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Abstract 
 
Fibroblasts are a mesenchymal cell type present in most mammalian tissues, that make 

a major contribution to ECM deposition and modification in health and disease. 

Pancreatic ductal adenocarcinoma (PDA) tumours are typically infiltrated with large 
numbers of fibroblasts but their functional contributions to tumour progression are poorly 

understood. Research into dermal fibroblasts has revealed at least two distinct fibroblast 
lineages in mammalian skin, that diverge during embryonic development and have 

different, non-overlapping functions in adult tissue homeostasis and wound-healing. 
Whether such distinct lineages of fibroblasts exist in other tissues or tumours is not 

known. A major barrier to understanding fibroblast heterogeneity in tumours is a lack of 
robust fibroblast surface markers, which has precluded the isolation of live 

subpopulations for functional characterisation. I sought to address this by developing a 
single cell mass cytometry analysis workflow to annotate the PDA tumour 

microenvironment (TME). The analysis reveals extensive fibroblast heterogeneity in PDA 

tumours and highlights potential associations between fibroblast abundance and 
proliferation rates of certain immune cell subsets. A notable feature of murine and human 

normal pancreatic and PDA fibroblasts is the presence of two major fibroblast 
populations, demarked by differential expression of CD105. Isolation of these 

populations reveals that differential CD105 expression is stable under extended 
passaging and under various activating conditions, suggesting CD105+ and CD105- 

pancreatic fibroblasts to be stable, distinct lineages. CD105+ pancreatic fibroblasts are 
more sensitive to TGFβ1 and Il1α stimulation in vitro but both populations have equal 

sensitivity to IFNγ stimulation. In a syngeneic subcutaneous co-transplant model, 
CD105+ pancreatic fibroblasts are tumour permissive, and do not alter PDA tumour 

growth, and CD105- pancreatic fibroblasts are found to be highly tumour suppressive. 

The mechanism for tumour suppression is entirely dependent on functional adaptive 
immunity, with a major contribution from cDC1-mediated CD8+ T cell cross-priming. 

Despite CD105- PDA fibroblasts consistently having a fraction of cells with evidence of 
expression of MHCII antigen presentation in vivo, fibroblast MHCII antigen presentation 

does not contribute to the enhancement of anti-tumour immunity in this model. In 
addition, CD105+ fibroblasts cannot be made to become tumour suppressive by deletion 

of CD105, suggesting that whilst CD105 is a useful marker for separating functionally 
distinct pancreatic fibroblast lineages, lack of CD105 does not functionally contribute to 
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the dominant in vivo phenotype of CD105- pancreatic fibroblasts. CD105+ and CD105- 

fibroblasts are found to be present in at least 12 other mammalian organs and 2 other 
spontaneous tumour types. This data highlights CD105 as marker of distinct fibroblast 

lineages in a large number of mammalian tissues and also indicates that fibroblast and 

immune cell interactions can drive dominant phenotypes in vivo. 
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Chapter 1 - Introduction 
 

1.1 – Fibroblasts in health and fibrosis 

 

1.1.1 – Definition of fibroblasts as a discrete cellular entity 

 

Fibroblasts are a loosely defined cell type with spindle-like morphology and 
mesenchymal features, that lack epithelial, immune and vascular features and are easily 

propagated by adherent cell culture (Kalluri, 2016). In healthy tissues, fibroblasts are 
typically found embedded within the interstitial ECM and the fibroblasts themselves and 

the surrounding ECM, are a major component of the tissue stroma that supports normal 
physical structure and functioning of the parenchyma (Furuya and Furuya, 2007). 

Fibroblasts in healthy tissues can be found in direct contact with or close proximity to, 
the basement membrane or a wide range of other cell types, including adipocyte, 

chondrocyte, smooth muscle, vascular, neural, endocrine or inflammatory cells (Powell 

et al., 2011). The principle role of fibroblasts in development and homeostasis appears 
to be extracellular matrix (ECM) synthesis, deposition and modification (Kalluri, 2016), 

although other cells types, for example macrophages, pericytes and keratinocytes, have 
been shown to also make major contributions to ECM generation and alterations (Alitalo 

et al., 1982; Ferland-McCollough et al., 2017; King and Pope, 1986; Simoes et al., 2020; 
Wang et al., 2020). In addition, a wide range of other, non-ECM functions have now been 

described for fibroblasts (see below). 
 

1.1.2 – Defining fibroblast identity 

 
Fibroblasts are typically defined by negative expression of epithelial (e.g. EpCAM, E-

cadherin), endothelial (e.g. CD31, B-cadherin) and leukocyte (e.g. CD45, CD11b) 
markers, positive expression of mesenchymal markers and (where appropriate) their 

elongated, spindle-like morphology. The specific markers used for positive identification 

of fibroblasts from other mesenchymal cell types varies widely between studies. For 
example, pericytes are another major mesenchymal cell type in healthy tissues that 

broadly falls into this category. Typically, pericytes are defined by expression of αSMA, 
DES, PDGFRβ, MCAM, ITGα1, NG2 or RGS5 (Armulik et al., 2011; Paquet-Fifield et al., 



 19 

2009) but several of these are variably expressed by pericytes and can also be 

expressed by fibroblasts. In addition, tissue-specific differences in pericyte phenotypes 
are also known (Yamazaki and Mukouyama, 2018). The most commonly used markers 

to positively identify fibroblasts generally are PDGFRα, PDGFRβ, αSMA or FAP, but 

these are not expressed on all fibroblasts, several are only expressed on fibroblasts 
under activating/pathological conditions and some are expressed on other, related cell 

types, such as pericytes (Sugimoto et al., 2006). In addition, arguably the most widely 
used activated fibroblast marker, αSMA, is intracellular which excludes it use for live cell 

isolation. Currently, there is no consensus on the optimum markers to use to fully define 
fibroblasts and other mesenchymal cells in healthy and diseased tissues (Sahai et al., 

2020). A lack of robust fibroblast surface markers has been suggested to result in studies 
reporting overlapping, incomplete or discrete populations of fibroblasts, as well as 

potential misannotation of other mesenchymal cell types (Kobayashi et al., 2019). This, 
combined with tissue-specific differences in fibroblast phenotypes (see below), makes 

interpretation of and comparability between fibroblast studies challenging. Collectively a 

lack of robust fibroblast markers has hindered detailed characterisation of this cell type. 
 

1.1.3 – Developmental origin of fibroblasts 

 
The majority of tissue-resident fibroblasts are thought to originally develop from the 

primary mesenchyme (Lawson et al., 1991). Epiblasts undergo epithelial to 
mesenchymal transition (EMT) during gastrulation to form the primary mesenchyme, 

which goes on to form the endodermal and mesodermal germ layers, of which the 
mesoderm goes on to form the true mesenchyme. It is from this compartment that the 

majority of tissue fibroblasts appear to derive (Hay, 2005). Many other related cell types 
share a similar developmental pathway, including chondrocytes, adipocytes, myocytes, 

pericytes and blood/lymphatic endothelial cells. Relatively little is known about how much 
fibroblast-like cells and other mesenchymal cells interconvert in healthy tissue 

development and homeostasis. The data available appears to indicate a high degree of 

plasticity, in both directions, between fibroblasts and other cell types, during 
development. For example, lineage tracing studies suggest that during formation of the 

mouse liver, the majority of fibroblast-like cells (the so called hepatic stellate cells) derive 
from mesothelial cell precursors (Li et al., 2016; Li et al., 2013) and during development 

of murine skin, a subset of fibroblasts differentiate into adipocytes (Driskell et al., 2013) 
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(described below). Furthermore, during development, fibroblasts show phenotypic 

changes at defined time points, for example early embryos heal surface wounds with no 
scarring yet in adult tissues, extensive fibrogenic responses are observed (Redd et al., 

2004). 

 
Another subset of mesoderm-derived cells, called mesenchymal stem cells (MSCs) 

retain pluripotency in adult tissues and are found in the bone marrow, peripheral blood 
and adipose tissue (Sheng, 2015). Because differentiation assays are conducted ex vivo 

and some studies report pluripotency potential of tissue-resident fibroblasts, the 
phenotypic boundary between what is and isn’t an MSC in tissues, and their identification 

in vivo, is often not clear (Soundararajan and Kannan, 2018). 
 

The majority of cell-of-origin studies focus on pathological tissues and a variety of cell 
types have been reported to convert into fibroblasts or fibroblast-like cells during 

pathogenesis  (Haviv et al., 2009; LeBleu and Neilson, 2020). The extent to which these 

processes contribute to the fibroblast pool in disease is actively debated. Epithelial to 
mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT) have 

been shown to variably contribute fibroblast-like cells during the development of fibrotic 
scarring in different organs (Lovisa et al., 2015; Zeisberg et al., 2008). Other cell types 

also appear to have the potential to convert to fibroblast-like cells, including pericytes (Di 
Carlo and Peduto, 2018; Lemos and Duffield, 2018; Rock et al., 2011), adipocytes (El 

Agha et al., 2017; Marangoni et al., 2015) and mesothelial cells (Li et al., 2013). Typically, 
transitions towards fibroblast phenotypes are graduated processes, such that hybrid, 

intermediate cell states are observed (Karacosta et al., 2019). Whether these transitions 

all share a common pattern of epigenetic re-programming or whether there are multiple 
mechanisms by which a cell can transition to a fibroblast-like phenotype is not known. 

Mesenchymal transitions are reported to contribute to fibroblast pool during cardiac 
(Zeisberg et al., 2007), renal (Lovisa et al., 2015), liver (Lee et al., 2014b; Rowe et al., 

2011) and lung fibrosis (Willis et al., 2006) and targeting such processes appears to 
reduce the severity of fibrosis (Grande et al., 2015; Lovisa et al., 2015). Comparability 

between studies can be complicated by the use of different lineage tracing models, 
different methods for fibrosis induction and differing time points of analysis. 
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Lastly, cells of myeloid origin, often referred to as fibrocytes, have been suggested to be 

another source of fibroblasts under inflammatory or fibrotic conditions (Bucala et al., 
1994; Phillips et al., 2004). For example, single cell analysis indicates a potential myeloid 

origin of fibroblasts and adipocytes during and after murine skin wounding (Phillips et al., 

2004). Fibrocytes reportedly show many similarities to circulating monocytes and lose 
immune features on differentiation (Kuwana et al., 2003) making confident identification 

challenging. Interestingly, in a lung fibrosis model, bone-marrow derived cells are able 
to contribute to collagen I deposition in the fibrotic lung but do not act as source of 

αSMA+ myofibroblasts and cannot be converted to αSMA+ myofibroblasts in vitro 
(Hashimoto et al., 2004), potentially suggesting a limit in the ability of distal fibroblast-

like cells to adopt specific fibroblast phenotypes.  The method used for tracking bone 
marrow derived cells cannot differentiate between MSCs and so-called fibrocytes (Abe 

et al., 2001), and it is not clear what contributions each makes individually. 
 

The cell of origin of fibroblasts in health and disease is still an active matter of debate 

and has generated conflicting opinions (Bartis et al., 2014; Galichon et al., 2013; Huang 
and Susztak, 2016; Kriz et al., 2011; Zeisberg and Duffield, 2010).This can be at least 

partially attributed to the different models of fibrosis used, different criteria used to define 
a cell as a fibroblast, non-perfect lineage tracing and depletion systems and differences 

in opinion regarding the best gene promoters or cell identity markers to use to 
successfully target the desired populations. Importantly, whether fibroblasts that derive 

from tissue-resident fibroblasts or from other cells of origin are functionally the same or 
functionally different, is not known. 
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Figure 1. Proposed sources of fibroblasts in disease 
Fibroblasts in fibrotic tissues and tumours have been suggested to derive from expansion of local 

fibroblasts as well as a variety of other cellular sources. Distinct lineages of tissue-resident fibroblasts have 
been demonstrated in murine skin but whether distinct fibroblast lineages exist in other organs is unknown. 

Lineage tracing studies have revealed the capacity of several mesenchymal and non-mesenchymal cell 
types to adopt fibroblast-like features during pathogenesis. It is not clear if fibroblasts from different cells of 

origin contribute the same or different functions during disease progression. 
 
 
1.1.4 – Epigenetic control of fibroblast identity 

 
Dermal fibroblasts isolated from different anatomical locations and from donors of 

different ages, have functional divergence in their ability to promote epidermal 
differentiation and the wound healing response (Hausmann et al., 2019). In addition, 

dermal fibroblasts isolated from different anatomical positions, retain transcriptomic 
differences, even after extended in vitro culture (Chang et al., 2002; Rinn et al., 2006). 

These gene expression signatures and epigenetic positional ‘memory’ have been 

associated with specific DNA methylation patterns in fibroblasts, that are retained 
through culture and cell divisions (Ivanov et al., 2016). DNA methylation remodelling also 

occurs during fibroblast activation in vivo and is a commonly observed feature of many 
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human diseases, including chronic obstructive pulmonary lung disease (COPD) (Clifford 

et al., 2018), rheumatoid arthritis (Karouzakis et al., 2018) and systemic sclerosis 
(Bergmann and Distler, 2017). Methylation changes to the protomer regions of specific 

genes in fibroblasts have been directly linked to sustained activation and enhanced 

pathology. For example, hypermethylation and silencing of the Rasal1 gene promoter, 
maintains renal fibroblast activation and drives kidney fibrosis (Bechtel et al., 2010).  

 
Targeting activated fibroblasts with epigenetic modifiers has demonstrated an ability to 

alter fibroblast activation status in vitro and in vivo. For example, inhibition of the acetyl-
histone binding protein, BRD4 using JQ1, suppresses Acta2 and Postn expression in 

fibroblasts during cardiac fibrosis (Stratton et al., 2019), inhibition of histone deacetylase 
using Vorinostat (suberoylanilide hydroxamic acid, SAHA), suppresses collagen 

expression in lung fibroblasts during lung fibrosis (Zhang et al., 2013) and treatment of 
fibroblasts from human tumours with dual JAK and DNMT1 inhibitors reverts their 

invasive phenotype (Albrengues et al., 2015).  

 
As well as the epigenetic stability observed as ‘positional memory’ and ‘memory of 

activation’, fibroblasts also have a well-documented capacity to undergo epigenetic and 
phenotypic re-programming. Fibroblasts are the most widely used cell type for 

reprogramming and iPSC studies (although this is partly due to their ease of in vitro 
expansion) (Liebau et al., 2013; Raab et al., 2014) and fibroblasts isolated from different 

tissues have distinct and well-defined capacities to undergo epigenetic reprogramming 
(Sacco et al., 2019).  

 

1.1.5 – Fibroblast heterogeneity and functions in the development and 
homeostasis of healthy organs 

 
During healthy organ development and homeostasis, fibroblasts are thought to be a 

major contributor to the synthesis, maintenance and modification of the bulk of tissue 

ECM networks, as well as the basement membrane, which itself has a well-established 
role in supporting normal epithelial and endothelial cell function (Kalluri, 2003; LeBleu et 

al., 2007). Fibroblasts also have an increasing number of reported non-ECM functions 
during development and homeostasis, such a paracrine signalling to other cell types 

(Werner and Smola, 2001). To date, the most detailed fibroblast functional studies 
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conducted have focussed on the roles of fibroblasts in the development, homeostasis 

and response to injury in mammalian skin. Using a variety of lineage tracing and 
transplantation models, these studies have provided detailed evidence of heterogeneous 

lineages of fibroblasts (see below). These dermal fibroblast lineages have distinct 

differentiation pathways, locations, markers and functions, highlighting a ‘division of 
labour’ within the fibroblast compartment of the skin, that is imprinted during organ 

development. 
 

Murine dermal fibroblasts derive from a multipotent mesenchymal cell population seen 
at E12.5, which expresses PDGFRα, delta-like homolog 1 (DLK1) and leucine-rich 

repeat protein (LRIG1) (Driskell et al., 2013). This shared precursor then differentiates 
at around E16.5 into fibroblasts that reside in the upper and lower dermis. During 

development, the upper dermis precursor expresses ITGα8, CD26, LRIG1 and B 
lymphocyte-induced maturation protein (BLIMP1). This upper dermis precursor goes on 

to form papillary dermal fibroblasts that support the function of the epidermis and 

basement membrane, the dermal papilla that supports hair follicle morphogenesis and 
the arrector pili muscle cells required for piloerection (Egawa et al., 2009; Fujiwara et al., 

2011). Associated with each of these stages are defined changes in marker expression, 
for example the arrector pili begin to express Acta2 (αSMA). The lower dermis precursor 

continues to expresses PDGFRα and DLK1 and goes on to form reticular dermal 
fibroblasts (DLK1+), that generate the bulk of the fibrillar ECM network of the thicker 

lower dermis, as well as pre-adipocytes and adipocytes (Sca1+Lipids+) of the 
hypodermis, collectively required for insulation, energy storage, ECM production and 

paracrine signalling to epidermal stem-cell niches (Donati et al., 2014; Driskell and Watt, 

2015; Festa et al., 2011; Sorrell and Caplan, 2004; Wojciechowicz et al., 2013). At 
specific time points, lineage commitment is found to become irreversible, for example 

upper dermal fibroblasts isolated at E16.5 can be made to differentiate into adipocytes 
in culture but do not do so from P2 isolations (Driskell et al., 2013). After wounding of 

adult murine skin, the lower lineage mediates the initial wave of dermal repair via 
extensive ECM deposition, that is characteristic of fibrosis. The upper lineage is recruited 

later, during re- epithelialization and is required for hair follicle formation. Subsequently, 
use of an irreversible Engrailed-1 (En1) lineage tracing model identified distinct murine 

skin fibroblast lineages that are present during embryonic development (Rinkevich et al., 
2015). Dermal fibroblasts with historical Eng1 expression appear to make a larger 
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contribution to connective tissue deposition during development, fibrosis and cancer 

stroma formation. Heterogenous fibroblast populations have now also been observed in 
human skin samples and several of the markers noted in the murine experiments (e.g. 

CD26), show uneven distribution across different human skin fibroblast clusters 

(Philippeos et al., 2018; Tabib et al., 2018). CD39 can be used to isolate the human 
papillary population and CD36 can isolate the human lower reticular/hypodermal 

population in human skin (Philippeos et al., 2018). Although these markers are lost on 
culture, phenotypic differences between the populations are still apparent, with the 

CD39+ papillary fraction better supporting ex vivo epidermal growth and the papillary 
CD36+ lower dermis/hypodermal populations having higher sensitivity to IFNγ. 

Interestingly, related to the DLK1+ lower dermis fibroblast precursor seen during murine 
skin development, a subset of DLK1+ fibroblasts have also recently been observed in 

breast cancer samples (Kieffer et al., 2020). Collectively, these results suggest that 
specific fibroblast populations may be conserved across species and also potentially 

present in multiple different mammalian organs. 

 
Little is known about whether functionally distinct fibroblast lineages contribute to tissue 

development and homeostasis of other organs. However, a rapidly increasing number of 
single cell RNA sequencing (scRNAseq) studies are revealing fibroblast transcriptional 

heterogeneity in healthy and diseased mammalian tissues, including in the lung ((Tsukui 
et al., 2020; Valenzi et al., 2019; Xie et al., 2018), liver (Dobie et al., 2019; Xiong et al., 

2019), kidney (Park et al., 2018), mammary tissue (Bartoschek et al., 2018), skin 
(Vorstandlechner et al., 2020), synovial joints (Croft et al., 2019), bone marrow 

(Baryawno et al., 2019) and lymph nodes (Rodda et al., 2018). Several scRNAseq 

studies not principally aimed at understanding fibroblast diversity, have also 
inadvertently demonstrated extensive fibroblast heterogeneity in mice, non-human 

primates and humans and provide additional resources to better characterise gene 
expression differences between fibroblast subsets across tissues and species (Ziegler 

et al., 2020). Such single cell analysis is providing substantial evidence that 
transcriptional heterogeneity exists within fibroblasts of mammalian tissues. However, 

further work is needed to understand whether these equate to functionally distinct 
populations and if so, what their specific impact is on development, homeostasis and 

pathogenesis. For example, it is typically not known whether the transcriptionally distinct 
fibroblast populations identified in these scRNAseq studies represent the same parental 
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fibroblast in different phenotypic states or represent distinct, non-interchangeable 

fibroblast lineages. The studies of functional fibroblast heterogeneity in mammalian skin 
described above suggest that a detailed understanding of fibroblast heterogeneity will 

an essential prerequisite to accurately assigning fibroblast function in vivo. 

1.2 - Fibroblasts in tumours  
 

1.2.1 – Defining fibroblasts in tumours 

 

Typically, fibroblasts in tumours (also termed cancer-associated fibroblasts (CAFs)) are 
defined in a similar manner to fibroblasts in healthy organs: negative expression of 

epithelial, endothelial and leukocyte markers, positive expression of mesenchymal 
markers and with, where applicable, spindle or elongated morphology. As for healthy 

tissues, this fraction of cells will also contain other mesenchymal cell types, such as 
pericytes. Moreover, in tumours this broad definition of fibroblasts will also include any 

cancer cells that have undergone an epithelial to mesenchymal transition (EMT) 

(Karacosta et al., 2019). Indeed, lineage tracing experiments in mice have shown that 
EMT can be a major contributor to what appears to be the mesenchymal compartment 

of tumours (Rhim et al., 2012). Because mesenchymal cancer cells contribute to disease 
progression in a very different manner to fibroblasts, it is vitally important to be able to 

separate fibroblasts from EMT cancer cells when analysing tumours. There is no known 
single, complete marker that can separate non-transformed and transformed 

mesenchyme in tumours and therefore care needs to be taken when assigning fibroblast 
identity generally, but particularly so in tumours. 

 

Several factors have likely contributed to the lack of clarity on the optimal markers 
required to accurately identify fibroblasts in tumours, including tissue-specific differences 

between fibroblasts (Lemos and Duffield, 2018), the plasticity of the fibroblast phenotype 
(Ohlund et al., 2017), the heterogeneity of human cancers (Consortium, 2020), the 

intense and variable ‘wound’ and inflammatory conditions of the TME (Ohlund et al., 
2014) and the misclassification of mesenchymal cancer cells or other stromal cell types 

as fibroblasts (Rhim et al., 2012). Indeed, the fact that fibroblasts may derive from a 
diverse range of other cell types and graduated nature of such transitions, may mean 
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precisely defining the boundary between a fibroblast and another cell type may be 

inherently challenging. 
 

1.2.2 – The origin of fibroblasts in tumours 

 
The origin of fibroblasts in human tumours is largely unknown. A detailed understanding 

of changes to the TME during progression of human tumours is lacking because biopsies 

are normally taken long after tumour initiation and taking serial biopsies of the same 
lesion is rare, although longitudinal tumour studies are increasingly being conducted 

(Nature Research TRACERx Collection, 2020). As such, mouse models are the main 
source of information regarding various contributions to the fibroblast pool in tumours, 

even though it is not clear how well mouse model systems recapitulate fibroblast 
behaviour in human tumours (discussed in Chapter 10). As for tissue fibrosis, local 

tissue-resident fibroblasts are thought to be a major contributor to fibroblasts in tumours. 
This is because they are present in most healthy organs and fibroblast expansion is seen 

early during tumourigenesis, at a time point when conversion of large numbers of other 
cells types or sufficient recruitment of precursors from distal locations seems unlikely 

(Collins et al., 2012). However, a lack of robust lineage tracing models for tissue-resident 

fibroblasts, applied in the context of spontaneous tumour formation, has precluded 
formal proof of this (Sahai et al., 2020). Also, in line with observations in fibrotic 

conditions described above, lineage-tracing methods have been used to demonstrate 
that other tissue-resident cell types have the potential to undergo transitions towards 

mesenchymal and fibroblast-like phenotypes in tumours and other fibrotic conditions. As 
for fibrosis, these include endothelial cells (Potenta et al., 2008), pericytes (Di Carlo and 

Peduto, 2018; Lu and Shenoy, 2017), adipocytes (Bochet et al., 2013; El Agha et al., 
2017) and mesothelial cells (Rynne-Vidal et al., 2015). 

 
Bone-marrow derived MSCs have been suggested a possible distal source of fibroblasts 

in tumours but current evidence indicates a minor contribution. Analysis of cancer 

patients that have previously received sex-mismatched bone marrow transplantation 
indicates that between 1-5% of fibroblast-like cells in human tumours are bone marrow-

derived (Kurashige et al., 2018). Another study using bone-marrow chimeric mouse 
models, indicates ~10% of the fibroblasts in murine skin tumours derive from bone-

marrow stromal cells (Lecomte et al., 2012) and a second similar study suggests the 
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bone marrow contribution to tumour fibroblasts is <1% (Arina et al., 2016). As for fibrosis 

studies, such bone marrow chimera experiments would be expected to simultaneously 
measure a contribution from MSCs and so-called fibrocytes (Abe et al., 2001). As for 

fibrosis, it is currently not known if fibroblasts that originate from different cell types, are 

functionally different to each other and to tissue-resident fibroblasts in tumours. 
 

1.2.3 – The accumulation of fibroblasts in tumours 

 
Some of the first evidence that fibroblasts may be important to tumour biology, was the 

demonstration by the Stokers laboratory that fibroblasts can inhibit growth of polyoma-
transformed cells, over 50 years ago (Stoker et al., 1966). 20 years later, seminal 

experiments conducted by the Bissell laboratory demonstrated that local tissue 
wounding promotes Rous sarcoma virus-mediated tumour formation (Dolberg et al., 

1985). Even within just these two early studies, a dichotomous role for the fibrotic tumour 
microenvironment in tumour formation and progression was beginning to emerge. Mouse 

models indicate that expression of oncogenic KRAS in the epithelial compartment results 
in activation of adjacent, non-transformed mesenchymal cells and this single genetic 

transformation on its own, is capable of initiating a local wound-like, fibrotic response 

(Collins et al., 2012). Indeed, fibroblast expansion is commonly observed within 
premalignant or early primary and metastatic lesions of these models (Aiello et al., 2016; 

Hingorani et al., 2003). ~90% of human cancers are defined as carcinomas, with 
epithelial features (Rogalla and Contag, 2015) and a generic wound healing response 

initiated by oncogenic processes, such as mutant KRAS, presumably reflects the 
continuous engagement of processes that have evolved to detect and contain epithelial 

tissue damage and initiate complex repair processes. The ability of cancer cells to 
persist, means there is no resolution phase of the ‘cancer-wound’ and the fibroblast-

mediated processes occurring in tumours may show parallels with those occurring in 
chronic, and perhaps to a lesser degree, acute fibrotic conditions. Indeed, the notion of 

tumours as ‘wounds that do not heal’ has become a central concept in the field of the 

TME (Bissell and Hines, 2011; Dvorak, 2019). Notably, there are far more published 
studies on either fibroblast functions in fibrosis or fibroblast functions in cancer, than 

there are studies that directly compare the two pathologies. Therefore, a detailed, 
quantitative understanding of how similar tumour and non-tumour fibroblast-mediated 

processes are is lacking.  



 29 

 

Fibroblast accumulation is a common feature of many tumours and consistent 
differences are observed between different tumour types. For example, breast, prostate 

and pancreatic tumours typically show higher fibroblast abundance than brain, renal and 

ovarian cancers (Aboussekhra, 2011; Augsten et al., 2009; Neesse et al., 2011; Ohlund 
et al., 2014; The Human Protein Atlas, 2020). Oncogenic processes that have been 

linked to fibroblast activation, such as KRAS and MAPK pathway hyperactivation, are a 
shared feature of many cancer types, yet not all tumours with these mutations 

accumulate fibroblasts to similar magnitudes, suggesting factors beyond just the specific 
identity of oncogenic mutations regulates fibroblast abundance in tumours. Indeed, even 

within a single tumour type, a wide variation in ‘tumour fibrosis’ is observed. The key 
factors that determine whether a tumour will accumulate many or few fibroblasts are 

poorly defined. 
 

1.2.4 – Fibroblast recruitment and activation in tumours and other pathologies 

 
Expansion of the fibroblast compartment is observed in several tumour types and 

fibroblasts in tumours are found to be epigenetically and metabolically distinct from 

fibroblasts in normal tissues (Albrengues et al., 2015; Zhang et al., 2015). Expansion of 
fibroblasts in tumours is associated with increased deposition of type I, III and IV 

collagens, laminins, elastin, fibronectin, tenascin and water holding glycoproteins 
(Kalluri, 2016), as well enhanced ECM modification, for example through altered 

collagen crosslinking via lysyl oxidases (Cox et al., 2013). Moreover, fibroblasts play a 
key role in dictating ECM degradation dynamics and turnover rates, for example via 

expression of matrix metalloproteinases (MMPs) or tissue inhibitor of metalloproteinases 
(TIMPs) (Gong et al., 2013). A state of high ECM expression and modification is thought 

to be a major activation phenotype of fibroblasts in tumours. However, non-fibrotic, 
inflammatory states have now also been described (Erez et al., 2010), suggesting 

fibroblasts can exist in a complex array of phenotypes in tumours, some of which may or 

may not be analogous to those observed in fibrotic conditions. 
 

As described above, mouse models have indicated that fibroblast activation is 
downstream of oncogenic transformation, such that if essential driver mutations are 

removed, the stroma normalises and the fibroblast compartment returns to a state 
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indiscernible from that of the normal tissue (Collins et al., 2012). Thus, sustained 

fibroblast activation in tumours, is an active, continuous process, driven by factors either 
derived directly from the tumour cells themselves or indirectly from other cells or 

environmental conditions that are only present in the tissue because of the tumour cells. 

This supports the concept that fibroblast activation is a dynamic state and that it may be 
a viable therapeutic strategy to target key fibroblast activation processes, if they 

contribute to tumour progression and treatment failure. 
 

Fibroblasts exposed to TGFβ undergo metabolic reprogramming (Guido et al., 2012) and 
activate towards a phenotype that most closely matches that described as the 

‘myofibroblast’ phenotype, or ‘MyCAFs’ in tumours. Typically the myofibroblast state is 
defined as increased αSMA expression and increased stress fibre formation (Ohlund et 

al., 2017) and is associated with increased ECM expression and a capacity to transmit 
contractile forces via the actin cytoskeleton and ECM network (Vennin et al., 2017). This 

increases tissue stiffening, which itself has a variety of complicated downstream effects, 

including increased proliferation of the epithelium (Provenzano and Keely, 2011). 
Increased environmental stiffening has also been shown to induce the myofibroblast 

phenotype and sustain it in a feed-forward loop, in a process that is dependent on YAP- 
and ROCK-mediated signalling (Calvo et al., 2013). TGFβ is secreted in a latent form 

and requires covalent attachment to the ECM prior to release of the active ligand, a 
process in itself that is facilitated by other ECM components (e.g. thrombospondin-1) or 

cell surface integrins (e.g. αvβ6) (Annes et al., 2003). The exact relationship and 
sequence of events between TGFβ activation, ECM deposition, the myofibroblast 

phenotype, cell contractibility and microenvironmental stiffness is not clear, and is further 

complicated by the fact that fibroblasts secrete TGFβ-family ligands that can act in an 
autocrine manner (Ohlund et al., 2017) and that TGFβ1, TGFβ2 and TGFβ3 appear to 

have different functions in vivo (Gilbert et al., 2016). Activation of the vitamin D receptor 
(VDR) in fibroblasts is antagonistic to the TGFβ1-induced pro-fibrotic response via 

competition at SMAD binding sites (Ding et al., 2013) and synthetic agonists of the VDR 
(e.g. calcipotriol) suppress the myofibroblast-like phenotype (Sherman et al., 2014). IL1α 

activation induces a phenotype distinct from the myofibroblast phenotype (Ohlund et al., 
2017) and because of increases in expression of several cytokines (with known roles in 

inflammation (e.g. Il6)), this phenotype has been named the ‘inflammatory fibroblast’, or 
‘iCAF’ phenotype. Interestingly, TGFβ1 antagonises the IL1-induced phenotype, 
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suggesting the MyCAF- and iCAF-like states are to some extent distinct and competitive 

polarisations (Biffi et al., 2019). 
 

Oncogenic KRAS in PDA cancer cells directly upregulates SHH expression, which 

induces hedgehog signalling and secretome changes in co-cultured fibroblasts (Tape et 
al., 2016). In addition, PDA cancer cell-derived SHH is a major driver of fibroblast 

expansion in GEMM tumours in vivo (Lee et al., 2014a; Rhim et al., 2014; Shin et al., 
2014). LIF is capable of inducing expression of multiple inflammatory genes in fibroblasts 

via STAT3-signalling and can act in a paracrine manner from PDA cancer cells (Shi et 
al., 2019) or in a self-sustaining autocrine manner in fibroblasts of specific inflammatory 

polarisations (Nguyen et al., 2017). Interestingly, LIF is part of the iCAF-like gene 
expression program, suggesting autocrine LIF signalling may be one way in which an 

inflammatory fibroblast phenotype is reinforced and sustained in vivo (Biffi et al., 2019). 
FGF-family and PDGF-family ligands are also known activators of fibroblasts in tumours 

and have mainly been described as fibroblast mitogens (Bhattacharyya et al., 2020; 

Zhou et al., 2018). In addition, WNT and NOTCH signalling have established roles in 
skin and synovial fibroblast activity, respectively (Driskell and Watt, 2015; Wei et al., 

2020) but these activation pathways are less studied in tumour fibroblasts. How SHH-, 
PDGF, FGF, LIF, WNT and NOTCH pathway-induced fibroblast phenotypes overlap or 

contrast with the more established MyCAF and iCAF phenotypes is not clear, although, 
for example, FGF ligands appear to have the potential to antagonise TGFβ-mediated 

activation (Bordignon et al., 2019), highlighting the interactive nature of these signalling 
networks. 
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Figure 2. Fibroblast activation in PDA tumours 
Naïve pancreatic fibroblasts can be activated towards a myofibroblast phenotype by TGFβ receptor 
activation or local tissue stiffening. The myofibroblast phenotype is characterised by increased Acta2 

expression, αSMA stress fibre formation, and deposition of ECM proteins, particularly collagens. IL1α is 
able to induce an inflammatory fibroblast state, characterised by reduced expression of Acta2 and 

increased expression of variety of soluble chemokines, including Il6, Cxcl1, Ccl2 and Csf3 (GCSF). TGFβ 
signalling has been shown to antagonise the inflammatory phenotype (Biffi et al., 2019). It is not clear what 

other factors can induce the two major phenotypes. In addition, it is poorly understood whether other 
known fibroblast activators are able to modulate the myo- or inflammatory-fibroblast phenotype or whether 

they induce distinct phenotypes. 
 
Reactive oxygen species (ROS) (Bocchino et al., 2010) and hypoxia (Madsen et al., 

2015) have also been shown to alter fibroblast activity and phenotype, although whether 
the key processes that occur under these conditions are generic responses (as for other 

cell types) or fibroblast-specific responses, is not well established. Understanding of 
fibroblast activation generally and comparisons between different ligands and different 

studies is complicated because of the use of various in vitro and in vivo assays, different 
end point measurements (e.g. proliferation versus gene expression), different ligand 

concentrations used, different time points for measuring a response and the presence of 
multiple paralogs within several of the protein families, often with different receptor 

affinities and functions. 
 

Fibroblast activation, fibrosis and inflammation are highly intertwined and possibly 

inseparable biological processes (Croft et al., 2019) and thus the more general 
terminology of a ‘fibroinflammatory’ state may be more reflective of the range of 

phenotypic states occurring in tumours and fibrotic tissues. For example, deletion of the 
interleukin receptor, Il17ra in cardiac fibroblasts, reduces fibroblast secretion of the 
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potent myeloid cytokine, GM-CSF and limits cardiac fibrosis and tissue damage. As well 

as responding to common inflammatory signals, fibroblasts can act as immune-like 
sentinels to initiate early inflammatory responses to pattern-associated molecular 

patterns (PAMPs) and damage-associated molecular patterns (DAMPs), for example via 

expression of toll-like receptors (TLRs) (Bautista-Hernandez et al., 2017; Bhattacharyya 
et al., 2017). In addition, fibroblasts are able to sense genomic stress in adjacent cancer 

cells via cytoplasmic transfer and fibroblast STING/IRF3-pathway activation, which 
results in IFNβ expression (Arwert et al., 2020). Fibroblasts as innate-like sentinels may 

take advantage of their wide distribution throughout tissues and close proximity to a 
variety of pathogen entry sites, such as the epithelium, basement membrane and 

vasculature. 
 

Targeting fibroblasts via blockade of activation processes has been proposed as a 
therapeutic strategy in cancer (Chen and Song, 2019). Two key factor needs to be 

considered when targeting any fibroblast activation process. Firstly, these activating 

factors influence the behaviour of many other cells types in the TME (including cancer 
cells themselves) and systemically, therefore targeting such pathways will likely have 

complex results.  Secondly, fibroblasts have pleotropic effects on the TME, so targeting 
a single activation pathway, even if specific to fibroblasts only, may have both pro- and 

anti-tumourigenic effects, with an unknown net result. Much more work is needed to 
better characterise fibroblast activation in the context of tumour biology. 

 

1.2.5 – Pancreatic ductal adenocarcinoma (PDA) 

 

Pancreatic cancer is the 14th most common cancer and 7th highest cause of cancer 
mortality in the world (Frere et al., 2018). The lifetime risk of pancreatic cancer is ~1% 

(Del Chiaro et al., 2014). >450,000 diagnosis and >400,000 deaths are reported each 
year (Bray et al., 2018; Ferlay et al., 2019; Rahib et al., 2014; Zafar et al., 2019), with 

incidence and death rates increasing in Western countries by ~1% year on year (Saad 

et al., 2018). Rising incidence of pancreatic cancer and improved outcomes in other 
cancer types have meant that pancreatic cancer is projected to become the 2nd leading 

cause of cancer-related death in the United States by 2030 (Rahib et al., 2014). 
Pancreatic ductal adenocarcinoma (PDA) accounts for >90% of all pancreatic cancers 
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and carries the worst prognosis (Feldmann et al., 2007), with an average 5-year survival 

of 8-9% (American Cancer Society, 2019). 
 

80-85% of PDA patients are not eligible for surgical resection because PDA is typically 

detected late, when locally advanced or overt metastatic disease is radiographically 
detectable (Hong et al., 2012). Even if surgical resection is able to remove the entire 

macroscopic tumour with clean surgical margins, recurrence occurs in the vast majority 
of PDA patients that undergo surgery. 

 
Patients with metastatic disease often receive FOLFIRONOX (a combination of high 

dose 5-fluorouracil, irinotecan, leucovorin and oxaliplatin) which improves overall 
survival (OS) to 11.1 mo, compared to 6.8 mo for gemcitabine alone, but is associated 

with multiple adverse effects and is often poorly tolerated (Vaccaro et al., 2011). For 
patients who are too unwell for FOLFIRINOX treatment (as often occurs due to rapid 

disease progression), elect not to receive it or experience dose-limiting toxicities, there 

are a limited number of better tolerated but less efficacious chemotherapy regimens. For 
example, the MPACT trial demonstrated that gemcitabine plus an albumin-bound 

paclitaxel formulation (Abraxane) was better tolerated and improved OS to 8.7 mo 
compared to 6.6 mo with gemcitabine alone (Goldstein et al., 2015; Von Hoff et al., 

2013). 
 

The PDA mutational spectrum is dominated by high frequency mutations in a currently 
undruggable oncogene (KRAS, >90%) and loss of function mutations of a range of 

tumour suppressors (TP53, CDKN2A, SMAD4, typically each >60%), with a long ‘tail’ of 

additional low frequency mutations in genes involved in a variety of cellular processes 
(Bailey et al., 2016; Cancer Genome Atlas Research Network, 2017). As such, the 

majority of PDA patients do not have an obvious druggable oncoprotein or vulnerability 
that can be targeted and the targeted therapies, that have become integrated into patient 

care in many other cancer types, have had no impact to the standard of care for most 
PDA patients (Drilon et al., 2018; Golan et al., 2019). Single agent immune checkpoint 

blockade has also failed in PDA  (Brahmer et al., 2012; Henriksen et al., 2019), although 
the small minority of pancreatic cancer patients with defects in the DNA mismatch repair 

pathway (~1% for PDA) show benefit with anti-PD-1/PD-L1 therapy (Le et al., 2017; Le 
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et al., 2015). Alternative therapies with improved efficacy and reduced toxicities are 

urgently needed to improve the quality of life of PDA patients. 
 

The healthy adult pancreas consists of predominantly acinar cells, which are exocrine 

cells responsible for digestive enzyme production, and a network of ductal cells 
responsible for digestive enzyme transport to the duodenum. Interspaced among the 

acinar structures are the pancreatic islets, responsible for endocrine functions, such as 
glucose regulation through insulin and glucagon release, and a network of blood and 

lymphatic vessels. Mesenchymal, fibroblast-like cells, which are present throughout the 
organ, are in close contact with all of these structures (Wang et al., 2016). Autopsy 

analysis of apparently healthy adult human pancreas samples indicates that within the 
normal pancreatic tissue, non-invasive microscopic lesions with duct like morphology, 

called pancreatic intraepithelial neoplasia (PanINs) can frequently be observed and are 
surprisingly common in older people (Andea et al., 2003; Hruban et al., 2001; Hruban et 

al., 2008). It is from PanINs that human PDA is thought to develop, an observation 

supported by mouse models (Kozuka et al., 1979). Notably, experiments using 
transgenic mice have suggested that a major cell of origin for PanINs is transformed 

acinar cells, that undergo acinar to ductal metaplasia (ADM) (Hingorani et al., 2003). It 
is unknown if acinar cells are the precursor cell of origin for human PDA. The frequency 

of PanIN lesions has been shown to increase with age (Schwartz and Henson, 2007) 
and modelling has suggested that progression from early stage PanINs to PDA takes 

>10 years (Peters et al., 2018; Yachida et al., 2010). Typically, the development of PDA 
is associated with the formation of an abundant stromal reaction and in particular, the 

accumulation of activated fibroblasts in the TME (Mueller et al., 2018). The lack of 

longitudinal studies have meant that how the TME and the fibroblast compartment 
evolves as PDA progresses in humans, is largely unknown, although stromal 

desmoplasia is observed at both primary and metastatic PDA sites and where matched 
samples are available, there does appear to be some concordance with the level of 

stromal reaction (Whatcott et al., 2015). It is still a matter of debate whether this extensive 
desmoplastic stromal reaction has a net pro- or anti-tumourigenic effect on disease 

progression (Bissell and Hines, 2011). A minority of PDA tumours do not show this 
desmoplastic reaction and the key molecular drivers that dictate whether one PDA 

tumour has more or less fibroblast accumulation than another and the clinical 
consequences of the fibroblast accumulation, are not well defined. 
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Figure 3. The progressive stages of PDA development 
Mouse models have shown that oncogenic Kras is sufficient to initiate PanIN formation. Increasing levels 

of cellular atypia and increasing numbers of mutations occur with time. In parallel to changes in the 
epithelium, a desmoplastic stroma develops, containing altered fibroblast accumulation, immune cell 

infiltrate and ECM deposition and modification. Subsequent LOF mutations in key tumour suppressors (or 
often epigenetic silencing, in the case of the Cdkn2a locus), is sufficient to result in overt adenocarcinoma, 

characterised by invasive and metastatic potential. 
 
1.2.6 – Modelling the PDA tumour microenvironment 

 

The low resection rates of PDA have greatly limited the availability of surgical biopsies 
for research purposes. This, combined with poor human PDA engraftment potential, 

have also limited the use of patient-derived xenografts (PDXs) to study PDA (Xu et al., 

2019). In addition, transplantation of 2D in vitro cultured human and murine PDA cell 
lines into mice does not induce the stromal response that is typical of the human disease 

(Baker et al., 2016). Therefore, the majority of researchers have turned to genetically 
engineered mouse models (GEMMs) of PDA for preclinical modelling. By far the most 

frequently used model is the Pdx1-Cre; KrasLSL-G12D/+; Trp53LSL-R172H/+ (KPC) GEMM. In 
this model, a conditional oncogenic Kras transgene is inserted into the endogenous Kras 

locus, replacing a single wild-type (WT) Kras allele. Importantly, this allows 
physiologically relevant gene expression when oncogenic Kras is expressed. In addition, 

a single allele of WT Trp53 is replaced with a conditional Trp53 transgene that mainly 
functions through loss of function (LOF) but also appears to have some gain of function 
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(GOF) oncogenic properties (Weissmueller et al., 2014). Oncogenesis is induced in the 

pancreas during embryonic development by Cre-recombinase expression in epithelial 
cells with active Pdx1 expression. The Cre-recombinase, recombines loxp sites that flank 

stop codons in the transgenes and oncogene expression is irreversibly initiated. Primary 

tumours develop that match several clinical, histopathological and genomic hallmarks of 
human PDA, including local invasion followed by metastatic spread to predominantly the 

liver, cancer-associated cachexia, primary drug resistance, progression through 
increasingly dysplastic PanIN stages to adenocarcinoma, a highly stiffened and 

hypovascular microenvironment with abundant ECM deposition, αSMA+ fibroblasts and 
genomic instability with features of complex, nonreciprocal translocations without 

telomere erosion (Gopinathan et al., 2015; Hingorani et al., 2005; Singh et al., 2010). 
Whilst matching these aspects of the human disease, several important aspects 

regarding the accuracy of the KPC GEMM for human PDA modelling, remain to be fully 
explored. These include a lack of clarity on the relevance of using this predominantly-

primary tumour model to explore human PDA, which is typically a metastatic disease 

and whether the KPC can model the range of classical and squamous PDA 
differentiations seen in humans. In addition, transgene activation and inflammation 

occurs throughout the entire pancreas, the resulting tumours are often multifocal and all 
non-transformed cells in the mouse have only one copy of WT Kras and Trp53, all with 

unknown consequences. Moreover, there is a lack of clarity on how well the model 
predicts therapeutic sensitivity and there is a notable lack of direct comparisons of the 

cellular composition of the TME between murine and human tumours, particularly with 
respect to fibroblast composition (Gengenbacher et al., 2017; Gopinathan et al., 2015; 

Ireson et al., 2019). 

 

1.2.7 – Transcriptional and surface marker heterogeneity of PDA fibroblasts  

 
As for many other tissues and tumour types, scRNAseq has revealed extensive 

transcriptional heterogeneity within fibroblasts from PDA tumours (Bernard et al., 2019; 

Dominguez et al., 2020; Elyada et al., 2019; Hosein et al., 2019). Elyada et al. observe 
3 distinct fibroblast-like clusters from KPC GEMM tumours and 2 distinct fibroblast-like 

clusters in human PDA samples. Domingeuz et al. observe a total of 6 distinct clusters 
of fibroblast-like cells across normal murine pancreas and KPP GEMM (Pdx1-Cre; 

KrasLSL-G12D/+; p16/p19fl/fl) tumours (Dominguez et al., 2020). In both studies, several of 
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the clusters have differential expression of selected MyCAF and iCAF genes and thus 

polarisation between myofibroblast-and inflammatory-like fibroblast states appears to be 
a common and major driver of transcriptional differences in PDA fibroblasts. 

Compatibility between the studies is complicated by different analytical workflows, 

different selected MyCAF/iCAF genes and the use of the KPC GEMM in the former and 
an alternative, less characterised PDA GEMM, the KPP, in the later.  

 
Elyada et al. go on to isolate fibroblasts with iCAF-like features using surface Ly6C 

expression, a second fibroblast-like population based on an MHCII expression reporter 
and a third population that lacks these markers and is suggested to overlap with the 

MyCAF-like phenotype. Domingeuz et al. isolate a MyCAF-like population based on 
LRRC15. Both studies show divergent functions of these fibroblast-like cells in co-culture 

experiments, with CD4 T cells and PDA cancer cells respectively, but the stability of the 
fibroblast phenotypes in vitro was not assessed and the relevance of these phenotypes 

in vivo are not known. The authors suggest that the LRCC15+ fibroblast signature 

predicts immunotherapy failure, but because this signature is effectively a myofibroblast 
signature (that can be induced in TGFβ-rich environments) and TGFβ is potently 

immunosuppressive, it is hard to determine if immunotherapy response is in any way 
related to fibroblasts or is simply a downstream readout for a high-TGFβ and 

immunosuppressed environment. 
 

FAP was identified as a putative marker of a subpopulation of fibroblasts in PDA tumours 
over 10 years ago (Feig et al., 2013; Kraman et al., 2010) and has also since been 

observed to be expressed on fibroblasts in other tumour types (Costa et al., 2018; Kieffer 

et al., 2020) and in other fibrotic pathologies (Aghajanian et al., 2019). There is conflicting 
data on the distribution of FAP on fibroblasts in PDA: one study has suggested FAP 

protein expression overlaps with the myofibroblast phenotype by IHC in PDA tumours 
(Ohlund et al., 2017), whilst one scRNAseq study suggests that the Fap gene it is equally 

expressed in all activated fibroblasts in PDA (Elyada et al., 2019) and a second 
scRNAseq study suggests that normal pancreatic fibroblasts have equally high 

expression of Fap as fibroblasts in PDA (Dominguez et al., 2020). The reasons for the 
differences between these studies and the exact population that FAP expression 

identifies are not clear. 
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As mentioned above, surface expression of PDGFRα and PDGFRβ are used as 

fibroblast markers but appear to have variable expression depending on the 
tissue/tumour being analysed and the activation state of the fibroblasts (Dominguez et 

al., 2020; Ohlund et al., 2017; Sugimoto et al., 2006). A study in breast cancer samples 

suggests GPR77 and CD10 demarks a fibroblast population with high NFkB signalling 
(Su et al., 2018). Interestingly, C5a signalling via GRP77 was functionally important for 

the pro-tumourigenic function of this fibroblast population in an immune deficient PDX 
model. Whether GPR77/CD10 also identifies a fibroblast subpopulation in PDA is not 

known. 
 

1.2.8 – Evidence for tumour-promoting and tumour-suppressive functions of 

PDA fibroblasts 
 

Laser capture microdissection of human PDA tumours has identified ECM-rich and 
immune-rich environments, with the ECM-rich being associated with reduced survival, 

especially within the squamous PDA cancer subtype (Maurer et al., 2019). A second 
study of human PDA samples indicates that lower levels of stroma are associated with 

metastatic disease and that high levels of stroma are predictive of improved survival 

(Torphy et al., 2018). Such studies may support the idea that different TME environments 
can influence disease progression in humans but tell us little about whether these stromal 

elements are driving tumour progression or are simply a downstream product of the key 
processes that are. For example, as for the findings from Dominguez et al., a TGFβ-rich 

environment is known to drive cancer cell EMT and invasion and also support an 
immunosuppressed environment (all features of aggressive disease) but would also 

induce an myofibroblast- and ECM-rich microenvironment. In a similar manner, the 
immune-rich environment reported, may simply represent ongoing T cell-mediated 

cancer killing that is important for tumour progression but is largely independent of 
fibroblasts. The difficulty of inferring the role of fibroblasts from bulk stromal 

measurement of human tumours has meant that most understanding of direct functions 

of fibroblasts in tumours has mainly come from in vitro assays or mouse modelling. 
 

A large number of pro-tumourigenic functions of fibroblasts in PDA have been described. 
Fibroblasts can provide mitogenic and survival paracrine signals to PDA cells (Shi et al., 

2019; Tape et al., 2016) and can inactive the cytotoxicity of gemcitabine (Dalin et al., 
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2019). In addition, fibroblasts have the capacity to support PDA cell metabolism through 

amino acid and lipid release (Auciello et al., 2019; Olivares et al., 2017; Sousa et al., 
2016). FAP+ fibroblasts have been reported to exclude CD8+ T cells from PDA tumours 

(Kraman et al., 2010), in a mechanism based on altered stromal T cell trafficking due to 

CXCL12 secretion (Feig et al., 2013), a pleotropic soluble factor, known to have strong 
lymphocyte chemotactic properties (Bleul et al., 1996). The abundant ECM in PDA 

tumours appears to change molecular diffusion dynamics, altering pharmacodynamics 
of drug delivery (Jacobetz et al., 2013; Olive et al., 2009; Provenzano et al., 2012), and 

collagen networks produced by fibroblasts are found to influence T cell migration, in what 
is thought to be a non-productive manner (Hartmann et al., 2014). IL6 secreted by PDA 

fibroblasts is able to promote the formation of immature myeloid cells, with a phenotype 
associated with immune-suppressive properties (Mace et al., 2013) and IL6 released 

from PDA primary tumours (possibly from iCAF-like fibroblasts) is found to contribute to 
metabolic changes in the liver, systemic cachexia and immune suppression (Flint et al., 

2016). An ability for fibroblasts to mediate angiogenesis and cancer cell invasion and 

migration have been demonstrated in other cancer types (Calon et al., 2012; Fukumura 
et al., 1998; Gaggioli et al., 2007; O'Connell et al., 2011) but it is not clear if these 

fibroblast functions contribute to PDA progression, although fibroblast depletion appears 
to improve PDA tumour vascularisation (Rhim et al., 2014). 

 
Notably, several of the studies that report pro-tumourigenic features of fibroblasts utilize 

reductionist in vitro experiments to infer in vivo function or do not account for the impact 
fibroblast heterogeneity may have on the conclusions. For example, of all the studies 

cited above, only those exploring FAP+ fibroblasts take fibroblast heterogeneity into 

account when studying fibroblast function. Unfortunately, in this regard there is still little 
consensus on what fibroblast population FAP identifies in PDA tumours and what the 

population’s role is in vivo (Aghajanian et al., 2019; Busek et al., 2018; Dominguez et al., 
2020; Elyada et al., 2019; Kakarla et al., 2013; Ohlund et al., 2017; Tran et al., 2013). 

 
However, several lines of preclinical and clinical evidence suggest a net anti-

tumourigenic role for fibroblasts in PDA progression. Early studies of the PDA TME, 
provided compelling evidence that SHH paracrine signalling from cancer cells to PDA 

fibroblasts was a key determinant of the expansion and maintenance of the fibroblast-
rich stroma in PDA tumours and that targeting the canonical Hedgehog signalling 
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receptor, smoothened (SMO), reduces fibroblast accumulation (Bailey et al., 2008; 

Fendrich et al., 2011; Nolan-Stevaux et al., 2009; Olive et al., 2009; Tian et al., 2009). 
Based on this preclinical data, some of the first stromal targeting clinical trials were 

initiated, using SMO inhibitors (SMOi) in PDA patients (Rosow et al., 2012). 

Unfortunately, not only did these studies fail to show efficacy, there was evidence that 
treating PDA patients with SMOi accelerated tumour progression. For example, interim 

analysis of a phase 2 double-blind placebo-controlled study, indicated that OS in the 
SMOi plus gemcitabine cohort was less than 6 mo, compared to greater than 6 mo in the 

gemcitabine only cohort, resulting in termination of the clinical trial (Businesswire.com, 
2012). 

 
Such studies widened an appreciation that fibroblasts in the PDA TME may have tumour 

restrictive properties. Three subsequent, seminal studies, using several spontaneous 
PDA GEMMs, have also suggested a net tumour restrictive effect of fibroblasts in PDA 

tumours. In two studies, pharmacological blockade of Hedgehog signalling or genetic 

deletion of Shh in PDA tumour cells, reduces paracrine activation of fibroblasts, reduces 
fibroblast accumulation and reduces tumour cell differentiation, accelerates tumour 

progression, increases metastasis and reduces survival (Lee et al., 2014a; Rhim et al., 
2014). Paracrine SHH signalling in these models appears to be highly restricted to occur 

from PDA cancer cells to fibroblasts, thus, conditional Shh deletion in PDA cancer cells 
should have minimal direct effects on other components of the TME and allow fibroblast-

regulated processes to be measured. The SMOi-induced reduction of fibroblasts, is 
associated with a less-differentiated cancer cell phenotype and a highly altered 

composition of the TME, with vascular and immune components changing, further 

highlighting the complex heterocellular interactions of fibroblasts in tumours. Conversely, 
dosing PDA tumour-bearing mice with an activating SMO agonist, induces stromal 

hyperplasia and fibroblast accumulation, increases cancer cell differentiation, reduces 
tumour progression and growth and is found to induce aggregates of immune cells 

around lesions (Lee et al., 2014a). Notably, a similar restrictive function of SHH-activated 
fibroblasts in bladder cancer has been reported (Shin et al., 2014). A third study 

generated a transgenic mouse in which herpes simplex virus-1 thymidine kinase (HSV-
TK) expression is driven by the αSMA gene promoter, which allows for active depletion 

of proliferating myofibroblasts on dosing with ganciclovir (Ozdemir et al., 2014). Crossing 
this model with several different PDA GEMMs (including the KPC), indicates that 



 42 

depletion of proliferating myofibroblasts at both an early and late timepoint, was 

associated with reduced fibroblast accumulation, reduced ECM deposition, reduced 
stiffness but increased tumour cell invasion and decreased survival. A key caveat with 

this study is that other cells in the TME express αSMA, such as pericytes and smooth 

muscle cells. Because the HSV-TK system can only deplete proliferating cells, the 
authors suggest this minimises the impact on the vasculature, however minimally 

evidence to support this is given. Importantly, not all αSMA+ fibroblasts are proliferative 
and some are observed to remain in the tumours after depletion, so the exact population 

that is targeted by this strategy is also not clear. Interestingly, whilst in both the hedgehog 
signalling and αSMA+ cell depletion studies disease is accelerated, loss of fibroblasts 

results in sensitisation of the tumour to therapies that the fibroblast-rich tumours are 
refractory to. The studies demonstrate increased sensitivity to targeted therapies 

(vascular endothelial growth factor inhibitors (VEGFRi)) and immune checkpoint 
blockade, respectively, suggesting that fibroblast abundance can directly modulate 

response to therapies that target other TME components (Ozdemir et al., 2014; Rhim et 

al., 2014). 
 

The idea of ‘normalising’ fibroblasts rather than finding therapies that deplete them, has 
gained traction in the PDA research field, mainly based on the ability of vitamin D 

receptor agonists to attenuate the myofibroblast-like state (Sherman et al., 2014). 
However, interpretation of the in vivo results in this study are complicated by the 

expression of the receptor by many other cell types and its involvement in a huge array 
of biological processes (Bhattacharjee et al., 2014; Takahashi and Morikawa, 2006). The 

idea of fibroblast modulation over fibroblast depletion is supported by studies of fibrosis: 

depletion of PDGFRβ+ cells fails to alter kidney fibrosis progression (LeBleu et al., 2013) 
but inhibition of PDGFRβ signalling is efficacious (Chen et al., 2011).  

 
A variety of methods aimed at therapeutically targeting fibroblasts in tumours are 

currently being explored (Chen and Song, 2019; Ho et al., 2020; Hosein et al., 2020) but 
apparent fibroblast heterogeneity and their ability to regulate multiple 

microenvironmental processes in parallel, suggests a highly targeted approach will be 
required to yield clinical benefits. 
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1.3 – Advances in novel single cell technologies for mapping cellular 
heterogeneity and phenotypes 
 

Understanding of the role of fibroblasts in PDA will likely be greatly enhanced by an 

improved understanding of fibroblast heterogeneity in tumours and subsequent 
functional interrogation of individual fibroblast populations. In recent years, advances in 

single cell technologies have been a major driver for improved understanding of cellular 
heterogeneity in complex tissues (Spitzer and Nolan, 2016; Stuart and Satija, 2019) and 

application of such technologies to fibroblasts in tumours may lead to a more detailed 
understanding of fibroblast heterogeneity and its consequences. Whilst traditional flow 

cytometry and tissue imaging methods are well established techniques that retain single 
cell resolution, they typically measure only a limited number of parameters at a time and 

therefore require detailed a priori knowledge about the system of interest. 
 

1.3.1 – Single cell RNA sequencing 

 
scRNAseq has been the most widely adopted novel single cell technology, particularly 

since the introduction of droplet-based methods. ScRNAseq has revolutionised the 

ability of researchers to assess the gene expression patterns of complex, heterogenous 
cell mixes in an unbiased, discovery fashion (Vieth et al., 2019). scRNAseq is unmatched 

by any other technique in its genome-wide coverage and new advances are improving 
the accuracy of gene detection and sample to sample comparability (Gaublomme et al., 

2019; McGinnis et al., 2019). Disadvantages of scRNAseq include high cost, high levels 
of gene dropout, lack of detection of specific genes or detection of low to intermediately 

expressed genes, poor expression quantification, batch effects and a lack of consensus 
on analytical workflows. In addition, RNA measurements show incomplete correlation 

with protein levels, such that on average, variation in RNA accounts for only ~40% of 
protein level variation (Liu et al., 2016) and can be substantially lower for proteins that 

are under extensive post-translational regulation, such as cell surface molecules (Dong 

et al., 2015). 
 

1.3.2 – Mass cytometry 
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Mass cytometry (or cytometry by time-of-flight, CyTOF) is another single cell technology, 

that shares many similarities to flow cytometry. Single cell suspensions are labelled with 
antibodies that enable protein levels to be measured. Instead of being conjugated to 

fluorophores, mass cytometry antibodies are labelled with heavy metal ions via 

specialised chelation chemistry (Spitzer and Nolan, 2016). The antibody-metal 
complexes that are bound to target cells are quantified using a time of flight (TOF) mass 

spectrometer. Signal spill over between different mass channels in a TOF is small and 
therefore the cross-talk between different antibody channels is low. This, combined with 

the fact that the TOF mass spectrometer can detect metal ions across a mass range of 
79-209 Da, means up to 60 markers can now be simultaneously measured at single cell 

resolution and the number of parameters is increasing as new metal/chelation 
chemistries are developed (Han et al., 2018). The output file format for mass cytometry 

is an FCS file which is the same format used for flow cytometry data analysis and many 
of established flow cytometry analytical pipelines and principles can be used for mass 

cytometry data analysis. In addition, once a mass cytometry panel has been developed 

and optimised, dozens to hundreds of samples can be tested and use of sample 
barcoding can minimise batch effects and allow accurate quantification of protein levels. 

The technology can be used to measure extracellular and intracellular lineage and 
phenotypic markers and can be adapted to quantify aspects of cell cycle (Behbehani et 

al., 2012), cell signalling (Bodenmiller et al., 2012), metabolism (Hartmann et al., 2020) 
or epigenetic modifications (Cheung et al., 2018). However, mass cytometry has several 

key limitations, including high setup costs, a dependence on available/robust antibodies 
for targets of interest, limitation to measurement of selected markers only (and the bias 

that introduces) and lower acquisition speed and signal flux than for current flow 

cytometry platforms (Spitzer and Nolan, 2016). 
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Figure 4. Analysis of heavy metal tagged cells by mass cytometry (CyTOF) 

Schematic illustrating how mass cytometry allows single-cell atomic mass spectrometry of heavy elements 
(>79 Da). Antibodies tagged with heavy metal isotopes bind cellular epitopes. The cell is introduced to the 
inductively coupled plasma (ICP) torch by droplet nebulisation. Each cell is vaporised, atomised and then 

ionised, low mass ions (such as those of carbon, oxygen, hydrogen and nitrogen) are removed by 
quadrupole filter and the remaining heavy metal ions are measured by a highly precise time-of-flight (TOF) 

mass spectrometer. Signals of the elemental tag are integrated across the entire ion cloud for each cell 
and correspond to the abundance of the epitope on that particular cell. The process is repeated for the 

others cells in the sample at a sample acquisition rate of ~500 events/s. Quantification data is stored as an 
FCS file, allowing application of standard cytometry analysis. Reproduced from (Bendall et al., 2012) 

 
1.3.3 – Hybrid technologies 

 

Another aspect to consider when picking a tool for single cell analysis of heterogenous 
tissues, is that the boundaries between different single cell technologies are blurring. 

mRNA measurements can now be done with mass cytometry detection, using mass 
tagged mRNA-probes (Mavropoulos et al., 2017). Cellular indexing of transcriptomes 

and epitopes by sequencing (CITE-seq) technology, which uses oligo-tagged antibodies, 
is allowing protein measurements using droplet based scRNAseq platforms (Maier et al., 

2020; Mimitou et al., 2019; Stoeckius et al., 2017). Lastly, new spectral un-mixing flow 

cytometry platforms, in which the entire emission profile of each fluorochrome is 
measured and quantified, are allowing for >20 parameters to be routinely measured by 

flow cytometry methods with minimized channel spill over (Ferrer-Font et al., 2020).  
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Chapter 2 - Project aims 
 
Fibroblasts are abundant in PDA tumours but understanding of their contributions to PDA 

progression and treatment response is limited. This may be in part due to their 

heterogeneity, with fibroblast phenotypic plasticity reported in PDA tumours and 
functionally distinct fibroblast lineages well established in other mammalian tissues. In 

particular, a lack of robust surface markers for isolating live fibroblast populations for 
functional analysis, has hindered detailed interrogation of their contributions to PDA 

tumour progression. I sought to address this by mapping the heterogonous PDA TME at 
single cell resolution and isolate fibroblast populations for characterisation. Specifically, 

my aims are as follows: 
 

Aim 1 – Develop a single cell analysis workflow to map the PDA TME 
 

Aim 2 – Analyse fibroblast heterogeneity within the PDA TME 

 
Aim 3 – Isolate distinct fibroblast populations and characterise their functions 

 
Aim 4 – Apply the single cell analysis workflow to other tissues and tumour types 
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Chapter 3 – Materials and methods 
 

3.1 – Tissue samples, processing and mass cytometry analysis 

 

3.1.1 – Mice 

 

All animal experiments were performed under a UK Home Office Licence and in 
accordance with the ‘Animal (Scientific Procedures) Act of 1986’ under Project Licence 

Number 70/8745 and 70/8375. Experiments adhered to Animal Research: Reporting of 
In Vivo Experiments (ARRIVE) guidelines and were subject to review by the Animal 

Welfare and Ethical Review Boards of the University of Manchester (UoM) and the 
University of Glasgow (UoG). Pdx1-Cre; KrasLSL-G12D/+; Trp53LSL-R172H/+ (KPC) mice 

(Hingorani et al., 2005) have been described previously. KPC colonies on mixed 
backgrounds were bred in-house in individually ventilated cages, under pathogen-free 

conditions at CRUK Beatson Institute (CRUK-BI) and maintained in conventional caging 

with environmental enrichment, access to standard chow and water ad libitum. 
Genotyping was performed by Transnetyx (Cordoba, TN, USA). Mice of both sexes were 

monitored 3 times weekly and when a diagnosis of pancreatic cancer was made by 
abdominal palpation, tumour growth was monitored by ultrasound imaging (Fujifilm 

VisualSonics, Vevo 3100 preclinical imaging system). Mice were culled by Schedule 1 
method, as per institutional guidelines, when exhibiting moderate symptoms of PDA, 

such as swollen abdomen, loss of body conditioning resembling cachexia or reduced 
mobility. ‘RFP+ KPC’ mice were generated by crossing KPC and Rosa26LSL-tdRFP/LSL-tdRFP 

mice (Luche et al., 2007). RFP+ KPC colonies on a mixed background were maintained 

under pathogen-free conditions at the UoM and monitored as described above. Female 
C57BL/6 (B6) mice were purchased from Envigo and used at ages specified for each 

experiment. Female NOD-scid.Il2rg-/- (NSG) mice were purchased from Charles River 
and used at 14 weeks of age.  B6.Rag1-/- mice (Mombaerts et al., 1992) and B6.Batf3-/- 

mice (Hildner et al., 2008) have been described previously, were maintained at the UoM 
and both sexes used at >12 weeks of age. B6.Villin::CreER; KrasLSL-G12D/+; Trp53fl/fl; 

Rosa26Notch1icd/+ (KPN) mice (Jackstadt et al., 2019) have been described previously. 
KPN mice of both sexes at 6-12 weeks age were injected intraperitoneally with a single 

dose of 2 mg tamoxifen (Sigma Aldrich, T5648) and primary colorectal tumours collected 



 48 

at clinical end point, defined as animal weight loss and/or hunching and/or cachexia. 

MMTV-PyMT mice (Guy et al., 1992) have been described previously. Female MMTV-
PyMT mice were monitored for tumour growth by calliper measurement and tumours 

collected when total tumour volume was >900 mm3, typically across multiple foci. 

B6.KrasLSL-G12D/+; Trp53fl/fl (‘KP’) mice were generated by crossing B6.KrasLSL-G12D/+ mice 
(Jackson et al., 2001) and B6.Trp53fl/fl mice (Marino et al., 2000), both of which have 

been described previously. KP mice of both sexes at 8-14 weeks of age were 
anaesthetized using isoflurane and intranasally administered with 50ul of 1x106 PFU 

replication-deficient Cre-expressing adenovirus, as per standard protocols (Meuwissen 
et al., 2001) and monitored for tumour formation by computerized tomography scans. 

Resulting lung tumours were collected 16 weeks after adenoviral induction. 
B6.Tyr::CreER; BrafLSL-V600E/+ (BRAFV600E) mice (Dhomen et al., 2009) have been 

described previously and were generated by crossing B6.Tyr::CreER (Mercer et al., 
2005) and B6.BrafLSL-V600E/+ mice (Yajima et al., 2006), both of which have been 

described previously. 8-12-week-old female mice had 1 mg freshly prepared tamoxifen 

in ethanol applied to their shaven back. 4 weeks after transgene induction, the back skin 
was UV irradiated with a UV6 lamp (UV280-380 nm) every week for 4 weeks. Once 

tumours were visible, tumour volume was measured weekly and collected at a minimum 
volume of 500 mm3. 

 

3.1.2 – Human tissue samples 

 

Formalin fixed paraffin embedded (FFPE) human pancreatic, colorectal, breast and lung 
tumour samples were obtained with informed patient consent by the Manchester Cancer 

Research Centre (MCRC) Biobank in accordance with the Human Tissue Act 2004. The 
MCRC Biobank is licensed by the Human Tissue Authority (license number: 30004) and 

is ethically approved as a research tissue bank by the South Manchester Research 
Ethics Committee (Ref: 07/H1003/161+5). The role of the MCRC Biobank is to distribute 

samples. For more information see www.mcrc.manchester.ac.uk/Biobank/Ethics-and-

Licensing. Human breast tumours were selected for triple negative status and human 
lung tumours selected for adenocarcinoma classification. 

 

3.1.3 – Mass cytometry antibodies and antibody conjugation 
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Supplier, clone and heavy-metal isotope tag of each mass cytometry antibody used in 

this study is listed in Table 2-5. Where possible targets were allocated to heavy-metal 
channels of appropriate sensitivity of detection and spill over, placing low abundance 

targets in higher sensitivity channels with minimal spill over from more abundant 

channels. The dedicated panel builder at dvssciences.com was used to estimate isotope 
and oxide spill-over and guide channel selection. Particular antibody clones were 

selected based on widespread use and extensive evidence of specific staining in the 
literature or from our own flow cytometry analysis. Where indicated antibodies were 

purchased pre-conjugated (Fluidigm). All other antibodies were purchased in carrier 
protein-free format and labelled with the indicated heavy-metal tag using Maxpar X8 

Antibody Conjugation Kits (Fluidigm) (Han et al., 2018). 200 μg of each antibody was 
washed twice with 400 μL R buffer (Fluidigm) in a 50 kDa Microfilter (Merck Millipore, 

UFC505096) by centrifuging at 12,000 g at room temperature (RT) for 6 minutes. 
Antibodies were partially reduced using 200 μL of a 4 mM solution of tris(2-

carboxyethyl)phosphine hydrochloride (TCEP) (Thermo Fisher, 77720) in R-buffer. After 

25 min of TCEP reduction, antibodies were washed twice with C-buffer (Fluidigm). In 
parallel to antibody reduction, metal chelation was performed by adding 10ul of 50 μM 

lanthanide metal solutions to two equivalents of Maxpar X8 chelating polymer (Fluidigm) 
in 190 μL of L-buffer (Fluidigm) and incubating for 1 h at RT. The metal loaded polymers 

were washed once with L-buffer then once with C-buffer in 3 kDa Microfilters (Merck 
Millipore, UFC500324), by centrifuging at 12,000 g for 20 min. The metal loaded polymer 

in C-buffer was added to the partially reduced antibody and incubated at 37 °C for 90 
min. Conjugated antibodies were washed six times with W-buffer (Fluidigm), suspended 

in 100ul W-buffer, vortexed and left for 5 min at RT before being reverse centrifuged into 

a fresh 1.6 mL collection tube. Protein content was assessed using a Nanodrop One/One 
Spectrophotometer (Thermo Fisher) and then 300 μL of PBS-based Antibody 

Stabilization Buffer (Candor Biosciences, 13150) containing 0.6 mg/mL sodium azide 
(Sigma Aldrich, S8032) was added and the conjugated antibodies stored at 4 °C. To 

generate cisplatin conjugates, 200 μg of antibody was reduced as described above and 
incubated with 200 μL of 400 μM monoisotopic cisplatin (BuyIsotope, custom order) in 

C-buffer at 37 °C for 90 min and washed and stored as for the polymer/lanthanide 
conjugates. For any antibody that showed low final protein content (<40% recovery), the 

process was repeated but with a 10 min TCEP reduction. If significant degradation was 
still observed, an alternative antibody clone was tested or the target was not included in 
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the panel. Antibodies were titrated in panels by staining samples of known positive and 

negative controls. These included mixes of established and in-house cell lines, with and 
without recombinant protein stimulations and disaggregated murine normal tissues and 

tumours. If the lowest antibody concentration tested resulted in overstaining the antibody 

was diluted further with antibody stabilization buffer and re-titrated. 
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Table 2. Antibodies used for mesenchymal stroma mass cytometry analysis 
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Table 3. Antibodies used for myeloid/NK/B cell mass cytometry analysis 
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Table 4. Antibodies used for T cell mass cytometry analysis 
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Table 5. Antibodies used for signalling mass cytometry analysis 
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3.1.4 – Tumour disaggregations 

 
For tumour samples that would be analysed by mass cytometry, all buffers and reagents 

used in tissue processing and cell staining were checked for heavy-metal ion 

contamination, particularly barium contamination, and buffers were made up in non-glass 
containers that had not been detergent washed. 5-iodo-2’-deoxyuridine (IdU) (Sigma 

Aldrich, 17125) was solubilized overnight at RT under mixing, in a minimally basic 
solution of 0.01 M sodium hydroxide (NaOH) (Sigma Aldrich, 757527) in water, to 10 

mg/mL concentration and filtered through a 0.22 μm pore mesh. To label cells in S-phase 
for mass cytometry studies, mice were injected intraperitoneally with 200 μL of IdU 

solution 2 h before the mouse was culled by Schedule 1 method and tissues collected. 
Tumour samples were quickly transferred into ice-cold phosphate-buffered saline (PBS) 

(Fisher Scientific, 10091403) on ice. From all tumours, care was taken to dissect away 
all non-tumour tissue that was attached to the outer edge of the denser tumour core. The 

surface of the tumour samples was dried with sterile paper and tumour weight recorded. 

Samples were washed once with ice-cold RPMI media and minced with disposable 
scalpels in 2 mL of disaggregation buffer (DB), consisting of 2 mg/mL Collagenase Type 

IV (Thermo Fisher, 17104019), 1 mg/mL DNase1 (Sigma Aldrich, 10104159001) and 0.5 
mg/mL Hyaluronidase (Sigma Aldrich, H3757) in RPMI. Once no tumour piece was 

bigger than 3 mm in length, the fragments and buffer were transferred to a C-tube 
(Miltenyi Biotech, 130-096-334) and a further 3 mL of DB added. If tumours were >600 

mg, the disaggregation was carried out in two C-tubes, each with a total of 5 mL DB. The 
C-tube was placed in a GentleMACS Octo Dissociator (Miltenyi Biotech), heating blocks 

fitted and tumours disaggregated using the automated 37C_m_TDK1 program. Once 

complete, the C-tube was centrifuged at 100 g for 2 min, to ensure the contents were 
gathered at the bottom of the tube. The sample was diluted with a further 5 mL of fresh 

and warmed DB, mixed well by pipetting and filtered into a 50 mL tube through a 70 μm 
strainer, which was then washed with 10 mL ice-cold RPMI to quench the digestion. The 

single cell suspension was pelleted at 300 g for 6 min and used for mass or flow 
cytometry staining. 

 

3.1.5 – Mass cytometry live/dead and extracellular staining 
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Because mass cytometry staining involves multiple steps, all spins used a swinging 

bucket centrifuge with the braking speed reduced to avoid disruption to the cell pellet. 
Aspirations were done carefully and always left at least 50 μL of void volume above the 

pellet. Live cells were spun at 300 g for 6 min and fixed cells spun at 1000 g for 6 min. 

Particular care was taken during PBS-only washes to ensure that cells had pelleted 
completely. The disaggregated tumour cell pellet was resuspended in 300 μL of ice-cold 

PBS, vortexed well and 300 μL of 1 μM 198Pt monoisotopic cisplatin (Fluidigm, 201198) 
in PBS added, followed by vortexing. After exactly 1 min incubation, the staining was 

quenched with 20 mL of CSM-E (Cell Staining Buffer – Extracellular) consisting of 5 
mg/ml Bovine Serum Albumin (BSA) (Sigma Aldrich, A3294), 0.5% v/v Fetal Bovine 

Albumin (FBS) (Thermo Fisher, 10270106) and 0.2 mg/mL DNAse1 in PBS. The cells 
were resuspended and counted using a Luna Cell Counter (Logosbio) on fluorescence 

mode. The propidium iodide and acridine orange staining allows for improved cell 
counting of disaggregated tissues compared with trypan blue-based methods. 3x106 

cells were aliquoted into a 5 mL polypropylene FACS tube, washed with 3 mL CSM-E 

and pelleted. 20 μL of 100 U/mL heparin sodium salt (Sigma Aldrich, H3393) solution in 
PBS and 1 μL Fc block (BD Biosciences, 558636) was added. The contents were mixed 

by gentle rocking but no vortexing and incubated on ice for 5 min. A master mix of 
fluorophore-conjugated antibodies (see Table 6) in 50 μL CSM-E was added, mixed by 

gentle rocking and incubated on ice in the dark. After 20 min the mixture was vortexed. 
After a total incubation of 45 min, the cells were washed once with 4 mL of CSM-E. A 

master mix of extracellular targeting, metal-conjugated antibodies (see Table 2-4) in 50 
μL of CSM-E was added, mixed by gentle rocking and incubated on ice in the dark. After 

20 min the mixture was vortexed. After a total incubation of 45 min, the cells were washed 

twice with 4 mL of CSM-E. The cell pellet was resuspended in 100 μL of PBS and 
vortexed and 1 mL of FOXP3 Fixation/Permeabilization Kit (Thermo Fisher, 00-5523-00) 

1x FOXP3 Fixation Buffer added, followed by thorough vortexing. After 30 min incubation 
at RT, 2 mL of 1x FOXP3 Permeabilization Buffer was added and the cells pelleted. The 

cell pellet was resuspended in 1 mL of 10% v/v DMSO (Sigma Aldrich, D2650) in CSM-
I (Cell Staining Buffer – Intracellular), consisting of 5 mg/ml BSA and 0.2 mg/ml sodium 

azide in PBS, vortexed and frozen at -80 °C. For staining the sample with the 
Myeloid/NK/B cell (MNB) panel, no extracellular Fc block was used. Instead, the cells 

were incubated with heparin solution for 5 min, followed by metal-conjugated anti-CD64 
antibody for 10 min on ice, followed by metal-conjugated anti-CD16/32 antibody for 5 
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min on ice, before adding the remaining master mix of extracellular antibodies. This 

ensured strong metal labelling of Fc-receptors, which contributed to accurate sub-setting 
of the mononuclear phagocyte lineage. 

 
Table 6. Fluorophore conjugated antibodies used for mass cytometry 

 
 
 

3.1.6 – Mass cytometry barcoding, pooling and intracellular staining 

 
Once the samples for an entire study had been collected, all the frozen aliquots were 

allowed to thaw at RT and washed once with 4 mL PBS. Each of the cell pellets were 
resuspended in a unique barcoding aliquot from the Cell-ID 20-plex Pd Barcoding Kit 

(Fluidigm, 201060) in 1 mL of cold PBS, vortexed and incubated at RT for 15 min. After 
the incubation, the mixtures were diluted in 3 mL of CSM-I, pelleted and washed once 

more with 4 mL CSM-I. Each of the cell pellets from the samples to be included in the 

study were resuspended in 200 μL of 1x FOXP3 Permeabilization Buffer each, pooled 
into a 5 mL polypropylene FACS tube and pelleted. For each sample included in the 

pooled sample, 10 μL of 100 U/mL heparin sodium salt in PBS and 0.5 μL of Fc block 
was added and the sample mixed by gently rocking. After incubating for 5 min at RT in 

the dark, a master mix of intracellular targeting, metal-conjugated antibodies (see Table 
2-4) in CSM-I was added. For each sample included in the pooled sample, one 

equivalent of antibody and 25 μL of CSM-I was used and scaled up as required. The 
sample was mixed by gentle rocking and incubated on ice in the dark. After 20 min the 

mixture was vortexed. After a total incubation of 45 min the cells were washed twice with 

4 mL of CSM-I. The cell pellet was resuspended in 1 mL of PBS and vortexed well. For 
every individual sample included in the pooled sample, a minimum of 500 μL of 4% 

Paraformaldehyde (PFA) (Thermo Fisher, 28908) in PBS was added to ensure complete 
fixation, using larger tubes as needed. If during sample acquisition, the heavy-metal 

markers are seen to ‘streak’, this is an indication the cells were not sufficiently fixed at 
this stage. The sample was vortexed and stored overnight at 4 °C in the dark. 
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3.1.7 – Mass cytometry DNA staining and acquisition  

 
On the day of acquisition, 0.5 μL of 125 μM of Cell-ID Iridium Intercalator (Fluidigm, 

201192A) for each individual sample included in the pooled sample was added to the 
cells/PFA mixture and vortexed well. After 1 h of incubation at RT the cells were washed 

once with PBS, aliquoting across multiple tubes to allow staggered acquisition over a 

long run time. Typically, a pooled sample containing >15 individual samples was stored 
as x4 cell pellets, each prepared just before running. Each cell pellet was washed twice 

with water and resuspended at a concentration of 1x106 cells/mL in 15% EQ Four 
Element Calibration Beads (Fluidigm, 201078) in water, filtered twice through 70 μm 

Filcons (BD Biosciences, 340633) and acquired on a Helios Mass Cytometer (Fluidigm), 
using a Super Sampler (Victorian Airship & Scientific Apparatus LLC) to improve the 

consistency of sample delivery. The sample was acquired at a maximum of 500 events/s 
and sample lines and nebulizers were replaced each time an additional 5x106 events 

had been recorded. If marker ‘streaking’ during acquisition was seen to occur, the PFA 
step can be quenched with CSM-I to further cross-link the cells and the sample kept on 

ice during acquisition. 

 

3.1.8 – Mass cytometry data processing 

 

FCS files were normalized for signal-drift during the acquisition run using the in-built 
Helios normalization tool (Fluidigm) and individual sample events deconvoluted using 

either the in-built debarcoder (Fluidigm) or a stand-alone debarcoder (Zunder et al., 
2015), typically using a Mahalanobis distance of 10 and 15 respectively and a minimum 

barcode separation of 0.26 for both. Individual sample FCS files were uploaded to the 
cloud-based cytometry platform Cytobank (www.cytobank.org, Beckmann Coulter) and 

checked for consistent signal across the entire acquisition period, as well as clean and 
correct barcode deconvolution. As per standard methods, live cell events were selected 

based on 191Ir positivity and 198Pt negativity. Because samples were stained with 
cisplatin separately, this step was conducted using sample tailored gating. 191Ir+ debris 

and cell doublets and aggregates were removed based on event length. If possible, 

target cells were selected by manual biaxial gating: MNB cell events were selected as 
CD45+CD3ε- and T cell events selected as CD45+CD3ε+.  Target cells were exported 
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as FCS files and uploaded to the Cytofkit2 package (version 2.0.1). Cells were clustered 

using FlowSOM (Van Gassen et al., 2015) and visualized using UMAP projections and 
expression overlays (Becht et al., 2018), exporting cell data with annotated clusters for 

further downstream analysis. For target cells that consist of cell populations that are 

difficult to separate cleanly from non-target cells by simple biaxial gating, such as tumour 
mesenchymal stromal populations, an initial analysis of high-dimensional clustering and 

visualization was carried out which allowed usage of the full dataset to cluster and 
annotate events. This was particularly effective at separating mesenchymal cancer cells 

from non-cancer mesenchymal cells, including robust identification of fibroblasts and 
pericytes away from cancer cells which, un-like CD31 on endothelial cells, lack a single, 

canonical marker for identification (see RFP+ KPC data discussion). Clusters of target 
cells were exported and then re-uploaded for analysis free of non-target cells. Three 

KPC tumours could not be weighed (mouse #16,17 and 18) and one mouse did not 
receive an IdU injection (mouse #16), so this data is not present in the respective 

analysis. KPC mouse #19 was only stained using the mesenchymal stroma (S) antibody 

panel but not the MNB and T cell panels, which gave n=18 KPC PDA tumours in which 
each sample was stained with all three antibody panels. 

 

3.1.9 – Mouse organ disaggregations and in vitro expansion of primary fibroblasts 

 

To expand primary fibroblasts, we took advantage of the fact that fibroblasts survive and 
expand using standard in vitro culture methods much more efficiently than other, non-

transformed cell types. Primary fibroblast/fibroblast-like cells were expanded from the 
following mouse organs: pancreas, colon, small intestine, mammary tissue, shaved back 

skin, stomach, mesentery adipose tissue, spleen, thymus, lungs, liver, kidneys, bladder, 
oesophagus and heart. The entire hind legs were collected and bone marrow processed 

separately (see below). Unless stated the tissues were isolated from female 8-week-old 
B6 mice. In parallel, the prostate was isolated from 8-week-old male B6 mice. The 

number of organs required for successful fibroblast expansion from each tissue is 

detailed in Table 7. All tissues were transferred to ice-cold sterile PBS on ice. The 
stomach, small intestine and colon were flushed clear with PBS. Some tissues were 

processed manually and others were disaggregated using a GentleMACS Dissociator: 
previous experiments had indicated which method yielded the most fibroblasts from each 

tissue (for a full list of methods used, see Table 7). Each tissue was transferred to a 10 
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cm cell culture dish and washed once with ice-cold RPMI. For some specific tissues, DB 

was supplemented with 0.5 mg/mL Dispase II (Thermo Fisher, 17105041) to aid 
disaggregation (also noted in Table 7). For manual disaggregation, 3 mL of RT DB was 

added and the tissue minced using disposable scalpels. Once the tissue had been 

reduced to pieces no bigger than 3 mm in length, a further 17 mL of DB was added and 
the dish incubated at 37 °C for 25 min. The cells, tissue fragments and buffer were 

transferred to a centrifuge tube and the contents allowed to settle for ~10 s. The settled 
tissue pieces in ~5 mL of buffer was collected with a 5 mL pipette and transferred to a 

separate centrifuge tube. Using the same pipette, the tissue pieces were repeatedly 
mixed to break up the fragments as much as possible. The contents of both centrifuge 

tubes were combined and quenched with 20 mL of cell culture media (CCM), consisting 
of 20% v/v FBS, 1% v/v HyClone Antibiotic/Antimycotic (Fisher Scientific, 11536481) and 

0.2% v/v Primocin (InvivoGen, ant-pm-1) in DMEM with glucose and L-glutamine 
(Thermo Fisher, 41966052). Cells and remaining tissue fragments were centrifuged at 

300 g for 6 min and resuspended in 40 mL CCM and transferred to a 225 cm2 culture 

flask. For GentleMACS tissue disaggregations, a similar method as used for the KPC 
PDA tumours was applied but a specific automated program was used for each tissue 

(listed in Table 7). Once the program was complete the C-tube was centrifuged at 100 g 
for 2 min, to ensure contents were gathered at the bottom of the tube. The sample was 

diluted with a further 15 mL of fresh DB, mixed by pipetting and quenched with 20 mL 
CCM. Cells and remaining tissue fragments were centrifuged at 300 g for 6 min and 

resuspended in 40 mL CCM and plated into a 225 cm2 flask. For isolation of bone marrow 
stromal cells, muscle was removed from each pair of intact tibias and fibias, the ends of 

the bones cut with a disposable scalpel and the bone marrow flushed out with 5 mL DB 

using a needle and syringe. The combined bone marrow extracts were vortexed to break 
up clumps, quenched with 20 mL CCM, pelleted, resuspended in 40 mL CCM and 

transferred to a 225 cm2 culture flask. Frozen B6 primary mouse embryonic fibroblasts 
(MEFs) (Generon, C57-6028) were thawed and resuspended in 40 mL CCM and 

transferred to a 225 cm2 culture flask. All primary cell cultures were grown in an incubator 
at 37 °C with 5% CO2, humidified air. Media was carefully replaced at 24 h and 48 h, 

taking care not to dislodge attached tissue fragments. Each primary fibroblast isolation 
resulted in different yields depending on the tissue of origin, so were used for 

downstream assays in batches when the cells reached ~50% confluence, which varied 
between 6-15 d. The time for each isolation to expand to sufficient cell number for each 
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tissue is described in Table 7. For isolations to be analysed by mass cytometry, the day 

before analysis the cells were lifted by aspirating media, washing with sterile PBS 
(Thermo Fisher, 10010023) and incubating with 10 mL of Accutase Cell Detachment 

Solution (Sigma Aldrich, A6964) at 37 °C for 10 mins. The dissociation buffer was 

quenched with 30 mL CCM and the cells allowed to settle in the same flask (without 
washing out the dissociation buffer). This step removes many non-fibroblast cell types 

that do not survive detachment well. The following day 40 μL of 10 mM IdU solution in 
0.2 M NaOH/water was added directly to the media, mixed by swirling and the cells 

incubated at 37 °C for 20 min. Media was aspirated, cells lifted with 10 mL Accutase Cell 
Detachment Solution, diluted with 20 mL PBS and centrifuged at 300 g for 6 min at 4 °C. 

The cell pellet was resuspended in 100 μL PBS, vortexed and 100 μL of 1 μM 198Pt 
cisplatin in PBS added, followed by vortexing. After exactly 1 min incubation, the staining 

was quenched with 10 mL of CSM-I, cells pelleted, resuspended in 2 mL CSM-I, counted 
and 3x106 cells aliquoted into a 5 mL polypropylene FACS tube. The remaining staining, 

acquisition and analysis steps were as described above for the ex vivo analysis. 

 
 Table 7. Mouse organ disaggregations 
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3.1.10 – Mass cytometry cell signalling antibody conjugations and barcode 

generation 
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Supplier, clone and heavy-metal isotope tag of each antibody used in the cell signalling 

mass cytometry analysis are listed in Table 5.  Where indicated antibodies were 
purchased pre-conjugated (Fluidigm). All other antibodies were labelled with the 

indicated metal tag using the Maxpar X8 antibody conjugation kit (Fluidigm), as 

described above. Cell signalling antibodies were titrated in panels against in vitro cell 
lines stimulated with recombinant cytokines and growth factors. Antibody clones were 

prioritized based on extensive prior validation (Kumar et al., 2020; Lun et al., 2019; Lun 
et al., 2017; Rapsomaniki et al., 2018) or confirmation of expected signal node activation 

during the antibody titration step. A custom 6-choose-3 barcode scheme using enriched 
isotopes of 105Pd, 106Pd, 108Pd, 110Pd, 113In and 115In (Trace Sciences) was 

generated using established methodology (Zunder et al., 2015). Stocks of 10 mM 
palladium/indium salt solutions in L-buffer were diluted 1:10 in 20 mM ammonium acetate 

(NH4CH3CO2) (Sigma Aldrich, 372331). 127 μL of these 1 mM palladium/indium nitrate 
solutions were added to 2 mg of 1,4,7,10-tetraazacyclododecane-1,4,7-tris-acetic acid-

10-maleimidoethylacetamide (mDOTA) (Macrocyclics, B-272) in a 1.5 mL polypropylene 

tube giving a 2:1 ratio of chelator:metal. Volumes were adjusted based on the accurate 
weight of mDOTA. After 1 min of vortexing the tube was snap frozen in dry ice/ethanol 

bath and stored at -80 °C. Tubes were opened and lyophilized overnight in a cooled 
Alpha 2-4 Benchtop Lyopholizer (MartinChrist Freeze Dryers), working quickly to ensure 

the contents did not thaw before being desiccated. The resulting powder was dissolved 
to 10 mM in dry DMSO (Sigma Aldrich, D2650) and an aliquot diluted 5000x to give a 2 

μM working stock. This was titrated against PFA fixed and methanol permeabilized in 
vitro cells, to mimic final assay conditions as closely as possible. Once an optimal dilution 

for each of the six barcodes was found 1:1:1 mixture was generated in a 6-choose-3 

barcode scheme (Zunder et al., 2015) and each of the 20 possible combinations was 
titrated to ensure optimal staining, before being aliquoted and stored at -20 °C.  

 

3.1.11 – Mass cytometry cell signalling staining and analysis 

 

1.5x106 mCherry+ CD105+ pancreatic fibroblasts and 1.5x106 GFP+ CD105- pancreatic 
fibroblasts were combined in 30 mL of reduced-serum cell culture media (CCM(0.5)), 

consisting of 0.5% v/v dialyzed FBS (dFBS) (Thermo Fisher, 26400044) and 1% v/v 
HyClone Antibiotic/Antimycotic in DMEM with glucose and L-glutamine, and plated into 

a 225 cm2 cell culture flask. After 24 h, 40 μL of 10 mM IdU solution in 0.2 M NaOH/water 
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was added directly to the media, mixed well and the cells incubated at 37 °C for a further 

20 min. The media was aspirated and replaced with 28 mL of warmed CCM(0.5) 
containing cytokine or growth factors, as detailed in Table 5. The conditions consisted of 

x1 no stimulation control and x19 recombinant cytokine or growth factor stimulations. 

After exactly 5 min of stimulation at 37 °C, 4 mL of 16% PFA was added to the media, to 
give a final PFA concentration of 2%, and immediately swirled over the cells to fix. After 

30 min of fixation, the media was aspirated, and the attached cells washed with PBS, 
CSM-I, and then PBS. 15 mL of Accutase Cell Detachment Solution was added and the 

flasks incubated at 37 °C for 15 min. Because buffer-mediated detachment is less 
efficient for fixed cells, a cell scraper was used to further detach the cells from the flask 

and collected in a centrifuge tube and diluted with 20 mL PBS. Cells were centrifuged at 
1000 g for 6 min with reduced braking, aspirated and resuspended in 2 mL PBS, vortexed 

and permeabilized by slowly adding 5 mL of -20 °C methanol (Fisher Scientific, 
10767665) with vortexing, followed by incubation at -20 °C for 20 min. The methanol-

permeabilized cells were diluted with 10 mL PBS and then a further 10 mL CSM-I and 

pelleted. Cells were resuspended in PBS, counted and a maximum of 3x106 cells 
aliquoted into separate 5 mL polypropylene FACS tubes. After washing with 4mL of PBS 

and resuspending the cell pellets in void volume, one aliquot of each unique 6-choose-3 
barcode dissolved in 1mL of ice-cold PBS was added to each sample and vortexed. 

Once a 30 min incubation at RT was complete, the cells were washed twice with 4 mL 
CSM-I, pooled into a single 5 mL polypropylene FACS tube in CSM-I and pelleted. The 

20-sample pooled cell pellet was resuspended in the void volume and 200 μL of 100 
U/mL heparin sodium salt solution and 10 μL of Fc block added. After 5 min at RT a 

master mix containing 20 equivalents of each antibody from the cell signalling panel 

(Table 5) in 500 μL of CSM-I was added and vortexed. After staining for 2 h at RT with 
regular vortexing, the sample was washed three times with 4 mL CSM-I and 

resuspended in 1 mL PBS, transferred to a larger centrifuge tube and fixed in 10 mL of 
4% PFA in PBS. The sample was vortexed and stored at 4 °C in the dark overnight. After 

the overnight fixation, the PFA/PBS was washed out with PBS and the cells incubated 
in 1mL of 100 μg/mL bis(2,2′-bipyridine)-4′-methyl-4-carboxybipyridine-ruthenium N-

succinimidyl ester-bis(hexafluorophosphate) (ASCQ_Ru) (Sigma Aldrich, 96631) in 0.1 
M sodium bicarbonate (NaHCO3) (Sigma Aldrich, 31437) solution for 1 h at RT, before 

continuing with the PBS and water washes and acquisition, as described above. 
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3.2 – Immunohistochemistry, flow cytometry and gene expression analysis 
 

3.2.1 – Multiplexed Tyramide Signal Amplification (TSA) immunofluorescence  

 

Multiplexed Tyramide Signal Amplification (TSA) immunofluorescence staining was 
performed using the BOND RX automated platform (Leica Microsystems). 4um sections 

of FFPE tumours were cut and mounted on charged slides. Dewaxing and heat induced 

epitope retrieval of slides was automated on the Bond RX, using Epitope Retrieval 
Solution 1 (ER1) (Leica Microsystems, AR9961) for 20 min at 100 °C. Using the 

Research Detection System 2 (Leica Microsystems, DS9777), endogenous peroxidase 
was blocked using 3% v/v hydrogen peroxide (VWR, 23622.260) in Tris Buffer Saline 

with Tween 20 (TBST) (VWR, J77500.K8) for 10 min and the slides further blocked with 
10% w/v casein (Vector, SP5020) in TBST. Antibody application, detection and TSA 

amplification was conducted in three sequential rounds following the same general 
procedure: incubation with the primary antibody in Bond Antibody Diluent (Leica 

Microsystems, AR9352) for 30 min, followed by detection using EnVision HRP (Agilent, 
K4001/4003) for 30 min, followed by a specific premixed TSA reagent (Perkin Elmer) at 

1/200 for 30 min. Antibody sequence and TSA-fluorophore selection were optimised to 

reduce non-specific staining and tyramide binding site competition. The first staining 
round used mouse anti-human CD105 antibody (CST clone 3A9) at 1/200 and TSA570 

(FP1488001KT). The second round used rabbit anti-human pan-CK antibody (Abcam 
ab9377) at 1/200 and TSA520 (FP1487001KT). The third round used mouse anti-human 

podoplanin antibody (Dako cloneD2/40) at 1/100 and TSA650 (FP1496001KT). 
Following labelling with TSA, antibodies were removed using a heat stripping step in 

ER1 for 10 min at 100 °C. This was not applied following application of the third antibody. 
Finally, nuclei were counterstained with 0.33 μg/ml 4′,6-diamidino-2-phenylindole (DAPI) 

(Thermo Fisher, 62248) for 15 min and coverslipped with ProLong Gold Antifade 
Mountant (Thermo Fisher, P36930). Slides were scanned using a VS120 microscope 

(Olympus Lifescience) at 20x and analysed using QuPath (v0.2.0-m9) (Bankhead et al., 

2017). 
 

3.2.2 – Immunohistochemistry of subcutaneous tumours 
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Subcutaneous co-transplant tumours were collected at 7 and 30 d after implantation. 

Large tumours were cut in half. Samples were fixed for 24h in 10% v/v Neutral Buffered 
Formalin (Genta Medical, BIB10L), processed and paraffin embedded (Leica 

Microsystems). 4um cut sections were mounted onto charged glass slides and stained 

manually. Slides were dewaxed by x3 5 min xylene washes and rehydrated in 100%, 
90% then 70% ethanol for 1 min each. Heat induced epitope retrieval was conducted 

using a Biocare Declocker at 110 °C for 15 min and allowed to cool for 15 min using Low 
pH Target Retrieval Buffer Ph6 (Agilent, S236984). Slides were cooled in running water 

for 2 min and endogenous peroxidases blocked using 3% v/v hydrogen peroxide in 
TBST for 10 min. Following further washing in TBST, slides were blocked with 10% w/v 

casein in TBST for 20 min. Staining was conducted using chicken anti-GFP 
antibody (Abcam, ab13970) at 1/500 in TBST for 1 h at RT, followed by x2 5 min TBST 

washes. Detection of the primary antibody used a biotinylated goat anti-chicken IgG 
antibody (Abcam, ab207998) at 1/200 in TBST for 30 min at RT, followed by Vectastain 

Elite ABC HRP Kit (Vector, PK-6100) for 30 mins at RT, x2 5 min TBST washes and 3,3'-

diaminobenzidine (DAB) (Agilent, K3467) for 5 min.  Finally, nuclei were counterstained 
with 1x Shandon Gill Haematoxylin (Thermo Fisher, 6765005) and then dehydrated 

and coverslips applied before being scanned using an SCN400 (Leica microsystems) 
and analysed using QuPath. 

 

3.2.3 – FACS and flow cytometry 

 

To isolate CD105+/- CAFs directly from PDA tumours, single cell suspensions were 
prepared as described above for analysis by mass cytometry. Red blood cells (RBCs) 

were lysed using 5 mL of ice-cold 1x RBS Lysis Buffer (Biolegend, 420301) for 2 min on 
ice. The lysis was quenched with 20 mL FACS buffer (FB), consisting of 2% v/v FBS and 

2 mM ethylenediaminetetraacetic acid (EDTA) (Thermo Fisher, 15575020) in PBS and 
pelleted by centrifugation at 300 g for 6 min with reduced braking. Cells were counted 

using a Luna Cell Counter on fluorescence mode, washed once with 20 mL PBS and 

stained with Live/Dead Fixable Near-IR Dead Cell Stain Kit (Thermo Fisher, L10119), 
using 0.25 μL of reagent in 0.5 mL of ice-cold PBS per 1x106 cells. After 20 min on ice, 

the staining was quenched with 20 mL FB and cells pelleted. 0.25 μL of Fc block per 
1x106 cells was added to the void volume and cells gently mixed. After 5 min on ice, a 

master mix containing anti-EpCAM-FITC, anti-CD45-FITC, anti-CD31-FITC, anti-PDPN-
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APC (all Biolegend), anti-CD90-PE (Abcam) and anti-CD105-BV421 (BD Biosciences) 

was added at 0.25 μL of each antibody in 20 μL FB per 1x106 cells. Cells were vortexed, 
stained on ice in the dark for 45 min, washed once with 20 mL FB, resuspended to 5x106 

cells/mL, filtered through 70 μm Filcons into 5 mL polypropylene FACS tubes and sorted 

on a BD FACS AriaIII (BD  Biosciences) using the gating strategy described in the 
manuscript. FACS sorted CD105+ and CD105- fibroblasts in CCM were centrifuged, 

aspirated and cells lysed in RLT buffer (QIAGEN) and RNA isolated using a RNeasy 
Micro Kit (QIAGEN, 74004), according to the manufacturer’s instructions. For flow 

cytometry analysis or FACS of in vitro cells (e.g. isolation and surface marker analysis 
of CD105+/- pancreatic fibroblasts), a similar protocol was used without the RBC lysis 

and dead cell staining steps, and alternative fluorophore conjugates were applied. For a 
full list of antibodies used for flow cytometry/FACS see Table 8. For flow cytometry/FCAS 

analysis all samples were analysed on a BD LSRFortessa (BD Biosciences). Flow 
cytometry/FACS plots were generated in Cytobank.  

 
Table 8. Antibodies for flow cytometry or FACS 

 
 
 
3.2.4 – Bulk RNA sequencing, Gene Set Enrichment Analysis and Differential Gene 

Expression analysis 

 
RNA-sequencing projects were conducted with assistance from the CRUK-MI Molecular 

Biology Core Facility. Indexed PolyA libraries were prepared using 50 ng of total input 

RNA and 16 cycles of amplification with the Agilent SureSelect Strand Specific RNA 
Library Prep Kit for Illumina Sequencing (Agilent, G9691B). Libraries were quantified by 

qPCR using a Kapa Library Quantification Kit for Illumina Sequencing Platforms (Kapa 
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Biosystems Inc., KK4835). Paired-end 75 base-pair sequencing was carried out by 

clustering 1.9-2.0 pM of the pooled libraries on a NextSeq 500 Sequencer (Illumina Inc.) 
Pre-alignment quality control was performed using the FASTQC tool (version 0.11.3). 

Raw sequencing reads were aligned to the mouse reference genome GRCm38/mm10 

using STAR aligner (version 2.5.1b) and gene annotation was taken from Ensembl build 
92. Read counts were determined by using the featureCounts function from the 

Bioconductor package Rsubread (version 1.28.1). For analysis of pancreatic fibroblast 
transcriptional response to recombinant protein stimulations, a similar protocol was 

applied but only single-end reads were measured. Differential gene expression analysis 
was performed using the Bioconductor package DESeq2 (Love et al., 2014). For the ex 

vivo KPC CAF analysis, a gene was called as significantly differentially expressed if its 
abundance changed more than 2-fold between populations of interest, with a Benjamini-

Hochberg(BH)-adjusted p-value <0.05. For the in vitro pancreatic fibroblast stimulation 
analysis, batch effect correction was performed using DESeq2 as recommended by 

DESeq2 workflow guidelines, batch occupancy was fed to the generalized linear model 

via the design formula and the same BH-adjusted p-value was used but no fold change 
cut-off was applied. For single gene expression comparisons, values were calculated 

either as TPM or scaled/normalized expression values directly from the DEseq2 
analysis. For TGFβ and IL1 receptor and signalling mediator gene expression 

comparisons, read counts from the baseline and stimulation conditions were combined 
for comparison of gene expression between CD105+ and CD105- fibroblasts (these 

genes were not significantly differentially expressed between baseline and stimulation 
samples).  Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) was 

carried out using the GSEA stand-alone software (version 4.0.3) (Subramanian et al., 

2007), using default settings and the Hallmark Gene Set (Liberzon et al., 2015). Due to 
the relatively small number of samples for each condition, gene sets were permutated 

according to the software recommendations. 
  

3.2.5 – BioMark HD multiplex qPCR 

 
BioMark qPCR analysis was conducted with assistance from Felix Heider, Systems 

Oncology. Assay primers and probes were designed using the Roche Universal Probe 
Library Assay Design Centre Tool 

(https://lifescience.roche.com/en_gb/brands/universal-probe-library.html). Where 
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possible, primers were selected to span different exons to minimize amplification of 

genomic DNA. See Table 9 for primer sequences and TaqMan probe numbers. New 
primers and probes were validated by qPCR using Universal Mouse Reference RNA 

(Thermo Fisher, QS0640). cDNA was synthesized from 500 ng of RNA in a 50 μL 

reaction mixture of 1x Reverse Transcription Buffer (Thermo Fisher, 18067017), 1.75 
mM Mg2Cl2 (Thermo Fisher, R0971), 2 mM dNTP Mix (Thermo Fisher, R0191), 5mM DL-

Dithiothreitol (DTT) (Sigma Aldrich, 43815), 100 U/mL RNAse Inhibitor (Thermo Fisher, 
N8080119), 2.5 μM Random Hexamers (Thermo Fisher, N8080127) and 2500 U/mL 

Multiscribe Reverse Transciptase (Thermo Fisher, 4311235). Reverse transcription was 
carried out at 25 °C for 10 min, 37 °C for 60 min, 95 °C for 5 min and 4 °C indefinitely 

before being stored at -20 °C. A pre-amplification of 2.5 μL of the cDNA mixture was 
conducted in 10 μL of 1x TaqMan Pre-Amp Master Mix (Applied Biosystems, 4391128) 

and a pool of all assay-specific primers at 5 nM (see Table 9), by temperature cycling at 
95 °C for 10 min for 1 cycle, 95 °C for 15 s and 60 °C for 4 min for 14 cycles and 4 degree 

indefinitely until being diluted with 40 μL RNAse-free water (Thermo Fisher, 10977035) 

and storage at -20 °C. Assay mixes for the qPCR reactions were made using 8 μM of 
each primer and 1 μM of the appropriate hydrolysis probe in 1x Assay Loading Reagent 

(Fluidigm, 85000736). Sample mixes were made by diluting the amplified cDNA 1:1 in 
TaqMan Universal PCR Master Mix (Applied Biosystems, 4304437) and GE Sample 

Loading Reagent (Fluidigm, 85000746). Samples and assays were carefully loaded on 
a 96x96 Dynamic Array Chip (Fluidigm, BMK-M-96.96) and analysed according to 

manufacturer’s instructions using standard settings, auto-exposure settings and with 
ROX as the passive reference dye. Raw qPCR data was analysed using the BioMark 

Real-Time PCR Analysis Software (Fluidigm). Assay dependent thresholds were used 

to calculate cycle threshold (Ct) values and relative expression calculated as: relative 
expression = 2-ΔCt , where: ΔCt = (Ct value gene A) – (Geometric mean (Ct values house-

keeping genes)). A combination of house-keeping genes (Actb, Gapdh, Pgk1, Ppia, Tbp, 
Tubb4a) was used for normalization to mitigate potential confounding issues caused by 

differential housekeeping-gene expression between cell lines. 
 

Table 9. List of qPCR primers and probe numbers 
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3.3 – Cell lines, gene editing, subcutaneous co-transplant studies and data 
plotting 

 

3.3.1 – In vitro fibroblast and cancer cell lines 

 

Where possible the same frozen stock of each cell line was used for all experiments 
within the study, to limit culture-induced phenotypic changes. For the same reason, all 

cells were used within one month of thawing. All cell lines were negative for mycoplasma 
infection, as regularly assessed by PCR through the CRUK MI Molecular Biology Core 

facility. The murine PDA cancer cell lines used in this study (designated as ‘PDA’ and 

‘PDA#2’ in the manuscript) are BL6KPC-TB32043 and BL6KPC-TB32047 and were a 
kind gift from Dr. Kris Frese at CRUK MI and were cultured in Cell Culture Media 10% 

(CCM(10)), consisting of 10% v/v FBS and 1% v/v HyClone Antibiotic/Antimycotic in 
DMEM with glucose and L-glutamine.  Primary pancreatic fibroblasts (PaFs) were 

expanded in vitro from the pancreas of 8-week-old female B6 mice, as described above. 
At 7 d, the cells were FACS sorted into LIN(CD45/CD31/EpCAM)-

PDPN+CD90+CD105+ and LIN-PDPN+CD90+CD105- populations. Cultured fibroblasts 
were never allowed to become confluent and were detached for splitting using Accutase 

Dissociation Solution. All transformations were performed in NEB 5-Alpha Competent E. 
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coli (New England BioLabs Inc., C2987I) using standard methods and DNA isolated 

using QIAGEN Plasmid Midi Kits (QIAGEN, 12145X4). Complexes of 144 μL 
Lipofectamine2000 (Thermo Fisher, 11668019), 18 μg pBABE-puro SV40 LT plasmid 

(Addgene, 13970) and 18 μg pCL-Eco plasmid (Addgene, 12371) in 18 mL of Optimem 

Reduced Serum Media (Thermo Fisher, 31985070) were allowed to form for 20 min at 
RT and added to 7.5x106 Phoenix Cells (Pear et al., 1993) in a 15 cm dish, plated 24 h 

prior. After 6 h the media was aspirated and replaced with 22 mL CCM. After 24 h this 
media was collected, filtered through a 0.22 μm pore mesh and stored at 4 °C. 22 mL of 

fresh CCM was added to the dish and after another 24 h of incubation the media was 
collected, combined with the previous day’s supernatant, polybrene (Sigma Aldrich, 

107689) added to a final concentration of 8 μg/mL, filtered through a 0.22 μm pore mesh 
and used neat to transduce target cells. 24 h later the media was replaced with fresh 

CCM. After 3 d in culture, cells were selected using CCM containing 1 μg/mL puromycin 
(Sigma Aldrich, P8833) for 7 d. After selection cells were re-sorted to ensure high purity, 

expanded, frozen stocks made and used for downstream functional assays. To generate 

GFP and mCherry expressing target cells, a second-generation lentiviral system was 
used. 4.5x106 HEK293FT cells were plated in 10 mL CCM(10) in a 10 cm dish. The 

following day 4 μg of SFFV-eGFP or SFFV-mCherry expression plasmid (Harris et al., 
2012), 2ug of pCMV delta R8.2 packaging plasmid (Addgene 12263), 1 μg pMD2.G 

envelope plasmid (Addgene, 12259) and 21 μL Polyethylenimine (PEI) (Sigma Aldrich, 
764647) (3:1 PEI:plasmids) were combined and mixed in 1 mL of serum-free DMEM and 

incubated at RT for 30 min. The plasmid/PEI mixture was added directly to the 
HEK293FT media, gently swirled to mix and incubated overnight, after which the media 

was replaced taking care not to dislodge cells. Media at 24 h (stored at 4 °C) and 48 h 

was combined, polybrene added to a final concentration of 8 μg/mL, filtered through 0.22 
μm pore mesh and stored at -80 °C. Target cells were transduced with neat virus-

containing media for 24 h. No puromycin selection was carried out and GFP/mCherry 
expressing cells were isolated by FACS. For cancer cell and fibroblast co-culture 

experiments 2x106 mCherry+ PDA cells and 2x10^6 GFP+ PaFs were plated in 20 mL 
CCM(10) in a 225 cm2 flask and analysed after 48 h. To analyse the primary PaF surface 

marker changes under recombinant protein stimulation, primary PaFs were expanded in 
vitro as described, and incubated in 75 cm2 flasks with recombinant proteins in CCM(10) 

at concentrations listed in Table 10 for 3 d. Cells were analysed by mass cytometry as 
described above. To analyse the transcriptomic responses of CD105+ and CD105- PaFs 
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to recombinant protein stimulation, 105 CD105+ and CD105- PaFs were plated into 6 

well plates in 2 mL CCM(0.5), taking care not to swirl the media. The following day the 
media was replaced with CCM(0.5) containing recombinant cytokines or growth factors 

(see Table 10 for details) and after 6 h, cells were aspirated, washed with ice-cold PBS 

and lysed using RLT buffer, fully detached with a cell scraper and RNA isolated using 
RNeasy Mini Kit (QIAGEN, 74104), according to the manufacturer’s instructions. Human 

pancreatic fibroblasts (hPaFs) (Generon, H-6201) were cultured in CCM, CD105+ and 
CD105- cells separated by FACS and cell lines generated using the lentiviral system 

described above with a pCSII-IRES2-hygro plasmid containing an hTERT expression 
inset, which was a kind gift from Dr. Farnando Calvo at the Institute of Cancer Research 

London, followed by 50 μg/mL hygromycin B (Thermo Fisher, 10687010) selection for 7 
d. 

 
Table 10. Recombinant proteins used for fibroblast stimulations 
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3.3.2 – Subcutaneous co-transplant model 

 
The majority of subcutaneous co-transplant studies in this study used female B6 mice of 

14 weeks of age. Previous experiments had shown that tumour formation in female mice 

younger than 10 weeks old was regularly associated with tumour ulceration, requiring 
mice to be euthanized before study completion. Where indicated female 14-week-old 

NSG mice were used. Both male and female Rag1-/- and Batf3-/- mice of mixed ages >12 
weeks old were used where indicated and sex/age matched across cohorts. During 

optimization, cells were injected in 100 μL PBS (Thermo Fisher, 10010056) but this fails 
to retain fibroblasts within the growing tumour (see manuscript). For all subsequent 

transplants Growth Factor Reduced Matrigel (Corning, 356231) was used. Where 
possible, a single Matrigel lot was used for experiments to minimize the impact of lot-to-

lot variation. Cancer cells and fibroblasts were lifted 20-24 h before the day of injection 
using Accutase Cell Detachment Solution and 6x106 and 3x106 cells plated, respectively 

into 225 cm2 flasks. Cancer cells were cultured in CCM(10) and fibroblasts in CCM. One 

the day of injection, cells were lifted again using Accutase Cell Detachment Solution, 
washed twice with ice-cold PBS and counted in triplicate using a Luna Cell Counter on 

bright-field mode. The required number of cancer cells and fibroblasts were combined in 
5 mL polypropylene FACS tubes, washed once more with PBS and carefully and fully 

aspirated. Accurate volumes of ice-cold Matrigel were added using pre-cooled pipette 
tips to obtain an accurate concentration of each cell type at 5000 cells/μL, taking care 

not to introduce air bubbles. Samples were well mixed be gentle pipetting and kept on 
ice. Before each injection, the sample was carefully mixed by pipetting using pre-cooled 

tips. Braun Omnican 50 Insulin Syringe/Needles (VWR, 9151117) were used to 

accurately measure 20 μL of cell/Matrigel mix with no dead-volume, which was injected 
subcutaneously into the right flank of the mouse (therefore giving 10x105 cancer cells 

and 10x105 fibroblasts). Larger injection volumes showed evidence of necrosis in the 
centre of the polymerized Matrigel at 7 d. 20 μL injection volume was found to be the 

optimal balance between generating plugs of Matrigel containing healthy cells 
throughout the early phase of tumour engraftment and being able to measure the liquid 

volume accurately. Tumour width and length were measured by callipers and tumour 
volume (V) calculated as V = (2xwidth)xlength)/2. Study end point was V>900 mm3, if 

the mouse lost >10% body weight or if a mouse’s health showed any other signs of 
deterioration e.g. loss of activity, altered breathing, behavioural changes. 
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3.3.3 – CRISPR/Cas-9 gene editing 

 
The described CRISPR/Cas-9 gene editing protocol was initially optimised by Felix 

Heider, Systems Oncology. For in vitro fibroblasts, nucleofection-based CRISPR/Cas-9 
methods are superior to other methods to generate efficient gene knockouts. For each 

target gene, three separate gRNAs were designed (Synthego ‘Mulit-Guide’ platform), 

such that their spatial distribution favoured large (>50bp) genomic deletions rather that 
small indels, resulting in improved knockout efficiency and consistency. gRNAs were 

synthesized and chemically modified to improve stability and reduce intracellular immune 
responses. Ribonucleoprotein (RNP) complexes were formed by diluting 2 μL of 100 μM 

of multi-gRNA (Synthego) (Table 11) in Tris-EDTA (TE) (Synthego) and 1 μL of 20 μM 
recombinant Cas-9 (Integrated DNA Technologies (IDT), 1081059) in RNase-free PBS 

in 12 μL Primary Cell P3 Nucleofector solution (Lonza, V4XP-3032) and incubating at 
RT for 20 min. To 2.5x105 cells in 5 μL Nucelofector solution, 0.8 μL of Electroporation 

Enhancer Solution (IDT, Alt-R Cas9 Electroporation Enhancer, 2 nmol) was added, 
followed by 15 μL of the RNP solution and mixed by pipetting. This was transferred to a 

well of a 100 μL Nucleocuvette Strip (Lonza, V4XP-3032) and transfected using a 4D-

Nucleofector Core Unit (Lonza), using the CM-137 program and filling empty wells with 
PBS. Cells were allowed to rest for 3 min before being plated in CCM and cultured as 

normal. Transfection with a pool of x2 separate non-targeting (NT) gRNAs (Synthego) 
was used to generate control cells. Gene knockout was confirmed in a split of the cells 

at the protein level by flow cytometry after 7 d, using IFNγ stimulation to induce 
expression of H2Ab1 and Cd74. Surface MHCII expression was measured and CD74 

expression was measured by intracellular staining (CD74 is predominantly located in the 
ER/endosomes), using the FOXP3 Fixation/ Permeabilization kit. Cells were not purified 

further as gene knockout was consistently >95% for all targeted genes. 
 

Table 11. CRISPR/Cas-9 gRNA sequences 
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3.3.4 – General data analysis and plotting 

 

Some plotting and statistical tests were conducted with assistance from Alex Kononov, 
Systems Oncology. Plotting and statistical tests were performed in Prism (version 7, 

GraphPad Software Inc.) or R Statistical Software. For RNAseq data visualization, 
differentially expressed genes (DEGs) from DESeq2 were scaled by library size using 

the function estimateSizeFactors, the data transformed by the function normTransform 
and the obtained expression values used for visualization. Heatmap plots were drawn 

using the R package ComplexHeatmap. Heatmap visualization of CyTOF data was 
achieved by first processing the data using the R package flowCore (Hahne et al., 2009). 

According to best practices, data was transformed by hyperbolic arc-sine with cofactor 
= 5 by the function asinh. The z-score was calculated by the function scale and heatmaps 

drawn using the R package ComplexHeatmap. Principle Component Analysis (PCA) 

plots were generated using the pcaplot function. For the abundance/phenotype cross-
cluster correlation analysis, the number of cells in each FlowSOM cluster as a 

percentage of the total number of gated cells from each sample was used as the 
abundance input data. To calculate the fraction of proliferating and dying cells in each 

cluster, FCS files containing all target cells, including FlowSOM cluster annotation were 
exported from Cytofkit2 and uploaded to FlowJo (version 10.6.2, BD Life Sciences). S-

phase cells were defined as cells with both Ki67 mass intensity signal ≥ 20 and IdU mass 
intensity signal ≥ 20. Dying cells were defined as cells with cleaved caspase-3 (CC3) 

mass intensity signal ≥ 8. The abundance of each FlowSOM cluster and the percentage 
of S-phase and dying cells within each FlowSOM cluster for each sample was exported 

and used as the phenotypic input data for the cross-correlation analysis. Since all 

antibody panels were measured on each of the 18/19 PDA samples, the abundance, 
proliferation and apoptosis data for each of the 20 FlowSOM clusters from each of the 

three panels (60 total clusters) was concatenated into one data frame for these 18 
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samples. Correlation analysis was performed on selected abundance, proliferation and 

apoptosis comparisons (see manuscript for specific comparisons), using Spearman 
correlation measurement. The correlation results were visualized by the R package 

corrplot. 
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Chapter 4 – Results – Single cell analysis of the PDA TME 

4.1 – Results 
 

4.1.1 – Development of a mass cytometry antibody panel to analyse 

mesenchymal cell types from mouse tissues 
 

One of the major limiting factors for understanding the consequences of fibroblast 
heterogeneity in tumours, is an incomplete understanding of surface protein markers that 

can be used to isolate pure, live fibroblast subpopulations for characterisation and 
functional analysis. I hypothesised that a better understanding of the fibroblast surface 

proteome would allow us to better clarify the distinct fibroblast populations and activation 
states in PDA tumours and allow us more precisely characterise the PDA 

microenvironment. To address this, I sought to develop a single cell proteomic workflow 
by developing a novel mass cytometry panel, predominantly focussed on measuring 

known and putative surface markers of mesenchymal cells. Mass cytometry was the 

selected single cell technique because it enables the measurement of large numbers of 
protein markers simultaneously, providing a detailed picture of cellular surface marker 

expression and phenotype. Such high parameter mass cytometry analysis would allow 
me to maximise the data collected from each ex vivo sample and also avoid the 

requirement for in vitro fibroblast expansion. This is important because the expression of 
fibroblast markers are known to be dramatically and rapidly altered after in vitro culture 

(even though they may retain phenotypic features) (Philippeos et al., 2018). Additionally, 
once a mass cytometry antibody panel is established, a large number of samples can be 

analysed and this would give me a flexible tool to interrogate the mesenchymal stromal 

compartment across varied samples. I identified a list of >50 potential markers based on 
an extensive literature search (see Table 12). The aim was to include as many of these 

as possible in the complete mass cytometry panel. I also included a reduced number of 
intracellular markers that are widely used for histological identification of fibroblasts or 

other mesenchymal cells (e.g. VIM and αSMA). Whilst these markers would not be useful 
to isolate live cells, they would aid in accurately annotating the different cell 

types/phenotypes within complex tumour samples. 
 

Table 12. Markers for inclusion in mesenchymal stroma mass cytometry panel, reasons for 
inclusion and example reference 
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Included:   

Marker Reason for inclusion Example reference 

CD44 Hyaluronic acid-binder, contributes to fibroblast 
activation (Spaeth et al., 2013) 

EpCAM Epithelial/PDA marker  (Rhim et al., 2012) 
CD86 T cell co-stim (Pechhold et al., 1997) 

MCAM Pericyte marker, upregulated on subset of fibroblasts 
and functional wrt activation (Zheng et al., 2016) 

ITGα5 Overexpressed on PDA mesenchyme, inhibition 
attenuates desmoplasia (Kuninty et al., 2019) 

CD81 Distributed expression observed on lung fibroblasts (Heinzelmann et al., 2018) 
CD87 Reported marker of activated fibroblasts (Agorku et al., 2019) 
ITGα1 Pericyte marker (Armulik et al., 2011) 

ITGαV Reported expression on subset of melanoma CAFs, 
integrin contributes to TGFβ activation (Davidson et al., 2020) 

ITGα2 Reported marker of activated fibroblasts (Agorku et al., 2019) 
PDGFRα Widely used marker of fibroblasts (Chen and Song, 2019) 

PDPN Widely used marker of fibroblasts (Dominguez et al., 2020) 
CD24 Distributed expression in passaged MEFs (Singhal et al., 2016) 

PDGFRβ Reported upregulation on fibroblast activation, 
pericyte marker (Chen and Song, 2019) 

ICAM1 Fibroblast expression induced by pro-inflammatory 
cytokines and mediates T cell interactions (Musso et al., 1999) 

CD63 Broad marker of cells with similar endocytic 
properties  

(Pols and Klumperman, 
2009) 

CD73 Reported marker of fibroblast subset (Costa et al., 2018) 
CD26 Marker of distinct fibroblast lineages in murine skin (Driskell et al., 2013) 

ITGβ3 Major integrin subunit for fibronectin binding, 
reported to mediate EndMT (Wang et al., 2018) 

CD34 Reported subset of fibroblasts in PanIN/PDA (Feig et al., 2013) 
ITGα6 Laminin-binding integrin subunit (Humphries et al., 2006) 

CD105 Endothelial and pericyte marker, canonical marker of 
BM-MSCs, distributed expression in passaged MEFs (Dominici et al., 2006) 

CD14 
Reported expression on fibroblasts regulated by 
IFNγ, lack of expression defining feature of BM-

MSCs 
(Sugawara et al., 1998) 

CD74 MHCII antigen presentation reported on fibroblasts (Elyada et al., 2019) 

CD80 T cell co-stim and reported expression on fibroblasts, 
distributed expression in passaged MEFs (Pechhold et al., 1997) 

CD31 Canonical endothelial cell marker N/A 
CD38 Distributed expression in passaged MEFs (Singhal et al., 2016) 
ITGβ1 Reported marker of subset of breast CAFs (Costa et al., 2018) 

VCAM1 Fibroblast expression induced by pro-inflammatory 
cytokines and mediates T cell interactions (Musso et al., 1999) 

CD45 Canonical immune cell marker N/A 

CD90 Fibroblast subset marker in RA, canonical BM-MSC 
marker, distributed expression in passaged MEFs (Wei et al., 2020) 

MHCI MHCII antigen presentation reported on fibroblasts (Lakins et al., 2018) 
MHCII MHCII antigen presentation reported on fibroblasts (Elyada et al., 2019) 

Cytokeratin-7 Epithelial/PDA marker  (Schussler et al., 1992) 
Pan-cytokeratin Epithelial/PDA marker  (Rhim et al., 2012) 

VIM General mesenchymal marker (Sahai et al., 2020) 
DES Widely used fibroblast marker and pericyte marker (Chen and Song, 2019) 
αSMA Myofibroblast marker (Ohlund et al., 2017) 

Intracellular 
collagen-4 

Indicator of basement membrane synthesis and 
reported increased expression under fibrotic 

conditions 
(Mak and Mei, 2017) 

Not included:  
Marker Reason could not be included Example reference 

FAP During panel development, no robust monoclonal 
antibody successfully validated (Kraman et al., 2010) 
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FSP1 During panel development, no robust monoclonal 
antibody successfully validated (Sugimoto et al., 2006) 

 
For the markers that had commercially available antibodies, carrier protein-free (e.g. 

BSA-free) formulations of the antibodies were purchased and conjugated to chelating 
polymers pre-loaded with specific heavy-metal isotopes, using commercially available 

kits (see Materials and methods section). Each different antibody was allocated to a 
unique heavy-metal channel. Mass cytometry has significantly reduced channel spill over 

compared to fluorescence-based methods but low levels do still exist and should be 

mitigated where possible. Thus, a dedicated panel-builder was used to ensure markers 
with known high expression (and therefore ‘bright’ signal) were allocated into ‘dim’ 

channels with minimal spill over into less highly expressed markers.  For improved re-
producibility antibodies with extensive validation in the literature or by commercial 

vendors were prioritised and monoclonal antibodies were selected over polyclonal where 
possible. Several antibodies failed during conjugation because the step to partially 

reduce the disulphide-bridges that covalently link the two heavy chains (which act as the 
attachment point for the polymer), caused the antibody to degrade/decompose. In these 

cases, an alternative antibody clone was tried and if no other suitable antibody clone 
was available, an antibody targeting another protein was included in the panel instead. 

The final mesenchymal stroma mass cytometry panel is detailed in Table 2. 

 

4.1.2 – A multi-parameter mass cytometry analysis is able to clearly separate 

fibroblasts from mesenchymal cancer cells and other non-transformed 

mesenchymal cell types 
 

To test how effective the final 41-marker mass cytometry panel was at mapping 
mesenchymal heterogeneity in complex cellular systems such as tumours, I needed a 

system in which I could confidently identify mesenchymal cancer cells from non-
transformed mesenchymal stromal cells. To achieve this, I incorporated an antibody 

targeting Red Fluorescent Protein (RFP) into the panel and stained and analysed the 
single cell suspensions of late stage PDA tumours from Pdx-1-Cre; KrasLSL-G12D/+; 

Trp53LSL-R172H/+; Rosa26LSL-tdRFP/+ (RFP+ KPC) mice. In these mice, Cre-recombinase is 
expressed in pancreatic epithelial cells during embryogenesis which, as well as driving 

oncogenic KRAS expression and mutant P53 expression, also allows expression of RFP, 

permitting positive identification of transformed cancer cells. It has previously been 
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demonstrated that the penetrance of such fluorescent protein expression systems is not 

complete in all target cells (Cabeza-Cabrerizo et al., 2019; Luche et al., 2007), probably 
due to incomplete recombination and lack of selective pressure for RFP expression 

compared with oncogenic proteins. However, the model would enable positive 

identification of cancer cells and, by association, other phenotypically similar RFP- 
cancer cells. End stage RFP+ KPC tumours were disaggregated, stained with a dead 

cell marker (198Pt cisplatin), surface proteins labelled with metal-conjugated antibodies, 
cells fixed and permeabilised, intracellular targets labelled with metal-conjugated 

antibodies and the cells further fixed and acquired on a Helios mass cytometer. The 
resulting single cell data from an RFP+ KPC tumour is plotted as a UMAP projection, a 

2D representation of the high dimensional data, in which each dot represents a single 
cell and cells with similar phenotypes are more closely associated. In this UMAP 

projection, all markers including RFP are used to determine clustering (Figure 5). 
Expression of selected individual markers are plotted as an overlaid colour intensity, 

where blue through yellow through red indicates increased protein levels. 

 

 
Figure 5. UMAP projection of all live, single cells from an RFP KPC tumour sample using all 

phenotypic markers, including RFP to drive clustering 
UMAP plots for each listed marker are shown. Each single dot represents one cell and the overlaid signal 

intensity depicts the detected level of each protein. A total of 1.5x105 randomly downsampled cells are 
displayed. Major cell clusters are annotated in the first UMAP plot. 

 
High pan-cytokeratin (PCK) expression is observed predominantly in one cluster. The 

cells in this cluster mostly (but not completely) stain for RFP and thus this cluster consists 
of cancer cells, approximately half of which have expression of the transmembrane cell-

cell adhesion glycoprotein EpCAM, which denotes epithelial status. Vimentin (VIM) is a 
type III intermediate filament associated with mesenchymal morphology and cell 

functions. It can be seen that within the RFP+ cancer cell clusters, a large number of 
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cancer cells that are EpCAM low are VIM high, thus these cells appear to be cancer cells 

that have undergone EMT. Interestingly, the integrin alpha subunit, ITGα2, is a very 
complete marker of the cancer cell clusters regardless of EMT status. Notably, a fraction 

of cancer cells have some PDGFRα expression, a marker widely used to isolate 

fibroblasts from tumours. The protein tyrosine phosphatase receptor type C (PTPRC), 
also known as CD45, is a complete and canonical marker of all major immune cell types. 

Here, its expression clearly identifies multiple immune cell clusters, the majority of which 
are positive for major histocompatibility complex II, MCHII. The remaining clusters are 

non-transformed, mesenchymal stromal cells. Within these two clusters, a major and 
minor cluster, are positive for platelet endothelial cell adhesion molecule 1 (PECAM-1), 

also known as CD31, the canonical marker of endothelial cells. This leaves the remaining 
clusters as predominantly fibroblasts and pericytes (see below for detailed discussion). 

The fibroblast and pericyte clusters are RFP-, EpCAM- but surprisingly show some low-
level expression of PCK expression in a minority of cells. Cytokeratin expression in 

mesenchymal cell types has been reported by others (von Koskull and Virtanen, 1987). 

This demonstrates that established markers associated with the epithelium and cancer 
cells can have some restricted expression in non-transformed mesenchymal cells and 

supports the concept that using multiple markers to identify cell types in an unbiased 
manner leads to more accurate annotation in complex cell mixtures. High expression of 

the immunoglobulin superfamily glycoprotein, CD90 is particularly useful in positively 
identifying fibroblasts, pericytes and a minor endothelial cluster. Expression of the mucin-

type protein podoplanin, PDPN is restricted to fibroblasts and the minor endothelial cell 
cluster. It is well established in the literature that PDPN demarks lymphatic endothelial 

cells (LECs) (Fletcher et al., 2010). 

 
Importantly, repeating the clustering analysis without using RFP to inform clustering, still 

enables complete separation of RFP+ cancer cells from RFP- mesenchymal cells (Figure 
6). This demonstrates that the other markers used in the panel carry enough information 

about cell identity to fully separate fibroblasts from other mesenchymal stromal 
populations and from cancer cells, even in models that don’t have lineage tracing 

proteins and in which cancer cells have undergone extensive EMT. This enabled me to 
use the standard KPC model (with no RFP) for our subsequent analysis. Such a 

workflow, of using all of the available markers to separate cells into clusters of 
phenotypically similar cells, allowed me to cleanly separate mesenchyme cells away 
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from other cells in the tumour (particularly from mesenchymal cancer cells) and extract 

these pure clusters for further downstream analysis, without prior-knowledge or bias 
about which markers to use for selection. 

 

 
Figure 6. UMAP projection of all live, single cells from an RFP KPC tumour sample using all 

phenotypic markers other than RFP to drive clustering 
UMAP plots for each listed marker are shown. Each single dot represents one cell and the overlaid signal 

intensity depicts the detected level of each protein. A total of 1.5x105 randomly downsampled cells are 
displayed. 

 
4.1.3 – Extensive inter- and intra-tumoural heterogeneity exists in the 

composition of the mesenchymal stromal compartment of spontaneous murine 

pancreatic tumours 
 

To better understand fibroblast heterogeneity in the PDA TME, I applied the novel 
mesenchymal stromal mass cytometry panel to single cell suspensions from n=19 

different KPC tumours. I anticipated that this analysis would clearly define the abundance 
and phenotypic variability across a large number of tumours. The KPC, like other 

spontaneous GEMMs is a highly stochastic model. For example, despite all tumours in 
this cohort having the same KRASG12D and TP53R172H driver point mutations and the 

same induction time point (embryogenesis), tumour progression and time to advanced, 

symptomatic disease takes a highly variable length of time and tumours show a wide 
range of sizes. Although a broad positive correlation is observed between mouse age 

and weight of tumours used in this study (Figure 7) (Spearman correlation method, 
ρ=0.531, p=0.04), the data shows a wide range in length of time to advanced disease 

(88 -  220 days) and the final tumour weight (213 – 1380 mg). 
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Figure 7. Correlation between KPC mouse age and tumour weight. 
ρ=Spearman correlation coefficient, 90% confidence intervals displayed. 

 
To focus the analysis on the mesenchymal stroma only, I first selected CD45- cells only 

to remove all immune cells. I then ran high dimensional analysis on the remaining cells 

(cancer cells and mesenchymal stroma) using all cell markers to allocate every cell to a 
cluster, as for the RFP+ KPC example above. I extracted all mesenchymal clusters (for 

example, as highlighted in Figure 5). This cleanly removed epithelial cancer cells and 
importantly, mesenchymal cancer cells from the samples. The data, containing target 

cells only (endothelial cells, pericytes, fibroblasts and any other non-cancer 
mesenchymal cells) was then exported. This methodology also removes rare doublet 

events containing fibroblast and cancer cells that were not excluded in the initial gating. 
Across all 19 PDA tumours, the mesenchymal stroma made up 23.0±11.5% of all viable, 

CD45- single cells. ~26,000 randomly down-sampled mesenchymal stromal cells from 

each sample were combined to give a total of 500,000 cells for analysis. These were 
plotted using UMAP visualisation and cell clusters determined by unsupervised 

FlowSOM analysis (Figure 8A) (Van Gassen et al., 2015). For both UMAP and FlowSOM 
analysis, markers of cancer cells (EpCAM, CK7, PCK) and immune cells (CD45) were 

not used to drive visualisation/clustering, as most of these cell types had been removed 
from the mesenchymal dataset in the prior step. Also, in this instance, markers of cell 

proliferation (Ki67 and IdU) and cell death (cleaved caspase-3 (CC3)), that are included 
in the panel, were not used to drive visualisation and clustering. These proteins are 

rapidly and dynamically regulated and their use in visualisation and clustering would 
fragment all clusters into proliferative and dying sub-clusters and complicate the 

analysis. Instead, cell proliferation and apoptosis were analysed separately (see section 

4.1.4). The relative abundance of each FlowSOM cluster within the total mesenchymal 
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compartment is plotted as stacked bar graphs in Figure 8B, a heatmap showing the 

median expression of each marker used in the analysis along with the putative 
annotation of the corresponding cluster is shown in Figure 8C and UMAPs of selected 

individual markers are shown in Figure 8D. In addition, the mean relative abundance of 

each cluster is shown in Figure 9, plotted with the standard deviation to show variation 
across samples. Collectively these visualisations allow us to navigate the high 

dimensional data and begin to annotate mesenchymal clusters. 
 

 

 
Figure 8. Phenotypic and compositional heterogeneity of pancreatic cancer-associated 

mesenchymal cells 
 (A) UMAP projection of single mesenchymal stromal cells from end-stage KPC PDA tumors (n=19 

samples) with color-coded FlowSOM clusters. Each tumor sample contributes an equal number of cells to 
the dataset. (B) Stacked bar graph displaying relative abundance of KPC PDA mesenchymal stromal 

FlowSOM clusters, with clusters grouped into mesenchymal sub-types. CAF clusters are emphasized. (C) 
Heatmap displaying marker median mass intensities (MMIs) for each FlowSOM mesenchymal stroma 
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cluster. Phenotypic markers and mesenchymal stromal clusters are grouped using unsupervised 
hierarchical clustering based on marker MMIs. Cell-type annotations based on canonical phenotypic 

markers are listed. (D) UMAP projection from (A) displaying overlaid signal intensity of example phenotypic 
markers. 

 

 
Figure 9. Variability of abundance of pancreatic cancer mesenchymal stromal subsets 

The relative frequency of FlowSOM-determined PDA mesenchymal cell subsets. Data displayed as 
mean+/-standard deviation. 

 
The analysis shows that the mesenchyme of these PDA tumours is a complicated 
mixture of discrete cell clusters, and within these discrete clusters, a graduated 

continuum of phenotypes is also observed. The variation in relative abundance of each 
FlowSOM cell cluster across the n=19 tumours is striking, with some clusters, such as 

cluster S-14, present to high amounts in all tumour samples and some clusters, such as 

cluster S-20, lowly abundant in the majority of samples but highly abundant in two tumour 
samples. In addition, one cluster, S-1, is highly abundant in just one sample, where is 

contributes 44.8% of all mesenchymal cells, yet present at <1% in all other samples.  
 

To annotate clusters, I surveyed the marker expression of each cluster, plotting the 
median expression of each marker as a heatmap (Figure 8C). The vast majority of cells 

are VIM positive, indicative of a mesenchymal phenotype. CD31 expression identifies 6 
endothelial cell clusters, with all endothelial clusters expressing CD105, a co-receptor 

for the TGFβR complex. Additional expression of PDPN and CD90 identifies S-11 as 
lymphatic endothelial cells (LECs), which represent 3.1±1.64% of all mesenchymal cells. 

Endothelial clusters S-3, S-4 and S-5 form a continuum of phenotypes. Based on 

abundance, positive expression of CD31, CD105 and the cell surface glycoprotein, 
MCAM and negative expression of PDPN, CD90 and the intracellular microfilament 

protein αSMA, these cells most closely resemble blood endothelial cells (BECs), in 
various phenotypic states. The expression levels of canonical endothelial cell markers, 

such as CD31, MCAM and CD105, increases from the minor cluster S-3, through the 
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most abundant cluster S-4 (relative abundance 14.2±7.4% of all mesenchymal cells), to 

the most highly expressing cluster S-5 (9.1±5.7%), which may represent increasing 
differentiation/maturation of BECs or potentially distinct local microenvironmental niches. 

All 19 PDA samples contained all 3 BEC clusters and the single LEC cluster, albeit to 

widely varying levels (see discussion later regarding abundance variation). 
 

S-17 and S-18 are minor clusters representing 0.1±0.4% and 0.5±0.3% of mesenchymal 
cells respectively. Both have CD31 staining suggesting an endothelial-like phenotype 

but further definitive annotation with this dataset is not possible. 
 

S-15 (3.1±2.1%) forms a single discrete cluster that has high and uniform expression of 
CD105, CD90, MCAM and αSMA and lacks CD31 and PDPN expression. This cluster 

also expresses consistently high levels of the intermediate filament protein, DES and the 
integrin alpha subunit, ITGα1, identifying these cells as pericytes (Armulik et al., 2011; 

Kosyakova et al., 2020). Three minor clusters, S-2 (relative abundance of 0.55±0.66%), 

S-3 (1.5±1.4%) and S-7 (0.3±1.1%) have low expression of VIM, yet still show expression 
of other known mesenchymal markers. Lack of VIM staining may be a technical artefact 

or be genuine and VIM may not be a fully complete mesenchymal marker. 
 

The remaining clusters fall under the broad definition of cancer-associated fibroblasts 
(CAFs), as non-cancer mesenchymal cells in tumours that lack expression of canonical 

markers of other cells types. All these fibroblast-like clusters, except for S-1, share 
common features such as high and consistent expression of PDPN, DES and CD90 and 

lack of CD31. The clusters show variable levels of widely used fibroblast markers such 

as αSMA and the growth factor receptor tyrosine kinase (RTK) PDGFRα. Interestingly, 
αSMA and PDGFRα show inverse expression across several clusters, with cells showing 

high expression of one or the other but not both at the same time. Levels of αSMA, the 
canonical marker of the so called myofibroblastic (MyCAF) phenotype, are highest in 

four closely-related fibroblast clusters positive for CD105 expression: S-20 (3.6±6.8%), 
S-19 (10.4±6.4%), S-16 (1.5±0.4%) and S-14 (14.2±4.8%) and a more distinct fibroblast 

cluster that lacks CD105 expression, S-13 (11.9±8.7%). ICAM1, a glycoprotein that 
regulates leukocyte binding, is present on most of the mesenchymal cell populations but 

shows variable expression. In the fibroblast clusters, like PDGFRα, ICAM1 also shows 
an inverse expression pattern to αSMA. The type 1 membrane cell adhesion 
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sialoglycoprotein, VCAM1 (also known to play a role in leukocyte binding) shows a 

similar expression pattern but is mostly restricted to fibroblasts. Whilst high and 
consistent expression of MCAM, ITGα1 and αSMA is a hallmark feature of pericytes, 

minor CAF clusters also share this phenotype but with the co-expression of several other 

proteins (e.g. PDPN, CD90), highlighting the need for multiple markers to be used if 
clusters of distinct mesenchymal lineages are to be confidently annotated. 

 
The surface peptidase, CD26 has been shown to be a marker of distinct lineages of 

fibroblasts in human and murine skin (Driskell et al., 2013). However, in these PDA 
samples, CD26 is highly expressed across all major fibroblast clusters with some 

graduated expression seen. The sialomucin adhesion protein, CD34 and the growth 
factor RTK, PDGFRβ have all previously been shown to identify subpopulations of 

fibroblasts in tumours and tissues (Table 12). In this dataset, we observe graduated 
expression of all of these markers but their expression is present in multiple discrete 

fibroblast clusters. For example, CD34 is co-expressed in 3 distinct regions of fibroblast 

cells, in clusters that also have the highest αSMA and MCAM expression, established 
markers of myofibroblast phenotype. The integrin subunits, ITGα5 and ITGβ3, whose 

complexes are involved in fibronectin, osteopontin and thrombospondin binding, also 
follow a similar pattern, with increased expression in αSMA+ fibroblasts, although none 

of these markers have expression profiles that perfectly overlap. The multivesicular 
transport tetraspanin, CD63 shows broad and uniform expression in fibroblasts and 

pericytes, lower expression in LECs and very little expression in BECs.  
 

The majority of the markers tested show some form of graduated expression patterns 

and are present in multiple clusters in different regions of the uMAP plot. In comparison, 
CD105 shows clear binary expression, in which cells either express high levels or CD105 

or have none/very minor expression of CD105. Within the fibroblast clusters there are 
clear, distinct groups of CD105+ and CD105- clusters. Within both these groups, there 

are regions of αSMA and MCAM expression, and regions of PDGFRα, ICAM1 and 
VCAM1 expression. Regardless of their CD105 status, all these fibroblast clusters show 

positive expression of PDPN and CD90. 
 

The AMP nucleotidase, CD73 and the lamin-binding integrin subunit, ITGα6, both show 
much higher expression on CD105- fibroblast clusters compared to CD105+ fibroblast 
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clusters. Interestingly, ITGα6 is present on all other mesenchymal cell types apart from 

CD105+ fibroblast clusters. Two proteins involved in MHCII antigen presentation, MHCII 
complex itself and the MHCII stabiliser and transporter invariant chain, CD74, as well as 

the bacterial lipopolysaccharide co-receptor, CD14, all show high expression in specific 

fibroblast clusters. Interestingly, MHCII, CD74 and CD14 are almost exclusively 
expressed in specific CD105- clusters only, with little or no expression in CD105+ 

fibroblasts. The minor CD105- cluster S-9 (relative abundance 1.6±1.8%) has the highest 
median expression levels of MHCII, CD74 and CD14 of all mesenchymal stromal 

clusters. The MHCII and CD74 expression levels in this cluster and a related CD105- 
cluster S-12 (2.5±5.0%) are far higher than that on BECs, cell types well known to 

express MHCII antigen presentation machinery under inflammatory conditions (Pober et 
al., 2017).  Two T cell co-stimulatory molecules, CD80 and CD86 are expressed on the 

endothelial cell cluster S-5 and a minority of fibroblast clusters but interestingly, are 
expressed in a non-overlapping pattern.  

 

Cluster S-1, which is a major fibroblast fraction in just one PDA sample and very rare in 
other samples, has high expression of ITGα6, CD63, DES and VIM but low to 

intermediate expression of PDPN, αSMA and CD90 and does not match any other 
mesenchyme phenotype in these tumours. Whilst this cluster resembles fibroblast-like 

cells, its identity is hard to confidently annotate within this dataset. It is possible that this 
is a technical or biological artefact specific to PDA sample 18. 

 
To try and link variation in stromal composition with macroscopic features of the tumour, 

I compared the relative abundance of all FlowSOM stromal clusters with tumour weight 

across the PDA tumours, using the Spearman correlation method to quantify 
relatedness. 2/20 (10%) comparisons showed statistically significant correlations 

between cluster abundance and tumour weight (Figure 10). The largest BEC cluster, S-
4 showed an inverse correlation with tumour weight (ρ=-0.582, p=0.020) and the minor 

PDPN+CD105-MHCII+ fibroblast cluster S-12, showed a positive correlation with tumour 
weight (ρ=0.597, p=0.017). 
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Figure 10. Correlations between pancreatic cancer mesenchymal stromal subsets and tumour 

weight 
 (A) Spearman correlation analysis between the relative frequency of the endothelial cell subset, S-4 and 

PDA tumor weight. ρ=Spearman correlation coefficient, 90% confidence intervals displayed. (B) As for (A), 
comparing relative frequency of CAF subset, S-12 and tumor weight 

 
 
To better understand how the abundance of one stromal cluster was related to the 

abundance of all other stromal clusters, Spearman correlation analysis was again used 
but this time plotting all pair-wise abundance comparisons as a heatmap, where the 

Spearman coefficient (1 to -1) is displayed as either positive correlation (red) or negative 
correlation (blue), estimated statistical significance (p<0.05) denoted with an asterisk 

and the clustering of the row/column by unsupervised hierarchical clustering (Figure 11). 

 
Figure 11. Pancreatic cancer mesenchymal stromal subset abundance correlations 

Correlation matrix displaying Spearman correlation coefficients of all pairwise mesenchymal stroma cluster 
frequency comparisons. *p<0.05, **p<0.01, ***p<0.001. 
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37/190 (19%) of the unique pairwise comparisons show significant correlations (p<0.05) 

i.e. across the 19 PDA samples as one cluster increases/decreases, the abundance of 
another cluster shows the same/opposite pattern in a statistically significant manner. The 

most striking feature of the analysis is that clusters that show coordinated variation 

across the 19 samples, organise into 3 distinct modules by unsupervised hierarchical 
clustering. Module 1 consists of two of the BEC clusters, the single LEC cluster, the two 

endothelial-like clusters S-17 and S-18 and several CD105+ fibroblast clusters, which 
show positive abundance associations with each other across the 19 samples. This 

suggests a PDA tumour that has low numbers of one cluster, is likely to have low 
numbers of the other clusters. Interestingly, the distinct module 2 contains all four of the 

CD105- fibroblast clusters. The third and smallest module, module 3, consists of the BEC 
cluster S-5 and the two CD105+αSMAhi clusters S-19 and S-20. Some of these 

associations show notably strong correlations, despite being unrelated cell types, for 
example BEC S-5 and fibroblast S-20 (ρ= 0.78, p <0.001). I choose to avoid 

interpretation of the negative abundance correlations: the measurement used here is 

relative abundance, so as a major cell cluster increases, others will proportionally 
decrease and this is expected to introduce non-real negative correlations. 

 
4.1.4 – Distinct mesenchymal stromal cell clusters have different proliferation 
and apoptotic characteristics 
 
The tumour microenvironment is a dynamic cellular ecosystem that changes over time 

with certain cell populations expanding or contracting as the tumour progresses and 
grows. To capture these changes occurring in the stromal compartment at the chosen 

sampling time point (i.e. advanced end-stage disease), I incorporated markers of 
proliferation and apoptosis into the mass cytometry panel. The ribosomal RNA-

transcription enhancer protein, Ki-67 is highly expressed during the G1, S and G2 phases 
of the cell cycle and is a widely accepted marker of cells in an active proliferative state 

(regardless of which part of the cell cycle they are in). Mice in this study were also 

injected with an IdU solution 2 h before they were culled. IdU works in a similar manner 
to the more widely used BrdU, but the bromine atom is replaced by an iodine atom. IdU 

is rapidly taken up by cells throughout the body and tumour, though transporters of the 
structurally similar natural nucleoside, thymidine. All cells in S-phase of the cell cycle that 

are actively replicating DNA, take up and incorporate IdU into their genome and this can 
be measured in the 127I channel of the mass cytometer. All IdU+ cells (S-phase) are 
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Ki67+ (G1, S and G2 phase) but not all Ki67+ cells are IdU+ (proliferating but not in S-

phase) (see example plot in Figure 12). Every single cell in the mass cytometry analysis, 
had Ki67 and IdU measurements recorded and these two proteins give a remarkable 

snapshot of the rate of proliferation of each different stromal cell cluster. Figure 13 plots 

the mean fraction (± standard deviation (SD)) of proliferating and actively cycling cells 
(Ki67+/IdU+), across all 20 clusters ordered by increasing average proliferation rates. 

 
Across all PDA tumour mesenchymal clusters, the mean fraction of S-phase cells was 

2.8±2.4%. 5/20 (25%) mesenchymal cell clusters had high proliferation rates, with >5% 
of all cells in the cluster in active S-phase of the cell cycle (S-12, -6, -18, -9 -5). 

Interestingly, despite being minor populations in terms of relative abundance at this 
sample collection time point, 3/5 of these clusters were CD105- fibroblasts. This includes 

both CD105- fibroblast populations with high MHCII expression (S-9 and -12), with 
cluster S-12 (S-phase fraction = 6.8±3.4%) being the most proliferative of all 

mesenchymal stromal clusters in PDA tumours. Notably, all CD105- fibroblast clusters 

had >3% cells in S-phase and conversely, all CD105+ fibroblast clusters had <2% of 
cells in S-phase, with many much lower. The least proliferative cluster was S-3 

(0.2±0.4%), the smallest BEC cluster that has the lowest expression of canonical 
endothelial cell markers possibly reflecting an immature endothelial state. As for 

abundance measurements, the rates of proliferation for all clusters showed high 
variability across the 19 PDA samples, shown in (Figure 13). 

 

 
Figure 12. Example Ki67 v IdU plot illustrating how the S-phase fraction is measured for each 

cluster 
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Figure 13. Variability of proliferation rates of pancreatic cancer mesenchymal stromal subsets 
The proliferative fraction of FlowSOM-determined PDA mesenchymal cell subsets. Data displayed as 

mean+/-standard deviation. 
 
Cleaved caspase-3 (CC3) is the most widely used marker of the programmed cell death 
process known as apoptosis. Caspase-3 is an inactive proenzyme that is activated by 

cleavage at a conserved aspartate residue by upstream caspases 8, 9 and 10, which 
themselves are regulated by a vast array of pro- and anti-apoptotic signalling pathways. 

Cleaved caspase-3 goes on to cleave many proteins required for normal cellular 
homeostasis (Fernandes-Alnemri et al., 1994), which results in controlled cell death and 

degradation and release of degraded cell components. Measurement of CC3 with single 
cell resolution across all 20 mesenchymal stromal clusters, showed a very distinct 

pattern compared to the proliferation analysis. As for abundance and proliferation 
measurements, the apoptosis measurements for all clusters across the 19 PDA samples 

showed a wide range of values. The mean CC3+ fraction across all clusters was 

15.5±6.9%, although the average was highly skewed by the high CC3+ fractions seen in 
endothelial cells: all four of the mesenchymal stromal clusters with the highest fractions 

of CC3+ cells (S-5, S-11, S-4 and S-18) are endothelial cells, including the two largest 
BEC clusters and the single LEC cluster. It is not clear from published studies whether 

different cell-types, like the endothelial cells here, have higher baseline levels of CC3 or 
whether this high CC3+ fraction represents genuinely high levels of endothelial cell 

apoptosis occurring in PDA tumours. Fitting with the later idea, is the observation 
mentioned above, that larger tumours have a reduced abundance of the BEC cluster S-

4, compared to small tumours (Figure 10A) and that PDA tumours are well known to be 
hypovascular (Provenzano et al., 2012; Rhim et al., 2014). Compared to endothelial 

cells, all fibroblast clusters had much lower CC3+ fractions, ranging from S-9 (5.8±3.6% 

CC3+), down to S-8 (0.7±1.4% CC3+). This lower level of apoptosis may be one of the 
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reasons why fibroblasts are able to persist in PDA tumours and accumulate to the high 

numbers seen in advanced stage lesions.  
 

 
 

Figure 14. Example cleaved-caspase 3 (CC3) plot illustrating how the apoptotic fraction is 
measured for each cluster 

 
 

 
 

Figure 15. Variability of apoptotic rates of PDA mesenchymal stromal subsets 
The apoptotic fraction of FlowSOM-determined PDA mesenchymal cell subsets. Data 

displayed as mean+/-standard deviation. 
 
 
4.1.5 – Additional mass cytometry panels to map heterogeneity across immune 

cells allows for complete mapping of the cellular composition of the PDA TME – 
Myeloid/NK/B cell (MNB) analysis 

 
The compositional and phenotypic analysis of the mesenchymal stromal compartment 

by mass cytometry described above, was highly effective and I hypothesised a similar 

approach could be used to map inflammatory cells, with the aim to assess relationships 
between mesenchymal and immune cell subsets in a non-biased, discovery manner. In 

order to map the immune compartment, I developed two further mass cytometry panels. 
One panel was designed to map CD45+CD3ε- cells, which consist of all myeloid cells, 
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natural kill (NK) cells (or other innate lymphoid cells (ILCs)) and B cells (‘MNB’ panel). 

The other panel aimed to map the CD45+CD3ε+ compartment, consisting entirely of 
CD3ε+ T cells (‘T’ panel). Together with the mesenchymal stromal data, this gave 

complete coverage of all non-tumour cells in the PDA tumours. Because mass cytometry 

has been extensively used by other researchers to map murine immune cell 
heterogeneity, many of the key markers to include in panels had already been disclosed 

in publications. I assessed data from a range of mass cytometry publications and 
selected the key lineage and phenotypic markers and combined them into MNB and T 

cell targeting panels. Antibody conjugations were conducted as for the mesenchymal 
stromal panel. The same PDA tumour samples for which the mesenchyme was 

measured (described above), were stained with the MNB and T cell panels. One tumour 
(PDA-19) only had the mesenchyme panel applied, but the remaining n=18 other 

tumours, were all stained with the mesenchymal stromal (S) panel, the MNB panel and 
the T cell panel. The resulting matched data for all 18 PDA tumours gives coverage of 

all TME, non-cancer cells in these 18 different PDA tumours. 

 
In a similar manner to the mesenchymal stromal analysis, the MNB analysis of the 

CD45+CD3ε- fraction for the 18 PDA samples is shown in Figure 16. Across all 18 PDA 
tumours, the CD45+CD3ε- fraction accounted for 35.7±11.8% of all viable, single cells. 

Using well established canonical markers, we are able to annotate the MNB clusters 
(canonical markers for major immune cell subsets are described in Table 13). All major 

CD45+CD3ε- immune cell types are observed in the dataset. Cluster MNB-4 is 
CD19+MHCII+ B cells (7.0±7.8%). Two CD11b+Ly6G+ neutrophil clusters, MNB-1 and 

-5, are present with MNB-1 (19.8±9.2%) matching a mature neutrophil phenotype 

(Ly6GhiCXCR2hi) and MNB-5 (1.1±0.6%) matching an immature neutrophil phenotype 
(Ly6intCXCR2-) (Evrard et al., 2018). MNB-13 (11.3±6.8%) and MNB-17 (0.4±0.6%) are 

both CD11b+Ly6C-SiglecF+ and therefore are the remaining granulocyte lineages 
(eosinophils, basophils and mast cells). CD68 is found to be a uniformly expressed by 

the mononuclear phagocyte lineage, that consists of monocytes, macrophages and 
dendritic cells (DCs). DC clusters are identified as CD11c+MHCII+CD64-, and within this 

is MNB-10 (1.3±1.0%) matching a cDC1 phenotype (CD24+CD103+XCR1+) and MNB-
9 (1.4±0.8%) matching a cDC2 phenotype (higher CD11b, MHCII and SIRPα expression 

and lack of cDC1 markers). MNB-7 (0.5±0.4%) are plasmacytoid DCs (pDCs) 
(SIRPα+PDCA1+). 



 95 

 

 

 
 

Figure 16. Phenotypic and compositional heterogeneity of pancreatic cancer-associated myeloid, 
NK and B cells (MNB) 

 (A) UMAP projection of single MNB stromal cells from end-stage KPC PDA tumors (n=18 samples) with 
color-coded FlowSOM clusters. Each tumor sample contributes an equal number of cells to the dataset. 

(B) UMAP projection from (A) displaying overlaid signal intensity of example phenotypic markers. (C) 
Heatmap displaying marker median mass intensities (MMIs) for each FlowSOM MNB stromal cluster. 
Phenotypic markers and MNB stromal clusters are grouped using unsupervised hierarchical clustering 

based on marker MMIs. Cell-type annotations based on canonical phenotypic markers are listed. 
 
 

 
 

Figure 17. Variability of abundance of pancreatic cancer myeloid, NK and B cell (MNB) stromal 
subsets 

The relative frequency of FlowSOM-determined PDA MNB stromal subsets. Data displayed as mean+/-
standard deviation. 
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Table 13. List of phenotypic markers identifying major immune cell subsets 

Cell type Key markers for identification 
Monocyte CD11b+, Ly6C+, Ly6G- 

Macrophage CD68+, CD16/32+, CD64+, F4/80+ 
M1 macrophage As above, CD206+ 
M2 macrophage As above, iNOS+ 

Eosinophil/basophil/mast cell CD11b+, CD68-, Ly6C-, SiglecF+ 
cDC1 MHCII+, CD11c+, CD64-, CD24+, CD103+ 
cDC2 MHCII+, CD11c+, CD64-, CD11b+, SIRPα+ 
pDC CD68+, CD11cint, SIRPα+, Ly6C+, PDCA1+ 

Immature neutrophil CD11b+, Ly6G+, CXCR2- 
Mature neutrophil CD11b+, Ly6G+, CXCR2+ 

B cell CD19, MHCII 
NK/innate lymphoid cell Lack of other lineage markers, CD49b+ 

Th1 CD4+ T cell TCRβ+, CD3ε+, CD4+, TBET+ 
Th2 CD4+ T cell TCRβ+, CD3ε+, CD4+, GATA3+ 
Treg CD4+ T cell TCRβ+, CD3ε+, CD4+, FOXP3+ 

Antigen experienced CD8+ T cell TCRβ+, CD3ε+, CD8+, PD1+, CD39+ 
Bystander CD8+ T cell TCRβ+, CD3ε+, CD8+, PD1-, CD39- 

γδ T cell TCRγδ+, CD3ε+ 
 
A striking feature of this data set is the abundance and heterogeneity of the 
monocytes/macrophages present in the PDA TME. Cluster MNB-6, -8 and -12 are 

monocyte clusters (CD11b+CD68+Ly6C+Ly6G-) and show graduated differentiation into 
a wide variety of phenotypically divergent macrophage clusters. The majority of these 

cells express F4/80, the canonical marker of tumour associated macrophages (TAMs). 

Almost all macrophage clusters in these samples have high expression of the mannose 
receptor, CD206, a widely used marker of the so called alternatively activated (M2) 

phenotype. Only a minor macrophage cluster MNB-19 (relative abundance 1.3±1.3%) 
show expression of iNOS, the canonical marker of the so called classically activated 

(M1) macrophages. However, these cells also show some level of CD206 expression, 
so definitive M1/2 annotation is not clear. Various gradients of expression of several 

other proteins results in a patchwork of macrophage phenotypes. These variable 
proteins include the T cell inhibitory checkpoint molecules PD-L1, PD-L2 and VISTA, the 

stimulatory receptor CD40, the T cell co-stimulatory ligands CD80 and CD86, the 
chemotactic receptors CXCR2 and CX3CR1, the Fc receptors CD16/32 and CD64, the 

‘don’t eat me’ signal receptor SIRPα, the Th2-related interleukin receptor IL4Ra and the 
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non-classical MHCI protein, CD1d. Many of these proteins have well established roles 

in macrophage biology and function in tumours (Cassetta and Pollard, 2018; DeNardo 
and Ruffell, 2019). On average, these heterogenous monocyte and macrophage clusters 

make up 52.7±11.2% of all MNB cells in PDA tumours. Of the remaining two minor 

clusters, MNB-2 has features of NK or ILCs (lack of myeloid and B cell markers and 
expression of CD49b and Nkp46) and MNB-3 has a mixed phenotype and is 

unknown/unannotated. 
 

The mature neutrophil cluster MNB-1 shows the highest abundance of any single MNB 
cluster (19.8±9.2%). This is possibly due to its relatively homogenous phenotype, 

especially compared to the heterogenous and fragmented macrophage clusters. The 
standard deviation from the average abundance of this cluster was also the highest of 

all MNB clusters, with the relative abundance ranging >10-fold from 3.1-36.5%, 
suggesting neutrophils accumulate to wildly different degrees across PDA tumours. 

Other cell types also vary widely, being very rare or highly abundant in some PDA 

tumours. For example, B cells can make up between 0.5-26.8% of all the CD45+CD3ε- 
cells (average 7.0±7.8%), depending on the particular PDA tumour. Because B cells 

rarely infiltrate tumours, these cells may be part of tertiary lymphoid structures or less 
coordinated immune cell aggregates. 

 
The average proliferation rate of all the MNB clusters was 2.9±1.9% and was very similar 

to the average proliferation rate of all the stromal cell clusters (2.8±2.4%). Even though 
Ki67 is not used to drive clustering in this analysis, we can see that it shows uneven 

distribution among clusters, for example with high expression in monocyte clusters and 

little expression in B cell clusters, which fits with the known proliferation behaviour of 
these cell types in tumours (Gabrilovich et al., 2012; Sarvaria et al., 2017). Detailed 

analysis of the proliferative and apoptotic fractions of each cluster is given in Figure 18-
19. As for the mesenchymal stromal cell analysis, a wide range of proliferation and 

apoptosis rates are observed both between different MNB clusters in the same PDA 
tumour and also between the same cluster in different PDA tumours, highlighting the 

heterogenous nature of this spontaneous tumour model. 
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Figure 18. Variability of proliferation rates of pancreatic cancer Myeloid, NK, B cell (MNB) stromal 
subsets.  

The proliferative fraction of FlowSOM-determined PDA MNB stromal subsets. Data displayed as mean+/-
standard deviation. 

 

 
 

Figure 19. Variability of apoptotic rates of pancreatic cancer Myeloid, NK, B cell (MNB) stromal 
subsets 

The apoptotic fraction of FlowSOM-determined PDA MNB subsets. Data displayed as mean+/-standard 
deviation. 

 
Surprisingly, the rare cDC1 cluster, MNB-10, is the most proliferative MNB cluster, with 
an average S-phase occupancy of 7.2±2.7%. Despite rapid cDC1 proliferation, cDC1s 

are a minor cell type here (and in other tumours). Suppressive effects can restrain them 
to the tumour margins and reduce cell survival (Bottcher et al., 2018; Bottcher and Reis 

e Sousa, 2018). In addition, antigen capture and DC maturation initiates a CCR7-
dependant migrational program that transports them away from the tumour to the 

tumour-draining lymph node (TDLN) (Bottcher and Reis e Sousa, 2018; Roberts et al., 
2016). Notably, PDA tumours are known to secrete high levels of GM-CSF (Bayne et al., 

2012), a key growth factor for cDCs in the periphery (Greter et al., 2012). For unknown 
reasons, despite this high cDC1 proliferation, these tumours are clearly not being 

controlled effectively by adaptive immunity.  
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The least apoptotic of all MNB clusters is the immature monocyte cluster, MNB-6, 
consistent with the fact that healthy monocytes derive directly from the blood and begin 

to differentiate into macrophages (and lose their monocyte phenotype) as they travel into 

tissues and encounter inflammatory ligands and environmental stresses, before dying 
as terminally differentiated macrophages (DeNardo and Ruffell, 2019). 

 

4.1.6 – Additional mass cytometry panels to map heterogeneity across immune 

cells allows for complete mapping of the cellular composition of the PDA TME – 

T cell (T) analysis 
 

Next, I applied a similar analysis to the CD45+CD3ε+ compartment of the 18 PDA 
samples, using the mass cytometry T cell panel (Figure 20). Across all 18 PDA tumours, 

the CD45+CD3ε+ fraction accounted for just 4.0±3.9%% of all viable, single cells. As for 
the mesenchyme and CD45+CD3ε- immune cells, extensive cellular heterogeneity is 

observed among the T cells in these PDA samples. As expected from the pre-gating 
strategy, all cells are positive for CD3ε. Lack of TCRβ expression and positive TCRγδ 

expression identifies three small and distinct γδ T cell clusters (T-11, -13 and -15). Three 

other minor clusters show zero/very low expression of TCRβ, TCRγδ, CD4 or CD8a (T-
8, 9, 18). These cells possibly represent genuine ‘double negative’ T cells that others 

have reported in tumours (Brandt and Hedrich, 2018; Yao et al., 2019), blood circulating 
thymocytes that have been brought into the tumour under inflammatory gradients or are 

in the blood vessels at the time of tumour collection (Anderson et al., 1996). Alternatively, 
some of these clusters may be NKT cells or  possibly myeloid cells that have taken on 

CD3ε protein by trogocytosis or phagocytosis (Ahmed et al., 2008), causing them to fall 
within the CD45+CD3ε+ gate used to select these target cells. In support of this, clusters 

T-18 and T-9 have much lower median expression of CD3ε than the other bone fide T 
cell clusters. Alterative markers would be needed to better characterise these minor 

clusters. TCRβ expression and CD4 and CD8a expression identifies the two main groups 

of clusters as CD4+ T cells (MHCII-peptide targeting) and CD8a+ T cells (MHCI-peptide 
targeting), respectively. I focussed further detailed annotation on these major CD4+ and 

CD8a+ T cells clusters, as they make up a combined average of 84.2±8.7% of all T cells 
in these PDA tumours and have well-established roles in the regulation and execution of 

anti-tumour immunity. 
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Figure 20. Phenotypic and compositional heterogeneity of pancreatic cancer-associated T cells (T) 
 (A) UMAP projection of single T cells from end-stage KPC PDA tumors (n=18 samples) with color-coded 

FlowSOM clusters. Each tumor sample contributes an equal number of cells to the dataset. (B) UMAP 
projection from (A) displaying overlaid signal intensity of example phenotypic markers. (C) Heatmap 

displaying marker median mass intensities (MMIs) for each FlowSOM T cell cluster. Phenotypic markers 
and T cell clusters are grouped using unsupervised hierarchical clustering based on marker MMIs. Cell-

type annotations based on canonical phenotypic markers are listed. 
 

 

 
 

Figure 21. Variability of abundance of pancreatic cancer T cell (T) subsets 
The relative frequency of FlowSOM-determined PDA T cell subsets. Data displayed as mean+/-standard 

deviation (SD). 
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Within the CD4+ group of T cell clusters, the transcription factor FOXP3 identifies two 

regulatory T cell (Treg) populations: T-17 (13.5±8.5% of all T cells) and T-20 (3.4±1.9%). 
Both have expression of the checkpoint receptor PD-1 and the C-Type lectin, CD69, 

proteins both rapidly and positively regulated by TCR engagement. Cluster T-17 has the 

highest levels of PD-1 and also the Tumour necrosis factor receptor superfamily 
(TNFRSF) members GITR and OX40, the E- and N-cadherin targeting lectin-like 

receptor KLRG1 and the E-cadherin binding integrin CD103. All of these proteins have 
known functions in Treg biology in tissues and tumours (Togashi et al., 2019). Of the 

remaining five CD4+ T cell clusters, T-16 (10.6±3.7%) and T-19 (2.2±2.1%) express 
GATA3, the canonical lineage-defining transcription factor of Th2 cells. These Th2 cells 

also express PD-1 and other markers of activation including CTLA4, a key negative 
regulator of antigen-dependant activation that is increased after TCR signalling, 

suggesting recent antigen-recognition by these Th2 cells. Two other CD4+ T cell 
clusters, T-12 (3.8±5.3%) and T-14 (13.1±8.1%), lack expression of the T effector lineage 

defining markers used in the panel. These cells are not Th1 cells because they lack 

expression of the transcription factor, TBET, so they may be Th17 cells. However, an 
antibody targeting the Th17-defining transcription factor, RORγT would be needed to 

clarify this annotation. These unclassified effector T cell clusters have no expression of 
PD1 and CD69, thus are unlikely to be interacting with their cognate antigen in the TME 

and may be less relevant to tumour biology than the PD1+ Treg and Th2 cells. Thus, the 
CD4+ T cell compartment in the PDA tumours is dominated by Tregs and Th2-polarized 

CD4+ T cells with minimal Th1 cells, which matches the tumour-promoting CD4+ T cell 
composition of PDA tumours noted in recent publications (Dey et al., 2020; Hegde et al., 

2020). 

 
CD8+ T cell clusters make up 33.9±6.2% of all T cells in these samples. A wide variety 

of distinct phenotypes are seen. However, the most striking observation within the CD8+ 
T cell clusters, is that the largest clusters (T-1, T-2 and T-10), which contain the vast 

majority of total CD8+ T cells, show no expression of markers associated with TCR 
activation. For example, they completely lack expression of PD1, CD69 and CTLA4. 

They also have no expression of the ATP ectonucleotidase, CD39. Lack of CD39 
expression has recently been shown to denote bystander CD8+ T cells in human and 

mouse tumours, that have microbial antigen-specificity and are likely brought into the 
tumour under inflammatory gradients and irrelevant to tumour control (Simoni et al., 
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2018). Remarkably, this indicates that >70% of all the CD8+ T cells in these PDA 

tumours, likely do not have the antigenic potential to target and kill tumour cells. Three 
minor CD8+ T cell clusters do have evidence of PD1, CD69 and CTLA4 expression, 

suggestive of antigen stimulation and tumour-specificity: T-3 (0.5±0.8%), T-4 (2.7±4.9%) 

and T-6 (3.5±2.6%). Of the three PD1+CD8+ T cell clusters, T-4 fits the classical 
phenotype of the so called ‘terminally differentiated exhausted’ or ‘late dysfunctional’ 

CD8+ T cells (Thommen et al., 2018; van der Leun et al., 2020). This cluster has the 
highest median levels of PD1, CD39, and the cyclic ADP ribose hydrolase, CD38, all of 

which have been shown to consistently mark terminally differentiated CD8+ T cells 
(Philip et al., 2017; Simoni et al., 2018). T-4 cells also express the highest levels of 

EOMES, a T-box transcription factor shown to play a role in enforcing the terminally 
exhausted phenotype (Li et al., 2018). T-4 also lacks expression of GZMB, a key effector 

molecule required for target cell killing. In other human and mouse studies, the terminally 
differentiated/late dysfunctional CD8+ T cell phenotype is characterised by a lack of 

clonal expansion potential and reduced effector function within the TME (Khan et al., 

2019; Thommen et al., 2018; van der Leun et al., 2020). In contrast, another PD1+CD8+ 
T cell cluster, T-3 shows evidence of tumour antigen-specificity but with a very distinct 

phenotype. It has intermediate expression of PD1, CD39 and lacks CD38 expression, 
suggesting an active but not terminally exhausted phenotype. It has the highest 

expression of GZMB and CTLA4 and has the highest level of TBET, a transcription factor 
suggested to mark the early CD8+ T cell exhausted state, capable of rapid expansion 

and tumour control (van der Leun et al., 2020). This is the only PD1+CD8+ cluster to 
express some level of the co-stimulatory receptor, TNFSF member 4-1BB, co-

stimulatory molecule ICOS, and the immune checkpoints, LAG3 and TIM3. The 

expression of these proteins has been associated with cells experiencing ongoing TCR 
engagement and effector activity, as well as having a role themselves in directly 

regulating effector function (Chen and Flies, 2013). Interestingly, this T-3 population is 
also the only CD8+ T cell cluster to express CXCR3, a key chemotactic receptor 

responsible for T cell migration to APCs (Groom and Luster, 2011). The final PD1+CD8+ 
T cell cluster, cluster T-6, has intermediate expression of PD-1 but little expression of 

CD39, so its antigen relevance is not clear. T-6 is the only one of these PD1+CD8+ 
clusters to express the transcription factor TCF-1, associated with T cell stem/progenitor-

like functions and long-term self-renewal capacity during immunotherapy (Miller et al., 
2019; Siddiqui et al., 2019; Yost et al., 2019). 
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Analysis of the proliferative and apoptotic fractions of each T cell cluster is given in Figure 
22-23. The most proliferative T cell clusters are far more rapidly cycling than any 

mesenchymal stromal or MNB cluster. Of all T cells, the rare PD1+CD8+ T cell clusters, 

T-3 and T-6, have the highest proliferation. The proliferation levels of T-3 are particularly 
remarkable, with an average S-phase occupancy of 31.8±21.3%. Because S-phase is 

only one phase the cell must go through to achieve complete division, these levels are 
suggestive of almost constant cell cycling within this cluster. Knowledge of the relative 

lengths of G0/1, S, G2 and M-phase for CD8+ T cells would need to be known to asses 
this accurately. Interestingly, as well as being highly proliferative in many of the PDA 

samples, this cluster (T-3), has the second-highest average apoptosis rate of all T cell 
clusters (24.8±22.1%). However, this apoptosis rate is highly variable across the different 

PDA tumours, with the T-3 cluster in several samples having <1% CC3+ cells. Thus T-3 
appears to be a highly dynamic tumour-specific CD8+ T cell population, with a phenotype 

of an early exhaustion/tumour-killing potential and proliferation/apoptosis rates that vary 

widely across the 18 PDA tumours. Interestingly, the terminally exhausted CD8+ T cell 
cluster, T-4 still appears to retain a low level of proliferation (2.5±2.6%), albeit much 

lower than that for cluster T-3. Of all the CD4+ T cell clusters, the Treg cluster T-20 has 
the highest proliferation (10.9±6.5%) supporting the concept that in late stage PDA the 

T helper phenotype is skewed towards being highly suppressive (Dey et al., 2020; Hegde 
et al., 2020). In general, all CD4 T cell clusters, including Tregs, show low levels of 

apoptosis. 
 

 
Figure 22. Variability of proliferation rates of pancreatic cancer T cell (T) subsets 

The proliferative fraction of FlowSOM-determined PDA T cell subsets. Data displayed as mean+/-standard 
deviation. 
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Figure 23. Variability of apoptotic rates of pancreatic cancer T cell (T) subsets 

The apoptotic fraction of FlowSOM-determined PDA MNB subsets. Data displayed as mean+/-standard 
deviation. 

 

4.2 – Summary 
 

In this chapter, I outline the development and application of three separate mass 
cytometry panels, each focussing on deep phenotyping of a different cellular 

compartment in PDA GEMM tumours. Two panels map the immune landscape of these 
tumours and a third, novel mass cytometry panel, maps the mesenchyme. Importantly, 

all panels included markers of proliferating cells (Ki67 and IdU) and apoptotic cells (CC3) 
and this data provides a detailed ‘snapshot’ of the state of the PDA TME at the time the 

tumours are collected (advanced, late stage disease), both in terms of cellular 

abundance and cell phenotype. The hypothesis of this section was that novel single cell 
technologies could provide a detailed analysis of the TME and I believe in this regard, 

the methodology was successful in revealing details of a complex, highly variable and 
dynamic PDA tumour ecosystem. A notable feature of the data is the range of 

heterogenous fibroblast phenotypes observed. 
 

4.3 – Discussion  
 

In an attempt to improve understanding of the PDA TME, I developed a single cell 
analysis workflow that maps the abundance and phenotype of cells in the KPC PDA 

TME. Using mouse tumours was required: high quality human PDA biopsy samples are 
difficult to obtain in sufficient number for this type of analysis. In addition, the huge 

heterogeneity (genetic and non-genetic) present in human tumours, the fact that single, 
small biopsies do not capture processes occurring throughout the tumour (Rosenthal et 

al., 2019) and the variable treatment history of patients, would likely complicate and 
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confound the identification of common patterns of behaviour of cells in the PDA TME 

ecosystem, as has been done here. This study acts as a proof of principle, illustrating 
the vast information that can be gathered from such experiments and is a useful basis 

for any potential future equivalent study with human PDA samples. It is striking that even 

though the initiating mutations and timing of oncoprotein expression are the same for all 
KPC tumours, the end composition and properties of the TME are highly variable across 

the cohort. The factors that drive this divergence are largely unknown. In particular, an 
understanding of how individual mutations and the cancer cell epigenome contributes to 

shaping the TME is poorly understood, although recent work has shown that epigenetic 
regulation of TP63 in PDA cells, can influence the phenotype of adjacent fibroblasts via 

IL1α secretion (Somerville et al., 2020). Whilst tumour genetic heterogeneity is now a 
well-established driver of therapeutic resistance, it is unclear what contribution the 

heterogeneity of the TME infiltrate and phenotype makes to the failure of clinical 
interventions in cancer patients. 

 

It is notable that immune cells constitute a large fraction of the single cell suspensions in 
this study (mean 39.3±14.7%). Although PDA is a highly inflammatory tumour type, 

preferential release of immune cells may act to confound the analysis, as different cell 
types are released with differing efficiencies during tumour during disaggregation. 

Generally, immune cells have more transient cell-cell interactions and are less 
embedded in the tumour extracellular matrix (ECM) than epithelial and mesenchymal 

cells. In support of this, the mesenchyme appears to be particularly under-represented 
generally in this analysis and also in published single cell analysis of PDA (Elyada et al., 

2019), compared with histological analyses. The disaggregation protocol used here is 

highly optimised and this different ‘efficiency of release’ might be an inherent problem 
with any assay that requires single cell suspensions to be generated from a tissue (e.g. 

mass cytometry, flow cytometry and scRNAseq). Because the disaggregation protocol 
was followed consistency across all samples, I reason the relative abundance of each 

cell type is comparable between PDA samples within this cohort, even if the absolute 
number of cells of each cell type has been skewed by the isolation process (that is, the 

abundance quantitation in the analysis is precise, but may not be accurate of the actual 
numbers in the intact tumour). 
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I believe the experiment was successful in mapping the murine PDA TME: I identified all 

known major immune and mesenchymal cell types with expected distribution of 
canonical markers. The analysis of the mesenchyme with mass cytometry was 

particularly novel: no reports of such analysis are currently present in the literature. The 

fact that most major immune cell subsets are present in the analysis, provides confidence 
that the detailed analysis within the less-well characterised mesenchymal stroma 

compartment, identifies genuine, phenotypically distinct clusters of fibroblasts. The 
expression of PDPN and CD90 and lack of CD31 expression separates the general 

fibroblast population reasonably well from other cell types in these PDA tumours, 
including clean separation from cancer cells. It should be noted that CD90- fibroblasts 

are seen in other pathologies, such as rheumatoid arthritis (Croft et al., 2019; Wei et al., 
2020). This may indicate that fibroblast phenotypes are distinct between different 

diseases/tissues and that useful markers in one disease/tissue may not be appropriate 
to use in others. Within this pure fibroblast population, a wide range of phenotypes are 

observed, highlighting the need to measure multiple protein targets simultaneously. In 

particular, the most striking result was the clear separation of two major groups of 
CD105+ or CD105- fibroblast clusters. Each contained a continuum of phenotypes with 

gradients of known activation markers, such as αSMA, PDGFRα, PDGFRβ, ICAM1, 
VCAM1, ITGβ3 and ITGα5. In this regard, CD105 is the only fibroblast marker that shows 

such a bimodal, discontinuous expression pattern.  
 

Pair-wise comparison of the abundance of all mesenchyme clusters revealed that the 
abundance of CD105+ fibroblast clusters was associated with the abundance of other 

CD105+ fibroblast clusters, and CD105- fibroblast clusters to other CD105- fibroblast 

clusters. This possibly suggests that the abundance of total CD105+ and CD105- 
fibroblasts is variable across the different PDA tumours and that the clustering within 

these groups, simply represents splitting of these parent populations into phenotypically 
different subpopulations, hence they show a positive correlation with each other. CD105- 

fibroblasts are particularly distinct in that despite generally being less frequent than the 
CD105+ fibroblast clusters, they show high levels of proliferation at the time point these 

tumours were collected. This possibly reflects distinct proliferative ques in early versus 
late tumour progression. In addition, expression of proteins involved in antigen-

presentation (such as MHCII and CD74), co-stimulation such as CD80 and other proteins 
such as ITGα6, are only seen on CD105- fibroblast clusters. Other proteins such as 
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CD73 are seen in both CD105+ and CD105- clusters but are more highly and more 

widely expressed in CD105- fibroblast clusters. Many of these proteins have known 
functional roles in regulation of immunity and inflammation. This suggests CD105+ and 

CD105- fibroblasts may have distinct phenotypes or functions or may be occupying 

distinct niches in the TME. ‘Antigen presenting’ CAFs (apCAFs) have previously been 
noted in KPC tumours by scRNAseq, based on MHCII loci gene expression (Elyada et 

al., 2019). Indeed, apCAFs may correspond to the same cluster of MHCII+ fibroblasts 
identified here, although the CD105 status was not described in the scRNAseq study. It 

is still unclear if the expression of antigen presentation machinery or co-stimulatory 
molecules by fibroblasts plays any functional role in the PDA TME (discussed further in 

chapter 8). 
 

FlowSOM clustering and UMAP visualisation is successful in ordering known cellular 
differentiation trajectories in the datasets, in an unsupervised manner (for example 

monocyte to mature macrophage differentiation is apparent). A consistent feature in the 

mesenchyme analysis across all samples, is that fibroblast clusters appear to be ordered 
with varying expression of several markers. For example, αSMA and PDGFRα show a 

prominent inverse staining pattern on fibroblast clusters, marking MyCAF and iCAF-like 
phenotypes, respectively. In addition, ICAM1 and to lesser degree VCAM1, appear to 

largely, but not completely, overlap with the PDGFRαhi phenotype. CD26 expression 
identifies distinct populations of murine skin fibroblasts but appears broadly expressed 

across most PDA fibroblast clusters, as well as the single pericyte cluster. These differing 
results highlight the need for a better understanding of the similarities and differences of 

fibroblast phenotypes across different tissues and pathologies. 

 
The current analysis lacks annotation of several rare CD45- cell types that would be 

expected to be in the various datasets, including smooth muscle cells, pancreatic islet 
cells, neurons and cell types associated with lymph node/immune cell aggregates, such 

as fibroblastic reticular cells, follicular dendritic cells and high endothelial venules 
(HEVs). It is likely that several of the minor, unannotated clusters in this analysis 

represent one or more of these rare cell types. Additional antibodies would be needed 
for this to be properly assessed. For example, there are several unannotated CD31 

endothelial cell-like clusters and an anti-PNAd antibody could positively identify these as 
HEVs. Interestingly, cluster S-1 is a very rare cluster in most samples (>1%) but makes 
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up >40% of the mesenchyme in sample PDA-18. It is unclear if this is a technical artefact 

or it may possibly be an unusual mesenchymal cancer cell phenotype that only expands 
in a minority of tumours. 

 

FlowSOM cluster annotation was used to derive many of the quantitative features in this 
chapter. This method of clustering is relatively new and best practices for its application 

are lacking. For example, I arbitrarily selected n=20 FlowSOM clusters because it largely 
matched the orthogonal cluster annotation provided visually by UMAP projections. In 

addition, this level of clustering also clearly separated cell subsets from the same major 
cell-type, that have established functional differences (e.g. cDC1 and cDC2s). Despite 

this, some clusters show discordance between FlowSOM and UMAP analysis, for 
example the putative NK/ILC cluster is split in the UMAP projection. Cluster accuracy 

and downstream analysis could likely be improved with better cluster number selection 
and/or inclusion of other markers for rarer lineages. Thus, the identification and accurate 

annotation of cell phenotypes, will likely improve as best practices for UMAP 

visualisations and FlowSOM clustering emerge. 
 

Hierarchies of self-renewal, progenitor and terminally differentiated states are well 
established in several epithelial tissues (e.g. the intestinal epithelium). Very little is known 

about whether any such trajectories exist in mesenchymal cells, such as endothelial 
cells, pericytes or fibroblasts. Because an analysis such as the one described here 

contains a wealth of phenotypic information (surface receptors, transcription factors and 
proliferation and apoptosis rates), it provides an ideal platform to study such trajectories 

in mesenchymal cells in the future. For example, the endothelial cell clusters show 

progression from S-3, S-4 to S-5, with increasing canonical markers of endothelial 
maturation and increasing levels of both proliferation and apoptosis. Whether or not this 

represents an actual, uni-directional differentiation trajectory that occurs during tumour 
vasculogenesis is unclear. Studying such processes in systems less chaotic than 

growing tumours, may be more appropriate and provide clearer results. 
 

The most striking feature of the immune cell datasets was the lack of PD1+CD39+ 
tumour-specific CD8+ T cells and highlights the need to measure cell phenotype (e.g. 

PD1/CD39/CD69/GZMB) status and not just count cells from different lineages (i.e. 
CD8+ T cells). Low numbers of antigen-specific T cells in the KPC model have recently 
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been reported by others (Hegde et al., 2020) and has been attributed to the very low 

mutational burden of these murine tumours relative to the human disease (Mueller et al., 
2018), which in turn is expected to result in fewer MHCI-binding neoantigens. In addition, 

PDA tumour cells have recently been shown to downregulate MHCI via increased 

autophagy, which reduces CD8+ T cell expansion (Yamamoto et al., 2020). A recent 
publication has also described the OG-KPC GEMM, a KPC-based model that allows for 

Cre-recombinase-dependant expression of full-length OVA (a model antigen), in 
pancreatic cancer cells and generation of immunity to the dominant H2Kb-restricted 

SIINFEKL epitope (Hegde et al., 2020). The OG-KPC model has been shown to have 
large numbers of tumour-specific, CD8+ T cells and the authors suggest the model more 

closely mimics the antigenicity seen in the human disease, although a lack of direct 
mouse to human comparisons in the study is notable. It would be interesting to apply the 

TME phenotype mapping analysis described here, to this new PDA model system to see 
which features of the TME (immune and non-immune) are dependent on tumour cell 

antigenicity. 
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Chapter 5 – Results – Cell abundance and phenotypic associations 

in the PDA TME 

5.1 – Results 

 

5.1.1 – Proliferation correlation analysis 

 

Two most striking features, common across the analysis of the mesenchyme and 
CD45+CD3ε+/- immune compartments are: 

 
1) the complexity of cellular phenotypes present in each compartment and 

2) the extensive variability observed of cellular abundance and phenotypes across the 
18 tumours. 

 

As the dataset provides a detailed map of the different states the KPC PDA TME can 
occupy, I hypothesised that by analysing this variability across the samples in a 

systematic, pairwise manner, putative associations between cell clusters could be 
identified. Such an analysis identifies pairs or groups of cell subsets that may be either 

coordinated by common upstream regulators or possibly regulate each other. A similar 
method has been used to compare the variation in abundance of major immune cell 

types during effective vs ineffective immunotherapy (Spitzer et al., 2017). Whilst such an 
analysis is imperfect, and will contain both potential false positives and false negatives, 

such an approach still offers a novel way to identify putative cell-cell relationships in 
complex cellular ecosystems, without any a priori knowledge about the actual 

mechanisms driving co-regulated behaviour. Such a non-biased method may provide 

starting points for further mechanistic studies. 
 

The first ‘cross-correlation’ analysis compared the cellular proliferation rates across all 
60 clusters, consisting of the 20 mesenchymal stroma (S) cell clusters, 20 Myeloid/NK/B 

(MNB) cell clusters and 20 T (T) cell clusters. The fraction of S-phase cells in one cluster 
was compared to the fraction of S-phase cells in a second cluster, across the different 

PDA samples and this was repeated for all unique pairs of clusters (n=1770 unique 
pairwise comparisons). I hypothesised that this analysis would highlight clusters whose 

proliferation is coordinated by a common upstream factor (e.g. growth factor or cytokine) 
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or for pairs of clusters that reciprocally regulate each other’s proliferation. The data 

presented in Figure 24 plots each comparison with the Spearman coefficient (1 to -1) 
displayed as either positive correlation (red) or negative correlation (blue), estimated 

statistical significance (p<0.05) denoted with an asterisk and the clustering of the 

row/column by unsupervised hierarchical clustering. 
 

 
Figure 24. Pancreatic cancer stromal subset proliferation correlations 

Correlation matrix displaying Spearman correlation coefficients of all pairwise stroma subset proliferative 
fraction comparisons. *p<0.05, **p<0.01, ***p<0.001. 

 
1492 of the total 1770 unique pairwise comparisons (84.4%) show no associated 

proliferation between clusters, which would be consistent with the concept that much of 
the proliferation in the TME is controlled through a wide range of cell-subset specific, 

unconnected mechanisms. In addition, several clusters show little proliferation (see 
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previous chapter), so it is not possible for them to have correlated proliferation with other 

clusters. 277/1770 unique pairwise comparisons (15.6%) show a significant association 
of the S-phase fractions between pairs of clusters. A large module of clusters 

(Proliferation Module 1), containing 123/1770 (6.9%) of all unique pairwise comparisons, 

shows significant associations of S-phase fractions (such that if the proliferation for 
cluster X is high in one sample, it is likely that the proliferation of cluster Y will also be 

high in the same PDA sample). The proliferation rate of some clusters in this module, 
such as S-10, shows positive associations with the proliferation rates of almost all other 

clusters in the module. The most striking feature of the cell clusters that make up this 
module, is that 26/31 (83.9%) of them are either S or MNB clusters, with only five T cell 

clusters present in the entire module. Within this module, there is group of 11 
mesenchymal stromal clusters that show particularly correlated proliferation rates with 

each other across the PDA samples. An example of a correlation from this module is 
between the proliferation of the ‘mature’ BEC cluster S-5 and proliferation of the pericyte 

cluster S-15, which aligns with the known reciprocal and co-regulated proliferation of 

these two vascular cells (Sweeney and Foldes, 2018). 
 

Another notable example in the module is the coordinated proliferation rates of MNB-10 
(cDC1s) and MNB-2 (NK-like) clusters. This reciprocal interaction has been reported in 

several recent publications and centres on the ability of NK cells to provide cDC1s with 
factors such as FLT3L and XCL1 and cDC1s to provide NK cells with factors such as IL-

12 and IL-15 (Barry et al., 2018; Cabeza-Cabrerizo et al., 2019). 
 

This analysis indicates that cell proliferation in the PDA TME is coordinated in discrete 

modules, with a major module consisting of coordinated proliferation among many 
mesenchymal stromal subsets and to a lesser extent, some specific macrophage, 

dendritic cell and NK cell clusters, potentially indicating shared upstream regulators of 
proliferation. T cell proliferation appears to be regulated distinctly. Indeed, the second 

notable module in the data (Proliferation Module 2) consists of 25/1770 unique pairwise 
comparisons (1.4%) and is mainly made up from correlated T cell clusters: 11/16 (69.8%) 

of these clusters are T cell clusters. 
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Within the whole analysis there is a prominent lack of negative associations of 

proliferation rates between one cluster and another: there are only 3 significant negative 
correlations out of all 1770 unique pairwise comparisons (0.2%).  

 

5.1.2 – Apoptosis correlation analysis 
 

The second ‘cross-correlation’ analysis compared the cellular apoptosis rates across all 

60 clusters, as measured by CC3+ fraction. The majority of pairwise apoptosis rate 
comparisons (1540/1770, 87.0%) show no significant associations. Three small 

modules, Apoptosis module 1, 2 and 3 contained comparisons that did show significant 
associations between cluster apoptosis rates. Interestingly, these were predominantly 

made up of comparisons within T, S and MNB only clusters, respectively. This suggests 
firstly, that apoptosis rates of TME cells are regulated in a less organised manner in PDA 

tumours than proliferation rates and that secondly, where evidence of coordination exists 
(apoptosis Modules 1-3), apoptosis rates are regulated in a cell type specific manner (S, 

MNB or T), with little coordination between different cell types. Notably, as for 
proliferation, only a minority of the significant correlations were negative correlations. 

Curiously, those negative correlations that were present were almost entirely between 

the apoptosis rates of MNB and T clusters. 
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Figure 25. Pancreatic cancer stromal subset apoptosis correlations 

Correlation matrix displaying Spearman correlation coefficients of all pairwise stromal subset apoptotic 
fraction comparisons. *p<0.05, **p<0.01, ***p<0.001. 

 
5.1.3 – Mesenchymal stromal cell abundance and immune cell proliferation 

correlation analysis 

 
Whilst the analysis described above is expected to provide associations between 

clusters that show common regulation of proliferation or apoptosis (i.e. factor X regulates 
the proliferation of cell type A and cell type B) or reciprocal interactions (cell type A 

regulates cell type B that regulates cell type A), conceptually it is hard to imagine how it 
would provide any information when the abundance of one cell type directly promotes 

the proliferation or survival of another cell type in uni-directional manner (i.e. cell type A 
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is the source of factor X that regulates cell type B but there is no reciprocal interaction). 

To explore this concept, I compared the variability of the cluster abundance with the 
fraction of proliferating cells from other clusters. Because I was particularly interested in 

how the abundance of (or lack of) mesenchymal stromal subsets may regulate the 

expansion/survival of immune cell subsets, I limited the analysis to the pairwise 
comparison of the abundance of the 20 S-clusters, with the proliferation of the 40 MNB 

and T clusters (Figure 26), analysing 800 unique pairwise comparisons. 
 

 
Figure 26. Associations between mesenchymal subset abundance and immune cell proliferative 

rates in pancreatic tumours 
Correlation matrix displaying Spearman correlation coefficients of all pairwise comparisons between 

mesenchymal stromal subset abundance and immune cell subset proliferation rates. *p<0.05, **p<0.01, 
***p<0.001. 

 
Most pairwise comparisons showed no evidence of association between mesenchymal 

subset abundance and immune cell proliferation. However, the abundance of some 
specific mesenchymal stromal clusters was positively and negatively associated with the 

proliferation of several MNB and T clusters, which may suggest a cell-cell 

interaction/dependency in vivo (model in Figure 27). For example, the increased 
abundance of CD105+αSMA+ (MyCAF-like) cluster S-19, shows a strong association 

with both the reduced proliferation of the CD8+ T cell cluster T-10 (Figure 28). This 
mesenchymal cluster is also associated with the reduced proliferation of CD103+CD4+ 

T cell cluster T-19. When PDA tumours are separated into those with a high and low 
frequencies of cluster S-19, there is significantly less proliferation of clusters T-10 and 

T-19 in the tumours with high frequencies of S-19 (analysis for T-10 shown in Figure 28). 
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Figure 27. Stromal association model 

Model depicting a hypothetical mesenchymal abundance and immune cell proliferation association that 
would generate positive correlations across different tumour samples 

 

 
Figure 28. Association between subset S-19 and T-10 
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Spearman correlation analysis of the association between the abundance of mesenchymal subset S-19 
and the proliferative fraction of T cell subset, T-10 (top) and analysis of T-10 proliferation in tumours with 

high and low levels of S-19 (bottom). ρ=Spearman correlation coefficient, 90% confidence intervals 
displayed. Data displayed as mean+/-standard deviation (SD). *p<0.05, **p<0.01, ***p<0.001. 

 
The mesenchymal stromal cell type with the highest number of positive associations was 
S-9. In total, this mesenchymal subset had 5 positive associations with the proliferation 

of immune clusters. S-9 is a CD105- fibroblast cluster with the highest median expression 
of MHCII and CD74 of all mesenchymal cell clusters. Across all PDA samples, the 

strongest association of S-9 abundance with immune cluster proliferation (based on 
Spearman coefficient), was with the proliferation of cluster T-3. This is the CD8+ T cell 

cluster with tumour-specific, early exhausted, cytotoxic phenotype, described in the 
previous chapter. When the PDA tumours were separated into those with a high and low 

frequencies of cluster S-9, there is significantly more proliferation of cluster T-3 in the 
tumours with high frequencies of S-9 (Figure 29). It is notable that the abundance of no 

other stromal cluster was associated with the proliferation of this tumour specific CD8+ 

T cell cluster. The abundance of S-9 was also positively associated with the proliferation 
of several other T cell clusters, including the CD8+ T cell cluster T10, the CD103+CD4+ 

T cell cluster T-19 and CD103+ γδ T cell cluster T-15 (Figure 26). Example significant 
associations between mesenchymal cell abundance and immune cell proliferation are 

depicted in Figure 30. 
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Figure 29. Association between subset S-9 and T-3 and T-19 

Spearman correlation analysis of the association between the abundance of mesenchymal subset S-9 and 
the proliferative fraction of T cell subsets, T-3 (A, top) and T-19 *B, top) Analysis of T-3 (A, bottom) and T-
19 (B, bottom) proliferation in tumours with high and low levels of S-9. ρ=Spearman correlation coefficient, 

90% confidence intervals displayed. Data displayed as mean+/-standard deviation. *p<0.05, **p<0.01, 
***p<0.001. 
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Figure 30. Putative associations in the pancreatic cancer microenvironment 

Schematic illustrating selected significant associations between mesenchymal stromal subset abundance 
and immune cell proliferation 

 

5.2 - Summary 
 

In this chapter, I used the mass cytometry data detailed in the previous chapter to 
conduct a cross-correlation analysis that maps patterns of cellular interactions. The 

underlying hypothesis was that cross-correlation analysis will identify putative 
relationships between distinct groups of cells in the PDA TME. Such relationships may 

subsequently form the starting point for future mechanistic work. The methodology has 
several limitations (see below) but because it identifies known cell-cell relationships (e.g. 

between BECs/pericytes and cDCs/NK cells), it may be a feasible way to identify novel, 
and perhaps non-intuitive cell to cell relationships. The analysis particularly focussed on 

associations of immune cell subset proliferation with the abundance of mesenchymal 

stromal cell populations. 

5.3 - Discussion 
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Unlike in tissue infection, wound regeneration or other largely reversible tissue 

processes, during tumour progression there is no resolution phase back to the healthy, 
steady state condition. The tumour and its environment evolve and progress over time, 

possibly through distinct phases characterised by changing evolutionary pressures. This 

is observed here to some degree, in that there is reduced abundance of BECs in larger 
PDA tumours, which matches the known progressive hypovascular nature of late stage 

PDA (Rhim et al., 2012). How tumour evolutionary pressures influence the fibroblast 
compartment specifically and vice-versa, are largely unknown. The data here provides 

insight into the cellular dynamics occurring in late stage KPC PDA tumours and the 
cross-correlation analysis suggests putative cell-cell interactions that may be driving 

ongoing changes in the microenvironment. 
 

Data from three mass cytometry datasets (S, MNB and T) was compared by cross-
correlation analysis. Such a method has been conducted by others, using mass 

cytometry data to infer cellular networks and cell-cell associations (Chevrier et al., 2017; 

Rapsomaniki et al., 2018; Spitzer et al., 2017). Previously, such analysis has only been 
conducted using relative abundance (i.e. cell fraction) data and this is the first analysis, 

to my knowledge, that incorporates proliferation and apoptosis rates into the 
associations. This method provides a more complete picture of the dynamic nature of 

the TME; many of the populations that showed minimal associations with the abundance 
of other cell clusters, showed associations with the proliferation or apoptosis of other 

clusters. This is important because typically researchers are only able to analyse 
tumours at a single time point. Thus, the proliferation/apoptotic rates of clusters give 

some idea on the ‘direction’ the TME is ‘going in’, at the time the sample was collected. 

The life cycle of murine GEMM tumours is greatly accelerated relative to human tumours: 
the period of initiation to symptomatic, end stage disease is of the order of months in 

GEMMs, compared with many years in human (Yachida et al., 2010). Indeed, most 
GEMM tumours are studied close to or at humane end point (as here). However, it is not 

known what stage of a GEMM tumour best represents the human disease. Such detail 
would be incredibly useful when trying to design preclinical therapy studies to be as 

representative as possible. Indeed, one way to better explore and quantify this, may be 
to compare proliferation/apoptosis rates of various cellular components between murine 

and human tumours. 
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Most other studies into cell-cell interactions in the TME are hypothesis driven: usually 

some prior information about a cell or pair of cells is directly tested. Whilst the cross-
correlation analysis is somewhat hypothesis free (see below), it is highly likely that some 

of the correlations we observe within the cross-correlation analysis here are false 

positives or technical artefacts, especially because we analyse so many pairwise 
comparisons. However, the statistical significance of the Spearman correlation method 

used is estimated by permutation testing, which factors in the total number of 
comparisons. In addition, if many of the correlations were generated randomly, and only 

observed due to the number of comparisons tested, we would expect to see more 
negative correlations in all datasets (random associations would not be expected to have 

a bias for positive or negative correlation). Instead, negative correlations are very rare 
across all forms of the analysis, which gives some confidence that many of the significant 

correlations are some kind of co-regulated behaviour. Despite its limitations, the cross-
correlation analysis presented here is one of the only ways in which novel or non-obvious 

interactions in the TME could be discovered in largely un-biased manner. Some level of 

prior bias is introduced during the selection of which markers included in the mass 
cytometry panels, although most of the markers (especially in the immune panels) are 

widely accepted, robust markers of cell types/phenotypes. Clearly, correlation does not 
equal causation and any putative relationships identified by the cross-correlation 

analysis need to be verified in follow up experiments, ideally within the in vivo context of 
similar KPC PDA tumours. I have some level of confidence in the cross-correlation 

method, because it identifies know associations in an unsupervised manner. For 
example, the reciprocal proliferative interaction between endothelial cells and pericytes 

(Sweeney and Foldes, 2018) and between cDC1s and NK/ILC cells (Barry et al., 2018; 

Bottcher et al., 2018; Cabeza-Cabrerizo et al., 2019). 
 

Generally, the cross-correlation analysis suggests that the abundance, proliferation and 
apoptosis of the majority of cell clusters is not linked to other cell clusters. This may be 

for several reasons including: 
 

• For some cell types, their growth/survival may be dependent on specific factors (e.g. 
a growth factor) or processes (e.g. epithelial cell contact) that are not required for 
the proliferation of other populations of cells. An example of this would be FLT3, 
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which would mostly be expected to drive proliferation of DCs independently to any 

other cell types. 

• The mass cytometry panels may not have the markers needed to correctly separate 

out and annotate distinct clusters of cells that are functionally distinct, therefore 
associations of cells within these clusters with other cell types will likely be masked. 

A better understanding of cellular heterogeneity in tumours will improve this. 

• Some processes may not occur in every tumour and thus will not show correlations 
across the whole cohort. Separating tumours into distinct cohorts may improve this. 

• Some cell-cell associations in vivo may be so complex or multifactorial that a simple 
1 v 1 correlation will not able to detect co-regulated behaviour, even if relationships 

exist. In such cases, hypothesis-driven studies and mechanistic work will be key to 
revealing relationships. 

• I disaggregate the tumour and lose all spatial information – a pair of cells may show 
very highly co-regulated behaviour when they are in close proximity to each other in 
local niches but may not have global co-regulated behaviour when looking across 

the whole tumour. An example of this would be tertiary lymphoid structures (TLSs), 
in which immune aggregates of many cell types come together in a local niche and 

potently influence each other’s behaviour. However, the cells in these structures 

contribute only a small fraction of each cell type across the whole tissue/tumour. 
Imaging methods would be needed to better understand the cell-cell phenotypes in 

rare niches. 

• In vivo data from spontaneous GEMM tumours is complex and we may not have 
enough samples to detect subtle associations. 

 
The low number of associations is particularly obvious in the apoptosis dataset and this 

may be an indicator that the programmed cell-death process in tumours are largely 

stochastic. For example, cell death may occur in a non-cell type specific manner because 
chaotic tumour growth causes vascular occlusion that results in large areas of poorly 

vascularised, hypoxic, nutrient poor regions. 
 

A minority of cell cluster pairs in the PDA TME do show evidence that their abundance, 
proliferation and apoptosis is coordinated. Within this analysis, most associations 

between pairs of cells tend to occur between phenotypically similar cells (e.g. fibroblast 
to fibroblast co-regulation or T cell to T cell co-regulation). This is particularly frequent in 
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the proliferation analysis, which suggests that upstream regulators of proliferation are 

shared between similar cell types but not between cell-types of different ontogenies e.g. 
the factors that make CD8+ T cells proliferate cannot make pericytes proliferate. In 

addition, the proliferation analysis shows very few negative correlations i.e. the increased 

proliferation of one cell cluster tends not to be associated with the reduced proliferation 
of another cluster. This may indicate that regulators of proliferation (e.g. growth factors, 

cytokines or cell-cell contacts), can only act in a positive manner and a single 
factor/ligand that causes one cell subset to proliferate, is not capable of directly reducing 

proliferation of another cell subset. This is consistent with the idea that a specific factor 
can only initiate a restricted signalling response in a target cell and that some cells will 

or won’t be responsive to the stimulus. 
 

Whilst measurements of abundance, proliferation and apoptosis are clearly intricately 
linked, it is perhaps not surprising that one pair of cell clusters that have highly correlated 

proliferation, may not necessarily have highly correlated abundances. A major 

contributor of cell abundance is the net difference between proliferation and apoptosis, 
but other process such as cell migration into/out of the tumour can increase/decrease 

cell numbers without proliferation (important for immune cell accumulation during 
inflammation) and other cell death processes can occur that remove cells, such as 

necrosis, phagocyte engulfment or NK cell killing of ‘stressed’ cells. Indeed, phagocyte 
removal of myofibroblasts has been shown to be a feature of fibrosis resolution (Wernig 

et al., 2017). In particular, such cell death mechanisms are challenging to quantify with 
cytometry-based methods. Thus, exhaustive measurements of all factors influencing cell 

abundance may simply not be possible. In addition, relatively slow proliferating but large 

clusters are likely to remain dominant for an extended period of time, even in the 
presence of rapidly proliferating minor clusters. This is known to be particularly important 

for cell subsets that have lows rates of cellular diffusion through a tumour (Waclaw et al., 
2015). Lastly, these tumours were all collected in mice that were at or near symptomatic 

stage of disease. Thus, the cellular abundance and proliferation and apoptosis rates 
measured here are likely reflective of very advanced disease and measuring these 

aspects throughout the entire period of adenocarcinoma development may be more 
reflective of the processes occurring in human tumours at clinically actionable stage. 

 



 124 

Occasionally associations are observed between pairs of cell clusters from completely 

different compartments. In this regard, the strong correlation between the abundance of 
cluster S-9 (the distinctive CD105- fibroblast cluster with high expression of MHCII and 

CD74) and the proliferation of cluster T-3 (the tumour-specific CD8+ T cell cluster with a 

wide range of proliferative states), is particularly notable. Although a minor cluster, this 
T cell phenotype (PD1intCD39intTim3loTBEThiCD27hiGZMBhi) has been shown to play 

a central role in T cell-mediated control of tumour growth in other settings (either 
spontaneously or under immunotherapy) (van der Leun et al., 2020; Wei et al., 2017; 

Yost et al., 2019). Hence, the analysis here suggests that fibroblasts can exist in distinct 
phenotypes and some of these phenotypes are associated with the proliferation of 

important T cell subsets. Potentially this suggests that different fibroblast populations 
may have divergent effects on T cell phenotypes and anti-tumour immunity. Some 

studies have shown fibroblasts have the ability to modulate CD8+ T cell function but 
most reports suggest that fibroblasts have a net suppressive effect CD8+ T cell function 

(see introduction chapter). Many of these studies use in vitro fibroblast/T cell co-cultures 

that may not fully capture in vivo function. For example, 2D in vitro culture is known to 
profoundly alter fibroblast gene expression and phenotype (Calvo et al., 2013; Ohlund 

et al., 2017). Indeed, studies using PDA GEMMs and sophisticated genetic of 
pharmacological methods of fibroblast manipulation, suggest that fibroblasts have a net 

tumour suppressive function in vivo and is associated with vastly remodelled immune 
infiltrate (Lee et al., 2014a; Ozdemir et al., 2014; Rhim et al., 2014). 

 
CD105+ and CD105- fibroblasts show distinct phenotypes across the large numbers of 

PDA tumours analysed. For example, CD105+ fibroblasts are typically more abundant 

and CD105- fibroblasts have higher expression of MHCII, CD74, CD73 and ITGα6 and 
higher proliferation (see previous chapter). In the cross-correlation analysis, CD105+ 

and CD105- fibroblast clusters also show associations with distinct immune cell 
phenotypes. For example, the abundance of the CD105- fibroblast cluster, S-9, was 

associated with increased proliferation of T cell clusters T-3, T-10, T-15 and T-19 and 
the abundance of the CD105+ fibroblast cluster, S-19 was negatively associated with 

the proliferation of two of these T cell clusters. As mentioned above, whilst a potentially 
useful starting point, these cell-cell associations need to be verified with orthogonal 

methods to avoid over interpretation of the data. For example, TGFβ has been shown to 
drive the αSMA+ phenotype seen in cluster S-19. As TGFβ also has cytostatic effects 
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on T cells, variable levels of TGFβ in each of the PDA tumours may explain the negative 

correlation observed. Whatever the mechanism for the observed associations, the 
difference in surface marker expression between CD105+ and CD105- fibroblasts, and 

the fact they have many different pair-wise associations with immune cells clusters, 

suggests potential functional differences between CD105+ and CD105- fibroblasts which 
I aimed to explore further. 
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Chapter 6 – Results – Ex vivo analysis of CD105+ and CD105- 

pancreatic fibroblasts 

6.1 – Results 

 

6.1.1 – CD105+ and CD105- fibroblasts show distinct frequencies and 

phenotypes in PDA tumours 

 
The mass cytometry results described in the previous two chapters provide a detailed 

picture of the KPC PDA TME. One of the most striking observations was the presence 
of two clear and distinct groups of fibroblast clusters, one group consisting of CD105+ 

fibroblast clusters and the other consisting of CD105- fibroblast clusters. These two 
groups of clusters showed some similar gradients of marker expression indicative of 

different phenotypic states (e.g. high αSMA or high PDGFRα fractions) but also some 

phenotypes that were unique to the CD105- clusters (e.g. high expression MHCII antigen 
presentation proteins and specific integrin sub units). All 19 PDA tumours tested 

contained both CD105+ and CD105- fibroblasts, although the relative frequencies of 
each varied widely. CD105- fibroblasts, despite typically being less frequent that CD105+ 

fibroblast clusters, consistently showed higher proliferation rates at the time the tumours 
were collected (late stage). Lastly, cross-correlation analysis suggested that the 

abundance of CD105+/- fibroblasts in PDA tumours is each associated with the 
increased or reduced proliferation of different immune cell phenotypes, with minimal 

overlap in the specific immune subsets they were associated with. Because of such 
evidence of distinct behaviour, I hypothesised that CD105+ and CD105- fibroblasts 

represent functionally distinct populations in KPC PDA TME and I sought to better 

characterise these fibroblast populations. 
 

I revisited the mesenchymal stroma mass cytometry data and separated the CD31-
PDPN+CD90+ fibroblasts into CD105+ and CD105- fractions using traditional biaxial 

gating (as opposed to the high dimensional FlowSOM/UMAP workflow described 
previously). Determining the gating was straight forward as all protein expression 

(including that of CD105), was clearly bimodal. Comparing the populations as bulk 
CD105+/- groups demonstrated that, as expected, on average CD105+ fibroblasts 

contribute more of the total fibroblast population in PDA tumours (67.3±14.8% of all 
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fibroblasts) (Figure 31). This value varies widely though, with CD105+ fibroblasts ranging 

from as low as 38.7% to as high as 88.6% of all PDA fibroblasts, with 3/19 (16%) of PDA 
tumours actually containing more CD105- fibroblasts than CD105+ fibroblasts. There 

was no difference in the average CD105+:CD105- fibroblast ratio between the tumours 

from female and male mice (Figure 32). 
 

 
Figure 31. Fraction of CD105+ and CD105- pancreatic cancer fibroblasts within total fibroblasts 
Data compared using unpaired t-test. Data displayed as mean+/-standard deviation. *p<0.05, **p<0.01, 

***p<0.001. 
 
 

 
Figure 32. Ratio of CD105+:CD105- pancreatic cancer fibroblasts in female and male mice 

Data compared using unpaired t-test. Data displayed as mean+/-standard deviation. 
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αSMA is the most frequently used marker of a myofibroblast-like phenotype, associated 

with increased stress fibre formation, contraction and ECM deposition. Comparing the 
fraction of αSMA+ cells in CD105+ and CD105- fibroblasts showed no difference 

(CD105+ mean = 65.1±15.7% v CD105- mean = 61.2±18.7%) (Figure 33). Despite there 

being no difference in average αSMA+ fraction between CD105+/- fibroblasts, this 
analysis revealed two striking findings. The first was that the fraction of αSMA+ cells 

varies very widely across PDA samples, over an almost three-fold range, from as low as 
31.4% αSMA+ cells to as high as 92.8% αSMA+ cells. Because all samples are 

barcoded, pooled and stained for intracellular markers as a single sample, this is unlikely 
to be due to a technical issue with staining and likely represents true protein levels in 

these cells. The second striking observation is that CD105+ and CD105- fibroblasts from 
the same sample have remarkably coordinated fractions of αSMA+ cells (p<0.001). This 

suggests that even though all tumours contain various ratios of CD105+ and CD105- 
fibroblasts, the amount of these cells that are in a myofibroblast-like state appears to be 

globally regulated across the tumour, such that strikingly, almost exactly equal 

proportions of αSMA+ fractions are present in the CD105+ and CD105- fibroblast 
populations. 

 

 
 

Figure 33. Myofibroblast distribution across pancreatic tumours 
Fraction of αSMA+ myofibroblast-like CD105+ and CD105- fibroblasts in pancreatic tumours. CD105+ and 

CD105- data from the same tumours are linked. Data compared using paired t-test.  
 
In agreement with the clustering-based analysis presented in previous chapters, analysis 

of the Ki67+IdU+ fractions within the bulk CD105+ and CD105- groups of fibroblasts 
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showed that on average, CD105- fibroblasts had more than double the fraction of cells 

in S-phase (3.3±1.8%) compared to CD105+ fibroblasts (1.4±0.8%), at the time these 
tumours were collected (Figure 34). In all samples apart from one, the actual value of 

the S-phase fraction was higher for CD105- fibroblasts. Proliferation rates showed high 

variation, particularly for CD105- fibroblasts (S-phase fraction range = 0.9% - 7.4%). 
Interestingly, as for the αSMA+ fractions, proliferative fractions showed coordination 

between CD105+ and CD105- fibroblasts within each tumour sample, such that tumours 
that had high proliferation rates in one fibroblast population, showed high proliferation in 

the other fibroblast population (p=0.03). Again, this suggests global regulation of the 
fibroblast proliferation that exerts itself on both CD105+ and CD105- populations, with 

potentially additional factors present in the tumours at this late stage contributing to 
higher CD105- fibroblast proliferation. Levels of apoptosis, as measured by CC3+ 

fraction, were not different between CD105+ and CD105- fibroblasts (Figure 34). The 
distinct pattern of proliferation was not a feature of all fibroblast phenotype comparisons: 

if all fibroblasts in these tumours were separated into myofibroblast-like 

(αSMAhiPDGFRαlo) and iCAF-like (αSMAloPDGFRαhi) phenotypes, no difference in 
proliferative fractions was observed (Figure 34)  

 

 
Figure 34. Proliferative and apoptotic phenotypes of fibroblast subsets 

 (A) The fraction of proliferative CD105+ and CD105- fibroblasts in pancreatic tumours. (B) The fraction of 
apoptotic CD105+ and CD105- fibroblasts in pancreatic tumours. (C) The proliferative fraction of MyCAF- 

and iCAF-like fibroblasts in pancreatic tumours. Data compared using paired t-test. *p<0.05, **p<0.01, 
***p<0.001. 

 
When taken as a single bulk population, CD105- fibroblasts had significantly higher 
fractions of cells positive for MHCII and CD74 than CD105+ fibroblasts (Figure 35), in 
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agreement with the analysis in previous chapters. The MHCII+CD74+ phenotype was 

relatively rare: only in a minority of the tumours (11%) did more than a third of all CD105- 
fibroblasts exist in this MHCII+ state. At the other end of MHCII expression, 6/19 (32%) 

PDA tumours showed <5% of all CD105- in this MHCII+ state. The reasons why only 

CD105- fibroblasts show this MHCII+CD74+ phenotype and CD105+ fibroblasts do not, 
and why such high variability exists across tumours is not clear (see discussion). 

 

 
 

Figure 35. Expression of MHCII antigen presentation molecules in CD105+ and CD105- fibroblasts 
in pancreatic tumours 

 (A) Fraction of MHCII+ CD105+ and CD105- fibroblasts in pancreatic tumours. 
(B) Fraction of CD74+ CD105+ and cD105- fibroblasts in pancreatic tumours. 

Data compared using paired t-test. *p<0.05, **p<0.01, ***p<0.001. 
 
6.1.2 – CD105+ and CD105- fibroblasts are present in human PDA tumours and 
show regional distribution 
 
The data presented so far strongly suggested that CD105+ and CD105- fibroblasts have 
distinct phenotypes in KPC PDA tumours. However, before conducting functional 

experiments, I was keen to establish if these cell populations exist in human PDA, or if 
the observation was simply a mouse-specific phenomenon. Fresh human PDA samples 

are difficult to obtain, partly because, unfortunately, most PDA patients are not eligible 

for surgery due to advanced locally-invasive or metastatic disease. To query the 
fibroblast infiltrate in human PDA, I instead utilised a collection of archival FFPE human 

PDA samples. An optimised Tyramide Signal Amplification (TSA) staining protocol was 
used to simultaneously mark the presence of pan-cytokeratin (PCK) (predominantly 

expressed on PDA cancer cells), PDPN (a pan-fibroblast marker) and CD105. A 
representative image from the analysis is shown in Figure 36. 
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Figure 36. Immunohistochemistry analysis of human pancreatic ductal adenocarcinoma tumour 

Tumour section is stained with antibodies targeting pan-cytokeratin (green), podoplanin (PDPN (purple) 
and CD105 (yellow). Nuclei stained with DAPI. Insert is expanded. Scale bar = 500 μm. 

 
PDA cancer ducts are clearly marked by high PCK expression (green) and surrounded 
by a PCKlow stroma, rich in densely packed PDPN+ fibroblasts (purple). Because PDPN 

is also expressed by lymphatic endothelial cells, I cannot exclude the possibility that 
some of these cells are from lymphatic vessels. However, typically, lymphatic endothelial 

cells are rare in the TME and expected to make minimal contribution to the stroma. Within 
the PDPN+ stroma there are clear areas of CD105 positivity (yellow) and negativity 

(purple) suggesting CD105+ and CD105- fibroblasts are indeed present in human PDA 
tumours. CD105 is highly expressed on endothelial cells (blood and lymphatic) and thus 

the CD105+ vessels that can be seen within the regions of CD105- stroma, acts as a 

useful internal control, demonstrating that CD105 staining is effective in these regions 
and that there is a genuine lack of CD105 expression on the fibroblasts in these areas. 

Interestingly, the CD105+ and CD105- staining is regional, with large areas that contain 
either CD105+ or CD105- fibroblasts but not both at the same time. Indeed, some PDA 

cancer ducts can be seen to be surrounded on one side by CD105+ fibroblasts and on 
the other CD105- fibroblasts (insert).  
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6.1.3 – CD105+ and CD105- fibroblasts from PDA tumours can be separated by 

FACS and have distinct gene expression patterns 
 

The staining patterns seen in the human FFPE PDA samples made me confident that 
differential expression of CD105 demarked two distinct populations of fibroblasts in 

murine and human PDA tumours. To begin to characterise these two populations, I 

aimed to isolate pure samples of CD105+ and CD105- fibroblasts directly ex vivo from 
mouse PDA tumours and measure their gene expression profiles. Mass cytometry is an 

antibody-based technique and the sample staining workflow is very similar to that used 
with flow cytometry-based techniques. Thus, I was able to derive a relatively simple 

FACS gating strategy and use the same antibody clones that I know had worked 
effectively in the mass cytometry experiment, but use the fluorescent conjugated 

versions for FACS. For this experiment, I also used tumour samples from the KPC 
GEMM, as for the mass cytometry experiments above. A total of 6 PDA tumour samples 

were analysed. CD105+ and CD105- fibroblast populations were successfully FACS 
isolated from all tumours. The FACS plots for each tumour are given in Figure 37. All 

tumours contained CD105+ and CD105- fibroblasts but to vastly different degrees, as 

excepted. 
 

 
Figure 37. Isolation of CD105+ and CD105- fibroblasts from pancreatic tumours 

FACS gating strategy to isolate pure fractions of CD105+ and CD105- fibroblasts form pancreatic tumours. 
The first two gates selecting single cells by scatter properties are not shown. LD = live/dead. LIN = lineage 

(EpCAM, CD45 and CD31). Frequency of each population as percentage is given within each gate. 
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For the CD105+ and CD105- fibroblasts that were collected by FACS, 5% of the sample 

was removed to expand the cells in vitro to confirm pure fibroblast morphology 24 h later 
(Figure 38) and for the remaining 95% of the sample, the RNA was isolated. The whole 

process of generating single cell suspensions from the tumours, collecting the cells and 

then isolating the RNA was done as quickly as possible (typically ~3 h), to limit gene 
expression changes induced by the process. RNA was sequenced to give the gene 

expression profiles of n=6 CD105+ PDA fibroblast samples and n=6 CD105- PDA 
fibroblast samples. CD105+ and CD105- PDA fibroblasts had significantly differential 

expression of Eng, the gene that encodes CD105, indicating that the FACS separation 
was successful. Both populations had equally high expression of Col1a1, Col1a2, Vim, 

Pdpn, and Dcn, all genes that are indicative of fibroblast identity (Figure 39). In addition, 
both populations have equal expression of MyCAF- and iCAF associated genes (Figure 

40). 
 

 
Figure 38. Morphology of FACS-isolated and cultured fibroblasts from pancreatic tumours 

Fibroblasts were FACS isolated from pancreatic tumours and plated in vitro to assess mesenchymal 
morphology. Scale bar = 150 μm. 

 
 

 
Figure 39. Gene expression of pancreatic cancer fibroblasts 

 (A) mRNA expression of Eng, the gene that encodes CD105, in CD105+ and CD105- fibroblasts. 
(B) mRNA expression of canonical fibroblast genes in CD105+ and CD105- fibroblasts. 

Expression values displayed as Transcripts per Kilobase Million (TPM). Data compared using paired t-test. 
ns = not significant. p<0.05, **p<0.01, ***p<0.001. 
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Figure 40. MyCAF and iCAF gene expression in pancreatic cancer fibroblasts 

Displaying example MyCAF- (Acta2 and Tagln) and iCAF- (Il6 and Cxcl1) associated genes. Expression 
values displayed as Transcripts per Kilobase Million (TPM). Data compared using paired t-test. ns = not 

significant. 
 
CD105+/- PDA fibroblasts had no difference in expression of S100a4 (FSP1), Dlk1, En1, 
Dpp4, Lrrc15, C5ar2, Mme, Sfrp1 and Ccl12 (Figure 41). These have all been suggested 

in other studies as marking distinct fibroblast subpopulations in tissues and tumours 
(including PDA) (see Introduction and Discussion sections). Interestingly, Fap, a 

previously reported fibroblast subpopulation gene, shows higher expression in CD105+ 
fibroblasts, although both populations have some expression of this gene. 

 

 
Figure 41. Expression of literature-reported fibroblast subset genes in pancreatic cancer 

fibroblasts 
 (A) Expression of genes previously reported in the literature to identify fibroblast subpopulations, in 

CD105+ and CD105- fibroblasts from pancreatic tumours. (B) Expression of Fap mRNA in CD105+ and 
CD105- fibroblasts from pancreatic tumours. Expression values displayed as Transcripts per Kilobase 
Million (TPM). Data compared using paired t-test. ns = not significant. p<0.05, **p<0.01, ***p<0.001. 

 
 
Differential gene expression analysis identified 422 genes significantly more highly 
expressed in CD105+ PDA fibroblasts and 585 genes significantly more highly 

expressed in CD105- PDA fibroblasts (>two-fold, B.H.padj<0.05). A PCA plot showing 
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the variance in these differentially expressed genes (DEGs) for CD105+ (yellow) and 

CD105- (purple) is shown in Figure 42. Interestingly, the first principle component (PC1) 
which accounts for 27% of the total variance in differential gene expression, separates 

CD105+ and CD105- fibroblasts across every sample. This indicates the CD105 status 

of the fibroblasts is the major determinant of differential gene expression across the total 
12 samples. PC2, accounts for 18% of the total variance and interestingly separates the 

paired samples from which tumour the fibroblasts came from. This could be due to 
technical reasons (e.g. the same delay in cell isolation during FACS for each sample) or 

be indicative of tumour-wide regulation of fibroblast gene-expression, regardless of 
CD105+/- status, and which varies widely between different spontaneous PDA tumours. 

In either regard, this analysis indicates that the variation due to CD105+ or CD105- status 
was dominant other sources of gene expression variation. 55% of the total variance was 

not explained by the first two PCs, suggesting additional drivers of differential fibroblast 
gene expression occurs in these spontaneous tumours. 

 

 
Figure 42. Principle component (PC) analysis of pancreatic cancer fibroblast gene expression 

Plot displaying the first two PCs of variation across CD105+ and CD105- fibroblast differentially expressed 
genes (DEGs). Samples from the same tumour are linked. 

 
Gene set enrichment analysis of the transcriptomic dataset indicated that CD105+ 

fibroblasts show enrichment of gene programs associated with epithelial to 
mesenchymal transition (consistent with mesenchymal identity of fibroblasts), as well as 

angiogenesis and coagulation (Figure 43). CD105- fibroblasts are enriched for genes 

associated with TNFα/NFkB and mTORC1 signalling. Consistent with the increased 
proliferative phenotype of CD105- PDA fibroblasts, seen in the prior mass cytometry 

analysis, several of the CD105- fibroblast enriched gene sets were associated with 
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proliferation: E2F targets, G2M checkpoint, mitotic spindle, and MYC targets. 

Interestingly, differences in metabolic processes between CD105+ and CD105- 
fibroblasts were also observed: genes associated with oxidative phosphorylation were 

enriched in the CD105+ PDA fibroblasts and those involved in glycolysis and hypoxia 

were enriched in the CD105- PDA fibroblasts. The enrichment plots for each of these 
enriched pathways are shown in Figure 44. 

 

 
Figure 43. Enriched gene sets in pancreatic cancer fibroblasts 

Plot displaying the Normalised Enrichment Score for selected significantly enriched gene sets between 
CD105+ (n=6) and CD105- (n=6) PDA fibroblast gene expression data. Analysis uses the Hallmark 

dataset. A positive score equates to enriched expression in CD105+ PDA fibroblasts and negative score 
equates to enriched expression in CD105- PDA fibroblasts. 
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Figure 44. Enriched gene sets in pancreatic cancer fibroblasts 

Plots displaying peak Enrichment Scores (ES) for ranked gene expression lists (top of plot), leading edge 
subsets (middle) and ranking metric (bottom) of genes within each specified Hallmark gene set when 

comparing gene expression profiles of CD105+ (n=6) and CD105- (n=6) PDA fibroblasts. (A) Hallmark 
gene sets enriched in CD105+ PDA fibroblasts. (B) Hallmark gene sets enriched in CD105- PDA 

fibroblasts.  Normalised ES (NES) are given below each plot. False Discovery Rate (FDR) estimated by 
permutating gene sets as per software guidelines. 

 
A notable feature of the CD105+/- fibroblast differentially expressed genes (DEGs) was 
the high number of genes encoding secreted factors, enzymes that generate secreted 

molecules or cell surface receptors, all of which could potentially engage in cell-cell 
communication in the PDA TME. All 1007 DEGs are plotted in a heatmap in Figure 45, 

with selected examples of differentially expressed secreted factors, enzymes or 

receptors highlighted. Several of these differentially expressed signalling factors have 
known roles relevant to cancer biology, for example CXCL2, GCSF (Csf3), IL10, CCL19, 

CXCL9 and CXCL13 are major immune cell chemo-attractants and modulators 
(Nagarsheth et al., 2017). Interestingly, several pairs of gene paralogs or pairs of genes 

with similar or redundant functions are differential expressed between CD105+/- 
fibroblasts. For example, CD105+ PDA fibroblasts express Col8a1, Sema5b and Nos1 

and CD105- fibroblasts express Col24a1, Sema3a and Nos2. 
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Figure 45. Differentially expressed genes (DEGs) in pancreatic cancer fibroblasts 

Heatmap of expression levels of all 1007 CD105+ (n=6) and CD105- (n=6) PDA fibroblast DEGs, 
displayed as row normalized Z-scores. Example DEGs are highlighted that encode secreted and cell 

surface molecules or intracellular enzymes that produce secreted molecules. 
 
Importantly, despite CD105+/- PDA fibroblasts having a total of 1007 DEGs, within the 

top 100 most highly expressed genes from CD105+/- PDA fibroblasts (by mean read 
counts), 93/100 genes are expressed by both populations across the PDA samples. 

These shared, highly expressed genes include many associated with classical fibroblast 

functions, such Col1a1, Sparc, Fn1, Tnc, Lox, Timp3, Mmp2 and Myh9. This is 
supportive of the fact that the CD105+ and CD105- cells isolated in this analysis (and 

observed in the earlier mass cytometry analysis) are bona fide, pure fibroblasts and one 
or the other population is unlikely to be another contaminating, un-related cell-type. The 

most highly expressed genes across CD105+ and CD105- fibroblasts are remarkably 
similar and therefore it is conceivable that major cell functions are highly similar between 
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the two populations, with some less highly expressed genes contributing to any divergent 

functional properties. 
 

6.1.4 – CD105+ and CD105- fibroblasts are present in healthy/non-tumour bearing 

pancreas and demonstrate stable differential CD105 expression 
 

The previously described data has outlined the existence of CD105+ and CD105- 

fibroblasts in murine and human PDA tumours, with consistently different gene 
expression patterns. I was curious to explore the possibility that these fibroblasts may 

be present in the healthy, non-tumour bearing pancreas.  I thus sought to map the 
surface proteome of primary pancreatic fibroblasts in detail using the same 

mesenchymal stromal mass cytometry panel described in the previous chapters. I 
disaggregated the healthy pancreas from young adult (8-week-old) B6 mice and 

expanded the primary cells in culture. Fibroblast-like cells with mesenchymal 
morphology are able to adhere and proliferate rapidly under these culture conditions, 

whereas the majority of other cell-types do not adhere well (epithelial cells and 
lymphocytes) or do not proliferate (endothelial cells and myeloid cells) and quickly die or 

are overgrown by fibroblast-like cells. In addition to studying the surface proteome at 

baseline, I leveraged the fact that mass cytometry can analyse many samples in parallel 
and in addition included several stimulations/activating conditions. These included 16 

different recombinant protein stimulations of known and putative fibroblast activating 
ligands and a condition in which RFP+ KPC PDA cancer cells were added to generate a 

direct cell co-culture with the fibroblasts (see Table 14 for recombinant protein details). 
The primary pancreatic fibroblasts were expanded from the healthy pancreas for 7 d, 

then stimulated with recombinant proteins/co-cultured with PDA cells for a further 3 d to 
allow sufficient time for alteration of the surface proteome and analysed by mass 

cytometry. KPC PDA cells were excluded from the analysis of the co-culture condition 
by selecting RFP- cells only. After 10 d of culture (7 d expansion, 3 d activation), the 

majority of the mono-culture samples were PCKloEpCAM-CD45-CD31PDPN+ 

fibroblast-like cells. In every condition, there are clearly two populations of fibroblasts 
with differential, bimodal expression of CD105. Remarkably all stimulations tested have 

minimal impact on the expression level of CD105 and its clear, bimodal distribution. On 
average CD105- fibroblasts make up 78.2±5.2% of all fibroblasts in the samples but the 

relative amounts of CD105+:CD105- varied in some stimulation conditions (Figure 46). 
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For example, TGFβ1 activation increases the relative frequency of CD105+ fibroblasts 

and TNFα or IFNγ activation increases the relative frequency of CD105- fibroblasts. 
Whilst bimodal CD105 expression was maintained across all conditions, many of the 

other markers show highly variable expression dependant on the activating stimulus, 

suggesting they are dynamically regulated by external factors. The surface proteome 
changes under activating conditions are similar for both CD105+ and CD105- fibroblasts, 

with some notable differences (Figure 46). 
 

Table 14. Recombinant protein details for surface marker analysis 
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Figure 46. Relative frequency of pancreatic fibroblasts after stimulation 

Representative biaxial mass cytometry plots showing relative frequencies of CD105+ and CD105- 
fibroblasts after 3 d of continuous stimulation with listed activating ligands. The frequency of CD105 and 

CD105- did not change for some conditions (IL1α and PDGF shown) but some factors altered the balance 
of CD105+ and CD105- fibroblasts. Population frequencies are displayed as percentages within each gate. 
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Figure 47. Phenotypic plasticity of pancreatic fibroblasts 

Heatmap of median marker intensity (MMI) for each phenotypic marker on CD105+ (A) and CD105neg (B) 
PaFs, after either no stimulation or 3 days of continuous stimulation with listed fibroblast activating factors. 

Data is displayed as column normalized Z-scores. 
 
Interestingly, both CD105+ and CD105- fibroblasts respond to IFNγ by upregulation of 

MHCI/II, CD74, CD80, ICAM1 and CC3. Upregulation of CD14 under this condition is 
unique to the CD105- fibroblasts. In response to TNFα, both CD105+/- fibroblasts show 

reduced expression of known MyCAF-associated proteins, including reduced αSMA and 
MCAM, as well as reduced CD90 expression. IL1α stimulation increases expression of 

many proteins in the CD105+ fibroblasts (such as CD87, CD26 and CD34) but has a 
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less marked impact on CD105- fibroblasts (less proteins increased and the PDGFRα 

increase is unique to CD105- fibroblasts). Interestingly, the related ligands, IL1α and 
IL1β have different effects on CD105+ fibroblasts and the conditions cluster separately, 

whereas IL1α and IL1β induce largely the same marker changes in CD105- fibroblasts 

and the conditions cluster together. TGFβ1 stimulation clusters separately to all other 
conditions for both CD105+/- fibroblasts. TGFβ1 stimulation induces expression of 

ITGα5 and ITGβ3 in CD105+ fibroblasts but only ITGα5 in CD105- fibroblasts. In CD105- 
fibroblasts, TGFβ1 downregulates expression of several surface molecules such as 

ICAM1, CD73, ITGα1 and CD90, which are minimally affected in TGFβ1 stimulation of 
CD105+ fibroblasts. FGF2 has similar effects on both CD105+/- fibroblasts (increased 

CD34, ITGβ3, ITGαV). The known fibroblast activators, PDGF and LIF both have 
stronger effects on the surface proteome of CD105+ fibroblasts than on CD105- 

fibroblasts. For example, LIF increased PDGFRβ expression in CD105+ fibroblasts but 
only minimally in CD105- fibroblasts. Co-culture also showed some similarities and 

differences: in both CD105+/- PAFs, direct PDA co-culture induced higher levels of CD86 

expression, as well as increased proliferation, as seen by IdU staining. CD90 and ITGα1 
expression were more highly upregulated by PDA direct co-culture in CD105+ 

fibroblasts. In conclusion, CD105+ and CD105- primary pancreatic fibroblasts show 
some similarities and some differences of their surface proteome changes after 

incubation with activating factors but notably, differential surface CD105 protein 
expression does not change in any condition. 

 

6.1.5 – Generation of fibroblast cell lines demonstrates that CD105+/- expression 

is stable 

 
CD105 was unique across all the surface markers tested in that its expression remained 

bimodal across all 18 conditions tested. I hypothesised that CD105+ and CD105- may 
represent distinct, stable lineages of fibroblasts in the murine pancreas that are not able 

to interconvert. I re-isolated primary pancreatic fibroblasts from the pancreas of an adult 

B6 mice and FACS separated them into pure CD105+ and CD105- populations (Figure 
48) and generated immortalised cell lines of each population to enable extended in vitro 

expansion. 
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Figure 48. Flow cytometry plot of the gating used to isolate fibroblasts for cell line generation 

Representative FACS gating strategy to isolate CD105pos and CD105neg pancreatic fibroblasts after 7 days 
of in vitro expansion from healthy murine pancreas. LIN = lineage (EpCAM, CD45 and CD31). 

Frequencies for gated populations given as percentages. 
 
After various intervals of prolonged in vitro expansion, I tested CD105 expression by flow 

cytometry. After 7 weeks of continuous in vitro culture, CD105+ fibroblasts remained 
CD105+ and CD105- fibroblasts remained CD105- (Figure 49A), demonstrating highly 

stable differential expression of CD105. qPCR analysis of the CD105+ and CD105- 
fibroblasts showed the expected differential expression of Eng mRNA (Figure 49B) and 

this expression pattern was not altered by stimulation with KPC PDA conditioned media 
(Figure 49B) or altered at the protein level by direct co-culture with KPC PDA cells 

(Figure 49C). Thus, the CD105+ and CD105- pancreatic fibroblast cell lines appear to 
represent stable fibroblast lineages and could be used for further studies to better 

characterise functional differences between these fibroblast populations (see next 
chapter). 
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Figure 49. Stability of differential surface CD105 in pancreatic fibroblasts 

 (A) Flow cytometry analysis of PDPN and CD105 on FACS isolated and in vitro cultured CD105+ and 
CD105- pancreatic fibroblasts (PaFs) at 1 and 7 weeks of continuous in vitro culture. Plots are 

representative of n=4 experiments. Displaying relative frequency of relevant quadrants. (B) Eng mRNA 
expression of FACS isolated CD105+ (n=4) and CD105- PaFs (n=4) with no stimulation (top) and with 

addition of KPC PDA 3-day conditioned media (bottom). Gene expression measured by qPCR and 
normalized to the geometric mean of 4 housekeeping genes (HKGs) (Gapdh, Tbp, Tubb4a, Ppia). Data 

displayed as mean+/-standard deviation. (C) Representative flow cytometry analysis (n=4) of surface 
CD105 stability on GFP+CD105+ and GFP+CD105- PaFs in mono-culture or after direct co-culture with 
RFP+ KPC PDA tumor cells. (D) Representative flow cytometry analysis (n=3) of surface CD105 stability 

on FACS isolated CD105+ and CD105- human PaFs after >3 weeks of in vitro culture. 
 
Low passage isolates of commercially available primary human pancreatic fibroblasts 
also revealed CD105+ and CD105- populations, that when FACS isolated and 

immortalised, also retained differential CD105 expression after extended in vitro culture 
(Figure 49D). IHC of the PDA FFPE samples used previously, revealed some PDA 

tumour samples that had areas of adjacent ‘normal’ pancreas tissue that showed signs 

of inflammation (probably from the tumour itself) and fibroblast expansion but no 
infiltrating, dysplastic cancer cell infiltration. PDPN and CD105 staining of these samples 

indicated that CD105+ fibroblasts in the human pancreas appear to be enriched in the 
intra-acinar areas of the human pancreas and CD105- fibroblasts appear to be enriched 

in the inter-acinar areas (Figure 50). 
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Figure 50. CD105+ and CD105- fibroblast localisation in inflamed human pancreas, adjacent to 

pancreatic tumour 
Representative immunohistochemistry (IHC) analysis of normal but inflamed human pancreas tissue, 

adjacent to PDA tumours. Stained with DAPI (blue) and with antibodies targeting podoplanin (PDPN) (red) 
and CD105 (white). Scale bar = 750 μm. 

6.2 – Summary 
 
In this chapter, I describe the ex vivo analysis of KPC PDA CD105+ and CD105- 

fibroblasts and the initial in vitro characterisation of primary pancreatic CD105+ and 
CD105- fibroblasts. The hypothesis of this section was that CD105 expression demarks 

two distinct fibroblast populations in pancreatic tumours and in the normal pancreas. The 

data presented here, supports this hypothesis. CD105+ and CD105- fibroblasts are 
present in both murine and human normal pancreas and pancreatic tumours, have 

distinct gene expression profiles and respond differently to stimulating factors. 
Remarkably, positive and negative CD105 expression was highly stable under prolonged 

in vitro culture and activating conditions. Thus, CD105+/- fibroblasts may represent 
distinct, non-interchangeable fibroblast lineages, with distinct phenotypic behaviours. 

6.3 – Discussion  
 

CD105 is notable among all the proteins tested because its differential expression in 
fibroblasts remains incredibly consistent across a huge variety of in vitro and in vivo 

states. CD105 is widely used as a lineage marker of endothelial cells and pericytes 
because of its consistent and high expression on these cell types (Armulik et al., 2011; 

Bautch, 2017). It would be interesting to further explore the epigenetic factors that dictate 
the lineage specific expression of CD105 in endothelial cells and pericytes and whether 
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regulation of the same epigenetic factors may explain the strong CD105 expression in 

CD105+ fibroblasts or lack of factors explain the lack of expression in CD105- fibroblasts.  
 

On average, CD105+ fibroblasts are more abundant in PDA tumours than CD105- 

fibroblasts. Interestingly, when primary fibroblasts from the murine pancreas are 
expanded by in vitro culture, by day 4-5 the cultures contain more CD105+ fibroblasts 

and then by day 10 the cultures are progressively dominated by increasing levels of 
CD105- fibroblasts. The reason for the apparent bias/selection for CD105+ fibroblasts in 

tumours and bias/selection for CD105- fibroblasts after extended in vitro culture, is not 
clear. It is possible that in tumours and in vitro culture, different responses to cytokines 

and growth factors (in the TME and in fetal bovine serum respectively) may selectively 
favour CD105+ or CD105- fibroblasts. Indeed, one of the enriched gene sets for CD105- 

PDA fibroblasts was TNFα signalling via NFkB. In addition, TNFα favoured expansion of 
CD105- fibroblasts over CD105+ fibroblasts in vitro. Inflammatory conditions in PDA 

tumours intensify as the tumour progresses (Collins et al., 2012) and this possibly 

includes increased levels of TNFα, which may explain the increased proliferation of 
CD105- fibroblasts in advanced tumours (despite them being less abundant than 

CD105+ fibroblasts). Another potential reason for different levels of proliferation between 
the CD105+ and CD105- fibroblast populations in vivo, may be due to differences in their 

S-phase durations, although this seems unlikely because current evidence suggests 
cells from the same species typically have similar S-phase durations (Behbehani, 2018, 

2019; Behbehani et al., 2012). In addition, CD105+ and CD105- fibroblasts also show 
evidence of distinct levels of the more general proliferation-related protein Ki67. Further 

work would be needed to understand the key factors that dictate CD105+ and CD105- 

fibroblast abundance and proliferation in vivo. 
 

The evidence presented here suggests that CD105+ and CD105- fibroblasts are not 
interchangeable populations. The fact that CD105+ fibroblasts are the dominant 

population in PDA tumours and that CD105- fibroblasts are preferably expanded from 
the pancreas by extended in vitro culture, may complicate the interpretation of many prior 

studies that have inferred in vivo fibroblast function from in vitro functional assays on 
fibroblasts expanded from normal pancreas. It is possible that in these in vitro assays 

there are very few, if any CD105+ fibroblasts and therefore the results may not represent 
the actual function of the major fibroblast population in PDA tumours in vivo. The data 



 148 

here suggests that at least checking the CD105 status of fibroblast isolates would enable 

more accurate interpretation of the experimental results, particularly once any functional 
differences between CD105+ and CD105- fibroblasts are better defined. A recent 

publication has shown areas of prostate tumour stroma that are enriched for CD105 

expression (Kato et al., 2019). The authors suggest that fibroblasts from prostate 
tumours are CD105hi when first isolated in culture and lose CD105 expression with 

passaging, although unfortunately the raw data to support this is not included in the 
publication. The data from the pancreatic fibroblasts presented here, suggests that 

differential CD105 expression is highly stable (as it is for endothelial cells and pericytes) 
and that mixed cultures show variation in CD105+:CD105- fibroblast ratios over time that 

needs to be accounted for when culturing and using primary fibroblasts. 
 

For functional interrogation of differences between CD105+/- fibroblasts, I anticipated it 
would be more informative to study naïve pancreatic fibroblasts, that have not 

experienced prior activation in tumours. Evidence suggests that activation of fibroblasts 

in tumours generates epigenetic changes that are retained even when fibroblasts are 
removed from tumours (Albrengues et al., 2015). In addition, the data from the KPC 

tumours presented in chapter 4 shows that the phenotype of CD105+/- fibroblasts is 
highly variable in PDA tumours. I would not be able to control for this variability and would 

not know if any functional differences observed in subsequent studies using these 
fibroblasts were due to fundamental, consistent differences in the two populations or just 

due to different activation events that the populations had experienced previously in the 
tumour. Isolating CD105+/- fibroblasts from the same healthy pancreas would remove 

this potential confounding factor and homogenise the ‘activation history’ of the fibroblast 

cell lines. Importantly, it would make any future findings more reproducible as other 
researchers could easily isolate these fibroblast populations from other murine pancreas 

samples. Indeed, fibroblasts isolated from healthy tissues from inbred strains would be 
expected to be far less variable than fibroblasts isolated from different PDA tumours. 

Studying naïve fibroblasts that had not ‘seen’ cancer cells before, would also allow me 
to better study the process of fibroblasts ’activating’ towards a specific phenotype. Lastly, 

the KPC mice used in these studies are maintained on a mixed genetic background. 
Thus, I would not be able to transplant isolated PDA fibroblasts into any pure inbred 

hosts with intact adaptive immune systems, due to confounding alloimmunity. This would 
greatly limit the ability of the system to understand the interactions of fibroblasts with 
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tumour immunity and inflammation, for which data presented in the previous chapter 

suggests there are abundant interactions. 
 

Both CD105+ and CD105- fibroblasts are clearly regulated to some degree in a similar 

manner. Much of the changes to the surface proteome were similar between the two 
populations across a range of PDA tumours and a range of in vitro stimulations. The in 

vivo co-ordinated expression of αSMA between CD105+/- fibroblasts in the same 
tumours was particularly remarkable and also supports the concept that CD105+ and 

CD105- fibroblasts have similar responses to many stimuli. The factors that regulate 
such a consistent αSMA levels between CD105+ and CD105- fibroblasts in the same 

PDA tumours are not clear. However, tumour stiffness is a known key upstream regulator 
of αSMA expression (Calvo et al., 2013) and is highly variable across PDA tumours 

(experiments conducted within our lab, Below et al. in press). Such contractile forces and 
altered stiffness are effective over macroscopic regions of fibrotic lesions (Liu et al., 

2020) and may be a potential way in which αSMA expression is regulated equally in 

CD105+ and CD105- fibroblasts. TGFβ1 is another known regulator of αSMA expression 
and it is possible that CD105+ and CD105- fibroblasts in the same tumour receive similar 

TGFβ1 signals from clonal cancer cells. In the in vitro experiments presented here, 
TGFβ1 stimulation had only a minor impact on αSMA protein levels. This may be due to 

the fact the cells were grown in vitro on stiff plastic and in FBS, both known to activate 
fibroblasts towards a myofibroblast phenotype, with high levels of αSMA expression 

(Baranyi et al., 2019; Ohlund et al., 2017). It may not be possible to increase αSMA 
protein levels much further with TGFβ1 stimulation in vitro. Typically, when different cells 

are being tested for response to in vitro recombinant protein stimulations, most workflows 

stimulate target cells in separate flasks and this may miss important features of cell 
communication seen in vivo. One of the strengths of the in vitro stimulation experiment 

here was that CD105+ and CD105- primary pancreatic fibroblasts were present in the 
same flask and therefore experienced the exact same stimulation strength and duration, 

the same processing and staining and are therefore highly comparable. Hence, any 
differences in observed protein expression are unlikely due to technical aspects (e.g. 

slightly different volumes of stimulation media or different antibody staining 
concentrations) or population-specific aspects (e.g. differences in the doubling rate of 

one population changing cell numbers in the flask), that can introduce imprecise 
response measurements when cells are tested in vitro in separate flasks. Because the 
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cells are present in direct mixtures, it is also possible that some of the differences 

observed are due to ongoing direct cell-cell communication between the CD105+ and 
CD105- fibroblasts populations, an incredibly interesting aspect that I did not follow up 

on 

 
Within the DEGs for CD105+ and CD105- fibroblasts, there was a large number of 

secreted factors, enzymes that generate secreted factors or cell surface receptors. The 
surface proteome and secreted proteome have been shown to increase in complexity as 

metazoans have evolved to more complex multicellular organisms, a pattern not shared 
with the intracellular proteome (Ramilowski et al., 2015). This has been hypothesized to 

reflect the increasing demand for effective cell-cell communication with increasing 
cellular specialisation. Thus, the differing expression of secreted factors and cell surface 

receptors observed here between CD105+ and CD105- fibroblasts in PDA tumours, may 
reflect distinct cell-cell communication properties, with a potential functional impact on 

tumour progression and/or response to therapy. 

 
Interestingly. there were several examples where CD105+/- fibroblasts each expressed 

one of a pair of evolutionary/functionally related genes, for example Nos1/Nos2 and 
Sema3a/Sema5b. Whether this differential expression or related genes has any 

convergent or divergent functional consequences is unknown and it may possibly reflect 
functional redundancy between different fibroblast lineages. 

 
The similar phenotypic response of CD105+ and CD105- fibroblasts to IFNγ is 

particularly notable. In PDA tumours, only CD105- fibroblasts express high levels of 

MHCII, CD74 and CD80, yet when the CD105+ and CD105- fibroblasts are stimulated 
in vitro with IFNγ, both show increased expression of MHCII, CD74 and CD80 (and other 

proteins). This suggests that the different expression pattern seen in vivo is not due to 
an inherently different, lineage-restricted potential to respond to IFNγ. For example, 

CD105+ and CD105- fibroblasts may occupy different niches with different local levels 
of IFNγ. A study of the murine pancreas has indicated that a MHCII+CD74+ phenotype 

defines mesothelial cells but data presented here shows that IFNγ is able to induce 
expression of these proteins in all fibroblast pancreatic populations and care should be 

taken in using these proteins to define mesothelial cells in tissues, especially under 
pathogenic conditions (Dominguez et al., 2020). 
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CD90 is highly expressed on all fibroblasts in PDA tumours (indeed it can be used as a 
positive marker for selection by FACS). However, CD90 expression is seen to be variable 

in the in vitro fibroblast stimulations. Populations of CD90+ and CD90- fibroblasts are 

observed in rheumatoid arthritis and this CD90 expression has recently been shown to 
be regulated by notch signalling (Croft et al., 2019; Wei et al., 2020). Direct in vitro co-

culture of primary pancreatic fibroblasts with PDA cells induced a similar increase in 
CD90 expression. This suggests CD90 in these conditions may be driven by cancer cell 

contact-induced notch signalling. Related to this, it is interesting to note that fibroblast 
expression of the two T cell co-stimulatory proteins CD80 and CD86, appears to be 

regulated by entirely different processes: CD80 is increased by IFNγ and CD86 is 
increased by heterotypic cell-cell contact with PDA cells. Whether these proteins on PDA 

fibroblasts are functionally important is not clear but considering their central importance 
during T cell priming and activation, their differential regulation is interesting. 

 

Many of the surface markers that show variable expression under different stimulating 
conditions here, have been reported as markers of distinct fibroblast populations in other 

studies of fibroblasts in tissues and tumours (e.g. CD34, ICAM1, CD90) (Feig et al., 
2013; Musso et al., 1999; Wei et al., 2020). Their variability here suggests these proteins 

likely mark distinct phenotypic/activation states in vivo but are dynamically regualted. In 
contrast, CD105 appears to identify distinct and non-exchangeable fibroblast 

populations, within which the expression of many of these markers shows high variability. 
Extended in vitro culture and a variety of stimulations were unable to induce CD105+ 

and CD105- fibroblasts to alter their CD105 expression. Because I have found no 

evidence that these populations interchanging and no evidence that a transitionary 
population exists, with intermediate expression of CD105 in vivo or in vitro, I refer to 

CD105+ and CD105- fibroblasts as distinct lineages. Whilst CD105 expression could be 
regulated, such as under extreme conditions, I have found no evidence that 

physiologically relevant conditions could cause exchange in either direction. Collectively, 
this data suggests that it important to define designated fibroblast populations as either: 

 
1) permanent, non-exchangeable lineages or 

2) as temporary, exchangeable activation/polarization states 
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There is an incomplete understanding of how fibroblast phenotypic and functional 

heterogeneity is conserved/regulated between mice and humans. With regards to 
CD105 expression, I have provided preliminary data to demonstrate that CD105+ and 

CD105- fibroblast populations are present in both mouse and human PDA tumours and 

normal pancreas, and that in both species the surface CD105 expression pattern is 
stable. Further detailed side by side comparisons would be needed to determine if 

functional differences are conserved across species. 
 

Lastly, it is not known whether the fibroblasts in PDA tumours (or indeed in many other 
tumour types) derive from the local expansion of tissue-resident fibroblast populations or 

are recruited from distal sites. For example, bone marrow-derived mesenchymal stem 
cells are a reported as a source of fibroblasts in some tumours (Arina et al., 2016; 

Kurashige et al., 2018) (see Summary discussion). The data presented here indicates 
that fibroblasts in murine and human PDA have phenotypic equivalents (i.e. CD105+/-) 

in the non-tumour bearing organ,. Thus, this is suggestive of local expansion of 

fibroblasts as being the major source of fibroblasts in tumours. Formal lineage tracing 
models would be needed to determine this definitively. However, useful, selective 

lineage tracing for fibroblasts (subpopulations in tumours) is lacking (see Summary 
discussion). In this regard, the variety of DEGs detected between CD105+ and CD105- 

PDA fibroblasts in this study may provide a useful list of genes/gene promoters that could 
act to selectively trace or manipulate these fibroblast lineages in vivo. Interestingly, 

several human FFPE PDA tumour samples had inflamed ‘normal’ adjacent pancreatic 
tissue included in the sample. These normal tissue areas were more ordered than the 

tumours and appear to show CD105+ and CD105- fibroblasts in different locations, with 

CD105+ pancreatic fibroblasts present in the intra-acinar areas and the CD105- 
fibroblast in the inter-acinar areas. Interestingly, a publication in 2016 has highlighted 

that CD105+ stroma is observed in the intralobular areas of normal human mammary 
tissue and CD105- stroma in the interlobular areas (Morsing et al., 2016). This suggests 

that CD105+ and CD105- fibroblasts may be a common feature across different 
mammalian organs and that their distinct spatial distributions may also be conserved 

across tissues.  



 153 

Chapter 7 – Results – Characterisation of in vitro functions of 

CD105+ and CD105- pancreatic fibroblasts 

7.1 – Results 

 
The hypothesis of this chapter and the next, is that CD105+ and CD105- pancreatic 

fibroblasts are functionally distinct. In particular, the aim of the experiments described in 
this chapter, was to interrogate whether there are in vitro functional differences between 

CD105+ and CD105- fibroblasts. The next chapter will explore in vivo functional 
differences. As in vitro fibroblast function is loosely defined concept, I specifically 

focussed on the now well-established ability of the pancreatic fibroblasts to undergo 

‘activation’, a process in which a stimulus promotes a transition towards a new 
polarisation or activation state, including the recently characterised MyCAF- and iCAF-

like polarizations. 
 

7.1.1 – Gene expression analysis of CD105+ and CD105- pancreatic fibroblasts 

shows a shared potential for MyCAF- and iCAF-like phenotypic transitions 
 

Fibroblast polarisation from a so-called quiescent state to an activated state is a widely 
accepted hallmark of fibroblast behaviour in vivo. One of the biggest advances in the 

understanding of pancreatic fibroblast activation has been the description of the 
MyCAF/iCAF paradigm (Biffi et al., 2019; Biffi and Tuveson, 2020; Elyada et al., 2019; 

Ohlund et al., 2014; Ohlund et al., 2017; Sahai et al., 2020; Somerville et al., 2020). 
Multiple studies have now provided compelling evidence that PDA fibroblasts have the 

potential to occupy two broadly distinct phenotypic states, the so called myofibroblast 

(MyCAF) state and the so called inflammatory (iCAF) state. The MyCAF state has 
historically been defined by high αSMA expression and stress fibre formation, although 

expression of many other MyCAF signature genes are now used, such Ctgf, Tagln and 
various collagen genes. iCAF cells are typically defined by reduced αSMA protein (or 

Acta2 gene expression) and increased expression of several known inflammatory 
mediators, including Il6, Cxcl1 and Ccl2. Unfortunately, different studies use different 

ways to define and classify MyCAF/iCAF-like fibroblast states (Biffi et al., 2019; 
Dominguez et al., 2020). A more accurate understanding of robust signature genes, 
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ideally linked to key cell functions, would likely improve the comparability between 

different studies.  
 

In the previous chapters, both CD105+ and CD105- fibroblasts in PDA tumours in vivo 

are indeed seen to be present in both αSMA+ or αSMA- fractions, suggesting they both 
have capacity to undergo the MyCAF phenotypic switch. I sought to explore this further 

and better define the MyCAF/iCAF polarization dynamics in CD105+ and CD105- 
fibroblasts. The first experiment studied the potential of CD105+ and CD105- fibroblasts 

to express classical MyCAF/iCAF signature genes over long-term incubation/polarization 
with TGFβ1 (the ligand most often used to induce a MyCAF-like state) and IL1α (the 

ligand most often used to induce an iCAF-like state) (Ohlund et al., 2017). CD105+ and 
CD105- pancreatic fibroblasts were subjected to 3 d of continuous ligand stimulation and 

gene expression assessed by qPCR (see Table 15 for recombinant protein details and 
Figure 51 for data analysis). 

 
Table 15. Recombinant protein details for 3-day stimulation
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Figure 51. MyCAF and iCAF gene expression in pancreatic fibroblasts (PaFs) after extended 
stimulation 

mRNA expression levels of MyCAF (A) and iCAF (B) associated genes from in vitro CD105+ and CD105- 
PaFs, at baseline or stimulated with recombinant mouse (rm) TGFβ1 or rmIL1α for 72 h. Eng expression is 

also displayed. Measured by qPCR and normalized to the geometric mean of 4 housekeeping genes 
(HKGs) (Gapdh, Tbp, Tubb4a, Ppia). n=4 samples per condition. Data displayed as mean+/-standard 

deviation. Samples are compared using unpaired t-test. *p<0.05, **p<0.01, ***p<0.001. 
 
The pattern of gene expression changes for the TGFβ1/MyCAF polarization and 
IL1α/iCAF polarisation are found to be largely the same for both CD105+ and CD105- 

fibroblasts: expression of Acta2, Col1a1 and Fndc1 increase with TGFβ1 stimulation in 
both and Il6, Cxcl1, Ccl2 and Csf3 increase with IL1α stimulation in both. There is trend 

for increased Ctgf expression on TGFβ1 stimulation for CD105+ fibroblasts but this does 

not reach significance, possibly because the baseline (no stimulation) Ctgf mRNA in 
CD105+ fibroblasts is high. Indeed, for many of the genes, whilst the baseline level is 

different between CD105+ and CD105- fibroblasts, the stimulation has the effect of 
increasing gene expression, such that CD105+ and CD105- fibroblasts broadly have the 

same expression levels after stimulation (e.g. Acta2, Col1a1, Ctgf, Fndc1, Ccl2, Csf3). 
Il6 and Cxcl1 expression with IL1α stimulation follow slightly different behaviour, in that 

the final expression level is >2-fold different between the CD105+ and CD105- 
fibroblasts. Notably, Eng expression clearly stays distinct between CD105+ and CD105- 

samples, although interestingly IL1α stimulation reduces transcript levels in an 
incremental but significant manner in CD105+ cells.  In summary, with long-term 

stimulation and high levels of ligand, both CD105+ and CD105- have the potential to 

adopt MyCAF- and iCAF-like states, as defined by literature-derived signature genes. 
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7.1.2 – Genome wide gene expression analysis highlights distinct sensitivity of 

CD105+/- pancreatic fibroblasts to activating ligands 
 

The previous experiment demonstrated that CD105+ and CD105- fibroblasts both have 

the potential to express signature genes of the MyCAF- and iCAF-like phenotype, after 
continuous stimulation with polarising ligands for 3 days. This experiment set up is 

relatively artificial in that incubation with excess recombinant protein for long periods of 
time may not recapitulate the situation in complex, dynamic tissues like tumours. 

Receptor competition from other cell types can limit ligand availability and receptor-
mediated endocytosis can actively remove ligand from the intracellular space (Zhou et 

al., 2018). Spatial separation of cells in the TME and restricted molecule diffusion, may 
also create strong ligand gradients and greatly reduce ligand availability to some cells 

(Farin et al., 2016; Ohlund et al., 2017). Accounting for these factors in vitro is 
challenging but I was keen to try and better understand the sensitivity of CD105+ and 

CD105- fibroblasts to MyCAF and iCAF polarising ligands. To do so, I aimed to activate 

cells and measure their gene expression profiles at a much earlier time point (6 h) (see 
Table 16 for recombinant protein stimulation). At this time point any difference in how 

quickly an activating signal was able to induce gene expression changes would likely be 
more apparent and would give an approximate measure of the sensitivity to the stimulus. 

In addition, because the genes-associated with the MyCAF and iCAF-like polarisation 
are not well defined, especially at an early time point, I opted to analyse genome wide 

gene expression by RNAseq. This would avoid confounding issues of not selecting 
appropriate target genes for qPCR and would allow me to accurately compare the 

number of response genes expressed, as well as the identity of the gene. CD105+ and 

CD105- fibroblasts were stimulated with TGFβ1 and IL1α for 6 h and cells were lysed 
and RNA extracted. An ‘early DEG’ was defined as any gene in CD105+ or CD105- 

fibroblasts that showed significantly altered expression compared to the no stimulation, 
baseline condition for that population, with a Benjamini-Hochberg adjusted p value 

<0.05. The results for this measurement of TGFβ1 and IL1α sensitivity were notably 
different to the results from the previous long-term stimulation experiment (Figure 51). 

After 6 h of TGFβ1 stimulation, CD105+ fibroblasts showed 151 early DEGs over 
baseline, whereas CD105- fibroblasts showed just 8 early DEGs at this early time point. 

All 8 of these CD105- fibroblast DEGs were also DEGs for CD105+ fibroblasts, with no 
DEG being unique to CD105- fibroblasts. The majority of these early DEGs shared 
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between CD105+ and CD105- fibroblasts, are not typically associated with the MyCAF 

phenotype in the current literature but the proteins they encode have established roles 
in cell communication and signal transduction, including a phosphatidylinositol-binding 

protein (Sdcbp2), cellular stress kinase (Sgk1), transcription factor (Id2) and Wnt ligand 

(Wnt5a). Many of the CD105+ fibroblast specific DEGs were genes encoding ECM 
modifying proteins (Col27a1, Col8a2 and Lox) or known regulators of TGFβ signalling 

(Ltbp2 and Smad7). Interestingly, with TGFβ1 stimulation at this early time point, the 
canonical MyCAF gene Acta2 (αSMA) is not differentially expressed, suggesting its 

increased expression after TGFβ1 stimulation may be delayed or secondary effect. 
 

Table 16. Recombinant protein details for 6 h fibroblast stimulation 

 
 
 

 
Figure 52. Differentially expressed genes in pancreatic fibroblasts after 6 h TGFβ1 and IL1α 

stimulation 
Differential gene expression analysis of in vitro CD105pos and CD105neg PaFs after 6 h of stimulation with 

recombinant mouse (rm) TGFβ1 (A) and rmIL1α (B) (D). Differentially expressed genes (DEGs) are 
determined by comparing the stimulation condition with the relevant unstimulated cells. n=3 samples per 

condition. DEGs determined using DEseq2 with a Benjamini and Hochberg adjusted p<0.05. Data is 
displayed as Venn diagrams (top), with example genes listed (below). DEGs unique to CD105pos PaFs are 

in in red, DEGs unique to CD105neg PaFs are in blue and common/shared DEGs are in purple. The 
number of significant early DEGs for each, is displayed in parenthesis. 
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Why CD105+ and CD105- fibroblasts have distinct sensitives to TGFβ1 stimulation is 

not immediately obvious: between them there is no difference in expression of the type 
I TGFβ-family receptor, Tgfbr1, or type II TGFβ-family receptor, Tgfbr2 (Figure 53), or 

the downstream TGFβ-signalling mediator Smad2. There is 1.6-fold higher Smad3 

expression in CD105+ fibroblasts, which may contribute to some of the increased 
sensitivity of CD105+ fibroblasts to TGFβ1 stimulation. 

 

 
Figure 53. Expression of genes associated with TGFβ signal transduction in pancreatic fibroblasts 
mRNA expression of genes associated with TGFβ signal transduction (Tgfrb1, Tgfbr2, Smad2 and Smad3) 

in CD105+ (n=6) and CD105- (n=6) pancreatic fibroblasts. Gene expression measured by RNA 
sequencing and quantified as DEseq2 median ratio normalized expression values. Displaying expression 
values as mean+/-standard deviation. Samples are compared using unpaired t-test. *p<0.05, **p<0.01, 

***p<0.001. 
 
Despite no difference in expression of the TGFβ receptors, Tgfbr1 and Tgfbr2, or the key 

TGFβ signalling mediator, Smad2, CD105+ fibroblasts have almost 20x more early 
DEGs induced by TGFβ1 stimulation, than CD105- fibroblasts. In endothelial cells, the 

CD105 protein itself has a known role in TGFβ signalling (Banerjee et al., 2012; Lebrin 
et al., 2004) and additional work in fibroblasts has shown similar signalling cascades 

present (Paauwe et al., 2018). It has been demonstrate (mainly in endothelial cells) that 

the CD105 protein has no signalling capacity on its own but plays a role in modulating 
the affinity of TGFβ-family ligands to the TGFβR1/2 signalling complex (Barbara et al., 

1999). To interrogate whether the CD105 protein itself contributed to any of the TGFβ1-
induced signalling in this assay, I sought to genetically delete Eng (the gene that encodes 

CD105) in CD105+ fibroblasts using multi-guideRNA (gRNA) CRISPR/Cas-9 gene 
editing. Loss of CD105 surface protein was confirmed by flow cytometry (Figure 54). 6 h 

TGFβ1 stimulation of these cells results in only 84 early DEGs over baseline (compared 
to 151 Early DEGs in the parental CD105+ cells), suggesting that the CD105 protein 

itself is responsible for about half of the early transcriptional response and sensitivity to 
TGFβ1 stimulation in CD105+ fibroblasts.  



 159 

 
Figure 54. Validation of Eng gene editing in CD105+ pancreatic fibroblasts 

 
Early response genes to IL1α stimulation followed a similar pattern, in that CD105+ 
fibroblasts have a greater number of early DEGs at 6 h, suggestive of higher sensitivity 

to this ligand. CD105+ fibroblasts have 227 early DEGs. 15 of these DEGs are shared 
with CD105- fibroblasts and CD105- fibroblasts had only 4 additional unique DEGs (to 

give a total of 19 early DEGs induced by IL1α in CD105- fibroblasts). In accordance with 
the literature, several of the shared IL1α early response genes seen here have been 

previously used to define the iCAF phenotype (e.g. Ccl2 ,Cxcl1, Vcam1) (Ohlund et al., 
2017). Interestingly, the IL1α sensitive CD105+ fibroblasts have higher expression of the 

canonical IL1 receptors, Il1r1 and Il1rap, as well as higher expression of the major IL1 

signalling mediator, Myd88, compared to CD105- fibroblasts, which may explain the 
increased sensitivity of CD105+ fibroblasts for IL1α (Figure 55). 

 

 
 

Figure 55. Expression of genes associated with IL1 signal transduction in pancreatic fibroblasts 
mRNA expression of genes associated with IL1 signal transduction (Il1r1, Il1rap and Myd88) in CD105+ 

(n=6) and CD105- (n=6) pancreatic fibroblasts. Gene expression measured by RNA sequencing and 
quantified as DEseq2 median ratio normalized expression values. Displaying expression values as 

mean+/-standard deviation. Samples are compared using unpaired t-test. *p<0.05, **p<0.01, ***p<0.001. 
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Many of the CD105+ fibroblast-specific DEGs encoded additional cytokines/growth 

factors with known immune modulatory properties (e.g. Cxl5, Cxcl2, Csf3, Ccl7, Cxcl10) 

or functions in immune cell adhesion (e.g. Icam1), as well as transcription factors known 
to regulate inflammatory gene programs (Irf7 and Irf9). It is possible that these 

transcription factors may go on to establish a delayed/secondary gene expression 
response. Indeed, in the literature the most widely used gene to define the iCAF 

phenotype is Il6 but, interestingly, Il6 is not a DEG for either CD105+ or CD105- 
fibroblasts at this early, 6 h time point. The qPCR data in the previous analysis clearly 

shows that with enough ligand and enough time (3 d), both CD105+ and CD105- 
fibroblasts can upregulate Il6 expression in response to IL1α. Thus, expression of the 

major iCAF signature gene, Il6, may be part of a secondary/delayed response to IL1α 
stimulation.  

 

Both TGFβ1 and IL1α stimulation show much higher numbers of DEGs in CD105+ 
fibroblasts than in CD105- fibroblasts. I was keen to asses if CD105+ fibroblasts are just 

generally more sensitive to all activating factors. Data presented in previous chapters, 
shows that in vitro, CD105+ and CD105- both respond to IFNγ with similar protein 

changes after 3 d (increased MHCI, MHCII, CD74 etc). Thus, I also measured the 
genome wide transcriptomic response of CD105+/- fibroblasts after 6 h of IFNγ 

stimulation. Gene expression measurement at 6 h after stimulation confirmed that both 
populations have a strong transcriptional response to IFNγ, suggesting that the relative 

lack of sensitivity of CD105- fibroblasts to TGFβ1 and IL1α was unlikely due to a general 
insensitivity to activation or a technical artefact specific to in vitro or this assay format. 

The majority of IFNγ early DEGs (234 genes) were shared between the two populations 

and included well established IFNγ response genes such as the transcription factor, Irf1 
and the MHCI-complex component, H2-D1 (Figure 56). Interestingly, both CD105+ and 

CD105- populations had a number of unique early DEGs, not shared with the other 
population, suggestive of a largely similar ‘core’ IFNγ response, with some CD105+/- 

fibroblast population-specific differences. 
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Figure 56. Differentially expressed genes in pancreatic fibroblasts after 6 h IFNγ stimulation 

Differential gene expression analysis of in vitro CD105pos and CD105neg PaFs after 6 h of stimulation with 
recombinant mouse (rm) IFNγ. Differentially expressed genes (DEGs) are determined by comparing the 
stimulation condition with the relevant unstimulated cells. n=3 samples per condition. DEGs determined 
using DEseq2 software with a Benjamini and Hochberg adjusted p<0.05. Data is displayed as a Venn 
diagram (top), with example genes listed (below). DEGs unique to CD105pos PaFs are in in red, DEGs 

unique to CD105neg PaFs are in blue and common/shared DEGs are in purple. The number of significant 
early DEGs for each, is displayed in parenthesis. 

 
 
7.1.3 – Mapping the phospho-proteome of CD105+/- fibroblast activation by mass 

cytometry  
 

The results above suggest that whilst CD105+ and CD105- fibroblasts have the potential 
to undergo MyCAF- and iCAF-like transitions, CD105+ fibroblasts appear to be more 

sensitive to the respective activating ligands. Both CD105+ and CD105- fibroblasts are 
equally sensitive to IFNγ stimulation. Whilst TGFβ1 and IL1α activation of fibroblasts has 

received much attention since the description of the MyCAF and iCAF phenotypes, the 
signalling networks that transmit these extracellular signals specifically in fibroblasts 

have not been characterised in detail. In addition, the signalling networks engaged by 

other known but less studied fibroblast activating ligands (e.g. LIF), are poorly 
characterised. I hypothesised that some of the different transcriptomic responses of 

CD105+ and CD105- fibroblasts to stimulation, may be due to differential activation of 
phosphorylation networks within in each population. Thus, as part of characterising 



 162 

CD105+ and CD105- fibroblasts in vitro, I aimed to better understand signalling node 

phosphorylation responses during activation. I generated RFP labelled CD105+ 
fibroblasts and GFP labelled CD105- fibroblasts by lentiviral transduction. Equal 

numbers of each population were mixed at a 1:1 ratio and plated overnight in multiple 

flasks in low serum media. Flasks containing the mixed cells were stimulated with 
recombinant proteins in low-serum media for exactly 5 min and then fixed to preserve 

signalling nodes, lifted, permeabilised, barcoded for mass cytometry, pooled and stained 
with a cell signalling mass cytometry panel (see Table 17 in this section for recombinant 

proteins and Table 5 in the Materials and Methods section for antibody details). This 
signalling mass cytometry panel contained a large number of highly validated antibodies 

targeting major phosphorylation sites, or other proteins known to play key roles in cell 
signalling, and would give a broad picture of the phosphorylation nodes and other post-

translational modifications (PTMs) activated 5 min after recombinant protein stimulation. 
Anti-RFP and anti-GFP antibodies were included to allow easy identification of CD105+ 

and CD105- fibroblasts from each condition, respectively. 

 
Table 17. Recombinant protein stimulation to study fibroblast signalling responses 

 
 
The median signal intensity for each protein phosphorylation site for CD105+ and 
CD105- fibroblasts is displayed at a heatmap in Figure 57. The baseline, no stimulation 

control condition has very low levels of signal in almost all of the signalling nodes 
measured, consistent with reduced signalling in the minimal (0.5%) dialysed FBS-

containing media. Even at this baseline state though there are some minor differences 
between active signalling networks in CD105+ and CD105-fibroblasts, which may be due 
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to slightly different responses to the proteins contained in the 0.5% dFBS media (which 

is the minimal media required to keep the cells alive after being seeded). Whilst several 
stimulations activated known canonical pathways of the respective activating factors 

(e.g. IFNγ induced strong pSTAT1[Y701]), I found the most striking result was how 

promiscuous most of the activating factors were in terms of the breadth of signalling 
nodes they engaged outside of widely accepted canonical downstream nodes. The 

specific combination of nodes they activated and the extent of phosphorylation varied 
widely and was also clearly different for some factors between CD105+ and CD105- 

fibroblasts. This resulted in a unique signalling ‘fingerprint’ in CD105+ and CD105- 
fibroblasts across different stimulating conditions, some more or less divergent than 

others.  
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Figure 57. Cell signalling responses of pancreatic fibroblasts 
Mass cytometry (MC) analysis mapping cell signaling responses of CD105+ and CD105- pancreatic 

fibroblasts (PaFs) to selected soluble signals. RFP+CD105+ and GFP+CD105- PaFs are plated in the 
same flask to ensure identical stimulation and processing, and identified by the inclusion of antibodies 

targeting the respective fluorescent proteins. Cells were serum-starved for 16 h, stimulated and fixed after 
5 min to preserve and capture early cell signaling events. Data is displayed as median mass intensities 

(MMI) and as column normalized Z-scores. For phosphorylation signaling node measurements the specific 
phospho site is described in brackets. 

 
TGFβ1 stimulation showed a relatively minor response in both CD105+ and CD105- 
fibroblasts. This is likely because SMAD2/3 phosphorylation, the canonical TGFβ1 

signalling mediator, is known to be a relatively slow signalling process, normally 
measured at 30-60 min after stimulation (van Caam et al., 2017). This analysis was 

conducted at 5 min to capture the majority of other signalling nodes, which have rapid 
responses (typically 30 s – 10 min). Despite this, TGFβ1 stimulation is still seen to cause 

increased levels of pp38 and pRB in CD105+ fibroblasts. TGFβ1 stimulation causes 
increases in B-catenin, pSTAT5, pPDK1 and pPLCγ2 levels in CD105- fibroblasts, 

pathways not typically associated with TGFβ1 signalling. Differential activation of these 

nodes between CD105+ and CD105- fibroblasts is also seen to some degree at baseline 
suggesting similar signalling activation even in low serum media, potentially from 

autocrine TGFβ1 signalling or TGFβ-family proteins in the dFBS. 
 

Both CD105+ and CD105- fibroblasts respond to IL1α stimulation through increased 
levels of pp38, pNFκBp65 and pIKKα/β, and to a lesser extent, at other nodes including 

pRelB and pERK1/2.  CD105+ fibroblasts had stronger phosphorylation responses than 
CD105- fibroblasts at almost every IL1α-induced node. This is consistent with the 

increased transcriptomic response of CD105+ fibroblasts to IL1α stimulation seen in the 
RNAseq study described above. Interestingly, the ‘fingerprint’ of response to IL1β was 

very similar to IL1α but more muted, even though the same concentration of each ligand 

was used. 
 

The response to IFNγ was very broad and, remarkably, caused some level of change to 
almost all signalling nodes measured. IFNγ has a well characterised role in various 

immune cell processes but this data highlights the broad and complex action of the 
cytokine on non-immune cells too. Here, as expected, IFNγ induced the highest levels 

of pSTAT1 of any stimulation in both fibroblast populations, although the response was 
stronger in CD105- fibroblasts. In general, CD105- fibroblasts showed more nodes 

strongly activated by IFNγ, including pSTAT5, pPDK1, and pPLCγ2 again (as for 
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TGFβ1), as well as pAMPKα and p4EBP1. The degradation product of NFkB signalling, 

IkBa was higher in CD105+ fibroblasts, consistent with lower NFkB signalling in CD105+ 
fibroblasts under IFNγ stimulation. 

 

The response to TNFα was notable in that whilst inducing a broad array of 
phosphorylation changes, the response in CD105- fibroblasts was stronger than that for 

CD105+ fibroblasts. For example, pNFkBp65, pp38 and p70S6K all increased after 
TNFα stimulation in both populations but to higher degree in CD105- fibroblasts. This is 

consistent with the ex vivo gene set enrichment analysis of KPC CD105+ and CD105- 
PDA fibroblasts (presented in chapter 6), in which the ‘TNFα signalling via NFkB’ gene 

set was enriched in CD105- PDA fibroblasts. In addition, TNFα is seen to enhance 
CD105- pancreatic fibroblast growth in vitro (Chapter 6). Again, as for several other 

stimulations, TNFα induced pSTAT5, pPDK1, pPLCγ2, pAMPKα specifically within the 
CD105- fibroblasts. It is unclear why this set of nodes is activated in CD105- fibroblasts 

across several stimulations. 

 
The signalling response to PDGF was particularly striking in terms of the large number 

of nodes activated, how strongly the nodes changed and also with how different the 
response was between CD105+ and CD105- fibroblasts. In CD105+ fibroblasts, PDGF 

caused the strongest signalling response in several nodes, of all the stimulations tested. 
This included, pAKT at both the S473 and T308 sites, pIKKα/β, pMKK4, pMEK1/2, 

pJAK2 and pSTAT4. Whilst several of these nodes were also activated in CD105- 
fibroblasts, the extent was lower. CD105- fibroblasts again showed strong responses in 

B-catenin, pSTAT5, pPDK1, pPLCγ2 and p4EBP1, highlighting these as commonly 

utilised pathways in CD105- fibroblasts across several activating conditions. These 
pathways are not typically associated with PDGF signalling and demonstrate the 

networked nature of intracellular signalling. It is unlikely that activation of these pathways 
is due to secondary responses (e.g. autocrine secretion in response to the primary PDGF 

signal) because these measurements are taken 5 min after stimulations, but I cannot 
completely rule out the possibility. Some of the breadth and complexity of the PDGF 

response may due to the fact that the specific dimeric PDGF ligand used is PDGF-BB, 
one of five possible dimers from four PDGF monomer isoforms. PDGF-BB is the only 

PDGF dimer known to bind and activate all three PDGF receptor combinations. It would 
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be interesting to use this assay to compare the signalling differences between the five 

known PDGF dimer pairs. 
 

LIF has been recently described as an important activating ligand of fibroblasts in human 

and murine PDA tumours, that can act in an autocrine manner to drive fibroblast 
functions which go on to impact cancer cell surivvial (Shi et al., 2019). Here LIF 

generated a broad response in both CD105+ and CD105- fibroblasts, quite distinct to 
other stimulating factors. Increases in pTAK1, pGSK3B and pCREB are seen in both 

CD105+ and CD105- fibroblasts to largely the same degree. LIF was the strongest 
inducer of pSTAT3 of all the activating ligands tested. This is consistent with pSTAT3 

signalling being a key downstream pathway for LIF (Shi et al., 2019). Interestingly, LIF 
raised pSTAT3 levels only in CD105+ fibroblasts and had minimal impact on pSTAT3 

levels in CD105- fibroblasts.  LIF also induced increased levels pMAPKAPK2, p70S6K, 
pFAK, and pS6, more so in CD105+ fibroblasts than CD105- fibroblasts. 

 

The other stimulations induced less dramatic changes to signalling networks. Of these 
the BMP-family ligands are notable for their induction of pSMAD1/5/9, the canonical 

BMP-family signalling mediator. The relatively understudied BMP10 was the strongest 
inducer. IL6 is the canonical secreted ligand of the iCAF phenotype and has previously 

been studied as a paracrine signal from fibroblasts (Flint et al., 2016; Ohlund et al., 
2017). Here there is evidence that it can induce broad signalling changes in fibroblasts 

and thus may have some autocrine signalling properties in IL6-secreting fibroblasts. IL22 
is notable for its relative lack of activation of almost all signalling nodes apart from its 

induction of pSTAT3, to largely the same degree in both CD105+ and CD105- fibroblasts. 

7.2 – Summary 
 
Experiments described in the previous chapters demonstrate the existence of non-

interchangeable CD105+ and CD105- fibroblasts in the pancreas and in pancreatic 
tumours of humans and mice. The hypothesis of this section was that CD105+ and 

CD105- have distinct functions in vitro, particularly with respect to fibroblast activation. 
Collectively the experiments presented in this chapter have demonstrated that CD105+ 

and CD105- fibroblasts both share the capacity to undergo similar 

phenotypic/polarisation changes under activating conditions but do so with distinct 
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sensitivities. This was measured at the level of early and late gene transcription, as well 

as cell signalling networks of protein phosphorylation. Approximately half of the 
sensitivity of CD105+ fibroblasts to TGFβ1, is contributed by the CD105 protein itself. 

The sensitivity of CD105+ fibroblasts to IL1α may be due to the higher expression of the 

relevant IL1α receptors (Il1r1 and Il1rap) and signalling mediators (Myd88). Analysis of 
fibroblast phospho-site changes after activating factor stimulation, highlights the 

complexity of cellular signalling and the divergent signalling responses between CD105+ 
and CD105- fibroblasts. Collectively these results demonstrate CD105+ and CD105- 

fibroblasts have distinct activation potential, that may act as starting points for 
mechanistic experiments to explore what factors regulate lineage-specific aspects, such 

as what dictates the CD105+:CD105- fibroblast ratio in PDA tumours and if differential 
activation may account for any phenotypic or functional differences between CD105+ 

and CD105- fibroblasts in vivo. 

7.3 – Discussion  

 
The recently characterised MyCAF and iCAF paradigm has greatly enhanced 

understanding of cancer-associated fibroblasts, particularly in PDA. Here, I show that 
both CD105+ and CD105- pancreatic fibroblasts have the ability, under extended 

activating conditions, to polarise into these two states, as defined by gene expression 
changes. Indeed, αSMAhi and αSMAlo fractions of both CD105+ and CD105- fibroblasts 

are frequently seen in the same PDA tumour (chapter 4). The fact that both CD105+ and 

CD105- fibroblasts are capable of undergoing MyCAF/iCAF phenotypic polarisation, 
suggests this ‘MyCAF/iCAF switch’ may be generalisable feature of fibroblasts and may 

even be a defining characteristic of this cell type. Indeed, defining unique fibroblast-
specific features, separate from other mesenchymal cells, would improve our 

understanding of this, at times, ambiguously defined cell type. Pancreatic fibroblast 
MyCAF and iCAF switches are now well documented but several important aspects 

remain unknown. For example, the vast majority of characterisation has been conducted 
with mouse cells in vitro, with minor validation in human cells. In addition, the extent to 

which fibroblasts from other organs and tumour types, can undergo similar or related 
phenotypic switches is not well understood, although expression of αSMA is reported in 

a wide range of fibrosis-associated pathologies and often only within a fraction of the 

fibroblasts present (Hinz and Lagares, 2020). The results presented here suggest that 
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an additional line for future investigation will be to better understand the MyCAF/iCAF 

polarisation in the context of distinct fibroblast lineages, for example in CD105+ and 
CD105- fibroblasts. A recent scRNAseq of the murine pancreas and murine PDA has 

identified variable expression of Eng (the gene that encodes CD105) in fibroblast-like 

clusters, and the authors suggest that Eng expressing fibroblasts are the source of 
MyCAF fibroblasts in PDA tumours and fibroblasts not expressing Eng are the source of 

iCAF fibroblasts in PDA tumours, based on similar expression of some a selected list of 
genes (Dominguez et al., 2020). The results presented in this chapter and in Chapter 4 

demonstrate that under in vitro stimulation and in PDA tumours, both CD105+ and 
CD105- fibroblasts have the capacity to undergo MyCAF-like and iCAF-like transitions. 

The difference between their findings and those presented here is not fully clear but may 
derive from the fact that CD105+ fibroblasts have a stronger response to TGFβ1 than 

CD105- fibroblasts (partly due to CD105 itself) and thus may appear more ‘MyCAF-like’ 
when comparing curated gene lists. Thus, in a head to head comparison CD105+ 

fibroblasts may appear to express higher levels of some selected MyCAF genes. In 

addition, those studies were conducted using a different PDA GEMM (Pdx1-Cre; KrasLSL-

G12D/+; p16/p19fl/fl). Further work is needed to know if CD105+ and CD105- fibroblast 

lineages are a feature of all PDA GEMMs. 
 

Whilst the MyCAF/iCAF paradigm is a highly reproducible phenotypic program in PDA 
fibroblasts, the understanding of its functional implications is notably lacking. For 

example, it is not clear if one or the other has a net tumour promoting effect or a net 
tumour restrictive effect. Some efforts have been attempted to address this but 

unfortunately are far from conclusive. TGFβ1 has been shown to induce some features 

the MyCAF-phenotype. In an attempt to understand the function of MyCAF fibroblasts in 
PDA, Biffi et al. treated KPC mice with a TGFβR inhibitor, which showed no net change 

in tumour growth (Biffi et al., 2019). TGFβ signalling in the TME is extremely complex 
and inhibition of TGFβR2 can have a broad spectrum of effects on many cells, for 

example TGFβR inhibition can directly enhance epithelial cancer cell growth but also 
improve immune-mediated control of tumours. Additionally, several mechanisms other 

than TGFβ stimulation are known to induce the MyCAF-like phenotype (e.g. 
microenvironment stiffness) and thus inhibiting TGFβ signalling doesn’t necessarily 

equate to inhibition of MyCAF polarisation and function. Features of the iCAF phenotype 
have been shown to be induced by IL1α via JAK-STAT signalling, which is supported by 



 170 

data presented in this chapter. KPC mice treated with a JAK inhibitor show smaller 

tumours at a single, fixed time point (Biffi et al., 2019). The interpretation of these results 
is that the iCAF polarisation is tumour promoting but such interpretation is challenging, 

mainly because in such experiments JAK/STAT signalling will be inhibited in many cell 

types in the PDA TME and not just in fibroblasts. Indeed, inhibiting a known potent 
inflammatory signalling pathway, would be expected to reduce tumour inflammation and 

reduce leukocyte infiltration generally. This could potentially account for the reduced 
tumour volume observed in that study, without actually equating to any change in tumour 

cell number or tumour progression. Indeed, no survival analysis was conducted in either 
study, so it is not clear that these smaller tumours are any less advanced/deadly than 

those in the control cohorts. Lastly, whilst IL1α-JAK/STAT signalling may contribute to 
some of the features of the iCAF phenotype, data presented here and in chapter 6, 

demonstrates that several other factors other than IL1α, such as TNFα, can induce iCAF-
like changes in pancreatic fibroblasts. Thus, functional analysis of the consequences of 

the iCAF phenotype need to consider the fact that a single ligand/receptor/pathway may 

not be solely responsible for driving the phenotype.  
 

In the context of the results presented in this chapter, any studies that seek to accurately 
understand the functional implications of the MyCAF and iCAF-polarised fibroblasts in 

tumours, will likely be confounded by the presence of various levels of CD105+ and 
CD105- fibroblasts, which themselves have divergent behaviour. One can envisage that 

within a single tumour at a single time point, there are at least four distinct fibroblast 
states: CD105+ fibroblasts in MyCAF- and iCAF-like states and CD105- fibroblasts in a 

MyCAF- and iCAF-like states, with the CD105+/- states being non-interchangeable and 

the MyCAF/iCAF states to some extent being dynamic (see below). Such complexity and 
heterogeneity of the fibroblast compartment may be one of the reasons for the extensive 

conflicting and contradictory results in the literature regarding fibroblast functions in 
tumours and may also be one of the contributing factors to why specific and effective 

fibroblast-targeting therapies have not been found. The data presented here suggests 
that future experiments trying to understand the MyCAF- and iCAF-like phenotypes could 

be made more accurate, by focussing the analysis on either isolated CD105+ or CD105- 
fibroblasts but not trying to understand the MyCAF/iCAF phenotypes in both at the same 

time.  
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The MyCAF and iCAF paradigm is an exciting development in fibroblast research and 

has led to a much-improved understanding of fibroblast plasticity during 
pathological/inflammatory conditions. Yet, many questions remain: 

 

• Is the phenotypic switch in vivo well modelled by in vitro systems? 

• What are the signalling and transcriptional regulators of these phenotypes and can 
they be blocked for therapeutic benefit in cancer or other pathologies? 

• Can fibroblasts move/cycle between the two states indefinitely? Some existing data 

does support the idea that an activated pancreatic fibroblast can, to some extent, 
move between the two activation states in vitro but this was not explored in detail 

(Ohlund et al., 2017). 

• Do strong or sustained polarising conditions generate more permanent states? 

• Are the two states in direct competition with each other or can the same cell exhibit 
features of both? Is one state dominating or the ‘default’ state over the other? In this 

regard, TGFβ1 has been shown to have the capacity to interrupt IL1α/JAK/STAT 

signalling in vitro and LIF, produced in the iCAF state, can act in autocrine manner 
and block MyCAF-like differentiation (Biffi et al., 2019; Nguyen et al., 2017). 

• Do activating stimuli need to be sustained or is an initiating signal sufficient? If the 
initiating stimulus is removed do fibroblasts revert to the naïve state or are the 
actively removed from the tissue, for example by undergoing apoptosis or signalling 

to phagocytes for removal? 

• Do different polarisations have the same half-life/persistence in vivo?  

 
With regards to the final question, CD105+ and CD105- fibroblasts in PDA tumours have 

different proliferation rates in vivo in late stage tumours, but MyCAF and iCAF fractions 
showed no significant proliferation difference. This suggests that proliferation of activated 

fibroblasts may be independent of the phenotypic state they are in. Thus, some fibroblast 
activating factors may only act to dictate MyCAF/iCAF polarisation (TGFβ1 and IL1α) 

and others may only regulate proliferation, survival etc. Related to this, data shown in 
this chapter demonstrates that PDGF stimulation strongly activates a wide variety of 

mitogenic and survival signalling pathways in both CD105+ and CD105- fibroblasts, 
including MAPK, AKT and STAT pathways but has minimal impact on expression of 

MyCAF/iCAF signature proteins in either population (Chapter 6).  
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A binary phenotypic MyCAF/iCAF switch is an attractive concept for its simplicity but is 

also likely to be an over simplification of fibroblast phenotype complexity. Similar 
terminology describing a two state activation phenotype of the so called classically 

activated M1 and alternatively activated M2 macrophages, has been widely adopted but 

has been demonstrated to be an oversimplification of macrophage differentiation and its 
usefulness has been challenged recently (Aras and Zaidi, 2017). Indeed, several lines 

of evidence presented here already suggest a MyCAF/iCAF binary switch may be an 
oversimplification. For example, we observe a fraction of iCAF-like CD105- fibroblasts in 

an MHCII+ state in PDA tumours (Chapter 6). scRNAseq results in similar PDA GEMMs 
have also noted a small fraction of cells with increased expression of antigen 

presentation machinery (Elyada et al., 2019). In addition, recent data in rheumatoid 
arthritis provides compelling evidence that Notch signalling in fibroblasts can drive a 

unique phenotype not seen in tumours (Wei et al., 2020). Hence a complex spectrum of 
fibroblast phenotypic states may be possible, each of which may contribute unique 

functions in developmental, homeostatic and pathological processes. 

 
The MyCAF/myofibroblast terminology was originally based on the increased expression 

of αSMA and formation of αSMA stress fibres (Sandbo and Dulin, 2011). More recently 
the terminology has included increased expression of ECM and ECM-modifying genes. 

Likewise, the so called iCAF phenotype is named so because of the reproducible and 
defining increase in gene expression of several inflammatory cytokines. Increasingly the 

three iCAF signature genes used are Il6, Cxc1 and Ccl2 (Ohlund et al., 2017). With the 
genome-wide analysis conducted here, it is notable how distinct the gene expression 

programs between the MyCAF-like state and iCAF-like state are. Of the 151 early DEGs 

observed in CD105+ and/or CD105- fibroblasts stimulated with TGFβ1, there is not a 
single C-X-C or C-C motif chemokine gene that shows upregulated expression. Likewise, 

for the 234 DEGs observed in CD105+ and/or CD105- fibroblasts stimulated with IL1α, 
there is not a single collagen or MMP gene that shows upregulated expression at this 

early time point. Whilst the situation in vivo is likely more complex, it does appear that in 
vitro at least, the early MyCAF and iCAF gene expression programs initiated by TGFβ1 

and IL1α respectively, align with ECM-modifying and inflammatory properties 
respectively, largely matching their ‘MyCAF’ and ‘iCAF’ nomenclature well. Despite these 

clear differences early in activation, delayed inflammatory-related genes that are part of 
the MyCAF gene expression program may contribute to fibroblast function in vivo and 
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delayed ECM-related genes that are part of the iCAF gene expression program may also 

contribute to fibroblast function in vivo. Indeed, a potential caveat with the analysis 
presented here, is the assumption that TGFβ1-stimulation is a good approximation for 

the MyCAF-phenotype, when other factors are known to induce the myofibroblast 

phenotype, such as tissue stiffening (Calvo et al., 2013). Regardless of the exact 
requirements of the initiating stimulus, it is apparent that at least two distinct states of 

fibroblasts with ECM-/inflammatory-enriched programs exist. Why these programs have 
evolved in the context of tissue development, homeostasis and pathological/repair 

processed, is not known but is an exciting area of future research.  
 

The genome-wide transcriptomic analysis described in this chapter indicates that 
CD105+ are more sensitive than CD105- fibroblasts (based on early DEGs at 6h), to 

both TGFβ1 and IL1α stimulation and that both populations are equally responsive to 
IFNγ. Approximately half of the sensitivity to TGFβ1-stimualtion (76/151 DEGs) is due to 

CD105 itself, which has an established role in TGFβ1-signalling in endothelial cells. 

What dictates the remaining sensitivity (75/151 DEGs) is not clear, but CD105+ 
fibroblasts show higher levels of the TGFβ1-signalling mediator Smad3, although 

whether this is rate-limiting to signal flux is not clear. The different sensitivity to IL1α may 
be directly due to higher expression of the relevant receptors (Il1r1 and Il1rap) and 

signalling mediators (Myd88) in CD105+ fibroblasts. A potential caveat here is that 
mRNA expression is only loosely correlated with protein expression generally (Liu et al., 

2016) and using mRNA levels to infer the levels of membrane receptors is particularly 
challenging, as they are subject to extensive post-translation modifications (PTMs) and 

membrane trafficking regulation. Additionally, different levels of less-characterised co-

receptors, signalling adapters/transducers and transcription factors, could all contribute 
to differential sensitivity to activation. Whether this difference in ligand sensitivity of 

CD105+ and CD105- pancreatic fibroblasts is important in vivo is not clear and requires 
further study. Notably, the results from the short-term stimulation (6 h) analysis 

presented here, contrast with those from the long-term stimulation (3 d), which indicates 
that both CD105+ and CD105- fibroblasts have the capacity to adopt similar MyCAF-like 

and iCAF-like gene expression levels if given enough time and ligand exposure. Which 
in vitro assay is more relevant to the in vivo setting is not clear, although they are not 

mutually exclusive models. Ex vivo analysis of fibroblasts in PDA tumours (Chapter 4) 
does show that CD105+ and CD105- fibroblasts are present in both MyCAF- and iCAF-
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like states in vivo but this is based on just αSMA and PDGFRα/ICAM1 expression, which 

may not fully capture the complexity or extent of the MyCAF and iCAF phenotypes. 
 

Data presented in the previous chapter demonstrates that IFNγ can increase the 

expression of proteins involved in MHCII-restricted antigen presentation (MHCII and 
CD74) equally well in both CD105+ and CD105- fibroblasts and the data presented in 

this chapter also shows that both fibroblast populations are equally sensitive to IFNγ. Yet 
in vivo, only CD105- fibroblasts show expression of these proteins. Thus, factors specific 

to in vivo tumours likely drive differential MHCII and CD74 expression. For example, 
IFNγ may be getting produced locally by T or NK cells in contact with CD105- fibroblasts 

but, for some yet unexplained reason, these cells are not in contact with CD105+ 
fibroblasts. Analysis of the spatial distribution of both CD105-MHCII+CD74+ fibroblasts 

and IFNγ-producing lymphocytes in PDA tumours, using new highly-multiplexed imaging 
technologies such as CODEX, would allow for interrogation of this hypothesis (see 

Summary discussion). IFNγ acting on Pdgfrb expressing stromal cells has been 

demonstrated as a key driver for inducing tumour ischaemia and regression of large 
tumours and thus understanding the effects of this powerful cytokine on stromal cells will 

possibly reveal key processes relevant to anti-tumour immunity and tumour control 
(Kammertoens et al., 2017). 

 
Because of the limited tools to study fibroblast function in tumours in vivo, much of the 

functional and mechanistic understanding of cancer-associated fibroblasts is inferred 
from in vitro model systems. How appropriate this is and how well in vitro systems model 

in vivo fibroblast function is not well understood (see Summary discussion). It is known 

for example, that simple in vitro expansion of fibroblasts, from many different tissues, 
progressively activates them towards a myofibroblast state, which is partly attributed to 

the mechano-sensing properties of fibroblasts (Ohlund et al., 2017). For example, the 
healthy pancreas is a relatively soft environment (typically 1 kPa, as measured by atomic 

force microscopy) and during PDA development a highly stiffened environment develops 
(typical reported average 4-6 kPa, typical range 2-50 kPa) (Itoh et al., 2016; Rubiano et 

al., 2018). Yet the plastic used for in vitro culture flasks is far stiffer even than this (100-
1000 kPa) (Swift et al., 2013). Stiffness-dependant, feed-forward activation loops have 

also been shown to be responsible for keeping fibroblasts in an activated state, even 
when an initiating activating stimulus has been removed, and stiffness appears to play 
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an important role in sustaining many fibrotic disorders (Bonnans et al., 2014; Calvo et 

al., 2013; Laklai et al., 2016; Tschumperlin et al., 2018). Thus, the sensitivity of 
fibroblasts to mechano-activation as they move from a soft (~1 kPa) environment to a 

plastic flask (100 kPa+), may greatly hinder the interpretation of 2D in vitro fibroblast 

experiments, particularly when trying to preserve the so called ‘quiescent’ phenotype of 
fibroblasts isolated from non-tumour bearing organs and study subsequent 

activation/polarisation. It may be impossible to have an ‘non-activated’ fibroblast in 
standard 2D cultures. One method of addressing this, may be to use Matrigel-based 3D 

cultures, as Matrigel has a low stiffness of <1 kPa. It is not clear if such 3D systems are 
any better at representing in vivo fibroblast biology, or indeed if fibroblasts can even be 

sustained and expanded in such conditions. 
 

In this chapter, I conducted multiple recombinant protein stimulations and measured 
signalling network responses through protein phosphorylation changes. Whilst the data 

produced is intriguing, these in vitro studies need to be interpreted with caution. For 

example, the signalling node response to TGFβ1 at 5 min was relatively weak, even 
though this concentration of ligand induces wide-spread gene expression changes after 

6 h. A later time point may have been more revealing because SMAD phosphorylation 
is known to be a relatively slow signalling process, but such a late time point would likely 

have been inappropriate for many of the other stimulations. Thus, conducting time 
course experiments with the cell signalling and gene expression assays, may reveal 

important information about fibroblast activation dynamics missed by single time point 
experiments. For example, without such a time course analysis, peak-, delayed- and 

secondary/autocrine-responses may be completely missed or misinterpreted. 

 
Even though the mass cytometry experiment described in this chapter maps just a 

fraction of all possible signalling nodes during fibroblast activation, it gives some insight 
into the complexity of cellular signalling processes to simple, single recombinant protein 

stimulations. In vivo, complex and changing mixtures of activating ligands contribute to 
defining cell differentiation, phenotypes and function. Thus, studying combinations of 

stimulating ligands may better model the complex activating conditions occurring in vivo 
and reveal synergies or dominant/conflicting interactions between different activating 

factors. How signalling networks interact with combinations of activating factors is 
starting to become more studied and better quantified and novel methods to measure 
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cell signalling at single cell resolution, such as mass cytometry, have the potential to 

make a major contribution to this area (Bodenmiller et al., 2012; Krishnaswamy et al., 
2014). 

 

When trying to model in vivo behaviour with in vitro assays, the concentration of 
activating ligands needs to be carefully considered. The concentrations of the ligands 

used in these studies were chosen by either selecting 10-fold the suppliers reported cell 
activity EC50, with the aim of saturating receptors, or by aligning the protein 

concentration to that used in the most cited papers in the literature to improve 
comparability (these values were typically also close to 10x cell activity EC50 anyway) 

(Ohlund et al., 2017). Clearly this could be improved by basing in vitro stimulation 
concentrations on the concentration of the ligands actually observed in vivo but there is 

a lack of systematic measurements of growth factors and cytokines across different 
tissues and tumours. Unfortunately, such information may not even be that informative: 

there is often unequal distribution of ligands in tissues and even soluble signalling 

mediators, such as PDGF and CSF1, show a dependence on secreting-cell and target-
cell physical contact (Farin et al., 2016; Zhou et al., 2018). Thus, high local 

concentrations or cell-cell contact, may drive important phenotypes even when total 
concentration across a tissue is low. Another consideration that will likely impact the 

accuracy of in vitro activation assays is that large quantities of ligands can be actively 
removed from culture media, even within hours of recombinant protein dosing, by 

processes such as ligand-mediated endocytosis or neutralising binding-partners (Zhou 
et al., 2018). Interestingly, this constant ligand removal is required to set up stable cell-

cell communication circuits, so may be an important feature in vivo, but can introduce 

problems when studying phenotypic changes after long term in vitro stimulations (Zhou 
et al., 2018). For example, the initiating ligand may possibly only be present during the 

first few hours of the experiment and may not be present at later time points when a 
phenotype/function is actually measured. Thus, care needs to be taken with 

interpretation of such in vitro stimulation results, because secondary responses, such as 
autocrine signalling initiated by the first signal, may be dominant by the time actual 

measurements are taken. Titrating the concentration of activating ligands and conducting 
time course experiments would likely greatly improve the insight generated by 

stimulation experiments but would require complex experimental designs and suffer from 
reduced throughput.  
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Chapter 8 – Results – Characterisation of in vivo functions of 

CD105+ and CD105- pancreatic fibroblasts 

8.1 – Results 

 

8.1.1 – A subcutaneous syngeneic co-transplant model indicates CD105+ are 

tumour permissive and CD105- fibroblasts are highly tumour suppressive in vivo 

 
The characterisation studies presented in the previous chapter highlight many similarities 

and differences between CD105+ and CD105- fibroblasts with respect to the process of 
in vitro fibroblast activation. Fibroblasts have been implicated in several pro-tumourigenic 

functions, such as the ability to directly influence cancer cell proliferation and survival via 
paracrine signals and cancer cell invasion by direct cell contact, as well as altering 

tumour angiogenesis and inflammation (Sahai et al., 2020). Considering this complex 

array of potential functions, I was keen to study the in vivo functions of CD105+ and 
CD105- fibroblasts in PDA tumours, in an empirical manner. My aim was to try to identify 

the key functional differences this way (top-down approach), as opposed to selecting a 
specific in vitro phenotypic difference and trying to understand it’s in vivo implications 

(bottom-up approach). I hoped this methodology would select for the strongest/dominant 
differences between CD105+ and CD105- fibroblasts and avoid the potential for 

spending time studying an interesting in vitro phenotypic difference, that has minimal 
functional relevance to PDA tumour biology in vivo.  Because CD105+ and CD105- PDA 

fibroblasts have shown different associations with immune cell phenotypes in PDA 
tumours (Chapter 5), I was also keen to analyse the function of CD105+ and CD105- 

fibroblasts in syngeneic models with fully intact immune systems. This was made 

possible because I derived the CD105+ and CD105- pancreatic fibroblasts from the 
pancreas of inbred B6 mice and the KPC PDA cell line to be used was from a fully B6 

backcrossed KPC mouse. Therefore, all cell types could be transplanted into B6 hosts 
without confounding issues of alloimmunity, for example to antigens within the MHC loci 

or other highly polymorphic loci. 
 

I opted to use a subcutaneous co-transplant model. The main advantage of this model 
is the level of control over the cells that are transplanted. In addition, subcutaneous 

models are also higher throughput and more straightforward to monitor than orthotopic 
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tumours. Whilst it is possible that some dermal fibroblasts would infiltrate the growing 

subcutaneous tumours, IHC of growing tumours did not show obvious dermal fibroblast 
accumulation (see later). Thus the majority of the fibroblasts in the early, growing 

tumours would derive from those implanted along with the cancer cells. I also opted 

implant a 1:1 ratio of 1x105 PDA cancer cells to 1x105 fibroblasts. Histology of PDA 
tumours suggests that typically, fibroblasts outnumber cancer cells, so a 1:1 ratio likely 

represents an under-approximation of that seen in spontaneous tumours (importantly the 
actual in situ cancer cell:fibroblast ratio in PDA tumours has not been accurately 

quantified in any study to date). Despite this, I thought it was important not to inject large 
numbers of fibroblasts in the co-transplant conditions, as this may induce nutrient 

deprivation or cancer cell/fibroblast competition artefacts, that would not be present in 
the PDA mono-transplant condition and may confound comparisons between the mono-

transplant and co-transplant conditions. 
 

An important aspect of his experiment was to confirm CD105+ and CD105- fibroblast 

retention in the growing subcutaneous co-transplants. If fibroblasts were not retained in 
the growing tumour, no valid conclusions could be drawn regarding the functional impact 

of the CD105+ and CD105- fibroblasts on in vivo tumour growth. In addition, if no injected 
fibroblasts were retained, it would also suggest that many of the injected fibroblasts had 

died, which may itself act as an inflammatory stimulus which could also alter tumour 
growth. To test this, I labelled both CD105+ and CD105- fibroblasts with GFP, which 

could then be detected histologically with an anti-GFP antibody in FFPE samples. When 
PDA cells and fibroblasts are co-transplanted subcutaneously in PBS, after 7 days there 

are no GFP+ fibroblasts present in the growing mass of tumour cells (Figure 58). I think 

this may be due the large area over which PBS-injected cells spread after subcutaneous 
injection and hypothesised that injection in Matrigel (a basement membrane extract from 

murine sarcoma tumours that polymerises at >4 °C) may retain the cancer cells and 
fibroblasts in close proximity, as the early tumour establishes and grows. Indeed, large 

numbers of viable, GFP+ fibroblasts are observed in the co-transplant plugs of both 
CD105+ and CD105- fibroblasts at day 7 when injected in Matrigel. Healthy GFP+ 

fibroblasts are well represented in both the CD105+ and CD105- fibroblast co-transplant 
conditions and are seen embedded within the remaining Matrigel and in close contact 

with GFP- cancer cells and infiltrating immune and vascular cells (Figure 58). By day 30, 
at which most tumours were close to or had past threshold tumour volumes, no GFP+ 
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fibroblasts were retained in the final tumours of any co-transplant conditions (Figure 

58B). This suggests that the co-transplanted fibroblasts are only retained for a portion of 
the experiment, possibly outcompeted by the rapidly growing PDA cell line. A full time 

course would be needed to better understand the dynamics of fibroblast retention in this 

model. Thus, this Matrigel method appeared to be a useful approach for studying 
fibroblasts in growing tumours in vivo. It is interesting to note that multiple studies in the 

literature co-transplant cancer cells and fibroblasts in PBS (McDonald et al., 2015; 
Paauwe et al., 2018). These studies typically do not check for fibroblast retention and 

the results presented here suggest that PBS co-transplants will not retain fibroblasts in 
such settings (even at early time points) and may not be effective way to study cancer 

cell-fibroblast interactions in vivo. 
 

 
 

Figure 58. Development of a subcutaneous cancer cell and fibroblast co-transplant model 
 (A) Immunohistochemistry (IHC) of subcutaneous tumours from co-transplanted KPC PDA tumour cells 
and GFP+ pancreatic fibroblasts (PaFs) into syngeneic B6 mice. Stained with a GFP targeting antibody 

and Haematoxylin. No GFP+ fibroblasts are observed in the growing tumours after 7 days when the cells 
are injected in PBS but are highly abundant in growing tumours in which cells are injected in Matrigel. 

Scale bar = 80 μm. (B) No GFP+ fibroblasts are retained 30 days after KPC PDA tumour cells and GFP+ 
PaFs are co-transplanted. 

 
When the KPC PDA cells were transplanted into B6 syngeneic hosts, steady growth is 
observed such that by day 20, tumour volume is 209±73 mm3 (mean±standard error of 

the mean) (Figure 59). Co-transplant with a 1:1 ratio of CD105+ pancreatic fibroblasts 
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shows a trend for increasing tumour growth such that at day 20, tumour volume = 383±49 

mm3, although this does not reach statistical significance compared to the mono-
transplant tumour volume. The most striking result was that with co-transplants 

containing KPC PDA cancer cells and CD105- pancreatic fibroblasts, a strong 

suppression of growth is observed, such that by day 20 the average tumour volume is 
just 57±18 mm3. Remarkably, 2/5 mice from this condition showed no signs of residual 

tumour cells by the end of the experiment (day 34), macroscopically or histologically. 
Interestingly, a fourth condition, in which a 1:1 mixture of CD105+:CD105- fibroblasts 

was used (such that the total number of fibroblasts transplanted was the same as for the 
other co-transplant conditions), phenocopied the growth curve for the pure CD105- 

fibroblast co-transplant condition. This suggests that in 1:1 mixtures of fibroblasts, the 
growth suppressive phenotype of CD105- fibroblasts is dominant over the permissive 

effect of CD105+ fibroblasts. Notably, for this mixed transplant condition, all 5/5 mice 
had small but measurable tumours by the end of the study with no full tumour 

regressions. This permissive/suppressive phenotype was highly reproducible: by 

comparing the time it takes to reach a tumour volume of >400 mm3, I was able to directly 
compare this study with three repeated studies in a Kaplan-Meir analysis (even though 

they had tumour volumes measured on different days). Across all four separate studies, 
there was a strong tumour suppressive effect seen when CD105- fibroblasts were co-

transplanted with the cancer cells. Repeating the experiment with a second KPC PDA 
cell line (isolated independently, from a different KPC tumour), showed a similar pattern 

in that CD105+ fibroblast co-transplants were permissive to normal tumour growth (day 
21 tumour volume = 323±32 mm3) and CD105- fibroblast co-transplants were highly 

tumour suppressive (day 21 tumour volume = 83±22 mm3). For this cell line, all 5/5 

CD105- co-transplants had some minor evidence of residual tumour cells at the end of 
the study (day 30), albeit many conditions still showed extensive tumour control even at 

this late stage. The effect of the combined fibroblast co-transplant with this PDA cell line 
again showed a suppressive phenotype. Thus, in growing subcutaneous tumours from 

two different PDA cell lines, CD105+ pancreatic fibroblasts are tumour permissive and 
CD105-pancreatic fibroblasts are highly tumour suppressive, even when diluted by 50% 

with permissive CD105+ pancreatic fibroblasts. 
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Figure 59. Fibroblast regulation of tumour growth in syngeneic hosts 

A) Tumor growth of KPC PDA cells following subcutaneous transplantation of 105 PDA tumor cells or co-
transplantation of 105 PDA tumors cells with 105 CD105+ or CD105- pancreatic fibroblasts (PaFs), into 

syngeneic B6 mice. n=5 mice per condition. Data is representative of n=4 separate experiments. For the 
combined condition a 1:1 mixture of CD105+:CD105- PaFs was used, such that the total number of co-
transplanted PaFs remained constant. Data is displayed as mean tumor volumes+/-standard error of the 
mean. (B) Kaplan Meier analysis of the combined fraction of B6 mice from (A) and three other separate 

studies, exceeding a threshold tumor volume of 400 mm3 (n=4 independent studies). (C) As for Figure (A) 
but using an alternative KPC PDA cell line, also derived from a fully B6 backcrossed mouse. Conditions 

are compared using 2-way ANOVA (A and C) and log rank test (B). *p<0.05, **p<0.01, ***p<0.001. 
 
 
8.1.2 – Differential functions of CD105+ and CD105- pancreatic fibroblasts in vivo 

are dependent on adaptive immunity but not fibroblast MHCII antigen 
presentation 

 
Experiments outlined in Chapter 6 and in this chapter had shown that CD105+ and 

CD105- PDA and pancreatic fibroblasts had differential expression of many genes and 
proteins known modulate immune cell function. In addition, the cross-correlation analysis 

of the KPC PDA TME (Chapter 5) had shown associations between the abundance of 
CD105+ or CD105- PDA fibroblasts and the abundance and phenotypes of several 

immune cell types, particularly those of CD4+ and CD8+ T cells. Therefore, I sought to 
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determine whether the striking difference of growth of CD105+ and CD105- co-

transplants was due to differential interactions with the immune system. I thus repeated 
the previously described co-transplant experiment in ‘NSG’ mice. The inbred NOD 

background of these mice results in reduced functioning of the complement system, as 

well as reduced dendritic cell and macrophage function. The Prkdcscid mutation results in 
defective non-homologous end joining (NHEJ) during V(D)J recombination, and 

therefore this model lacks mature T cells and B cell. Lastly, the homologous mutation in 
the common interleukin 2 receptor gamma chain, results in loss of signalling capacity of 

IL-2, IL-4, IL-7, IL-9 and IL-15, with a wide range of effects, most importantly blockade 
of NK cell development. Thus, NSG mice are highly immunodeficient (to the degree that 

human cells can be successfully grafted). Repeating the subcutaneous co-transplant 
experiment in NSG mice showed that the differential permissive/suppressive effect seen 

in the immunocompetent B6 hosts is completely lost in hosts with major defects in innate 
and adaptive immunity, such that all conditions grow at the same rate with no significant 

difference at any time point (Figure 60).  

 

 
Figure 60. Fibroblast regulation of tumour growth in NSG mice 

Tumor growth of KPC PDA cells following subcutaneous transplantation of 105 PDA tumor cells or co-
transplantation of 105 PDA tumors cells with 105 CD105+ or CD105- pancreatic fibroblasts (PaFs), into 

NOD-scid.Il2rg-/- mice (n=4 to 5 per condition). Data is displayed as mean tumor volumes+/-standard error 
of the mean. Conditions are compared using 2-way ANOVA. *p<0.05, **p<0.01, ***p<0.001. 

 
NSG mice have a large number of defects in myeloid and lymphocyte compartments and 

I sought to narrow down what aspect of tumour immunity and/or inflammation was being 
modulated to result in the permissive/suppressive phenotype seen in B6 hosts. To 

achieve this, I first repeated the subcutaneous co-transplant experiment in B6.Rag1-/- 
hosts (Mombaerts et al., 1992). These mice also have defective V(D)J recombination of 
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T cell receptor and immunoglobulin genes and lack mature T and B cells but have no 

direct defects in myeloid or NK cell development and function. In Rag-/- hosts, all 
conditions grew at the same rate (Figure 61), suggesting that the difference in the 

permissive and suppressive effects of CD105+ and CD105- fibroblasts, is mediated 

enitrely by adaptive immunity (that is T or B cell-mediated immunity). Interestingly, across 
all conditions, growth in Rag1-/- mice showed a more exponential character than in NSG 

mice, potentially suggesting that some aspects of innate immunity, that are defective in 
NSG mice, contribute to increased tumour growth in Rag1-/- mice. 

 

 
Figure 61. Fibroblast regulation of tumour growth in Rag1 mice 

Tumor growth of KPC PDA cells following subcutaneous transplantation of 105 PDA tumor cells or co-
transplantation of 105 PDA tumors cells with 105 CD105+ or CD105- pancreatic fibroblasts (PaFs), into 
B6.Rag1-/- mice (n=6 per condition). Data is displayed as mean tumor volumes+/-standard error of the 

mean. Conditions are compared using 2-way ANOVA. *p<0.05, **p<0.01, ***p<0.001. 
 
 
B6.Batf3-/- mice lack the transcription factor BATF3 (Hildner et al., 2008) and have 
defective development of cDC1s, a DC subset of transcriptionally- and functionally-

related CD8a+ DCs in lymphoid organs and CD103+ DCs in tissues, which can eb 
collectively identified by the chemokine receptor XCR1. cDC1s are a relatively rare cell 

type but are highly specialised in cross-presentation, a unique process in which MHCI-

restricted antigens collected from cell corpses are delivered to DC endosomes, via the 
C-type lectin DNGR-1, and presented to naïve CD8+ T cells. Loss of cDC1s in Batf3-/- 

mice results in a greatly reduced ability to prime de novo CD8+ T cell responses to non-
self microbial or cancer antigens. Repeating the co-transplant experiment in Batf3-/- 

hosts showed that the majority of the suppressive effect and long-term tumour control 
seen in the CD105- fibroblast co-transplant conditions, was lost when cDC1s were 

absent and CD8+ T cell priming was limited (Figure 62). Interestingly, despite loss of 
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tumour control, there was still a minor but statistically significant reduction in tumour 

growth in the CD105- fibroblast co-transplant condition compared to the mono-transplant 
condition. Thus, CD8+ T cell-mediated priming is required for the full anti-tumour effect 

of CD105- fibroblasts, however additional mechanisms of adaptive immune control may 

also be occurring in B6 hosts, for example CD4+ T cell-mediated immunity. In this 
context, there are caveats with the Batf3-/-  model that need to be considered (see 

discussion). 
 

 
Figure 62. Fibroblast regulation of tumour growth in Batf3 mice 

Tumor growth of KPC PDA cells following subcutaneous transplantation of 105 PDA tumor cells or co-
transplantation of 105 PDA tumors cells with 105 CD105+ or CD105- pancreatic fibroblasts (PaFs), into 
B6.Batf3-/- mice (n=8-9 per condition). Data is displayed as mean tumor volumes+/-standard error of the 

mean. Conditions are compared using 2-way ANOVA. *p<0.05, **p<0.01, ***p<0.001. 
 
 
The fibroblasts used in this experiment are GFP+ (which allows confirmation of their 

presence in tumours) and it is possible that this contributes to immunogenicity of these 

co-transplanted cells. I repeated the experiment (with PDA cell line #2) and parental 
GFP- fibroblasts cells and the same permissive/suppressive phenotype is observed. 

Thus, GFP antigens do not contribute to the distinct permissive and suppressive effects 
of CD105+ and CD105- fibroblasts. 
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Figure 63. Fibroblast regulation of tumour growth, with no fibroblast GFP expression 

Tumour growth of KPC PDA cells following subcutaneous transplantation of 105 PDA tumour cell lines or 
co-transplantation of 105 PDA tumour cells with 105 CD105+ or CD105- pancreatic fibroblasts (PaFs) 

lacking GFP expression, into syngeneic B6 mice. n=5 mice per condition. Data is displayed as mean tumor 
volumes+/-standard error of the mean. Conditions are compared using 2-way ANOVA. *p<0.05, **p<0.01, 

***p<0.001. 
 
 
CD105 expression is obviously one of the defining features of CD105+ and CD105- 

fibroblasts and the CD105 protein itself contributes to approximately half of the early 
sensitivity to TGFβ1 (chapter 7). Because TGFβ1 is a key fibroblast activator and I see 

such a striking in vivo phenotype in CD105- fibroblasts, I was keen to test whether the 
divergent phenotypes of CD105+ and CD105- fibroblasts in the subcutaneous co-

transplant model are dependent on the presence or absence of CD105 expression itself, 
respectively. CD105+ parental fibroblasts in which CD105 was knocked out using 

CRISPR/Cas-9 (previous chapter) were used. The same parental line, transfected with 

Cas-9 and a pair of non-targeting (NT) gRNAs as control cells were used for the control 
condition. These cells were each co-transplanted with PDA cancer cells following the 

same subcutaneous method as before, into immune competent B6 hosts. As can be 
seen in Figure 64, the two co-transplant conditions grow at the same rate with no 

significant difference in tumour volume at any time point. Therefore, CD105+ fibroblasts 
cannot be made to become tumour suppressive by loss of CD105. Thus, CD105 protein 

serves as a very useful marker of different fibroblast lineages in PDA tumours (and the 
healthy pancreas) and increases sensitivity to TGFβ1 signalling in vitro but it is not 

centrally important to the permissive/suppressive phenotype observed in vivo.  
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Figure 64. Fibroblast regulation of tumour growth, with no fibroblast GFP expression 

Tumour growth of KPC PDA cells following subcutaneous co-transplantation of 105 PDA tumour cells with 
105 CD105+ pancreatic fibroblasts (PaFs) into syngeneic B6 mice. CD105+ PaFs with Eng gene disrupted 

by CRISPR/Cas-9 gene editing are compared to  CD105+ PaFs transfected with non-targeting (NT) 
gRNAs. n=5 mice per condition. Data is displayed as mean tumor volumes+/-standard error of the mean. 

Conditions are compared using 2-way ANOVA. *p<0.05, **p<0.01, ***p<0.001. 
 

 
A consistent observation seen in PDA tumours was the high expression of proteins 

involved in MHCII antigen presentation specifically within CD105- PDA fibroblasts, with 

very little expression seen in CD105+ PDA fibroblasts. This was despite the fact that in 
vitro both populations have the capacity to express these proteins (Chapter 6). Because 

the suppressive effect seen in the subcutaneous co-transplant model was dependant on 
adaptive immunity and MHCII-restricted antigen presentation is centrally important to 

effective functioning of adaptive immunity, I aimed to test whether the suppressive effect 
seen in the CD105- fibroblast co-transplants was dependant on MHCII-restricted antigen 

presentation. I used CRISPR/Cas-9 to delete H2Ab1 (the beta chain gene of the MHCII 
loci of B6 strain) and Cd74 (the invariant chain required for MHCII protein stabilisation 

and transport) in CD105- fibroblasts to determine if they play a role in the highly 
suppressive effect seen in immunocompetent hosts. CD105- fibroblasts trasnfected with 

a pair of NT gRNAs was used as the control. Neither MHCII or CD74 are expressed in 

these cells under steady-state in vitro culture conditions, so I performed knockout 
validation of extracellular MHCII and intracellular CD74 protein by stimulating a culture 

of these cells with IFNγ. Gene editing was successful for both (Figure 65). Importantly, 
the CRISPR/Cas-9 method used was based on a triple gRNA system that favours large 

(>50bp) genomic deletions rather than small indels, resulting in high knockout effectivity 
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(typically >95%) without selection. The lack of selection requirement here is important 

because I would not have been able to FACS isolate knock out cells without prior IFNγ 
stimulation, an activating process which would likely change their properties regardless 

of successful gene editing. The large genomic deletions caused by this method, typically 

stop all gene transcription/translation but even if a gene is still able to be 
transcribed/translated, it will be in the form of a largely truncated and likely dysfunctional 

protein. Indeed, the fact that robust anti-MHCII and anti-CD74 antibodies fail to detect 
these protein products suggests either successful gene deletion or a largely altered 

protein. Collectively this made me confident that these targets had been sufficiently 
knocked out. 

 

 
Figure 65. Validation of gene knockouts in CD105- pancreatic fibroblasts (PaFs) by CRISPR/Cas-9 

gene editing 
Flow cytometry validation of CD74 (left) and MHCII (right) knock out in CD105- PaFs by CRISPR/Cas-9 

gene editing. Protein expression was induced by 3 day treatment with IFNγ. Intracellular CD74 and 
surface MHCII measured. 

 
Repeating the co-transplant experiment in B6 hosts demonstrated that all co-transplants 
with CD105- fibroblasts still showed an equally suppressive phenotype, regardless if 

H2Ab1 or Cd74 had been deleted (Figure 66). Thus, this data suggests that fibroblast 
MHCII-mediated antigen presentation plays no role in the suppressive phenotype of 

CD105- fibroblasts in vivo. 
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Figure 66. Fibroblast regulation of tumour growth with loss of fibroblast MHCII antigen 

presentation 
Tumour growth of KPC PDA cells following subcutaneous co-transplantation of 105 PDA tumour cells with 

105 CD105- pancreatic fibroblasts (PaFs) into syngeneic B6 mice. CD105- PaFs with H2Ab1 and Cd74 
gene disrupted by CRISPR/Cas-9 gene editing are compared to CD105- PaFs transfected with non-

targeting (NT) gRNAs. n=5 mice per condition. Data is displayed as mean tumor volumes+/-standard error 
of the mean. Conditions are compared using 2-way ANOVA. *p<0.05, **p<0.01, ***p<0.001. 

 

8.2 – Summary 
 

In a syngeneic subcutaneous co-transplant model, CD105+ pancreatic fibroblasts are 
fully permissive to tumour growth whereas CD105- pancreatic fibroblasts are highly 

tumour restrictive in a manner entirely dependent on adaptive immunity. This 
enhancement of anti-tumour immunity and tumour control with CD105- fibroblasts is 

independent of fibroblast MHCII-restricted antigen presentation and independent of 
CD105 status. 

 

8.3– Discussion  

 
The results presented in this chapter demonstrate that in a syngeneic host, 

subcutaneous co-transplants of CD105+ and CD105- fibroblasts show distinct functions: 
CD105+ pancreatic fibroblasts are fully tumour permissive and do not alter tumour 

growth in this setting, CD105- pancreatic fibroblasts are highly tumour suppressive, to 
the point that complete tumour regressions are observed and 1:1 mixtures of both 

fibroblasts have a net tumour suppressive effect. The differential permissive/suppressive 
effect is entirely dependent on adaptive immunity with a major contribution from CD8+ T 
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cell-mediated immunity. Recent scRNAseq analysis of KPC tumours has suggested 

extensive transcriptional fibroblast heterogeneity in murine PDA tumours (Dominguez et 
al., 2020; Elyada et al., 2019). Notably, these studies do not isolate different fibroblast 

populations to assess the stability of these differences and to define lineage vs 

phenotype differences. Importantly, whilst such studies give an incredibly detailed 
snapshot of the transcriptomic heterogeneity present in fibroblasts in tumours they do 

not define key functional differences between fibroblast populations, for which live cell 
isolation is required. Thus, in the absence of methods for in vivo fibroblast manipulation 

(see Summary discussion), isolating distinct fibroblast populations is an important way 
to better understand fibroblast function. 

 
A key result presented here, is that of the equal growth rates seen in Rag1-/- hosts. This 

result suggests that when no adaptive immunity is present, there is no growth advantage 
or disadvantage to these KPC PDA tumour cells from either pancreatic fibroblast 

population. Many non-immunogenic fibroblast functions are reported to play a pro-

tumourigenic role in fibroblast-mediated regulation of tumour growth, such as altered 
paracrine signalling, altered angiogenesis, or altered cancer cell migration (Erdogan et 

al., 2017; Kalluri, 2016; Sahai et al., 2020; Shi et al., 2019; Tape et al., 2016). Most of 
these studies report a pro-tumourigenic impact on cancer cells, yet the equal growth in 

the Rag1-/- hosts presented here demonstrates that in the absence of adaptive immunity, 
both fibroblast populations minimally contribute to tumour growth. It may be that 

fibroblasts need more time to be ‘educated’ by tumour cells to become ‘cancer-
associated fibroblasts’ or pro-tumourigenic features have to be selected by evolution of 

the microenvironment over long periods of time. However, it is notable that many of the 

studies that suggest fibroblasts have pro-tumourigenic properties are conducted in vitro 
or in vivo in immune-deficient hosts (Somerville et al., 2020). The results presented here 

suggest that interactions between PDA fibroblasts and adaptive immunity are dominant 
over other other non-immunogenic interactions and thus in vitro and immune 

incompetent in vivo model systems will not capture these important effects. Indeed, in 
support of this, seminal research using transgenic mouse models of PDA, in which PDA 

fibroblasts are depleted in situ, show that fibroblast depletion actually results in 
accelerated tumour progression and that PDA fibroblasts have a net tumour-suppressive 

effect (Lee et al., 2014a; Ozdemir et al., 2014; Rhim et al., 2014). The results in those 
studies closely align with the findings presented in this thesis. Interestingly, two of these 
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studies also report a greatly altered immune infiltrate in the fibroblast-depleted tumours, 

which also aligns with the data presented in this thesis, that suggests fibroblasts have 
the potential to directly regulate immune cell abundance and phenotype. Further work 

studying the detailed mechanisms of fibroblast-immune cell interactions will likely lead to 

a more complete appreciation of the key factors that dictate whether a fibroblast is 
tumour-promoting or tumour-restrictive in a fully immune competent host. In conclusion, 

the regulation of inflammation and immunity by distinct fibroblast lineages should to be 
considered when making judgments about the relative pro- and anti-tumour effects of 

fibroblasts and syngeneic models used where possible. 
 

The differential permissive/suppressive result described here is very striking but raises 
two important questions: 

 
1) Do the subcutaneous co-transplant model described here, recapitulate what occurs 

in spontaneous mouse PDA tumours? 

2) Do the fibroblast-mediated processes in the tumours of various murine models of PDA 
(subcutaneous or spontaneous), recapitulate what actually occurs in human PDA? 

  
The second question will be covered in more detail in the Summary Discussion chapter. 
With respect to the first question, this subcutaneous model is certainly a very artificial 

system, as are most subcutaneous tumour transplants. One of the limitations of such co-
transplant tumour models for studying fibroblasts generally, is that fibroblasts tend to be 

lost from the growing tumour and therefore the time they have to exert an influence over 
the microenvironment is limited. Importantly, during optimisation GFP+ CD105+ and 

CD105- fibroblasts are both found retained in the Matrigel plugs to a similar extent by 

day 7. Thus, differences in CD105+ and CD105- fibroblast survival during the cell 
preparation and transplant likely do not account for the differential effect on tumour 

growth. Fibroblasts are retained in the transplants for at least 7 days but are not present 
in the end stage tumours at day 30. A full time course would be needed to better 

characterise the duration of retention for each fibroblast population. Therefore, it appears 
that the majority of the effect of the fibroblast populations occurs within the initial period 

of the study and the later time point measurements are most likely ‘outgrowth’ of changes 
that occur in these early stages. Finding conditions that enable longer fibroblast retention 

may allow for a better understanding of fibroblast function in more advanced tumours. 
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For example, CD105+ fibroblasts in these studies show a neutral net effect on tumour 

growth: they neither promote or restrict tumour growth, even in fully immune competent 
mice. Yet they may have an important phenotype in late stage tumours which cannot be 

accurately modelled with subcutaneous co-transplants. This may be particularly relevant 

to this study because the fibroblasts used are derived from a naïve, non-tumour bearing 
pancreas and may need extended contact with (or ‘education’ by) PDA cancer cells to 

induce phenotypes more relevant to those seen in spontaneous PDA tumours, which 
develop over a period of months. 

 
Why cancer cells outgrow fibroblasts in co-transplant models, yet do not do so in 

spontaneous tumours is not clear. One possible reason is that the KPC PDA cell lines 
used here are highly aggressive. The cells have been extensively passaged in vitro, 

which would have resulted in rapidly growing clones being selected over a long period 
of time. Such 2D in vitro expanded KPC cell lines are able to effectively form rapidly 

growing subcutaneous tumours, even when very low numbers of cells are injected: 

injections of 100 cells can form tumours. Interestingly, this highly aggressive phenotype 
and lack of dependence on survival signals from the microenvironment, is not a property 

typically shared with freshly isolated human PDA cells, which can often be challenging 
to expand as homogenous 2D in vitro cultures (Baker et al., 2016). If the KPC PDA cells 

have become largely independent of survival factors supplied by the microenvironment, 
the aggressive nature of these murine PDA cells may be masking any pro-tumourigenic 

functions of fibroblasts that may be important in spontaneous tumours. In other words, 
KPC PDA cells appear to grow extremely efficiently on their own, so it is unlikely we will 

see an additional growth advantage from pro-tumourigenic fibroblast functions. In 

addition, KPC cell lines grown in vitro are typically more mesenchymal than tumour cells 
observed in human PDA and may be less dependent on paracrine factors from the 

microenvironment required to sustain epithelial growth. Mesenchymal cancer cells are 
also more invasive than epithelial cells and so these cell lines may be less dependent 

on ‘collective invasion’ that has been described for cancer cells and fibroblasts (Brabletz 
et al., 2018; Labernadie et al., 2017). Using murine PDA cells that more closely 

recapitulate human PDA cells, will be an important improvement to the model. In this 
regard, tumour organoids have been proposed to preserve more features of the original 

tumour (including genetic heterogeneity), better mimic the in vivo growth patterns of PDA 
tumours and induce a less altered phenotype with extended passaging (Baker et al., 
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2016; Baker et al., 2019; Tiriac et al., 2019; Tuveson and Clevers, 2019). An important 

difference between 2D and 3D organoid cell lines is that 3D organoid cell lines are 
passaged in Matrigel, which avoids cells contacting the stiff surface of plastic, which can 

alter cancer cells through similar mechano-sensing pathways as in fibroblasts (e.g. high 

levels of Hippo- and FAK-pathway signalling) (Calvo et al., 2013; Sulzmaier et al., 2014). 
Thus, co-transplanting syngeneic mouse PDA organoids and fibroblasts, may preserve 

the ability to study the system in the context of a full immune system but better mimic 
spontaneous PDA growth rates, extend cancer cell/fibroblast interactions in the 

transplants and more accurately model fibroblast pro- and anti-tumourigenic functions. 
 

There are other potential issues with the subcutaneous model to consider, particularly 
because the phenotype observed is related to activation of the immune system. In this 

model, the cells have to be injected in Matrigel to retain cancer cells and fibroblasts 
together. Matrigel is a complex extract from Engelbreth-Holm-Swarm (EHS) mouse 

sacroma tumours and contains predominantly basement membrane proteins, such as 

laminins, collagen IV, fibronectin and hepran sulfate proetoglycans but also many other 
less characterised proteins (Hughes et al., 2010). It is widely used for a variety of in vitro 

culture experiments, as well as implanting cells into immune-deficient and immune-
competent murine hosts (Benton et al., 2011; Ogura et al., 2017). The growth factor-

reduced version of Matrigel is used in the subcutaneous model to limit the introduction 
of activating factors into the transplants. Whilst Matrigel is of mouse origin, the 

spontaneous tumour cells used to generate the protein mix, are on a ST/Eh background 
(Hayashi et al., 2004). Thus, when implanted into B6 mice it is possible that some of the 

Matrigel components will elicit a humoral or cell-based immune reaction. Clearly, this 

would be the same for all conditions, so it is hard to envisage how this would contribute 
to the differential subcutaneous growth observed but may, for example, introduce 

unrealistic levels of inflammation. Indeed, recognition of dead cell debris or damage-
associated molecular patterns (DAMPs) may explain the large influx of macrophages 

that are known to occur within Matrigel plugs in vivo (Ogura et al., 2017). Another issue 
with Matrigel is that its composition is poorly defined and variable, such that there is 

known lot to lot variation in properties (Serban and Prestwich, 2008). In this regard, 
during optimisation of these studies two different Matrigel lots were used, that had no 

appreciable differences in in vivo growth patterns. An alternative to Matrigel could be to 
use synthetic matrices. Such matrix technology has improved greatly in recent years and 
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may offer a better alternative to Matrigel (Jenkins and Little, 2019; Silva and Mooney, 

2004). Synthetic matrix components do not need to be generated in living mice and will 
reduce animal usage in line with the 3Rs ethical framework (The 3Rs, 2020). Also, 

synthetic components can be selected to have minimal immunogenicity and can be 

better defined for consistency across batches. Lastly, the matrix composition can be 
chemically tuned for desired properties that may support prolonged fibroblast growth and 

extend cancer cell-fibroblast interactions, such as altered stiffness or the inclusion of 
specific peptide sequences for improved adhesion or degradative properties. 

 
Another potential confounding issue with the subcutaneous co-transplant model is that 

the fibroblasts used in these studies are immortalised to generate stably growing cell 
lines. Primary fibroblasts begin to senescence after relatively few passages in vitro and 

show distinct phases of growth and quiescence, that makes them incompatible with large 
studies where phenotypic consistency is important. Primary fibroblasts also tend to 

survive poorly with repeated standard manipulations, such as cell culture splitting and 

cryogenic storage and often show altered growth patterns after such stresses. Thus, 
immortalisation is required to enable FACS purification and expansion of fibroblast 

populations to sufficient numbers for comparative functional experiments. In addition, 
immortalization improves cell viability, an important consideration for in vivo co-

transplant experiments: implanting variable mixtures of live/dead cells would likely 
generate an immunogenic phenotype not specifically related to any fibroblast function. 

To immortalize the fibroblasts used in these studies, I used retroviral transduction to 
induce stable expression of the S40 large T antigen (SV40LT), a hexamer protein that 

perturbs RB and P53 protein functions, favouring cell cycle progression and enhancing 

cell survival (Ahuja et al., 2005; DeCaprio et al., 1988). Both CD105+ and CD105- 
fibroblasts were isolated from the same B6 pancreas, immortalized with the same 

retroviral-containing supernatant, for the same transduction duration and selected and 
passaged in exactly the same way. Thus, it is difficult to conceive why immortalized 

CD105- fibroblasts would be immunogenic in vivo because of immortalization, whereas 
CD105+ fibroblasts are not. Both populations express MHC class I to the same level 

(Chapter 6) and thus would be expected to present any SV40LT MHCI-restricted 
epitopes to a similar extent. I initially thought expression of SV40LT antigens, combined 

with the increased expression of MHCII we observe on CD105- fibroblasts (Chapter 4), 
was one possible reason for different in vivo behaviour but fibroblast MCHII was later 
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shown not to contribute to any of the suppressive phenotype of CD105- fibroblasts (this 

chapter). Generation of fibroblast cell lines using a different immortalisation method (e.g. 
E6/E7 immortalisation) and applying them in the same co-transplant experiment, would 

give additional confidence that epitopes of the SV40LT antigen are not contributing to 

any immunogenicity of CD105- fibroblasts, although this would be introducing other 
potential viral epitopes to the cells. The only way to fully remove confounding issues of 

working with primary cells or having to use immortalisation methods, would be to work 
with endogenous fibroblasts, ideally in situ manipulations thorough genetic methods. 

Appropriate transgenic models to effectively manipulate fibroblasts in tumours with 
sufficient precision are not currently available (see Summary discussion). 

 
Related to the potential immunogenicity of SV40LT, differential expression of a GFP 

antigen could potentially induce immunogenicity in vivo. This again was unlikely: both 
CD105+ and CD105- fibroblasts were transduced with the same lentiviral-containing 

supernatant and express the same levels of GFP protein, as measured by flow 

cytometry. The recently developed GFP-targeting ‘JEDI’ TCR CD8+ T cell system does 
indeed demonstrate that GFP epitopes can be targeted by T cells, but the known epitope 

is H2Kd-restricted and there are no known H2Kb-restricted GFP epitopes which would 
be relevant to the B6 mice-derived cells used here. Consistent with this, co-

transplantation of CD105+ and CD105- fibroblasts with no GFP expression, into B6 
hosts, shows the same growth permissive and suppressive phenotype respectively, as 

the GFP-expressing versions, formally excluding GFP as the driving immunogenic factor. 
 

The artificial nature of the subcutaneous co-transplant model is also one of the strengths 

of the system. Firstly, it removes confounding issues of infiltration of other pancreatic 
fibroblasts into the growing tumour that would likely occur with orthotopic transplants to 

the pancreas. Whilst I cannot exclude a contribution from dermal fibroblast infiltration, 
IHC analysis of the tumours shows no obvious GFP- fibroblasts present at early or late 

time points (day 30 tumours are mostly tumour cells). The model also allowed me to 
make methodical changes to the system and explore their impact, for example co-

transplanting pure populations of fibroblasts (CD105+ or CD105-), defined ratios of 
mixed fibroblasts, or using fibroblasts with specific genes deleted. In addition, the 

experiment is easily repeated in a variety of different transgenic hosts that for example, 
lack certain components of the immune system. This versatility could be further exploited 
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to better understand the mechanisms of immune regulation in the future. Unfortunately, 

such controlled fibroblast manipulation is simply not possible with current spontaneous 
tumour models. In a general sense, the subcutaneous co-transplant model effectively 

allows for the mixing of cancer cells and populations of fibroblasts, encourage close 

interactions, including cell-cell contact and measure what happens when this system is 
exposed to the demands of a growing tumour in vivo, such as requirements for blood 

vessel formation, invasive front contact with the host and interactions with an intact 
immune system. 

 
Two separate PDA cancer cell lines were used in the subcutaneous co-transplant model. 

The permissive and suppressive effect of co-transplanted CD015+ and CD105- 
fibroblasts, respectively, was observed with both PDA cell lines. Notably, the extent of 

CD105- fibroblast-mediated suppression was greater for PDA cell line #1, which had 
more sustained growth suppression and 2/5 mice showing full rejections, compared to 

PDA cell line #2 which had no full rejections. In addition, the 1:1 mixture of 

CD105+:CD105- fibroblast condition with PDA cell line #1 showed a fully suppressive 
phenotype where the same condition with PDA cancer cell line #2 showed a more 

intermediate phenotype with increased growth. Thus, the permissive/suppressive 
phenotype is not simply specific to PDA cell line #1 but the strength of suppressive effect 

is dependent on the identity of the cancer cell line. The reasons why the two PDA cancer 
cell lines behave slightly differently is not clear. One potential reason is that the two cell 

lines may have different levels of antigenicity for adaptive immunity to act on. An 
interesting future experiment would be to repeat the co-transplants experiment with a 

wide range of PDA cancer cell lines. Indeed, finding groups of cell lines with either high 

or low levels of suppression due to co-transplanted CD105- fibroblasts, may provide 
clues as to the specific mechanism driving the suppressive phenotype. 

 
The cases of full tumour rejections with the CD105- fibroblast co-transplants in B6 hosts, 

are quite remarkable, particularly consider the aggressive growth behaviour of the PDA 
cancer cells used and that large numbers of PDA cancer cells (105) that are injected into 

the mice. It is possible that a minority of cancer cells survive in these mice (and that with 
enough time tumours would have grown out), but macroscopic dissection and histologic 

analysis of the injection site shows no evidence of residual cancer cells. Full immune-
mediated rejection is suggestive of immunological memory and it would be interesting to 
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test if this was occurring by re-challenging the tumour-free mice with a bolus of the same 

cancer cells. 
 

The loss of the CD105- fibroblast suppressive phenotype in Rag1-/- hosts demonstrates 

the mechanism is entirely dependent on adaptive immunity, which could include 
contributions from T or B lymphocytes. Whilst the majority of the phenotype is lost in 

Batf3-/- mice (which suggests that the sustained tumour suppression of CD105- 
fibroblasts is CD8+ T cell dependant), there is still some growth suppression observed. 

Therefore, these experiments do not fully exclude the possibility of contributions from 
mature CD4+ T cells or even B cells. Repeating the co-transplant experiments in B6 

mice treated with depleting antibodies targeting CD4+ and CD8+ T cells would formally 
test the dependence of the mechanism on each T cell compartment and also formally 

rule out a role of B cells. 
 

As mentioned, the fully suppressive phenotype of CD105- fibroblasts is lost in Batf3-/- 

mice but some tumour suppression is still observed, which results in the CD105- 
fibroblast co-transplant condition growing slower than the mono-transplant and CD105+ 

fibroblast co-transplant condition. This implies that adaptive immune mechanisms 
outside of CD8+ T cell-mediated tumour control are contributing. However, the Batf3-/- 

model is not a perfect model for cDC1 deletion: inflammatory conditions (such as IL12 
expression) can cause expression of Batf and Batf2 in DC progenitors, which 

compensates for the loss of Batf3 and allows for cDC1 formation and de novo CD8+ T 
cell priming (Grajales-Reyes et al., 2015; Hildner et al., 2008). Thus, an ongoing 

inflammatory reaction in the cell/Matrigel transplants may allow for cDC1 formation and 

some level of CD8+ T cell priming, which would suppress growth just as for the B6 hosts. 
A new model of cDC1 depletion, which removes an IRF8 enhancer sequence, is resistant 

to such genetic compensation (Durai et al., 2019) and would allow for formal proof of the 
requirement for cDC1 cross-presentation in the tumour suppressive phenotype of 

CD105- fibroblasts. 
 

Whilst the 1:1 CD105+:CD105- fibroblast co-transplant condition recapitulated the 
suppressive effect seen with the pure CD105- fibroblast co-transplant conditions, no full 

tumour rejections were observed, indicating that adding CD105+ fibroblasts dilutes the 
suppressive phenotype of CD105- fibroblasts to some extent. In tumours the ratio of 
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CD105+:CD105- fibroblasts varies widely (e.g. Chapter 4) and it would be informative to 

see what the impact is of varying the CD105+:CD105- fibroblast ratio in the co-transplant 
model. 

 

For the co-transplant models, I also used a 1:1 mixture of cancer cells:fibroblasts. PDA 
tumours appear to have a higher abundance of fibroblast-like cells to epithelial cancer 

cells by histological methods and it may be revealing to test different ratios of cancer 
cells and fibroblasts in the co-transplant model, to see if new phenotypes emerge. The 

histological analysis of cancer cell:fibroblast ratios in PDA tumours is complicated by the 
different morphologies and cell sizes of these cell types and the presence and absence 

of cancer cells that have undergone EMT. Thus, there is little consensus on what the 
‘average’ cancer cell:fibroblast ratio is in human PDA tumours, or indeed what range of 

ratios is typically observed. In addition, there may be a limit to how many fibroblasts can 
be co-transplanted in this model before confounding issues of nutrient competition with 

cancer cells occur. 

 
CD105+ fibroblasts with CD105 genetically deleted by CRISPR/Cas-9 technology, show 

the same in vivo growth characteristic as CD105+ fibroblasts. Thus, CD105 is not 
required for the permissive fibroblast state of CD105+ fibroblasts. This also suggests 

that the tumour suppressive phenotype of CD105- fibroblasts is not driven by their lack 
of CD105 expression. Forced expression of CD105 in CD105- fibroblasts and 

observation of the same in vivo suppressive phenotype, would prove this. Thus, CD105 
appears to be a useful marker to sperate functionally distinct fibroblast lineages in the 

mammalian pancreas and in pancreatic tumours, but the CD105 protein itself does not 

appear to drive the key functional difference seen here. 
 

It is not clear how the MyCAF and iCAF-like fibroblast polarisations of CD105+ and 
CD105- fibroblasts contribute to the in vivo permissive and suppressive phenotypes 

observed in these experiments. As described in the previous chapter, very little is known 
about the functional consequences of the MyCAF and iCAF states generally, let alone in 

the context of different fibroblast lineages. Also mentioned previously, in vitro culture is 
thought to promote a myofibroblast phenotype, thus the injected fibroblasts are likely in 

a state more aligned with that of myofibroblast differentiation. However, it is not known 
how this phenotype might change when the cells are injected in Matrigel, which is far 



 198 

softer than plastic. To address the contribution of the MyCAF- and iCAF-like states to 

the in vivo properties observed in these co-transplant studies, it may be feasible to pre-
treat the fibroblasts with activating factors such as TGFβ1, IL1α, TNFα and IFNγ before 

injection into the mice. A limitation of this will be that stimulation can only be done prior 

to the in vivo injections and thus the activated state may not be maintained for sufficiently 
long in vivo to observe a discernible phenotype. Indeed, the pre-formed state may be 

rapidly overridden by new activating factors in the Matrigel plug, such as direct cancer 
cell contact. In addition, several of these cytokines/growth factors have cytostatic or 

cytotoxic functions (e.g. TNFα and IFNγ) and this may introduce confounding issues 
caused by injecting senescing, dead or dying fibroblasts. Alternatively, as a better 

understanding of the transcription factors required for induction of the MyCAF- and iCAF-
like states emerges, it may be possible to delete these genes in each fibroblast 

population, effectively ‘locking’ them out of either the MyCAF- or iCAF-like states. These 
cells could then be implanted in the same manner and in vivo growth monitored. This 

would reveal the dependency of the permissive and suppressive growth phenotypes on 

the MyCAF- or iCAF-like states. In this regard, the transcriptomic and phosphorylation 
analysis of MyCAF and iCAF-inducing stimulations may be particularly informative for 

picking the key downstream regulators of the MyCAF- and iCAF-like states to target. 
 

In PDA tumours, CD105- fibroblasts express high levels of MHCII, with minimal 
expression seen on CD105+ fibroblasts. Because CD105- fibroblasts are suppressive to 

tumour growth in the co-transplant model, in a mechanism dependant on adaptive 
immunity, a logical question to ask is does MHCII-mediated antigen presentation play a 

role in the tumour suppressive properties of CD105- fibroblasts? Applying MHCIIKO and 

CD74KO CD105- fibroblasts, generated by CRISPR/Cas-9 gene editing, to the 
syngeneic subcutaneous co-transplant model, indicates that the suppressive phenotype 

of CD105- fibroblasts is completely independent fibroblast MHCII-antigen presentation 
and must be acting through other mechanisms. Recent scRNAseq studies of PDA 

GEMM tumours has also noted MHCII expression on a minor cluster of fibroblasts 
(Elyada et al., 2019). These cells have been designated as ‘antigen-presenting CAFs’ or 

apCAFs, a terminology that has now been widely used within the CAF research field in 
general (Kieffer et al., 2020). The concept of antigen presentation by fibroblasts was 

suggested >30 years ago, although unequivocal proof fibroblasts in tumours actively 
process and present exogenous tumour antigens in vivo and that this antigen 
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presentation plays any functional role in tumour biology is still lacking (Umetsu et al., 

1986). Thus, it is likely that this apCAF nomenclature is misleading and not conductive 
to improved understanding of fibroblast functions. For example, it is possible that these 

MHCII+ fibroblasts simply occupy a distinct microenvironmental niche, potentially in 

areas of increased IFNγ, and that MHCII-expression is downstream of other functionally 
more important aspects of these cells. For example, MHCII expression in CD105- 

fibroblasts could simply be downstream of cell-cell interactions with specific IFNγ-
expressing T cell subsets. It has been suggested that more accurate classification of the 

mononuclear phagocyte lineage has come from linking nomenclature primarily to 
ontogeny and secondarily to location, function and phenotype, (Guilliams et al., 2014). 

Such a system for classifying fibroblasts, and mesenchymal cells more generally, would 
likely be an improved and more robust system, and would lay a framework for a more 

systematic understanding of fibroblast functions. In this regard, distinct CD105+ and 
CD105- fibroblast lineages may form separate, non-interchangeable ‘branches’ of such 

a ‘fibroblast ontogeny map’.  
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Chapter 9 – Results – Mapping CD105+ and CD105- fibroblasts 

across different tissues, tumour types and species 

9.1 – Results 

 

9.1.1 – CD105+ and CD105- fibroblasts are present in low-passage primary 

cultures from major mouse organs 

 
Collectively the previous chapters have described functionally distinct CD105+ and 

CD105- fibroblast lineages in murine healthy pancreas and spontaneous murine 
pancreatic tumours. These stable populations are also observed in primary human 

fibroblast isolations from non-tumour bearing pancreas and in human pancreatic 
tumours. Published data from dermal fibroblast research and scRNAseq studies in other 

tissues and tumours, has demonstrated that many other organs and tumours show 

evidence of fibroblast heterogeneity (Driskell and Watt, 2015; Puram et al., 2017). 
Therefore, I hypothesised that distinct CD105+ and CD105- fibroblasts may be a feature 

of other tissues and tumour types and this may contribute to fibroblast heterogeneity. In 
addition, many organs and GEMM tumour types, have not previously had their fibroblast 

heterogeneity characterised. To address this, I first aimed to measure the surface 
proteome of fibroblasts from 18 mouse organs, from a broad range of anatomical 

locations and functions. Fibroblasts are typically a minor cell population in most healthy 
tissues and are notoriously challenging to release from their strong cell-cell and cell-ECM 

contacts. Thus, analysis of fibroblasts from healthy organs directly ex vivo, typically 
requires highly optimised, tissue-specific disaggregation protocols. Instead, I chose to 

leverage the fact that, as for the pancreas, fibroblasts from other organs are able to grow 

and expand with standard in vitro culture techniques relatively quickly compared to other 
cells types, yielding cultures where the majority of surviving cells are low passage 

primary fibroblasts (or fibroblast-like) (Ichim et al., 2018; Sahai et al., 2020). In addition, 
I was keen to analyse the cells in this way because this ‘outgrowth’ method is routinely 

how primary fibroblasts are isolated for functional studies. Thus, using similar methods 
to expand fibroblasts as those used by others, would give insight into the fibroblast 

composition that these widely used protocols generate. 
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I disaggregated 18 different mouse organs and expanded primary fibroblasts from each 

by in vitro culture, as had been done for the pancreatic fibroblasts previously. Adherent, 
fibroblast-like cells grew out of th pancreas, as expected, and for all of the other 17 

organs tested. However, the different tissues showed a wide variation in how long it takes 

before sufficient cell numbers were obtained for analysis (organs are listed in Table 7). 
For example, whilst fibroblast isolations from a single murine pancreas typically take ~5-

7 d to generate sufficient cells for analysis, fibroblasts expanded from a single mouse 
prostate take >3 weeks. Such extended lengths of in vitro passaging is likely to favour 

fast growing fibroblast lineages or phenotypes. Thus, analysis at late time points is more 
likely to underestimate the heterogeneity of fibroblasts present in the initial organs. To 

address this, for organs that showed low initial numbers of expanding fibroblasts 
(prostate, bladder, bone marrow and thymus), I used multiple starting organs which 

enabled analysis of fibroblast composition to be conducted more quickly after 
disaggregation. For example, by combining 5 different mouse prostates, the fibroblasts 

could be analysed after 6 d of in vitro expansion. The number of organs used, the chosen 

disaggregation method, whether Dispase was or wasn’t used and how many days of 
culture elapsed before the analysis, are all listed in Table 7 in the Materials and Methods 

section. Early passage mouse embryonic fibroblasts (MEFs) were also included in the 
analysis. 

 
For analysis of fibroblast composition, I stained the cells with the mesenchymal stroma 

mass cytometry panel, as used previous experiments (Chapters 4 and 6). The panel 
includes a range of markers to identify a general population of fibroblast-like cells away 

from the rare remaining epithelial cells, endothelial cells and pericytes in the cultures. 

Notably, the fibroblast-like cells, that made up the majority of cells from each sample 
expressed high levels of mesenchymal proteins (VIM, αSMA etc), as well as uniformly 

high expression of PDPN. Positive PDPN expression across all fibroblasts was also 
observed with the ex vivo KPC pancreatic analysis and the in vitro pancreatic fibroblast 

stimulation analysis presented in previous chapters. Thus, PDPN appears to be a useful, 
broad marker of murine fibroblasts, regardless of the tissue the fibroblasts come from. 

Within this fibroblast fraction, I investigated the expression levels of CD105 in each 
sample. There are clear CD105+ and CD105- fractions of cells within the fibroblast-like 

cells from the pancreas (as described in previous chapters) and, remarkably, there was 
evidence of fractions of fibroblasts with differential expression of CD105 across the 
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isolations from 11/17 of the other tissues (Figure 67). The tissues with clear CD105+ and 

CD105- fibroblasts are: the colon, small intestine, mammary tissue, skin, prostate, 
stomach, adipose tissue, bone marrow, spleen, thymus and MEFs.  

 

 
Figure 67. CD105+ and CD105- fibroblast are present in many normal murine tissues 

Mass cytometry (MC) analysis of in vitro expanded, low passage, primary fibroblast isolations from a range 
of mouse organs. Cells expressing canonical markers of epithelial, immune, endothelial and perivascular 
cells are excluded from the analysis and live, singlets are displayed in plots showing PDPN and CD105 

levels. 
 
The difference in the levels of CD105 expression between the CD105high/low fractions 
varied widely, in that whilst the absolute level of CD105 (i.e. the median signal intensity) 

in the CD105+ fraction was very similar across each tissue isolation, the cells with lower 

CD105 expression either has no CD105 expression or had low but detectable levels of 
expression (i.e. CD105intermediate). An unusual staining pattern is particularly 

noticeable in the mammary tissue fibroblasts, which shows evidence of two populations 
separated by CD105 expression but with only slightly different levels of expression, 

appearing as if CD105hi and CD105lo populations are ‘compressed’ (a similar 
observation is seen in the cells isolated from the skin and the thymus). In addition, whilst 

some isolations have clear bimodal signal of CD105 (pancreas, adipose, spleen), others 
have ‘smears’ of staining. This may represent evidence of some populations with 

intermediate levels of CD105 expression (bone marrow and MEFs are the clearest 
examples) or may be due to overstaining during the antibody labelling step. It is not clear 

if this is genuine CD105 protein levels: if it is a staining issue, better resolution could be 

achieved with optimised staining and washing steps. Another notable feature is the 
presence of cells with reduced but non-zero expression of PDPN in the colon and small 

intestine-derived samples only. These fibroblasts have not previously been observed in 
any of the pancreatic fibroblast isolations I have conducted. It is not clear if these are 

fibroblasts or some other cell type that has or has gained PDPN expression and 
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fibroblast-like features. For example, epithelial cells, endothelial cells and pericytes can 

all undergo mesenchymal transitions, a process in which PDPN expression is reported 
to increase (Puram et al., 2017; Renart et al., 2015). Why these cells appear in samples 

specifically from the colon and small intestine (and kidney and liver - see later), is not 

clear. 
 

Isolations from 4 other organs (lung, bladder, oesophagus and heart) showed relatively 
homogenous CD105 expression, in that all fibroblasts in the isolations were CD105+ 

(Figure 68). The liver sample was notable in that it was almost entirely formed from this 
intermediate PDPN population, with very few PDPNhi cells. In a similar manner, a large 

fraction of the kidney fibroblast-like cells showed intermediate PDPN staining too, and 
the remaining cells were CD105-. 

 

 
Figure 68. In vitro expanded fibroblasts from several mouse organs appear homogenous 

Mass cytometry (MC) analysis of in vitro expanded, low passage, primary fibroblast isolations from the 
remaining mouse organs not displayed in the previous figure. Cells expressing canonical markers of 

epithelial, immune, endothelial and perivascular cells are excluded from the analysis and live, singlets are 
displayed in plots showing PDPN and CD105 levels. 

 
Both the liver and lung isolations appeared to be relatively homogenous at the time point 
analysed (15 and 10 days, respectively). Both these organs are highly relevant to 

pancreatic cancer, as the major and minor sites of metastatic colonisation, respectively 
(Yachida et al., 2010). Thus, I was keen to analyse the fibroblast isolations from these 

organs at an earlier time point, in case the extended in vitro expansion had lost some of 
the fibroblast heterogeneity present in the tissue. I re-analysed new fibroblast isolations 

from both tissues, at 7 days using flow cytometry (which requires a lower cell input than 

mass cytometry) (Figure 69). At this earlier time point, the majority of cells from both the 
liver and the lung were fibroblast-like cells with a PDPN+CD105+ phenotype (consistent 

with the previous experiment) but also contained minor populations of PDPN+CD105- 
cells, that are presumably lost or outgrown at later time points. Thus, CD105+ and 

CD105- fibroblasts are a feature of many healthy mammalian organs which are present 
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to varying amounts in in vitro cultures of primary fibroblasts and some fibroblast 

populations are lost after even minimal in vitro culture.. 
 

 

 
Figure 69. Earlier analysis of low passage fibroblasts reveals fibroblast heterogeneity in murine 

lung and liver 
Flow cytometry analysis of EpCAM-CD45-CD31- (LIN-) and PDPN+ lung (A) and liver (B) fibroblasts from 

day 7 primary cell isolations, an earlier time-point than the analysis of these isolations by MC in the 
previous figure. 

 
 

9.1.2 – CD105+ and CD105- fibroblasts are present in the tumours of different 

spontaneous GEMMs and human cancers with relative abundance regulated in a 
tissue-specific manner 

 
The previous analysis revealed that fibroblast isolations from a wide range of different 

mouse organs show evidence of CD105+ and CD105- fibroblast fractions, suggesting 
such fibroblast populations are a common feature across different tissues. I sought to 

understand if CD105+ and CD105- fibroblasts were also present in different tumour-

types. Because cancer cell transplantation methods rarely develop the strong fibrotic 
response seen in spontaneous human cancers, I opted to study fibroblast heterogeneity 

(with a focus on CD105+/- populations), across multiple different GEMMs of 
spontaneous murine cancer. For this analysis, I used the KPC pancreatic model as 

before, as well as spontaneous models of four other tumours types: 
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• KPN mice, which develop spontaneous colorectal and intestinal tumours that model 

progression and morphology of poorly differentiated, metastatic CSM4-like human 
colorectal cancer (Jackstadt et al., 2019). 

• KP mice, which develop multi-focal, spontaneous lung adenocarcinomas that model 
human non-small cell lung cancer (NSCLC) (Meuwissen et al., 2001). 

• MMTV-PyMT mice, which develop spontaneous mammary tumours that model 
luminal/ductal, ER-negative, metastatic human breast tumours driven by hyper-

activated kinase signalling (Guy et al., 1992). 

• BRAFV600E mice, which develop multi-focal, spontaneous skin tumours that model 
UV-initiated human melanoma (Dhomen et al., 2009). 

 

Notably, the KPC pancreatic, KPN colorectal and KP lung models are all driven by 
oncogenic Kras mutations and loss of function Trp53 mutations. This would, to some 

extent allow comparison of the fibroblast composition of tumours in which cancer cell 
growth and survival is driven by very similar oncogenic mechanisms. The BRAFV600E 

melanoma model also has hyperactivated MEK/ERK signalling (but via an oncogenic 
Braf mutation). MMTV-PyMT cancer cells are driven by the viral polyomavirus middle T-

antigen, which has pleotropic functions including hyper activation of SRC, PI3K and 

PLCγ signalling (Shanzer et al., 2015).These GEMMs model several major human 
cancers and capture: 

 

• a range of oncogenic drivers, with some overlapping features 

• epithelial (KPC, KPN, KP and MMTV-PyMT) and non-epithelial (BRAFV600E) 
tumour-types 

• different anatomical locations 
 

KPC pancreatic (n=4), KPN colorectal (n=5), MMTV-PyMT mammary (n=4), KP lung 
(n=4) and BRAFV600E melanoma (n=3) tumours were disaggregated and analysed 

using the mesenchymal stroma mass cytometry panel. In a similar manner for the KPC 
pancreatic (n=19) study described in Chapter 4, high dimensional analysis and clustering 

was run for all live, single cells from each sample separately. This allowed annotation of 
all major cell types using canonical markers. To focus the analysis on fibroblasts 

specifically, all clusters lacking expression of epithelial, endothelial, pericyte and immune 

cell markers and having high expression of common fibroblast markers (e.g. VIM, 
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PDPN), were extracted from each sample for downstream analysis. As for the previous 

KPC pancreatic analysis and the in vitro primary multi-organ fibroblast analysis, PDPN 
was a very useful broad fibroblast marker. The pure fibroblast clusters from each tumour 

sample (depleted of cancer cells, immune cells, endothelial cells and pericytes), were 

combined and the 20 tumour samples analysed as a group. The resulting UMAP 
projection, with the FlowSOM generated clusters overlaid, is shown in Figure 70, along 

with stacked bar graphs showing the contribution of each cluster to the total fibroblasts. 
Such analysis reveals a high degree of fibroblast heterogeneity between samples from 

different tumour-types, between samples from the same tumour type and even between 
fibroblasts within the same sample. MMTV-PyMT mammary, KP lung and BRAFV600E 

melanoma tumours all contain heterogenous populations of fibroblasts and interestingly, 
each of these cluster away from the others in a tissue-specific manner, such that all 

fibroblast clusters from mammary tumours are together, all from lung tumours are 
together and all from melanoma tumours are together. The most striking observation with 

this analysis is that the fibroblast clusters from the KPC pancreatic and KPN colorectal 

tumours, show distinct clusters within each sample, but the clusters show a high degree 
of overlap between pancreatic and colorectal tumours. This is quite notable because 

even with >30 fibroblast-specific markers measured, the clusters from pancreatic and 
colorectal tumours cannot be distinguished from each other by the FlowSOM algorithm. 

For example, every KPC pancreatic (n=4) and KPN colorectal (n=5) sample contains 
fibroblasts in both the GEMM CAF 12 (GCAF-12) cluster and the GCAF-19 cluster. 

Considering the high parameter nature of this analysis, this alignment between 
pancreatic and colorectal tumour fibroblasts is quite remarkable.  
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Figure 70. Heterogenous fibroblast populations across different tumour types 

 (A) UMAP projection of fibroblasts from autochthonous murine tumours (n=20 tumour samples in total). 
Genetically engineered mouse models (GEMMs) used are the KPC pancreatic (n=4), KPN colorectal 

(n=5), MMTV-PyMT mammary (n=4), KP lung (n=4) and BRAFV600E melanoma (n=3) GEMMs. FlowSOM 
clusters are color-coded. (B) Stacked bar graphs displaying each FlowSOM GEMM CAF (GCAF) cluster 
as a fraction within total CAFs. FlowSOM colours based on (A). (C) Heatmap displaying marker median 
mass intensities (MMIs) for each FlowSOM GCAF cluster. Phenotypic markers and GCAF clusters are 

grouped using unsupervised hierarchical clustering based on marker MMIs. Tumour-type/s that the GCAF 
clusters predominantly arise from are listed. (D) UMAP projection from (A) displaying overlaid signal 

intensity of example phenotypic markers. The tumour-type of origin are highlighted on the CD105 plot. Pa 
= pancreatic, Co = colorectal, Ma = mammary, Lu = lung and Me = melanoma. 

 
The mammary, lung and melanoma tumour fibroblasts separated away from each other 
and from the shared pancreatic and colorectal tumour fibroblast clusters, in a tissue 

specific manner. This was driven by tissue-specific combinations of surface protein 

expression, that appeared in a ‘patchwork’ of expression patterns consistent across 
different tumours from the same tissue. For example, mammary tumour fibroblasts 

separated away from all other fibroblast clusters due to low DES expression and 
specifically clustered away from melanoma clusters because of uniformly high CD87 

expression, away from most pancreatic and colorectal clusters because of expression of 
high PDGFRα and PDGFRβ and away from lung fibroblasts because of CD90 and ITGα5 

expression. This potentially suggests tissue-specific regulation of these widely used 
fibroblast markers. Indeed, the staining for CD90 is particularly distinct. CD90, is found 

to be expressed on all KPC pancreatic and KPN colorectal fibroblasts, all MMTV-PyMT 

mammary fibroblasts and all BRAFV600E melanoma fibroblasts, yet almost all KP lung 
fibroblasts lack CD90 expression (GCAF-1, -15, -18 and -20). These lung fibroblasts 
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show features typical of fibroblasts in tumours (VIM, PDPN, αSMA etc) and are unlikely 

to be another cell type.  
 

The fibroblast cluster identified in KPC pancreatic fibroblasts, with a unique 

MHCII+CD74+ phenotype (Chapter 4), was also present in this data set (GCAF-17). 
Interestingly, this cluster that was found in both KPC pancreatic and KPN colorectal 

samples, again highlighting the remarkable similarity between fibroblasts from these two 
tumour types. A minor melanoma CAF cluster (GCAF13) also shows this MCHII+CD74+ 

phenotype and the two major lung CAF clusters (GCAF-15 and -18) show elevated levels 
of MHCII only. 

 
The analysis indicates that all samples contain shared but rare clusters, GCAF-2, 3 and 

4. These clusters were present in every sample from every tumour type. Whilst its 
possible these cells may represent a common fibroblast state, or even a common 

undifferentiated phenotype, it is also possible they represent fibroblasts that lack 

expression of most markers in the panel, either coincidently or due to under-staining 
during the experimental protocol. Further work would be needed to understand if this 

observation is a technical artefact or whether these cells really do represent a common 
fibroblast phenotype seen across all 5 different tumour types. 

 
The previous chapters have described how CD105 is a useful marker of functionally 

distinct fibroblasts in the murine pancreas. CD105 again showed interesting staining 
patterns in the fibroblasts from the 5 different tumour types. The expression of CD105 is 

shown for each tumour-type, with all samples from each tumour type plotted separately 

(n=3-5 for each tumour type) (Figure 71). 
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Figure 71. CD105 expression in fibroblasts across different tumour types 

UMAP projection from displaying overlaid signal intensity of CD105 and separated into different tumor-
types. 

 
Again, the most striking observation here is that CD105+ and CD105- fibroblasts are 
clearly present in both pancreatic and colorectal tumours. Indeed, the main driver of 

separation between the two major pancreatic and colorectal shared fibroblast clusters 
(GCAF-12 and GCAF-14) is differential CD105 expression. The ratio of CD105:CD105- 

varies across the tumour types (see below). Mammary tumours also contain CD105+ 
and CD105- fibroblast populations but the difference in CD105 expression appears to be 

highly compressed. Interestingly, this was also seen in the in vitro expanded, healthy 
mammary tissue fibroblasts, suggesting differential CD105 protein expression regulation 

is distinct in fibroblasts from this tissue. The majority of fibroblasts from the lung and 

melanoma tumours are positive for CD105 expression, with very few CD105- fibroblasts. 
The minor CD105- cells that are present in lung and melanoma tumour samples, do not 

show clear bimodal staining and have a more graduated reduction of CD105 expression, 
although this is typically >10-fold lower levels of CD105 expression than CD105+ 

fibroblasts. This ‘smear’ or graduated expression is also seen in the in vitro primary cell 
isolations from these organs. 

 
The ratio of CD105+:CD105- fibroblasts identified in the 5 different tumour types varied 

widely (Figure 72). For this analysis, data from the additional 19 KPC pancreatic tumours 
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analysed in Chapter 4 were added to more accurately report the KPC pancreatic 

fibroblast CD105+:CD105- ratio. The analysis shows that the relative abundance of 
CD105+ fibroblasts is highest in KP lung and BRAFV600E melanoma tumours (>6-fold 

more CD105+ fibroblasts than CD105- fibroblasts) but show a range of ratios, for 

example some KP lung tumours show >10-fold more CD105+ fibroblasts than CD105- 
fibroblasts with one KP lung sample actually containing more CD105- fibroblasts. KPN 

colorectal and MMTV-PyMT mammary tumour fibroblasts are notable in that they have 
approximately equivalent CD105+ and CD105- fibroblast frequencies. As reported in 

Chapter 4, KPC pancreatic tumours show a wide range of ratios of CD105+:CD105- 
fibroblasts and on average there are 3-fold more CD105+ than CD105- fibroblasts.  

 

 
Figure 72. CD105+:CD105- fibroblast ratio analysis across different tumour types 

MC analysis of the ratio of CD105pos:CD105neg CAFs in tumours from genetically engineered mouse 
models (GEMMs) of pancreatic (KPC) (n=24), colorectal (KPN) (n=5), mammary (MMTV-PyMT) (n=4), 

lung (KP) (n=4) and melanoma (BRAFv600E) (n=3) cancer. Data from the n=19 PDA tumour samples 
analysed in section 4 were added to increase the accuracy of the ratio measured for the pancreatic GEMM 

tumours. Displayed as mean+/-standard deviation. 
 
These mice were not dosed with IdU. However, fibroblast proliferation in these samples 

can instead be measured just from the fraction of cells positive for Ki67. Proliferation 
analysis of CD105+ and CD105- fractions across each tumour showed that KPC 

pancreatic, KPN colorectal and MMTV-PyMT mammary tumour fibroblasts had 

approximately similar Ki67+ fractions, with >10% of both CD105+ and CD105- CAFs 
showing Ki67 positivity (Figure 73). Notably KP lung fibroblasts had the lowest 

proliferation and BRAFV600E melanoma fibroblasts had intermediate levels of 
proliferation. This broadly matches the total abundance of fibroblasts generally observed 

in these tumours (i.e. KPC pancreatic and KPN colorectal tumours have large numbers 
of fibroblasts and BRAFV600E melanoma and KP lung tumours have few). As noted in 
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previous chapters, at this collection time point, CD105- fibroblasts in KPC pancreatic 

tumours had higher proliferation rates than CD105+ fibroblasts. Interestingly this 
differential proliferation in late stage tumours, was not seen in any of the other tumour 

types, which each showed the same proliferation in CD105+ and CD105- fibroblasts. 

Accurate comparisons of proliferation rates of fibroblasts between different GEMMs may 
be confounded because the tumours all have different latencies and growth durations 

and are also are collected at time points that correspond to different ‘clinical’ times. For 
example, KPC pancreatic and KPN colorectal tumours are collected at late stage when 

the mouse is starting to show signs of systematic disease and the KP lung tumours are 
taken at a fixed time point after tumour initiation in mice that are otherwise healthy and 

in which tumour collection could have been delayed by several weeks. 
 

 
Figure 73. Proliferation rates of fibroblasts across different tumour types 

MC analysis of proliferation rates of CD105+ and CD105- fibroblasts from genetically engineered mouse 
models (GEMMs) of pancreatic (KPC) (n=24), colorectal (KPN) (n=5), mammary (MMTV-PyMT) (n=4), 

lung (KP) (n=4) and melanoma (BRAFv600E) (n=3) cancer. Displayed as mean+/-standard deviation. 
 
Collectively, these results support the hypothesis that heterogenous fibroblasts are 

present in most murine tissues and tumours and that CD105 can be useful marker to 
separate fibroblast populations. In particular, abundant CD105+ and CD105- fibroblasts 

can be found in spontaneous murine pancreatic, colorectal and mammary tumours and 

CD105+ fibroblasts are more frequent than CD105- fibroblasts in spontaneous murine 
lung and melanoma tumours. To explore whether these findings are relevant to human 

tumours, I again utilized immunofluorescent imaging analysis of FFPE tumours from 
human advanced colorectal adenocarcinomas, triple negative breast adenocarcinomas 

and non-small cell lung adenocarcinomas. A representative image of x5 FFPE samples 
of each tumour type are shown in Figure 74. PCK staining in green identifies cancerous 

epithelium and CD105 staining is shown in red. CD105 staining of the vasculature can 
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be clearly seen because of the distinct morphology of collapsed blood vessels and acts 

as a positive control that CD105 staining has worked successfully throughout the stroma. 
For the human colorectal tumours, large areas of stroma are observed, containing cells 

with fibroblast morphology and a large number of CD105+ endothelial cells are also 

observed. Across, the human colorectal tumours tested, there is notable lack of CD105+ 
fibroblasts in the samples and CD105- fibroblasts dominant the stroma around the 

cancer cells. In the breast cancer samples, the stroma of the samples is again dominated 
by CD105- fibroblasts but local regions with large numbers of CD105+ fibroblast-like 

cells can be observed. In the human non-small cell lung cancer tumours, the stroma 
surrounding the PCK+ cancer cells contain many fibroblast-like cells but this time they 

are almost entirely CD105+. Thus, the majority of fibroblasts in human colorectal tumours 
appear to have CD105- phenotype, human breast tumours contain mixtures of CD105+ 

and CD105- fibroblasts and the stroma of human non-small cell lung tumours is 
dominated, almost exclusively (based on imaging methods) by CD105+ fibroblasts. 

Detailed imaging analysis of larger cohorts of tumours from each tumour type would 

verify these observations and provide more accurate quantification of CD105+/- 
fibroblast abundance in situ in human tumours. 
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Figure 74. Immunohistochemistry analysis of human tumours 
Representative immunohistochemistry (IHC) analysis of human colorectal adenocarcinoma, mammary 
invasive ductal carcinoma and lung adenocarcinoma tumor samples stained with DAPI (blue) and with 

antibodies targeting pan-cytokeratin (PCK) (green) and CD105 (red). CD105+ endothelial cells with 
classical blood vessel morphology are distributed throughout the tumors and act as an internal control for 

robust CD105 antibody staining. Scale bar = 500 μm. 
 

9.2 – Summary 
 

In this chapter, I outline the analysis of fibroblast heterogeneity across primary, low-
passage fibroblasts isolated from 18 healthy murine organs, as well as fibroblasts 

isolated directly ex vivo from tumours of 5 distinct GEMMs of spontaneous cancer. The 
hypothesis of this section was that analysing a high number of different tissues/tumours 

simultaneously would reveal patterns of convergent and divergent fibroblast phenotypes. 
In this regard, both CD105+ and CD105- fibroblast populations were observed in the 

majority of healthy and tumour bearing samples, although to widely varying frequencies. 
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Pancreatic and colorectal tumours showed a remarkably high similarity in the phenotype 

of the fibroblasts present, including identical phenotypes of CD105+ and CD105- 
fibroblast populations and a minor PDPN+CD105-MHCIII+CD74+ fraction.  

9.3 – Discussion  
 

The data presented in this chapter supports the concept that fibroblast heterogeneity is 
a common feature of healthy organs and tumours and that CD105 demarks at least two 

populations of fibroblasts in many tissues and tumours. An important next step would be 
to isolate CD105+ and CD105- fibroblasts from each of the tissues/tumours and asses 

firstly, whether differential CD105 expression is stable (as for pancreatic fibroblasts) and 

secondly, whether the functional properties of these CD105+/- fibroblasts are consistent 
with those of CD105+/- pancreatic fibroblasts. This could be done by looking at in vitro 

fibroblast activation (for example, the sensitivity to MyCAF and iCAF polarisation) and 
by studying in vivo function (for example, interactions with adaptive immunity in a 

subcutaneous co-transplant model). This may reveal a common lineage commitment of 
functionally distinct fibroblasts across multiple mammalian organs demarked by CD105. 

Additionally, an important step would be to determine whether CD105+ and CD105- 
fibroblasts present in human tissues and tumours are also phenotypically stable, which 

could be done by in vitro isolation and expansion (as was done for the human pancreatic 
fibroblasts in Chapter 6).  

 

A central question that is important to the data presented in this section is, are the 
fibroblasts analysed in this chapter ‘true’ fibroblasts or simply mesenchymal cells present 

in each TME that have a fibroblast-like phenotype? This is a common problem 
encountered in fibroblast research of healthy organs but particularly so in pathologic 

tissues, in which inflammation and wound repair programs, can lead to new phenotypic 
states being accessed by a variety of tissue-resident and infiltrating cell types. Such 

extreme conditions can cause induction of phenotypic features of fibroblasts in non-
fibroblast cells (e.g. epithelial to mesenchymal transition). The application of mass 

cytometry (and other high parameter technologies) addresses some of these issues in 
that by measuring a large number of markers (for example, compared to flow cytometry), 

the ability to discriminate between different cell types is enhanced. One way to be 

confident that the cells identified here are ‘true’ fibroblasts would be to isolate them and 
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investigate morphology, gene expression and function, but again here there are no 

standard/universally accepted functional assays to prove fibroblast identify. PDPN looks 
to be a particularly useful pan-marker of murine fibroblasts from many of the 

tissues/tumours analysed but caution must be used in seeking a general marker. Other 

cell types express PDPN, such as lymphatic endothelial cells and lung alveolar type 1 
(AT1) epithelial cells. Fortunately, these cell types express other markers that 

discriminate them as non-fibroblasts, such as CD31 and cytokeratins, respectively. 
However, other PDPN+ cells may not have such clear expression of other lineage 

markers. In addition, markers that appear to be very useful general markers in one 
tissue/tumour are not broadly expressed by fibroblasts in other tissues/tumours. For 

example, CD90 was a comprehensive, pan-fibroblast marker for KPC pancreatic, KPN 
colorectal, MMTV-PYMT mammary and BRAFV600E melanoma fibroblasts but has 

almost no expression on KP lung fibroblasts. CD90- pancreatic fibroblasts are also 
observed from healthy tissue isolations (Chapter 6), indicating that the CD90+ phenotype 

is only a common fibroblast marker in PDA tumours and not necessarily useful in the 

healthy pancreas. Thus, care must be taken in deciding which markers do and don’t 
identify fibroblasts. With the KPC pancreatic analysis in chapter 4, I became confident 

about the annotation of clusters. For example, being able to use a lineage tracing model 
greatly added to the confidence in the mass cytometry analysis workflow to be able to 

separate fibroblasts from mesenchymal cancer cells. Increased familiarity with the 
tissue/tumour of interest, the use of lineage tracing models and adding additional, tissue-

specific markers when needed, will help better define fibroblasts and improve future 
analysis of other tissues/tumours. For example, melanoma occurs from malignant 

transformation of melanocytes, which during development derive from neural-crest cells 

and thus do not express many of the markers that were included in the panel to identify 
epithelial/adenocarcinoma cancer cells. Including antibodies that target melanocyte-

specific markers, such as SOX10, would specifically improve annotation within that 
tumour type. As the composition of tissues and tumours becomes better defined, useful 

markers of other less well defined infiltrating cells will improve. For example, including 
markers of various cell types such as chondrocytes, different basal cells, neurons, 

Schwann cells, adipocytes and mesothelial cells, would reduce incorrect classification of 
these as being ‘true’ fibroblasts, based on a currently restricted list of markers. In this 

regard, the huge number of scRNAseq studies now being conducted may reveal useful 
makers of various different cell types that could be included in flow or mass cytometry 
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analysis. Indeed, running parallel mass cytometry and scRNAseq analysis on the same 

sample would likely complement each other (but would be associated with a high cost). 
Another caveat here is that some of these ‘contaminating’ cell types are established 

sources of fibroblasts, especially under pathological conditions and excluding them 

completely may exclude cells that are actively contributing to fibroblast populations and 
function in the tissue/tumour (see Summary discussion). There is no simple solution to 

the problem of fibroblast identification but increased understanding of fibroblast 
heterogeneity will likely improve the accuracy of fibroblast annotation in complex tissues.  

 
A wide range of tissues were analysed in this study but a notable, fibroblast-rich tissue 

compartment that was not analysed was that of connective tissues. Fibroblasts have an 
established role in connective tissue formation, homeostasis and pathogenesis, for 

example fibroblast-mediated joint degradation is a hallmark feature of rheumatoid 
arthritis (Mizoguchi et al., 2018). I did not isolate fibroblasts from connective tissue 

because doing so requires specialised protocols and fibroblast isolation is potentially 

confounded by the abundance of other mesenchymal cell types present, such as 
chondrocytes. Because of the central role fibroblasts have in connective tissue 

pathologies and the fact that fibroblast heterogeneity has already been observed in these 
tissues, detailed analysis of fibroblast populations in connective tissue, would likely 

reveal interesting and clinically relevant findings, as well as providing a useful 
comparison to ‘soft’ tissue fibroblasts (Croft et al., 2019; Mizoguchi et al., 2018; Wei et 

al., 2020). 
 

The in vitro analysis of low passage fibroblasts presented in this chapter, demonstrates 

extensive fibroblast heterogeneity in many tissues. Because each tissue yields different 
numbers of released fibroblasts, which take different lengths of time to grow to sufficient 

numbers for analysis, it is not possible to compare aspects such as fibroblast abundance 
and phenotype (e.g. αSMA expression), directly between  in vitro expanded tissues. In 

addition, in vitro outgrowth method also likely underestimates fibroblast heterogeneity, 
as rare or slower growing fibroblast lineages or phenotypes, will be over grown by 

fibroblast populations that are more abundant or better suited to in vitro culture 
conditions. This can be observed in this study, where extended culture of liver and lung 

fibroblasts for >10 days suggests only CD105+ fibroblasts only are present in these 
tissues, yet earlier analysis of the cultures reveals minor CD105- fibroblast populations 
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present. It is also possible that in vitro culture may convert non-fibroblast cells to 

fibroblast-like cells via mesenchymal transitions. Additionally, in vitro growth alters 
fibroblast phenotypes, so understanding how observed phenotypes relate to in vivo 

phenotypes becomes challenging. Thus, an improvement on the method used, would be 

analyse healthy tissue fibroblasts directly ex vivo from the tissue of interest, as was done 
for the ex vivo GEMM tumour analysis. Fibroblasts are typically rare in most healthy 

tissues and because they have extensive cell-cell and cell-matrix contacts, and are 
therefore challenging to release during disaggregations and are normally 

underrepresented in single cell isolations. Protocols could be optimised for each healthy 
tissue, to release the maximum number of fibroblasts and analyse these directly ex vivo. 

This would require a large time commitment, as individual tissues typically require a 
tissue-specific disaggregation enzyme mixtures and protocols but would greatly improve 

the physiological relevance of the findings. 
 

The fibroblasts from KPC pancreatic and KPN colorectal tumours show similar 

phenotypes, such that even when high dimensional analysis is conducted using >30 
markers in the mass cytometry panel, clusters of CD105+ and CD105- fibroblasts from 

each tumour type overlap completely. Thus, for future experiments aimed at testing 
whether the functional differences between CD105+ and CD105- fibroblasts that are 

observed for pancreatic fibroblasts, can also occur in other organs, it would be sensible 
to start with a similar analysis of CD105+ and CD105- colorectal fibroblasts. Why the 

fibroblasts from these two tumours are so similar is not clear. The KPC and KPN models 
are both driven by oncogenic Kras and loss of function Trp53 mutations. Whilst initiating 

mutations may play a role in the convergent fibroblast phenotype seen, the KP lung 

model is also driven by the same mutations, yet the KP lung fibroblast composition and 
phenotype are very different to the KPC and KPN tumours. For example, KP lung 

tumours contain very few CD105- fibroblasts and the fibroblasts do not express CD90, a 
pan-fibroblast marker in other tumours. Thus, tumour-specific similarities and differences 

may be more a product of differences in fibroblast phenotype and function already 
present in the tissue prior to tumour formation. The pancreas and colon both derive from 

the embryonic foregut, so fibroblasts in each organ may share some developmental 
similarities. Alternatively, the functional demands shared by tissues of the 

gastrointestinal tract, such as nutrient/metabolite levels or the constant presence of 
commensal bacteria, may have caused pancreatic and colorectal fibroblast phenotypes 
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and functions to converge or stay converged during evolution. A publication from 2018 

noted colorectal tumours contain CD105+ fibroblasts (Paauwe et al., 2018). The study 
focussed on fibroblast invasion properties and unfortunately, the stability of CD105 

expression in colorectal fibroblasts and the function of CD105- fibroblasts was not 

explored. However, this study supports the concept that CD105+/- fibroblasts may be a 
feature of multiple human tumour types. A better understanding of both fibroblast 

development and functional demands across different tissues, would likely reveal which 
tissue fibroblasts are most closely related in a more systematic and definitive manner. If 

tissue-specific factors dominant fibroblast function, this has major implications for how 
fibroblast-targeting therapies would be best developed and potentially impact their 

relevance to cancer therapy across different tumour types but also within the same 
tumour type in the metastatic setting (see Summary discussion). 

 
It is interesting to note that whilst fibroblasts from pancreatic and colorectal tumours show 

remarkable similarity, fibroblast clusters from all other tumours separated distinctly in a 

tissue-specific manner. No single marker identified fibroblasts from one tissue 
completely. Typically, it was a combination of positive or negative expression of a series 

of already established markers, that identified the tissue specific nature of the fibroblast 
clusters, in particular, combinatorial expression of CD90, CD87, PDGFRα, PDGFRβ and 

ITGα5 is able to distinguish fibroblasts from different tissues. How stable these 
expression patterns are for each tissue type are not clear and what factors regulate the 

expression of these markers, in such a tissue-specific manner, is also unknown. For 
example, it is not known if tissue-specific fibroblast differences in tumours arise from 

signals coming directly from the tumour/parenchymal cells themselves or possibly some 

other microenvironmental cell type. The immune infiltrate of tumours is known to vary 
widely, so immune cell composition may also directly alter fibroblast phenotype in a 

tissue-specific manner (Allen et al., 2020).  It may even be possible that some of these 
tissue-defining signals may come from more unusual sources, such as tissue-specific 

differences in stiffness, nutrient/oxygen availability or microbiome exposure.  
 

CD105 expression across many of the tissues and tumours typically shows bimodal 
expression, that is CD105+ and CD105- populations could clearly be separated. A 

notable, exception to this was mammary tissue fibroblasts, that showed ‘compressed’ 
bimodal expression, such that two populations appeared to be present with different 
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CD105 expression, but the level of CD105 expression was more similar than that seen 

in other tissues/tumours. Interestingly, this was also seen in the in vitro expanded 
fibroblasts from healthy mammary tissues. This potentially supports the idea that 

mammary tissue-resident fibroblasts are the major source of fibroblasts in mammary 

tumours but this would need verifying. It also suggests that there is some altered 
regulation of CD105 protein expression that is specific to mammary tissue fibroblasts. 

An improved mechanistic understanding of the epigenetic regulation of CD105 protein in 
fibroblasts (and indeed epigenetic imprinting more generally in fibroblasts), will likely lead 

to improved understanding about what drives tissue-specific fibroblast phenotypes, 
including different levels of CD105 expression. 

 
In the KPC pancreatic and KPN colorectal tumours, there is consistently a population of 

MHCII+CD74+ fibroblasts overserved, specifically within the CD105- fraction of 
fibroblasts. Even if fibroblast MHCII expression is not functionally important, it does 

suggest that these fibroblasts in both pancreatic and colorectal tumours are in unique 

environment/niche in vivo. It is thus very interesting to note that MHCII+ fibroblasts are 
also observed in melanoma and lung tumours but only on CD105+ fibroblasts. If MHCII 

expression in fibroblasts is downstream of specific cell-cell interactions, for example 
between fibroblasts and IFNγ-producing T cells, then this may suggest the fibroblast-

leukocyte interactions in pancreatic and colorectal tumours are similar to each other and 
different to those occurring in melanoma and lung tumours, which again are similar to 

each other. Further work is needed to better understand what is driving MHCII 
expression specifically in CD105+ or CD105- fibroblasts in these tumours and what this 

can tell us about the different microenvironmental processes occurring. 

 
The ratio of CD105+:CD105- fibroblasts varied widely across different murine and human 

tumour types. In a general sense it appears that (with the limited number of human 
samples measured) the CD105+:CD105- ratio observed in spontaneous murine tumours 

is similar to the ratio observed in the analogous human tumours. For example, CD105- 
fibroblasts are a common feature of murine and human pancreatic, colorectal and 

mammary tumours but are rare in murine and human lung tumours. Human melanoma 
tumours could not be assessed by IHC here because a robust melanoma cancer cell 

marker had not been optimised for staining (although melanoma-specific markers like 
SOX10 could be tested in the future). A greater number of human FFPE tumours would 
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also need to be analysed to draw a more conclusive comparison. What dictates the ratio 

of CD105+:CD105- fibroblast in vivo is not known. Ex vivo analysis of the healthy organs 
(as discussed above) would enable improved understanding of whether the 

CD105+:CD105- fibroblast ratio seen in tumours simply represents a proportional 

expansion of different CD105+:CD105- ratios already present in the healthy tissue or 
whether there is selective expansion of one fibroblast population over the other as each 

tumour-type develops. An experiment that may give some insight into any selective 
expansion, is to simultaneously measure the CD105+:CD105- fibroblast ratio in tumours 

and the levels of cytokines/growth factors (for example, by multiplexed ELISA). This 
would enable comparison between the CD105+:CD105- fibroblast ratio and the 

presence of known fibroblast activators/growth factors which may control the ratio. 
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Chapter 10 – Summary discussion and future directions 

10.1 – General summary of research findings 
 

Fibroblasts are a mesenchymal cell type found in the stromal regions of most mammalian 
tissues. They are a major source of extracellular matrix (ECM) and ECM-modifying 

components in development, health and disease, and have a number of other reported, 
non-ECM functions, such as modulation of epithelial cell functions via paracrine 

signalling. Fibroblasts are highly abundant in primary and metastatic pancreatic ductal 
adenocarcinoma (PDA) tumours and have been ascribed putative pro- and anti-

tumourigenic functions. Notably, a consensus on how fibroblasts contribute to PDA 

tumour progression and therapeutic response is lacking. A major challenge to the 
accurate annotation of fibroblast functions in PDA tumours is the extensive heterogeneity 

of this cell type, as has now been observed across multiple single cell RNA sequencing 
studies. Such cellular heterogeneity can manifest itself as completely distinct and non-

interchangeable ‘lineages’ or as the same parental population, in distinct but variable 
phenotypic ‘states’. In this regard, PDA fibroblasts have a now well-documented capacity 

to move between at least two phenotypic polarisations, the so called myofibroblast- and 
inflammatory-like fibroblast states. This remarkable plasticity has likely further 

complicated annotation of fibroblast functions. In parallel, dermal fibroblast research has 
provided compelling evidence that irreversible lineage restriction of fibroblasts occurs 

during embryonic development. These distinct fibroblast lineages are retained 

throughout adulthood and have different, non-overlapping functions during tissue 
homeostasis and wound repair. Whether such fibroblast lineages exist in other 

mammalian organs or in tumours is not known. 
 

Importantly, a detailed understanding of the functions of individual fibroblast populations 
in PDA tumours, has been hindered by a lack of robust cell surface markers for live cell 

isolation and characterisation. In addition, the key cell types that fibroblasts interact with 
in the PDA TME are also largely unknown. To address this, I have developed a single 

cell, mass cytometry workflow focussing on cell surface proteins, that has allowed 
detailed annotation of the microenvironment of tumours from a PDA genetically 

engineered mouse model (GEMM). The analysis reveals complex and highly variable 

cellular ecosystems within the PDA TME and suggests a number of novel fibroblast-
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immune cell associations. A particularly notable feature across all PDA tumour samples 

was the presence of distinct fibroblast populations that could be separated by differential 
surface expression of CD105. The abundance of CD105+ and CD105- fibroblasts varies 

widely across PDA tumours and each has a distinct gene expression profile. CD105+ 

and CD105- fibroblasts are present in human PDA tumours, as well as healthy/non-
tumour bearing murine and human pancreas. Moreover, differential CD105 expression 

is highly stable, suggesting CD105 demarks distinct, non-interchangeable fibroblast 
lineages. In addition, both populations have the potential to adopt myofibroblast and 

inflammatory gene expression patterns under extended stimulation with TGFβ1 and 
IL1α, respectively, but CD105+ fibroblasts show a higher sensitivity to undergoing 

polarisation to either state.  Further gene expression and cell signalling analysis of 
CD105+ and CD105- fibroblasts, highlights the complexity of fibroblast activation and 

demonstrates differences in transcriptomic and signalling responses of CD105+ and 
CD105- fibroblasts that would likely confound analysis of bulk fibroblast isolations. 

 

To better understand the in vivo functional properties of CD105+ and CD105- fibroblasts, 
in an unbiased empirical fashion, I developed a syngeneic subcutaneous co-transplant 

model. CD105+ fibroblasts are fully tumour permissive, in that they do not enhance or 
restrict PDA tumour growth, and CD105- fibroblasts are found to be highly tumour 

suppressive. The potent suppressive function of CD105 is entirely dependent on 
adaptive immunity, with a major contribution from cDC1-mediated cross-priming of CD8+ 

T cells, suggesting that fibroblast and immune cell interactions are a key feature of PDA 
tumour growth. CRISPR/Cas-9-mediated deletion of CD105 in CD105+ fibroblasts does 

not induce tumour suppressive potential, suggesting that whilst CD105 is a useful 

pancreatic fibroblast lineage marker, lack of CD105 expression does not drive the 
dominant in vivo function of CD105- fibroblasts. Whilst CD105- fibroblasts are frequently 

found to express proteins involved in MHCII antigen presentation in vivo, deletion of 
these genes does not impact the suppressive function of CD105- fibroblasts, suggesting 

alternative mechanisms are responsible for the enhancement of anti-tumour immunity. 
 

Applying the single cell analysis workflow to primary fibroblasts from 18 other murine 
organs and tumours from 4 other spontaneous cancer GEMMs, indicates that CD105+ 

and CD105- fibroblasts are a feature of most tissues and are present to variable levels 
in other tumour types. Notably, populations of fibroblasts from colorectal tumours share 
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a high degree of phenotypic similarity to those from pancreatic tumours. Collectively, this 

data highlights potential conservation of CD105+ and CD105- fibroblast lineage 
restriction across different anatomical locations, that may have implications for a variety 

of normal and pathological fibroblast-driven processes. 

10.2 – Expected outcomes from research findings 
 
CD105 was originally included in the mesenchymal stromal mass cytometry panel 

because it is a reported marker of MSCs and is also robustly expressed on pericytes and 
endothelial cells (Barry et al., 1999; Dominici et al., 2006; Jin et al., 2017; Sugden et al., 

2017). The results presented in this thesis demonstrate that at least two functionally 

distinct fibroblast populations exist in murine and human pancreas and PDA and that 
they can be separated based on stable, differential expression of CD105. Thus, an 

expected outcome from this work is that future studies of fibroblast function in the 
pancreas or in PDA, will improve the accuracy of their conclusions by first checking the 

CD105 status of the fibroblasts they are working with or ideally, separating fibroblast 
isolations into CD105+ and CD105- fractions and study their functions separately. For 

example, a simple isolation of primary fibroblasts from the pancreas contains a mixture 
of CD105+ and CD105- fibroblasts and the ratio changes during in vitro culture. At day 

4 there is a higher fraction of CD105+ fibroblasts present than at day 10. Thus, analysis 
conducted on the bulk population at these two time points will likely show different 

results. The data presented here demonstrates CD105+ and CD105- fibroblasts have 

divergent behaviours and therefore, I expect that separation based on CD105 status, 
would greatly improve the consistency, accuracy and reproducibility of any results 

generated using pancreatic fibroblasts. CD105+ and CD105- fibroblasts are observed in 
many other mammalian organs and tumour types and it is possible that a similar 

approach of monitoring or isolating based on CD105 would be beneficial when studying 
fibroblasts from other tissues, tumours or pathologies. Importantly, more work is needed 

to determine whether the functional diversity of CD105+ and CD105- fibroblasts extends 
to other tissues and tumours. 

 
A second expected outcome from this work is an appreciation that to fully understand 

fibroblast functions, a detailed understanding of interactions between fibroblasts and 

adaptive immunity will be required. Fibrosis and inflammation are already established as 
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highly intertwined biological processes and fibroblasts are well known to be activated by 

inflammatory factors (Biffi et al., 2019; Meng et al., 2014). The data presented in this 
PhD thesis suggests that, in addition, to being downstream of inflammatory signals, 

specific populations of fibroblasts can act directly upstream of important immune 

functions and can dictate anti-tumour immunity. The ability of fibroblasts to directly 
modulate immune cell behaviour is less well documented than other fibroblast functions, 

such as ECM modification. The data presented in this thesis suggests that understanding 
of how fibroblasts contribute to immune cell functions have probably been complicated 

by the heterogeneity of fibroblasts and that not all populations of fibroblasts interact with 
the immune system in the same way. Indeed, distinct lineages (e.g. CD105+ and CD105) 

and phenotypic states (e.g. MyCAF- and iCAF-like) are likely all present at the same time 
in a single tumour, highly complicating functional annotation of the general fibroblast 

population. The studies presented here that compare tumour growth in immune-
competent and immune-deficient mice, indicate that the interaction between CD105- 

fibroblasts and adaptive immunity is the dominant functional phenotype in vivo, with little 

or minor contributions from more established fibroblast functions, such as paracrine 
cancer cell signalling, altered cancer migration/EMT and tumour angiogenesis. Thus, a 

more complete understanding of dominant fibroblast functions will require directly 
comparing fibroblast functions in immune-competent and immune-deficient models and 

interrogating fibroblast and immune cell interactions. 

10.3 – Application of additional technologies to study fibroblast heterogeneity 

 
A notable limitation of the mass cytometry approaches used in this PhD project, and 

indeed of other single cell technologies, such as scRNAseq and flow cytometry 
experiments, is that they require the target sample to be disaggregated into a single cell 

suspension and thus all spatial information is lost. Cell-cell contact of fibroblasts is a key 
driver on fibroblast-mediated functions and a key driver of inflammation and immune 

functions is the compartmentalisation of groups of immune cells together (Sautes-
Fridman et al., 2019; Wei et al., 2020; Zhou et al., 2018). Thus, a key step in improved 

understanding of fibroblast phenotype and function in the future will to integrate high 
parameter novel single cell technologies with analysis that preserves spatial information 

of cell types and phenotypes in tissues. One such novel method is ‘CODEX’, an iterative 

imaging analysis platform that allows >40 markers to be measured on the same FFPE 
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tissue slice by immunofluorescence-based imaging methods (Goltsev et al., 2018). Such 

high parameter studies will enable the number of measured parameters required to 
simultaneously map fibroblast and immune cell heterogeneity, whilst preserving the 

spatial organising of these cell types in tumours. These methods will enable more 

information to be extracted from the huge number of archival FFPE tumour samples 
stored by clinical and biomedical research institutions and has potential to greatly 

improve understanding of fibroblast behaviour in human tumours. Another benefit of 
using such spatial distribution analysis is that the cellular architecture of murine and 

human FFPE tumours can be directly compared, which may help contribute to answering 
one of the most pressing outstanding questions in tumour fibroblast research: how well 

do mouse fibroblast systems model human fibroblast systems? (See section 10.4.3) 
 

Novel technologies such as mass cytometry, scRNAseq and highly multiplexed imaging 
methods, all have the potential to make major contributions to improved understanding 

of fibroblast heterogeneity and functions in tumours and tissues. However, their selection 

for each specific analysis needs to be considered carefully. A detailed understanding of 
the advantages and disadvantages of each technology is needed to fairly evaluate which 

is the best tool for the desired purpose and how the technologies can be efficiently 
combined to provide complimentary and synergistic data.  

 

10.4 – Outstanding research questions and future directions 

 

10.4.1 – What are the most important functions of fibroblasts in tumours in vivo? 

 

One of the most important areas for future PDA fibroblast research, will be to improve 
understanding of fibroblast functions in tumours in vivo, particularly with respect to the 

functions of specific subpopulations of fibroblasts. Indeed, before fibroblasts can be 
considered as potential therapeutic targets, a better understanding of their functional 

properties and the ‘division of labour’ between subpopulations is needed. For example, 
understanding of fibroblast heterogeneity and function in tumours, lags far behind the 

understanding of fibroblast function in mammalian skin (see Chapter 1). One of the 
reasons for this has been the successful application of in vivo lineage tracing models in 

dermal fibroblast research, that have revealed distinct fibroblast lineages, their 
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developmental hierarchies and their specific in vivo functional contributions to skin 

homeostasis and wound healing (Driskell et al., 2013). Such a detailed understanding of 
fibroblasts in PDA tumours is lacking and similar lineage tracing models would likely be 

huge step forward towards the development of effective stromal targeting therapies. 

 
There are limited methods for studying fibroblast function in tumours in situ and until 

more robust models are developed, co-transplant models may be a useful tool for 
generating hypotheses to test in more representative spontaneous tumours models. The 

results described in this PhD project have outlined a dramatic tumour suppressive 
phenotype of CD105- fibroblast and PDA tumour cell co-transplants, that is entirely 

dependent on adaptive immunity. A key next step would be to understand the 
mechanism of this fibroblast-mediated enhancement of anti-tumour immunity. One 

approach to do this would be to compare the bulk gene expression between the growing 
PDA-only mono-transplant, the CD105+ fibroblast co-transplant and the CD105- 

fibroblast co-transplant conditions. This would reveal key gene expression changes 

between fibroblast-mediated permissive and suppressive growth states. A time course 
analysis would likely be needed because it is not known when during co-transplant 

growth, that the key interactions with adaptive immunity are occurring. If the gene 
expression profile is measured too late, the key gene expression changes may be 

missed completely or will appear as a generic immune response (e.g. IFN and cytotoxic 
signature). In addition, to gene expression measurements, analysis of the immune cell 

infiltrate (as measured by flow cytometry or mass cytometry) and cytokine/growth-factor 
abundance (as measured by multiplexed ELISA), would likely provide clues about the 

key immunological processes occurring during the permissive versus suppressive 

growth conditions. Again, measurements across a range of time points would give a 
more detailed understanding of the evolving adaptive immune reaction. The relative 

contributions of CD4+ or CD8+ T cells could be assessed by using appropriate depleting 
antibodies and the role of specific cytokines could be assessed using blocking antibodies 

(e.g. neutralising anti-TNFα antibodies) or transgenic mice lacking relevant ligands or 
receptors (e.g. Ifng-/- or Infgr-/-). Lastly, detailed imaging analysis may reveal the spatial 

distribution of fibroblasts and immune cells that are key to generating the differential 
growth. Thus, the co-transplant model may provide a useful system to study the 

interactions between fibroblast and adaptive immunity in the context of a growing PDA 
tumour. Importantly though, any proposed mechanism will need to be validated, firstly in 
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spontaneous murine model (see next paragraph) and ultimately investigated in human 

tumours (see section 10.4.3). 
 

As mentioned, there are currently very limited tools to study fibroblasts in tumours in situ. 

This is stark contrast to the field of tumour immunobiology, in which the huge variety of 
in vivo tools available for research has greatly accelerated understanding of specific 

immune cell functions in tumour and responses to immunotherapy (Hildner et al., 2008). 
For example, transgenic mouse models are readily available that constitutively lack 

specific aspects of the immune system (as for the NSG, Rag1-/- and Batf3-/- mice used 
in this PhD project) or in which specific cell types or genes can be modulated in a 

conditional manner (e.g. through Cre-recombinase, DTR expression or tetracycline-
controlled systems). Indeed, a variety of immune cell types can be effectively depleted 

in wild-type hosts and methods for generating bone marrow chimeras add a further 
flexible tool for explorative science. Analogous methods for deleting fibroblast 

subpopulations or modulating fibroblast gene expression/functions in specific fibroblast 

populations in tumours in situ are lacking. As such, the majority of fibroblast functional 
studies in tumours are reductionist, using in vitro model systems or in vivo transplants of 

isolated fibroblasts, as have been used in this PhD project. In vitro models and in vivo 
transplant models likely do not fully capture the impact fibroblasts have on tumour 

progression, maintenance and therapeutic resistance. For example, when fibroblasts are 
co-transplanted with cancer cells, the cancer cells typically overtake stromal cells rapidly 

which does not happen in spontaneous tumours. In addition, in vitro expansion risks 
irreversibly altering fibroblast function, through artificial isolation methods and 

manipulations. Thus, understanding of fibroblast function in tumours would be greatly 

advanced by the development of mouse models, in which fibroblast function can be 
modulated in specific subpopulations of fibroblasts, as has analogously been achieved 

in the study of tumour immunology. 
 

Strains of mice have been developed that utilize Cre-recombinase technology and 
fibroblast-associated genes such as Col1a1, Pdgfrα, Fap and Acta2 for lineage tracing 

and have been successfully used to track and isolate general fibroblast populations. The 
usefulness of such systems to directly modulate fibroblast gene expression in vivo (e.g. 

by crossing to LSL-deletor strains) or similar methods to deplete fibroblasts in tumours 
(e.g. using DTR or HSV-TK expression systems) is limited though. Firstly, these genes 
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are known to be highly expressed by other non-fibroblast mesenchymal cells, such a 

pericytes and smooth muscle cells. Therefore, if used to alter gene expression or deplete 
cells, these systems will modulate other important mesenchymal compartments, such as 

the vasculature. In addition, these genes are known to be expressed by fibroblasts in 

many different organs. Thus, using these systems to manipulate fibroblast gene function 
will likely induce complex systemic effects which may confound findings. For example, 

depletion of FAP+ stromal cell causes systemic cachexia and anaemia (Roberts et al., 
2013). Lastly and importantly, several of the genes used to drive these models are also 

broadly expressed by most fibroblasts, so genetic manipulation or deletion cannot be 
restricted to specific lineages or phenotypes of fibroblasts. Thus, selection of more 

specific gene promoters will an essential step towards in situ manipulation of specific 
populations of fibroblasts in tumours. Distinct lineages of fibroblasts have been traced in 

the skin by leveraging fibroblast lineage-restricted expression of Dlk1 or En1 (Driskell et 
al., 2013; Rinkevich et al., 2015). It would be particularly interesting to see if these 

lineage tracing models are able to delineate CD105+ and CD105- fibroblasts in the 

pancreas. In a similar manner, a detailed understanding of fibroblast lineage restricted 
gene expression programs in tumours, will be key to in vivo modulation of fibroblast 

functions in cancer. 
 

As mentioned above, orthotopically transplanted PDA tumour cell lines rarely develop a 
fibrotic reaction and thus do not model human PDA accurately. This has meant the ‘gold-

standard’ model in the field has become the spontaneous KPC model. But herein lies 
another confounding issue to studying fibroblasts in situ: the KPC (as for most other 

spontaneous models of cancer) uses the Cre-recombinase system to initiate 

tumourigenesis and thus the Cre-recombinase system cannot simultaneously be used 
to modulate fibroblast function. There are three possible approaches that may 

circumvent this issue to improve future experiments for in situ modulation of fibroblast 
function. 

 
The first would be to combine Cre-recombinase systems for cancer initiation, with 

flippase-based systems for stromal cell manipulation (or vice versa). These models have 
been demonstrated to be compatible and allow complex, simultaneous gene 

manipulation (Schonhuber et al., 2014). Thus, spontaneous tumours would develop in 
the context of genetically modified fibroblasts. Again, an important step here would be to 
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identify appropriate gene protomers to target specific fibroblast populations. Thus, a 

comprehensive understanding of gene expression patterns in fibroblasts will be key. In 
this regard, differential expression of collagens seen in this study may be particularly 

useful. During this PhD project, several genes are consistently found to be expressed 

selectively by either CD105+ or CD105- fibroblasts, for example, Col8a1 and Col4a6, 
respectively. This could potentially be used to drive fibroblast lineage-restricted gene 

manipulation or fibroblast subpopulation depletion via expressed DTR/HSV-TK systems. 
In addition, heterogenous populations of fibroblasts in the lung have been shown to 

differentially express Col13a1 and Col14a1, suggesting these genes may also be useful 
for tracing or manipulating specific lung fibroblast populations (Xie et al., 2018). Indeed, 

a similar method may have already inadvertently been proven experimentally: two 
models of colitis-induced carcinoma show opposite effects on tumour progression when 

stromal Ikkb  is deleted under control of either the Col1a2 or Col5a1 gene promoter, 
suggesting these genes may not only be expressed in different stromal compartments, 

but that these stromal compartments have opposing roles in inflammation-driven 

tumourigenesis (Koliaraki et al., 2015; Pallangyo et al., 2015). Whether such specific 
collagen genes are restricted to fibroblasts only, have sufficient subpopulation selectivity 

or are expressed to sufficient levels for highly penetrant recombination, will require 
further detailed studies. In addition, the range of commercially available Flippase-based 

models is limited and such models are typically custom generated, which can be 
expensive and time consuming. 

 
A second approach would be to delete fibroblast activating factors that exclusively derive 

from tumour cells by crossing the KPC to other Cre-deletor models. This has already 

been successfully demonstrated in arguably the most sophisticated PDA in situ 
fibroblast-altered model to date, in which the KPC model was crossed with a Shhfl/fl, 

model (Rhim et al., 2014). KPC tumours develop in which the cancer cells are unable to 
activate adjacent fibroblasts via SHH secretion. Such deletion is obviously only relevant 

to fibroblast-activating factors that derive directly from cancer cells and could not be used 
to study factors that derive from other cells of the TME. In such cases, pharmacological 

blockade of fibroblast-activating factors may be useful. However, this comes with the 
caveat that this method is not selective and will block the targeted pathway in other cell 

types. 
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A third option is to find transplantable systems that generate a robust fibrotic response 

and therefore more closely resemble human PDA. Transplants of 2D PDA cell lines, 
even when done orthotopically, induce far less fibrosis than that seen in spontaneous 

murine and human PDA tumours. If cell transplant systems could be found that 

recapitulate the fibrotic TME of human PDA, this would enable the broad range of 
existing and novel Cre-dependant models to be used as hosts and would greatly widen 

the scope for in situ-fibroblast modulation. Notably, improved fibrotic responses have 
been described with orthotopic implants of KPC PDA organoids into the murine pancreas 

(Boj et al., 2015) and work in our own lab has largely supported these findings. In 
addition, an orthotopic transplant model system would greatly improve the ease-of-use 

and throughput of PDA in vivo work: the KPC GEMM is logistically a challenging model 
to work with. The ability of organoid orthotopic transplants to recapitulate the TME of 

spontaneous murine and human tumours has been almost exclusively based on simple 
qualitative staining of αSMA by IHC (Boj et al., 2015). More detailed, quantitative 

comparisons between organoid-initiated and spontaneous murine and human PDA 

tumours are needed to better understand the relevance of this new and exciting model 
system. 

 
As described in more detail in the next section, very little is known about the functions of 

different fibroblast populations in normal tissue development and homeostasis and the 
models described above, may also offer flexible tools to better understand fibroblast 

biology in non-tumour settings.  
 

Fibroblasts are one of the major producers of ECM and ECM modifying components and 

manipulation of the ECM is a major way in which fibroblasts exert their functions (Kalluri, 
2016). Thus, to fully characterise fibroblast functions in tumours, a better understanding 

of the functions of the ECM is needed. ECM production and remodelling are commonly 
assessed, but the functional consequence of these and how the modified ECM regulates 

the functions of other cells, are poorly understood. Studies that do focus on the ECM, 
have demonstrated ECM composition, fibre orientation and stiffness can all profoundly 

influence the functions of cancer cells, immune cells and blood vessels in the TME 
(Baker et al., 2013; Lebid et al., 2020; Saatci et al., 2020). Despite this, most analysis 

methods for studying cell behaviour in the TME, including those used in this thesis, 
measure cells after tissue disaggregation and complete degradation of the ECM. In 



 231 

addition, 2D in vitro models are poorly suited to studying the roles of ECM on cell 

function. Thus, studying fibroblast-derived ECM in tumour samples in situ, or finding in 
vitro models that allow realistic ECM networks to be generated, will be needed to better 

understand how fibroblasts exert their various functions in tumours through ECM 

modulation. 
 

In summary, improved understanding of how fibroblasts functionally influence tumours 
will require improved model systems that capture the broadest range of fibroblast 

functions possible (e.g. including immune cell interactions and ECM modulation). It is 
highly unlikely that any single model system will fully recapitulate fibroblast behaviour in 

human tissues or pathologies. Thus. the biggest improvements in the accuracy of 
fibroblast research, will likely come from the rational combination of multiple in vitro and 

in vivo model systems, in which the advantages and limitations of each are well defined. 
Whilst thorough characterisation of such models is time consuming and costly, the entire 

fibroblast-research community, across multiple research areas, will benefit from such 

critical analysis. 
 

10.4.2 – Do fibroblasts in tumours come from expansion of local, tissue-resident 

fibroblasts or other sources? Why are there different fibroblast populations 
present in healthy tissues? What dictates their accumulation in tumours? 

 
Another important area for future fibroblast research, is to determine the origin of 

fibroblasts and their subsets in tumours. Indeed, improved understanding of the cellular 
origin of fibroblasts in tumours, may in turn lead to better understanding of why different 

fibroblast populations have different functions. For example, is there a reason why in the 
normal pancreas, CD105- fibroblasts are present that are able to enhance adaptive 

immune function? Does this have some immunological function related to pathogen 
control? Do CD105- fibroblasts in the pancreas influence autoimmune pathologies, such 

as type-1 diabetes? Tumours are complex and chaotic places and may not be the best 

place to study the functions of different fibroblast populations. In this regard, better 
defining the origins of fibroblasts and understanding fibroblast behaviour in healthy 

organs may possibly be a more appropriate way to reveal key drivers of differential 
functions. For example, fibroblasts are typically studied during pathogenesis and are 

often cited as being ‘quiescent’ until ‘activated’, which suggests a baseline level of 
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inactivity. Yet fibroblasts have well established roles in normal tissue development and 

homeostasis throughout an organism’s lifetime. For example, during the development 
and repair of the skin after wounding and supporting the intestinal epithelium via 

paracrine signalling (Driskell et al., 2013; Karpus et al., 2019). Thus, understanding of 

the roles of pancreatic fibroblasts in the healthy pancreas, may better reveal the reasons 
CD105+ and CD105- fibroblasts have evolved divergent functions. 

 
Local fibroblasts and more distal sources, such as bone-marrow derived mesenchymal 

stem cells, have been suggested to be sources of fibroblasts in tumours. The contribution 
from the bone marrow in most models appears to be minimal (see introduction chapter). 

Indeed, the high degree of similarity between CD105+ and CD105- fibroblasts in the 
murine pancreas and in murine PDA tumours is supportive of local expansion of 

fibroblasts rather than distal recruitment. Epithelial cells, pericytes, endothelial cell, 
adipocytes and mesothelial cells have all been shown to undergo mesenchymal 

transitions and have the potential to adopt fibroblast-like morphologies and gene 

expression patterns. Whether fibroblasts in tumours that originally derive from such 
different cell types, behave in the same way once transitioned or are inherently different 

because of their ontogeny, is not clear. Indeed, how reversible each of these 
mesenchymal transitions is, is also not well understood, although reversal of fibroblasts 

to adipocytes has been reported (Plikus et al., 2017). Quantifying the contribution of 
different cell types to the fibroblast compartment of tumours will be challenging and 

application of robust lineage tracing models will be needed. Such lineage tracing models 
will need to be highly specific, which will require a detailed understanding of the gene 

expression profiles of fibroblasts and other putative fibroblast sources throughout 

development, as well as robust cytometry and imaging workflows to follow lineage 
tracers in pure fibroblast subpopulations. In this regard, the type of mass cytometry 

analysis described in this thesis, would be an ideal platform to track and follow 
mesenchymal transitions in heterogeneous fibroblast populations, using lineage marker 

expression. 
 

The mass cytometry data presented in Chapter 4 demonstrates that whilst fibroblasts, 
pericytes and endothelial cells share common features with each other, they all form very 

distinct clusters with no overlap. No intermediate populations with mixed marker 
expression indicative of pericyte- or endothelial-to-fibroblast transition were observed in 
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any of the 19 PDA tumours tested. Thus, it seems unlikely these cell types are a source 

of any major fibroblast fraction in these tumours, although lineage-tracing models would 
be needed to test this fully. Interestingly, mesothelial cells are known to undergo 

mesenchymal transitions but are a relatively understudied source of tumour fibroblasts. 

The pancreas (as for many internal organs) is surrounded by a single-cell layer of 
mesothelial cells, that in other tissues is known to rapidly expand after tissue damage (Li 

et al., 2013). Indeed, some data in this thesis does support the concept that mesothelial 
cells may possibly be a source of fibroblasts in PDA tumours. For example, 

subpopulations of CD105- fibroblasts in PDA tumours have high expression of PDPN 
but show some level of expression of PCK. This unusual, mixed PDPN+PCK+ phenotype 

is a hallmark feature of mesothelial cells, although cells that have fully undergone 
mesenchymal transitions would be expected to lose expression of defining mesothelial 

proteins (such a cytokeratins) and express proteins typically associated with 
mesenchymal and fibroblasts identity (e.g. CD90, PDGFRα, αSMA) (Mutsaers et al., 

2015). Gene expression analysis of fibroblasts from murine pancreas and PDA tumours, 

does indeed detect low levels of expression of known mesothelial genes (e.g. Krt8/18, 
Wt1, Msln, Upk3b, Ezr) in CD105- fibroblasts compared to CD105+ fibroblasts. However, 

it is possible these may simply be minor contaminating PDPN+ mesothelial cells falling 
within the fibroblast FACS gate. Several studies have demonstrated that mesothelial 

cells can be a source of fibroblast-like cells under pathological conditions. For example, 
mesothelial cells undergoing mesothelial to mesenchymal transition have been shown 

to be a major source of hepatic stellate cells and myofibroblasts after liver injury (Li et 
al., 2013) and mesothelial cells are a major contributor to fibrotic reactions to peritoneal 

dialysis (Lopez-Cabrera, 2014; Namvar et al., 2018). In addition, mesothelial cells are 

major contributors to fibrotic adhesions after internal organ surgery and they contribute 
to mesenchymal cell types during development of trunk organs (Koopmans and 

Rinkevich, 2018; Mutsaers et al., 2015). Mesothelial cell can also be a source of vascular 
mesenchymal cells during the development of the mammalian gut (Wilm et al., 2005). 

FSP1, a known marker of mesothelial cells, has been reported to be expressed on 
subpopulations of fibroblasts in tumours (Sugimoto et al., 2006). Notably, some evidence 

suggests mesothelial to mesenchymal transitions can be a source of fibroblasts in locally 
advanced human colorectal cancer (Gordillo et al., 2020). In such cases, the 

mesothelium is reached during invasive tumour growth, thus conversion of mesothelial 
cells to fibroblasts may be a feature of advanced/invasive tumours. Interestingly, the 
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mesothelium as source of immune-enhancing fibroblasts may fit with a role in limiting 

pathogen spread, directly from one internal organ to another. In addition, mesothelial 
cells may adopt fibroblast function when expanded in vitro, and therefore they may make 

a significant contribution to in vitro primary fibroblast cultures from the pancreas and 

other internal organs. Thus, studying tumour formation in the context of a robust 
mesothelial lineage tracing model (e.g. Wt1-Cre or Msln-Cre) will be key to revealing if 

this relatively understudied cell type can contribute to the fibroblast compartment of 
tumours. More generally, much further work is needed to better understand where 

fibroblasts in tumours come from and how their cell of origin influences their functions in 
tumours. 

 
In addition to understanding fibroblast cell of origin, it will be interesting to determine 

what dictates the relative abundance of various fibroblast populations/lineages in 
tumours. For example, in KPC PDA tumours, a wide range of CD105+:CD105- fibroblast 

ratios are observed. However, the signals that dictate the relative abundance of each 

fibroblast lineage is not clear. The in vitro stimulation experiments presented in this 
thesis, suggest that at the level of signalling node activation, gene expression and protein 

expression, CD105+ and CD105- fibroblasts can have very different responses to 
activating factors. For example, CD105+ fibroblasts have stronger early transcriptional 

responses to TGFβ1 and IL1α and CD105- fibroblasts had stronger signalling responses 
to TNFα. Both populations respond in a similar manner to IFNγ and both CD105+ and 

CD105- fibroblasts have a strong response to PDGF, but the signalling pathways 
activated were very different. Thus, some of these soluble proteins may play a role in 

dictating the balance between CD105+ and CD105- fibroblasts in tumours. Whether the 

fibroblast factors that induce ‘activation’ are also the ones that induce population 
expansion, is largely unknown. For example, IL1α is a well-established, potent inducer 

of the iCAF phenotype, but does IL1α result in expansion of iCAFs in vivo? The wide 
variation in the CD105+:CD105- fibroblast ratio seen in KPC tumours may allow for 

correlations to be drawn: cytokine/GF levels and CD105+:CD105- fibroblasts ratios can 
be measured simultaneously and it might be possible to associate the levels of specific 

factors with the abundance of different fibroblast populations. Another method may be 
to use antibodies or transgenic mice to block/neutralise specific signalling ligands or 

receptors and assess the impact this has on the CD105+:CD105- ratio. Blocking 
fibroblast activating pathways to promote the accumulation of anti-tumourigenic 
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fibroblast phenotypes or lineages, may be one way to target the PDA stroma for 

therapeutic benefit. 
 

10.4.3 – How well do murine fibroblasts model human fibroblasts? How can we 

improve translatability of murine fibroblast research? 
 

One of the most important questions in fibroblast biology, and possibly one of the hardest 

to answer, is how similar are fibroblast functions between mice and humans, and by 
extension, how well do our mouse model systems recapitulate the fibroblast processes 

that occur in people? Answering this question will be key to the successful development 
of fibroblast-targeting therapies across a range of diseases. In this regard, understanding 

of fibroblast heterogeneity and fibroblast function may provide one of the most robust, 
meaningful and quantifiable features to compare fibroblasts between mice and humans 

and to begin to draw conclusions. A shared feature of mammalian fibroblasts, that has 
been known for a long time, is the ability of both mouse and human fibroblasts to adopt 

the so called myofibroblast (MyCAF-like) phenotype, broadly defined by high αSMA 
expression and stress fibre formation. As a more detailed understanding of the MyCAF-

like and, more recently, the iCAF-like phenotype has evolved, gene expression 

comparisons can now be made between murine and human PDA fibroblasts and have 
revealed the MyCAF and iCAF-like phenotypes are largely conserved between the 

species (Dominguez et al., 2020; Elyada et al., 2019). The general agreement in gene 
expression profiles between major fibroblast phenotypes in murine and human PDA 

tumours provides some confidence that mice can be used to model these specific 
fibroblast phenotypes, although more detailed comparisons of actual fibroblast functions 

will be an important next step. At least two fibroblast lineages exist in murine skin, which 
can be identified by differential expression of Dpp4 in vivo (Driskell et al., 2013; Rinkevich 

et al., 2015). Two scRNAseq studies of human skin samples have revealed that 
differential expression of Dpp4 is also able to define distinct fibroblast populations in 

human skin (Philippeos et al., 2018; Tabib et al., 2018). Similar studies comparing murine 

and human fibroblasts in other tissues, will broaden our understanding of how similar 
fibroblast composition is between the two species. The key comparison will then be 

whether the functions of fibroblast subpopulations are conserved between species. 
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As well as the similarity between MyCAF/iCAF-like states in murine and human PDA, 

the results in this thesis demonstrate that CD105+ and CD105- fibroblasts are also 
present in both murine and human PDA tumours. The analysis of human fibroblasts 

presented in this thesis is limited and further work is needed to compare the gene 

expression patterns and response to activating factors between murine and human 
CD105+ and CD105- fibroblasts. A key experiment will be to directly isolate CD105+ and 

CD105- fibroblasts from human PDA tumours and measure their gene expression 
profiles and compare this to the gene expression profiles of the respective murine 

populations. Another particularly interesting piece of follow up work would be to try to 
understand if CD105- fibroblasts promote anti-tumour immunity in humans, as observed 

here in mice. To do so will be challenging and effective comparisons will likely only be 
possible once the mechanism for CD105- fibroblast-mediated enhancement of anti-

tumour immunity is better understood. For example, if the mechanism works through 
cell-cell interactions with a specific immune cell type and CD105- fibroblasts, such 

interactions could be investigated in human PDA tumour samples by imaging analysis. 

 
Importantly, the difference in sample collection between mice and human tumour needs 

to be considered when comparing data from the species. For example, sampling 
differences may introduce large biases and limit the accuracy of mouse to human 

comparisons. Typically, mouse tumours are collected whole and disaggregated and 
therefore, the entire sample (core and invasive edge) is analysed. In contrast, most 

human tumour samples are taken as small core biopsies from within the larger tumour 
mass. Normally the centre of the tumour is targeted for sampling to increase the chances 

of collecting tumour cells (for example, for assessment by pathologists). This may mean 

that the majority of human biopsies do not measure processes at the tumour borders 
and invasive edge, which is where a lot of important tumour biology occurs. For example, 

the invasive front is often where the immune system interacts most directly with the 
tumour and where initial fibroblast activation and polarisation would be expected to take 

place. The increased use of ultrasound guided fine needle biopsies to sample tumours 
has increased the number of samples available for research use, but may exaggerate 

this sampling bias even more: ultrasound is used to accurately guide the collection 
needle to areas of high tumour density within the patient and a very small needle biopsy 

is taken, typically aiming for the tumour core/centre. Related to this sampling bias, is the 
fact that improved disaggregation methods will be needed to improve the study of 
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fibroblasts: fibroblasts are underrepresented in tumour analysis generally and more 

complete cell dissociation methods will release higher number of fibroblasts to study and 
may also be needed to release specific fibroblast phenotypes (e.g. those tightly bound 

to ECM networks). 

 
Human tumours develop over much longer periods of time than spontaneous murine 

tumours, and this may be another important difference that contributes to species-
specific differences in fibroblast composition. The most widely used GEMM of PDA is 

the KPC mouse, which only has macroscopic adenocarcinoma stage disease for ~1 
month (Hingorani et al., 2005). Even though human PDA tumours are typically diagnosed 

late in disease progression, modelling of mutation rates has suggested they can develop 
over periods of time >10 years (Yachida et al., 2010). Thus, if different fibroblast lineages 

and phenotypes have different persistence over long periods of time, this may result in 
major differences between mice and humans. The longer duration of tumour progression 

that occurs in human PDA tumours, may also allow more time for the tumour to exert 

selective effects on the TME. A recent scRNAseq study has indicated that most 
fibroblasts in human PDA tumours are in the MyCAF-like state and that murine tumours 

have more iCAF-like fibroblasts that humans (Dominguez et al., 2020). Studies using 
more quantitative technologies than scRNAseq need to be conducted to accurately 

measure such species-specific composition differences (although again the sampling 
bias may have an impact here).  

 
One possible way to better predict human fibroblast behaviour with mouse models, may 

be study fibroblast function across multiple mouse organs. Nine years ago, Friedman 

and colleagues proposed that because the patterning of mammalian organs occurred 
prior to the evolutionary divergence between the ancestors of mice and humans, 

common ‘core’ fibrosis pathways that are found in multiple mouse organs are more likely 
to be evolutionarily conserved in humans (Mehal et al., 2011). In addition, studying the 

same pathway in different murine organs is usually easier than trying to study the same 
pathway in the same organ but in a different species. Thus, conservation of a fibroblast 

behaviour across different murine organs would strongly suggest the pathway/phenotype 
predates speciation. One notable example would be robust proof of MyCAF/iCAF-like 

functions across fibroblasts from different organs, which would be suggestive of a high 
degree of conservation in human tissues. Focussing on such common pathways will 
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reduce the chance that novel fibroblast findings are relevant only to mice and hopefully 

improve the rate at which fibroblast-targeting therapies succeed in clinical trials. Such 
comparisons between tissues are feasible because fibroblasts are present in most 

mammalian organs and this may represent an important factor to leverage in fibroblast 

research, that is simply not feasible for other cell types. Notably, gene knockout mice or 
inhibitor studies can readily be adapted to study fibroblast function from one organ to 

another. Most studies focus on fibroblasts in one organ or tumour type and studies 
mapping fibroblast heterogeneity, phenotype and function across multiple different are 

less common. Such multi-organ studies will require more resources and expertise than 
projects focussed on a single organ and will likely require increased collaboration among 

research networks. However, broadening fibroblast studies across different organs may 
greatly enhance the therapeutic relevance of such research. In addition, publishing 

findings that are discordant between organs (and therefore likely less relevant to human 
biology), will be extremely useful for mapping tissue-specific or murine-specific aspects 

of fibroblast function. However, scientific research in general has a poor record of 

publishing negative data (Nature Career Column, 2019). Specifically related to fibroblast-
targeting therapies in cancer, understanding of shared fibroblast functions across organs 

may also be particularly important in the metastatic setting and for developing therapies 
that are effective in targeting tumours that have spread to distant sites. Developing a 

fibroblast targeting therapy that is exquisitely effective in the primary tumour but 
ineffective (or even worse tumour-promoting) at metastatic sites will have limited utility 

in the majority of cancer patients. Indeed, demonstrating fibroblast targeting therapies 
can be broadly applicable across different tissues is more likely to encourage research 

investment from large pharmaceutical companies. Ultimately, the real test of the 

relevance of any mouse model system for studying fibroblast function, will be when 
fibroblast-targeting therapies that are active in mouse models, are moved forward and 

tested in human clinical trials. 

10.5 – Concluding statement 
 

PDA is a terrible disease that causes a huge amount of suffering to patients and their 
loved ones. Innovative and novel approaches need to be explored to improve patient 

outcomes. Targeting the PDA TME has been proposed as one such approach (Chen 

and Song, 2019; Hosein et al., 2020). However, the complicated and constantly evolving 
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cellular ecosystems of tumours pose a major challenge to the development of effective 

therapies. In particular, the variety of competing pro- and anti-tumourigenic functions, 
need to be better understood to ensure that TME-targeting therapies are developed and 

tested in a rational and informed manner. Without such understanding, it will be difficult 

to find treatments that maximise efficacy, whilst minimising unwanted effects. Fibroblasts 
are one of the most abundant cell types in the PDA TME, yet very little is known about 

their functional contributions to PDA tumour progression and therapeutic resistance in 
vivo. The results described in this thesis specifically highlight CD105+ and CD105- 

fibroblasts as distinct, non-overlapping fibroblast lineages in PDA tumours, with 
divergent functions dependant on interactions with adaptive immunity. These results may 

be a small step to an improved understanding of fibroblasts in the PDA TME. Much 
further work is required to better understand the specific functions of CD105+ and 

CD105- fibroblast populations, the mechanisms that drive divergent behaviours, the 
relevance of these findings to other murine organs and ultimately the clinical relevance 

of these findings to the human disease. 
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