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1 Introduction
A cluster randomized controlled trial (CRT), also known as a group randomized trial,
is an experimental study design commonly used, for example, in health, social science,
policy, and education research. In CRTs, the unit of randomization consists of a group
of individuals. For example, it could be a hospital, geographical area, or school (each
constituting a “cluster”), with the clusters, rather than individuals, randomly allocated
to different interventions.

Statistical analysis must account for the correlation among individuals within the
same cluster, which can be achieved using individual data analysis methods such as
generalized linear mixed models, generalized estimating equations, or cluster–robust
standard errors with a generalized linear model. Alternatively, it can be achieved by
collapsing the data to summary statistics for each cluster, which is known as a cluster-
level analysis or sometimes a cluster-summary analysis. In addition, the number of
randomization units (clusters) is often small; a recent review of medical journals found
a median of 25 clusters (Kahan et al. 2016) per trial. There is a need for methods that
can provide robust inference even with a small number of clusters. This also increases the
risk of a chance imbalance in potential confounders between the arms, and adjustment
of potential confounders in the analysis becomes important.

Here we introduce a command for cluster-level analysis. Individual-level data are
summarized for each cluster, and simple independent data analysis methods can be
used on these summaries. The method can be used with continuous, binary, incidence-
rate, and ordinal outcomes. It has been found to perform well in a range of scenarios,
including nonnormality of cluster-level means and with a small number of clusters (Gail
et al. 1996; Bennett et al. 2002; Thompson et al. 2022; Ukoumunne, Carlin, and Gulliford
2007).

There are several advantages to this method over individual-level methods. Cluster-
level analysis is known to maintain type-one error with as few as 4 clusters in total,
whereas individual-level methods have inflated type-one errors with as many as 40 clus-
ters and require small-sample corrections that have variable success (Leyrat et al. 2018;
Thompson et al. 2022). Another advantage is the ease of calculating a risk ratio for a
binary outcome when some individual-level methods struggle with convergence (Bliz-
zard and Hosmer 2006). Last, a cluster-level analysis is the only known way to account
for a matched-pairs trial design in the analysis of a binary or incidence-rate outcome
(Hayes and Moulton 2017).

However, the method is not without limitations. Unweighted cluster-level analy-
sis can be less efficient than an individual-level analysis when cluster size varies and
there are many clusters (Thompson et al. 2022). Weighted cluster-level analysis using
weighted least squares or a weighted t test has been proposed to improve the method
efficiency, but difficulties incorporating uncertainty in the weights generally lead to
standard errors that are too small and have inflated type-one errors (Westgate 2013).
In addition, adjusting for individual-level covariates becomes more difficult; it requires
several steps before the data are summarized by cluster (Bennett et al. 2002).
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In this article, we introduce the clan command, which simplifies implementation
of cluster-level analysis. We will begin by describing the analysis method before pre-
senting our command. We provide several illustrative examples and finish with some
conclusions.

2 Statistical methods
clan performs a cluster-level analysis either unadjusted or adjusting for individual- and
cluster-level covariates. It can be used with binary, incidence-rate (events per person-
time), and continuous outcomes. It can also be used to account for a stratified design.
Depending on the type of outcome being analyzed, different intervention effect measures
may be of interest. For a binary outcome, we may be interested in the risk difference
or the risk ratio. For an incidence-rate outcome, we may be interested in the incidence-
rate difference or incidence-rate ratio. For a continuous outcome, the most common
intervention effect of interest is a difference in the mean of the outcome.

In this section, we provide the technical details of this method as proposed by Ben-
nett et al. (2002) and Hayes and Moulton (2017).

2.1 Unadjusted analysis: Calculating intervention effects

We define yijk as the observed outcome of individual k = 1, . . . ,mij in cluster j =
1, . . . , Ci in arm i = 0, 1 for control and intervention, respectively, where Ci is the
number of clusters in arm i and mij is the number of individuals in cluster j in arm i.
For example, yijk could be the body mass index (BMI) of student k in school j, receiving
a diet program i. For each individual, we define nijk as the person follow-up time of
person k in cluster j in arm i for rate outcomes and set nijk = 1 for continuous and
binary outcomes.

We begin by calculating a summary statistic of the outcome for each cluster j and
arm i as the sum of the observed outcomes divided by the cluster size:

sij =

∑mij

k=1 yijk∑mij

k=1 nijk

In each cluster, this gives the risk (or proportion or prevalence) for a binary outcome,
the incidence rate (number of events per person-time) for a rate outcome, or the mean
for a continuous outcome. In our diet program example, sij would correspond to the
average BMI observed in school j in arm i.
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2.1.1 Absolute effect size: Risk difference, rate difference, and mean difference

The risk, incidence rate, or mean in each arm i can be estimated by the arithmetic mean
of the cluster-summary statistics for the clusters in that arm:

si =
1

Ci

Ci∑
j=1

sij

In our diet program example, this would correspond to the mean of the average BMIs
across the schools in arm i. Note that each cluster is here given an equal weight.

The unadjusted absolute effect can then be estimated by the difference of these
arithmetic means between the intervention and control arm:

s1 − s0

This could be derived arithmetically or, equivalently, using an ordinary least-squares
regression. This is the approach used in clan to facilitate the estimation of the variance
and to conduct inference as shown below.

The following linear model is fit to the cluster-level summary statistics,

sij = αa + βai+ eaij

eaij ∼ N(0, σ2
ae)

where the a index indicates parameters for the absolute effect model; αa is the intercept
corresponding to the mean of the cluster-level statistics in the control arm, s0; βa is the
slope capturing the difference between the intervention and control means, s1 − s0; and
eaij are independent, normally distributed random errors.

For risk or rate outcomes, the assumption of normality may be violated, but the
method is typically robust to this nonnormality (Bennett et al. 2002).

In our diet program example, αa is the arithmetic mean of the school-mean BMIs
in the control arm, and βa is the difference in the mean BMI between the two diet
programs.

2.1.2 Relative effect size: Risk ratio and incidence-rate ratio

The risk ratio and incidence-rate ratio are both examples of relative intervention effects.
For relative effects, we use the natural logarithms of the cluster summaries. This facil-
itates calculation and inference of ratio measures as described below. We can estimate
the risk or rate in each arm by the geometric mean of the cluster summaries:

sGi = exp

 1

Ci

Ci∑
j=1

ln (sij)


These geometric means are displayed in the output of clan for each arm if a ratio effect
is requested. The geometric mean is often preferable to arithmetic means for skewed
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data because it is less strongly influenced by outliers (Alexander 2012). Risks and rates
with low prevalence are often skewed because their distribution is bounded by zero and
the log of the cluster-level risks and rates are likely to be closer to a normal distribution
than the untransformed values.

The unadjusted risk or incidence-rate ratio can be estimated as the ratio of these
geometric means in the intervention and control arms:

sG1

sG0

As with the absolute effect, we can estimate this relative effect arithmetically or using
ordinary least squares. This time, the linear model is fit to the logarithm of the cluster-
summary statistics,

ln(sij) = αr + βri+ erij

erij ∼ N(0, σ2
re)

where the r index is used to indicate parameters for the relative effect model; αr is
the intercept corresponding to the logarithm of the geometric mean in the control arm
ln (sG0); βr is the slope corresponding to the natural logarithm of the ratio of the
geometric means, ln (sG1/sG0); and erij are independent, normally distributed random
errors.

Because we use logarithms in this method, the relative effect size estimator is not
defined if any cluster has no events (

∑mij

k=1 yijk = 0). Several solutions have been
proposed for this (Hayes and Moulton 2017; Habib 2012; Alexander et al. 2005). In
clan, if any clusters meet this condition, we add half an event to every cluster (Hayes
and Moulton 2017; Breslow 1981), giving the following alternative cluster-summary
statistic for every cluster:

s′ij =

∑mij

k=1 yijk + 0.5∑mij

k=1 nijk

We then substitute s′ij for sij in the calculations above.

2.2 Unadjusted analysis: p-value and confidence interval

We calculate p-values using Wald tests of the ordinary least-squares regression esti-
mate of the intervention effect coefficient with the variance of the coefficient estimate
estimated using standard formulas for ordinary least squares.

For an absolute effect, the p-value for the statistical test H0 : β̂a = 0 is taken from
the t distribution with C0 + C1 − 2 degrees of freedom (DF)

β̂a√
V̂ar(β̂a)

∼ tC0+C1−2
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and 95% confidence intervals (CIs) are calculated as β̂a±tC0+C1−2,0.025

√
V̂ar(β̂a), where

tDF,q indicates the value of the t distribution with DF and an inverse cumulative prob-
ability of q.

For the relative effect, calculations are similar. The p-value is taken from the t
distribution

β̂r√
V̂ar(β̂r)

∼ tC0+C1−2

and CIs are calculated as exp
{
β̂r ± tC0+C1−2,0.025

√
V̂ar(β̂r)

}

2.3 Adjusted analysis: Estimating the intervention effect

Adjusting for individual-level covariates is done in a two-stage approach. First, we
estimate a cluster-summary residual for each cluster, and second, we analyze these
residuals. The process is summarized for each intervention effect measure in table 1.
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Table 1. Summary of steps to calculate each adjusted intervention effect measure

Risk Risk Incidence- Incidence- Mean
difference ratio rate rate ratio difference

difference

Outcome type Binary Binary Event per Event per Continuous
person-time person-time outcome

Interpretation Risk Risk Rate Rate Mean
of cluster-
summary
measure sij

Unadjusted s1 − s0 sG1/sG0 s1 − s0 sG1/sG0 s1 − s0
effect estimate

Stage one: Logistic Logistic Poisson Poisson Linear
regression of regression regression regression regression regression
individual
outcomes
on covariates

Predicted Probability Probability Expected Expected Estimated
outcome of individual of individual number number mean
µijk having having of events in of events in outcome

the outcome the outcome individual’s individual’s
follow-up follow-up
time time

Residual Difference Ratio Difference Ratio Difference
residual residual residual residual residual

Stage two: Linear Linear Linear Linear Linear
regression of regression regression of regression regression of regression
residuals of difference logarithm of of difference logarithm of of difference
on arm residual ratio residual residual ratio residual residual

2.3.1 Stage one: Calculating cluster-summary residuals

A. Fit regression of outcome on covariates

In the first stage, we regress the outcome on the adjustment covariates, ignoring
clustering and the trial arm. We use a generalized linear model,

g (µijk) = ln (nijk) +
∑
l

γlzijkl
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where g is the link function: the logit function for a binary outcome, the logarithm
function for a rate outcome, and the identity function for a continuous outcome. µijk

is the expected outcome of individual k in cluster j in arm i and is assumed to follow a
binomial distribution for a binary outcome, a Poisson distribution for an incidence-rate
outcome, and a normal distribution for a continuous outcome. γl is a coefficient for the
lth covariate, and zijkl is the value of the lth covariate for individual k in cluster j in
arm i. ln(nijk) is an offset that equals zero for binary and continuous outcomes because
nijk = 1 for these outcomes.

B. Predict outcomes

From this regression model, we predict the expected outcome for each individual,
µijk. For a binary outcome, this is a predicted probability of the outcome. For a rate
outcome, this is the expected number of events in each individual’s follow-up time. For
a continuous outcome, this is the expected value of the outcome.

C. Calculate residuals

For each cluster, we then calculate the observed cluster-summary statistics sij (de-
fined in section 2.1) and cluster-summary statistics for expected outcomes, which are
defined as

Eij =

∑mij

k=1 µijk∑mij

k=1 nijk

From these, we calculate residuals for each cluster. If we plan to estimate an absolute
effect (risk difference, rate difference, mean difference), we calculate a difference residual:

rdij = sij − Eij

If we plan to estimate a relative effect (risk ratio, rate ratio), we calculate a ratio
residual:

rrij =
sij
Eij

2.3.2 Stage two: Analyze the residuals

These cluster-level residuals become our new unit of comparison between the clusters.
Inference is conducted by substituting rdij or rrij for sij in section 2.1.

2.4 Adjusted analysis: p-value and CI

The p-value for the intervention effect is calculated using a Wald test from the second
stage regression using the same methods as the unadjusted analysis, with rdij or rrij
substituted for sij .

The DF are recalculated to account for adjustment of any cluster-level covariates.
This is because the stage-2 regression model is on cluster-level data, and any adjust-
ment for cluster-level variables at stage 1 imposes linear constraints on the cluster-level
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parameters (while adjustment for individual-level variables does not). We reduce the
DF by P , the number of parameters corresponding to these cluster-level covariates in
the first-stage regression. The DF are then calculated as

DF = C0 + C1 − 2− P

clan detects cluster-level covariates by identifying adjustment variables that are con-
stant within clusters. For factor variables, each factor value is assessed separately: this
means that some categories can be counted as cluster level (if the factor indicator is
either 0 or 1 in any given cluster), while others may be counted as individual level (if the
factor indicator varies within some clusters) with a maximum number of cluster-level
factors equal to the number of factor values minus one.

2.5 Accounting for stratified randomization

Stratified randomization can be used to ensure balance of key characteristics between
the arms of the trial. Strata are created with similar values of these characteristics, and
randomization is implemented ensuring an equal number of clusters in each arm within
the strata. Accounting for the stratification in the analysis is recommended because it
can greatly improve precision (Hayes and Moulton 2017).

In the clan command, the categorical variable defining the strata is included as a
covariate in the first-stage regression that calculates expected outcomes of the analysis
adjusted for other covariates and the second-stage regression that estimates the inter-
vention effect for both adjusted and unadjusted analysis. The DF are reduced by one
less than the number of strata: DF = C0 +C1 − 2−P − (S− 1), where S is the number
of strata.

3 The clan command
The syntax of the clan command is explained below. In addition to implementation of
the method, we provide an option to plot or save the cluster summaries.

3.1 Syntax

clan depvar
[

indepvars
] [

if
] [

in
]
, arm(varname) cluster(varname)

effect(effect)
[
fuptime(varname

[
, per(#)

]
) strata(varname) plot

saving(filename
[
, replace

]
) level(#)

]
depvar is the dependent variable and indepvars are the adjustment covariates.
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3.2 Options

arm(varname) specifies the numeric variable that defines the trial arm. It must be
coded as 0 or 1. arm() is required.

cluster(varname) specifies the numeric variable that defines the clusters. cluster()
is required.

effect(effect) specifies the measure of effect to calculate. effect() is required. effect
may be one of the following:

effect Description Outcome type

rr Risk ratio Binary
rd Risk difference Binary
irr Incidence-rate ratio Rate
ird Incidence-rate difference Rate
meand Mean difference Continuous

rd, ird, and meand are absolute effects. rr and irr are relative effects, as described
in section 2.

fuptime(varname
[
, per(#)

]
) specifies the numeric variable that defines the length of

time each participant was in the study; this is required when either rate differences
or ratios are to be calculated. There is also an option to specify different units when
displaying the incidence rates.

strata(varname) specifies the numeric variable that defines the stratification used in
the trial randomization. Only one stratification factor is permitted. It must be
constant within clusters.

plot produces a scatterplot of the cluster-level summaries used to produce the effect
measure. For adjusted analyses, these will be residual values and hence will not have
a direct interpretation.

saving(filename
[
, replace

]
) saves a dataset with the cluster-level summaries. A new

filename is required unless replace is also specified. replace allows the filename to
be overwritten with new data.

level(#) specifies the confidence level, as a percentage, for CIs. The default is
level(95) or as set by set level.

3.3 Illustrative examples

We will now illustrate the use of the clan command using three examples used in the
book Cluster Randomized Trials (Hayes and Moulton 2017). These trials are discussed
in more detail in the book and the corresponding publications.
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3.4 Binary outcome

To demonstrate the use of the clan command on a binary outcome, we will use data
from the MkV trial. MkV was a cluster-randomized trial evaluating an adolescent sexual
health program in Mwanza, Tanzania (Ross et al. 2007; Hayes et al. 2005). It randomly
allocated 20 communities (geographical areas) to receive the intervention, an integrated
adolescent sexual health program, or act as control. The randomization was stratified by
HIV risk strata (high, medium, low). A cohort of students was followed up, and sexual
health outcomes, including HIV status and knowledge about transmission of HIV, were
collected at three years. We will focus on the analysis of the HIV knowledge outcome
in boys. HIV knowledge was a binary outcome, where “good knowledge” was defined by
correctly answering three questions about HIV transmission.

The dataset is described below:

. use mkvtrial

. describe community arm stratum agegp ethnicgp know
Variable Storage Display Value

name type format label Variable label

community byte %4.0g community number: 1-20
arm byte %9.0g treatment arm: 0=control,

1=intervention
stratum byte %9.0g stratum: 1-3
agegp byte %9.0g age-group at follow-up: 1=16-17,

2=18, 3=19+
ethnicgp byte %9.0g ethnic group: 0=non-sukuma,

1=sukuma
know float %9.0g good knowledge of HIV acquisition

at follow-up: 0=no, 1=yes

The HIV knowledge outcome in each cluster is summarized in table 2.

Table 2. Proportion of children with good HIV knowledge in each cluster of the MkV
trial

Stratum Control communities Intervention communities

High risk 110/226 (48.7%) 164/204 (80.4%)
65/171 (38.0%) 141/206 (68.4%)
69/178 (38.8%) 111/171 (64.9%)

Medium risk 87/194 (44.8%) 139/219 (63.5%)
102/229 (44.5%) 115/207 (55.6%)
84/243 (34.6%) 172/237 (72.6%)
121/196 (61.7%) 111/187 (59.4%)

Low risk 101/226 (44.7%) 119/169 (70.4%)
102/175 (58.3%) 157/219 (71.7%)
67/186 (36.0%) 127/257 (49.4%)
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We can estimate the risk ratio between the trial arms using clan as follows:

. clan know, arm(arm) cluster(community) effect(rr) plot
Number of clusters (total): 20 Number of obs = 4,100
Number of clusters (arm 0): 10 Obs per cluster:
Number of clusters (arm 1): 10 min = 169

avg = 205
max = 257

Estimate Std. Err. t df P>|t| [95% Conf. Interval]

Risk
0 .4423492
1 .6503451

Ratio 1.470208 .0763522 5.048 18 0.0001 1.2523147 1.7260121

In the control clusters (arm = 0), an estimated 44.2% of students had a good knowl-
edge of HIV acquisition compared with 65.0% in the intervention clusters (arm = 1).
There was evidence of better knowledge in the intervention arm, with a rate ratio of
1.47 (95% CI: [1.25 to 1.73], p-value = 0.0001).

Because the effect measure is a ratio, the risk estimates are based on the geometric
means of the cluster-level risks. The test statistic follows a t distribution with 18 DF
(the number of clusters minus two).

The output also indicates the number of clusters and the number of observations in
each cluster.
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Inclusion of the plot option produces figure 1, which shows the cluster summaries
by arm.
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Figure 1. Plot of cluster-level summaries (proportion of good HIV knowledge) by arm

We may wish to adjust for baseline covariates (agegp and ethnicgp) and account
for the stratification factor (stratum):

. clan know i.agegp i.ethnicgp, arm(arm) cluster(community) effect(rr)
> strata(stratum)
Number of clusters (total): 20 Number of obs = 4,100
Number of clusters (arm 0): 10 Obs per cluster:
Number of clusters (arm 1): 10 min = 169

avg = 205
max = 257

Estimate Std. Err. t df P>|t| [95% Conf. Interval]

Risk
0 .4423492
1 .6503451

Adj. ratio 1.443423 .0687331 5.340 16 0.0001 1.2477096 1.6698353

Note: Degrees of freedom adjusted for the cluster covariate(s): stratum

After we adjust for age group, ethnicity and strata, the risk ratio is 1.44 (95% CI:
[1.25 to 1.67]). The DF were reduced by two to account for the cluster-level stratum
variable, with three categories. Adjusting for individual-level variables (such as age and
ethnicity) does not affect the DF.
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3.5 Rate outcome

Binka et al. (1996) conducted a CRT to measure the impact of insecticide-impregnated
bednets on child mortality in Northern Ghana. The study area was divided into 96
geographical clusters, and 48 were randomly selected to receive impregnated bednets
while the remaining 48 acted as controls. A demographic surveillance system was set
up to record births, deaths, and migration for two years. The dataset contains data on
children aged 6–59 months at the beginning of the trial and shows their person-years of
follow-up and whether the child died during follow-up.

. use ghana_bednet

. describe idno cluster bednet outcome follyr
Variable Storage Display Value

name type format label Variable label

idno float %9.0g child number
cluster int %8.0g cluster number: 1-96
bednet int %8.0g treatment arm: 0=control,

1=intervention
outcome float %9.0g child died: 0=no, 1=yes
follyr float %9.0g person-years of follow-up

The primary trial outcome was all-cause mortality in children. Table 3 summarizes
the total number of deaths, person-years of follow-up, and mortality rate for the first
six clusters.

Table 3. Cluster-level mortality rates in the Ghana bednet trial

Cluster Arm Total Total Death rate
ID deaths person-years (/1000 person-years)

1 Bednet 12 220.3 54.5
2 Control 11 265.1 41.5
3 Control 6 243.2 24.7
4 Control 12 259.6 46.2
5 Bednet 9 355.1 25.3
6 Control 9 394.1 22.8
. . . . . . . . . . . . . . .
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We can estimate the rate ratio between arms using the clan command:

. clan outcome, arm(bednet) cluster(cluster) effect(irr)
> fuptime(follyr, per(1000))
Warning: at least one cluster has zero prevalence, so 0.5 will be added to every
> cluster total
Number of clusters (total): 96 Number of obs = 26,342
Number of clusters (arm 0): 48 Obs per cluster:
Number of clusters (arm 1): 48 min = 138

avg = 274
max = 439

Estimate Std. Err. t df P>|t| [95% Conf. Interval]

Rate
0 26.02616
1 23.60782

Ratio .9070805 .1040176 -0.938 94 0.3509 .73782133 1.1151683

Note: Rates are per 1000

In the control clusters, there was an average of 26.0 deaths for each 1,000 person-years
of follow-up, while in the bednet clusters, this rate was around 23.6 per 1,000 person-
years. This corresponds to a rate ratio of 0.91 (95% CI: [0.74 to 1.11], p-value=0.35).

A warning message indicates that because one cluster has no events, a 0.5 event was
added to each cluster before calculating the log-rate.

3.6 Continuous outcome

The SHARE trial aimed to improve sexual health knowledge through a school-based
sexual health program in Scotland (Wight et al. 2002). A total of 25 secondary schools
were randomly allocated to the intervention or control arms, and a measure of sexual
health knowledge, −8 (poor knowledge) to 8 (good knowledge), was measured through
a questionnaire two years later. The analysis was conducted separately for boys and
girls, and we focus here on the analysis in the boys.

. use share2

. describe school arm sex sch_scpar kscore
Variable Storage Display Value

name type format label Variable label

school byte %8.0g school number: 1-25
arm byte %8.0g treatment arm: 0=control,

1=intervention
sex byte %8.0g sex: 1=male, 2=female
sch_scpar float %9.0g School proportion of social class

I or II
kscore byte %8.0g knowledge of sexual health at

follow-up: score from -8 to +8
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Table 4 shows the number of male respondents and their mean sexual health knowl-
edge score for each of the 25 schools:

Table 4. Number of males and their mean sexual health knowledge score in the SHARE
trial

Control schools Intervention schools

N mean score N mean score

129 3.37 122 4.18
159 4.38 27 3.85
99 3.66 40 3.80
99 3.46 138 4.86
149 3.19 101 4.09
88 4.14 79 4.23
104 2.86 87 4.11
191 3.90 64 4.06
70 3.84 86 4.49
107 3.82 126 4.60
98 3.65 98 4.48
50 3.16 68 3.75

164 4.63

We can use clan to compare the mean knowledge score in boys between the two
arms:

. clan kscore if sex==1, cluster(school) arm(arm) effect(meand)
Number of clusters (total): 25 Number of obs = 2,543
Number of clusters (arm 0): 12 Obs per cluster:
Number of clusters (arm 1): 13 min = 27

avg = 102
max = 191

Estimate Std. Err. t df P>|t| [95% Conf. Interval]

Mean
0 3.619255
1 4.240223

Diff. .620968 .1562391 3.974 23 0.0006 .29776278 .94417316

The average knowledge score for boys was 3.62 in the control schools compared with
4.24 in the intervention schools.
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We can also estimate the mean difference adjusted for sch_scpar, a measure of
social class distribution in each school:

. clan kscore sch_scpar if sex==1, cluster(school) arm(arm) effect(meand)
Number of clusters (total): 25 Number of obs = 2,543
Number of clusters (arm 0): 12 Obs per cluster:
Number of clusters (arm 1): 13 min = 27

avg = 102
max = 191

Estimate Std. Err. t df P>|t| [95% Conf. Interval]

Mean
0 3.619255
1 4.240223

Adj. diff. .6680193 .1285272 5.197 22 0.0000 .40147023 .93456829

Note: Degrees of freedom adjusted for the cluster covariate(s): sch_scpar

Because social class is a cluster-level variable, 1 degree of freedom was lost. After
adjustment, the mean difference in knowledge score between the two arms was 0.67
(95% CI: [0.40 to 0.93], p-value < 0.0001).

3.7 Conclusions

The clan command simplifies the analysis of CRTs using a cluster-level analysis. The
command enables users to adjust for individual- and cluster-level covariates, account
for the trial design, estimate relative and absolute effects, and plot their results. It can
be used with binary, incidence-rate, or continuous outcomes.

There are some general limitations of the cluster-level analysis method and potential
for further developments that should be considered when using clan. Calculation of
relative effect sizes for risks and incidence rates is done by taking the logarithm of the
cluster summaries. This raises two concerns: clusters with no events become difficult
to handle, and the resulting ratio is a different estimand of a ratio of geometric means
rather than a ratio of arithmetic means. To allow calculation of the logarithm of clusters
with zero events, clan adds half an event to every cluster. However, this is known to
bias the within-arm risk estimates and the intervention effect, particularly when clusters
are small. There is a need for further work in validating alternative correction method
that could be added to the command. The issue of geometric means is more complex.
Some believe geometric means give a better measure of centrality in highly skewed
data, which is often the case for low risks and incidence rates (Alexander et al. 2005).
However, others have argued that arithmetic means could be more representative of the
expected “population-average” effect. Estimating the variance of the arithmetic mean
ratio is less straightforward than working on the logarithmic scale and would require
further research to, for example, account for a stratified design. Future developments
to clan should explore alternative estimators for these relative measures.
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While the validity of the cluster-level analysis is well studied for both adjusted and
unadjusted analyses (Bennett et al. 2002; Ukoumunne, Carlin, and Gulliford 2007) and
unadjusted analyses have been compared with individual-level analysis (Leyrat et al.
2018; Thompson et al. 2022), there is a need for comparisons of the adjusted cluster-
level analysis method to individual-level analysis methods to ascertain the difference in
power.

Future developments of the clan command could include estimation of a measure of
between-cluster variability as required by CONSORT guidelines (Campbell et al. 2012),
such as an intracluster correlation coefficient or coefficient of variation, and analysis of
effect modification. We also plan to consider other effect measures such as odds ratios,
allowing weights to be specified for each cluster, and accounting for a matched design.

This command will facilitate the conduct of cluster-level analysis of CRTs and en-
courage more widespread use of this robust approach.
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5 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 23-3

. net install st0727 (to install program files, if available)

. net get st0727 (to install ancillary files, if available)

For the latest version of the clan command, type

. ssc install clan
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