
1. Introduction
Mountain glaciers and ice sheets are retreating globally (Moon, 2017). In the European Alps glaciers lost about 
50% of their surface between 1850 and 2000 (Zemp et al., 2006). This rapid retreat results in rapidly growing 
proglacial margins which, in the Swiss and Austrian Alps alone, consist of ca. 930 km 2 of deglaciated terrain 
exposed since the end of the Little Ice Age (Carrivick et al., 2018). Concurrently, increasing subglacial sedi-
ment evacuation rates (Lane et al., 2017) impact the morphodynamics of the forefields that form downstream of 
glaciers given the observed influence of sediment supply (Ashmore, 1988, 1991a; Lane et al., 1996).

Sediment flux in geomorphic systems including alluvial rivers (e.g., Ashmore,  1991a), hillslope- catchment 
systems (e.g., Hasbargen & Paola, 2000; Lancaster & Casebeer, 2007) and river deltas (e.g., Kim et al., 2006; 
van Dijk et al., 2009) is characterized by significant temporal variability (Coulthard et al., 2005; Phillips, 2003). 
Variability is not only a function of external forcing, such as precipitation events or daily discharge variations, 
but is also induced by autogenic processes resulting in self-organizing behavior (Carling et al., 2016; Coulthard 
& Van De Wiel, 2007) and the strong filtering of exogenic forcing over a wide range of timescales (Jerolmack 
& Paola, 2010). Such filtering has been attributed to two related scales of behavior: (a) progressive reworking 
of fluvial landforms (Beerbower, 1964), meaning that sediment cannot always pass easily through a river reach 
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without encountering a depositional environment; and (b) limits on the advection length for sediment, which are 
a function of ambient flow velocity, particle settling height and particle size (Ganti et al., 2014). The former are 
well known for proglacial margins (e.g., bank failure following lateral erosion, in-channel and alluvial channel 
storage, channel bifurcation, avulsion and channel abandonment,…) (Ashmore, 1991b; Cudden & Hoey, 2003; 
Hundey & Ashmore, 2009; Kasprak et al., 2015; Van De Wiel & Coulthard, 2010). Advection limits are related 
to this morphological forcing. For instance, Kasprak et al. (2015) found that the particle displacement lengths 
in a laboratory flume vary with the mean distance between confluences and diffluences. This is because difflu-
ences set maximum advection lengths by promoting flow deceleration and a local reduction in settling height 
(Ashworth, 1996) and so deposition.

The above statements suggest that proglacial forefields have the potential to filter the signal of sediment exported 
from glaciers, but the extent to which this might be the case has never been demonstrated. Our current knowl-
edge of subglacial sediment export by glacier-fed streams is dominated by suspended sediment monitoring (e.g., 
Delaney et al., 2018; Richards, 1984; Swift et al., 2005), only one part of the sediment export signal. Difficulties 
in measuring bedload transport have resulted in major uncertainties in absolute bedload amounts, the relative 
importance and temporal variation of bedload and suspended load transport rates in both glacial and proglacial 
environments, and how rates vary from the event scale to the diurnal, seasonal and eventually multi-year scales. 
As yet, we have no continuous records of bedload transport in proglacial marginal settings.

Morphodynamic filtering of downstream sediment transport signals can occur to different degrees, including 
(a) dampening when the signal amplitude is scaled down but the amplitude-frequency dependence remains; (b) 
delaying which may or may not accompany dampening but where there is a shift in phase; and (c) shredding 
where the amplitude-frequency dependence is partially or completely destroyed (Straub et  al.,  2020). Under-
standing the extent to which there is filtering and the distance over which it occurs is important for several disci-
plines. Glaciologists commonly estimate glacial erosion rates from subglacial sediment export measurements 
(Herman et al., 2015; Humphrey & Raymond, 1994; Riihimaki et al., 2005; Swift et al., 2005) and relate these 
to contemporaneous measurements of ice sliding velocity (i.e., sliding erosion law; Amundson & Iverson, 2006). 
The non-linear relationship between glacier sliding velocity and measured erosion rates remains highly uncertain 
(Cook et al., 2020) due to difficulties in correctly inferring the erosion rate itself. Sediment transport rates are 
commonly determined from fixed installations located several kilometers away from glacier termini (e.g., Carrillo 
& Mao, 2020; Comiti et al., 2019; Delaney et al., 2018; Dell’Agnese et al., 2014), potentially obscuring recorded 
sediment transport rates in the presence of signal filtering. A dampened signal may translate into errors in the 
magnitude of estimated transport rates. A delayed signal may cause temporal uncertainty in which ice velocity 
variation should be related to erosion rate variation. A partially shredded signal may contain only a partial signals 
of glacial erosion. A completely shredded signal may still provide a reliable long-term mean erosion rate but no 
signal of variation in glacial erosion.

Here, we present the first high-frequency, continuous, seasonal-scale data for bedload, accompanied by suspended 
load, for a proglacial margin. The data allow us to quantify how proglacial morphodynamics filter the signal of 
the sediment exported from the snout margin of an Alpine glacier for both suspended load and bedload in a 
context of rapid deglaciation, and the timescale over which the filtering occurs. This is achieved by combining 
passive seismic monitoring and more classical discharge and suspended sediment load measurements.

2. Methods
The study is focused on the Glacier d’Otemma proglacial margin (Figure 1) located in the southern-western 
Swiss Alps (Bagnes Valley, Valais) at an altitude of about 2,450 m a.s.l.. The proglacial forefield is ca. 1 km long 
and ca. 200 m wide with a mean valley bottom slope of about 1.2%. The configuration of the proglacial stream 
follows the available accommodation space, limited by steep valley sidewalls, and the valley bottom slope. Where 
the lateral accommodation space is at a maximum, and slope is lower (mean of 0.18%), the channel pattern is 
dominated by an active braided network. Toward the upstream glacier terminus and at the downstream forefield 
end, flow is confined into a single bedrock-dominated channel due to the combination of a narrower and steeper 
(3.18%) valley section. The proglacial stream flows on a bed mostly composed of quaternary morainic deposits 
with a mixed sand, gravel and cobble particle size range: close to the glacier terminus the texture of the riverbed 
is dominated by gravels and cobbles (D50 of ca. 78 mm and D84 of ca. 92 mm, n = 345), while toward the forefield 
end more sandy deposits are also present (D50 of ca. 37 mm and D84 of ca. 48 mm, n = 348).
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This proglacial forefield was chosen for two reasons. First, Mancini and Lane (2020) showed that the forefield 
and the valley sidewalls were largely disconnected from each other due to the development of alluvial fans that 
buffer hillslope to forefield sediment flux. Second, the active forefield is located within stable terrace systems 
reflecting a long-term state of sediment supply being lower than potential transport capacity (Collins,  2008; 
Marren & Toomath, 2013; Roussel et al., 2018). Thus, the glacier is the primary source of both suspended load 
and bedload. We studied two melt seasons experiencing different climatic conditions (Text S1 in Supporting 
Information S1): summer 2020 from 25th June (Julian Day [JD] 177) to 29th August (JD 242), which was warmer 
and drier; and summer 2021 from 11th June (JD 162) to 21st August (JD 233), which was colder and wetter espe-
cially in the first part of the season.

Continuous suspended load and bedload transport rates were indirectly monitored at two gauging stations 
located ca. 350 m from the glacier terminus (GS1) and at the forefield outlet (GS2) with a distance of ca. 850 m 
between them (Figure  1). They were equipped with turbidity probes, water pressure sensors and geophones. 
Suspended loads were derived using a conventional turbidity-sediment concentration relationship (Texts S2 
and S3 in Supporting Information  S1), whilst bedload transport was monitored seismically (Texts S4–S7 in 
Supporting Information S1). The post-processing of collected seismic data to quantify bedload transport rates 
used the geophysical inversion model of Dietze et al. (2019) in the open source R package eseis (version 0.5.0) 
(Dietze, 2018; Text S4 in Supporting Information S1). Model calibrations for both GS1 and GS2 are explained 
in Texts S4 through S7 of the Supporting Information S1. Given the extreme difficulty of direct measurement of 
bedload (e.g., with a portable sampler) in this kind of river, we used the fact that water stage is an output of the 
seismic inversion which if successful should reproduce water stages measured at GS1 and GS2 (Texts S5 through 

Figure 1. Location of GS1 and GS2 in the Glacier d’Otemma proglacial forefield. Yellow circles refer to geophones, orange squares to turbidity probes and water 
pressure sensors, the light blue region highlights baer and debris-covered glacier, while orange regions the terraces and the black line the proglacial forefield limits. The 
green dashed line is the elevation profile.
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S7 in Supporting Information S1). Second, in 2021, we installed an additional station at the glacier terminus 
(GSG) 300 m upstream of GS1. With a relatively straight steep, semi-alluvial reach between GS1 and GSG we 
expected them to have similar signals and so used GSG as a control on the repeatability of the method (Figure 1; 
Text S6 in Supporting Information S1). Finally, recognizing that the inversion model contains parameters (e.g., 
ground proprieties) that are unlikely to be stationary, we applied Latin Hypercube Sampling to plausible param-
eter ranges to estimate uncertainty in each seismically estimated bedload transport rate (Text S4 in Supporting 
Information S1).

We combined analysis of sediment transport time-series with power spectra to detect the kind and nature of filter-
ing of the signals traveling through the floodplain (Text S8 in Supporting Information S1). We compared corre-
lations of water discharge and sediment transport signals, both suspended sediment load and bedload, at GS1 
and GS2 to determine spatial differences in transport dynamics. Results were combined with cross-correlation 
of signals monitored at GS1 and GS2 to define the nature of the proglacial forefield filtering on them. This 
latter aspect was then further investigated using power spectra analysis following Jerolmack and Paola (2010) 
(Text S8 in Supporting Information S1). This approach applies a Discrete Fourier Transform to both instan-
taneous suspended sediment load and bedload signals at GS1 and GS2 to convert them from the time into the 
frequency domain. Frequencies were then converted into timescales (days) by relating them to their sampling 
interval (i.e., 2 min; 0.00014 JD), while amplitudes were squared to convert them from complex number into 
powers (10log10(kg/s) 2, hence dB). We expected fluctuations in power to increase as a power-law function of time 
within timescales having significant variability in sediment flux (i.e., sub-daily to daily), followed by a situation 
marked by only slight increases at longer timescales (i.e., seasonal). If the forefield acts as a non-linear filter, the 
power-period relations for GS1 and GS2 should have non-zero slopes, with the local gradient of the spectrum 
proportional to the filtering magnitude. The spatial comparison of spectra allows determining how the forefield 
has filtered the signal. At the same time, we also assessed if the diurnal suspended sediment load and bedload 
export signals are still recorded at the forefield outlet by comparing the daily export periodicity to the character-
istic timescale of the system.

Once both filter strength and timescales were determined, we investigated the responsible morphodynamic filter-
ing mechanisms (Text S8 in Supporting Information S1). We calculated the difference between GS1 and GS2 
in the timing of discharge, suspended load and bedload signal peaks, assuming a straight-line travel distance, to 
derive a measure of the virtual velocities (Vv) of water and sediment waves following Hassan et al. (1991). It is 
important to note here that the braided nature of the reach should increase the effective travel distance calcu-
lations giving maximum possible velocities. Then, by knowing for each transport cycle the duration for which 
discharge exceeded the transport capacity threshold Qc, calculated according to Rickenmann (1991), we were able 
to retrieve daily advection lengths. The latter were defined as the distance traveled by a particle before it settles to 
the bed (Ganti et al., 2014). We derived them by multiplying the virtual propagation velocities of the suspended 
sediment load and the bedload waves by the daily duration for which discharge was higher then Qc. As shown in 
Métivier (1999), for a sediment transport signal to be modified between two points in space the length-scales of 
transporting events (i.e., their advection lengths) must be shorter than the distance between those points, in this 
case GS1 and GS2 (Figure 1). This is related to the different propagation velocities of discharge and sediment 
waves, and it reflects the observation of Ganti et al. (2014) that the bounds on advection lengths are constrained 
by sediment settling velocities. Finally, we used the daily Shannon Entropy index (SE) (Lane & Nienow, 2019) to 
study the relationship between the changing variability of transport signals at GS1 and GS2 and discharge varia-
tion during the melt season (SE index is proportional to signal variability: higher values means a more spread-out 
distribution). Assuming sediment export from the glacier tracks discharge, we would expect signal filtering to 
manifest as a reduction in the intensity of daily transport variation and hence a reduction in Shannon Entropy.

3. Suspended Sediment Load and Bedload Transport Dynamics
Daily hydrographs have an asymmetrical shape characterized by: rapid increase during the rising limb, starting 
around 10 a.m., to maxima of ca. 13.5 m 3/s in 2020 and of ca. 11 m 3/s in 2021; followed by a gentler decrease in 
the falling limb, usually starting around 6 p.m. (Qw, Figure 2a). Suspended sediment load reflects this variation 
at GS1 and GS2 for both melt seasons with discharge versus suspended sediment load (Qs) correlations of 0.632 
(2020, p < 0.05) and 0.681 (2021, p < 0.05) for GS1 and 0. 574 (2020, p < 0.05) and 0.557 (2021, p < 0.05) for 
GS2. As discharge increases, (a) suspended load increases at both sites with only small differences in magnitude 

 19448007, 2023, 21, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
106082 by T

est, W
iley O

nline L
ibrary on [03/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Geophysical Research Letters

MANCINI ET AL.

10.1029/2023GL106082

5 of 12

Figure 2. Timeseries and analyses on transport signals revealing the proglacial filtering. Field collected discharge, suspended sediment load and bedload time series 
(a; dashed and solid black lines refer to Qc in GS1 and GS2, respectively). Cross-correlation of suspended sediment load and bedload signals at GS1 and GS2: a 1 day 
running mean is applied to raw correlations to remove diurnal variations and long-term structures. Lag (lead) means that peak at GS1 occurs earlier (later) than at GS2 
(b). Power spectra of instantaneous transport rates (c).
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between sites; (b) maximum loads coincide with maximum discharges at both sites; but (c), during daily hydro-
graph recession, loads diverge with GS1 values higher than GS2 values. Given the absence of river-connected 
kettle holes and lakes that have been shown to buffer proglacial suspended sediment flux (Bogen et al., 2014; 
Geilhausen et al., 2013), these differences are likely due to local temporary trapping of fine sediment due to bed 
roughness (Parsons et al., 2018), the incorporation of fine sediment during falling limb bar formation (Orwin & 
Smart, 2004; Richards, 1984) and overbank fine sediment deposition.

Bedload transport rates (Qb; Figure  2a) also show some association with discharge but correlations are only 
significant upstream at GS1 (0.437 and 0.611 for 2020 and 2021 respectively, p < 0.05 in both cases) and not 
downstream at GS2 (0.309 and 0.162 for 2020 and 2021 respectively, p > 0.05 in both cases), suggesting the 
breakdown of capacity-driven bedload transport due to the presence of the proglacial forefield. While there can 
be a significant suspended load at all discharges, bedload seems to be delayed compared to discharge closer to the 
glacier at GS1 (Beaud, Flowers, & Venditti, 2018; Beaud, Venditti, et al., 2018; Beaud et al., 2016) and strongly 
threshold-limited at GS2 (Perolo et al., 2019). In 2021, the correlation between Qb and Qw is similar (0.611) to 
Qs and Q (0.681) at GS1. However, the Qb and Qw correlation at GS1 is lower in 2020 (0.437) than for Qs (0.632) 
because subglacial sediment export rates, and hence the transport rates measured at GS1, reduced significantly 
from early August onwards. The correlation between Qb and Qw at GS1 was 0.522 until 5th August when this 
reduction occurred.

4. Filtering of Subglacial Sediment Export Signals by Forefield Morphodynamics
The lower correlations between Qw and, respectively, Qs and more notably Qb at GS2 suggest a direct impact 
of proglacial morphodynamic processes on downstream transport signals. Cross-correlations of instantane-
ous sediment flux time series between GS1 and GS2 (Figure 2b) suggest little delay in Qs; maximum corre-
lations are significant with values of ca. 0.75 and ca. 0.85 at a lag of ca. 0 days for both melt seasons, while 
the cross-correlations are symmetrical. Qb show lower maxima values of ca. 0.4 and ca. 0.3 at 0 lag days, but 
signals are asymmetrical tending toward negative lags, hence a situation where the signal at GS2 peaks usually 
later then at GS1. The more marked asymmetry for 2020 is due to the decreasing Qb flux during the melt season 
(Figure 2a). This means that the Qb signal recorded in GS1, unlike the Qs signal, was both dampened (Figure 2a) 
and delayed (Figure 2b) as it passed through the forefield.

Viewing the Qs signals in the frequency domain, Figure 2c suggests high power (ca. 10 5 dB) at the shortest 
time-scales (ca. 10 −3 days), followed by a significant decrease in magnitude (ca. 10 −1 dB at 2 × 10 −3 days) before 
a gradual and linear increase up to 10 5 dB at the seasonal scale. The latter has a slope of about 0.23. The evolution 
of the signals for GS1 and GS2 are similar in both melt seasons, especially in 2021. This suggests limited filtering 
of the signal for suspended load. For bedload transport, as for suspended transport, both spectra show a decrease 
to a timescale of ca. 2 × 10 −3 days, followed by a weak and unsteady increase until ca. 10 2 dB at 10 −1 days; the 
increase is more marked for the GS1 signal than the GS2 one (slopes of ca. 0.6), suggesting a stronger non-linear 
filtering compared to suspended sediment load for subdaily scales. From timescales of 10 −1 to 10 0 days, the 
power continues to increase albeit at a lower rate in both 2020 and 2021, suggesting a cross-over timescale after 
which the intensity of the non-linear filtering decreases. At GS2 in 2021, power becomes almost constant for 
bedload transport until time-scales longer than 10 −1.

Figure 2c also shows that diurnal transport cycles are maintained along the forefield, as spectra are all charac-
terized by a peak in power at ca. 10 0 days even if, especially for bedload, damped at GS2 (Figure 2a). However, 
signal cross-correlations (Figure 2b) suggests that it is unlikely that bedload transport peaks at GS2 are related to 
the same wave of sediment because of proglacial delay. Indeed, the significant removal of scales of variability at 
GS2 at time-scales longer than those associated with the diurnal variation suggests little transmission of the signal 
measured at GS1 through the proglacial forefield to GS2.

5. Insight Into the Mechanisms Driving Forefield Morphodynamic Filtering
Given the above, Figure 3 shows the daily timing difference in peak arrivals within GS1 and GS2 for discharge, 
suspended sediment load and bedload waves. Discharge shows a good correlation in peak times at GS1 and GS2 
for both 2020 (r = 0.91) and 2021 (r = 0.97), even if in 2021 there is a slight tendency for peaks to occur progres-
sively earlier in the day during the melt seasons. The relationship between GS1 and GS2 for sediment transport 
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Figure 3. Proglacial filtering mechanisms. Timing difference in peak arrivals between GS1 and GS2 (a–f) and Shannon entropy indexes of signals for melt seasons 
2020 and 2021 (g–j; crosses refers to discharge, squares to suspended sediment load and circles to bedload).
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is significant for suspended load (r = 0.93 in 2020; r = 0.94 in 2021), but less significant for bedload (r = 0.69 in 
2020; r = 0.53 in 2021). There are a few days when the daily transport peak at GS2 occurs before the one at GS1 
especially for bedload, which is likely to be related to a peak caused by within-reach erosion. In turn, this suggests 
the presence of multiple source of sediments (Ashmore, 1988, 1991a; Comiti et al., 2019; Mao et al., 2014). Thus, 
the sediment signals at GS2 contains both the subglacial export signal recorded at GS1, and the signal of erosion 
and deposition events due to reworking events taking place in the forefield.

If we select only the events in which clear peaks in Qw, Qs, and Qb were identified at GS2 after a peak at GS1, 
we can calculate the time taken for waves to transit the reach (t(travel), Figure 3). To date, there is no a priori 
knowledge of virtual velocities in braided stream systems for bedload particles because of their relative long 
residence time in depositional areas and the difficulty of determining step lengths from field data (Church, 2006; 
Kasprak et al., 2015; Vázquez-Tarrío et al., 2019). Suspended sediment waves move on average at velocities that 
are 76.5% and 82.1% of the discharge wave in 2020 and 2021, respectively. Bedload moves at 25% and 14.1% of 
the discharge wave.

The intense diurnal discharge variation in glacier fed Alpine streams means that if wave velocities are insuffi-
cient, sediment exported from the glacier will not reach GS2 before discharge falls below that required for trans-
port, and deposition occurs, delaying the downstream transmission of the bedload export signal (Figure 2b). We 
can compare the time-scales for bedload transport in Figure 3 with the time-scales of likely sediment transport 
competence. Daily Qw − Qb rating curves established that the critical discharge Qc required for bedload transport 
to occur is 3.8 ± 1.25 m 3/s at GS1 and 3.2 ± 1.54 m 3/s at GS2 based on pooling data for 2020 and 2021 (Text 
S8 in Supporting Information S1). The standard deviations here reflect seasonal changes in characteristics of 
available sediments and on the degree of armoring of the riverbed (Ashmore, 1988; Hoey & Sutherland, 1991; 
Vázquez-Tarrío et al., 2019). Figures 3a–3f shows the duration of possible transport (t | tQ>Qc) for Qs and Qb, 
and the likely advection lengths estimated from wave speeds. For Qs, advection lengths up to 900 m are gener-
ally comparable with the reach length (Figure 1) such that morphodynamic forcing is insufficient to modify 
the signal of glacial suspended sediment export at GS2 as advection lengths keep up with discharge (Ganti 
et  al.,  2014). However, advection lengths are always less than the reach length for Qb (up to 70  m in 2020 
and up to 150 m in 2021) implying morphodynamic forcing of transport, whether due to microscale sediment 
entrainment-deposition processes or macroscale divergence between flow and sediment transport paths forced 
by river braiding (e.g., Ashworth, 1996; Bridge & Gabel, 1992). These distances imply transport delays of up to 
7–11 days (Figure 2b). This confirms that transport peaks considered in computing virtual velocities (Figure 3) 
are unlikely to be associated with the same grains because of their longer travel time in the proglacial channel. 
The preservation of the diurnal evacuation cycles (Figure 2c) is likely related to hydraulically driven transition 
of former-evacuated bedload waves, progressively moved downstream toward the forefield end by successive 
discharge waves (“pulses”). This phenomenon also comes with a dampening of the signal (Figures 2a and 2b) 
suggesting that part of the subglacially exported bedload wave are deposited moving downstream, and high-
lighted in the field by the sorting of particles going from GS1 to GS2 (Figure 1).

Figures 3g–3j further supports the proglacial filtering of the signal related to subglacial bedload evacuation as 
the signal entropy (i.e., daily variability) declines due to the forefield. Given the above, the modification of the 
bedload export signal seems to be driven by particle advection lengths, which in turn depend on grain size and 
on discharge conditions. It is well established that the intensity of diurnal discharge variation increases during 
the melt season in glacier-fed streams (Lane & Nienow, 2019; Nienow et al., 1998) because of a progressive 
reduction in the buffering of glacial melt by snow as the snow-ice interface retreats up glacier and related, a 
progressive upstream extension of the sub-glacial drainage system (Nienow et al., 1998). Discharge variability 
constantly increases over time (Figures 3g–3j; Mann-Kendrall tests at p < 0.05 confirmed monotonic trends in 
both 2020 and 2021) suggesting (a) a progressive increase in daily peak discharge, and/or a decrease in daily 
minimum discharge, and (b) the increasing likelihood of discharge falling below the critical value Qc later in the 
season (Figure 2a).

Given this discharge evolution we would expect bedload advection lengths to become progressively longer over 
time, before dropping toward the end of the season, making transport largely capacity-limited (Perolo et al., 2019). 
This is exactly the case for GS1, where the transport entropy is higher for bedload than either suspended load or 
discharge, and it increases systematically through the melt season. In both cases this is combined with a general 
reduction in advection lengths (Figures 3g and 3i; Mann-Kendrall test p < 0.05 for both Shannon entropy and 
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advection length). However, at GS2, even if there are also seasonally monotonic trends for both entropy and 
advection lengths (Mann-Kendrall test p < 0.05), they are less strong, suggesting less dependence of bedload 
transport on discharge variation (Figures 3h and 3j). Thus, the seasonal evolution of subglacial bedload export is 
strongly damped and delayed between GS1 and GS2 (Figures 2b and 2c).

Studies on (pro-)glacial suspended sediment transport involving similar experimental setup shown high variabil-
ity at daily to seasonal scales (Hodson & Ferguson, 1999; Leggat et al., 2015; Mao & Carillo, 2017). This because 
the changing upstream conditions, in terms of subglacial discharge (i.e., Hodgkins et al., 2003) and sediment 
export (i.e., Stott & Mount, 2007) rates, activate the proglacial morphodynamic response buffering, delaying and 
changing the transport dynamics of subglacially exported particles (e.g., Antoniazza et al., 2019; Ashmore, 1988; 
Hodson et al., 1998; Misset et al., 2020; Orwin & Smart, 2004). The signal of subglacial suspended sediment 
export is effectively transmitted downstream, even if some degree of non-linear filtering is detected due to 
short-lived deposition events at low transport capacity (Guillon et  al.,  2018; Figures 2a and 2c). In contrast, 
the short advection lengths for bedload explain why the subglacial bedload export signal at diurnal time-scales 
is  substantially reduced in both melt seasons (Figure 2); it is generally not possible for coarse particles to move 
fast enough to travel through the proglacial forefield in a single diurnal discharge cycle, a mechanism that is itself 
conditioned by evolution in seasonal sub-glacial discharge conditions (Figures 3g–5j). However, morphodynamic 
filtering mechanisms for bedload need to be further investigated.

Given current research in glacial erosion is based upon deployment of monitoring stations located 100s of 
meters to kilometers downstream of glacier termini (e.g., Herman et al., 2015), it is not clear if they provide 
reliable erosion rate estimates over relatively short-time scales. The extent to which this is the case will depend 
on the relative importance of bedload and suspended load export from a glacier, something that remains 
poorly quantified. In principle, the miscalculation might come from wrongly assuming that subglacial chan-
nels always evacuate all eroded sediment (Alley et al., 1997), leading to an overestimation of suspended load 
as a glacial erosion product. The filtering is likely to be scale limited as in larger glaciers, and notably for ice 
sheet outlets, the larger spatial melt extent leads to attenuation of diurnal discharge variation (e.g., Cowton 
et  al.,  2013) such that subglacial discharge is always greater than the critical value required to maintain 
transport.

6. Conclusion
The first field-based glacial forefield quantification of continuous suspended load and bedload transport rates 
provides evidence of an autogenic influence of river morphodynamics on coarse sediment flux, and less on finer 
sediment flux. The result is a significant dampening and delaying of the signal related to subglacial bedload 
export, and hence a difference in the erosion rates that would be inferred from sediment transport signals as meas-
urement sizes move donwstream. The modification of coarse sediment flux results from advection lengths that 
are constrained by both diurnal and seasonal variations in discharge. This is due to (a) proprieties of the subglacial 
hydrological system which evolve to having baseflows lower and peak flows higher than the critical discharge 
required for bedload transport, and (b) spatially changing proglacial hydraulic and morphological conditions. 
These findings are important for the understanding of the sediment connectivity in proglacial margins, especially 
in terms of natural hazard mitigation and sediment management for hydropower infrastructures, but also for 
potential geomorphic influences on ecological succession in recently deglaciated terrains. From a glaciological 
perspective, they suggest that inferences of the relative importance of suspended sediment load and bedload and 
the timescales of their variation cannot be reliably estimated except where measurements are collected close to 
glacier termini.

Data Availability Statement
The data used in this study (i.e., water discharge, suspended sediment load and bedload records for 2020 and 
2021) are archivied in Zenodo. These are available in (Mancini et al., 2023; Müller & Miesen, 2022).
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