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Data-Driven System Identification Modelling
for Multi-Float M4 Wave Energy Converter
with Elastic Bed-Buoy-Bow Float Mooring

Xuefei Wang, Danni Liang, Mengxiao Li, Peter Stansby and Long Zhang

Abstract—This paper makes a unique contribution to
apply data-driven system identification methods to model
the mooring of 6-float M4 wave energy converter (WEC).
Within the M4 system, elastic mooring cables connect
the buoy to the basin bed, and the inelastic lines link
the buoy to the bow float. Two linear models including
autoregressive with exogenous inputs (ARX) model and
the Box-Jenkins (BJ) model are used to identify the systems
between three typical features: the wave surface elevation,
the mooring force in the elastics, and the motions of the
bow float. The bow float motions include pitch, surge
and heave. The performance of identified models are
determined from wave basin experiments under a number
of different wave conditions in terms of significant wave
heights and peak wave periods. Different sampling rate
and model orders are also tested during identification. It
is found that for both ARX and BJ models, low orders
and sampling rate are sufficient to identify the M4 WEC
systems.

Index Terms—System Identification, M4 Wave Energy
Converter, Mooring Configuration

I. INTRODUCTION

W ITH the expanding global energy demand, the
inadequate reserves of fossil fuels, the energy

crisis is severer than ever before [1]. In order to
alleviate the severity of the energy crisis, renewable
energy needs to be exploited and put into use urgently
[2]. As one of the renewable energy resources, the
ocean contains a vast volume of wave energy, tidal
energy, ocean current energy and salinity gradient
energy. Among these, wave energy has the potential
to be one of the major electricity generation resources
in the long term, since a substantial amount of
studies show that ocean wave has average potential
power just slightly less than natural wind [3]. For
example, Ireland announces that the wave energy will
occupy approximately 40% of the overall electricity
generated from renewable resources by 2050 [4]. In
Australia, wave energy production from west sea
coast will achieve 35% of the capacity installed from
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wind power by next decade [5]. However, unlike
the wind power that has been widely used in a
large industrial scale, the wave power has not been
extensively deployed in real applications yet [6]. The
industrial-scale implementation of wave energy is still
at an early stage and requires deeper research and
development [7].

A wave energy converter (WEC) transforms the
kinetic energy of ocean wave into electricity. Currently,
there exists several different wave energy conversion
technologies being researched and developed
worldwide, such as oscillating bodies, oscillating
water columns, and over-topping modules [8–10].
In this paper, a 6-float wave energy converter M4
is used for modelling, which is developed by the
University of Manchester. Fig.1 shows the 6 degree of
freedom M4 WEC which includes a bow float, three
mid floats and two stern floats with beams hinged
above the outer mid floats [11]. The wave forces of
each individual float are subject to pitch, surge and
heave motions. The M4 WEC naturally heads towards
the wave direction by drift forces. Fig.2 shows the
mooring to the bow float which consists of an elastic
cable, with stiffness of about 100N/m for tension
greater than 15N, see Fig.7 in [12], from the bed to a
spherical buoy and an inelastic cable from the buoy
to the bow float.

The M4 WEC has been well modelled numerically to
evaluate the M4 performance and further enhance the
device design and upgrade iteratively [13]. However,
numerical modelling of M4 WEC mooring forces in
steep waves has the following limitations which may
have impacts on the system design and manufacture.

1) While linear diffraction/radiation modelling gives
good predictions of response and power in
operational and surprisingly also of motion in
extreme conditions, mooring forces are highly
nonlinear and are not well predicted [11].

2) Computational fluid dynamics (CFD) modelling
requires massive computations to precisely model
the physical wave-structure interaction of the
WEC, which may take hours even days to
complete the modelling process. Especially for
WEC system useful lifetime estimation purpose,
the modelling procedure requires to be conducted
repeatedly to cover a long period of the fatigue
life cycle [14].

3) There generally exists mismatch between the
numerical model and the M4 WEC system for
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Fig. 1 Isometric view of 6-float M4 WEC system

Fig. 2 Mooring configuration of the physical experiment showing
the buoy and bow float

mooring forces. The modelling accuracy may be
limited to a certain degree due to the selection
of modelling methods and a constrained range
of features [12]. This discrepancy may reduce the
confidence level of system design.

Given these limitations, this paper aims to use
system identification methods to determine the
models between the waves and the mooring of M4
WEC system. Compared with numerical modelling,
system identification methods enjoys the following
advantages:

1) System identification is a data-driven method,
which uses real-time measurement signals and
can be adopted for online applications [15]. In
some cases, even limited measurement datasets
may produce useful information of the unknown
system parameters, and there is no need to have
prior knowledge of the status of the M4 WEC
system parameters.

2) System identification methods require less
computations and significantly reduce the
modelling time [16]. This simplicity speeds up the
modelling when it is conducted repeatedly and
routinely for a M4 WEC mooring fatigue lifespan
prediction purpose.

3) The design of the M4 WEC mooring system
can be advised based on both the numerical
models and the identified models. This may
provide a more comprehensive understanding of
the WEC system and deliver a better design
strategy for further manufacturing. The combined
consideration is likely to reduce the mismatch

between the model and the system to a minimum.
The high confidence level of design enables to
enhance the wave energy production.

The modelling focuses on the model between the
surface elevation of waves and the motions of the bow
float of M4 under different wave conditions, and the
model between the wave surface elevation and the
mooring forces in the elastic cables connected from the
basin bed to the buoy. The main contributions of this
paper are summarized as follows:

1) This paper aims to use data-driven system
identification methods to model the multi-float
M4 WEC device in terms of the wave surface
elevation, the mooring forces (top force and bed
force) and the bow float motions (heave, pitch and
surge). The dampers for power absorption at the
hinges are disengaged for these tests which are
mainly concerned with survivability in extreme
conditions [12].

2) The data was collected from M4 WEC water basin
experiments which covers a wide range of major
WEC operating conditions including 7 cases in
terms of different wave height and peak period
[12]. This provides sufficient flexibility to test the
modelling and shows high level of confidence in
modelling accuracy.

3) Two different linear model types (ARX and
BJ) are used to model the M4 WEC converter
considering the impacts of both model complexity
and sampling rate. M4 WEC modelling results are
compared using selected criteria including fitting,
FPE and MSE values.

The rest of this paper is organized as follows: Section
II introduces the system identification modelling
methods including both linear and nonlinear models.
Section III introduces the M4 WEC data acquisition
experimental data. Section IV shows the experiments
setup, procedures, results analysis and validations.
Section V concludes the paper.

II. LINEAR ARX AND BJ SYSTEM IDENTIFICATION

The 6-float M4 WEC has a complex nonlinear
mooring system, however, to enjoy the acceptable
model accuracy, the system can be approximated as
a series of piecewise linear models around different
operating conditions. In this paper, the linear ARX and
BJ models are used, and a brief theoretical background
of these two models is provided in this session.

As the input and output data are sampled in the
discrete time domain, discrete-time ARX and BJ models
are used here. The mathematical formulation of ARX
model is given by [15]:

a(z)yk = b(z)uk + ek (1)

where

a(z) = 1 + a1z
−1 + a2z

−2 + . . .+ anz
−n

b(z) = 1 + b1z
−1 + b2z

−2 + . . .+ bmz−m
(2)

and k = 1, ..., N . N stands for the total number of
samples, z−1 is the delay operator, namely, y(t − 1) =
z−1y(t). uk, yk and ek represent the input, output and
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error at time interval k, respectively. a(z) and b(z) are
the model coefficient vectors for the output yk and
input uk with orders n and m. The error ek is assumed
as a white noise in this case.

Denote φk and θ as the regressor vector and the
parameter vector respectively:

φk = [−yk−1 · · · − yk−n uk−1 · · · uk−m] (3)

θ = [a1 · · · an b1 · · · bm]
T (4)

According to the definition in equation (3) and (4),
equation (1) can be expressed as

yk = ŷk + ek (5)

where the prediction estimate of yk is denoted as
ŷk = φkθ. It is assumed that the error ek has identical
Gaussian distribution. To minimize that error, a cost
function is defined by

J(θ) =

N∑
k=n+1

e2k =

N∑
k=n+1

(yk − ŷk(θ))
2 (6)

The optimal selection of the system parameter θ̂ is
derived by

θ̂ = argmin
θ

J(θ) (7)

As a similar but more complex structure, BJ model
has four polynomials (h, f, c, d) and can be described
as [17]

yk =
h(z)

f(z)
uk +

c(z)

d(z)
ek (8)

where

h(z) = 1 + h1z
−1 + h2z

−2 + . . .+ hnz
−λh

f(z) = 1 + f1z
−1 + f2z

−2 + . . .+ fnz
−λf

c(z) = 1 + c1z
−1 + c2z

−2 + . . .+ cnz
−λc

d(z) = 1 + d1z
−1 + d2z

−2 + . . .+ dmz−λd

(9)

These four coefficient vectors h(z), f(z), c(z) and d(z)
offer the BJ model more flexible and complicated
description of the model structure, with λh, λf , λc

and λd model orders respectively. Obviously, the ARX
model is a special case of BJ model structure by setting
f(z) = a(z), c(z) = 1 and d(z) = a(z). Similar as
equation (7), the optimal parameter selection of BJ
model is given by

θ̂′ = argmin
θ′

J(θ′, yk, uk) (10)

where

J(θ′, yk, uk) =

N∑
k=1

e2k (11)

In this paper, three criteria are chosen to evaluate
the performances of the identified model candidates
including mean square error (MSE), Akaike’s final
prediction error (FPE) and fitting percentage. MSE (em)
is defined as [18]:

em =
1

N

N∑
k=1

(yk − ŷk)
2 (12)

where yk is the measured output, ŷk is the predicted
output. If em is equal to or close to 0, it means the

Fig. 3 Aerial photo of WEC with mooring in the wave basin

Fig. 4 Lir Ocean Basin of University College Cork, showing
wavemakers, beach and M4 WEC

measured outputs match the predicted one. A large
value of em indicates the large error between the model
and the system.

FPE (ef ) is described as [18]:

ef =

(
N + p+ 1

N − p− 1

)
σ̂2
p (13)

Where p is the order of the model and σ̂p is the
estimation of the prediction error power when the
order is p. When FPE is minimised, the order of the
system can be selected. Similar as MSE, the smaller
value of ef indicates that the identified model better
describes the WEC system.

III. EXPERIMENTS SET-UP AND DATA SELECTION

The experiments were carried out in the Lir Ocean
Basin of University College Cork, Ireland. An aerial
photo of the experiment configuration is shown in
Fig.3, and Fig.4 shows in detail that the basin has a
curved line of 80 wave makers with sloping beaches
on the two sides. The wave surface elevations, the
mooring forces and the motions of the bow float are
recorded during the tests.

This work selects three representative data sets for
analysis, which are sea surface elevation, mooring
force (top and bed force) and motions (pitch, surge
and heave). In this paper, three different types of
single-input single-output models are constructed. The
first one is to model the dynamics between surface
elevation and motions where the elevation is the model
input and motion is the model output. The second one
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TABLE I Three system identification schemes

Model Scheme Model Input Model Output

A Elevation Motion

B Force Motion

C Elevation Force

TABLE II Different significant wave heights and mean wave
periods

Case Hs/m Tp/s

1 0.06 1.0

2 0.06 1.2

3 0.06 1.4

4 0.06 1.8

5 0.13 1.2

6 0.16 1.4

7 0.16 1.8

uses mooring force as the input and motion as output.
In the third model, elevation is the input and mooring
force is the output. Table I summarizes these three
models. As shown in Fig.2, the surface elevation is
measured with no WEC in the basin, and the mooring
force is the force of the cable moored to the bed with
top force measuring the force near buoy and bed force
measuring the mooring force near the basin floor. The
experiments are conducted in seven cases in terms of
different significant wave heights (0.06m, 0.13m, 0.16m)
and mean wave periods (1.0s, 1.2s, 1.4s, 1.8s), and they
are briefly summarized in Table II.

The acquisition of raw data is completed within the
experimental time of 600s. The sampling frequency
for each measured variable is different and produces
different number of samples. The surface elevation
has 76800 samples with a sampling frequency of
128Hz. The mooring force has 30000 samples with a
sampling frequency of 50Hz. The surge motion has
19200 samples with a sampling frequency of 32Hz.
For the system identification, the sampling rate for
both input and output measurements has to be the
same. The sampling rate of the surface elevation is
around 140Hz while the rate for motion is 32Hz which
means that the sampling rate of surface elevation is
4 times faster than the motions. For the modelling,
the sampling rate of surface elevation should be the
same as the motion data. In this work, as a result, the
collected data are re-sampled to make sure the input
and output data have the same sampling rate. Fig. 5
shows the time domain plots of the three re-sampled
measurements over time.

Take the surface elevation and mooring force as a
group of data, the former is the input data and the
latter is the output data. Similarly, for mooring force
and surge motion data, the former is input data and
the latter is output data. The data volume of the three
data is different. The other two data are sampled at
equal intervals. In the end, the data volume of the
three data is the same as 19200. Original data can be

divided into training and validating data. The waves
are generated by the wave-making device. During the
initial period of the experiment, the waves are not
fully developed. Hence, to validate the measurements,
the samples before 2200 are removed and the rest of
samples are used for modelling. Therefore, multi-step
prediction is required. In this work, three and five
prediction steps are selected to compare with one
prediction step modelling.

IV. MODELLING RESULTS ANALYSIS

In this session, three different types of models with
different input-output pairs are constructed under
different modelling settings. Results from theses three
models are given one by one as follows.

A. Surface elevation-motion modelling

The first model uses wave surface elevation
as the model input and motions as the output.
This input-output pair is written as surface
elevation-motion for convenience. Although we
have 7 cases of experimental data under different
wave conditions (heights and period), we choose
one of them to illustrate our modelling procedure
and show the associated results. The case used
here is Hs = 0.06m and Tp = 1.0s, with spectral
peakedness γ = 3.3. For the full results for all the
7 cases are presented in the later part of this paper.
The impact of different sampling rates, model orders
and two different models (ARX and BJ) on the model
performances (indicated by MSE and FPE, and 1, 3, 5
steps ahead prediction) is carefully investigated under
repeatable modelling process. The data is separated
into a training set and a testing set. The training set
accounts for 70% of the data, while the testing set is
30%.

1) Comparison of sampling rate: When sampling the
system, the Nyquist sampling condition fs ≥ 2fmax

needs to be satisfied, where fmax is the highest
frequency of the signal and fs is the sampling
frequency. However, the best fs is not fully known for
M4 WEC system. The sampling rate is chosen as a prior
based on engineer’s experience and therefore it may
not be optimal for modelling. Hence, we re-sample
the data and investigate the impact of sampling rate
on the model performances. The sampling rates are
chosen as 32Hz, 16Hz, 8Hz and 4Hz. Moreover, the
result of validation is under 1 step ahead of prediction.
The results of the modelling are shown below.

From Table III, when the sampling rate reduces, the
FPE and MSE of the model increase at the same time.
The model performance becomes poorer for the larger
FPE and MSE values. Meanwhile, the fit percentage
of the testing data is decreasing. The reason for this
phenomenon may be that the diminishing number
of data results in inadequate samples. Therefore, the
highest sampling rate for the modelling produces
the best models, and it is selected in the following
experiments.
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Fig. 5 Re-sampled measurements (Hs = 0.06m, Tp = 1.0s): (a) Surface elevation for wave excitation; (b) Mooring force; (c) Surge motion

TABLE III Comparison results of different sampling rates for ARX model

Sampling Data
Training results Testing results

FPE (×10−4) MSE (×10−4) Fitting (%) Fitting (%)
32Hz 19200 4972 4963 97.91 97.25
16Hz 9600 235.2 234.3 95.38 94.32
8Hz 4800 275.3 273.3 84.21 82.56
4Hz 2400 2.554 2.474 55.61 54.98

model order: [2 2 2]; Hs = 0.06m; Tp = 1.0s; elevation-motion

2) Comparison of model orders: Under sampling rate
of 32Hz, different orders of ARX models are applied to
the system identification. The orders considered here
are [2 2 2], [4 2 1], [5 2 1], [10 2 1] and [15 16 20],
respectively. Table IV presents the results of different
orders of model. Some representative time-domain
results from the trained model with order [2 2 2] are
shown in Fig.6. As can be seen, the fitting percentage
for the lowest model order [2 2 2] is 97.65%. When
increasing the model order, the fitting percentage only
improves marginally. A general principle in choosing a
final model is that the simple model with lower order
is often preferred if its performance is similar to the
complex models with higher orders. In addition, the
lower model order also enjoys fast computation speed.
Therefore, the lower order [2 2 2] is chosen as the final
model order.

For the same order of the model, different prediction
horizons are applied to predict the output. In addition
to the one step ahead prediction, the three and five
step ahead predictions are also given. The multiple
step ahead prediction can have larger accumulated
errors and therefore the prediction errors increase with
the length of steps. Results from different step ahead
predictions are consistent. Only the lower orders and
one step ahead prediction horizon are applied in the
subsequent experiments.

3) Comparison of ARX and BJ models: In this section,
the BJ model is applied to compare with the ARX
model. In the experiment, the sampling time is still
32Hz and the prediction horizon is 1 step ahead. The
training and validation of the BJ model are shown in
Table V. It can be found that the lower order BJ models
also perform similar to the higher order models, which
holds the same conclusion with the results from ARX
models. Hence, here the BJ model order is selected as
[2 2 2 2 1].

In order to further validate the performance of ARX
(or BJ) models, further experiments are conducted for 7
different wave conditions with different wave periods
and heights (as shown in Table II) and Table VI shows
the result of BJ model with order [2 2 2 2 1] as an
example. The models perform well across 7 cases with
a fitting percentage ranging from 94.84% to 99.57%. It is
worth mentioning that the case (Tp = 1.2m, Hs = 0.13s)
has the lowest fitting percentage of 94.84%.

B. Force-motion modelling
The second model uses top mooring force as the

model input and motions (surge, pitch and heave)
as the model output for system identification. This
input-output pair is written as force-motion for
simplicity. Also, both linear ARX and BJ models are
used for comparative analysis under seven different
wave condition cases and different sampling rates. As
an example, Tables VII shows the results of modelling
between top mooring force and surge motion under
the first wave condition. It is worth noting that the
fitting percentage of the lowest ARX model order [2
1 1] is 99.25%. The three and five-step prediction can
also achieve a high fitting percentage. Therefore, ARX
model order [2 1 1] is then selected for top force-surge
motion modelling. Similar to ARX model, the lower
order for BJ model also has satisfied performance and
in this case the order [3 2 2 2 1] is selected.

Table VIII shows the different sampling time results
of ARX and BJ modelling under the determined model
orders. Similar to the results of the elevation-motion
model, the values of MSE and FPE increase as the
sampling rate reduces, which results in a poorer
identification performance. The insufficient number of
samples decreases the model fitting percentage. Hence,
in this case, the highest sampling rate is selected for
modelling.
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TABLE IV Comparison of different ARX model orders

ARX order
Training results Testing results

FPE (×10−7) MSE (×10−7) Fitting (%)
Fitting (%)

1 step 3 step 5 step
[2 2 2] 6.317 6.311 97.65 97.04 89.19 78.00
[4 2 1] 5.147 5.139 97.65 97.19 89.98 79.08
[5 2 1] 4.972 4.963 97.91 97.25 90.02 79.36
[10 2 1] 4.600 4.584 97.99 97.29 90.37 80.36

[15 16 20] 4.490 4.465 98.02 97.32 90.60 80.99

Hs = 0.06m; Tp = 1.0s; elevation-motion

TABLE V Results of differnet BJ model orders

BJ order
Training results Testing results

FPE (×10−7) MSE (×10−7) Fitting (%) Fitting (%)
[2 2 2 2 1] 5.227 5.271 97.85 97.21
[4 4 4 4 3] 4.524 4.513 98.01 97.32
[5 5 5 5 2] 4.291 4.278 98.06 97.40

[10 10 10 10 6] 3.801 3.766 98.18 97.47
[15 15 16 16 6] 3.620 3.586 98.22 97.50

Hs = 0.06m; Tp = 1.0s; elevation-motion

TABLE VI BJ modelling under 7 wave conditions

Wave structure
Training results Testing results

FPE (×10−8) MSE (×10−8) Fitting (%) Fitting (%)
Tp=1.0

Hs=0.06

8.891 8.882 99.57 99.52
Tp=1.2 2.056 2.053 99.12 98.49
Tp=1.4 2.026 2.023 99.13 98.64
Tp=1.8 5.046 5.038 99.17 99.26
Tp=1.2 Hs=0.13 1.629 1.626 94.84 92.98
Tp=1.4 Hs=0.13 3.659 3.653 97.16 94.49
Tp=1.8 Hs=0.13 1.619 1.616 99.48 99.50

model order: [2 2 2 2 1], elevation-motion
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Fig. 6 One-step ahead trained model results of ARX model with order [2 2 2]: (a) pitch motion; (b) surge motion; (c) heave motion

TABLE VII Results of different ARX model orders

ARX order
Training results Testing results

FPE (×10−8) MSE (×10−8) Fitting (%)
Fitting (%)

1 step 3 step 5 step
[9 10 10] 6.822 6.789 99.63 99.56 97.51 93.53

[4 4 1] 7.882 7.866 99.60 99.52 97.28 93.16
[3 3 1] 8.905 8.892 99.57 99.52 97.19 92.86
[2 1 1] 27.26 27.23 99.25 99.11 95.20 89.22

Hs = 0.06m; Tp = 1.0s; top mooring force-surge motion
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TABLE VIII Results of different sampling rates for ARX and BJ models

Data Length
ARX BJ

Training results Testing results Training results Testing results
FPE (×10−8) MSE (×10−8) Fitting (%) Fitting (%) FPE (×10−8) MSE (×10−8) Fitting (%) Fitting (%)

1200 3.536 3.490 72.92 67.92 1.041 1.020 85.36 84.43
2400 1.894 1.882 80.03 78.06 1.702 1.684 81.11 78.51
4800 4.261 4.249 90.51 90.81 2.566 2.555 92.64 92.49
9600 3.788 3.782 97.17 96.82 1.022 1.019 98.53 98.19

19200 2.726 2.723 99.25 99.11 8.914 8.902 99.57 99.52

Hs = 0.06m; Tp = 1.0s; top mooring force-surge motion; ARX model order: [2 1 1]; BJ model order: [3 2 2 2 1]

TABLE IX Results of different ARX model orders

ARX order
Training results Testing results

FPE (×10−1) MSE (×10−1) Fitting (%)
Fitting (%)

1 step 3 step 5 step
[2 2 1] 5.855 5.851 75.69 77.09 67.73 57.71
[4 3 1] 5.747 5.739 75.79 77.22 68.08 58.11
[5 5 1] 5.701 5.691 76.02 77.30 68.5 58.74
[10 6 1] 5.649 5.632 76.15 77.47 68.81 59.05

[20 18 13] 5.562 5.525 76.37 77.68 69.55 60.50

Hs = 0.06m; Tp = 1.0s; elevation-top mooring force

TABLE X Results of different BJ model orders

BJ order
Training results Testing results

FPE (×10−1) MSE (×10−1) Fitting (%) Fitting (%)
[2 2 2 2 1] 5.641 5.636 76.14 77.46
[4 4 4 4 3] 5.540 5.531 76.36 77.69
[5 5 5 5 1] 5.536 5.523 76.38 77.63

[10 10 10 10 6] 5.532 5.511 76.40 77.70
[20 20 18 18 6] 5.350 5.303 76.85 78.04

Hs = 0.06m; Tp = 1.0s; elevation-top mooring force

C. Surface elevation-force modelling

The third model uses wave surface elevation as the
model input and top mooring force as the output for
system identification. Similarly, this input-output pair
is written as elevation-force modelling for simplicity.
The elevation-force models are essential to predict the
minimised peak wave force given the measurements
of the wave conditions, especially the periodic wave
surface elevation information. Both ARX and BJ models
are applied to test the model performances under seven
wave condition cases. The sampling rate remains the
same as previous two modelling cases.

Table IX shows the ARX modelling results. For
different model order comparison, the conclusion is
similar to the previous two modelling cases. The higher
orders barely improves the fitting percentage while
the lower order can also provide good performance.
However, in this model, the fitting percentage is
approximately 77% which is obviously lower than that
in the previous two model cases. The modelling result
of BJ models are shown in Table X. Similar to the
performance of the ARX model, the BJ model also has
approximately 76% fitting percentage. The results are
slightly better than the ARX model with lower FPE
and MSE, compared to the results of the ARX model
in Table IX.

In this section we chose to focus on surge motion
from the other two motions (heave and pitch) in
our presented results because it has a particularly
significant impact on the performance of the M4 WEC
in practical applications. The heave and pitch motions,
while certainly relevant and modeled, generally have
less influence on the overall performance in this
context.

V. CONCLUSION

In this paper, for the first time, two system
identification methods, namely, autoregressive with
exogenous inputs (ARX) and Box-Jenkins (BJ) models
have been used to model the M4 wave energy
converter (WEC) using wave surface elevation, top
and bed mooring forces and the bow float motions
including surge, pitch and heave under seven different
wave condition cases based on the data collected
via water basin experiments. The performance of
models with different sampling rates and orders are
also compared. Extensive results show that the lower
order models have excellent fitting percentage and the
model-system error is adequately small.

The findings from our study open several avenues
for future investigations, promising to further expand
our understanding of M4 WEC system. While our
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present work focused on the system identification of
M4 WEC, verifying wave conditions, surge motion
response, and mooring force, however, the application
of the method proposed in this paper is not restricted
to these aspects.

1) Firstly, one of the key areas that we plan to
explore is the application of our method to the
investigation of the hydrodynamic characteristics
of M4 WEC. This includes understanding how
the device interacts with the dynamic forces of
the water, which could provide deeper insights
into its behavior under various wave conditions.
Special attention will be given to the study of
fluid-structure interaction, device motion, and
wave diffraction and radiation effects.

2) Secondly, we aim to delve into the energy
capture performance of the M4 WEC device.
This will encompass the device’s efficiency and
effectiveness in harnessing wave energy, which is
a critical factor determining its practical utility.
We will scrutinize factors such as energy capture
width and power take-off efficiency, which directly
influence the energy conversion process.

Through these future research directions, we aspire
to continue to contribute to the knowledge and
technology development in the M4 WEC devices.
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