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Quantum Quantile Mechanics: Solving Stochastic
Differential Equations for Generating Time-Series

Annie E. Paine,* Vincent E. Elfving, and Oleksandr Kyriienko

A quantum algorithm is proposed for sampling from a solution of stochastic
differential equations (SDEs). Using differentiable quantum circuits (DQCs)
with a feature map encoding of latent variables, the quantile function is
represented for an underlying probability distribution and samples extracted
as DQC expectation values. Using quantile mechanics the system is
propagated in time, thereby allowing for time-series generation. The method
is tested by simulating the Ornstein-Uhlenbeck process and sampling at times
different from the initial point, as required in financial analysis and dataset
augmentation. Additionally, continuous quantum generative adversarial
networks (qGANs) are analyzed, and the authors show that they represent
quantile functions with a modified (reordered) shape that impedes their
efficient time-propagation. The results shed light on the connection between
quantum quantile mechanics (QQM) and qGANs for SDE-based distributions,
and point the importance of differential constraints for model training,
analogously with the recent success of physics informed neural networks.

1. Introduction

Stochastic differential equations (SDEs) describe a broad range
of phenomena. They emerge when dealing with Brownian mo-
tion and quantum noise.[1] In physical sciences, SDEs are used
for describing quantum dynamics,[2] thermal effects,[3] molec-
ular dynamics,[4] and they lie at the core of stochastic fluid
dynamics.[5,6] In biology SDEs help in the studies of population
dynamics[7] and epidemiology.[8,9] They can also help to detect
anomalies.[10] SDEs are widely used in financial calculus,[11] a
fundamental component of all mechanisms of pricing financial
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derivatives and description of market dy-
namics. Potential applications of SDEs in
finance lie in predicting stock prices, cur-
rency exchange rates and more.[12]

A general system of stochastic differen-
tial equations can be written as[11]

dX t = f (X t, t)dt + g(X t, t)dWt (1)

where X t is a vector of stochastic vari-
ables parameterized by time t (or other pa-
rameters). Deterministic functions f and
g correspond to the drift and diffusion
processes, respectively. Wt corresponds to
the stochastic Wiener process. The stochas-
tic component makes SDEs distinct from
other types of partial differential equations,
adding a non-differentiable contribution.
This also makes SDEs generally difficult
to treat. Several questions arise: how do
we solve Equation (1), and what kind of

information do we want to get by solving SDEs? These are not
trivial questions to answer, because one might be interested in
different aspects of SDE-modeled processes.
First, the system of SDEs can be rewritten in the form of a

partial differential equation for the underlying probability den-
sity function (PDF) p(x, t) of deterministic continuous variables,
and then solved for the specified boundary conditions. The result-
ing equation is known as a Fokker–Planck (FP) or Kolmogorov
equation.[13] It can be exploited for calculating observables (av-
erages) from p(x, t); in many cases these are the mean and
the variance for the stochastic variables, E[X t] = ∫ xp(x, t)dx and
Var[X t] = E[X 2

t ] − E[X t]
2, respectively. Here, a challenge arises

when a well-defined boundary condition is missing, and instead
some additional data is available. The task then falls into the cat-
egory of data-driven machine learning problems, which has at-
tracted attention recently.[14,15] Also, a (potentially implicit) so-
lution of the FP equation does not offer strategies to generate
samples directly. Namely, drawing x ∼ p(x, t) from a complicated
multidimensional distribution, at different t, represents another
computationally expensive problem to solve.
Second, Equation (1) can be integrated using the Euler–

Maruyama method,[16] where the deterministic part of the dif-
ferential equation (DE) is solved with stepwise propagation, and
theWiener process is modeled with a random number generator.
This corresponds to the ensemble generation process (broadly
speaking, generative modeling), which is computationally chal-
lenging for complex models. For multidimensional systems this
is hindered by the curse of dimensionality. The task of solving
randompartial differential equationswas recently addressedwith
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deep learning using physics-informed neural networks.[17–19]

Unsupervised generative modeling often requires using adver-
sarial training[20,21] and generative adversarial network (GAN)
architecture.[22] Moreover, in cases where the information about
system parameters is limited, or exemplary datasets are gener-
ated frommeasurement and not known initial conditions, we ar-
rive at the task of model discovery.[23–27]

Quantum computers operate in a multidimensional state
space and are intrinsically probabilistic. They offer computational
advantage for sampling tasks.[28–31] This was demonstrated exper-
imentally with superconducting[32] and optical[33] quantum de-
vices. Thus, quantum computing may be a prime candidate for
disrupting the field of generative modeling. Yet, the challenge of
performing the quantum generative modeling for practical tasks
remains open. Ideally, discrete distributions can be loaded into a
quantum register using an amplitude encoding

∑K
k=1uk|k⟩, where

amplitudes uk contain information about the probability distri-
bution and |k⟩ are binary states for log(K)-qubit register. This
allows for a quadratic speed-up when using the amplitude am-
plification protocol,[34] and has numerous financial use-cases.[35]

However, representing arbitrary distributions in an amplitude-
encoded form may be difficult (no scalable scheme exists yet),
and the processing requires a large-scale fault-tolerant quantum
computer.[36] A strategy that is viable for near- and mid-term QC
relies on variational quantum algorithms based on parametrized
quantum circuits.[37,38] These can be seen as quantum neural
networks (QNNs).[39–43] To date, several variational protocols for
solving differential equations have been proposed for ordinary
and partial differential equations,[44–47] targeting near-term de-
vices. For stochastic differential equations several algorithms
have been explored that are based on wavefunction-based proba-
bility encoding[48–52] and rely on complicated circuits. A strategy
for near- and mid-term devices, SDE-based generative modeling
can be addressed by data-based learning of probability distribu-
tions.
Motivated by classical GAN successes,[22,53] various protocols

for the adversarial training of generative quantum models were
proposed, and coined as qGANs.[54,55] Here, several sample gener-
ation strategies can be employed. One possible strategy relies on
the variational wavefunction preparation as a distribution proxy,
with the sample readout following the Born rule. This corre-
sponds to a quantum circuit Bornmachine (QCBM) generator.[56]

In this case qGAN was applied to sampling from discrete
distributions,[57–63] preparing arbitrary quantum states,[64,65] and
being demonstrated experimentally with superconducting cir-
cuits for image generation.[66] In this setting the sampling pro-
cedure is efficient, but its power depends on the register width
and the generator is difficult to train at increasing scale. The lat-
ter comes from demanding requirements on the training set[67]

and barren plateaus for global cost functions.[68] We also note that
QCBM can be trained in other ways, including maximum mean
discrepancy and various statistical divergences,[56,69–71] with the
goal of preparing distributions arising in financial applications.
The second possible strategy relies on a QNN-based genera-
tor representing a continuous qGAN,[67] recently demonstrated
experimentally,[72] where a feature map embedding[73] is used for
continuous latent variable distribution. In this case the sampling
rate is reduced due to the expectation value measurement, but
the model becomes trainable, and its power is ultimately lim-

ited by the properties of featuremaps and the adversarial training
schedule (i.e., minimax game instead of loss minimization). The
operation of qGANs was recently surveyed in Ref. [74]. Finally,
other generator architectures are represented by quantum Boltz-
mann machines[75–77] where sampling is based on thermal states
of quantum Ising Hamiltonian, or recurrent neural networks for
NMR quantum computers.[78]

We note that the prior art in both classical and quantum gen-
erative modeling is either concentrated on representing proba-
bility density functions in model-driven approaches, or training
the generator in a black-box fashion [e.g., (q)GANs] where no
physical constraints are added. In this work, we suggest to shift
the focus to the very tool that enables sampling—the quantile
function (QF) (not to be mistaken with the quantile of a distri-
bution). We propose to solve SDEs by rewriting them as differ-
ential equations for the quantile function and using their neu-
ral representation (classical or quantum neural networks). In the
following, we use feature maps and differentiable quantum cir-
cuits (DQCs) to represent directly the quantile function of the
probability distribution of the underlying SDE, and propagate
them in time by solving the differential equations of quantile me-
chanics. This allows us to prepare a QNN-based generator that
is trained from available data and yet is model-informed. While
the expectation-based readout associated to theQNN structure re-
quiresmultiple shots, the proposed approach has improved train-
ability compared to QCBM architecture and can work with sparse
training data. Specifically, we benchmark the developed quan-
tum quantile mechanics (QQM) approach[79] using the Ornstein-
Uhlenbeck model (a prototypical stochastic process being the
base of many financial calculations). We show how to train QF
from data and/or the known model at the initial point of time,
and find a time-propagated QF that enables high-quality sam-
pling. We then proceed to show that adversarial schemes (contin-
uous GAN or qGAN) in fact train generators as a reordered quan-
tile function. Analyzing the similarities and differences between
the two methods, we find that quantile functions in their origi-
nal meaning are suitable for time propagation, while reordered
QFs have apparent difficulties for the task (see Discussion). Our
work uncovers the possibilities for time series generation and
data-augmentation enhanced by quantum resources.

2. Algorithm Section

First, the background is described for generative modeling
from SDEs, and then we proceed to introduce the proposed
QQMmethod.

2.1. Classical Sampling and Quantile Mechanics

Recall how a sample from a distribution can be obtained using
a basic inversion sampling. In the following, a single stochas-
tic process Xt (also written as X for brevity) is considered, and
the generalization to multiple processes/dimensions is straight-
forward. First, a PDF p(x) of a continuous variable x ∈  being
normalized over domain  is taken. Next, a cumulative distri-
bution function (CDF) is found out for the stochastic variable
X defined as an integral FX (x) = ∫ x

−∞ p(x′)dx′. This maps x to
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Figure 1. Illustrative example of sampling. We plot a normal probabil-
ity density function as a red curve (PDF), being the Gaussian function
with (𝜇, 𝜎) = (0, 1∕2). The domain is chosen as = [−1.5, 1.5]. The corre-
sponding cumulative distribution function is presented by the purple solid
curve (CDF). The quantile function for the corresponding CDF is shown
in orange (QF). The red diamonds correspond to a randomly drawn latent
variable z, and associated probability for the sample value, connected by
dotted lines.

the cumulative probability value p(X ≤ x) lying in the [0,1] range
on the ordinate axis (see Figure 1 for an illustration). Being a
non-decreasing function, FX (x) has to be inverted to provide a
sample. Generating a random number z ∈ (−1, 1) from the uni-
form distribution, the equation z = FX (x) can be solved to find
the corresponding sample. This requires finding the inverse of
CDF, F−1

X (x). In most cases, this leads to a transcendental prob-
lem without a closed-form solution. This poses computational
challenges and requires graphical solution methods.[80] Finally,
each random number z ∼ uniform(−1, 1) gives a random sam-
ple X from PDF of interest as X = F−1

X (z) (note that the range of z
could be easily rescaled). The inverted CDF function is known as
a quantile function of the continuous distribution, F−1

X (z) ≡ Q(z).
While generally quantile functions are difficult to get from

PDFs, they can be obtained by solving nonlinear partial differ-
ential equations derived from SDEs of interest. This approach
is called quantile mechanics. The quantile function Q(z, t) can be
obtained for any general SDE in the form (1) and its evolution is
given by quantilized FP as (see full derivation in Ref. [81])

𝜕Q(z, t)
𝜕t

= f (Q, t) − 1
2
𝜕g2(Q, t)
𝜕Q

+
g2(Q, t)

2

(
𝜕Q
𝜕z

)−2
𝜕2Q
𝜕z2

(2)

where f (Q, t) and g(Q, t) are the drift and diffusion terms familiar
from Equation (1). Equation (2) was solved as a function of latent
variable z and time t. Once Q(z, t) is known, by evaluating it at
random uniform z’s as t progresses we can get full time series
(trajectories) obeying the stochastic differential equation (1). In
Appendix D, the case of solving reverse-time SDEs are also con-
sidered.
In general, quantile mechanics equations are not easy to solve.

Power series solution as function approximation are known,[81–84]

as well as some simple examples.[85] However, the difficulty arises
whenmultidimensional problems are considered and generative
modeling suffers from the curse of dimensionality. To harness

Figure 2. QQMworkflow. Given the system of stochastic differential equa-
tions and initial data, differentiable quantum circuits are trained to repre-
sent the corresponding quantile functionG𝜃(z, t) as a function of a random
latent variable (z) and propagate it in time (t) with quantum mechanics
equations. The hybrid quantum-classical loop is used for optimizing vari-
ational parameters 𝜃 through loss function minimization based on data
and differential equations for the initial and propagated QF. Evaluating
G𝜃opt (z ∼ uniform(−1, 1), t) at optimal angles, random values of the latent
variable, and different time points t, we generate time series from SDE.

the full power of quantilemechanics, we thus propose to use neu-
ral representation of QFs. This is the first application of machine
learning methods to use quantile-based sampling as per our
knowledge, and it is envisaged that both classical and quantum
ML could be used for the universal function approximation.[73,86]

Here, the use of quantumneural networks offers a potential to re-
produce complex functions in high-dimensional space, including
systems where strong correlations are important. In the follow-
ing, quantum computing and quantile mechanics are combined
to develop the quantum quantile mechanics approach. The sketch
of the QQM workflow is shown in Figure 2. QFs are represented
as quantum neural networks in the DQC form, thus exploiting
the large expressivity of quantum-based learning. With this it is
ensured that the ability to solve the problem is achieved. Then
shown is how differential equations for quantile functions could
be used for training differentiable quantum circuits. Second, the
quantum quantile learning protocol is introduced for inferring
QF from data and using QQM to propagate the system in time.
This provides a robust protocol for time series generation and
sampling. Finally, shown is that generative adversarial networks
act as quantile functions for randomized association of the latent
variable values and samples.

2.2. Quantum Quantile Mechanics

To represent a trainable (neural) quantile function, a
parametrized quantum circuit is constructed using quan-
tum embedding through feature maps ̂𝜙(x) (with 𝜙 labeling a
mapping function),[37,39,87] followed by variationally-adjustable
circuit (ansatz) ̂𝜽 parametrized by angles 𝜽. The latter is
routinely used in variational quantum algorithms,[38] and for
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Figure 3. DQC layout. State preparation circuit for representing a time-
dependent quantile function. Acting on the initial state, two feature maps,
with R̂y using for time-dependence embedding and R̂x layer for the latent
variable embedding. We use HEA for the variational search, and total Z
magnetization as a cost function.

ML problems often has the hardware efficient ansatz (HEA)
structure.[88] The power of quantum feature maps comes from
mapping x ∈  from the data space to the quantum state|𝜓(x)⟩ = ̂𝜙(x)|O⟩ living in the Hilbert space. We denote the
initial state as |O⟩, typically chosen as a product state |0⟩⊗N .
Importantly, the automatic differentiation of quantum feature
maps allows derivatives to be represented as DQCs.[45] The read-
out is set as a sum of weighted expectation values.[73] Following
this strategy, a generator circuit G(z, t) is assigned to represent
a function parametrized by t (labels time as before), and the
embedded latent variable z. The generator reads

G(z, t) = ⟨O|̂𝜙(t)
†̂𝜙′ (z)†̂ †

𝜽

(
L∑

𝓁=1
𝛼𝓁̂𝓁

)
̂𝜽̂𝜙′ (z)̂𝜙(t)|O⟩ (3)

where ̂𝜙(z) and ̂𝜙′ (t) are quantum feature maps (possibly

different), {̂𝓁}
L

𝓁=1 represent L distinct Hermitian cost function
operators, and {𝛼𝓁}

L
𝓁=1 and 𝜽 are real coefficients that may be

adjusted variationally. The overall cost function may be global,
where projector on some specific bitstring was chosen, or local
as a sum of Pauli terms. The choice of {𝛼𝓁}

L
𝓁=1 enables to bias

for/against certain operators/qubits information—for example
for lower/higher frequencies as in Ref. [89]. The circuit structure
is shown in Figure 3. One could also work with multiple latent
variables and thus multidimensional distributions.
Our next step is developing the training procedure for G [or

specifically for the generator’s operator ̂G(z) = ̂𝜽̂𝜙′ (z)], such
that it represents QF for an underlying data distribution. Namely,
we require that the circuit maps from the latent variable z ∈
[−1, 1] to a sample G(z) = Q(z).
The training requires a dataset {Xdata} generated from a prob-

ability distribution for the system we want to study (or measured
experimentally), which serves as an initial/boundary condition.
Additionally, we know the underlying processes that describe the
system and which serve as differential constraints. The prob-
lem is specified by SDEs dX t = f𝝃(X t, t)dt + g𝝃(X t, t)dWt, where
one explicitly states that the drift and diffusion functions f𝝃(X t, t)
and g𝝃(X t, t) are parametrized by the vector 𝝃 (time-independent).
Here, 𝝃 contains the vector of parameters which identify the ex-
act SDE from its class of SDEs and could be found via model
discovery.[90] For instance, for the Ornstein–Uhlenbeck model,

which we refer to later, has 𝝃 = (𝜇, 𝜈, 𝜎) corresponding to the
mean, rate of mean reversion, and volatility, respectively. One
could also consider the situation when the SDE parameters for
generating data similar to {Xdata} are known only in the first ap-
proximation 𝝃(0). Then, they could be adjusted during the train-
ing to have the best convergence, as used in the model discovery
approach.[23,25] The loss is constructed as a sum of data-based and
SDE-based contributions,  = data + SDE. The first part data is
designed such that the data points in {Xdata} are represented by
the trained QF. For this, the data is binned appropriately and col-
lected in ascending order, as expected for any quantile function.
Then, quantum circuit learning (QCL) is used as a quantum non-
linear regression method[87] to learn the quantile function. Note
that such approach represents a data-frugal strategy, where the
need for training on all data points is alleviated.
The second loss term SDE is designed such that the learnt

quantile function obeys probability models associated to SDEs.
Specifically, the generator G(z, t) needs to satisfy the quantilized
Fokker–Planck Equation (2). The differential loss is introduced
using the DQC approach,[45] and reads

SDE =
1
M

∑
z,t∈,

𝔇
[
𝜕G𝜽

𝜕t
, F(z, t, f, g,

𝜕G𝜽

𝜕z
,
𝜕2G𝜽

𝜕z2
)
]

(4)

where 𝔇[a, b] denotes the distance measure for two scalars, and
the loss is estimated over the grid of points in sets (,  ). Here,
M = car()car( ) is the total number of points. The function
F(z, t, f, g, 𝜕zG𝜽, 𝜕

2
zzG𝜽) denoting the RHS for Equation (2), or any

other differential constraint, is also introduced. Using a differ-
ential equation based constraint is a core principle of physics-
informed machine learning and provides different fitting behav-
ior versus regression due to the requirements on derivative val-
ues as well as function values.
Other important ingredients of the QQM method include the

calculation of second-order derivatives for the feature map en-
coded functions (as required was SDE), and the proposed treat-
ment of initial/boundary conditions for multivariate function.
These technical details are described in Appendix A. Once the
training is set up, the loss is minimized using a hybrid quantum-
classical loopwhere optimal variational parameters 𝜽opt (and𝜶opt)
are searched for using non-convex optimization methods.
This process could be scaled to higher dimensions of encoded

features. The first needed step is to encode each of the indepen-
dent variables. There are many ways how this could be achieved
and an investigation of multivariate encoding is a topic of ongo-
ing research. A simple way to introduce several variables is layer-
ing several feature maps one after another. This model could be
differentiated with respect to each variable. However, the num-
ber of terms to measure grows linearly with the number of vari-
ables. One also needs to be aware of the required increase of the
training grid size. This issue occurs in classical machine learn-
ing, and it was shown that classical neural networks could work
well in multiple dimensions.[91]

3. Results

In this section, we present numerical experiments for training
DQCs to represent time-dependent quantile functions, as well as
qGAN training.
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3.1. QQM-Based Generative Modeling

In the next subsections, we present numerical simulations of
generative modeling. In the first part, we apply the developed
quantum quantile mechanics approach for solving a specific
SDE, and demonstrate a data-enabled operation. In the second
part, we cover the so-called quantum generative adversarial net-
work (qGAN) that was previously used for continuous distribu-
tions, and show numerical results for solving the same problem.
The two approaches are then compared in the next section (Dis-
cussion).

3.1.1. Ornstein–Uhlenbeck for Financial Forecasting and Trading

To validate the QQM approach and perform time series fore-
casting, we pick a prototypical test problem. As an example we
choose the Ornstein–Uhlenbeck (OU) process. In financial anal-
ysis its generalization is known as the Vasicek model.[92] It de-
scribes the evolution of interest rates and bond prices.[93] This
stochastic investment model is the time-independent drift ver-
sion of the Hull–White model[94] widely used for derivatives pric-
ing. We also note that OU describes dynamics of currency ex-
change rates, and is commonly used in Forex pair trading—a
primary example for quantum generative modeling explored to
date.[70,71] Thus, by benchmarking the generative power of QQM
for OU we can compare it to other strategies (valid at fixed time
point).
The Ornstein–Uhlenbeck process is described by an SDE with

an instantaneous diffusion term and linear drift. For a single vari-
able process Xt the OU SDE reads

dXt = 𝜈(𝜇 − Xt)dt + 𝜎dWt (5)

where the vector of underlying parameters 𝝃 = (𝜈,𝜇, 𝜎) are the
speed of reversion 𝜈, the long-term mean level 𝜇, and the degree
of volatility 𝜎. The corresponding Fokker–Planck equation for the
probability density function p(x, t) reads

𝜕p(x, t)
𝜕t

= −𝜈 𝜕
𝜕x

(
(𝜇 − x)p

)
+ 𝜎2

2
𝜕2p
𝜕x2

(6)

When rewritten in the quantilized form, it becomes a PDE for
the quantile mechanics,

𝜕Q(z, t)
𝜕t

= 𝜈
[
𝜇 −Q(z, t)

]
+ 𝜎2

2

(
𝜕Q
𝜕z

)−2
𝜕2Q
𝜕z2

(7)

which follows directly from the generic Equation (2). In the fol-
lowing, we take the speed of reversion to be positive, 𝜈 > 0 and
adjust the long-term mean level to zero, 𝜇 = 0.
Having established the basics, we train the differentiable quan-

tum circuit to match the OU QF. First, for the starting point of
time, we train the circuit to represent a quantile function based
on available data (see the workflow chart in Figure 2 and the dis-
cussion below). Next, having access to the quantum QF at the
starting point, we evolve it in time solving the equation

𝜕G(z, t)
𝜕t

= −𝜈G(z, t) + 𝜎2

2

(
𝜕G
𝜕z

)−2 𝜕2G
𝜕z2

(8)

as required by QM [Equation (7)]. This is the second training
stage in the workflow chart shown in Figure 2.
To check the results, we use the analytically derived PDF valid

for the Dirac delta initial distribution p(x, t0) = 𝛿(x − x0) peaked
at x0 that evolves as

p(x, t) =
√

𝜈

𝜋𝜎2(1 − exp[−2𝜈(t − t0)])

× exp
[
−
𝜈(x − x0 exp[−𝜈(t − t0)])

2

𝜎2(1 − exp[−2𝜈(t − t0)])

]
(9)

and we can write the OU QF evolution as

Q(z, t) = x0 exp
[
−𝜈(t − t0)

]
+
√
𝜎2

𝜈

(
1 − exp

[
−2𝜈(t − t0)

])
inverf (z) (10)

where inverf (x) denotes the inverse error function.[95] This pro-
vides us a convenient benchmark of a simple case application
and allows assessing the solution quality. Additionally, we use
Euler–Maruyama integration to compare results with the numer-
ical sampling procedure with fixed number of shots.

3.1.2. Ornstein–Uhlenbeck with Analytic Initial Condition

To highlight the generative power of the QQM approach we start
by simulating the OU evolution G(z, t) starting from the known
initial condition. This is set as G(z, 0) = Q(z, 0) being the ana-
lytic solution [Equation (10)] or can be supplied as a list of known
samples associated to latent variable values. To observe a signifi-
cant change in the statistics and challenge the training, we choose
the dimensionless SDE parameters as 𝜈 = 1, 𝜎 = 0.7, x0 = 4, and
t0 = −0.2 such that we evolve a narrow normal distribution with
strongly shifted mean into a broad normal distribution at 𝜇 = 0.
We use DQCs with N = 6 qubits and a single cost oper-

ator being the total Z magnetization, ̂ =
∑N

j=1Ẑj. This cost

Figure 4. Circuit diagram of variational circuit used in simulations. Pur-
ple/pink boxes represent Pauli X/Y rotation gates. Entangling layer con-
sists of CNOT gates on nearest neighbors and endpoints. Variational cir-
cuit of depth d is made up of initial layer of rotations RxRz on each qubit
followed by entangling layer composed of CNOTs. Then follows d − 1 im-
plementations of rotation layer (RzRxRz on each qubit), then entangling
layer. The circuit terminates after a final set of two rotations RzRx on each
qubit.
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Figure 5. Training time evolution of Ornstein-Uhlenbeck process. The re-
sults are shown for runs with analytic initial condition and parameters cho-
sen as 𝜈 = 1, 𝜎 = 0.7, x0 = 4. a) Surface plot for the trained DQC-based
quantile function G(z, t) that changes in time. b) Slices of the quantum
quantile function G(z, t) shown at discrete time points t = 0 (labeled as
Tmin hereafter), t = 0.25 (Tmid), and t = 0.5 (Tmax).

operator was chosen as it collects information from all qubits
and it is local (here, the sum of single-qubit operators). Lo-
cal cost operators were shown to have favorable behavior as
compared to global when considering barren plateaus.[68] To
build a model that does not bias certain qubits, we choose
to have equal coefficients for the operator on each qubit. For
simplicity, we train the circuit using a uniformly discretized
grid with  containing 21 points from −1 to 1, and  con-
taining 20 values from 0.0 to 0.5, totalling 420 points in the
full grid. To encode the function, we use the product-type fea-
ture maps[45,87] chosen as ̂𝜙(t) =

⨂N
j=1 exp[−i arcsin(t)Ŷj∕2] and

̂𝜙′ (z) =
⨂N

j=1 exp[−i arcsin(z)X̂j∕2]. The variational circuit corre-
sponds toHEAwith the depth of six layers of generic single-qubit
rotations plus nearest-neighbor CNOTs, the circuit diagram of
ansatz from is shown in Figure 4. We exploit the floating bound-
ary handling,[45] and choose a mean squared error (MSE) as the
distance measure, 𝔇[a, b] = (a − b)2 of our loss in Equation (4).
Due to floating boundary handling being used, there is no data
term in the loss function. The system is optimized for a fixed
number of epochs, being 750, and we use the 𝙰𝚍𝚊𝚖 optimizer
for gradient-based training of variational parameters 𝜽. We im-
plement this workflow with a full quantum state simulator in
a noiseless setting. This, as well as the other simulations pre-
sented, is realized in Yao.jl[96]—a Julia package that offers state-
of-the-art performance. Formeasurement infinite shots are used.
Gradients calculations are simulated with an in-built function of
Yao.jl which utilizes automatic differentiation techniques (back
propagation) or with application of the parameter shift rule. Re-
sults for a limited number of shots are shown in Appendix G.
We present the results of DQC training in Figure 5. In

Figure 5a, we show the trained quantumQF as a function of time
t and the latent variable z. Choosing three characteristic points
of time t = {0.0, 0.25., 0.50} that we label as {Tmin, Tmid, Tmax},
we plot the corresponding quantile functions at these times
(Figure 5b). The dashed curves from theDQC training closely fol-
low ideal QFs shown by solid curves. Additionally, we note we ob-
served the training loss smoothly and rapidly converging in 250
epochs as the circuit is expressive enough to represent changes of
initial QF at increasing time, and thus providing us with evolved
G(z, t).
Next, we perform sampling and compare the histograms com-

ing from the Euler–Maruyama integration of OU SDE[16,97] and
the QQM training presented above. The results are shown in

Figure 6. Comparison of histograms from the numerical SDE integration
and QQM training. a) Distribution of samples from the Euler-Maruyama
SDE solver (binned counts divided by the total number of samples Ns),
shown against the analytic PDF at three time points Tmin (t = 0), Tmid
(t = 0.25), and Tmax (t = 0.5). Ns = 100, 000 samples are taken, and pa-
rameters are the same (𝜈 = 1, 𝜎 = 0.7, x0 = 4). b) Distribution of sam-
ples generated from the DQC-based quantile function, for the training de-
scribed in Figure 5. (c) Bar height difference between (a,b) shown for Tmin
(top), Tmid (middle), and Tmax (bottom).

Figure 6 for the same parameters as Figure 5. In Figure 6a, we
show the three time slices of Euler-Maruyama trajectories, built
withNs = 100000 samples to see distributions in full. The counts
are binned and normalized such that the total area of the his-
togram (bin width multiplied by bin height summed) is equal
to one, and naturally show excellent correspondence with ana-
lytical results. The sampling from trained quantile function is
performed by drawing random z ∼ uniform(−1, 1) for the same
number of samples. In Figure 6b, we observe that QQMmatches
well the expected distributions. Importantly, the training cor-
rectly reproduces the widening of the distribution and the mean
reversion, avoiding the mode collapse that hampers adversarial
training.[53,74] To further corroborate our findings, we plot the dif-
ference between two histograms (Euler-Maruyama and QQM) in
Figure 6c, and observe that the count difference remains low at
different time points.

3.1.3. Ornstein–Uhlenbeck with Data-Inferred Initial Condition

Next, we demonstrate the power of quantile function train-
ing from the available data (observations, measurements) cor-
responding to the Ornstein–Uhlenbeck process. Note that com-
pared to the propagation of a known solution that is simplified
by the boundary handling procedure, for this task we learn both
the surface G(z, t) and the initial quantile function G(z, Tmin).
To learn the initial QF (same parameters as for Figures 5
and 6) we use QCL trained on observations. The observations
are 100000 samples from the normal distribution with mean
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Figure 7. Quantile function trained on initial data. a) Trained QF for the
Ornstein-Uhlenbeck process at t = 0 (dashed curve labeled as result), plot-
ted together with the known true quantile (solid line labeled as target, re-
sults overlay). The parameters are the same as for Figure 5. b) Training loss
at different epochs, with the final epoch producing the QF in (a). c) Nor-
malized histogram of samples from the data-trained QF, plotted against
the analytic distribution (PDF).Ns = 100, 000 random samples are drawn
and bin counts are normalized for a total area of one as before. d) His-
tograms for the data-trained QF evolved with quantum quantile mechan-
ics, shown at three points of time.

𝜇0 = x0 exp[𝜈t0] and standard deviation 𝜎0 =
√

𝜎2

𝜈
(1 − exp[2𝜈t0]),

where x0 = 4, 𝜈 = 1, t0 = −0.2, 𝜎 = 0.7 (all dimensionless units).
The samples in the initial dataset are collected into bins and
sorted in the ascending order as required by QF properties. From
the original Ns = 100000 that are ordered we obtain an inter-
polated curve. We get target values for QCL training choosing
Npoints = 43 points in  between −1 and 1. We note that the
training set is significantly reduced, and such data-frugal train-
ing holds as long as the QF structure is captured (monotonic in-
crease). The training points are in the Chebyshev grid arrange-
ment as cos[(2n − 1)𝜋∕(2Npoints)] (n = 1, 2,⋯, Npoints), this puts
slight emphasis on training the distribution tails around |z| ≈ 1.
To make the feature map expressive enough that it captures full
z-dependence for the trained initial QF, we use a tower-type prod-
uct featuremaps defined as ̂𝜙′ (z) =

⨂N
j=1 exp[−i arcsin(z)jẐj∕2],

where rotation angles depend on the qubit number j. For the
training we again use a six-qubit register, and follow the same
variational strategy as in the previous subsection. We initialize
the circuit using an initialization procedure as detailed in Ap-
pendix E. We observe that a high-quality solution with a loss of
≈ 10−6 for G(z, 0) can be obtained at the number of epochs in-
creased to few thousands, andwe find that pre-trainingwith prod-
uct states allows reducing this number to hundreds with identi-
cal quality.
The results are shown in Figure 7, with the QF trained from

data shown in Figure 7a by the dashed curve that overlays the
target QF. The circuit converges to 10−6 loss level (Figure 7b), be-
ing close to the model expressivity limit of the feature map itself.
Performing sample generation at the initial time, in Figure 7 we

observe good correspondence with the expected PDF (sampling
procedure is the same as in Figure 6). At the same time we note
that small deviations in trained QF (and its derivative) lead to sig-
nificant deviations for statistics, stressing the importance of ex-
pressive circuits and stable training. Using the trained QF as the
initial condition, we evolve the system as before (training details
are presented in Appendix C). We perform generative modeling
at later points of time Tmid and Tmax. The histograms in Figure 7
confirm the high quality of sampling, and show that the approach
is suitable for time series generation.
Let us now discuss the trainability of the proposed approach.

As we deal with QNNs and non-convex optimization, we expect
that at increasing system size (and the number of variational
parameters) there can be regions with vanishing gradients, so-
called barren plateaus. This is an issue that plagues many vari-
ational quantum algorithms. In our simulations, we do not ex-
perience signs of vanishing gradients, as we work with up to
ten qubits with 190 parameters. It is likely that for our set up
which uses a HEA this issue will be encountered as qubit num-
ber and ansatz depth increases. The question of avoiding barren
plateaus is a current hot topic of research. One such direction is
using alternative forms of ansatz such as convolutional neural
networks[98] or suppressing entanglement entropy of variational
states.[99] Alternatively, the overparametrization of the variational
circuit is also a current topic of interest and a potential method
to reduce the effects of barren plateaus.[100]

Additionally, landscapes of variational quantum circuits may
includemultiple local minima.[101] However, we do not search for
a ground state, but sufficiently good approximation of the quan-
tile function, and this can change the loss landscape.We also note
that for random initialization we may get models where deriva-
tive terms overpower other terms, making the loss untrainable.
However, this can be readily fixed by the initialization proposed
in Appendix E, or going to another random set. From the point of
expressivity, we note that quantile functions for continuous dis-
tributions are smooth. We expect that for sufficiently rich feature
maps QFs can be represented to high precision.

3.2. qGAN-Based Generative Modeling

Generative adversarial networks represent one of the most suc-
cessful strategies for generative modeling.[53] It is used in vari-
ous areas, ranging from the fashion industry to finance, where
GANs are used to enrich financial datasets. The latter is specially
relevant when working with relatively scarce or sensitive data.
The structure of GAN is represented by two neural networks: a
generator GNN and a discriminator DNN. The generator takes a
random variable z ∼ pz(z) from a latent probability distribution
pz(z). This is typically chosen as a uniform (or normal) distribu-
tion for z ∈ (−1, 1). Using a composition gL◦⋯◦g2◦g1(z) of (non-
linear) operations {gi}

L
i=1 such that the generator prepares a fake

sample GNN(z) from the generator’s probability distribution pG,
GNN(z) ∼ pG(GNN(z)). The goal is tomake samples {GNN(z)}

Ns
s=1, as

close to the training dataset as possible, in terms of their sample
distributions. If true samples x ∼ pdata(x) are drawn from a (gen-
erally unknown) probability distribution pdata(x), our goal is to
match pG(GNN(z)) ≈ pdata(x). This is achieved by training the dis-
criminator network DNN to distinguish true from fake samples,
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Figure 8. QuantumGANworkflow. The quantum circuits are used both for
generative modeling at t = Tmin (generator) and discrimination between
real and fake samples (discriminator). The generator circuitGQ(z) is com-
posed of the product feature map and HEA variational circuit. The dis-
criminator DQ(x) is trained to distinguish samples from the initial data
distribution.

while improving the quality of generated samples {GNN(z)}
Ns
s=1,

optimizing a minimax loss

min
GNN

max
DNN

GAN = min
GNN

max
DNN

{
𝔼x∼pdata(x)

[
logDNN(x)

]
+ 𝔼z∼pz(z)

[
log(1 − DNN(GNN(z)))

]}
(11)

where DNN and GNN are the trainable functions represented by
the discriminator and generator, respectively. The first loss term
in Equation (11) represents the log-likelihood maximization that
takes a true sample from the available dataset, and maximizes
the probability for producing these samples by adjusting varia-
tional parameters. The second term trains GNN to minimize the
chance of being caught by the discriminator. We stress that the
loss corresponds to a minimax game, therefore instead of train-
ing to find a minima we are instead training to find the Nash
equilibrium.[22] Most importantly, we note that GNN(z) is a func-
tion that converts a random sample z ∼ uniform(−1, 1) into a
sample from the trained GAN distribution — therefore repre-
senting a quantile-like function. This is the connection we develop
further using the qGAN training.
Quantum GANs follow the same ideology as their classical

counterparts, but substitute the neural representation of the gen-
erator GNN and/or discriminator DNN by quantum neural net-
works. In the following, we denote them as GQ and DQ, respec-
tively. The schedule of qGAN training and circuits are presented
in Figure 8. To apply qGANs for the same task of OU process
learning, we concentrate on a continuous qGAN that uses the
feature map encoding.[67,72] We follow the training strategy from
Ref. [67]. We try tomodel the normal distribution with zeromean
and standard deviation of 0.2. Both the discriminator and gen-
erator use N = 6 registers with the expressive Chebyshev tower
feature map[45] followed by d = 6 HEA ansatz of the form as in
Figure 4. The readout for the generator uses the cost operator⟨Ẑ1⟩, and the discriminator uses the same cost operator with post
processing such that we readout (⟨Ẑ1⟩ + 1)∕2 ∈ [0, 1] modeling
the probability. As before, we use Adam and train the qGAN for
2000 epochs using the loss function (11). Due to the minimax
nature of the training, the loss oscillates and instead of reach-
ing (global) optimum qGAN tries to reach the Nash equilibrium.
Unlike QQM training, we cannot simply use variational param-

Figure 9. qGAN training and fixed-time sampling. a) Generator function is
shown for the optimal training angles. b) Generator (LG, red) and discrim-
inator (LD, blue) loss terms at different epochs. The Nash equilibrium at
− ln(1∕2) is shown by black dotted line (NE). c) Normalized histogram for
qGAN sampling (Ns = 100, 000), as compared to the target normal distri-
bution (𝜇 = 0, 𝜎 = 0.2). d) Ordered quantile QGAN(z̃) from the resulting
qGAN generator shown in (a) (dashed curve), as compared to the true QF
of the target distribution (solid curve).

eters for the final epoch, and instead test the quality throughout.
To get the highest quality generator we test how close together
are the discriminator (LD) and generator (LG) loss terms by mea-
suring the mean square distance between the two values. If they
are within 𝜀 = 0.1 distancewe perform the Kolmogorov–Smirnov
(KS) test[60] and check the distance between the currently gener-
ated samples and the training dataset. The result with minimal
KS is chosen. We stress that KS is not used for training, and is
exclusively for choosing the best result.
The results for qGAN training are shown in Figure 9. A total

of 10 000 samples from N(0, 0.2) are used as training data. A dif-
ferent random subset of 1000 samples is used at each epoch for
the loss evaluation. The trained generator GQ(z) is shown as a
function of the latent variable z. We note that it has a strongly-
oscillating nature. The training is shown separately for the gen-
erator (blue curve) and discriminator (red curve) loss terms. They
oscillate around the analytic value for theNash equilibrium (black
dotted line, NE), and briefly settle around NE after 1600 epochs
where resultant circuit parameters are saved. We sample the
qGAN generator usingNs = 100000 and plot the normalized his-
togram in Figure 9c. We observe that the distribution roughly
matches the target (solid curve, PDF), though finer points are
missing (cf. Figure 7c), including the missing tail at negative val-
ues. In Figure 9b, the loss is shown and exhibits the oscillations
that are often seen in qGAN training due to the competition in
the minimax loss, and associated mode collapse phenomena.[102]

There are further techniques that could be implemented to alter
this such as Refs. [103, 104]. Naturally, the generator of qGAN
GQ(z) does the same job as the trained quantile function G(z)
from previous subsections. We proceed to connect the two ex-
plicitly.
Reordered Quantile Functions and their DEs. The main differ-

ence between the quantile function and the generator of qGAN
is that the true QF is a strictly monotonically increasing func-
tion, while the qGAN generator GQ is not. We can connect them

Adv. Quantum Technol. 2023, 6, 2300065 2300065 (8 of 15) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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by noticing that the qGAN works with the latent variable z ∈ ,
which we can rearrange into a QF by ordering the observations
and assigning them the ordered latent variable z̃ ∈ ̃ (both func-
tions produce the same sample distribution). It is convenient
to define a mapping h : ̃ →  for GQ which rearranges it into
increasing form, QGAN(z̃) = GQ(h(z̃)). In practice, finding h(z̃)
requires the evaluation of GQ(z) ∀ z ∈  and re-assigning the
samples to values of ̃ in ascending order. Importantly, both h
and its inverse inv[h] :  → ̃ can be defined in this process. In
Figure 9d, we show the results of reordering for the generator
function in Figure 9a. The reordered quantile QGAN is plotted
(dashed curve), approximatelymatching the target quantile (solid
curve). We observe that the center of the quantile is relatively well
approximated but the tails are not (particularly for z̃ < 0). This
agrees with what is observed in the sampling shown in Figure 9c.
Having established the correspondence for qGAN-based genera-
tive modeling and quantile-based modeling we ask the question:
can we apply differential equations to the quantile-like function
to add differential constraints, and evolve the system in time en-
abling generative modeling?

4. Discussion

The answer to the question above is far from trivial. To use a re-
ordered qGAN quantile function for further training and time-
series generation we need to account for the mapping when writ-
ing differential equations of quantile mechanics. Let us look into
a specific case to develop an intuition on the behavior of re-
ordered quantile functions with differential equations. A quantile
functionQ(z̃) of a normal distribution withmean 𝜇 and standard
deviation 𝜎 satisfies a quantile ODE[81,82]

d2Q
dz̃2

−
Q − 𝜇
𝜎2

(
dQ
dz̃

)2

= 0 (12)

where we use the tilde notation z̃ to highlight that this is an or-
dered variable. Assuming perfect training such that QGAN(z̃) =
GQ(h(z̃)) closelymatchesQ(z̃), we substitute it into Equation (12),
and observe that the original qGAN generator obeys

d2GQ(z)

dz2
−
GQ(z) − 𝜇

𝜎2

(dGQ(z)

dz

)2

=
inv[h]′′(z)

inv[h]′(z)

dGQ(z)

dz
(13)

The left-hand side (LHS) of Equation (13) has the same form
as for the true QF [cf. Equation (12)], but the right-hand side
(RHS) differs from zero and involves derivatives of the inverted
mapping function inv[h](z). This has important implications for
training GQ(z) with differential constraints, as the loss term in-
cludes the difference between LHS and RHS. Let us analyze the
example of the quantile ODE in Equation (13). In Figure 9a, we
plot the LHS for GQ(z) coming from the qGAN training. The re-
sult is a smooth function, and we expect all relevant terms, in-
cluding derivatives dGQ(z)∕dz or d2GQ(z)∕dz2, can be evaluated
and trained at all points of the latent space. However, the prob-
lem arises when the RHS enters the picture. The additional term

Figure 10. qGAN quantile function analysis. In (a), we plot the LHS of
Equation (13) for the trained qGAN generator GQ(z) shown in Figure 9a.
The resulting function is oscillatoric but smooth. b) Inversemapping func-
tion inv[h] shown as a function of z. It transforms GQ(z) into the increas-
ing quantile function QGAN(z̃) that is plotted in Figure 9d. We highlight
the non-differentiable points by blue circles, and zoom in on the charac-
teristic behavior in the inset above. The derivative is not defined at the
discontinuity (top right inset).

strongly depends on the contributions coming from inverse map
derivatives inv[h]′ and inv[h]′′. At the same time we find that the
map from a non-monotonic to a monotonically increasing func-
tion is based on amultivalued function (see discussion and exam-
ples in Appendix B). Furthermore the inverse of the map (along
with the map itself) is continuous but not smooth—it becomes
non-differentiable at some points due toGQ(z) oscillations. As an
example in Figure 10b, we show inv[h] from training in Figure 9,
highlighting the points with non-analytic behavior blue circles.
The inset for Figure 10b clearly shows the discontinuity. This
translates to the absence of inv[h]′(z) at a set of points, which un-
like zero derivatives cannot be removed by reshuffling the terms
in the loss function. The discovered unlikely property of themap-
ping puts in jeopardy the attempts to use differential-based learn-
ing for qGAN generators. While more studies are needed to esti-
mate the severity of discontinuities (and if the set of such points
can be excluded to yield stable training), our interim conclusion
is that quantile functions in the canonical increasing form are
more suitable for evolution and time series generation.

5. Conclusion

We proposed a distinct quantum algorithm for generative model-
ing from stochastic differential equations. Summarizing the find-
ings, we have developed the understanding of generative mod-
eling from stochastic differential equations based on the con-
cept of quantile functions. We proposed to represent the quan-
tile function with a trainable (neural) representation, which may
be classical- or quantum-based. In particular, we focused on pa-
rameterizing the trainable quantile function with a differentiable
quantum circuit that can learn from data and evolve in time
as governed by quantile mechanics equations. Using Ornstein–
Uhlenbeck as an example, we benchmark our approach and show
that it gives a robust strategy for generativemodeling in theNISQ
setting. Furthermore, we notice that adversarial schemes as con-
tinuous qGAN lead tomodified quantile-like function that poten-
tially have intrinsic obstacles for evolving them in time.

Adv. Quantum Technol. 2023, 6, 2300065 2300065 (9 of 15) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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For future implementation of this algorithm for more com-
plex problems further work on choosing suitable feature maps
that can accommodate the problem whilst remaining train-
able is needed. One such approach could be encoding implicit
biases[105] and utilizing symmetries via geometricmachine learn-
ing techniques.[106,107] This is particularly suitable for quantile
functions as they are monotonically increasing functions where
derivatives can be constrained. We conclude by saying that the
strategy we propose uses the large expressive power of quantum
neural networks, and we expect elements of the approach can be
used for other architectures.

Appendix A: Experimental Section

In this section, we describe the details of circuit differentiation and the
proposed boundary handling procedure for multivariate functions.

Calculating Second-Order Derivatives
For solving SDEs, we need to access the derivatives of the circuits rep-

resenting quantile functions dG∕dz, d2G∕dz2, where z is a latent variable.
This can be done using automatic differentiation techniques for quantum
circuits, where for near-term devices and specific gates we can use the pa-
rameter shift rule.[87,108,109] The differentiation of quantum feature maps
follows the DQC strategy,[45] where we estimate dG∕dz as a sum of expec-
tation values

dG(z)
dz

= 1
2

N∑
j=1

𝜑′
j (z)

(⟨G+
j ⟩ − ⟨G−

j ⟩) (A1)

where ⟨G+
j ⟩ and ⟨G−

j ⟩ denote the evaluation of the circuit with the j-th gate
parameter shifted positively and negatively by 𝜋∕2. This generally requires
2N circuit evaluations. The (non-linear) function 𝜑j(z) represents the z-
dependent rotation phase for the j-th qubit. A popular choice is 𝜑j(z) =
arcsin(z) (same for all qubits) referred as a product featuremap, and other
choices include tower feature maps.[45]

Quantum circuit differentiation for higher-order derivatives was re-
cently considered in several studies.[109–111] Extending the feature map
differentiation to the second order, we use the parameter shift rule along-
side the product rule, and calculate d2G∕dz2 as

d2G(z)

dz2
= 1

2

N∑
j=1

𝜑′′
j (z)

(⟨G+
j ⟩ − ⟨G−

j ⟩)

+ 1
4

N∑
j=1

N∑
k=1

𝜑′
j (z)𝜑

′
k(z)

(⟨G++
jk

⟩ − ⟨G+−
jk

⟩ − ⟨G−+
jk

⟩
+⟨G−−

jk ⟩) (A2)

where ⟨G++
jk

⟩ (⟨G−−
jk

⟩) denotes the evaluation of the circuit with the ro-

tation angles on qubits j and k are shifted positively (negatively) by 𝜋∕2.
Similarly, ⟨G+−

jk
⟩ (⟨G−+

jk
⟩) are defined for shifts in opposite directions. If im-

plemented naively, the derivative in Equation (A2) requires 2N + 4N2 eval-
uations of circuit expectation values. This can be reduced by making use
of symmetries in the shifted expectation values and reusing/caching pre-
viously calculated values, that is, those for the function and its first-order
derivative. The reduced number of additional circuit evaluations required
for the calculation of the second derivative is 2N2.

Boundary Handling for PDEs
As we consider differential equations with more than one independent

variable, we need to develop a strategy for implementing (handling) the
boundary in this situation. Let us consider a function of n variables. We
consider an initial condition of f (t = 0, z) = u0(z), where z is a vector of
n − 1 independent variables, and the first variable usually corresponds to

Figure B1. qGAN quantile reordering example. a) Mapping function
h(z̃) = ±(z̃ + 1)∕2. b) Non-ordered quantile function GA(z) = Q(inv[h](z))
corresponding to mapping in (a) and normal quantile function. c) Known
quantile function (solid curve, Q) compared to numerical ordering of GA
(dashed line,QA). d) RHS of Equation (A2) in the main text, plotted forGA
shown in (b). Derivatives of inv[h] are calculated using finite differencing.
e) Inverse mapping function inv[h] plotted for different values of the latent
variable z. We note the point of non-differentiability at z = 0. f) Analytic
first derivative of inv[h] that has a discontinuity at z = 0.

time. Here we extend several techniques, corresponding to pinned type
and floating type boundary handling, previously considered for the single-
variable case in Ref. [45].

When considering just one independent variable, a pinned boundary
handling corresponds to encoding the function as f (t) = G(t). The bound-
ary is then ‘pinned’ into place by use of a boundary term in the loss func-
tion B = [f (t0) − u0]

2. For multiple independent variables this general-
izes to f (t, z) = G(t, z) and B =

∑
i[f (t0, zi) − u(zi)]

2, where {zi} are the
set of points along t = 0 at which the boundary is being pinned.

When using the floating boundary handling the boundary is imple-
mented during the function encoding. In this case the function encoding
is generalized from its single-variable representation, f (t) = u0 − G(0) +
G(t), to the multivariate case as

f (t, z) = u0(z) − G(0, z) + G(t, z) (A3)

This approach does not require the circuit-embedded boundary, but in-
stead needs derivatives of u0(z) for calculating the derivatives of f with
respect to any z ∈ .

Appendix B: Analytic Quantile Reordering for
qGAN Generators

To understand the reordering procedure for qGAN generators and strictly
increasing quantile functions, let us consider a simple example.

We start by considering a quantile-like generator GA(z) and use the
mapping h that reorders it into ideal quantile function (QF) for the nor-
mal distribution. The mapping reads h(z̃) = ±(z̃ + 1)∕2, and is shown in
Figure B1a as a multivalued function. It ensures that if we start from the
normal QF, we arrive toGA(z) with a single dip. The corresponding qGAN-
like generator GA(z) with a single dip is shown in Figure B1b (we consider
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Figure C1. Time-evolution of Ornstein-Uhlenbeck process with data-inferred initial condition. The initial conditions is taken from Figure 7 and we use
the same OU model parameters. a) Surface plot for the quantile function evolved in time. b) Quantile functions shown at three time points (being the
same as in the main text). c) Loss as a function of epoch from training in (a,b).

𝜇 = 0 and 𝜎 = 0.2). Our motivation is to understand how the presence of
nonmonotonicity changes the behavior of the system.

First, let us check that the reordering into increasing quantile function
works as expected. Assigning the values of GA(z) in the ascending order
we get the reordered QFQA(z̃). This is plotted in Figure B1c, matching the
idealQ(z̃) as expected. Once we have established themapping for ideal re-
ordering, let us look at its properties. In the results section, we discussed
how the reordered quantile function from qGAN training matches the ap-
propriate quantile ODE. We can perform the same check for the simple
re-ordering presented above. Evaluating the difference between the RHS
and LHS of Equation (13) (akin to loss term) for GA(z) and known map-
ping h(z̃), we observe that the difference remains zero everywhere (we have
a perfect solution), apart from the middle point z = 0 where it diverges
(Figure B1d). For calculating the derivatives of inv[h] we use finite differ-
ence (first-order forward Euler’s method with a step of 10−5), similarly for
the qGAN case, thus observing small noise coming from numerical differ-
entiation. The noise could be further reduced by considering alternative
numerical differentiation schemes such as higher-order schemes or those
more robust to step size such as the complex step rule.[112] The reason
behind the unfavorable loss term behavior can be tracked to the proper-
ties of the mapping function. We show the inverse mapping inv[h] plotted
in Figure B1e, and its derivative inv[h]′ is presented in Figure B1f. We see
that inv[h] has a point of non-differentiability at z = 0 and inv[h]′ is discon-
tinuous there. This provides the intuition behind the divergence. When
training the DE-based loss for Equation (13) with z = 0 included the loss
becomes non-trainable. We stress that the same is observed for the non-
ideal GQ, where multiple non-differentiable points appear that we do not
know in advance. The issue of developing efficient workflow for training
GQ(z), also including the time dimension, remains an important area for
the future research.

Appendix C: Time Evolution for Data-Inferred
Quantile Function

In the Results Section of the main text, we detail how DQC is used to time
evolve an analytic initial condition and how to learn the initial condition
based on observations. We can also time evolve with DQC based on the
observed initial quantile. The set up of the DQC is the same as when an
analytic initial condition leading to Figure 5. The result of the training is
shown in Figure C1, showing that the same quality of propagation is ob-
tained.

Appendix D: Solving Reverse-Time Stochastic
Differential Equations with QQM

Interesting connections between thermodynamics, machine learning, and
image synthesis have been uncovered in recent years. Recently, Denoising
Diffusion Probabilistic Models (DDPM)[113] were shown to perform high
quality image synthesis at state-of-the-art levels,[114] sometimes better
than other generative methods like GAN-approaches. Ref. [115] realized

that such discrete DDPMs can also be modeled as continuous processes
using reverse-time SDEs when combined with ideas from score-based gen-
erative modeling.

Ref. [116] derived the reverse-time form of general stochastic differen-
tial equations, being

dX t = f̄ (X t, t)dt + g(X t, t)dWt (D1)

where now a modified diffusion term f̄ is given by

f̄ (X t, t) = f (X t, t) − g2(X t, t)∇X log [p(x, t)] (D2)

Ref. [115] proposed to solve such equations with general-purpose numeri-
cal methods such as Euler–Maruyama and stochastic Runge–Kutta meth-
ods, as well as using predictor-corrector samplers. We envisage solving
the reverse-time Fokker–Planck equation corresponding to Equation (D1)
instead, and more precisely its quantilized form, using the method de-
scribed in this paper. We note that the reverse-time form (not to be con-
fused with backward- Kolmogorov) actually looks the same, but is simply
solved backward in time starting from a ‘final condition’ rather than an
‘initial condition’ data set.

As noted in Ref. [115], DDPM can be regarded as the discrete form of a
stochastic differential equation (SDE). In Ref. [117], a general framework
based on continuous energy-based generative models for time series fore-
casting is established. The training process at each step is composed of a
time series feature extraction module and a conditional SDE based score
matching module. The prediction can be achieved by solving reverse time
SDE. The method is shown to achieve state-of-the-art results for multi-
variate time series forecasting on real-world datasets. These works imply
that the method described here can be used for (multivariate) time-series
forecasting and high-quality image synthesis.

Appendix E: Initialization of Variational Parameters

In this section, we describe the method of parameter initialization that we
use to ensure a good starting function when implementing QCL or DQC.
This is achieved by having a circuit structure where the variational circuit
can be initialized to the identity operator and two layers of single-qubit ro-
tation gates (which we refer to as the initialization layers). The parameters
of the initialization layers can then be set to provide a good starting fit of
the initial trial function to (an estimate of) the target function.

The circuit structure that we use is shown in Figure E1. The variational
circuits are formed by a parameterized circuit unitary ̂a∕b(𝜽k) followed by
the circuit with the adjoint structure but independently tuned set of vari-
ational angles, ̂ †

a∕b(𝜽k′ ). We include variational circuits before and after

the feature map to aid expressivity. For initialization we set 𝜽1 = 𝜽2 and
𝜽3 = 𝜽4. This leads to the variational circuits being initialized as identity.
We stress that during training the parameters of these circuits are consid-
ered distinct and thus when updated by classical optimizer they do not
remain equal.

Adv. Quantum Technol. 2023, 6, 2300065 2300065 (11 of 15) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH

 25119044, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qute.202300065 by T

est, W
iley O

nline L
ibrary on [01/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advquantumtech.com


www.advancedsciencenews.com www.advquantumtech.com

Figure E1. Initialization. We show the circuit structure used for when implementing initialization. It consists of layers of rotations known as the initial-
ization layers ̂init, variational quantum circuits made up of ̂ (𝜽) and the feature map ̂𝜑(t). The variational quantum circuits are structured so that

they can easily be initialized to the identity operator. Suitable parameters for ̂init are chosen by performing classical function fitting. The feature map
dictates which function form a basis for the fitting.

With the variational circuits initialized to identity the initial trial function
is formed from measurements of the state received from the initialization
layers and the feature map acting on the zero state. By considering a fea-
ture map which acts on each qubit individually as a product of Pauli rota-
tions (as is the casewith all featuremaps discussed in this paper), and cost
as the sum of individual qubit measurements, we need to treat only 1-local
terms. This means that for initialization we have a circuit where the qubits
are non-interacting and therefore the circuit is classically tractable. As the
number of qubitsN increase we can still describe the system with(N) at
the initialization stage, and we note that in principle k-local terms can also
be included as long as the system remains tractable. Alternatively, we can
also consider the circuit based on Clifford gates. In this case, the circuit
remains classically tractable following the Gottesman–Knill theorem. For
the remainder of this section we focus on the situation with initialization
and feature map gates acting locally on single qubits.

With the circuit structure as discussed, the general form of the initial
trial function can be expressed as

f0(t) =
N∑
j=1

𝛼j

(
c(1)j (𝜃init) g(1)j (t) + c(2)j (𝜃init) g(2)j (t)

)
(E1)

Here, cj(𝜃init) are coefficients which depend on the angles parameterizing
the initialization layer, 𝛼j are the coefficients of the measurements in the
cost function and gj(t) are functions of the variable encoded within the
circuit by the feature map. Because this circuit is classically tractable the
exact form of cj and gj remain calculable as N increases. The functions gj
come from the feature map encoding used. To see this note that for the
feature maps considered the gate implemented on qubit j is

Ûj(t) = R̂𝛽,j(𝜑j(t)) = exp
(
−iP̂𝛽j 𝜑j(t)∕2

)
(E2)

= cos(𝜑j(t)∕2)̂Ij − i sin(𝜑j(t)∕2)P̂
𝛽

j (E3)

where 𝛽 ∈ {x, y, z} are Pauli operators and 𝜑j are encoding functions.
Therefore, the functions cos(𝜑j(t)∕2) and sin(𝜑j(t)∕2) are introduced into
the state by the feature map. The feature map encoding is thus based on
the sets of functions g(1) = {cos(𝜑j(t))}j and g

(2) = {sin(𝜑j(t))}j. Note that

the coefficients in front depend on initialization layers, the feature map
and the measurement operator chosen. For instance, by choosing specific
circuit structures it is possible to select only a specific set of functions to
use for initialization.

Knowing the form of the initial trial function we can choose 𝜃init and
𝛼i such that it is a good starting state. We do this by performing classical
regression. The fitting function’s coefficient set {gj} are fitted to a limited

subset of the target function values. The size of {gj} is at most double
the number of qubits and therefore when considering NISQ implementa-
tion will be relatively small. Therefore, as a low number of fitting functions
are being fitted at a limited number of points, a low-order approximation
and its associated coefficients can easily be found. These coefficients are
then first used to choose 𝛼j such that they are of suitable scale and the
coefficient magnitudes desired are reachable by 𝛼jcj. With 𝛼j set, the ex-
pressions 𝛼jcj(𝜃init) are then reversed to find the values which 𝜃init should
be initialized to.

Once the initialization coefficients have been calculated the standard
QCL procedure is then commenced. The initialization parameters will re-
main fixed whilst the variational ansatz parameters will be updated. As this
happens the variational ansatz will no longer remain identity operators and
more fitting functions will be introduced, with the set cardinality defined
by the feature map. The circuit will no longer be classically tractable. The
increase in the number of fitting functions (along with number of training
points) leads to a better fit of the target data being possible. When us-
ing initialization a smaller learning rate is preferred to prevent immediate
divergence from the initialized function.

Wemake use of initialization when training the quantile function on ini-
tial data as in Figure 7. We note however that using initialization is not a
requirement for convergence. In Figure E2, the results of training the quan-
tile function on initial data without initialization is shown. We can see that
the loss value magnitude and the fit reached is similar to that achieved
when training with initialization. The difference is seen in the number
of epochs—without initialization more epochs are required to reach the
same accuracy.

Appendix F: Scaling with Qubit Number

Qubit number is an important factor of model performance with number
required depending on other factors such as the feature map, data reu-
ploading and the problem considered. In general expressivity of the model
scales with qubit number. Too few qubits can lead to low-expressivity which
in turn leads to underfitting. Too many qubits can lead to overfitting and
therefore generalize poorly. Furthermore more qubits leads to more quan-
tum resource required. While there are generic guidances based on struc-
tural risk minimization,[118] in practice the choice requires heuristics and
understanding of possible implicit biases[105] (an ongoing research direc-
tion in QML).

To see the performance of our proposed method as the qubit number
scales we run the same calculation as used in Figure 5 but with varying
number of qubits. As well as noting the final loss value from training we
calculate the Kolmogorov–Smirnov (KS) test value for an out-of-training
measure of model performance. The resulting loss and KS values are pre-
sented below.

Adv. Quantum Technol. 2023, 6, 2300065 2300065 (12 of 15) © 2023 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure E2. Quantile function trained on initial data — no initialization.
a) Trained QF for the Ornstein–Uhlenbeck process at t = 0 (dashed curve
labeled as result), plotted together with the known true quantile (solid line
labeled as target, results overlay). b) Normalized histogram of samples
from the data-trained QF, plotted against the analytic distribution (PDF).
Ns = 100000 random samples are drawn and bin counts are normalized
such that total area of the histogram is one. c) Training loss at different
epochs, with the final epoch producing the QF in (a).

Qubit number Loss KS

2 9.40 1.117/0.276

4 0.88 0.371/0.046

6 1.08 0.356/0.025

8 0.94 0.320/0.022

10 1.52 0.376/0.046

We observe from the KS measure of performance that N = 6 and N
= 8-qubit models have the best performance for our model, while N =
2, 4 and 10 experience underfitting or overfitting. Furthermore the model
remains trainable as qubit number increases. However, more iterations
are required. For instance, 250 iterations are used for N = 6 and 500 for
N = 10. Thus, for the given problem and chosen product feature map the
middle ground is using the N = 6 embedding. In Figure F1, we show re-
sults as sampling histograms for the trained quantile function, at three
time points when ten qubits are used.

Appendix G: Simulation of Noise in Training

Our results presented in the main text are simulated for an infinite num-
ber of shots. However, in physical implementations a limited number of
shots is used leading to statistical noise in the read out. This typically
follows a normal distribution. To check if our algorithm is robust in the
presence of shot noise we perform an additional simulation, where noise
is added to the function evaluation and its derivatives. Here we use the
set up shown in Figure 5. We add noise to function evaluations following
 (𝜇 = 0, 𝜎 = 0.05). We check that this is equivalent to the noise coming
from function evaluations with 2000–3000 shots. No noise is added for
measurements used for plotting as at this stage we are concerned with

Figure F1. Time-evolution of Ornstein-Uhlenbeck process with ten qubits.
Problem set up same as in Figure 5 but with ten qubits and 500 iterations.
Shown is the normalized histogram of samples from the data-trained QF,
plotted against the analytic distribution (PDF). 100 000 random samples
are drawn and bin counts are normalized such that the total area of each
histogram is 1.

Figure G1. Time-evolution of Ornstein–Uhlenbeck process with simu-
lated limited shots. Problem set up same as in Figure 5 but with limited
number of shots simulated by noise following (𝜇 = 0, 𝜎 = 0.05) added
to function evaluations during training. No noise added for final result
plotting. a) Slice of resulting surface for quantile functions at three time
points (same as in main text). b) Loss as a function of epoch from training
resulting in (a).

the training. We check separately that the quantum circuit is successfully
trained to represent the solution.

The results of this are shown in Figure G1. As can be seen a result with a
similar level of accuracy is achieved, as compared to the case of no noise.
Here more epochs are used (500 vs 250). Despite the loss being noisy
(non-smooth) as function of epoch, we can recover a high quality solution.
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