Ballesta et al., 2017; Cederroth et al., 2019; Ruben et al., 2019).

The mathematical and biological approaches I have developed here offer an ideal testing platform 
for the screening of candidate circadian modulating drugs, and will allow direct measurements of 
how potential small molecule compounds impact on the protein components that lie at the core of 
the circadian clockwork. These issues are yet to be explored. 
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