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Abstract

Intelligent Tutoring Systems specifically for programming and computer science can be
referred to as Intelligent Programming Tutors. Currently, the only consistent component in
Intelligent Programming Tutors is the fact they provide Adaptive Feedback. However, the
methods IPT provide are created specific to both their educational context, and programming
language - they are domain specific. Several components of the domain of IPT are considered
mutually exclusive - particularly the selection of programming languages each IPT can
support, and the authoring tools that can be made for them.

This research introduces a method of program synthesis with a domain-independent
IPT (programming-language-independent IPT) method of specifying programming language
syntax, and outputting syntax feedback and task semantics feedback according to the given
programming language. This method also introduces an authoring tool that can be used
across all theoretical text based programming languages.

We use ANTLR4 for the program synthesis behind this IPT. We test our method against
a small sample of the ever growing repository of more than 200 programming languages. We
conclude that the method worked unanimously across programming languages - allowing for
an IPT that guarantees feedback is generated, regardless of programming language, or the
state of the learner’s code and any errors in the solution. However, what affects the quality of
the feedback returned, and what would be ideal for phrasing is still ambiguous.
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Chapter 1

Introduction

This section consists of the introduction of this thesis, consisting of an overview of Intelligent
Programming Tutors, feedback, self-explanation, and ANTLR4. The section is ultimately
used to:

• state the particular teaching subject this research is applied to (computer science and
programming),

• define to the reader various forms of pedagogy that will be discussed through this
thesis, and

• list critical features of a compiler generator named "ANTLR4" for use in referring to
programming languages by abstraction.

• list the aims and contributions of this research on Intelligent Programming Tutors

1.1 Defining: Intelligent Programming Tutors

Tutoring in programming related courses (and Computer Science) is notably challenging
for tutors to promote learning in education. For instance, Caspersen notes various cognitive
science and educational psychology patterns that should be observed for each learner when
designing programming courses[3]. Higher education pass rate can consistently be quantified
to be low, with Watson’s 2014 study, stating a 66.4% pass rate for introductory programming
courses[4]; reaffirming the findings of a study 7 years ago by Bennedsen et al. [5]. Learners
can easily fall within the lower bounds of these rates, without receiving effective tutoring,
effective learning environments or deploying self tutoring tactics.

There are many potential contributing factors to these rates. It partially can be attributed
to challenges in allocating time to learners when they need assistance (or discerning when
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they need assistance[6]). Additionally, there is an encouraged need to help learners identify
relatable uses for what feedback is given to learners, and what they learn, [7, 8].

For these two problems, a number of automated tools, software, online environments and
learning environments have been created to support human tutors.

"Intelligent tutoring systems" (ITS) commonly refers to automated systems designed
to provide adaptive, or personalised learning for any given subject. The semantics on
what within the systems should be adaptive (ultimately, the intelligence of the ITS) can
differ between primary and secondary studies. Regardless of how the "intelligence" and
"adaptability" of ITS is defined, ITS and studies on ITS share at least one common aim.
ITS often aim to present learning content and feedback that is relative to the skill, aims,
knowledge or problems of the learner using the system. Ultimately ITS commonly aim
to personalise the tutored content to the learners. Such aims are commonly observed in
secondary studies on programming based ITS [1, 9–12].

Such systems need to form contextual feedback responses to learner’s actions (providing
feedback for tasks or guiding menu navigation).

The automated personalising of learning has been performed in the field of intelligent
tutoring systems (ITS). Several ITS already exist, with a number arguably being shown to
help improve test rates in strictly quantitative1 studies such as Kulik et al.’s meta analysis [13]
(compared to no ITS aided tutoring).

For automated tutoring of programming, we have ITS for programming; "Intelligent
Programming Tutors" (IPT) (a term used in a review by Crow’s[10]). IPT refers to tutoring
systems that facilitate learners attempting to answer programming activities and automatically
responding with feedback (or hints) specific to what the learners aim to perform (or improve).
For assessing the programming of learners, we have "Automated Assessments Tools" (AAT)
for programming. This term appears in reviews such as Douche et al. [14] and Pettit’s
critique on AAT research[15].

The former (IPT) is the focus of this paper. Due to this, it is worth distinguishing it
from AAT, which are more likely to provide "summative" feedback 2, over the "formative"
feedback3 ideally contained in IPT. This research will still refer to AAT when relevant to
discuss when researched alongside IPT. The difference between the two are illustrated in
Figure 1.1.

1I critically discuss the viability of quantitative studies for observing the benefits of particular pedagogy in
Chapter 2.

2feedback relative to obtaining a grade
3feedback relative to the learner improving or reaching their aims



1.2 Pedagogy in Intelligent Programming Tutors 3

Fig. 1.1 An illustration of the differences in feedback between the two Automated Tutoring
tool (ATT) types: Intelligent Programming Tutors (IPT) and Automated Assessment Tools
(AAT)

1.2 Pedagogy in Intelligent Programming Tutors

Primary studies on IPT have noted achievements of feats, such as:

• Returning relevant feedback to learners in programming tasks, regardless of how
broken the learner’s code is [16, 17].

• Programming task authoring tools that enable responses to specific problems by writing
an inline comment [18].

• Generate and personalise tasks to suit what the system knows of the learner [19].

• Suggestions on which IPT content the learner should approach, based on the content
the learner has attempted, and a database on what content requires skills from other
content [20].

• A multi-user programming environment that facilitates peer-learning [21] (defined by
educational psychology papers such as [22]).

• A simulated student within a multi-user programming environment, played by the
IPT [23].
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IPT has also successfully facilitated self-explanation (and observed its benefits) in environ-
ments extraneous to their programming environment[24, 19].

However, it is critical to note that within the field of IPT, there are inconsistencies
problems in how learning is observed (and hence how IPT can be modelled around learning),
how the creation and investigation of IPT are programming language specific and domain-
specific, and an overall prevalence of non-standardised observations on the field. This
research confirmed these observations on the field through Chapter 22.1.

Each of the IPT achievements listed above could be argued to be completely independent
of each other - rarely contained within the same IPT. The exceptions are IPT primary studies
directly improving on themselves. This is observed in secondary studies containing IPT such
as Keuning’s [25, 10, 1].

Two secondary studies that note mutually inclusive paradigms that were not combined
were:

1. Keuining et al. [25] named 18 "feedback types", 8 general "techniques" for providing
feedback, 5 classifications of "adaptability" for task creation, and 5 noted "quality" of
primary study research, each with AA or IPT that had aspects that did not fall into the
named categories. Keuining’s study also recorded which concepts were most often
overlapped.

2. Crow [10] concludes, "it is evident that there is no standard combination of features
that have been utilised within the field of intelligent tutoring applied to programming
education". They also evaluate "studies could focus on finer grained measurement of
the usage and effectiveness of individual features within IPTs or comparing different
implementations of systems".

My research further discusses a lack of integration in research in Section 2.1, where a
literature review is performed, noting 11 of 14 secondary studies at least noting a lack of
integration in the field.

This implies a potential lack of consensus - even on the core pedagogy that inspires the
methods used within the IPT and how they are assessed empirically. This can be observed in
contrasting opinions on how the improved ’quality of learner’ is assessed by papers observing
immediate test results (such as Nesbit [26] and Mousavinasab [11]) and papers finding
contextual differences to learning, as well as discussing the lack of pedagogical discussion
(such as Zawacki’s [27] and Harley’s [28]). Mousavinasab’s paper, in particular, discusses
varying evaluation methods across the field [11].

Success within the field can superficially be observed through test scores, as accomplished
by research such as Kulik’s [13]. However such work (and many of the primary works
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documented within by the restrictions of the inclusion criteria) are purely quantitative.
Observations on any learning that has occurred, could be argued to be incidental to the tests,
rather than evaluating the learner’s long-term application of the tutored concepts (Kulik’s
paper for instance, could only note 2 publications with to be more than 2 sessions). For
instance, after being observed in application over 10 years, the widely used ALEKS [29]
(spanning 15 empirical studies between 2005 and 2015) was argued to be not be objectively
better than traditional classroom teaching. Also, the majority of IPTs are limited to tutoring
introductory programming, and many evaluations in IPT primary works may be limited to a
single-day course and test.

Success within the field can also be measured by evaluating the proposed cognitive
benefits in educational psychology and theoretical design papers, such as for instance,
Caspersen’s [3] design theory. For learning to be personalised to the learner, it’s critical
for cognitive and educational psychology concepts to be observed [8, 3], which in turn
could enable their proposed benefits to be observed. Unfortunately, there’s no standardised
pedagogy or discussion for this across IPT primary studies. However, modelling ITS on
constructivism [11, 30], and around cognition [31, 28] is a known practice, as is evaluating
the proposed benefits of the respective theories.

Overall, even when evaluating how one can define how to observe the "quality of learning"
changes between studies. Our research bases our observation on the "quality of learning"
on constructivism. This thesis will observe the quality of learning as: how well learners
retain the memory of concepts and how easily learners can identify solutions to concepts or
problems.

It’s a challenge to have automated tutors provide feedback with the same potential as
human tutors. Nguyen defines 5 levels of activity ’definedness’ [32], where only relatively
recently (2017) has an automated tutor for programming been able to work with class 4
definition of activities (activities that support multiple solution strategies that can not all be
preset by the automated tutor). Hence, there are presently tasks that are presently limited
to a domain, and tasks that can not be defined and observed by automated tools, to return
feedback for.

We discuss feedback definedness in Section 2.2, and an IPT that supports class 4 definition
of activities (the Intelligent Teaching Assistant for Programming or ITAP by Rivers [16]) in
Section 3.

In the following subsections, I discuss to what extent feedback and self-explanation have
been explored in IPT and present problems in how these pedagogical concepts are applied in
IPT.
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1.2.1 Pedagogy - Feedback

One pedagogical area of critical importance is feedback in program-related courses. The
timing of when feedback is returned to the learners is important to consider, along with how
much information on the solution can be given [30]. The impact feedback has on learning is
often observed in empirical studies on automated tutors (which include IPT). This can be
observed in primary studies such as River’s IPT [17], which was adapted to contain more
information in later iterations. Adding information to feedback improved the motivation of
the learners. There also exists at least two secondary studies on the feedback in automated
tutors, Keuning et al’s [25] and Nguyen’s [1] (discussed further in section 2.2). Koedinger
also raises the ambiguity of when hint-based feedback should be used in ITS [30]. If feedback
is inadequate4, it can have adverse effects on learning.

Hence, it would not be contentious to state that feedback is more effective if it is:

• responsive to the request,

• informative on what the problem is,

• contains the right amount of information to guide resolving the problem,

• adapted to the learner, referring to what they tried and how to reach their aim relative
to that,

Each IPT and AAT differ in the context they are made to support, and what their respective
primary studies aim to achieve (often to improve learning in their definition5 of learning).
They ultimately differ in how they’re implemented and what they innovate over. Keuning et
al. note more than 110 AAT and IPT in their study [25].

This extends to how adaptive feedback6 differs across IPT.
Empirical studies surrounding IPT and AAT vary in:

• how they view learning, the aims of what the tool intends to do to ’improve learning’,

• the contexts within computer science or programming they tutor in,

• and ultimately how they return feedback.

4poorly timed or lacking in constructive information to help the learner learn how to reach their aims
5Learning pedagogy can often differ between learning tools. However, each primary study’s pedagogy is

often stated. Differing pedagogy between primary studies is often noted in secondary studies of IPT.
6"Adaptive Feedback" is the feedback that is dynamically phrased to refer to what a learner attempted, and

how they can reach the activity aims. The term appears in secondary studies on IPT, such as Nguyen’s [1] and
Crow’s [10]
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Fig. 1.2 Illustrations of the 5 categorised forms feedback may take according to Nguyen’s [1].
A quotation is used from Kyrilov [2]

Hence, along with different methods of returning adaptive feedback, automated tutoring tools
overall differ in what feedback they return, and when they can support returning feedback.
Secondary studies such as Keuning’s [25] provide a detailed evaluation and classification of
AAT and IPT, further discussed in Section 2.2. A recurring discussion through IPT primary
studies [24, 16, 33–39] is hint generation, as a form of feedback.

Along with different methods and pedagogy, IPTs vary in what context they work for,
often being limited to one programming language. This results in each IPT being domain-
specific, even if a number of their theories could be reconstructed for different IPTs from the
ground up - even among hint generation for feedback.

Hence, the central aim of our research was on establishing what components of an IPT
could be domain-independent. I explore: in IPT could a state-of-the-art method for forming
feedback, be recreated to be domain-independent? In the following section, we discuss
another method of pedagogy - self-explanation. We also discuss how pedagogy is observed
in the field of IPT.

1.2.2 Pedagogy - self explanation

Self-explanation can be defined as the process of a learner redefining7 of a concept. This in
turn has the learner cognitively work a concept, which ultimately helps the learner memorise
concepts, and helps learners apply concepts.

7reciting, listing, restructuring through notes, rewriting or phrasing their definition - definitions related to
generative learning defined by Fiorella [40]
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In computer science (as well as other educational contexts), studies have attempted to
observe the effect of promoting self-explanation between tasks and information. Paron et
al.’s study [41] contained an immersive virtual reality learning environment for tutoring
hard to grasp biology concepts. They proposed the facilitation of self explanation would
improve the performance in a post-activity test.This was observed to produce noticeably
better post-test results compared to the group without facilitated self-explanation. The test
was taken immediately after the lesson. However, the encouraged self-explanation (through
note-taking) took place outside of the immersive virtual reality learning environment. The
test was also limited to a very specific, single-lesson context. This is also noted by the
authors, "A limitation of this study is that it involved one, short off-the-shelf instructional
lesson delivered in a lab setting with an immediate test". Ultimately, the study only covered
the short-term effects of lessons and results.

Encouraging self-explanation has been discussed in e-learning for computer science by
Garcia [42], but has also been attempted in at least one IPT; notably in Marwan’s primary
study [24] on the IPT iSnap. In this work, requesting users to define what they tried was
presented in a separate string box underneath the hint asking "Why do you think iSnap
recommended this hint?" Unlike the previously mentioned work, the encouraging self-
explanation was internal to the IPT itself, but like the previously mentioned work, it was still
separate from the programming interface. The study measured the time taken to complete
tasks. In order of compared completion times for hint tests:

1. Time with no hints had the longest completion times.

2. Less code hints had shorter completion times.

3. Code hints with self-explanation prompts had the shortest completion times.

They additionally evaluated: "Future work should investigate the hypothesis that code
hints with both textual explanations and self-explanation prompts may be more effective for
helping students to repeat things they have already done than completing new tasks". This
conclusion was drawn due to the result of self-explanation prompts having less of an impact
on new or unrelated tasks.

These two examples work to reaffirm the theorised benefits that self-explanation improves
memory retention of concepts and applying such concepts. They also imply two unknowns.
These are on the long-term effects of self-explanation on tasks, and one proposed by my
research: can self-explanation be observed, integrated and encouraged in an IPT’s activity
framework (rather than a through a mutually exclusive interface)?

Within programming, "code comments" (the act of writing notes in code) can require
users to structure their intention in the programming interface itself. In this regard, my
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Fig. 1.3 An illustration on the cognitive effects of self-explanation, and the proposed effects
of code comments on learning. Self-explanation elicits memory retention of concepts noted
and deep learning of those concepts.

research hypothesises it is possible to elicit self-explanation through code comments. By
being within the programming interface (a non extraneous component to programming)
self-explanation can be encouraged habitually. My research also hypothesises that by being
integrated into the code, an IPT can observe where self-explanation has or has not occurred,
where it should occur, and hence be able to provide feedback to encourage self-explanation
when appropriate.

Hence, our research has two questions concerning facilitating self-explanation in IPT:

• "Can self explanation be facilitated through code comments?" We hypothesise that
the act of promoting self-explanation through code comments would elicit the same
benefits of code comments (illustrated in Figure 1.3. I also hypothesise that it would
also promote a self-regulation strategy to self-explain through code comments (a per-
sistent feature outside of IPT and learning contexts), and could be used to personalise
the prompts for code comments.

• "When does promoting self explanation have an impact on the active task and subse-
quent tasks?". This is in direct response to tests of self-explanation being short-term,
and an evaluation question proposed by Marwan’s study [24].
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These questions served as key aims to the direction taken by my research. A number of
investigations were taken to allow answering these questions thoroughly across IPT, for all
possible programming languages. These investigations (covered in the next Section, Section
1.3) in themselves became the main contributions of this thesis. My research had additional
aims to be used to answer the questions on: ’when code comments can elicit the benefits of
self explanation, and enable IPT to observe self explanation’.

One question was finding to what degree pedagogy surrounding code comments could
be applicable across programming languages. A large number of programming languages
support a method that enables the person writing code to write notes/text (to themselves or
other users) that do not affect compilation.

Hence, we proposed investigating how often facilitated code comments are in ANTLR4
programming language grammars, through the question: (Research Question 2d)"What is
the frequency of grammars including, streaming or excluding (skipping) code comments?".
We have found to present date, one ([43]) work which also explored this question which we
will discuss in Section 2.3.1.

Answering this question was needed to answer for all supporting languages: "Does
encouraging the use of code comments elicit the same benefits as self explanation?" which
will be a question for a subsequent study.

The follow-up questions on ANTLR4 are first defined in section 1.3, before being
investigated through this thesis.

My research intended to answer this question theoretically for every possible program-
ming language. However, to the date of this thesis, no other IPT outside our research project
can refer to programming languages by abstraction. Hence my research pursued the unique
contributions of proofing a state-of-the-art IPT method for all programming languages, and
potential phrasing restrictions that could prevent the application of code comments to pro-
mote self-explanation. Ultimately, while "can code comments elicit the same benefits as self
explanation" is not answered in this thesis, it served as the motivation for introducing the
knowledge the answer this question: language-independent IPT. It also motivated several
investigations towards answering that question, such as: "What is the frequency of grammars
including, streaming or excluding (skipping) code comments?" covered in the following
section.

1.3 A solution for language integrated techniques

The aforementioned secondary studies highlight the exceptional contributions to the field of
IPT. However, they also note that IPT research has differing focuses that often do not include
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Fig. 1.4 A diagram displaying the change in representation from raw code text, to tokens (via
a tokeniser), to an abstract syntax tree (via a parser).

the contributions of each other. For instance, ITAP (an IPT composed by [17] for Python) is
uniquely capable of returning adaptive feedback regardless of the state of the learner’s code,
and adding solution strategies using working solutions. This IPT is also capable of returning
adaptive feedback that acknowledges there can be multiple solution strategies that can lead
to the answer. This solution is currently limited to Python. The method used for task creation
is also specific to ITAP. With the majority of IPTs being surveyed to focus on one language
or pedagogy, it is common for IPT implementation methods to be domain-specific.

Because of the non-integrated nature of IPT research (differing languages, implementation
methods and learning activity creation methods), innovation through IPT is often limited to
their specific context. This, in part, can be attributed to the fact that programming languages
differ in grammar and semantics. However, text-based programming languages themselves
have an explicit definition that forms rules across all text-based programming languages. In
theory, these rules can be referred to by abstraction. This has yet to be attempted within the
field of IPT. Tokenizer8 and parser9 generators provide ways to define language rules, refer
to them by abstraction, and create compilers for the language. The process of tokenising and
parsing on code is illustrated in Figure 1.4.

Furthermore, there is little support for an IPT framework to create and use custom
programming languages easily. Custom programming languages can be used to aid in
teaching core concepts that are needed to utilise more common languages fully. For instance,
works such as Cervesato et al.’s [44] designed and used a custom language called "C0" to
introduce learners to C++ in introductory programming.

8Also referred to as lexing, it is the process of converting a series of text characters into legible words for a
given programming language’s rules. These formed series of characters are called "Tokens"

9The process of forming structures or phrases from a series of tokens according to the rules of a given
programming language. This process forms an abstract syntax tree (AST) - a full representation of what refers
to what within code
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Parr’s ANTLR4 is such10 a tool [45] with seemingly no limits on the programming
languages that can be defined through its state-of-the-art variant of LL (given the language is
purely or functionally text-based) [46]. ANTLR4 also has a well-revered public domain for
people to create grammar - from well-known programming languages to custom languages
for a specific tutoring context. Figure 1.5 contains a snapshot of this public domain. ANTLR4
can theoretically also return syntax errors for all code submitted under a language.

Using ANTLR4, my research investigated what became my first key question: "to what
degree a programming language-independent IPT’s feedback can provide the same quality
of learning as state of the art IPT". A hypothesis of mine was that programming language-
independent IPT could be formed (using state-of-the-art feedback methods) by referring to
syntax by abstraction. I investigated whether an IPT (adaptive feedback framework, task
creation and adaptive navigation) can be constructed through abstraction:

• Research Aim 1a Can abstract syntax transformations function for every possible
programming language to return feedback regardless of the submitted code (given a
’solution’)?

• Research Aim 1b Are there instances of language-specific additions needed to return
feedback to a language-independent IPT?

It is worth noting that ANTLR4, compared to state-of-the-art language-specific compilers
(such as Medeiros’ for Lua [47]) ANTLR4 has compile times that can be up to 6 times
slower on average. When compared to Medeiros, it had a few instances of additional errors
highlighted relative to Medeiros’ compiler. Although for Medeiros’ test, we can not say
for absolute certainty if any drawbacks on ANTLR4 were due to how the Lua grammar
was defined. However, the critical hypothesised difference in error message feedback and
compile time was due to ANTLR4’s algorithm, so grammar variants could still yield similar
differences or worse results. Regardless, although ANTLR4 has a chance of being less
efficient than state-of-the-art language-specific compilers, it is still reliably functional for its
purpose in generating compilers for theoretically any imagined language [46] and successfully
parsing error code.

This research sought to determine what would be the second key question, "what impact
can grammar phrasing have on the quality of learning". Another hypothesis of mine was
grammar semantics could affect the legibility of feedback and how easily code comments
could be read by the compiler. Hence it was critical to investigate the types of differences
ANTLR4 grammar variants can have on potential feedback (phrasing and speed of feedback
within the IPT), and potential use to observe and prompt self-explanation within IPT:

10compiler generator that can be referred to by abstraction
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Fig. 1.5 An image of the GitHub repository for ANTLR grammars

• Research Aim 2a: What are the root types that need to be called for each lexer and
parser? What types need to be called in sequence?

• Research Aim 2b: What problems in grammar definitions can be listed/categorised
to make feedback implicit? How can the phrasing of grammar affect the quality of
feedback?

• Research Aim 3a: What conditions in grammar definitions can be listed/categorised to
affect the speed feedback can be returned? How does the compile speed change for
different contexts?

• Research Aim 3b: What is the frequency of grammar including, streaming or excluding
(skipping) code comments?

This research was also inspired by a lack of state-of-the-art methods being implemented
in IPT for C++, Lua and C# (of IPT existing for such languages at all). We propose the
use of ANTLR4 to implement a solution of a similar premise to ITAP for all languages
in IPT, which could investigate the versatility of state-of-the-art solutions in IPT for every
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programming language (existing). We will also sample how functional the grammars on the
ANTLR4 repository are with the solution we propose in an IPT.
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1.4 Research Aim and Objectives

To reiterate, to explore what pedagogy can be implemented across IPT, to explore what quality
of learning can be achieved in a language-independent IPT, and to explore any potential
restrictions to evaluating an IPT that facilitates self-explanation with code comments, my
research investigated the following core questions:

Research Aim (RA) Research Objective (RO)
1 ’To what degree a program-

ming language-independent
IPT’s feedback can provide
the same quality of learning
as state-of-the-art IPTs?

To answer question 1 in general, I constructed a language-
independent IPT and performed a technical analysis to see
if it can produce feedback/hints with similar parameters to
River’s [17] IPT, for all possible learner’s code (which was
first unique to ITAP), for all programming languages (which
is unique to our research). This IPT was then sent with a
simple activity to "follow the instructions to complete the
code" for randomly selected programming languages (out
of a pool of 15) to confirm the integrity of the rubric this
research used for the technical analysis.

1a Can abstract syntax trans-
formations function for ev-
ery possible programming
language to return feedback
regardless of the submitted
code (given a ’solution’)?

In particular, RA1a confirms if the method described in
this thesis proves a method to create River’s [17] unique
contributions for any programming language, but also within
the same IPT.

1b Are there instances of
language-specific additions
needed to return feedback
to a language-independent
IPT?

This question facilitates discussion on potential language-
specific constraints to find how language-independent a
language-independent IPT can be; the potential limitations
of this method. To answer this, we list the number of lan-
guages requiring more than one root token and those re-
quiring normalising variables. This research also discusses
when languages specific constraints apply to syntax, seman-
tic, quality and layout feedback (4 types of IPT feedback
listed by Nguyen [1].
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Research Aim (RA) Research Objective (RO)
2 ’What impact can grammar

phrasing have on the quality
of learning?’

To answer question 2 in general, a source containing multiple
ANTLR4 language grammars is surveyed.

2a ’What are the root types that
needs to be called for each
lexer and parser? What
types need to be called in
sequence?’

RA2a is inquired as programming languages can sometimes
require multiple passes or contain a different root type [46].
This question is used to investigate if there are potential
exceptions to when a programming language can be used
(given that the grammar4 of a given language compiles suc-
cessfully). We sample ANTLR4 grammars and list root
token types, used token types, an exception to when one
token type suffices and a method to resolve that exception.

2b ’What problems in gram-
mar definitions can be
listed/categorised to make
feedback implicit? How can
the phrasing of grammars
affect the quality of feed-
back?’

The critical question is RA2b, which inquires how the phras-
ing of a grammar file can affect feedback. The use of the
token names within an application using ANTLR4 has not
appeared in empirical research on ANTLR4. We sample
the phrasing of the grammar documents themselves. We
construct a rubric, assign each grammar a "legibility" de-
scription, and then give users a test build of ANTLR4 to see
if their questionnaire responses correspond to the legibility
assigned by our rubric. This provides knowledge on what
affects the legibility of feedback produced from ANTLR4
grammars and how ANTLR4 grammars on the repository are
legible. Additionally, the questionnaire is also used to survey
what part of the feedback is more helpful to the learners (for
the given language’s phrasing).
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Research Aim (RA) Research Objective (RO)

3 ’What impact can grammar
phrasing have on the quality
of learning?’

To answer question 3 in general, a source containing multiple
ANTLR4 language grammars is surveyed.

3a ’What conditions in gram-
mar definitions can be
listed/categorised to affect
the speed feedback can be
returned? How does the
compile speed change for
different contexts?

As it was unclear to what degree ANTLR4’s grammar’s
phrasing can affect compilation speed (and to provide an
estimate to language-specific compiler’s speeds), RA3a is
used to give more results on the subject of speed of returned
feedback. The idea was to compare the phrasing of the
different grammar of the same language. As there was a
lack of variants of languages on the repository, this research
provides feedback speed by code size and language. This
is obtained from the user-distributed copy of Nue Tutor
(proposed in this work). However, we document the method
for the research to be enacted more thoroughly,

3b ’What is the frequency
of grammars including,
streaming or excluding
(skipping) code com-
ments?’

Finally, RA3b provides knowledge on when a language-
independent IPT is able to read code comments. This is
simply found by surveying the grammar for how they handle
the respective comment token type. This is confirmed as
code comments can often be discarded during compilation.
This confirms how common it is for languages to discard
comment information.

1.4.1 Targeted Contributions

By the completion of these research objectives (RO), this research aims to contribute to
knowledge in the following ways:

Contribution 1

Concerning IPT syntax feedback and semantic feedback having to be built very specifically
for a given programming language:

We aim to "propose, described and test a state of the art method of providing guaran-
teed syntax feedback and semantic feedback in IPT, for theoretically every programming
language".
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The success of this contribution is assessed through RO1 (RO1a and RO1b). This
is assessed through a technical analysis on the first language-independent IPT that was
constructed as a product of this research. Through RO1a, we verify its "guaranteed" success
rate. Through RO1b, we identify any limitations on working with "theoretically every
programming language", and identify the contexts for those limitations.

Contribution 2

Concerning IPT having authoring tools needing to be made specifically for both the formatting
of task creation, and the given language:

We aim to "facilitate task creation through an authoring tool that is capable of working
across programming languages".

This contribution concerns tasks with one or more explicit solution strategies [32]
(discussed further in section 2.2), and hence have an accurate method of gauging the success
of tasks. Semantic feedback would be the result of conveying how close to success the user
is to a solution strategy.

The questions produced for RO1 construct such an authoring tool. The contribution can
hence be considered achieved if semantic feedback can be produced in tasks made in an
authoring tool "that is capable of working across programming languages". The semantic
feedback produced, should have feedback guaranteed to be produced, and should be accurate.

Contribution 3

Concerning finding a renowned repository that can be used for program synthesis11 (as
program synthesis was only domain-specific to programming languages):

We aim to "record the effects of using ANTLR4 grammar terms on the legibility of syntax
and semantic feedback, in a language independent IPT".

ANTLR4 was the compiler generator chosen for this research. Reasons for this are further
discussed in section 2.3, where we discuss compiler generator traits in further detail.

This contribution is evaluated through RO2 (RO2a and RO2b). RO2a is used to discuss
whether it would be simple to identify, download and use grammars that one is unfamiliar
with. RO3b assesses how commonly unfamiliar grammars parse code comments. We evaluate
the success of using a "repository that can be used for program synthesis", by the success of
using non modified samples from that repository.

RO2b deeply discusses the use of grammar token names. We "record the effects of using
ANTLR4 grammars terms" to identify paradigms on what affects the legibility of semantic

11Program synthesis is the process of identifying a program within a programming language, grammar or
high level specification.
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feedback. We then quantify the frequency of those patterns among the ANTLR4 grammar
repository. Either of these had yet to be assessed in any work.

The discussion in RO2b is performed for ANTLR4. However, discussion on identified
paradigms may also be applied to any potential discussion on tokens written in a Backus
Naur Format12 - were the conditions to be replicated.

RO3a is used to provide a rough speed comparison to provide knowledge for future
studies - namely any speed limitations.

Though this research chooses ANTLR4 as the compiler generator, aspects of methodology
using it can exist for other compiler generators (parser generator, lexer generator or binary
protocol parser) and their respective strengths and weaknesses[48][49].

12Backus Naur Format and other variants are discussed in Section 2.3
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1.5 Organisation of the Thesis

• The theory used to support each of these is discussed in Chapter 2.

• The methodology of each of these is discussed more thoroughly in Chapter 3.

• The results obtained to aid in answering these and the answers to each question are in
Chapter 4.

• A summary of the contributions of this research, and the final conclusion and evaluation
are in Chapter 5.

Additionally, this thesis contains a glossary of terms used after Chapter 5.
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1.6 Chapter Summary

Through section 1.1, we introduced the field and defined Intelligent Tutoring Systems (ITS),
and stated how some ITS have been created and used to support teaching in computer
science. Intelligent Programming Tutors (IPT) were defined as ITS for computer science
and programming related courses. The lack of integration of research in the field of IPT was
noted - causing domain-specific IPT (and programming language-specific IPT).

The following Section 1.2 also discussed another critical area with a lack of integration -
pedagogy and pedagogical discussion. This is followed by a section identifying the one form
of pedagogy implemented in IPT as part of its definition: Adaptive feedback in section 1.2.1.
Adaptive feedback in IPT currently has one work that can return feedback regardless of the
state of the learner’s code as far as this research is aware. This IPT is known as the Intelligent
Teaching Assistant for Programming (ITAP). As each work in the field is programming
language specific, the work is limited to Python.

Following this is a section on an area of pedagogy explored by only one IPT study:
Self-explanation in section 1.2.2. The one work, however, does this process extraneous to the
IPT. Our research hypothesises that one can elicit the same benefits as self-explanation by
encouraging learners to use code comments for summarising what they’re doing. Additionally,
the location of code comments could be read by the IPT - enabling it to know when to
encourage code comments. However, the pursuit of investigating this may end up being
language specific like the majority of IPT research.

The reoccurring issue we have identified has been the language-specific nature of IPT
research. In section 1.3, we discuss this research’s intended approach for a language-
independent IPT. Furthermore, this enables investigating the use of adaptive feedback tech-
niques (such as the ones used in ITAP) in theoretically all possible programming languages.
Additionally, our research can approach investigating the use of code comments to elicit
self-explanation for theoretically all possible programming languages, given the language
has code comments and is defined.

In that section (1.3), we discussed a critical tool for creating an IPT by referring to code
by abstraction. The tool is a compiler generator called ANTLR4.

Finally, we reiterate our aims and objectives in section 1.4. Our contributions are in
creating the first language-independent IPT framework and reusable methods. Furthermore,
we establish the information needed to know the restrictions in facilitating self-explanation
through code comments for all programming languages.





Chapter 2

Research Background

Through this section, we discuss literature reviews the current author constructed to inform
their research. First, we performed a literature review on secondary studies related to IPT to
identify and list what known paradigms exist for IPT or related synonyms. This investigation
was also conducted to identify any IPT that could also be defined as a cognitive tutor. Also,
the research background study is presented in this chapter. For the related works section,
we first we discuss ChatGPT to distinguish the the focuses, strengths and weaknesses of
our research field (IPT) from Natural Language Processing (NLP) tools. We then finally
discuss two IPT with adaptive feedback task activity frameworks, their contributions and
their limitations.

2.1 Review of IPT Secondary Studies - is there a lack of
pedagogical discussion?

ITS for programming is arguably inconsistently defined, with few primary sources of research
acknowledging each other. It was possible that empirical research on IPT had unanimously
used methods that were based on pedagogical research. For instance, it was possible that
student models of IPT utilised "open learner models" (OLM) [50] (which could also be
named as the "interaction" component of explainable AI [51]), or at least one method utilised
an OLM in a "planning domain definition language" (PDDL) [52, 53]. It was conversely
possible that the research did not discuss pedagogy in IPT and consisted of research that did
not acknowledge the contributions of other research in the field.

To investigate what paradigms have been formed in the field, we performed a literature
review on secondary studies (surveys, reviews, meta-analysis) on IPT-related synonyms or
studies that contained IPT.
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Ultimately, there were questions this research pursued to answer and identify as paradigms;
to define the observed knowledge and gaps in the field. The questions to explore can be
summarised as follows in Table 2.1. ’In IPT’:
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Literature Review Aim - Find out: Literature Review Objective - Performed by:

1 ’What techniques/achievements are
only possible for (or relevant to) a
given programming language?’

Summarising and listing
-when secondary studies refer to programming,
-whether they observe, list or discuss the programming languages used by IPT,
-and whether they observe if any IPT support multiple programming languages.
This was performed through reviews (secondary studies) of IPT.

2 ’What other tech-
niques/achievements in general have
acknowledged or been implemented
alongside each other?’

Sumarising and listing
-what synonyms and definitions they use for IPT,
-what they are primarily making a paradigm of between IPT (their research aims),
-and whether they observe, list or discuss when IPT utlise the same observed methods
This was also performed through reviews (secondary studies) of IPT.

3 ’Would "quality of learning" be im-
pacted by techniques/achievements
being used in conjunction with each
other?’

Splitting into 3 further Research
Aims:

3 further Research Objectives

a ’How is quality of learning de-
fined in observations of the field
(secondary studies)’

which can be reported as a list of educational psychology
(pedagogical) concepts observed, and a list of paradigms
observed.

b ’What is ideal to be observed to
determine quality of learning (or
different aspects of the quality of
learning)’

which applies both to how IPT react to learning, and how
primary studies evaluate the success of their IPT.
This would be two separate sets of information.
First, a list of aims, research methodology and evaluation
methodology corresponding to each definition of "quality of
learning".
Second, can be split into the next objective, referring to
observations on the quality of learning used by the IPT itself:

c ’How do various IPT account for
quality of learning, and what do
they not account for with quality
of learning’

This can be partly or entirely answered in a list of docu-
mented methods on how learning is modelled in the IPT,
where each documented method corresponds to each defini-
tion of "quality of learning".

x Additional information

Finding
-Journals each respective secondary study has been published to,
-The year range of the used samples,
-and the number of samples.

Table 2.1 A breakdown of the literature review aims and objectives (talks to perform to answer the given aim)



26 Research Background

The former two questions (1 & 2) refer to summarising and listing what is possible and
has been achieved within the field, which could be performed through reviews (secondary
studies) of IPT. To answer the latter of these questions (3), first, one would have to define how
one determines "quality of learning", define what a decline or improvement to the quality of
learning is, and ultimately define how one could evaluate (qualitatively and quantitatively)
the quality of learning.

The disparity in how "quality of learning" is observed through IPT primary and secondary
studies raise critical aims and objectives listed in 3.

This literature review was motivated by our pursuit to find ways that IPT methods could be
integrated, but also find any IPT capable of making decisions based on a changing cognitive
model ("student model") of the learner. There’s a term specifically for ITS that attempt
to observe the learner’s cognition and decide actions accordingly. These ITS are known
as "cognitive tutors". Cognitive tutors is a widely accepted term, but (at face value) there
appears to be a lack in IPT - to form a cognitive programming tutor. Our research pursued
finding and listing existing cognitive tutors and their innovations, how IPT discuss pedagogy,
or what potential ITS methods exist in cognitive tutors that could be performed in IPT.

As it is inconclusive whether information on cognitive tutors is in IPT, my research
pursued listing instances where pedagogy is discussed in secondary studies observing IPT.
There are also a few meta-discussions on what ITS innovations that have yet to be applied in
IPT, a few discussions to form a compilation of explored patterns, and a few comparisons of
defined paradigms in IPT. There is at least one notable discussion between two IPT studies on
adaptive feedback, where Keuning [25] discusses the observations of LeNguyen [1] relative
to their own near the end of Keuning’s paper.

The aims of my secondary study literature review included discussing various definitions
of the field, and discuss various patterns observed in the field. The literature review also
lists stated contributions within the field, and compile a list of classifications across the field.
Finally, the study lists current problems that can be tackled within the field. Although a very
recent study by Mousavinasab et al [11] also attempts to evaluate various paradigms in the
field of ITS in general, our study is the first to attempt to standardise terms and discussions
across secondary studies on IPT. Our study will be the first to discuss existing approaches to
forming cognitive tutors within IPT (whether they exist, how they model learning, and what
theories surround their approach).

Hence to investigate each of these questions, I performed a systematic survey of secondary
study on IPT, as well as a systematic survey of secondary study on ITS that included our
definition of IPT. This literature review primarily looked for what their aims and evaluations
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Fig. 2.1 An illustration of the shared components between "ITS", "IPT", "CT" and "CPT"
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are, as well as what keywords and patterns are defined for their aims. Among these, we look
for discussions on how the following papers:

• model learning,

• observed overlaps in primary research variables,

• languages facilitated by IPT,

• and how either the paper defines learning or what they observe of definitions of
learning.

For any instance of secondary study research that includes programming but does not
focus on programming, we also list how expansively or restrictively the focus of such a
secondary study notes programming or computer science for ITS. How we observe and list
each of these and what we include and exclude are discussed in Section 2.1.2.

Furthermore, this chapter also provides a concrete basis for the claims to the gaps in the
field made in the subsequent Section 2.1.

Through this section, I document a literature review and discussion of our results for each
of the detailed literature review aims.

To reiterate, the aims of this section are to find:

• Aim 1: ’What techniques/achievements are only possible for (or relevant to) a given
programming language?’

• Aim 2: ’What other techniques/achievements in general are mutually exclusive?’,

• Aim 3: ’Would "quality of learning" be impacted by techniques/achievements being
used in conjunction with each other?’,

– Aim 3a: ’How is quality of learning defined in observations of the field (secondary
studies)’

– Aim 3b: ’What (is ideal) to be observed to determine quality of learning (or
different aspects of the quality of learning)’

– Aim 3c: ’How do various IPT account for quality of learning, and what do they
not account for with quality of learning’.

A retrospective limitation of this literature review is due to the fact the results were
obtained manually by one individual. A number of works listed in this literature review
improved the integrity of the results by having multiple people conduct their sample-obtaining
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process and then compare what they recorded for their paradigms. Additionally, a number
of works obtained and studied their samples by using tools to automatically record data
(through observed strings) into a database. This produced larger samples but would require
each sample to be further checked to improve the integrity of their results. While the results
of my literature review are not peer tested, the integrity of each result is confirmed by the
current author.

2.1.1 Related Works

Keuning et al. [9] performed a study that contained "almost twenty" reviews of IPT. They
found 3 papers dating before 2000, 9 papers dating between 2000 and 2009, and 6 papers
dating between 2010 and 2014. [54] was the only paper included in their 2015. 12 of the
papers were based on surveying learning tools rather than automated assessment tools.

2.1.2 Survey Method

To reiterate, for this particular search we aim to be able to list how various papers on IPT or
IPT adjacent fields observe the state of the field relative to other IPT. This requires empirical
papers with critical discussion on any subject for more than one IPT.

To compile a list of secondary studies on IPT to review, we used the strings in Table 2.2.
The list of papers was compiled through the Teesside university library search engine and

ACM. The keywords searched are listed in Table 2.2. The reasons for each set of synonyms
were as follows:

• For "Secondary Study Synonyms": As our research was on observations on IPT, the
ideal papers to search for would be secondary studies, reviews, surveys and meta-
analyses instead of individual primary studies on IPT. The "Tertiary" prompts were to
observe if anyone attempted this form of study. "Tertiary" did not appear in any of the
results. It is retrospectively worth noting that stating "Classif*" rather than "Classify"
and "Classification" may have yielded the same results, as well as additional relevant
results.

• For "ITS synonyms": Our research was on ITS, but the literal definition and how one
can refer to the field can differ. We searched for terms that likely refer to the field.

• For "Subject synonyms": Out of ITS, we were specifically looking for IPT. We
needed to specify the particular subject we were observing among each of the fields -
programming, computer science or the act of "coding".
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Search strings
Secondary Study Synonyms ITS synonyms Subject synonyms

Secondary stud* Intelligent tutor* Program*
Review* Cognitive tutor* Computer science

Sensitive analy* Adaptive tutor* Code*
Literature Review* Smart tutor* Software Engineering

Review of the Literature Adaptive feedback
Literature Review* Adaptive navigation

Literature Stud* Education* system*
Map* Stud*

Map* Review*
Meta AND analysis

State of the art
Classify

Classification
Tertiary Stud*

Tertiary Review*
Table 2.2 The search terms used for this literature review. Every term in each set of synonyms
is split by "OR"s, and each synonym set is split by "AND"s. A "*" causes search engines to
include words that contain the start of that phrase

ACM digital library granted access to the majority of papers given through Teesside
University.

The Teesside website yielded the remaining results, bringing the list of papers to check
through our inclusion and exclusion criteria to 55.

In total, the initial search comprised 55 papers. Using the abstracts, this research further
narrowed the results down to what was relevant by omitting the following:

• Papers that could not be accessed through Teesside University or through their previous
versions.

• Primary studies or papers that strictly discuss 1 IPT.

• Studies not based on education.

• Studies without an explicit focus covering ITS (or a synonym of ITS).

• Studies on interactive systems solely to provide tests for a subject instead of containing
any components that tutor a subject.

• Studies on subjects that are not related to computer science or programming.
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A total of 15 of the 55 papers were included under this criteria. This method strictly
used the 15 included papers. Further studies could include more modern papers (2022 and
onwards), as well as include ’backwards snowballing’ - the process of searching for relevant
references cited by each paper and continuing until no more relevant citations pop up.

For each of the 15 papers, we read through and created a table on the following informa-
tion:

The observation ratings were recorded as follows:

• Requirement (R) - Strict inclusion criteria, so any component on a given list would
have had this component

• Observed (O) - Matches this observation to listed definitions, providing thorough detail

• Noted (N) - States if this component is present and lists the component, but it is not
sorted or detailed

• Mutual (M) - Noted, but this component is mutual from the investigation or list. Likely
used to inform another component

• Mutual Exclusion (ME) - Noted, but this component is factored only to exclude if it is
defined in a certain way

• Unobserved (UO) - This component is not/sporadically discussed, not listed and has
an explicit reason why it is not discussed.

• Not Observed (NO) - This component is not directly mentioned

• Not Applicable (NA) - A rating was not recorded

2.1.3 Literature Review

The results of the survey will be presented in this section. Through this section, we will
present four tables of the results for the 15 languages, where each table is followed by a
discussion.

Focus

Preceding discussion on the literature questions, we shall first discuss the variance in the
research aims of these papers and the definition of the media they study. The full list of
results can be viewed in Table 2.4-2.1.3.
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Recorded How it was observed
Year Year of release
Study type Whether the research discussed multiple primary studies of ITS (recorded

as secondary) or a singular ITS (recorded as primary and excluded).
Subject The mentioned or implied educational subject area of the study. The

included subjects were ’general’ (nonspecific), ’computer science’ or
’programming’.

Media A list of the terms used in the introduction for the media being surveyed,
reviewed or analysed.

Level of Educa-
tion

Whether a specified domain (higher education, further education, sec-
ondary education, K-12... etc.) is specified as an inclusion criterion of the
paper or whether they include multiple, in the latter case, we give it an
observation rating.

Focus A summary of the particular topic this paper puts emphasis on discussing
(often the keyword prevalent in their research aims).

Tutor Sample
Count

The amount of included samples in their literature review. This is often
mentioned at the end of their methodology and can be counted within their
tables.

Date Range The allowed year range of literature included (such as mine being 2015-
2021). This could often be found in their inclusion/exclusion criteria. This
was sometimes unstated, where the last date would be recorded as the
release year.

Synonym for ITS
or IPT

Out of the media included, we filled this with the phrase used for the one
synonymous with ITS or IPT.

Computer Science
inclusion

This is given an observation rating based on how they note whether their
samples are based in Computer Science or Programming. For cases that
are not a "requirement" that record the exact number, we give a percentage.

Definition of IPT This is a quote of the phrase used to describe their Synonym for ITS or
IPT. In some cases, the term was used with no definition or reference. We
stated "assumed knowledge" in those instances.

Research Objec-
tives

This is a quotation of the list of questions the paper proposes to answer
through their secondary study (often at the end of their introduction).

Question 1 -
Programming
Language Limit

I gave an observation rating based on whether there’s a mention of the used
programming languages, a discussion, or a full listing of each sample.

Question 2 - Mu-
tual research

Whether there was a discussion on observations on overlapping research
themes or assigned paradigm values, I gave an observation rating based on
how they discussed or recorded this.

Question 3a -
QOL definitions

How the research discusses/observes how their samples define the peda-
gogy used to inform their methods. I gave an observation rating based on
how this is recorded.

Question 3b -
QOL observation
methods

An observation rating is given according to how the research dis-
cusses/observes how their samples critically discuss successful learning
results.

Question 3c -
QOL observed by
the IPT

Whether the research discusses or observes how each IPT as-
sesses/calculates success. An observation rating is given based on how
this is recorded.

Table 2.3
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10/15 of the works stated empirical aims to answer. 13/15 stated their contribution. 6/15
of these papers had aimed to discuss feedback. 4/15 contains aims concerning the "authoring
tool", with 2 explicit overlaps with a feedback aim. 3/15 of the works attempt to evaluate the
effectiveness of (their definition of) ITS - also redefining the term.

One unique investigation was on sensors used to support the ’learner/student model’ in
Augmenting the Senses: A Review on Sensor-Based Learning Support" [55]; however, there
was no incidental inclusion of any computer science or programming-related work, reflecting
on a lack of use of any form of sensors in IPT. This work included 55 works for education.

Another unique investigation was on a specific form of ’learner model’, the OLM in [50].
A lack of identification of any computer science implies a lack of OLMs in computer science,
even among the 114 included works.

These two works are included, as inclusion criteria of the above two works would include
computer science or programming-related works were they to encounter any, despite both
having more than 50 works. Hence, both sensors and OLMs are arguably unobserved in IPT.
Whereas sensors require specific hardware, OLMs are applicable to any ITS with a learner
model - allowing their inclusion to be domain-independent given a learner model.

10/15 of the works explicitly used the phrase "ITS". The terms "AI", "adaptive", and
an implication of a "domain model" or "expert model" occur in the following works. In
[56] Dermeval et al. mention "adaptive tutoring" and imply the use of an ’expert domain
model’. The tools are summarised as using "AI". In "Effectiveness of Intelligent Tutoring
Systems: A Meta-Analytic Review" [13], Kulik et al. state they are "Grounded in [AI]
concepts" and mention "expert-knowledge database". In contrast, two works define ITS with
the addition of a ’pedagogical model’ and ’learner model’. In "Systematic review of research
on artificial intelligence applications in higher education - where are the educators?" [27]
Zawacki-Richter et al. mention the "learner model", and have their paper focus on pedagogy.
In "Intelligent tutoring systems: a systematic review of characteristics, applications, and
evaluation methods" [11] Mousavinasab et al. explicitly list the 4 model types that commonly
appear in ITS primary studies ("expert/domain model", "learner/student model", "interactive
model" and "pedagogical model"). Both of these papers critically discuss the semantics of
pedagogy and what AI means in ITS, respectively. In all other works, they assume the use of
the term ITS is known and provide no definition.

The unanimous components of ITS are, being an AI, containing a domain model, and
containing adaptive feedback. In addition to this, (by Kulik’s definition), for it to be an ITS
rather than a "computer aided instruction" (CAI), it must engage with the learner as they
work on the problem, and not just after they reach a solution. The addition of a "pedagogical
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model" and a "learner/student model", mentioned and discussed by Zawacki-Richter and
Mousavinasab, might have a preferable distinction as Cognitive Tutors.

Tang el al.’s work [12] mentioned ITS as a potential surveyed "AI-supported-e-learning"
but did not define ITS. Surprisingly, none of the key papers noted by Tang et al’s discussion
on AIeL research networks [12] occurred in our bibliography. This may imply a lack of
overlap between AIeL trends and our definition of ITS, a minority of ITS in their study, or
that our research’s focus themes differed considerably from most ITS research.
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Paper Ref Focus Date Range Sample Count Term for ITS or IPT Computer Science Definition of IPT Research Question(s) or Aims Q1 Q2 Q3a Q3b Q3c

[1] Adaptive Feedback 1999-2010 20
1-Educational systems for
programming with
"adaptive feedback"

Requirement

"That is, adaptive feedback is provided differently for
individual students by analysing the student’s action
(e.g., student’s solution attempt) and/or adaptive
feedback may be provided by an education system that
is based on a student model."

This paper identifies analysis approaches for programs
and introduces a classification for adaptive feedback
supported by educational systems for programming.
The classification of feedback is the contribution of
this paper.

NO O N N O

[57] Adaptive Feedback 2000-2016 20

1-Adaptive Learning Environments
2-"keywords such as feedback,
adaptive feedback, intelligent
tutoring system, adaptive learning
system, computer-based tutor,
pedagogical agents, and computer-
assisted learning were used."

Observed (30%)

"Adaptive learning environments provide personalization
of the instruction process based on different
parameters such as sequence and difficulty of task, type
and time of feedback, learning pace, and others
(Brusilovsky et al., 1999; Stoyanov & Kirchner, 2004)."

"to compare computer-based learning environments
according to their implementation of feedback and to
identify major open research questions in adaptive
feedback implementations"
"this study reviews various implementation of
feedback, based on the four adaptation characteristics:
means, target, goal, and strategy
(M. E. Specht, 1998)"

UO O O O O

[9]
Categorising
Adaptive Feedback x-2016 55 + 19AA

1-learning environments for
programming
2-automated assessment (AA) tools

Requirement
learning programming, mostly on learning environments
for programming or automated assessment (AA) tools

"What is the nature of the feedback,
how is it generated,
can a teacher adapt the feedback,
and what can we say about its quality and effect?"

O NO O O O

[55]
Categorising
Sensors in assessments 2012-2014 79 (55 Educational) N/A None N/A

-Learning domains: get an overview of sensors and learning.
-Formative assessment: focus our research in sensors and
Learning, exploring how they can assist with a main current
educational challenge.
-Feedback: deepening our research in sensors and Learning
studying how they have been used for giving Feedback, which
is a key element for Formative assessment and one of the
most important interventions in learning.

NA NO O O O

[56] Authoring tools 2009-2016 33 Intelligent Tutoring Systems (ITS) Not Observed

"Intelligent Tutoring Systems (ITSs) are concerned with
the use of artificial intelligence techniques for
performing adaptive tutoring to learners according to
what they know about the domain
(Sleeman and Brown 1982)."

which ITS components can be authored?;
which ITS types can be designed by authoring tools?;
which features facilitate the ITS authoring process?;
what authoring technologies have been used to design ITS?;
when does the authoring occur?;
what is the evidence that support reported benefits of using
ITS authoring tools?

NA O N O O

[58] Authoring Tools N/A 8 Intelligent Tutoring Systems (ITS) Not Observed N/A Searching and categorising ITS Authoring tool types NA N NO NO NO

[25]
Adaptive Feedback
(Thoroughly) x-2015 101

Automated Feedback in
Programming Exercises
Automated Assessment Tools
(AAT)
Intelligent Tutoring Systems
(ITS)

Observed ITS (Assumes known)

"What is the nature of the feedback that is generated?"
"Which techniques are used to generate the feedback?"
"How can the tool be adapted by teachers, to create
exercises and to influence the feedback?"
"What is known about the quality and effectiveness of
the feedback or tool?"

O O N O O

[13]
Changes ITS invokes
to test results
across Primary Studies

NA 50

CAI (Computer Aided Instruction
Tutors) - 1st generation
ITS (Intelligent Tutoring Systems)
- 2nd generation

Mutual

Full section discussion the differences between CAITs and
ITSs: "does the computer tutor, like a human tutor, help
learners while they are working on a problem and
not just after they have recorded their solutions?"

How effective are ITSs?
Do they raise student performance a great deal, a
moderate amount, a small amount, or not at all?
If ITSs do have positive effects, has their effectiveness
declined with the fine-tuning of the systems in
recent years?
What accounts for the striking differences in review
conclusions about ITS effectiveness?

NA O NO NO NO

Table 2.4 The first half of a summary of contents in secondary studies on IPT
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Paper Ref Focus Date Range Sample Count Term for ITS or IPT Computer Science Definition of IPT Research Question(s) or Aims Q1 Q2 Q3a Q3b Q3c

[10] Programming based ITS NA 40
ITS for programming
education Requirement

A number of intelligent tutoring systems have been
created for programming education. For the purposes of
this review they will be referred to as Intelligent
Programming Tutors (IPTs). IPTs are a distinguishable
subfield within intelligent tutoring systems as learning
programming poses problems that are not found in
other areas.

(1) What programming languages are being taught with IPTs?
(2) What types of supplementary features are used in IPTs and how
have they been implemented into tutoring tools?
(3) What parts of the tutoring process are adaptive within IPTs?

O N NO NO NO

[50]
"Open Learner Model (OLM)"
"Learner Analytics Dashboard" (LAD) NA 140

Intelligent Tutoring
Systems (ITS) Not Observed ITS (Assumes Known)

1. What data is collected in OLM systems, and what type of modeling
methods are used?
2. What are the current trends in OLM research in terms of publication
venue, publications over time, authors, and top cited articles?
3. What are the central themes or topics that have emerged from
OLM research articles?
4. What is the nature of OLM system evaluations?
5. What similarities and differences exist between OLMs and learning
analytics dashboards?

NO O U O O

[27] Studies (qualitative or quantitative) 2007-2018 150
Intelligent Tutoring
Systems (ITS) Observed (42%)

Intelligent tutoring systems (ITS) can be used to
simulate one-to-one personal tutoring. Based on learner
models, algorithms and neural networks, they can make
decisions about the learning path of an individual
student and the content to select, provide cognitive
scaffolding and help, to engage the student in dialogue

- How have publications on AI in higher education developed over
time, in which journals are they published, and where are they
coming from in terms of geographical distribution and the author’s
disciplinary affiliations?
- How is AI in education conceptualised and what kind of ethical
implications, challenges and risks are considered?
- What is the nature and scope of AI applications in the context of
higher education?

NO N O O O

[11]
What does the "AI" mean in
E-learning and ITS 2007-2017 53

Intelligent Tutoring
Systems (ITS) Observed (38%)

The ITSs have a classical architecture with four
modules which are known by different names in studies
(Then lists the 4 models)

RQ 1. For which educational fields ITSs have been designed?
RQ 2: Which AI techniques have been applied in the development of
ITSs?
RQ 3: What are the main purposes of using the AI techniques in ITSs?
RQ 4: Which factors have been used for representing the adaptive or
one-to-one instruction in ITSs?
RQ 5: What types of user-interface have been used for development
of ITSs?
RQ 6: Which methods have been employed for the evaluation of ITSs?

NO N O O O

[12] Research trends and citations 1998-2019 105
Intelligent Tutoring
Systems (ITS) Noted ITS

- Which were the top 10 countries and authors integrating AIeL in the
field between 1998 and 2019?
- Which major journals published AIeL studies between 1998 and 2019?
- What were the research methods and application domains adopted
in AIeL studies from 1998 to 2019?
- What were the roles of AI in e-learning? What were the most
frequently cross-referenced research streams for AIeL between 1998
and 2019?
- To what extent were these streams extended by follow-up papers?
In addition, what is the visualized structure of the main AIeL
literature from the perspective of these papers?

NO O NO N NO

[28] Agents used alongisde learners
Intelligent Tutoring
Systems (ITS) Not Observed ITS

The primary objective of this review is to provide a critical analysis of
the effectiveness of ABLEs in facilitating students’ experience of
adaptive emotions.

NO NO N N O

[31] When learning confusion benefits N/A N/A N/A N/A NA NA N N NA

Table 2.5 The second half of a summary of contents in secondary studies on IPT
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Programming Languages

This section discusses our first literature review aim. To reiterate, this research wanted to
find how secondary studies discussed "what techniques/achievements are only possible for
(or relevant to) a given programming language?"

In this section, we first discuss the number of reviews that include programming and
computer science ITS before discussing whether works observe the used programming
languages. This allows us to discuss how applicable the observations are to specifically
computer science and programming. The results are summarised in each table in this
subsection, with Table 2.4-2.1.3 having the rows relevant to this section.

8/15 of the works mentioned if works were for contained computer science or program-
ming. 4 of these required all works within to be for computer science or programming.
[1, 9, 10, 25] were strictly based on programming exercises.

Out of the remaining works that include but do not require works based in computer
science or programming, 3/5 of them give exact values of the number of IPTs included.
"Adaptive feedback in computer-based learning environments: a review" [57] has 30%
of works in computer science or programming. [27] has the majority 42% of works in
computer science or programming. [11] has the majority 38% of works in computer science
or programming.

Ultimately, only 3 of the papers could be counted to have ’observed’ the programming
languages used by their samples. These were [59, 25, 10]. The only work on Computer
Science and programming that did not contain a list of programming languages was [1].

Keuning et al.’s work [25] noted 12 studies that contained work that supported (or has
been applied to) more than one programming language ("11.9"%). However, they also note,
"The remaining tools support multiple languages of different types and paradigms and are
often test-based AA systems". The other works that noted programming languages only
noted their works supporting one language. "Migration is applied in INTELLITUTOR,
which uses the abstract language AL for internal representation. Pascal and C programs are
translated into AL to eliminate language-specific details. After that, the system performs
some normalisations on the AL-code", however, Intellitutor [60] is not an IPT, but an AAT.

All other papers were either recorded as either Unobserved, Not Observed or irrelevant
to the question, as their focus was not on programming or computer science and hence did
not focus on particular aspects unique to programming ITS.

From this, we can answer that at least up to 2016, IPT supporting more than 1 program-
ming language is minimal, and no IPT is programming language-independent in implementa-
tion.
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As for observations on language-specific trends in IPT, Keuning et al. [9, 25], and Crow
et al. [10] note domain-specific qualities of ITS to programming. These papers both also
include programming languages to "contextualise" features prevalent in each tool. However,
there is no listed paradigm that notes a difference between programming languages or types.
Keuning separates the languages between "Imperitive/object-oriented" ("73.3%"), "Logic"
("7.9%"), "Functional" ("5.9%") and "Unknown" ("1%") and discusses them as trends only.

Hence, out of all research on the field, it’s inconclusive what IPT paradigms are influenced
by language-specific features.

Investigated Mutual Research

Our second literature review aim concerned finding what secondary studies considered,
"What other techniques/achievements in general are mutually exclusive?"

Through this section, we will discuss the findings of each secondary study on research
and techniques performed with each other relative to their research focus.

11/15 of the secondary studies at least note findings on what techniques/specifications are
met in conjunction with each other, with 7 of those 11 listing so empirically by a paradigm.

Firstly, the two works have a figure discussing any used adaptive feedback methods that
overlap. [1] lists the number of studies with feedback types that occur in conjunction with
one another. The feedback types were on/off, syntactic, semantic, quality and layout. There
were 5 paired feedback type uses identified out of the 20 sampled IPTs. [57] provides a Venn
diagram between Adaptive Feedback Means, Adaptive Feedback Target, Adaptive Feedback
Strategy and Adaptive Feedback Goal. The majority of works contained each, and all but
one work contained at least 2. However, what type of Adaptive Feedback each category
contained differed between IPT. In [25], the returned feedback types are critically discussed
and presented in a bar graph against year.

In [56] Dermeval et al. state when discussing the different types of "ITS Types" stated,
"[a] result that deserves some attention is that almost 30% of the papers are categorized
as Non-specific. This result may indicate that there is not a shared understanding in the
ITS community of the underlying theories, technologies, and features of ITSs since many
researchers are developing authoring tools for designing their own type of tutor."

[25] contained a graph on overlapping implementations of domain-specific (features
of ITS - and AA - unique to the field of computer science or programming). These were
"Dynamic code analysis using automated testing (AT)", "Basic static analysis (BSA)",
"Program transformations (PT)", "Intention-based diagnosis (IBD)", and "External tools
(EX)". Among the domain-specific combinations, only AT+BSA (30-81.1%), AT+PT (16),
IBD+PT (16-42.1%), AT+EX (12-100%) and PT+BSA (11-29.7%) occurred more than 5
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times. IBD+AT (<28.6%), IBD+BSA (<28.6%), EX+BSA (<41.7%) and EX+PT (<41.7%)
occurred in the same IPT/AA less than 6 times.

Two works contain explicit aims to compare the components of the works they sample to
a synonymous term. [50] contains the research aim, "what similarities and differences exist
between OLMs and learning analytics dashboards?". This research contains an additional
section on "RECOMMENDATIONS TO MERGE OLM AND LAD RESEARCH FIELDS".
[13] also discusses past and modern ITS, comparing CAI.

Finally, "Trends in artificial intelligence-supported e-learning: a systematic review and
co-citation network analysis"[12] attempts to identify research trends in the field - who gets
the most citations and what research follows. However, this work does not discuss the content
of the ITS. It observes shared patterns in the primary studies surrounding the ITS.

Phrases implying a lack of integration in the field were common among all works marked
noted or observed for question 2. Tang et al. attempted to find insight into research trends to
find what researchers focus on, but this does not give conclusive insight into the problems
that prevent research techniques from being implemented alongside each work. Each of the
specialist studies provides insight into what IPTs share components and what components
are lacking. A strong implication of the problem is how inconsistently defined the field is.
For instance, "IPT" is not a unanimous term.

To answer from these studies, "what other techniques/achievements in general are mutu-
ally exclusive," this depends on the focus of the question and is answered by the plethora
of paradigms on each subject. Even when discussing feedback, it can be split between
output structure [1] to what methods are used to form the feedback [25]. However, from
the recurring statement and aims of finding shared research and terms in the field, we could
arguably say research in the field is currently non-integrated.

Definitions of Success/Educational Psychology in ITS

In this section we will discuss the 3 questions concerning the quality of learning in sequence
against each of our surveyed secondary studies.

For "What (is ideal) to be observed to determine quality of learning (or different aspects
of the quality of learning)", we list for each secondary study how they note any information
on how their samples observe learning. We discuss any collective patterns that occur from
this.

Concerning "How is quality of learning defined in observations of the field (secondary
studies)?",
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We found that most papers observed this in ITS by classifying the form of research being
conducted1. If the paper discusses the explicit method used for obtaining data on their quality
of learning, we record that as "observed".

Out of the works that observed methods in the works they sampled, 8/10 also provided an
answer to "How do various IPT account for quality of learning, and what do they not account
for with quality of learning".

Schneider et al.[55] provides unique observations on the quality of learning in their
samples. They discuss the use of sensors to evaluate learning and support observations of
learning in ITS.

Certain ITS observe the quality of learning as one component, such as quantitative
test scores in Kulik et al.’s work [13]. In such cases, quality of learning resultantly gets
categorised as "Not Observed" in each category. While Kulik’s work defines the quality of
learning in their work, they do not discuss the pedagogy of other works. They also exclude
works that do not provide specific quantitative results (standardised test scores). Tang et
al.’s work [12] does not study the ITS within their primary study samples, but the research
trends of those works. They discuss the type of research being performed but not the contents
within (aside from the titular theme of AI in e-learning). Hence the quality of learning is not
discussed outside of research types.

Another trend among the results was for the 3 out of 4 papers discussing feedback. As
they discussed an aspect of pedagogy (feedback), they defined learning relative to its impact,
often quoting constructivism. They did not have a paradigm for noting how learning is
defined but would critically discuss how each primary study observes learning.[1, 57, 9, 25]
each discuss feedback. The exception to this is Le et al.’s work [1], which only notes the type
of empirical research performed.

Overall, it was overwhelmingly common for the secondary studies to list how each
work’s ITS observes learning (as the focus is on the ITS). This was the case in 10/15
studies. It was slightly less common for the secondary studies to list how each primary study
evaluates learning. This was the case in 8/15 studies. Each work observed many primary
studies discussing pedagogy, which implies pedagogical discussion is not lacking in works
in the field, or observations of the field. However, only 1/3 of the works strictly including
programming discussed pedagogy; [57]. They stated, "The most common techniques used
for evaluating adaptive feedback implementations are through questionnaires, pre-test and
post-test, and analysis of log data". Finally, it was even less common for secondary studies
to discuss differences in how learning is observed. 9/15 of the works made some form of
remark and 5/15 works provided paradigms.

1IE: "Empirical, Analytical, Anecdotal" [9], "Qualitative, Quantitative, Technical" [1]
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2.2 Additional Paradigms - Related works

Through this section, we summarise various paradigms we acknowledge/use in this thesis.
These paradigms come from secondary studies and primary studies of IPT. One such primary
study is a state-of-the-art IPT we compare our research to.

This paper concerns the use of automated tutoring tools to improve learning in computer
science and programming. Hence, we focus on IPT tools containing frameworks that provide
feedback to improve learning. We discuss AAT if they are built into IPT, or in contexts, they
are discussed alongside IPT.

Many IPTs and AATs have been constructed, with primary research surrounding most.
There also exist several secondary studies defining IPTs and AATs in various ways based
on numerous reoccurring patterns and unique traits among them. Through this section we
discuss a number of these patterns, to provide context for common problems.

IPT facilitate programming based learning activities. Most have varying methods of
returning feedback. IPT have different rules concerning how they determine if a learning
activity has reached a solution. Nguyen-Thinh et al. produced a 5 class classification for how
activity solutions can be explicitly defined[32]:

• Class 1 - One defined solution.

• Class 2 - One solution strategy, different ways of observing.

• Class 3 - Multiple limited solution strategies.

• Class 4 - Multiple solution strategies that may not all be listed/observed by the tutor at
the time of creation, but can be verified to be correct.

• Class 5 - Problems with solutions that can not have their correctness verified automati-
cally.

Nguyen-Thinh et al then evaluate implementations of 14 IPT against this classification [59],
stating solutions up to class 3 exist. This paper 2014 existed before works such as the IPT
ITAP documented by River’s ITAP [16]. ITAP supported multiple solution strategies, but
also had a unique contribution for verifying and adding solutions from other users (learners)
to the same activities. This enables ITAP to consider solutions not originally defined by the
tutor. ITAP arguably becomes the (proposed) first instance of Class 4 activities implemented
in IPT. We will discuss ITAP further in related works. Ultimately, Class 1-3 and arguably 4
are currently present in IPT.

An empirical study by Keuning et al [25] noted and referenced 101 IPTs and AATs as
of 2018. Their study discussed both primary studies of the works, and secondary studies
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reviewing several works. They excluded works that did not teach programming for the sake
of learning programming or computer science. They also excluded works containing only
class 1 solution strategies, citing Nguyen’s activity class classification [59]. Unlike this paper,
they did not regard ITAP[16] as Class 4. Keuning et al [25] discuss numerous methods used
in IPT and AAT, ranging from:

• "Feedback Types" with multiple sub categories (and the titular discussion),

• "Techniques" for comparing learner’s answers with implemented solutions,

• "Adaptability" of feedback that can be specified by tutors, and

• "Quality" of the research pertaining to each IPT or AAT.

Another noted component of IPT is not just their ability to evaluate the correctness of
solutions, but also to return constructive feedback. Without the latter (constructive feedback),
they would only be AAT. IPT differ in how feedback is delivered.The type of feedback
provided can also be critical to improving the motivation of the learners, or consequentially
hindering the motivation of learners. Kyrilov’s empirical study notes how instant "binary"
feedback results in learners losing motivation [2]. Rivers also notes for ITAP [17] learners
were more motivated to use a later model of ITAP that gave more detailed feedback on the
problem. Alternatively, the noted improvement from having more detailed feedback could be
from a higher likelihood of hints covering the information needed.

In the "more detailed feedback" versions of ITAP, it returned feedback in the following
pattern with no ambiguity: [Location info] + [action verb 1] + [old value] + [action verb
2] + [new value] + [context] (Figure 30 in [17]) We further discussion of ITAP occurs
through Section 3.1, where ITAP’s implementation is discussed relative to our research’s
methodology.

Le Nguyen had another secondary study that classified feedback through IPT [1], and
this paper was also discussed in Keuning et al.’s paper. Their study strictly included IPT with
’adaptive feedback’, resulting with 20 IPT studied through this work. This included 3 binary
feedback IPT, which were adaptive in the sense of content specifically made for the learners.
"Since both QuizJET [61] and QuizPack [62] are able to generate parameterised questions,
the systems provide adaptive feedback" and "Since M-PLAT [63] is an adaptive educational
system as the authors claimed...the feedback messages are provided individually to students".
Such feedback was classified as "Yes/No" feedback.

Nguyen also notes:

• "Syntax feedback" - remarking on compilation errors,
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Fig. 2.2 A comical illustration on the 5 types of feedback defined by Nguyen [1]

• "Semantic feedback" - remarking on errors in regard to the learning activity. It is split
between:

– "Intention-Based Feedback" - Identifying what type of solution the learner is
aiming for.

– and "Code Level Feedback" - Identifying erroneous code in regard to the learning
activity.

, All cases of Semantic feedback contained code-level feedback, but not all cases
contained Intention-based feedback.

• "Layout feedback" - remarking on corrections to the learner’s writing convention.

• "Quality feedback" - remarking on corrections to the efficiency of the code (such as
measuring speed or memory usage).

We illustrate these 5 types of feedback in Figure 2.2.

2.3 Backus Naur Format

In this section, this research first defines a known convention for writing programming
language grammars. First we define "Backus Naur Format" (BNF), discuss compiler genera-
tors that use this format, then present literature observations on the compiler generator this
research uses.
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BNF is a popular writing convention for defining the syntactic rules of a programming
- a "meta-language" [64]. It’s definition appears in works such as McCracken’s [64] and
Quinlan’s [65].

BNF has been widely adopted, with several widely adopted variants. Quinlan et al [65]
list and define the following variants:

• BNF - The original format

• EBNF - Extended BNF. Contains a few formatting differences, and facilitates the
ability to handle "repetition of syntactic rules", "special sequences", "optional choice
of syntactic rules" and "exceptions to syntactic rules".

• ABNF - Augmented BNF. "The differences between standard BNF and ABNF involve
naming rules, repetition, alternatives, order-independence, and value ranges" [66].
However, overall contains no features that EBNF lacks.

• RBNF - Routing BNF. Contains the ability to write exception rules.

• LBNF - Labelled BNF. "A BNF grammar where every rule is given a label" [67].
Additionally adds "abstract syntax conventions, lexer rules, pragmas, and macros" [67]
to BNF.

• TBNF - Translational BNF. Designed as an extension of EBNF that accommodates
non context free components: structuring how the grammar will be read, and allowing
instructional code.

BNF is predominantly for defining abstract syntax rules, however has also been applied for
mathematical notations - particularly from the variant MBNF [65].

EBNF is regarded to be complete in its ability to define any context free grammar, and
has hence been a widely adopted format. BNF and its variants are often used for compiler
generators such as Lexx/Yacc (which is based on BNF) and ANTLR4 (which is based on
EBNF, with the addition of ANTLR4 only syntax)[49]. An example of an ANTLR4 grammar
is in figure 2.3.

Because BNF is shared among many compiler generators, research continues to developed
practices on grammar writing, as well as develop practices for algorithms reading the BNF
grammars. Compiler generators exhibit various differences ranging from:

• grammar writing convention (variants and additional features of BNF),

• algorithm used to parse grammars,
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Fig. 2.3 The parser of a C# ANTLR4 grammar on the ANTLR Github repository. Resembles
EBNF.
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• containing repositories archiving grammars written for the compiler generator,

• programming languages the compiler grammars compile into,

• and what structures the compiler takes (and features they support) when compiled.

[48] They also differ in what standards they support. For instance, ANTLR4 facilitates
context-free grammars, yet also facilitates the ability to write context specific actions into the
grammar. Theoretically, methodology concerning writing grammars, compiling them and
using them within tools could be applied across compiler generators. However, the output of
these tools can be domain specific, which can inhibit compiler generators from being tested
interchangeably. While it makes it difficult to test across compiler generators, our research
believes any discussion on the phrasing of EBNF grammars can be applied to other compiler
generators.

The chosen compiler generator of this research is ANTLR4. It contains the uniquely
developed the "Adaptive LL"(ALL) algorithm for tokenising and parsing [46]. This algorithm
is an adaptation of "LL(*)" to enable the parsing of grammars to identify ambiguities
dynamically at parse time (rather than statically defined by the construction of the grammar).
In practice, it is able to parse non-left-recursive context-free grammar.

ANTLR4 theoretically supports the creation of all possible programming language gram-
mar definitions (given they are context-free and purely literal). Additionally all compilers
generated by the ANTLR4 tool will still complete compilation, even when the code being
compiled contains errors. This allows ANTLR4 to log syntax errors in the generated ASTs.
This applies for all language grammars compiled with the ANTLR4 tool. This is critical for
an IPT system with aims to identify and correct learner mistakes.

ANTLR4 additionally supports specifying action code, however this standard is discour-
aged in general use on sites such as the ANTLR4 repository. Tokenisers and parsers (forming
a compiler) created by ANTLR4 facilitates two ways to iterate through code as it is compiled
into an AST for each grammar.

First is the listener which allows action code to be programmed against each token as it
is read.

Second is the walker, which also allows action code to be programmed around each token,
but requires explicit calls to navigate an AST.

The generated compiler code can be written in a limited number of programming lan-
guages:

• Java,

• C#,
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• C++,

• Python2,

• JavaScript,

• Python3,

• Swift and

• Go.

This research benefits from the output language being in C#, as it enables use within Unity
software environment (discussed in Section 3.1).

In the generated compiler code, the listeners (and walkers) inherit from an abstract class
used across ANTLR4 grammars. Using the ANTLR4 listener’s abstract class, we theorised
an IPT can dynamically construct its own AST structure as ANTLR4 constructs its own.
ANTLR4 additionally contains a repository. It is widely supported with more than 200
languages. However, the repository is not as popular as other tool’s repositories such as
"Lex/Yacc" [49].The entries on the repository are also open source, primarily rely on user
contributions and their adherence to newer2 repository standards. Works such as Dean’s [48]
ranked grammar repositories of different tools, where ANTLR4’s existed but was given
the lowest rank in terms of "the comprehensiveness of the existing repository of grammars
available online".

Ultimately, ANTLR4 was the chosen compiler generator for this research because of the
following combination of traits:

• The current author was first familiar with ANTLR4 as a compiler generator compatible
with all languages,

• ANTLR4 has arguable relative ease of use as a compiler generator[49],

• ANTLR4 was suitable for this research for the following purposes. It contains:

– An improved parsing algorithm (ALL) and writing format (EBNF). This helps
facilitate all possible literal programming languages[46].

– An open source repository of its grammars which included well renowned pro-
gramming languages.

2ANTLR formerly could output compilers in only Java, which would also lead to a lot of Java specific
actions. Code of grammars has been easing into supporting more programming language
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– The ability to build into C# - among other languages - where C# is relevant to
how this project approached building an IPT.

– The ability to refer to compiler code by abstraction.

In the following section, we discuss works that use the ANTLR4 repository, and observe
if there are any instances discussing the "legibility" of the strings used for the terms.

2.3.1 ANTLR4 grammar uses

For the definitions of grammars, This research will also discuss how the semantic differences
affect the feedback provided by programming languages. Multiple grammars for a given
language can be built differently. They can target different versions of ANTLR4, target dif-
ferent standards for writing grammar, or simply differ in how they’re phrased and structured.
The current ANTLR version as of this writing is 4 by Parr [46]. Additionally, the literature
surrounding ANTLR4 [45] promotes "context free grammars"3.

It is possible there is little research surrounding the phrasing of grammar because it’s
not a functional requirement in their usage. Our research aims to refer to the token names
to provide structure context in feedback, as well as to tutor the names of the structure. To
perform this in a multilingual IPT, our research must pull the names as defined from the
grammar to provide feedback. This could affect our feedback in a way illustrated in Figure
2.4. As it is not a requirement of language grammar or used in their general output, there is a
reasonable chance grammar does not account for how their phrasing would be observed by
secondary or tertiary users. Through this section, we investigate this conjecture.

To find how ANTLR grammar semantics have affected existing research, this research
performed a quick analysis of empirical studies using ANTLR. The ideal search of "ANTLR
(OR ANTLR4) grammar (semantics OR phrasing) (survey OR "meta-analysis" OR review)"
as titular (with no year restrictions) words yielded no results on Google Scholar.

"ANTLR (OR ANTLR4) grammar" as titular words yielded 16. 4 of those 16 were
included for containing accessible web links and full documents, and due to not being a
primary study on the creation of a grammar. Each was empirical [43, 68–70]. This search
also contained no date restrictions for the papers, yet the range contained papers from
(2005-2022).

Of the four works, Bovet’s was a discussion (co-authored by the creator of ANTLR) on
facilitating a tool for writing ANTLR grammars [70]. Semura’s [43] precedes Zhu’s [68] on
implementing Code Clone detection for all programming languages ("Multilingual") using
ANTLR4 [68]. Semura’s sampled 150 languages on the ANTLR4 repository and excluded

3Programming language grammars that are designed to work for any given use of the ANTLR4 tool
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Fig. 2.4 An illustration on how grammar phrasing could potentially affect the phrasing in
feedback.

"esoteric" languages, leaving 43. Zhu’s work was sampled against 20, where each was
successful, given no keyword restrictions (at the expense of information omissions). Wal’s
[69] covers research on converting ANTLR4 grammars to "(BNF)-like Grammar Format". It
was sampled against all 370 ANTLR4 grammars on the repository (at the time). Only 6 did
not compile by the ANTLR4 tool, preventing them from being tested with the extractor.

Although each noted how the phrasing of each grammar could affect the output, there was
no observed discussion on the exact phrasing used within grammar. In Wal’s research [69],
as part of their first research question, they surveyed each ANTLR construct; the number of
grammars containing them. However, they did not need to investigate how each construct
could be phrased. Semura’s work [43] noted 4 ways of writing comments in languages for
the purpose of omitting; hence, it was not important for them to discuss the phrasing.

2.4 Related Works

Through this section we first discuss ChatGPT, a popular Natural Language Processing (NLP)
tool that has been applied to programming and education. Secondly we discuss Ask-Elle, an
IPT with an adept authoring tool framework. Finally, we discuss ITAP which is a data-driven
IPT that can reliably provide adaptive feedback for 100% of learner submitted code.

For each we discuss contributions and limitations.



50 Research Background

2.4.1 ChatGPT - Large Language Models for Education

In recent years, research centred around NLP4 has trended in the form of "AI Language
Models", and interfaces for them. Research on AI Language Models have advanced to the
point where research has been applied to education and programming distinctly. Research in
the field of NLP and responses may also pursue multi-modal inputs and outputs [73].

The most popular AI Language Model at present is ChatGPT, which is arguably consid-
ered a present state of the art "large language model" [74]. Research mentioning ChatGPT
alone has more than octupled in publications between 2022 (with 1̃280 results) and 2023
(with 1̃5,800 up to the date of this thesis) that can be searched on their respective dates on
Google Scholar, or observed in discussions such as Ray et als. [74]. In this section, we briefly
cover state of the art AI language models to distinguish their traits (strengths and weaknesses)
from the focuses of our research. The example discussed is ChatGPT. We discuss ChatGPT
in relation to programming education.

To function, ChatGPT requires training or train data. ChatGPT comes with an incredibly
large data-set of train data. Through the OpenAI program and other ethical models [75],
many data-sets are publicly available and growing [76, 77].

ChatGPT then facilitates conversation, taking natural language text (or even mathematics
questions or programmed code) and responding with natural language text, numbers or
code. The two most relevant areas to this research that ChatGPT has been applied to are
"education", and "programming".

ChatGPT in Education

One notable discussion of ChatGPT is in education, where works such as Chaudhry’s
evaluate on circumventing cheating, or involving ChatGPT in education[78]. ChatGPT has
demonstrated numerous contributions and ethical concerns when discussed within the context
of education [76–78, 74].

For education, ChatGPT:

• Answers questions - ChatGPT produces answers to any queries it is trained to handle.
There have been concerns of learners using ChatGPT for cheating on tests. In studies
such as Chaudhry et al’s. [78], ChatGPT’s answers have been tested against pre-existing
academic tests and entrance exams. It often would score approximately among what
were the top 10% of learners. Clever use of ChatGPT can have it compose a question,
a correct answer, and means to test an answer in a string to form a task.

4Research around having computers parse natural sentences and potentially respond with natural sentences.
Knoll’s work back in 2006 critically broke down and innovated on the aims and ideas in NLP [71]. A more
recent example of NLP research is Mefteh’s research [72]
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• In practical use in education, ChatGPT can serve as an aide providing suggestions for:

– learners studying or performing tasks,

– tutors discussing and deciding "lesson plans, teaching strategies, and classroom
management technique", [76]

– adaptive navigation and suggestions for learning materials to cover - for the tutors
or learners.

These suggestions can then be observed, applied or ignored. [74] [76]

• A recurring stated challenge with ChatGPT is its lack of explainability - ability to
convey the reasoning behind its choices. The reliability of the responses depends on
the dataset, and the context ChatGPT accompanies. [74] This reliability additionally
comes at the risk of losing the context of the original conversation in long conversations.
However, although ChatGPT lacks explainability, it allows itself to be corrected by the
user.

• ChatGPT’s responses are also unable to be absolutely reliable. The precision and
versatility of ChatGPT’s responses and reliability is subject to training data, which
requires consistent observation and data to bring ChatGPT closer to being reliable
for any given context it is applied in. As ChatGPT lacks explainability, it makes it
difficult to inquire on ChatGPT’s reasoning. This makes it challenging to inquire
if ChatGPT’s response is correct, or to debug why ChatGPT reached an incorrect
conclusion. Additionally, ChatGPT requires some responses to be phrased correctly to
yield better results. [76].

• While ChatGPT can provide suggestions. However, suggestions in themselves can
present problems. In general, providing too many hints at the wrong times can inhibit
learning [30]; where Koedinger’s work provides a discussion on finding the balance
for the "assistance dilemna". For ChatGPT in specific, works also express concern that
over-reliance on ChatGPT’s suggestions in education may "inhibit critical thinking
from over-reliance" [74, 76]. A concluding statement from a literature review in
Kasceci’s work [76] was: "while large language models can generate multiple-choice
questions, produce text from bullet points, and scaffold learning, it is clear that they
can only serve as assistive tools to human learners and educators and cannot replace
the teacher".
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ChatGPT in Programming

Along with education, ChatGPT supports answering queries for programming. Surameery’s
work [79] provides detailed paradigms on:

• potential uses of ChatGPT to support programming and development,

• problems ChatGPT may have in these areas,

• and concluding contexts where ChatGPT can be applied to benefit [79].

ChatGPT can be summarised to provide aide to programming in the following ways
(summarised by Ray et al [74]):

• Code Generation - ChatGPT can be trained to generate working code solution chunks
according to a given language, or alter code submitted to ChatGPT according to a
request.

• Code Optimisation - ChatGPT can be trained to provide optimisation suggestions. This
can form feedback on the quality and efficiency of the code if utilised in a programming
environment.

• Debugging Assistance - ChatGPT can be trained to identify errors within code and
suggest fixes when inquiring about an error. [79]

• Code Review - ChatGPT can be trained to summarise and provide legibility or "best
practice" suggestions to code. This can form feedback on the layout and legibility of
the code, whenever input into ChatGPT.

The extent ChatGPT would be able to do any of these, is subject to the trained, languages,
code, contexts and corrections it was trained by.

ChatGPT Limitations

Despite these listed benefits in education and programming distinctly, they are rarely dis-
cussed in the context of "programming education".

ChatGPT expresses a lot of promise for use in programming education, but it is critical
to know where, how, and what its limitations are. In this subsection, the current author
broke down the limitations of ChatGPT and compares the strengths of IPT (precise, accurate,
adaptive feedback). This is then used to discuss how ChatGPT can be used in support of
education, and can be used in conjunction with IPT frameworks. [74]
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The first limitation of ChatGPT in programming education is in sporadic precision. The
output quality of the feedback is almost entirely based on trained data, topic of discussion,
and how a query is expressed. This can sometimes output wrong information. Additionally,
context can be lost over long conversations, or ChatGPT may fail to know the learning
aims of a given task - potentially giving superficial contexts. Also, ChatGPT’s responses
are limited by what it can gleam from the training data. This overall leads to potentially
imprecise or even incorrect responses. Lack of precision is a recurring stated limitation
of ChatGPT being able to be applied alone, or relied on in educational contexts [74, 76].
However, articles also often state ChatGPT’s uses as an aide in learning [74, 76, 79] - another
tool to accompany learners, tutors or other tools.

A second limitation of ChatGPT for programming education is on its training require-
ments. As stated in the earlier section, without relevant training data in a given context,
ChatGPT’s aide can become broad, imprecise or unable to personalise responses for spec-
ified tasks - in every growing programming contexts. Additionally, ChatGPT needs to be
monitored and further trained to improve how it is applied for educational contexts [74, 76].
Furthermore, this requires ChatGPT to be trained in using a given programming language.
For custom programming languages, or domain specific code, acquiring public domain data-
sets becomes less likely. Ultimately, there’s more of a requirement for one to train ChatGPT
for any expertise in programming education they wish to apply it towards. Additionally there
is no guaranteed results on its effects, and a requirement to monitor and further train it once
deployed.

The last notable limitation of Chat GPT on programming education is due to its lack of
explainability. The reasoning behind why a change should be made is critical for learners
to observe future instances of a mistake and circumvent them. ChatGPT has challenges
regarding "model explainability"[74] which refers to its ability to convey the reasoning
behind why it concludes on an action. Any lack of explainability makes it difficult to convey
the reasoning behind a suggestion. This impedes ChatGPT’s ability to discuss the reasoning
for its choices (although ChatGPT allows itself to be corrected).

Summary of ChatGPT

Overall, ChatGPT has several strengths and weaknesses. However NLP environments are not
the focus of our research. The focus of our research is IPT with adaptive feedback frameworks
and authoring tools for precise task creation, accurate feedback relating to the completion
of tasks, and the facilitation of multiple programming languages. Without the need to train,
monitor and further train data, IPT can theoretically provide easier task construction, even
for remote custom languages. However, this would require facilitated authoring tools, and
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versatility between programming languages (which are key targetted contributions of our
research).

ChatGPT’s applications are not mutually exclusive to IPT. It can theoretically be used
alongside IPT. For instance it can work as a suggestion aide to accompany an IPTs program-
ming environment, while the IPT provides precise and reliable hints, methods of checking
task completion, and virtual environments that can be evaluated. It can also train using code
of learners performing IPT tasks. Additionally, ChatGPT may be taught how to construct
activities in the format of a given authoring tool. ChatGPT can also be run concurrently to
software, like IPT.

Such tools are not mutually exclusive from adaptive feedback frameworks and IPT
authoring tool frameworks - for providing syntax and semantic feedback. However, the focus
of this research does not empirically cover using ChatGPT in conjunction with IPT.

2.4.2 Ask-Elle

Ask-Elle is an IPT for Haskell created by Gerdes et al. [18] They defined its field (IPT) as
"ITS for the domain of functional programming". Ask-Elle supports class 3 definedness of
tasks, and has a critical contribution in its versatile and easy to use authoring tool.

The authoring tool supports:

• The creation of tasks by simply entering one or more ’model’ solution strategy codes.

• The ability to annotate over the solution strategies to define what text hint occurs at
certain areas of code.

• The ability to specify compiled tests to be performed against learners solution strategy.

The aim of this section is to present existing IPT work for relative consideration of what can
be a contribution, and what contributions can still be made in IPT. In this section, we first
discuss how Ask-Elle works, and the tools used in order for it to function. Following this, we
discuss the investigations performed on Ask-Elle by Gerdes et al. [18]. We then discuss the
contributions and limitations on their approach.

Adaptive Feedback

Ask-Elle provides learners with its own programming environment, and tasks to complete.
Each task can have one or more solution strategies. During a task, learners have the the
following input options they can ask Ask-Elle:

• Check - to verify they are progressing to a correct solution strategy.
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• "A single hint" - a next step to try, relative to what they have tried in code.

• "All possible choices on how to proceed" - the former, but towards multiple solution
strategies Ask-Elle is aware of.

• "Worked-out solution" strategy- "presents a complete, step-wise, construction of a
program" [18]

We note three phases to Ask-Elle’s hint generation and solution strategy checking.
First, Ask-Elle uses the Helium compiler for program synthesis [80]. If it is unable to

compile code, it reports the syntax error reported by Helium. In the final test case reported
in [18], syntax errors were the majority returned feedback type by Ask-Elle. Syntax errors
were returned 55.4% of the time, instead of semantic feedback, completion messages or no
feedback.

If the code can compile, Haskell can identify how close learners are to a model solution
strategy by ’comparing gaps’ in the learners code relative to those solution strategy. Ask-Elle
can also alternatively run the learners code to see if it succeeds in test cases with a model
response if it fails.

For the test cases Ask-Elle uses Haskell’s built in compiler, GHC to construct the program
to be tested. To specify and perform the test, Ask-Elle uses the QuickCheck library [81]. The
tests can also be used to add solutions that Ask-Elle did not consider.

Ask-Elle ultimately supports both model solution strategies and test cases.
With test cases, solution strategies are no longer static. This allows Ask-Elle to observe,

assess and give feedback to run code, and is also used to provide the benefit of the tutor
improving itself (were it to accept working cases). Though, doing so would potentially
opens a security risk with the programs by accepting not tested (buggy) cases, or malicious
solutions. However, the potential consequences of this risk are not observed.

With model solutions, Gerdes et al.list the following [18]:

• Any found equivalences5 to solution strategies is guaranteed to be trustworthy. This is
because model solution strategies are manually added. This is in contrast to test cases
that can produce correct results, but be an incorrect algorithm, or lack quality.

For instance, a bubblesort algorithm would produce the same results as a quicksort
algorithm. However a task may want one to implement a specific on of the two.
Matched model solution strategies do not have this ambiguity in correctness.

5an equivalences after program transformations to make irrelevant semantic differences be treated equally
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• Imperfections can be recognised by model solution strategies and be reported. Ask-Elle
comes with the additional features to format feedback for specific parts of solutions
missing, and variants of solutions.

• Comparing model solution strategies to learner code means its possible to assume (or
determine) which approach is being attempted.

• Testing by solution strategies is static. It does not require working code. The combina-
tions are also preset. However, this is mutually exclusive from the benefit of test cases
dynamically testing.

A downside of model solutions strategies is the fact they are finite. They require specification
of all working instances. This is not as sustainable for larger programs, or more detailed
or flexible programs. Gerdes et al.also believe this limits model solutions to introductory
programming [18].

Our own research believes model solutions strategies can also be assessed in segments of
code, rather than just entire code samples. This enables them to be used as aides in adding
features, instead of limited to entire assessments of code. We facilitate this within our own
IPT.

Authoring Tool

Ask-Elle facilitates the use of both model solutions, and test cases. A targeted contribution of
Ask-Elle, was containing an authoring tool that easily facilitates the creation of both model
solutions, and test cases. The use of model solutions strategies and test cases is not unique
to Ask-Elle. However, a still outstanding contribution of this component was its ability to
annotate feedback on code through pragmas, and annotate test cases and their responses.

The first step of Ask-Elle’s authoring tool is simply to add Haskell code. From there,
any number of annotations (none to indefinite) can be added. The 4 mentioned types of
annotations in [18] are as follows:

• DESC - Allows a solution strategy to have an overarching description of what it’s
trying to do (or what the learner should aim to do for this solution strategy).

• FB - A location specific description. As it is parsed into the output AST of Helium,
it can serve as a location specific description of feedback. The description used for a
given point is the one deepest into the AST branches. This can be used to incrementally
make hints more specific as learners progress through a learning activity.
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• MUSTUSE - When checking for matching solution strategies, Ask-Elle facilitates
some amount of variance. For functions, MUSTUSE specifies that the definition must
match that of the solution strategy.

• ALT - Can be used to specify alternate lines or phrases for solution strategies, without
needing to create entirely new solution strategies with those lines changed.

Of special note is the "FB" function which has a location corresponding to an AST after
program synthesis. We hypothesise this feature can be done in a language independent
authoring tool for any language supporting code comments or pragmas. Code comments
would appear in their corresponding positions in an AST, where the comments could be used
depending on where they are in the hierarchy, or where an "action" refers to. In the case of
our research, we investigate how code comments are defined in ANTLR4 grammars. We
do this not only to identify where learners use code comments, but also with the ideal of it
being possible to specify custom hints or notes in a similar capacity to Ask-Elle, except in a
language independent manner.

Ask-Elle can also specify properties and feedback for test cases. They’re formatted by
QuickCheck functions, and can ultimately specify:

• The program being checked,

• Where the output occurs,

• What values to check,

• How the values are checked,

• What feedback to return,

• What parameters to use in the phrasing of that feedback,

• Conditions to return that feedback...

...and more [81].

Ask-Elle Experiments

In this section, we go through 3 experiments conducted with Ask-Elle to then discuss their
results. These are the 3 experiments mentioned in [18]. Each was ultimately a technical
analysis and did not assess quality of learning. However, each involved learners in higher
education.



58 Research Background

The first of these experiments was a quantitative test performed in 2009. In it, Ask-Elle
was used as an AAT, with a sample of 96 learner programs. The tool was tested to identify
"correct" programs. All 32 "incorrect" or "imperfect" samples were not recognised, meaning
Ask-Elle at this stage provided no false positives for solutions. This corresponds to one of
the benefits of using model solution strategies.

The tool recognised 62 of the 72 correct solutions. However, to improve the recognition
of solution strategies, the tutor would have to browse through the list of not recognised
solutions, and add any observed correct ones.

The second of these experiments was a qualitative survey performed in 2011. It was run
in a functional programming course with more than 200 learners, where Ask-Elle was an
IPT.

The inspiration for adding properties and the tests was as a result of qualitative feedback
saying that their solutions were not recognised by Ask-Elle.

Qualitative feedback also noted that response times were too slow, where Ask-Elle added
a search mode for recognised steps. Ask-Elle still benefits from more solution strategies
being defined, or more relative solutions to compare. It’s possible this still limits the new
approach to introductory size code examples.

The final experiment is a quantitative study performed in 2013. Ask-Elle was accessible
online and would record a log of a learner’s IP address, username and the "requested service"
sent to Ask-Elle.

It retrieved 3466 interactions across 116 learners. This was also a technical analysis,
where Gerdes et al.investigated how many requests Ask-Elle could respond to. The ideal was
for the compilation, model solution strategy comparisons, or test cases to identify how every
request should be responded to.

The rates were high where only 4.5% of interactions were discarded. However, they
were not absolute even with the thoroughly improved programming activities. The activities
could be retrospectively improved after the experiment. Additionally, 55.4% of requests were
syntax errors.

Summary of Ask-Elle

Overall, Ask-Elle has the contribution of an easy to use authoring tool. Easy because it
requires simply writing code, and annotating commands over it.

Syntax feedback and semantic feedback are mutually exclusive, where the majority of
feedback is syntactic. This potentially hinders Ask-Elle manual descriptions from specifying
how to steer learners away from syntax errors. However the syntax feedback produced by
Helium and GHC should still help in Ask-Elle. While Ask-Elle’s method of identifying the
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nearest solution is expensive with larger changes, it is also consistent with the given feedback
when helping learners iterate through gaps in a solution strategy. Aske-Elle is also limited to
Haskell. They theorise their methods can be applied to other programming languages.

A limitation of Ask-Elle is it requires almost exhaustive numbers of the potential solution
strategies and test cases to be able the return feedback consistently (yet still not absolutely).

Within our research’s IPT, semantic feedback can be generated alongside any produced
syntax feedback all of the time. This is done regardless of the number of solution strategies
that have been defined. This is due to how program synthesis performed with ANTLR4’s
ALL algorithm. Unlike Ask-Elle, our IPT currently does not facilitate virtual machines or
test cases.

2.4.3 Intelligent Teaching Assistant for Programming (ITAP)

ITAP is a "data-driven" IPT produced by Rivers [17]. It is an IPT that can provide syntax
or semantic feedback for 100% of requests (regardless of the learner code and how a task
is specified), and supports data-driven feedback. ITAP’s contributions were in its ability to
return correct feedback 100% of the time, and ability to improve the hints it provides quickly
(without exhaustively covering solutions) by learners completing activities in ITAP.

ITAP consists of 5 major processes for hint generation for learners code:

• It generates an AST using a function built within Python3.

• The AST is converted into a reusable format when compared to other ASTs in a process
Rivers calls "canonicalisation".

• Two canonicalised ASTs are compared to find a series of program transformations
(actions) that can get from one AST, to the state of another. This is referred to as "Path
Construction".

• The process of canonicalisation is then reversed in an AST, in a process Rivers names
"reification".

• Finally, using the identified actions and the AST that had reification applied, ITAP
conveys an action in a legible format, completing the process of "hint generation".

This process is explored in greater detail in Chapter 3, where the implementation of ITAP is
compared to the implementation of our research’s IPT.

ITAP was interfaced in 2 different ways. Earlier versions of ITAP was interfaced in the
"Online Intergrated Development Environment". This version did not support data-driven
feedback at the time. Unique to this version were 4 types of hints. These were:
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• Next-Step hints - These adaptive and relative hints use the learners code, and compare
to a relative solution. They return the "next step" and are the most common form of
adaptive feedback in IPT. Early versions of ITAP had multiple levels of detail. Test
results indicated that learners overall preferred more detail.

• Location hints - These hints simply refer to the locations of where the learner should
change code. These were included as in face to face classrooms, there are instances
where tutors would opt to point to where an error is, for learners to resolve.

• Example hints - These hints display solutions. These are included for cases where
learners would look through learning material (or online) for how to implement a bit
of code.

• Structure hints - These hints display the former, but referring to their token type. These
are included as learners may want a hint from the start of an activity. These display an
entire structure, but not necessarily how it’s filled in.

In a quantitative evaluation with 28 recruited participants, Rivers found next-step hints were
the most popular with 134 users across learners. For comparison, the second most of structure
hints with 74 uses across learners. In this test and model of ITAP, a pattern was observed
where learners with more experience of programming often stated they would prefer if hints
displayed less detail. In those cases, it overtly told them the solution. In contrast, learners
with less experience of programming would often state their preference of hints ideally
having more information.

For such instances, location hints would benefit in instances where less information might
be preferred, and example hints in instances where more information is needed. If a learner
model could identify a learner’s preference, they could be suggested automatically.

Learners generally stated a dislike of too much extraneous6 information in hints. It
appears to be critical to have as much information as desired, but ensure it is all intrinsic7.

Learners also expressed dislike of instances where they were asked to "delete" and
"replace" code they wrote. This may be because these prompts can request them to abandon
what they have been attempting.

Of the 4 hint types, our IPT implemented next-step hints only. It would be theoretically
plausible to implement the other hint types in a language independent manner.

• Location hints would simply use the location to a token.

6Where correct information not relevant to what one is considering
7Where all information is relevant to what one is considering
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• Example hints would be to return a solution strategy.

• Structure hints could be constructed by writing out token types in order, with skipped
or streamed formatting conserved. Structure hints could also be optionally formatted
with a presentation of both token values and types.

Our IPT retrospectively did not consider implementing these hint options.
Another notable bit of qualitative feedback was that learners can sometimes know what

to do, but not how to do it. Sometimes learners can also be shown an action to do, but be
confounded as to why they should do it. In such instances, they claim they would search
online or check through search sites. Two alternate ways IPT could facilitate resolving this
are:

• The ability to specify the reasoning of implementing certain portions of code (or
reiterate aims), like Ask-Elle’s authoring tool features.

• Having a chat interface that can read and respond to inquiries (without context) with
code suggestions like ChatGPT (instead of opening search engines).

Final version of ITAP

The later renowned version of ITAP also only had next-step hints. This was as a result of
being implemented in a different interface. This change was to ensure it could deal with
several users simultaneously using ITAP. This later version was built in the Open Learner
Initiate [82]. It supported data-driven solutions (by automatically accepting completed tasks
and using those for hints), and appeared to support test cases,

ITAP performed a number of technical analysis on its capabilities, and was verified to
function as intended. ITAP performed a number of tests with real users. Their starting aim
concerned "whether having access to hints during practice improved student learning". They
found no correlation with this result initially, but revisited it in their final experiment. Their
final experiment was with a real learner cohort across the academic year. Across the module,
they had a pre test (before learning) mid term test, and post learning test. They also had
special practice tests for the mid test and post learning test. In the final experiment, they
wanted to evaluate if hints had an effect on the quality of learning. With an included sample
size of 101 learners, they evaluated this by:

• Verifying if hints improvement on test scores. They concluded that no significant affect
was observed. ITAP would not be the only means learners would have to improve their
tests.
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• Hints shortened time on practice activities. Here Rivers observed a notable 13.7%
reduction in the time taken studying with the pre test practice activities. This result
arguably has solid integrity, as there was no reduction in the subsequent test scores.

It is also worth nothing that as the academic year progressed, learners would go to older
activities they had already solved to look at different code examples. Example hints can be
used for such a context.

In terms of compilation speed, 97.5% of hints takes less than 5 second to calculate, given
it is correct. Otherwise, 77.7% of the time, hints takes less than 5 seconds to calculate, and
9.4% of the time, hints takes less than 10 seconds to calculate.

Summary of ITAP

ITAP facilitates feedback 100% of the time, even with only one solution strategy specified.
ITAP also supports multiple solution strategies, and the automatic addition of more solution
strategies. However, ITAP feedback also can still only be either syntax or semantic. ITAP
is also limited to Python2 and Python3. This is in contrast to our approach of a language
independent IPT.

A notable portion of ITAP’s research concerned trends with what motivates learners to
continue to use an IPT through an academic year. Although a lot of observed trends are
ambiguous, this is helpful knowledge on the presentation of IPT.

A strength of ITAP’s experiments is that it was deployed in classes across an academic,
which was observed to be rare in IPT empirical evaluations. Our own research did not create
a version of our IPT to be deployed in an academic setting. However, our research still
performs a technical analysis and user evaluation, with the latter similar to the recruitment
survey of ITAP.

ITAP still uniquely supports data-driven additions of solution strategies for its reliable
adaptive feedback framework, which is still an outstanding contribution.

It is idea for feedback to be responsive and near instant. Although our IPT uses the
same path constuction actions as ITAP, our algorithms for path construction are unique. Our
research also uses ANTLR4 for program synthesis. These two components may result in
different hint calculation times to that of ITAP. Our research records our IPT’s compile times.

2.5 Research Gaps

Through this section, we summarise each of the findings through each of the literature
reviews.
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2.5.1 Gaps in ubiquitous implementation of IPT

First, we have confirmed 3 specific areas in IPT are domain-specific.

1. The programming languages supported by individual IPT and their methods: Only a
few secondary studies on ITS listed the languages supported by programming ITS.
Our study only found automated assessment tools that supported more than one
programming language, yet even in those instances, the method was both domain-
specific and could not facilitate the easy addition of more programming languages.

2. Very little overlap between the implementation of programming languages in IPT
has been observed. Hence authoring tools have been observed to be domain-specific.
The 2 secondary studies critically discussing authoring tools evaluate that it would be
ideal ("the future") for authoring tools to share methods and platforms they can work
between.

3. The pedagogy surrounding IPT differs considerably: Our literature review hypothesised
that pedagogy would not be discussed as frequently as needed by primary studies.
It also hypothesised that they would not be compared as frequently as needed by
secondary studies. Our literature review questions 2, 3a and 3b found neither of
these was the case - pedagogy was frequently and critically discussed. However,
the idea that the field has vastly differing implementation methods and surrounding
pedagogy (outside of the unanimous inclusion of adaptive feedback) is supported by
the observations of IPT in secondary studies.

Each of these is often stated as problems for time and cost to develop IPT around each
language (as well as testing each IPT’s pedagogical method) and authoring tools for each
IPT.

By answering RA1, "Can abstract syntax transformations function for every possible
programming language to return feedback regardless of the submitted code (given a ’solu-
tion’)?" we contribute to knowledge on a form of state-of-the-art adaptive feedback that
can be implemented across programming languages, with the same built-in authoring tool
method.

This is for the currently prevailing pedagogy in IPT - feedback. Our research focuses on
adaptive feedback, but we have found further gaps in how other forms of pedagogy could be
introduced into IPT. These include:

• Sensor-based technology to improve the student model of the learners.
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• Generative learning (particularly self-explanation) to improve how learners memorise
and try concepts.

• OLMs (and explain-ability of the models) to enable learners to inform their own student
model.

2.5.2 Gaps in knowledge on the applicability of ANTLR4 for adaptive
feedback

As no reference for categorising grammars was found, our research defined its own method
of categorising the legibility of the tokens, were they to be used as feedback. This is to
answer RA2b "What problems in grammar definitions can be listed/categorised that make
feedback explicit? How can the phrasing of grammars affect the quality of feedback?".

It would be new knowledge to further research the phrasing of ANTLR4’s syntax terms,
how they can be used and categorised, as this is presently unexplored in literature.Using these,
our research and further research could critically discuss how grammar can be phrased to
improve feedback for IPT. We could also differentiate what impedes the benefits of feedback
in the phrasing of the language grammar.

2.6 Chapter Summary

For this chapter, We first discussed the field of IPT, discussion in ITS that have yet to occur for
IPT and recurring themes in IPT. OLMs and Sensors unobserved in IPT The domain/expert
model was a common component used to define IPT, along with adaptive feedback. Cognitive
Tutors were commonly defined to also have "pedagogical model" and a "learner/student".
However, these components did not seem to occur in discussions with IPT. This supports our
theory that a cognitive programming tutors have yet to be thoroughly explored.

Following this, we discussed the results of the second question on how programming
languages affect IPT. Primary studies on IPT state the programming they use, however,
we found that very few secondary studies (studies comparing ITS) specified the languages
included, or focused on Computer Science or Programming. The few which stated program-
ming languages found few multilingual automated tutoring tools were supported. Intellitutor
eliminates language specific details through a process called "migration" (which descriptively
resembles our proposed method), but was an AAT.

The next question our literature review performed checked for overlaps in research topics,
or methods used across IPT. We found a lot of overlapping components depending on the
field with adaptive feedback being a common trend and component for research in IPT.
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The final question of our initial literature review discussed pedagogy in the field. Peda-
gogical discussion was found to be an overall prevalent topic of discussion. The pedagogy
behind the methods used in the IPT themselves was almost unanimously included. The
pedagogy behind how each IPT’s research evaluate learning was very commonly included -
reflecting on the quality of empirical research on the field. However, the individual definitions
of what constitutes to learning was sporadic.

We also noted the following patterns from both primary and secondary research:

• The varying levels of class descriptiveness for programming language activities. The
present highest in IPT requires activities with and that check "multiple limited solution
strategies".

• The following feedback structure was presented in ITAP’s feedback that use AST
comparisons: [Location info] + [action verb 1] + [old value] + [action verb 2] + [new
value] + [context] (Figure 30 in [17])

We then performed a small scale literature review on ANTLR4 uses in research, and
follow with a discussion on the lack of research on ANTLR4 grammar applications. From
the ANTLR4 literature review, a notable observation we made that is used later in this paper
is the success of Wal’s grammar sample working with 363 out of 370 grammars.

After this, we noted 3 related works: ChatGPT, Ask-Elle and ITAP. First, we quickly
evaluated ChatGPT to provide contextual differences between NLP for programming educa-
tion, and IPT. We noted ChatGPT’s capabilities as an adept aide, providing programming
suggestions for learners and tutors. However we also noted the training requirements and
potential lack of precision for semantic feedback and syntax feedback. In contrast, we noted
IPTs consistent precision and reliability for giving semantic feedback and syntax feedback.
From this, we noted that NLP interfaces are not mutually exclusive to IPTs - they can work in
conjunction. However, we emphasised that IPT are the focus of this research, and conjecture
on how they can work in conjunction will not be empirically explored in this writing.

Next we evaluated Ask-Elle, an IPT for Haskell. It has an authoring tool that facilitates
the specification of manually constructed hints by annotation model solutions. We note
this serves additional motivation of evaluating ANTLR4 uses of code comments. This is
because code comments could potentially be used for annotated solutions in all programming
languages. We note frameworks supporting model solutions and frameworks supporting
test cases each have their benefits. Ask-Elle supports both model solutions and test cases.
Ask-Elle’s authoring tool also supports the creation of both. For limitations, we note Ask-
Elle’s inability to guarantee feedback (even in cases of near exhausted solution strategies
and test cases), and surplus of syntax feedback. We also note is is strictly for Haskell. Our
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research has a contribution in supporting syntax and semantic feedback for all cases of
learner submitted code, regardless of learning activity, for all programming languages.

Finally, we evaluated the IPT for Python 3 called ITAP. After specifying that ITAP’s
method is discussed in the next chapter, we evaluated ITAP’s experiments. We list alternate
methods that ITAP have for hints that are not next-step hints. We note a number of preferences
learners were observed to have with hints, and when they were provided. We note the times
recorded for ITAP to compile solutions in an earleir technical analysis.



Chapter 3

Research Methodology

A key aim of this research is to find in the context of IPT, "Can abstract syntax transformations
function for every possible programming language to return feedback regardless of the
submitted code (given a ’solution’)?".

Keuning et al. [25] noted "37.6%" of their surveyed works "use program transformations".
A variant of this technique is referred to as "Migration" (as termed by Keuning et al. [25])
and has been used for a tutor supporting both pascal and C program [60]. "Migration is
applied in INTELLITUTOR, which uses the abstract language AL for internal representation.
Pascal and C programs are translated into AL to eliminate language-specific details. After
that, the system performs some normalisations on the AL-code".

We proposed a method of implementing an IPT that refers to programming languages by
abstraction. By creating and running such an IPT, we can investigate if it successfully returns
feedback to any given learner code, for any given authoring tool created task for any given
programming language.

The previous section outlines a number of classifications for IPT. This research will
answer if the research aim is possible for:

• Class 3 type task definitions: With one arguable exception, this is the highest class
definedness currently used in IPT. The exception is ITAP through multiple test users,
and an interacting database of registered completed solutions. The method we chose
facilitates the ability to add solutions (like ITAP), but for the experiment we will omit
the process of dynamically adding solutions from a database - opting to manually
define all available solutions instead.

By creating a language-independent IPT with Class 3 definitions (and facilitate the
ability to dynamically add solutions), we can prove the implementations of authoring



68 Research Methodology

tool with definedness (Class 3 definitions) to be possible across all programming
languages.

Task goals will be defined as pure text.

Tasks can have multiple of these goals set.

Languages will also contain the ability to list which token types to normalise - allowing
inconsequential naming semantics to not be regarded as errors. Testing solutions can
also check from any location within the code - if enabled. These two features prevent
the need for exact matches of solutions, enabling Class 3 definedness; multiple solution
strategies.

• IPT containing semantic Feedback: The majority of systems in Ngyen thinh-lee’s
study[1], 15/20 returned semantic feedback. This provides direct feedback on how to
succeed in the given learning activity, rather than incidental errors.

As "semantics", these need to be defined by context. This can be performed by "built in"
authoring tools1. We can prove its viability for every possible programming language
by including "intention based" - and ultimately, "code based" - feedback built-into a
language-independent IPT .

Code-based feedback can be performed in a language-independent IPT by:

1. First having task goal code defined by an authoring tool.

2. Second, having the task goal code compared to the current learner code ("prob-
lem" code/state).

3. Third, context on the differences between the problem and goal state can be given,
by comparing parsed representation of the code.

These are the critical steps ITAP uses to provide code-based feedback[17]: "Canoni-
calization", "Path Construction" and "Hint Generation". However, a sizable portion
of the process of "Reification" is missing due to its language-specific components.
Reification’s purpose helps ensure feedback is relative to the initial code. Reification
also contains "layout" and "quality" feedback.

Intention-based feedback can be performed by first having multiple task goals defined
by the authoring tool, then having an algorithm to determine which one the learner
is attempting to perform. Our research performs intention-based feedback by first
executing the process of hint generation on each defined goal. During the process of

1Tools used to create tasks and features for ITS, without recompiling them[58]
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"Path Construction", we assign ’weights’ to each action. Weights are valued on an
estimate of how many changes would need to be made for each action. The larger the
weight, the larger the difference between the problem and goal code is estimated to
be. Hence, the goal with the lower weight total (when compared to the problem) is
assumed to be the solution the learner is targeting.

The viability of this method can be investigated on a technical level by attempting
to perform different solutions for a task, and investigate if each targeted solution is
correctly assumed.

• IPT containing syntax feedback: Even with successful semantic feedback, syntax
feedback provides easy to obtain information on why the incidental state of a program
would contain errors. However, to provide syntax feedback the IPT must be able to
compile text for a given language, and return feedback on compiled text.

Out of the 20 cases in Ngyen thinh-lee’s study[1], 4 contained syntax feedback, where
2 of the 4 also contained Semantic feedback.

Syntax feedback for any given language would be possible with, an IPT made in
a way that refers to a compiler generator by abstraction. ANLTR4 runtime can be
used to perform this. However, ANTLR4 can only return lexical and parsing errors.
Tokenising and parsing may not involve the full compilation process for languages
that assemble files, link files, contains pre-compilation changes, or require multiple
compilations; unless language-specific code is created within the IPT. It is worth noting
that ANTLR4 runtime supports the ability to "walk" through the compilation process
to create accurate compilers, however this would require specified additions to such
languages; by definition it would no longer be language-independent.

Regardless, by default ANTLR4 runtime records potential syntax error corrections
in parsed ASTs. ANTLR4 runtime can also have definitions of these syntax errors
manually called. This is recorded in the generated ASTs,

We created an IPT to test with called Nue Tutor containing each of those definitions, that
uses program synthesis.

3.1 Research and Evaluation Methodology

To perform a technical analysis for our language-independent IPT - Nue Tutor - is as follows.
ITAP’s pre-canonicalisation, path construction and hint generation were proposed to be

possible for IPT and programming languages outside the specific domain of ITAP. This,
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method had yet to be proven for every possible programming language, which contribute to
how many IPT works are language-specific (and hence domain-specific).

This section defines a language-independent implementation of pre-canonicalisation, path
construction and hint generation, drawing parallels to how ITAP defines their implementation
of canonicalisation, path construction and reification.

This is to provide a framework to test and evaluate:

1. if the syntax comparison of ITAP’s state of the art implementation is absolutely possible
for every programming language. Furthermore, if not, to list any occurring constraints
and exceptions for the given method(s).

This corresponds to the research aim 1a, which is finding - "Can abstract syntax
transformations function for every possible programming language to return feedback
regardless of the submitted code (given a ’solution’)?"

2. if there are additional language-specific settings2 that could be defined alongside a
tokeniser and parser for a language.

This corresponds to the research question 1b, which is finding - "Are there instances
of language-specific additions needed to return feedback to a language-independent
IPT?"

This section will start by covering how our IPT (Nue Tutor) is created.
Second, the section will state how Nue Tutor evaluates the success of the method.
Nue Tutor was constructed in Unity for:

• easy building between Windows, Mac, Linux, mobile devices and other systems.

• the potential of integrating a framework for tutoring Games Programming, and execut-
ing code.

• and as a familiar preferred tool for the current author.

3.1.1 Program Synthesis through ANTLR4

Through this section, we make reference to ITAP’s process surrounding canonicalisa-
tion. First there’s the creation of ASTs, followed by anonymisation of the code to re-
duce the "great amounts of non-meaningful variation"[17]. ITAP also attempts "a suite of
semantics-preserving program transformations" to "normalize the syntactic structure of the

2An option for each language that can exist alongside how each tokeniser and parser is added
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Fig. 3.1 An diagram of how the ANTLR4 tool and ANTLR4 runtime interact with Nue Tutor.
"Task Creation" refers to Nue Tutor’s Authoring tool. "Task given to learner" refers to Nut
Tutor’s interactive model

program (the code itself) while preserving semantic meaning (what the code does)" called
’normali[s]ing’[17].

ITAP also follows anonymisation, with "simplification" and "ordering". Nue Tutor
does not include simplification or ordering. Their benefit however would be the same as
anonymisation; improve how personalised the feedback is to what the learner is trying to
do, and omit corrections that serve no benefit to the task. ITAP also explicitly categorises
domain-specific features in the canonicalisation process.

For the process preceding canonicalisation (converting two sets of code to AST), Nue
Tutor uses ANTLR4, created by Parr[45]. ANTLR4 was not created as a product of this
research. However, this research makes use of ANTLR4 in the following ways for language-
independent program synthesis. It is used for converting code to ASTs, that are then used by
Nue Tutor.

There are two key components of ANTLR4 used outside and inside Nue Tutor respectively.
The "ANTLR4 tool" and "ANTLR4 runtime". They are ultimately used by Nue Tutor to
take any code (as text) as an input, and produce the same form of readable structure (AST)
for Nue Tutor as an output. Using ANTLR4 for this process allows for all programming
languages to produce this effect, once defined by an ANTLR4 grammar file and imported.
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As all text languages can be defined, this theoretically should fulfil the process preceding
canonicalisation for every programming language. Figure 3.1 contains a diagram of where
Nue Tutor involves the ANTLR4 tool and ANTLR4 runtime.

My method for verifying the success of the feedback is covered in the next section.

Generating compilers and parsers with ANTLR4 tool

The "ANTLR tool" converts any file written for any ANTLR grammar convention into parsers
and lexers of the grammar’s language, in one of select languages.

The output of certain grammars could be specified to generate code that runs in a specific
language, or domain which naturally prevent some uses being domain-independent.

ANTLR contains a GitHub repository of user contributed ANTLR grammars for various
languages. To alleviate the number of domain-specific grammars that were constructed,
ANTLR4[45] attempted to standardise submissions to be domain and output language-
independent. As a result, the repository consists primarily of domain-independent ANTLR4
grammars. The grammars written in the programming languages of ANTLR4 are "g4" files.
Nue Tutor runs in C#, and hence has the ANTLR4 tool output the compiler files as C# files.
Hence, this standard helped provide the ability to sample many grammars on the repository,
on Nue Tutor.

Importing languages is not "built in" to Nue Tutor, as they need to be recompiled upon
importing a generated tokeniser or parser. However, the process only consists of:

1. Obtaining a grammar (a g4 file from the ANTLR4 repository, or created by a user)

2. Running the grammar through the ANTLR4 tool, generating 8 files.

3. Importing the files into Nue tutor (simply moving them into a folder Nue Tutor notices).

4. Linking the grammar’s name to generic code.

Additionally, the process requires setting additional variables in given "prefab" variables for
language-specific features such as what token types to anonymise. This latter action however
does not require recompilation, so is arguably built in.

The generated files are also guaranteed to be compatible with the ANTLR4 runtime,
given that they compile, and contain no domain-specific content in the source grammar
definition (which has been standardised against).



3.1 Research and Evaluation Methodology 73

Fig. 3.2 An illustration of the usage of ANTLR4 relative to Nue Tutor. Code is parsed
according to a given language and output as an AST, which is then converted and used by
Nue Tutor

Program synthesis with ANTLR4 runtime

The "ANTLR4 runtime" defines the abstract base of the files generated. Nue Tutor uses the
C# version of the ANTLR4 runtime for program synthesis.

The ANTLR4 runtime can be called by C# code to iterate through pure text to generate
tokens by the convention of a given tokeniser. In a similar fashion, the runtime can be called
to iterate through a series of tokens to generate an AST by the convention of a given parser.
Calling a tokeniser and parser that correspond to the same given language, in sequence forms
most of the process of Nue Tutor’s program synthesis, to convert text to an AST of the given
language.

However, for each tokeniser and parser pair, Nue Tutor needs 2 unique lines of code
to explicitly refer to the class type of the tokeniser and parser. As these two lines needs to
be compiled, this presents the core reason imported grammars by definition could not be
considered "built in" to Nue Tutor.

The usage of the ANTLR4 tool and ANTLR4 runtime in this way forms the entirety of
Nue Tutor’s program synthesis - converting text code into ASTs in a language-independent
way that is not built in to Nue Tutor. This part of the process is illustrated in Figure 3.2.
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Fig. 3.3 The general structure of the class GenericListener and the classes GenericListener is
responsible for. For each box: The top row refers to the class name. The middle row contains
the class’ critical functions, where right of each function is their returned value type (if any).
The bottom row lists a number of variable, with their type on the right. IAction is an interface
with classes that inherit IAction listed below

Nue Tutor’s GenericListener

Nue Tutor ’observes’ the process of the ANTLR4 runtime generating an AST using a
custom made "GenericListener" which is called alongside any language’s compilation. The
GenericListener converts information as it’s being passed through into a differently formatted
AST for Nue Tutor to use, modify and duplicate.

In the case of Nue Tutor, the following definitions apply:

• A Type - Is an enum description stating whether it is "Terminal", "Tree" (has chil-
dren) or "Error" (Terminal node that describes either extra information or missing
information).

• A Token Type - Is a string description on what token/phrase type it was identified as
during tokenising and parsing.

• A Node - contains A Type, a Token Type, and a list of nodes it contains - referred to as
children.

• A full AST - refers to a root Node. That is a Node with children Nodes, that is also not
the child of any Node.

The classes involved during GenericListener’s observation of the programming synthesis
are illustrated in the diagram; Figure 3.3. In the diagram, GenericListener shows the events
triggered by the ANTLR4 runtime. Multiple "TreeNode"s form Nue Tutor’s modify-able
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representation of an AST. Just before the ANTLR4 runtime is called for compiling code into
a given language, GenericListener constructs a "TheRootNode" with no parent or children.
From there, the first event triggered is used by GenericListener to populate the information
in TheRootNode. In the previous section, we mentioned "Nue Tutor needs 2 unique lines of
code to explicitly refer to the class type of the tokeniser and parser". These two lines are how
Nue Tutor instigates the tokenising and parsing portion for a given language.

Subsequent event calls add TreeNodes, where each TreeNode must be a referenced
"TheChildNode" of an existing TreeNode. Every child node has the node that they are a child
of, set as their "TheParentNode". Following a series of references of "TheParentNodes" from
any node will always lead to "TheRootNode" - with the exception being "TheRootNode"
which has no TheParentNode.

GenericListener keeps track of which TreeNode should be modified next:

• "GenericListener.EnterEveryRule" will add a TreeNode to the currently tracked TreeN-
ode, then make that node the currently tracked TreeNode. TreeNodes in this instance
their "TheType" set as "TREE".

• "GenericListener.ExitEveryRule" will set the currently tracked TreeNode to its parent.

• "GenericListener.VisitTerminal" and "GenericListener.VisitError" will create a TreeN-
ode where the "TheType" is "TERMINAL" or "ERROR" respectively. In these cases,
the tracked TreeNode does not change.

In each case where a node is added:

• The text that forms a token is saved in the TreeNode variable "TheValue". If "TreeN-
ode.TheValues" are read in sequence, it’ll form a quotation of the code they’re com-
pilations of. However, it is critical to note that this excludes skipped or separately
streamed tokens. For instance, if spaces are skipped, tokens will lack the spaces like
so: "Forinstance,ifspacesareskipped,tokenswilllackthespaceslikeso"

• The named token type or named phrase type is recorded in the TreeNode variable
"TheNodeType". This is performed by first pulling the type name from "ParserRule-
Context.GetType().Name" (which returns a string). The way ANTLR4 tool names the
respective token class types is in the structure of "[token name]+Context". To retrieve
just the token name, we also subtract the last 7 letters of the string.

• A link to ANTLR4’s representation of the information is also saved in the TreeNode
variable "TheContext". Events pass this directly as "ParserRuleContext".
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Ultimately, by Nue Tutor’s instigation, the ANTLR4 runtime iterates through code,
calling Nue Tutor’s GenericListener as it does. Nue Tutors uses this to construct its own
representation of the AST. The full tree can then be obtained from that GenericListener’s
TheRootNode. This forms the process preceding canonicalisation.

Anonymisation

Nue Tutor can then anonymise token types, which is a process used in ITAP’s canonicalisation[17].
A number of token types can have what their text (their value) renamed, but have no sig-
nificant affect on how code would run (given that each instance is renamed in the same
way). Also, values can occur in token types that are synonymous with each other. In Nue
Tutor, each imported language can have synonymous token types specified in a Unity prefab.
This variable is an array of an array of strings. The strings refer to token types. The array
containing the strings categorises each of those names as "synonymous". Token values that
appear in one list appear in another. Finally, the array containing the array of strings allows
for multiple independent groups of synonymous token types to anonymise.

If the synonymous tokens are specified, and Nue Tutor enables this feature, Nue Tutor
anonymises learner code before it is checked with solutions. This call would precede path
construction, where two sets of code are compared. For anonymisation, Nue Tutor iterates
through both the learners code and a solution code, saving all values for the token types
specified to anonymise. Were anonymisation to be enabled, Nue Tutor calls Path Construction
with multiple combinations of those tokens matching the solution.

Path construction concludes with a weight value to compare what solution is more relative
to a learners code. This value is also used to compare what combination of anonymised
terms best matches the learner’s code from a solution. Rather than test every anonymisation
combination across every group synonym group, one synonym group has their possible
combinations tested at a time (with the other synonym groups untested). From there, a final
Path Contruction call is made, using the combination that had the least weights for each
synonym group. Regardless, this process would still be comparatively expensive compared
to the single call of Path Construction (per solution) without anonymisation.

In both the technical analysis and the user evaluation, this process was not enabled due to
requiring knowledge of each language to specify synonymous token types. It was ultimately
domain specific in nature. Additionally, this feature was not tested as thoroughly as the rest
of Nue Tutor. Compile time would also greatly increase when performing path construction.
The process would have to be called multiple times to calculate what combination of values
would have the lowest weight.
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It is also worth noting that anonymisation can not have a generic term with an incre-
menting suffix (like "global1" or "local2") across programming languages. This is because
it is always possible to have grammars conflict with how they’d use token names or use of
letters or symbols. However, it is viable to specify prefixes and incrementing suffixes for
each language. Currently Nue Tutor’s anonymises token values strictly to those either in the
learner code or solution.

3.1.2 AST Comparison Path Construction

River’s work, ITAP consisted of 7 "Actions" for modifying ASTs[17]. Rivers would iden-
tify a sequence of these actions that would change the current state of the code in AST
representation, into the state of a goal in AST representation.

The 7 actions were:

• "Insert": Add a node.

• "Delete": Remove a node.

• "Replace": Change the information of a node.

• "Superset": Surround a node with information.

• "Subset": Remove information surrounding a node.

• "Move": Move a node.

• "Swap": Swap a pair of nodes.

It is possible to convert one AST to another using only a combination of "insert" and
"delete" actions. The other 5 actions provide additional relative context to the code. Nue
Tutor defines the same 7 actions in its framework. Their affect on a given AST node is
illustrated in Figure 3.4. These actions take the form of "IAction"s in Nue Tutor’s code,
illustrated in Figure 3.3.

The order these actions are called is determined by distinct processes. Additionally
whether they’re preferred over other combinations of actions that reach some form of goal is
determined by weighing each action.

Weighing a solution

One wants to refer to a solution that targets the goal most relative to what a learner intends
to perform. One also would prefer to apply a series of actions relevant to what has been
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Fig. 3.4 An diagram of how the different actions affect the children nodes, relative to the
parent node.

attempted. Both form critical steps for intention based feedback. Nue Tutor performs this by
having multiple potential solutions, weighing them and choosing the solution with the least
weight.

How Nue Tutor decides how to weigh each action is as follows:

• All actions increase weight with the amount of information modified.

• Weight tier 1 - Replace, Insert and Delete actions can not be considered relative if
they have to modify large sets of information. The number of characters changed to
the power of 4 is how these are weighted. Insert and Delete are then multiplied by 2.
These are the "brute" actions.

• Weight tier 2 - Subset and Superset are contextual to what the learner has written,
but still remove chunks of information, or add entirely new information. They are
weighted by the number of characters surrounding the addition or removal, minus the
persistent code, then put to the power of 3. As they are contextual, they have less of a
power of than the brute actions. These are the "scope" actions.

• Weight tier 3 - Swap (and our variant "Reorder") and Move (and our variant "Shift")
check the amount of distance between components in characters and puts the value to
the power of 2. This makes larger distances have an increasingly larger consequence,
but not as escalated as the brute actions or even scope actions. This is because they
entirely reuse code the learner has already written.
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Nue Tutor also uses these weightings due to occurrence of changes from the latter tiers being
predicted as less likely. At present, Nue Tutor does not use a base weight value for the trees,
unlike ITAP[17]. Nue Tutor only creates and compares the total weight of the actions.

Comparatively, ITAP had the following weightings for its actions[17]:

• "Change" (Replace): "take the maximum of the old and new value weights"

• "Add" (Insert): "weight of the new value"

• "Delete": weight of the old value"

• "Subset": weight of the new value - weight of the old value"

• "Superset": weight of the old value - weight of the new value"

• "Swap" (and Reorder): 2"

• "Move" (and Shift): 1"

River’s aims were also "to emphasize how much of a change the student will need to make",
and hence she also has larger weight differences on what we would categorise as the lower
(larger) weight tiers. "Change", "Add" and "Delete" (our tier 1) use the full weight of the
changes. "Subset" and "Superset" (our tier 2) use the weight difference. "Swap" and "Move"
(our tier 3) use minimal points. Although the method for each weighting differs, the aims
behind how this research and ITAP tier the weightings are identical.

3.1.3 Calculating a solution

Nue Tutor consisted of 4 key steps to calculate a solution on how a problem can reach a goal:

• Scope Match: This seeks out what can be reached purely by supersets and subsets.

• Mix Match: This identifies what can be modified within a node. This identifies relative
swaps named "reorders" within a node. It also identifies relative moves named "shifts"
within a node.

• Brute Match: This function identifies any remaining differences as insert, delete or
replace actions. This function is called last, as it is guaranteed to find a solution, and
involves the highest weight actions.

• Transfer Match: After a solution is found, this function then checks through for pairs
of actions, to form "Move" and "Swap" calls.
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Fig. 3.5 An diagram of what actions the different algorithms in Nue Tutor find.

These functions are called in sequence and collectively output a list of actions that can get
the problem to the goal with theoretically relative information.

At the end, the solution with the lowest weight is chosen. Figure 3.5 contains a diagram
of the combinations of actions each function generally identifies.

When calculating for path construction, the changes are applied to the tree between
actions.

Calculating Scope Match

The present version of Scope Match identifies which nodes to subset or superset. The process
iterates (steps) through every node index shared between a problem tree and a goal tree. This
function is recursive, passing a list of actions to be filled. We provide a flow chart of the
process in Figure 3.6 and 3.7

For each node pair (between the problem and the goal) checked in a step, it first checks
which tree has a greater maximum child node depth (depth being how many nodes away a
given child node is from the root node). If the problem node has a lower depth than the goal
node, it iterates (as a substep) through the children nodes in the problem node with a depth
equal to or greater than the goal node’s depth. For each of these nodes, an equivalence is
checked and if one is found, this is identified to be a node to be subset. A subset action is
added to the chronological list of actions, and the next step is taken.
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Fig. 3.6 A flowchart of when Scope Match calls the recursive function.

Fig. 3.7 A flowchart of how Nue Tutor iterates through an AST creates specified actions in
the scope match function.
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Problem State Goal State Action
((3),2,(4,5)) (3,7,((4),5)) subset 3
(3,2,(4,5)) (3,7,((4),5)) superset 4

(3,2,((4),5)) (3,7,((4),5))

Table 3.1 Given these set of values, a scope match would identify the following changes. It
does not ensure a full match by the end.

If the problem node has a depth higher than the goal node, it performs the check for the
problem node in the goal node instead, to identify if a superset action should be added.

If for the step no superset or subset is identified (which also occurs if the depths are even),
the process steps through the children node until either the number of the problem children
nodes or goal children nodes are exceeded.

This identifies all instances of unmodified or moved code being superset or subset, that
will not be moved or modified by further actions. Mix Match also checks for supersets and
subsets that occur in the context of code being moved across a given child.

An example of how scope match would identify actions for code in a custom programming
language is illustrated in Table 3.1.

Calculating Mix Match

The present version of Mix Match identifies supsets, supersets, inserts, deletes, replaces,
shifts and reorders across a phrase/token. Just like with Scope Match, the process iterates
(steps) through every node index shared between a problem tree and a goal tree. This function
is recursive, passing a list of actions to be filled. A flow chart of the process is provided in
Figure 3.8 and 3.9.

For each node pair (between the problem and the goal) checked in a step, it identifies
an equivalent pairs of nodes between the problem and the goal (starting from the first) and
marks them to be ignored. For any non matched child, it will then recursively perform this,
and the following step for its children. After iterating through each child, it will then perform
Mix Match between the problem and goal.

Mix Match will first check and list the matching indexes of pairs between the problem
node’s children, and the goal node’s children (starting with the first index, where matched
pairs will be ignored for further comparisons). Once this is performed, Mix match will check
each unmatched pair for supersets and subsets via the same comparison mentioned in Scope
Match. Pairs of supersets and subsets are noted, and the values for these pairs are also treated
as regular pairs.
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Fig. 3.8 A flowchart of how Nue Tutor iterates though an AST, to determines when it calls
the Mix Match recursive function.

Fig. 3.9 A flowchart of how Mix Match’s recursive function determines which actions to
create as it iterates across a phrase.
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Problem State Goal State Action
(((4),5),6,(3),2,7) (3,(7),((4),5)) subset 3
(((4),5),6,3,2,7) (3,(7),((4),5)) move 3
(3,((4),5),6,2,7) (3,(7),((4),5)) move 7
(3,7,((4),5),6,2) (3,(7),((4),5)) delete 6
(3,7,((4),5),2) (3,(7),((4),5)) delete 2
(3,7,((4),5)) (3,(7),((4),5)) superset 7

(3,(7),((4),5)) (3,(7),((4),5))

Table 3.2 Given these set of values, a mix match would identify the following changes.

For every subset pair, a subset action is added to the list according to the problem child’s
location.

From there, the aim is to create actions to have each child node from the problem, match
where it would be in the goal. This is firstly done by having Mix Match store an index for the
problem children to increment, and then iterate through the goal children. Here, first the goal
child is checked if it has a problem pair. If it does not, it then checks if the current problem
child has a pair. If not, a replace action is added to the list. If so, an insert action is added to
the list.

If the goal child’s index matches the current problem pair index, the next goal is checked.
If the goal child has a pair, and the active problem is not the pair, then problem children are
iterated through until the pair of the active goal is found. The pair of the first problem child
is checked. Here, if the problem does not have a pair, and the number of problem children is
greater than goal children, a delete action is added to the list. If the iterated through problem
has a pair, and it’s the active goal’s pair, a swap action is added to the list and the next goal is
checked. Otherwise, if the iterated through problem has a pair, but it’s not the active goal’s
pair, a move action is added to the list and the next goal is checked.

If all problems or goals have been checked, any instance iniitally identified to be a
superset then has a superset action added.

This performs all deletes, inserts, replaces, shifts and reorders. From there, the nodes
recorded to be supersets are checked, and at the goal child’s location, a superset action is
added.

An example of how mix match would identify actions for code in a custom programming
language is illustrated in Table 3.2.
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Fig. 3.10 A flowchart of how Brute Match iterates though an AST, to determines which
actions to create.

Calculating Brute Match

This path construction action is called to guarantee any remaining differences between the
goal and problem (after the current list of actions) are resolved. The process iterates (steps)
through every node index shared between a problem tree and a goal tree. This function is
recursive, passing a list of actions to be filled. Figure 3.10 contains a flowchart of the entire
process.

For each step, an equivalence is checked. If there is none, a delete, replace or insert action
is created respectively depending on whether the problem has more children, equal children,
or less children than the goal.

This simple series of steps completes all path construction with inserts, replaces and
deletes only.

An example of how brute match would identify actions for code in a custom programming
language is illustrated in Table 3.3.

Calculation Transfer Match

Once Nue Tutor has obtained a complete list of actions that can successfully get the problem
to the goal, the actions can be checked to find what can be combined.
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Problem State Goal State Action
((4,5),6,(3),2,7) (3,7,((4),5)) replace (4,5) with 3

(3,6,(3),2,7) (3,7,((4),5)) replace 6 with 7
(3,7,(3),2,7) (3,7,((4),5)) replace 3 with (4),5

(3,7,((4),5),2,7) (3,7,((4),5)) delete 2
(3,7,((4),5),7) (3,7,((4),5)) delete 7
(3,7,((4),5)) (3,7,((4),5))

Table 3.3 Given these set of values, a brute match would identify the following changes.

Transfer Match iterates through the action list for pairs of actions that can be combined.
The following pairs are checked:

• A Move can be made from an Insert that adds the same value that a Delete removes.

• A Swap can be made from a Replace with the opposite ’from’ and ’to’ values as another
Replace

• A Swap can also be made from a Superset with the same raised and initial form as a
Subsets initial and lowered form.

These functions perform all needed calculations to perform path construction by abstrac-
tion for all programming languages.

3.1.4 Hint Generation and Feedback

Following Canonicalisation and Path Construction, Nue Tutor internally has a list of steps
that can get the present state of the learner’s code to the state of the goal. The next step
is determining a suitable way of presenting each action. The presentation and phrasing of
feedback has been covered in the prior sections to be critical.

To prove the versatility of the method presented by ITAP for all programming languages
(by having feedback in a comparable structure), Nue Tutor opts for ITAP’s optimised ’full
information’ layout of: [Location info] + [action verb 1] + [old value] + [action verb 2] +
[new value] + [context]

Nue Tutor interprets the terms as follows:

• Location - A co-ordinate in the code on where this hint/instruction is.

• Action - A verb stating what of the 7 actions to do.

• Value - A quote of either the problem (old) code or the goal (new) code.
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• Context - the syntax type. The token or phrase the Value is contained in.

Nue Tutor provides location information, action term, value and context in different
orders depending on the action. Each Action object has the ability to output feedback through
the "IAction.Explain_Action" function shown in Figure 3.3. It uses information specified
in the respective action. As it is an inherited function, how it presents information differs
between IAction types. The token types (TheTokenType) for context, uses what the grammar
calls a given token - which hence means grammar definitions can affect the legibility of
feedback.

To reiterate, we investigate how it affects the legibility of feedback by answering RA2b,
"What problems in grammar definitions can be listed/categorised to make feedback implicit?
How can the phrasing of grammar affect the quality of feedback?". For the research in the
paper, the resulting feedback of each hint action is presented in sequence all at once, as we
evaluate the functionality of this method (rather than the affects of quality of learning).

The act of returning feedback hints completes the process of returning semantic feedback.

3.1.5 Authoring Tools

Nue Tutor contains a built in authoring tool for constructing learning activities. Given a
programming language (that can be selected from a list), Nue Tutor tasks can contain multiple
goals where each simply consist of text code written in the language. Nue Tutor allows for
the root node to the specified, along with tests if the learner’s code ’contains’ the given goal
and feedback on how adding the goal code could be improved.

Each task can add precondition (what skill strings are recommended from the learner
approaching the task) and effects (what skill strings are added to the learner upon completing
the task). This helps with recommending tasks to the learner and forms Nue Tutor’s learner
model. It is unused in the current build of Nue Tutor.

The built in authoring tool also allows for tasks to be given a ’starting state’, which will
load as the initial code state when a learner loads a learning activity. When comparing goal
code to problem code, Nue Tutor will automatically normalise any tokens of a type listed in
a programming language (if specified).

As the method only requires text (representing code for a given programming language),
this authoring tool works for all given programming without needing to be reconfigured.
Additionally (if normalisation is specified for a programming language), the problem and goal
code only need to match: syntactically; and where the phrasing of tokens is consequential.
This provides class 3 type specifications of tasks for all programming languages.
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3.2 Evaluation Methodology - Technical Analysis

To reiterate, the core three RA stated by this research paper were:

• Can abstract syntax transformations function for every possible programming language
to return feedback regardless of the submitted code (given a ’solution’)?

• Are there instances of language-specific additions needed to return feedback to a
language-independent IPT?

• How frequently does the phrasing of grammars effect the phrasing of the context in
feedback.

This section will cover the methodology on how this research considers these questions
answered, and the methodology behind answering them.

3.2.1 Functional for every possible programming language

To approach investigating if the research methodology works for every possible programming
language, the research aimed to test Nue Tutor against as many programming languages as
feasible.

The ANTLR4 repository consists of more than 240 language grammars, and consisted of
approximately 200 at the time of this research.

This research aimed to sample grammars of unfamiliar and familiar languages to the
current author. It also aimed to sample multiple grammars of the same language to discuss if
variations in defining the same language could affect the token definitions. Before running a
technical analysis, we needed to import and verify the languages we would sample.

As manually sampling every language on the repository would be time consuming, every
20th language alphabetically was sampled. Languages that were familiar to the current author
were then also included. If there were multiple grammars of a language, they would be
sampled.

Each of the sampled languages would be downloaded and need to be tested for function-
ality. This would also require each language to have at least one learning activity made to run
in Nue Tutor. This research avoided the need to study each language unfamiliar to the current
author and craft activities for the language. This would be done by constructing a single
learning activity for each language where each goal would be an example on the repository.
These rules could be consistent across grammars, though this easily caused variance in the
number of goals in each learning activity. This rule allowed for including cases with only
one example, while still enabling testing how multiple solutions were handled by Nue Tutor.
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No language had any of their language-specific variables set - anonymisation of variables
was not set.

Each grammar had to be read through to identify what would constitute as a suitable ’root
token type’3 to be called by Nue Tutor. However, the root token type was not guaranteed to
be the correct token type to call to start the compilation for each code. How code comments
were also stored in each grammar was also investigated and recorded. We documented the
number of root tokens, the root token ultimately used by Nue Tutor and whether Nue Tutor
reported syntax errors with those tokens in their ASTs.

Whether each language was ’functional’ in Nue Tutor was tested firstly by checking the
composed trees in the authoring tool: for if they had unintentional errors, or a flat structure.
It was also tested by copying the goal code, removing and changing a range of tokens, and
submitting it as problem code - to see if the solution provided aimed for the corresponding
goal. After this, each goal was then submitted as the problem. For each case, it was also
checked if performing the initial sequence of actions would match a solution.

The results for each language were then recorded. Along with the former test, general
notes were recorded on phrasing of the feedback for each language.

3.2.2 ANLTR4 grammar phrasing suitability for feedback

Our research defines context as the names used for ANTLR4 parsing terms. The classes
for the tokens and phrases have consistent prefixes and suffixes according to what they
are. Through the C# ANTLR4 runtime, the names of these can be called and cropped4 by
abstraction. If used for feedback, the phrasing of these terms would be judged by the user.

There is currently no standardisation of the parsing terms in ANTLR4 grammars. Hence,
there is no definitive method of categorising the phrasing of feedback, or the impact of the
patterns (what would make "feedback explicit"). Against each language, we categorise the
notable differences of:

• how many parsing token names contain

– partially or entirely abbreviated words

– only full words

• how many parsing token names contain, 1, 2, 3 or more words

3A token that is not in any token’s definition
4Remove the prefixes and suffixes to obtain the unique characters - which would form the token/phrase

name
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• how many unique words fall under different categories of "explicit", with each category
being defined as:

– Parsing Technical Terms - Terms that are understood in the context of the parser’s
usage

– Abbrieviated Synonymous Terms - Terms used similarly to their recurrence in
programming languages and computer science, but abbreviated

– Relatable (Synoymous) Techincal Terms - Terms used similarly to their recurrence
in programming languages and computer science

– Language (Token string) Techinical Terms - Words or named symbols that appear
in the language itself

– Lit Tems (Abbreviated) - Words which can be understood by their literal meaning,
but abbreviated.

– Literal Terms (Unique) - Words which can be understood by their literal meaning
alone.

– Literal Terms (Descriptive/Adjective) - Words which can be understood by their
literal meaning which are used to give context to other words in a parsing name.

These are ordered from most domain-specific knowledge required, to least. Words that
require relatable computer science knowledge are regarded as preferable to knowledge
on a language’s grammar definitions. This is because the user figuring out exactly
what is meant by the specific phrasing of a language’s grammar is superfluous to the
language itself.

Words that require language-specific knowledge (such as the names of string com-
mands) are preferable to general relatable computer science terms. Until this is
empirically explored, this research assumes users can gleam information on the context
from observing terms used in the context that also occur in their code. Knowledge
and naming used within the specific language the user is working on, is regarded as
preferable to general knowledge.

Words that are discern-able without technical knowledge are regarded as preferable
to those that require knowledge on the specific language. This enables the context to
be defined to the user if they are unfamiliar with specific terms. More specifically,
descriptive words used in conjunction of other words.

• how each word is separated
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– lowercase

– camelCase

– under_score

– under_score_end_

– Single (Not Applicable as no token name contains more than 1 word)

(All rule names start with a lowercase letter as this is syntactically required to define a
"parsing rule")

These were the patterns expected by our paradigm, but there was a chance terms could be
formatted in a way this paradigm did not account for. Hence this research searched through
each grammar manually according to to the paradigm, meaning there’s a potential 10%
discrepancy of human error on the value counts. A notable retrospective option would be to
use an ANTLR4 parser to read each parsing token type.

This research also constructed a paradigm for determining how the legibility of the
languages are defined. This qualitative paradigm can then be referenced against the thoughts
of users that read feedback5.

The previous section stated what patterns are observed and listed for each grammar.
These are used to then assign a keyword describing the legibility of the language. First, the
number of unique words to form token type names are sorted to 3 groups.

• Implicit: The total percentage of words that are either "Parsing Technical Terms",
"Abbrieviated Synonymous Terms" or "Lit Tem (Abbreviated)".

• Technical: The total percentage of words that are either "Relatable (Synoymous)
Techincal Terms" or "Language (Token string) Techinical Terms".

• Literal: The total percentage of words that are either "Literal Terms (Descriptive/Adjective)"
or "Literal Term (Unique)".

The terms are split between literal, technical and implicit based on how much knowledge of
computing, the language and the grammar itself.

Secondly, the terms of a language are overall considered "descriptive" if the following 2
conditions are met.

1. More than 55% of the token type names contain more than 2 words.

5feedback produced by using the grammar’s terms
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2. The total percentage of "Language (Token string) Technical Terms" + "Literal Terms
(Descriptive/Adjective)" is greater than the number of "Technical" words.

Using those two definitions, the paradigm for how languages can be sorted into legibility
of use is as follows:

• Explicit: The grammar’s names are descriptive, and more than 40% of the words are
literal.

• Descriptive: Less than 40% of the words are literal, but the number of technical words
and literal words each (counted separately) are more than the number of implicit words.
The grammar’s names are also descriptive.

• Literal: The grammar’s names are less than descriptive, but more than 40% of the
words are literal.

• Technical: Less than 40% of the words are literal, but the number of technical words
and literal words each (counted separately) are more than the number of implicit words.
However, the grammar’s names are less than descriptive.

• Complicated: The majority (or equal) of words are Implicit, however the grammar’s
names are descriptive.

• Implicit: The highest (or equal) words are Implicit, and the grammar’s names are not
descriptive.

These are ordered from grammars with the highest legibility. The term rules are split
between how self defining the names are for defining the context, and whether additional
knowledge on the language or the grammar’s phrasing is needed. Grammar with legibility
considered "descriptive" are higher than those with legibility "literal" because technical terms
are described and given context to in the former - also helping in tutoring the terms.

Checking this paradigm against the sampled languages should provide arguably the
starting paradigm for sorting the legibility of grammar phrasing, that can then be evaluated
and enhanced. This paradigm can then be checked against qualitative feedback on how well
users can determine the context from feedback using each term.
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Fig. 3.11 And image of the special user evaluation build of Nue Tutor providing a mock
learning activity.

3.3 User Evaluation

This research also sought users for qualitative feedback on the IPT’s feedback, and to
verify the validity of the legibility paradigm. The feedback can also be used to evaluate the
helpfulness of the hints, relative to the proposed skill6 of the user.

The key questions Nue Tutor investigates about itself are made to mirror that of River’s[17]
questions on feedback, excluding the questions on each learner’s academic learning context.
However, questions on each user’s thoughts on their own skills on a language were collected.
They were used to evaluate if it affected when a grammar’s language legibility affected how
easily hints could be read.

For the user evaluation, I created a unique build of Nue Tutor that facilitated the selection
of programming languages, their learning activities and the questionnaires.

For each language, a number of examples are is pulled from the language’s corresponding
repository page. Using the authoring tool, examples on the repository of each language were
then made into activities. Each activity had one goal and the initial state given to the learner
being the goal state with a few modifications. This method allows the test to be easy to
replicate for any language on the repository, for any sample (including languages we did

6how comfortable the learner declares they are with programming, and how comfortable the learner states
they are with each specified language they used
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Question Possible Responses Reason for inclusion

How would you rate your
familiarity with each of the
3 languages?

1) I’ve never programmed before for
ANY language

This metric can be used to
compare how language
legibility values are
affected by user knowledge
on the given language.

2) I never knew what’s in it
3) I recognise general patterns in it
from other languages
4) I’ve used, but just the basics
5) I’ve tried various features of the
language
6) I’ve used the language adeptly

Table 3.4 The series of questions the user is asked after choosing a programming language

not sample). As the languages and example are also not refined for this test, this allows us
to critically discuss problems with feedback that could occur naturally from programming
language grammars.

To not overwhelm the participants with tests, the experiment gives the users 3 randomly
selected languages from the sample of 14 to choose from. 3, 2 then 1 activities are respectively
provided for the language. Before and after each language, a questionnaire is given. The
provided questions and their purpose were as follows:

The pre-language question are listed in Table 3.4.
The post-language question are listed in Tables 3.5,3.6,3.7 and 3.8.
The interface presented to the users to answer the questions is shown in Figure 3.12
However, a qualitative survey was retrospectively not programmed into the user evaluation

build of Nue Tutor and not inquired. This program was then distributed among friends and
relatives.

The interface learners were given to complete the tasks is shown in Figure 3.11. Nue
Tutor will also record the state of the code, when a "Check" is called. It will record each time
a "Skip" "Check" or "Restart" are generated. Finally, it will record the full list of actions
for each check called. This allowed the current author to document how many actions were
generated as the user iterates through the task. For each language, the current author used the
number of actions generated to:

• Estimate an overabundance of actions by the upper quartile of or the number of actions
generated per check.
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Question Possible Responses Reason for inclusion

You rated your familiarity
with the language - [current
language]] as "[previous
rating]" What would you
rate it now?"

1) I’ve never programmed before for
ANY language

This metric can be used to
compare how language
legibility values are
affected by user knowledge
on the given language.

2) I never knew what’s in it
3) I recognise general patterns in it
from other languages
4) I’ve used, but just the basics
5) I’ve tried various features of the
language
6) I’ve used the language adeptly

Table 3.5 The first series of questions the user is asked after completing a programming
language

With instructions/hints, what helped you?
Question Possible Responses Reason for inclusion

The line and index?

1) Never
Inquires how useful the equivalent of
the "Location" was in Nue Tutor for
a given language.

2) Sometimes
3) Often
4) Overwelmingly

The instruction verb (move,
swap, insert, does not need
to be in the...)

1) Never
Inquires how useful the equivalent of
the "Action verb" was in Nue Tutor
for a given language.

2) Sometimes
3) Often
4) Overwelmingly

The quote of your code

1) Never
Inquires how useful the equivalent of
the "Old/new value" was in Nue
Tutor for a given language.

2) Sometimes
3) Often
4) Overwelmingly

The context (the syntax
type)

1) Never Inquires how useful the equivalent of
the "Context" was in Nue Tutor for a
given language. As this is tied to the
phrasing of the grammars, this is
also used for research aim 2b

2) Sometimes
3) Often
4) Overwelmingly

Table 3.6 The second series of questions the user is asked after completing all the tasks in a
programming language
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Was the information in the instructions/hints legible or hard to read?
Question Possible Responses Reason for inclusion

Were the words
scrunched up (like
with no spaces)

1) Always
This value is obtained to separate
formatting issues due to spaces, from
other formatting issues.

2) Often
3) Rarely
4) Never

Were the words
abbreviated

1) Always This value is compared to the
’illegible word’ percentage to
evaluate how consistent user
feedback is to this value.

2) Often
3) Rarely
4) Never

Did the words
elude to
something you
could not
understand

1) Always This value is compared to the
’technical word’ percentage to
evaluate how consistent user
feedback is to this value.

2) Often
3) Rarely
4) Never

For hints in
general, did you
feel they needed
to provide more
information?

1) The opposite, they were
too wordy

This is the first question on how
users view any convoluted
instructions. This response evaluates
if the user felt if each individual
instruction says more or less than
what’s needed.

2) Whether there was too
much or too little varied
considerably
3) They provided enough in-
formation
4) Yes, they needed more
detail

For the number of
instructions, do
you feel they
could often be
phased in less
steps?

1) The opposite, there were
too few

This is the second question on how
users view any convoluted
instructions. This response evaluates
if the user felt that the number of
instructions made following more
complicated (by too few or too many
joint together steps).

2) Whether there was too
much or too little varied
considerably
3) They provided enough in-
formation
4) Yes, there didn’t need to
be that many

Table 3.7 The third series of questions the user is asked after completing all the tasks in a
programming language
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Overall did this language’s instructions give a clear idea of,
Question Possible Responses Reason for inclusion

What was
what?

1) Never This is the first of two values for the user to state their
overall feelings on the experience. This helps determine
how much of an impact the other metrics have on the
experience. In this instance, this inquires on whether the
syntax terms and abbreviation caused confusion.

2) Rarely
3) Often
4) Always

And/or a
clear idea on
what to do?

1) Never This is the second of two values for the user to state their
overall feelings on the experience. This helps determine
how much of an impact the other metrics have on the
experience. In this instance, this inquires on whether the
phrasing of the action verb causes confusion.

2) Rarely
3) Often
4) Always

Table 3.8 The final series of questions the user is asked after completing all the tasks in a
programming language

• Estimate the most common number of actions generated by the language by the
medium of actions generated per check.

• The lower quartile of the number of actions generated per check is used as a control
value, and a rough estimate on how far a user is from the goal before completing a
task.

3.3.1 Evaluation Methodology

Each of these results will be checked to answer the research aims. Through this section we
describe how we intend to use the results of these methods to answer the research aims.

RA1a - Can abstract syntax transformations function for every possible programming
language to return feedback regardless of the submitted code (given a ’solution’)?"

Section 3.2.1 describes how the programming languages will be sampled. In the technical
analysis, we recorded this as "Hints to Completion". If the success rate is unanimous
for the feedback, and feedback returns in the given structure we could state this as true.
Additionally, an unpolished build was given to users to evaluate. This build records the
feedback returned with each press. We could further state this aim was true if feedback is
unanimous returned, despite containing an unrefined sampled programming activities and
many potential formations of code submitted by general users. We record how Nue Tutor
responds to each "Check" call at the end of Section 3.3.
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Fig. 3.12 And image of the special user evaluation build of Nue Tutor providing a post
language questionnaire

This aim would additionally be successful if any exceptions can had their specific context
listed. I hypothesised languages that would require multiple builds, or incorrect root token
links to be an exception.

RA1b - Are there instances of language-specific additions needed to return feedback to
a language-independent IPT?

We hypothesised potential reasons that there be language-specific additions for Nue Tutor.
We record the root token type, and the type of syntax errors that occur for each grammar. If
exceptions do occur, we test when they occur and additionally check these statistics.

If they occur due to needing multiple root token types, this implies a language-specific
instance where multiple parses are needed for that grammar. If they present syntax errors,
the problem is more ambiguous.

This result also promoted investigating what token types should be normalised in for
each language, and how frequently. As this investigation was not conducted, an answer to the
frequency of normalisation is not recorded. However, this method allows for concluding on
how often the root tokens are not used, or the base language requires a more adept parsing
process to return feedback on syntax and semantics.
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If the majority do not have exceptions, we can still conclude ’that minimal to no language-
specific additions are needed to function with the majority of grammars’. Were there
more semantic variants of each grammar, we could also conclude ’regardless of how each
language’s grammar is written’, but this requires more than one semantic variant to test.

RA2 - What impact can grammar phrasing have on the quality of learning?

We do not investigate quality of learning in this test, however we can investigate its affect on
general legibility of the feedback. This Aim is split into two questions.

"RA2a - What are the root types that needs to be called for each lexer and parser? What
types need to be called in sequence?" is answered alongside "Aim 1b". "RA2b - What
problems in grammar definitions can be listed/categorised to make feedback implicit? How
can the phrasing of grammars affect the quality of feedback?" is answered by the following:

Section 3.2.2 discusses how would assign each grammar to a paradigm based on their
tokens. However, to check the affects of this phrasing, we compare this to how the users
record their thoughts in the survey. I check if the "The context (the syntax type)" value
and "Did the words elude to something you could not understand" value from Section 3.3
correlate with the "descriptiveness" ratings (word count, spaces, formatting, abbreviations
and token legibility). If they do, it is conclusive on what affects the legibility. If the results
are ambiguous, this question can not be conclusively answered, but the patterns worth further
investigating can be drawn.

RA3a - What conditions in grammar definitions can be listed/categorised to affect the
speed feedback can be returned? How does the compile speed change for different
contexts?

Using the user evaluation, the ideal to answer this question would be to record the time
between when each "Check" press is called, and when they are rendered for each language.
This could also be checked against the code length (problem and goal) and the solution
(number of presented actions). If the time is consistently below 100ms, this could be conflated
with creating objects in Unity, or a simple tick for the frame and would be inconclusive. Such
a result however would reflect positively on the compilation speed (being negligible, even for
large code). If the time raises with the code size, we could attribute the raise to how code
affects the speed. If the time raises with actions generated (or sporadically changes with
grammars), we could attribute the raise to the intensity of the process of path construction.
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However, this research failed to print the results with the data received from the user
evaluation. As such, we can not provide a conclusion for aim 3a. There is however a list of
languages that did not compile instantly which we will evaluate against the example sizes.

RA3b - What is the frequency of grammars including, streaming or excluding (skipping)
code comments?

This critical statistic can be obtained directly from the sampled grammars’ definition file. In
case there were any ways comments were stored that were not accounted for by Semura’s
work[43], we list these. We present a final list on the percentage of each. The conclusion
of these results is as they statistically appear. If skips and hidden channel streams are
common, many base grammar files need to be modified. If channel streams are often used,
we can conclude on the most often used term for code comments as a universal base to
rename the comments channel to. If comments are commonly tokenised, this requires a more
complicated solution to be addressed.

3.4 Chapter Summary

We developed a method that has the key components of ITAP[17], but uses program synthesis
through ANTLR4 to work for any language we attach.

We developed the methodology to perform a technical analysis on this system, followed
by a user evaluation to test the system, and provide feedback on the feedback.

At the end of this section, we describe how we would use each of these statistics to
conclude on the initial research aims.



Chapter 4

Result Analysis

Through this section, we list the results we collected through our research, before relating
them to the aims they were obtained from. This is followed by a discussion on each aim’s
answer, and a conclusion on their result.

4.1 Technical analysis

First are the results of the technical analysis on the sampled language grammars from the
ANTLR4 repository, as well as these languages tested in Nue Tutor. When collecting the
grammars, we also omitted a grammar if there were no given examples, or the language only
supported single characters or phrases.

We sampled every 20th grammar on the repository alphabetically, after the 1st grammar
listed. We additionally sampled languages the current author was familiar with (control
samples), totalling to 23 grammars initially.

The control samples included were:

• abnf: At the time of constructing Nue Tutor, this was the first grammar on the repository.
Nue Tutor was reconfigured to support normalising code. This grammar was the 2nd
on the repository at the time of sampling grammars, and was re-included to test the
affects of normalising on feedback.

• ANTLR: We use the examples listed which is consistent with the other samples. This
is rather than the samples across the repository - which would suffice as examples. For
instance, it would be possible for us to include one of the ANTLR4 grammars as an
example for the ANTLR4 grammar.
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• C++: This is a language the current author is familiar with, and has facilitated in an
educational context.

• C#: This is a language the current author is familiar with, and has facilitated in an
educational context. This is also the language the current author exports grammars
into, and could use for tutoring Unity.

• Haskell: Ask-Elle was a tutor that used Haskell[18]. A solution for writing manual
feedback through code comment, could be compared to Ask-Elle’s method of manually
writing feedback.

• json: This language was a case study (also noted in Parr’s ANTLR4 reference book[45])
for ANTLR4’s unique ability to construct grammars for languages that have multiple
compile phases.

• Lua: This is a language the current author is familiar with.

• Prolog: The language used by the IPT commonly cited as the first well known IPT -
Prolog Tutor.

• Python: This is a language the current author is familiar with. This language also
enables a more direct comparison to functionality of the methods in Nue Tutor, to
ITAPs. Python contains multiple semantic variants within each significant variant to
compare.

• SQL: Language with multiple variants, and for handling databases. This would be a
useful database language to discuss the effectiveness of feedback with normalisation
in such a case. SQL also contains multiple significant variants.

antlr, json, python and sql contained significant variants1 of their languages. This research
opted for the most recent versions of the respective languages.

Bcpl (origbcpl), Python and SQL (MySQL and Oracle) were the only languages with
semantic variants2, however each variant had to be excluded as they failed to generate files in
the ANTLR4 tool. Out of the two SQL variants, MySQL was tested. Hence, this research
did not test for differences made by semantic variants.

• 2 were excluded for containing no examples on the GitHub repository.

1grammars for different versions of the same language (which could be argued to be a different language).
For instance, ANTLR3 and ANTLR4, or C++ and C++11

2differently defined grammars for the same version of a language
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Fig. 4.1 A table of the sampled languages, along with a coloured key for why each excluded
language was excluded.

• 3 were excluded for consisting of languages with mutually exclusive or short phrases.
(Grammars containing "Actions" and "in-grammar code")

• 3 were excluded as these grammars did not compile in the ANTLR4 tool.

• 1 was excluded as the resulting parser failed to create phrases. However this language
was mistakenly left in the user evaluation build.

The following 15 languages from the ANTLR4 repository were included for testing:
abb, abnf, bcpl, C++, creole, C#, erland, json, Lua, pascal, prolog, properties, python, toml
and webidl. Figure 4.1 contains a table of all sampled languages. It highlights excluded
languages in a colour corresponding to their reason for exclusion.

4.1.1 RA1a - Can abstract syntax transformations function for every
possible programming language to return feedback regardless of
the submitted code (given a ’solution’)?

The following results were produced to support answering whether "abstract syntax transfor-
mations function for every possible programming language to return feedback regardless of
the submitted code (given a ’solution’)?" in Figure 4.2.
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Fig. 4.2 Results for each language. The number of examples on the repository

The definition for each column is as follows:

• Example: The number of examples for the respective language, counted and down-
loaded from the ANTLR4 grammar repository.

• Rootless tokens: The number of token types in a phrase not within another phrase for
the grammar’s parsing rules.

• Used parser rule context: The chosen starting token type.

• Tasks created: Notes the type of syntax errors when copying code into the authoring
tools, and if the errors are noted to be intentional as part of the design of the repository
example.

• Node Type Coherency: How descriptive are the names of the tokens for use as a
feedback context. This statistic preceded the descriptiveness paradigm created later

– Literal - defines meaning of token types from literal descriptions, technical terms
and a series of text terms used for tokenising. Multiple words form the rule names
(more than 60% of the rule names). Words occur for multiple parsing rule names
is a likely byproduct.
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– Explicit - rule type name refers to structure and context. Less than 30% contain
literal descriptions or multiple words. Constructed from text terms used for
tokenising, or technical literal definition.

– Technical - knowledge of the internal language structure required, as terms are
almost entirely technical literal definition, with single word rule names (at least
30%).

– Implicit - knowledge on how this particular grammar is phrased required, as
less than 30% of the rule names do not refer to even technical definitions, but
technical names made strictly for the author of the grammar - with few recurring
terms - or abbreviations of technical terms.

• Synthesis Legibility: How the formatting of the locations in feedback is affected by
skipping or streaming tokens.

• Hints to completion: Whether hints always directed to a correct solution when followed.
This was tested where each task had multiple goals. The term after the dash refers to
how accurately it targeted a goal from a problem being that slightly modified goal.

– Single - The created task for the language only had one goal (as the repository
had one example code).

– Each - When tested against each goal, the created task would correctly identify
which goal was being targeted.

– Confused Priority - When tested against each goal, a particular goal was priori-
tised over others, but the correct goal would be targeted when the code was close
enough.

– Confused Priority overriding correct solution - Some goals were heavily priori-
tised over others so even if a particular goal matched the problem, a certain goal
would be prioritised instead.

Only one language had layouts that could cause it to fail to parse approaches to the goal;
bcpl. This exception was due to the fact the language expected to be called for multiple
passes for compilation, and all languages in Nue Tutor were configured to run once. The
grammar was written in such a way that it would terminate before reaching the end of code.

Hence, languages that can conclude parsing before reaching the end of the code will
not convert the entirety of the code into a full abstract syntax tree. This can then cause
inaccuracies when comparing trees. An ideal fix would differ between context. For example,
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languages can require a second round of parsing but read under a different grammar conven-
tion. This would be for cases that require pre-compilation definitions and macros that copy
defined text. Languages can also require a different compiler at a different point (and hence
be language-specific).

Otherwise, Nue Tutor successfully parses all states of learners code, all states of activity
goals and a path between each. Additionally, of the 242 recorded checks called in the user
evaluation in Nue Tutor, 239 (98.8%) successfully returned syntax and semantic feedback.

It is worth noting that abb had an exceptionally high action count automatically recorded
from the user evaluation. This implies this language would not parse like the grammar
intended. However the exceptionally high action count is surprisingly unique to it, in contrast
to the other stated error languages.

Summary of RA1a

Firstly, not all languages we sampled were compiled. The potential issues for this could be
due to using the ANTLR4 tool to build to C#, an error with the grammar files, or an oversight
of this research. Grammar files with errors among each entry in the sample is unlikely, as
Wal’s[69] work successfully compiled 363 out of 370 (98.1%) grammars.

However, out of the grammars successfully compiled, the method almost unanimously
worked against all programming languages - successfully returning semantic and syntax
feedback across all languages regardless of errors in the problem code, or goal code. There
were two observed exceptions to this. First was through usage of bcpl in Nue Tutor which
required multiple compilation and would fail to return complete instructions as a result. The
second was observed in the automated results for the user evaluation. In three instances, users
clicked check, but neither more actions nor a completed task were returned. One instance
of those was on a language known for requiring multiple passes of the compiler - JSON. I
believe the other 2 instances may be due to an over-sighted error that we will have to explore
in detail.

The success of the rate in which feedback is returned is supported in the user evaluation,
where 239 of the 242 successfully returned feedback on how to get from the present learner’s
code state, to the goal code state.

For the accuracy of the weighting between languages, the wrong goals could be targeted
in the 6 out of 10 instances of languages tested with multiple goals in the task. This could
occur if the produced weights could be miscalculated to be negative, or 0. This figure
was obtained in earlier versions of Nue Tutor before the formulas were further bug fixed
and improved. The initial version could be concluded to not adequately weigh the actions.
However, the present or future versions of Nue Tutor should confirm if this was incidental
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to the prior version. Recording and comparing the exact values of the weights in a redone
version of this experiment should help us confirm if these were weight calculation errors
in earlier versions. If they were not errors, the recorded weights would help find what is
incorrectly prioritised in Nue Tutor’s method’s calculation.

The following list summarises the adequacy of using ANTLR4 for program synthesis,
Canonicalisation, Path Construction and hint generation to generate feedback for every
possible programming language:

• It unanimously returns syntax feedback regardless of language. However, object
compilation, file linking or other compilation specific traits would have to be specified.

• It unanimously returns semantic feedback regardless of language. As the same frame-
work is consistent, it is language-independent.

• It unanimously performs syntax tree comparisons regardless of the state of the learner’s
code.

• It has an authoring tool that unanimously works with all programming languages.

• It requires identifying root tokens in a given grammar to use:

– It may not parse all code (correctly or at all) if the root token is not correctly
identified

– Some grammars contained more than one root token

– Some grammars may not start from the root token (root token may also be
obsolete)

– Some languages require multiple compilations, with a different starting token.

• Nue Tutor’s older weightings worked successfully with 40% of the grammars, but
we can not conclude on whether the current version of Nue Tutor’s weightings will
prioritise correctly for the other 60%.

• It may be possible to further improve semantic feedback through the skipped or
streamed tokens.

4.1.2 RA1b - Are there instances of language-specific additions needed
to return feedback to a language-independent IPT?

This research successfully performed syntax and semantic feedback, through program syn-
thesis for all programming languages. While those were formerly identified to be domain-
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specific techniques, through this section, we attempt to answer what can still be considered
domain (or language) specific by answering the question, "Are there instances of language-
specific additions needed to return feedback to a language-independent IPT?"

The implementation of Nue Tutor had 2 major language-specific constraints that had to be
specified. First was the root token. Some languages also simply need multiple compilations
(either through the same, or different root tokens).

Second was optionally specifying all token types that needed to be normalised. Our
research functionally implemented normalisation, but this was not involved within either the
technical analysis, or specified for each language for the user analysis.

Nue Tutor also had 2 forms of feedback that were not directly supported (where subsets
and supersets could be considered as Reification and Layout Feedback for specific parts of
languages). These were

• Quality feedback, as Nue Tutor does not observe the application running, or what
would cause an application’s running to be affected. This is because there is no runtime
environment or virtual machine for executed code. Supporting a runtime environment
is a helpful tool for constructivism (users being able to see the results of what code
they have applied) for IPT.

• Layout feedback is also not supported. This was included in ITAPs[17], but Nue
Tutor and any IPT using its method would require domain-specific additions - as
layout changes between languages, and what would be preferable to layout itself is
domain-specific.

Summary of RA1b

Overall, a list of language-specific attributes that would need unique frameworks to attach
into a language-independent IPT:

• Root token - required for a language-independent IPT to function. Hence also func-
tionally implemented into Nue Tutor. Adds a constraint for the user to either know the
grammar, or to read and set the root token.

• Exceptions requiring multiple compilations - this has to be configured for programming
languages that can not run by one compilation. We came across bcpl as an absolute
required instance of this. This was the only example that would fail to function without
this.

• Normalisation - functionally implemented into Nue Tutor, but needs an empirical test.
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• Compilation or Virtual Machine - not implemented into Nue Tutor. ANTLR4 runtime
(what Nue Tutor makes critical use of) supports the creation and running of compilers,
or virtual machines.

• Quality feedback - currently supports no language-independent solution.

• Layout feedback - currently supports no language-independent solution.

4.1.3 RA2a - What are the root types that needs to be called for each
lexer and parser? What types need to be called in sequence?

Through this section, we answer ’What are the root types that needs to be called for each lexer
and parser? What types need to be called in sequence?’. For our test sample of languages, we
did not research the grammars, but called what could be identified as a root token. Of the 16
languages tested, 12 contained 1 root token type. The terms used for root nodes were often
ultimate: "program", "document", "compilation_unit", "json"(the name of the language),
"file", "root". "program" and "document" occurred twice.

4 of the 16 languages contained multiple root tokens. Only 2 languages (which were 2 of
the 4 containing multiple root tokens) commonly displayed errors in the generated abstract
syntax tree.

Most languages would compile without error. bcpl had more than 1 root token type,
and could fail. Python 3 had 3 possible root tokens, and while it was always successful in
providing solutions, its generated trees often had coherent structures but would often contain
error nodes in the tasks generated by the authoring tool. However, the rest seemingly only
created error nodes when the code contained syntax errors - which is correct behaviour.

This was observed using Nue Tutor’s authoring tool, which displays the generated tree
for the activities, and highlights error nodes in red). Using the root token was, hence, majorly
reliable but should be verified.

Figure 4.3 contains the observed results with the following definitions.

• g4 File Split - What files did the grammar consist of.

• Comment Action - How code comments are treated in this grammar.

• Rootless tokens: The number of token types in a phrase not within another phrase.

• Used parser rule context: The chosen starting token type.
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Fig. 4.3 A table of the sampled languages, along with a coloured key for why each excluded
language was excluded

Summary of RA2a

Root tokens to operate a grammar can more often than not be a literal root token type (a token
type that is not included in any other token type). This is particularly reliable way of finding
the root token as most grammars contain only one root token with a definitely ultimate name.
However, finding root tokens in this way is not absolute and may require deconstructing
or a more thorough reading through the grammar. Additionally, some grammars may need
subsequent re-compilations, and knowledge of that requires thorough knowledge on the
compilation process of that language.

Ultimately, the amount of domain-specific knowledge needed to find the root token can
often be circumvented by finding and using a single root token. Most programming languages
have a single root token, but to figure out the root taken requires documentation, knowing the
grammar, or reading through each token to find one that does not reoccur.

4.2 User Evaluation

From this section on-wards, the User Evaluation was involved in our investigations.
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Legibility Rank Occurences Languages
Explicit 1 C#
Descriptive 3 C++, pascal, webidl
Literal 2 properties, toml
Technical 6 abb, bcpl, creole, json, prolog, python
Complex 1 Lua
Implicit 2 abnf, erlang

Table 4.1 The number of grammars that had each rank of legibility according to the rubric
mentioned in Section 3.2.2

4.2.1 RA2b - What problems in grammar definitions can be listed/categorised
to make feedback implicit? How can the phrasing of grammars
affect the quality of feedback?

Through this section, we answer the research aim ’What problems in grammar definitions
can be listed/categorised to make feedback implicit? How can the phrasing of grammars
affect the quality of feedback?’, with the information gathered from the technical analysis,
and user evaluation.

Technical Analysis Evaluated Legibility

15 of the 21 grammars we collected were included in final usage.
The numbers of each legibility rank (and the languages with them) corresponded to the

method of obtaining the legibility of each language in Section 3.2.2, and were as follows in
Table 4.1;

10 of the 15 languages had less than 30% of their token names contain abbreviations.
This overall produces a large range of language legibility, with the median being technical

(with a skew towards literal or descriptive).
An exception to the activities provided for each language was for C#. The repository did

not provide any examples for the given version of C#. Rather than omit C#, it was included
as an exception as the only "Explicit" grammar. The environment for writing Nue Tutor was
full of C# files. As such, the files used in place of the examples were smaller C# files in Nue
Tutor. The activities were made by copying the code as a goal in the authoring tool, and
making a tweaked copy the starting state of the code - just like all the other languages did for
the examples.
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Fig. 4.4 A graph of the scores between what users rated as "discernable" and the descriptive-
ness score.

User Evaluated Legibility

Of the 10 participants that returned the result files, 2 participant’s results were excluded for
selecting Skip as the first action on every task. As no changes to the code were tried (where
they could see how the feedback would respond), it would be unlikely the feedback would
have been analysed, which could skew results. In contrast, participants who clicked check
only once before skipping were included. 1 other participant’s results more was excluded
due to not completing each survey beyond 2 questions.

Figure 4.4 contains a scatter graph of the user’s ratings for how "discernable" hints in a
language were, against the number of literal tokens type names in a language.

Completion Success rates

Through this section, we discuss the completion rate of tasks for a given language, in relation
to other statistics.

The first statistic I will note in this section are the familiarity scores. 4 of the 7 participants
recorded that they had never programmed in any programming languages before, reflected
by them stating an average familiarity score of 1.5 or less (meaning they specified they had
not used any programming languages for at least 1 language). 8 tasks were successfully done
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Fig. 4.5 A comparison between the success rate of activities in a programming language, and
the user feedback. Only location and action vaguely trended with the activity success rate.

out of the 32 given to this sample. For the 3 participants with a recorded language familiarity
score of more than 1.5, 10 tasks were successfully done out of the 17 given. A total of 41
tasks were distributed among participants, and a total of 18 were completed, while the rest
were skipped.

In the following diagrams, for languages that appeared in the samples, I ordered them
from highest percentage of completed tasks, to lowest. For tasks with the same percentage
of completions, they were ordered from lowest number of activities given, to the highest
number of activities given. This is because with less activities, there were less opportunities
that could be completed.

The technical analysis legibility ratings did not correlate with the success rates of the
activities. We investigate the potential reasons for this in the following subsections, breaking
down each statistic and finding what correlates. We aimed to find whether there were notable
enough patterns despite the sample size of 7 users, 12 occurring languages and 41 occurring
tasks.

Figure 4.5 contains a graph comparing the task completion rate for languages, and the
user ratings on each section of feedback for tasks of those languages. Against the scores
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Fig. 4.6 A comparison between the range ’amount of actions from the goal’ for each language,
and what users reported on the number of steps. Checks with 2 x’s imply a consensus between
multiple participants.

provided for feedback, there is a rough correlation between the success rate of tasks, and the
responses provided for feedback.

• Location followed the values of the success rates rather accurately, but with the
occurrence of 3 shallow (0.5 value) spikes.

• Action had an overall downward trend, but high values for JSON and C++14.

• Value consisted of many differing results, but overall had lower values matching the
lower success rate, and higher values matching the higher success rate. The scores in
Value consistently had a standard deviation of around 0.5.

• Context displayed no relation to the success rate, despite the values having the lowest
standard deviation (with a large exception being JSON with standard deviation of
1.5). It is possible the meaning of this value was misphrased, or misunderstood. For
instance, one properties feedback contained literal words such as "Line". It is possible
the user stated "syntax terms" were not helpful because they believed they did not
appear. Providing a qualitative string box would have been useful for letting the users
convey their reasoning for these scores. The median of the standard deviation of the
feedback was 0.47, so despite the unexpected results, there was a general consensus
among participants.

Action Count in relation to User feedback on Step and Detail

For the number of actions generated per language, we obtained the upper quartile, median
and lower quartile, illustrated in figure 4.8. These values were auto generated, and hence
contained consistent scoring across languages.

I evaluated this figure against the "steps" score for each language. We did this to check
the integrity of the quantitative feedback on "steps" recorded from users by the survey and
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Fig. 4.7 A comparison between the range ’amount of actions from the goal’ for each language,
and what users reported on the amount of detail on activities. Checks with 2 x’s imply a
consensus between multiple participants.

found very ambiguous results. A comparison of results against "steps" are displayed in
Figure 4.6.

There was no relation to the values in Steps, and the action counts. "Too little or too many
varied" occurred regardless of the number of Action Steps - occurring more than any of the
others. Additionally "Too few" only occurred once, in a language where 2 other participants
did not provide this response. Only one user gave the same response for Step across all
their languages, meaning the response also varied even across the same participants. There
appears to be no relation between how Step was selected, and the number of Actions for each
language.

I also evaluated the action count in relation to the surveyed rating of "detail". In contrast
to the comparison between action count and steps, there appeared to be an appropriate
relation. Figure 4.7 contains a comparison of results against the "detail" ratings.

The most common response was wishing each bit of feedback contained more detail,
which occurred for 7 of 11 languages - 2 of which could be recorded as ’unanimously stated’.
This coincides with how users wished the instructions contained more detail in River’s
observed experiments with ITAP[16]. "More detail" occurred more when there were higher
numbers for action counts, which also corresponded with the completion rate of activities.
"Right amount of detail" occurred more with lower action counts - also corresponding
with the completion rate of activities. The amount of participants wanting more detail was
inversely proportional to the number of ’Actions from the goal’ Selection of "Less detail"
occurred for 3 of 11 languages. We can not conclude on a relation to the action counts and
the rate of other detail responses.

Descriptiveness, Context and Requested Detail

There were 3 values relating to describing a phrase of code to the learner. These (each for
comparing the usefulness of the generated token terms) were:
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Fig. 4.8 The range of ’number of actions generated for users when they clicked check’ for
each language with at least 2 tasks performed across participants. abb is off the chart with
values of 85
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• Token "Descriptiveness" Score (Technical analysis) - This is a calculated value based
on the source grammar. It is calculated using the number of descriptive (non-technical)
terms and adjectives in token terms. "The total percentage of "Language (Token string)
Technical Terms" + "Literal Terms (Descriptive/Adjective)" minus the percentage of
"Technical" words"

• Multiple Words (Technical analysis) - This is also a calculated value based on the
source grammar. It is calculated using the number of words used to form token terms
(phrases).

• Context (User evaluation) - Statistic stated by the user on how much the context value
(formed by the token names) helped.

• Requested Detail (User evaluation) - The user states if they wish more detail was in
each feedback instruction. This could also relate to the other parameters in feedback,
however it is expected to relate to the context and descriptiveness of the language as
those also describe feedback.

• Discernible (User evaluation) - A more direct statistic on the phrasing of words,
selected by the users. This is a general quantification on the phrasing in the feedback.
Its purpose is to check a consistent relation between the descriptiveness of the tokens,
and how well the users interpreted the terms.

Sql is excluded in this section as it was not evaluated in the technical analysis. The results
for Discernible, Requested Detail and Descriptiveness are displayed for comparison in Figure
4.9.

The rated descriptiveness from the technical analysis appeared to weakly correlate with
the requested amount of detail. 4 of 11 languages were rated with positive descriptiveness,
where one of these received a "requested more detail" rating. In contrast, 7 of the 11 languages
were rated with negative descriptiveness where 5 received a "requesting more detail". The
number of words appeared to weakly inversely correlate with the requested amount of detail,
which contrasts the expectation. 1 out of 4 languages had more detail requested in the
survey, among the languages with less than or equal to 40% of grammar phrases consisting
of multiple words. 5 out of 7 languages had more detail requested in the survey, among
the languages with more than 40% of grammar phrases consisting of multiple words. This
implies that the languages with a higher percentage of words for token names were much
less likely to have users evaluate they needed more detail.

Descriptiveness appeared to have little impact on Context. Context heavily correlated with
Location, Action and Value - often being a lower value than each. However, descriptiveness
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Fig. 4.9 For each grammar, the scores for the user’s observations, compared to the technical
analysis’ observations on each language’s ’descriptiveness’

did correlate with the values in Abbreviated and Discernable. Of the 7 languages with negative
descriptiveness, 4 had discernable scores lower than 3. The 3 exceptions to correlating values
between descriptiveness and the user evaluation scores were prolog, properties and Python 3.
prolog had high abbreviation and discernible scores, yet incredibly low descriptiveness and
token legibility scores. However, prolog had only a single instance of being attempted, and
was performed by a user who rated an exceptionally high familiarity score of 5 - providing 2
possible reasons for this exception. properties’ grammar has an exceptionally low number of
illegible tokens, and the highest number of literal tokens. Python 3 had the highest negative
discernable rating, and a Discernable score of exactly 3, and the second highest standard
deviation for discernible scores at 1.

2 out of 4 of the languages with positive descriptiveness scores had a discernable rating
of 3 or higher. C# and C++14 had discernable ratings of less than 3. C++14 had low literal
tokens and a user rated abbreviation value higher than 3. C# was also an exception with 2.5,
and a standard deviation of only 0.5. This is a particularly notable exception as its values
were ranked as Explicit, containing:

• a low number of illegible tokens,

• a high number of literal tokens,

• a high descriptive token score,

• an erroneous number of tokens with multiple words.

The number of "literal tokens" recurred as a potential reason for differences between the
discernable score, and descriptiveness score. However, when comparing the two values, the
results are scattered.

Overall, the trends are loose between the technical analysis legibility scores and the user
evaluated scores. However it is arguably significant that each compared statistic consistently
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has more or equal positive values with positive values, and more or equal negative values
with negative values.

Summary of RA2b

A lot of the connections are loose between the technical analysis legibility scores and the
user evaluation. Of the values that our research noted as potential factors that could affect
legibility, "descriptiveness" and "literal tokens" had a stronger relation. The impact of context
in general was consistently lower than Location, Value and Action. This may imply the
other 3 key terms in adaptive feedback have a larger prevalence, which is worth investigating.
We can only vaguely conclude on the legibility of context is based on these results alone.
Legible tokens appeared to benefit the how legible the hints were. Matching the low count of
programming language familiarity, primarily "Technical" legible languages had were lower.
We can conclude that word count had no affect on the legibility. Two thorough test are needed
in isolation from one another. It’s unclear how much context impacts adaptive feedback. It’s
also unclear what components affect token legibility.

According to the technical analysis alone, the median of languages are "Technical",
which may be not ideal for users unfamiliar with programming. This is not-ideal as IPT
exist specifically for a range of users such as those unfamiliar with programming. However,
the impact of this may be negligible if the usefulness of context (relative to the rest of the
adaptive feedback) is as small as implied.

4.2.2 RA3a - What conditions in grammar definitions can be listed/categorised
to affect the speed feedback can be returned? How does the com-
pile speed change for different contexts?

The build failed to include a timer for the compilation time of each check call. This would be
checked against the language and the amount of text for each compilation.

However, the technical analysis made notes on each given language for the maximum
delays observed when a call to generate a solution was made. The results of this are noted in
Table 4.2.

We can not definitively answer ’What conditions in grammar definitions can be listed/categorised
to affect the speed feedback can be returned? How does the compile speed change for dif-
ferent contexts?’. However, from the technical analysis, we note that while time rises
exponentially with the goal and problem size, it is not a definitive factor. There also appears
to be no relation between the compilation speed, and the size of the code within the grammar
file to perform tokenising and parsing.
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Language Grammar to-
tal lines

Maximum
goal line
count

Maximum
goal character
count

Maximum observed Delay

abb 345 12 337 Instant
abnf 111 55 1877 20 seconds
bcpl 131 389 11380 5 seconds
C++ 1212 30 814 Instant
creole 135 118 3091 Instant
C# 2308 1072 30783 5 seconds
erlang 432 64 1640 Instant
json 76 22 583 Instant
Lua 281 13 255 Instant
pascal 858 487 19472 Instant
prolog 149 5 79 Instant
properties 51 122 3896 Instant
python 577 1468 56453 15 seconds
toml 115 242 5233 2 seconds
webidl 711 228 12643 10 seconds

Table 4.2 The maximum observed delays during the technical analysis. The maximum
character cound and line count are obtained from the pool of examples used, however the
clipboard was capped at approximately 8192 characters.
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How this comment was parsed Occurrences
"A name of a definition contains ‘comment’,
‘COMMENT’ and so on." (parsed or to-
kenised)

3

"A definition is linked to a ‘skip’ command." 7
"A definition is linked to a ‘chan-
nel(HIDDEN)’ command."

6

"A definiton is linked to a ‘channel(X)’ com-
mand. Moreover, X contains ‘comment’,
‘COMMENT’, and so on"

3

Table 4.3 The number of occurrences of the different methods grammars use code comments.

This is open to further research.

4.2.3 RA3b - What is the frequency of grammars including, streaming
or excluding (skipping) code comments?

In this section, we discuss, ’What is the frequency of grammars including, streaming or
excluding (skipping) code comments?’. The exact ways each of the sampled grammars stored
code comments is recorded in Figure 4.3.

Semura’s work noted 4 types of comments [43] (although the quantity of each was not
mentioned). Our survey observations matched those patterns. The numbers of each within
our samples were as follows in Table 4.3.

We also noticed occasions where no comments were identified, or comments were parsed
normally as a token. 4 grammars of this research’s did not handle code comments.

Two thirds (66.7%) of comments are attempted to be obscured - skipped or hidden -
in the languages that contain code comments. In the case of accessing separate channels,
comments channel would successfully provide the information that can be pulled. In contrast,
the ’Hidden’ channel is often a substitute for all actions skipped, and would be conflated
with characters such as spaces between tokens (depending on the language).

In instances where comments are parsed they can simply be retrieved, however the
solution will require their addition and exact phrasing, unless they are a normalised parameter.

It would be ideal if grammars were written with comment usage in mind, but to circumvent
comment skips, the grammar would have to be modified. In the majority of programming
languages, the code comment token was literal. Hence fixing this would be a process of
finding the token and changing it to a specific channel, or having it parsed. To have this
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solution be domain-specific, the ideal would be to stream it to a shared channel name for
comments across grammar files such as "Comment".

Summary of RA3b

The majority of code comments are skipped, however they are often literally named and
a swap of function can be performed. If the comments are streamed to the same channel,
this creates the possibility of being able to identify the inclusion of code comments, read
code comments, respond to their position (or lack of position) and to use code comments in
feedback.

4.3 Chapter Summary

Through this chapter, we first used the technical analysis to evaluate aims: 1a, 1b and 2a. Out
of all the included grammars, 99% of problem code tested in Nue Tutor returned appropriate
steps to reach a given goal code from problem code. However, despite sharing the same
weighting aims as ITAP[17], the method at the time unreliably identified which goal code
was closest to the problem code out of a selection of goal codes. Only 40% of grammars
correctly identified the correct closest goal codes reliably. This is attributed to being an older
version of the weighting algorithm and needs re-evaluation. Overall, we declared a success
for the use of the algorithm for language-independent adaptive feedback.

For language-specific components, we listed one must facilitate for each language:

• Finding the correct root token.

• Multiple compilations. (For language exceptions - 1 out of our 16 included)

• Which tokens should be normalised. (Functional without)

• Compilation into a Virtual Machine. (Functional without)

• Quality Feedback - (Functional without)

• Layout Feedback - (Functional without)

As for which token to use for the root token, we found it was reliable to use a token not
included in any phrase, and with a definitively ultimate name such as: document, file, or the
language name. This was at a rate of 75% of the sampled languages. It is still critical to verify
and find the appropriate root token (or tokens in the rare case of multiple compilations).
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We then used the user evaluation to evaluate aims 2b, 3a and 3b. The integrity of the user
evaluation results was questionable, but patterns between the scoring within the technical
analysis and the user evaluation were found. The number of literal terms within tokens, and
the number of descriptive terms within a token affected how easy to determine the meaning
of each token was. The number of words and technical terms did not affect how legible the
tokens were. The overall scored experience of participants using programming languages at
all was very low, which may be the reason technical terms had no definitive occasions where
they could be observed to help. Out of the 4 parameters forming feedback (Location, Value,
Action and Context) Location and Value appeared to help considerably, and Context was
relatively lower regardless of descriptive score.

Compilation of ANTLR4 was consistently below 20 seconds, with a median of "Instant"
compilation speed. The amount of characters in code affected the compilation speed, but the
number of lines forming the language grammar did not.

Finally, we noted the pattern with how grammars treated code comments was consistent
with Semura’s work [43]. The majority of code comments were skipped or hidden.





Chapter 5

Research Contributions

This research contributes in the field of Intelligent Tutoring Systems for Programming
(Intelligent Programming Tutors), following unique features:

Contribution 1

Concerning the problem of IPT syntax feedback and semantic feedback having to be built
very specifically for a given programming language:

We aimed to "successfully propose, describe and test a state of the art method of pro-
viding guaranteed syntax feedback and semantic feedback in IPT, for theoretically every
programming language".

Through literature reviews, I found an absence of IPT that can facilitate more than
one programming language. Hence I also observed that only one domain-independent and
language-independent IPT existed with state of the art adaptive feedback that could return
feedback regardless of the code state - for Python3 only.

For this, I documented, created and tested the method of creating the first programming
language-independent IPT framework, and it is capable of hint generation; returning syntax
and semantic feedback for a unanimous (greater than 99%) number of user submitted code
states across programming languages.

I verified this in the IPT framework using an open source repository of code examples,
and programming language grammar files not specifically built for this domain. Additionally,
a user friendly build of this IPT was distributed to users unfamiliar with the framework,

Contribution 2

Concerning the problem of IPT having authoring tools needing to be made specifically for
both the formatting of task creation, and the given language:
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We aimed to "facilitate task creation through an authoring tool that is capable of working
across programming languages".

Through literature reviews, I found authoring tools specifically for their domain in primary
literature, and reviews of authoring tools through the field of IPT evaluating on a need for
more domain independent applications of authoring tools [56, 58] in secondary literature.

For a programming language-independent IPT framework, I created, tested and doc-
umented the method of creating an authoring tool, that produces tasks capable of hint
generation; reliably returning syntax and semantic feedback for a unanimous (greater than
99%) number of user submitted code states.

My research is not the first to use abstract syntax trees comparisons to guarantee hints
are generated for any submitted code (Kelly Rivers[35] was the first to ensure the method
worked reliably for all code for Python3). However, the way "canonicalisation", "path
construction" and "hint generation" have been implemented is unique (reification was omitted
and is an area open to research). Furthermore, the assurance and testing of the general
method for all possible programming languages is unique, as well as the facilitation of
working with an indefinite number of programming languages. This is the first programming
language-independent IPT framework.

Contribution 3

Concerning finding a renowned repository that can be used for program synthesis which was
only domain-specific to programming languages:

We aimed to "record the effects of using ANTLR4 grammar terms on the legibility of
syntax and semantic feedback, in a language independent IPT".

Through my literature reviews, I found no documented discovery or application of
language-independent program synthesis for IPT (or any language-independent solution for
IPT). I also found no documented discussion on the naming used within ANTLR4 grammars.

I have documented, implemented and tested the first IPT that refers to a programming
synthesis framework by abstraction. I tied this program synthesis framework to a renowned
language (ANTLR4) to import or create languages. This ultimately makes the first solution
towards domain-independent program synthesis.

ANTLR4 runtime, ANTLR4 tool and the ANTLR4 repository are not the product of this
research (Terrence Parr[45] produced ANTLR4). However producing an IPT framework
that can utilise ANTLR4 (or any tool linking directly to a BNF adjacent format) to produce
language independent adaptive feedback is unique to this research.
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5.1 Research Journey

A large motivating factor for starting this research was to provide an accessible means
of providing tutoring for programming (games programming or computer science) that
was personalised and responsive to each learner. I had high expectations on what had
already been accomplished, but struggled to find a named term for the field. I settled on the
terms ’interactive media’, to ’intelligent tutoring systems’ to ’cognitive tutors’ and finally
’intelligent programming tutors’.

I primarily wanted to investigate or introduce what was ultimately, using PDDL[83] for
a learner model attached to an authoring tool. I also wanted to investigate or introduce the
effects of making such a learner model "explainable"[53, 52] or an "OLM"[50] - where both
terms were ultimately synonymous with each other. I mainly wanted to investigate whether
an open learner model would improve motivation with the learners using an CPT, and the
accuracy of the suggested tasks.

I investigated what had been performed in IPT through literature reviews on IPT, each
lessening in scope. Along the way, I struggled to find synonymous terms across IPT. I
found the recurring term "adaptive feedback", as well as references to the 4 models but
with inconsistently referenced sources: "learner model", "interactive model", "pedagogical
model" and "domain model". My difficulty finding recurring synonyms was consistent with
my findings in the final literature review I performed; there is little consensus on even the
synonyms for ’ITS for programming’ outside of adaptive feedback, interactive model and
domain model.

I also could not find any form of "generative learning"[40] in my studies of existing IPT
aside from self-explanation[84] facilitated outside Garcia’s work [42]. The primary aim
of my research was to introduce and investigate the effects of promoting self explanation
within the IPT framework itself - through learners writing code comments. The idea was to
investigate this alongside the state of the art method for providing adaptive feedback and a
given learner model.

I additionally could not find any existing CPT in my own secondary study, or a thorough
study of other secondary studies (documented in Section 2.1). The final problem was finding
that the state of the art methods were domain-specific implementations. This became the first
key investigation I intended to write up after a number of reconsidered1 literature reviews.

I pursued finding a means to create and interface a compiler for languages I had interest in
creating this for: C#, C++ and Lua. In the pursuit to perform this in the same manner across
these 3 languages - and find constants across all programming languages (by definition) - I

1Following finding that the there was not as much (or any) content exploring for each hypothesis/research
theme
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found ANTLR4[46]. It not only contained a means of compiling code within Nue Tutor’s
built in framework, but had already solved the queries on ’what concepts were consistent
across programming languages (by definition of programming languages), and could be built
around’[45]. ANTLR4 runtime’s process contained what ITAP[17] had to call directly from
the Python3 framework, but for any given languages.

I confirmed this was completely new and unexplored - the current (at the time) state of
the art system of adaptive feedback that could be used across programming languages. My
research aimed to introduce and investigate the extent in which this could be used. Initially
this was to serve as the foundation for my investigations with the learner model in IPT, and
investigations with the self explanation model in IPT. However, due to time constraints and
the fact this was a large area of investigation, this became the focus of the research.

To verify if this was genuinely possible, I started by creating an adaptive feedback
framework, with ANTLR4 for program synthesis that was referred to by abstraction. I named
it "Nue Tutor", as it could take the any form (of language) but was the same construct, method
and software regardless of the form it assumed. The test interface started simply as an area
to type the problem code state, an area to type the goal code state, a button to generate a
solution, and an area with the generated identified solution (with each step phrased like
adaptive feedback). I used a custom created tutorial language, and a few samples from the
ANTLR4 repository. After bug fixing and refining, the resulting construction of its method is
mentioned in Section 3.1.

I noted the potential constraints the grammars could provide, and themes to investigate
regarding how well the method - language-independent adaptive feedback generation -
worked. I constructed an authoring tool (with the initial research aims2 still in mind) that
could save multiple goals, and hide them from the user when loaded as a task to do. I
additionally sampled more languages from the repository under a specified criteria. This
state of Nue Tutor was used to perform the technical analysis, however Nue Tutor’s method
of hint generation was further refined in future (transfer match was excluded at the time).
This was the second key investigation I intended to note alongside the first.

From this technical analysis, we confirmed the unanimous success of feedback returned
(regardless of the learner’s code), given a language that uses only one root note that encapsu-
lates all note types. We also confirmed that use with unedited grammar samples from the
ANTLR4 repository worked, given that they could compile into C# in the ANTLR4 tool.
Additionally, we confirmed that even if the goal code has what would be syntax errors, Nue
Tutor will note them and still identify a solution.

2"Using [PDDL][83] for a learner model attached to an authoring tool"
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By this point, the focus of the research became on the language-independent aspects of
the IPT: the rate of success, the phrasing of the adaptive feedback produced, and how the
grammar samples affect Nue Tutor. While the framework "using planning domain definition
language[83] for a learner model attached to an authoring tool" was successfully attached to
Nue Tutor, and my preceding research[85] applied a method of choosing adaptive activities
from these variables, I did not investigate this during this research. However, we included in
our investigation the variables required for a follow up with an investigation on the use of
code comments in IPT. The follow up investigation has yet to be commenced.

To verify the integrity of our technical analysis, I improved Nue Tutor, and created
a separate build for the user evaluation. A test case for the build was distributed to one
participant, however due to time constraints and late feedback received from the build, it was
sent to all the other participants in that form. This build did not provide the slot for qualitative
feedback (to verify if the meaning of each survey question term was interpreted correctly, or
additional thoughts) and did not contain the time between each click of "check" and feedback
rendering. The interface would also not expand according to screen size (potentially hiding
text). However, everything else was functional. The user evaluation raised more questions
than answers, and the integrity of the user analysis itself is admittedly questionable with
7 participants. However, there was a general consensus among the quantitative feedback
returned by the participants that was used to note patterns in what part of the instructions
they found useful, and the effectiveness of literal token names (compared to all other forms
of ’descriptiveness’ we noted).

This formed the third key investigation and the final investigation for this thesis. The three
investigations were compiled into this thesis, documenting our contribution to knowledge
on "an adaptive feedback framework for a language-independent intelligent programming
tutor (IPT) using ANTLR4". This concludes this research, however I still personally will use
the knowledge gained in this research to pursue the initial research questions indefinitely in
future.

5.2 Conclusion

ITS for programming (which can also be referred to as IPT), is a less explored and defined
sub-field of ITS. The field is overall inconsistently defined, however there is a prevalence on
the importance of adaptive feedback in IPT.

Very few IPT share methods, or the programming languages they’re built for. IPT are
also considered functional for very specific programming languages. Hence, the tools made
to create tasks (authoring tools) are also considered domain-specific.
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Given text for code, to propose, investigate and test the first domain-independent adaptive
feedback system for IPT, I successfully proposed, documented and investigated an IPT that:

• Refers to programming languages by abstraction - as simply abstract syntax trees.

• Performs program synthesis by abstraction using ANTLR4, with a renowned program-
ming language for part of the process of converting programming languages to syntax
trees.

We performed a technical analysis with 16 sampled languages from the ANTLR4 repos-
itory. From the initial sample of 23, we excluded 7 as not all grammars compiled. Each
included grammar functioned with the authoring tool and for generating tasks. Feedback was
produced more than 98% of the time across all submitted learner code states. The quality of
feedback produced and the accuracy of the trees varied.

For the feedback, the location, value, action and context all functioned. The phrasing of
the actions, location and actions reportedly helped with completed tasks, yet the phrasing
can be further developed. Value reportedly helped more or less with no recognisable pattern.
However, context was consistently marked low as rarely helpful, with no relation to their
expected technical analysis descriptive score. It is worth investigating whether this is the
perceived usefulness of context relative to the other statistics, a result of implemented
ordering and phrasing, or an affect of the phrasing of the grammar files.

Within feedback, Location and Value are strict unedited statistics from the code, making
these difficult to rephrase or improve. Clarifying what the value refers to or consist of, or
what the location is (and how to find it) are variables to consider.

In contrast, the Context and Actions within feedback can be heavily affected by phrasing.
Context is pulled directly from grammar files, and hence improvement of context would lie
in the improvement of grammar files.

As context had no correlation on the results of the user evaluation, we can not conclude
on the magnitude of what phrasing benefits context. Additionally, the sample size consisted
of 7 different users. However, we identified observed patterns for what can be considered to
affect context:

• The number of technical words in contrast to the number of literal words roughly
correlated with how reportedly easy it was to know what context referred to.

• The number of words in the context did not appear to correlate with how reportedly
easy it was to know what context referred to.

• The number of spaces in the context did not appear to correlate with how reportedly
easy it was to know what context referred to.
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• The number of abbreviations, correlated with how easy it was to discern what context
words themselves meant.

• The number of abbreviations also roughly correlated with how reportedly easy it was
to know what context referred to in code, as a likely result of the former.

There is potential for further research into how each component of this structure of adaptive
feedback (Location, Action, Value, Context) helps feedback. There is also potential research
into what can improve the helpfulness of context not just in Grammar files, but in adaptive
feedback in general.

Finally, we found that for further research to make use of ANTLR4 grammars for code
comments, there is a likelihood one may have to modify the grammar of particular languages
to support including code comments. This is because the majority of grammars omit code
comments. This means not all grammars would be compatible with any feature that uses code
comments. However it would be worth pursuing the inclusion of reading code comments
to facilitate and test the affects of self explanation. The implementation could append that
feature if comments are supported in the correct manner, and function without otherwise.

To pursue an investigation on how self explanation in such an IPT would affect the quality
of learning, this IPT needs to be built and have tasks added for an educational setting, run
and then evaluated.

We wish to further develop this research and methods, using the IPT and developing it
into a cognitive tutor that ties a language-independent authoring tool to a learner model and
the recommended tasks. Additionally we wish to develop the IPT to use code comments for
self explanation (in the adaptive feedback framework). Furthermore, we wish to also use code
comments for manually phrased code hints in the authoring tools framework. Each of these
will be implemented and tested for all programming languages through this singular domain-
independent IPT, or any other research resulting from (now defined) domain-independent
IPT.





Glossary

This section contains a list of all abbreviated terms used throughout this thesis. Each entry
has the abbreviated term, their full phrasing, and their definition.

Phrase Description

Authoring Tool A built in tool to an IPT that helps/facilitates the construction of
learning activities by tutors. These learning activities are then
supplied by the IPT for learners to complete.

AAT Automated Assess-
ment Tools

Used in the context of programming. Websites, software or
computer tools that provide programming tasks, then evaluate
the success of those tasks.

ALL Adaptive LL An algorithm for tokenising and parsing. This algorithm is an
adaptation of "LL(*)" to enable the parsing of grammars to iden-
tify ambiguities dynamically at parse time (rather than statically
defined by the construction of the grammar).

AST Abstract Syntax
Tree

A full representation of what refers to what within code. Contains
nodes referring to tokens. These nodes branch off into definitions
for other nodes, forming a literal tree of the syntax.

BNF Backus Naur For-
mat

A popular writing convention for defining the syntactic rules of a
programming; a "meta-language".

Built in The used definition of this phrase is: any feature that does not
require recompilation of the tool to use.

Class 3 Definedness For a given learning activities, these have multiple solution strate-
gies that can be used to determine if the task is successfully
completed.
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Phrase Description

EBNF Extended Backus
Naur Format

Contains a few formatting differences compared to BNF, and
facilitates the ability to handle "repetition of syntactic rules",
"special sequences", "optional choice of syntactic rules" and
"exceptions to syntactic rules".

Explainable In the context of AI, refers to "XAI". Ultimately, the act of
making an AI decision transparent and interactive. Transparent
by having AI able to communicate how it came to a decision.
Interactive by having AI able to accept correction.

IPT Intelligent Program-
ming Tutor

ITS for programming. Websites, software or computer tools
that provide programming tasks, or information. Rather than
just verifying how correctly a task is completed, they provide
contextual feedback, hints, and optionally suggestions on content
to navigate.

ITAP Intelligent Teaching
Assistant for Pro-
gramming

A state of the art IPT for Python 3. Capable of returning hints
regardless of what code is written (relative to a task). Addition-
ally, supports using correct learner code to further develop the
solutions it targets, and the hints it provides.

ITS Intelligent Tutoring
System

Automated systems designed to provide adaptive, or personalised
learning for a given subject.

LL LL A "top down" parsing algorithm. The name is not an acronym.
OLM Open Learner

Model
For systems that store information on the user (to adjust content
accordingly), these models enable learners to inquire and modify
this information to some capacity.

Parsing The process of forming structures or phrases from a series of
tokens according to the rules of a given programming language.
This process forms an abstract syntax tree (AST) - a full repre-
sentation of what refers to what within code.

PDDL Planning Domain
Definition Lan-
guage

A language for state space planning. Allows for definitions of
a "world state", objects within a world, actions that can change
the world, required states for actions, initial "problem" states of
the world and targeted "goal" states of the world. Algorithms
can then iterate to find a combination of actions that get from the
problem state to a goal state.

Program Synthesis The process of identifying a program within a programming
language, grammar or high level specification.
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Phrase Description

NLP Natural language
processing

Research around having computers parse natural sentences and
potentially respond with natural sentences.

RA# Research Aim Critical questions this research aims to answer. Has a number
and a sub-letter.

RO# Research Objective Methods to answer research aims of the corresponding number
and sub-letter.

Self Explanation The process of a learner redefining a concept. Reciting, listing,
restructuring through notes, rewriting or phrasing their definition.

Semantic Feedback Feedback on how a learner can reach a goal.
Semantic Variant Grammars of the same version of the same language, but written

differently
Significant Variant Grammars of a different version of the same language.
Syntax Feedback Feedback reporting oddities in syntax and how to fix those.
Token Recognisable combinations of letters, numbers symbols or for-

matting terms forming a singular ’word’ called a "token".
Tokenizing (Lexing) Also referred to as lexing, it is the process of identifying "tokens"

from a series of letters, numbers, symbols or formatting terms.
Converts a series of text characters into legible words for a given
programming language’s rules.
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C# Example Code

C# was noted as the exception to obtaining code from the ANTLR4 GitHub repository to form
tasks for the authoring tools. As there is no open source location for the C# "example" code
used within this thesis, this section will be used to display the code used for the experiment,
in the abscence of example code on the repository.

QuestionaireSetScript.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;

public class QuestionaireSetScript : MonoBehaviour
{

public EExpression TheStartImageIndex;
public EExpression TheEndImageIndex;

public string TheMainQuestion;
public string[] TheQuestionaireQuestions;
public string TheAnswerText
{

get
{

return AttachedConfirmedAnswer.text;
}

set
{

AttachedConfirmedAnswer.text = value;
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AttachedConfirmedAnswer.color = new Color(1f, 1f, 0.4f, 1f);
}

}

private float my_confirm_bounce = 0f;
private bool my_anim_active = false;
private int my_answer_index = -1;
public int TheAnswerIndex
{

get
{

return my_answer_index;
}

set
{

my_answer_index = value;
TheAnswerText = (my_answer_index >= 0 && my_answer_index < TheQuestionaireQuestions.Length)?

TheQuestionaireQuestions[value]:
"Select an answer";

my_confirm_bounce = 1f;
my_anim_active = true;

}
}

public QuestionaireButtonScript AttachedQuestionButton;
public Sprite[] AttachedGUIExpressions;
public Text AttachedQuestionText;
public Text AttachedConfirmedAnswer;

public enum EExpression
{

YAY = 0,
FINE = 1,
UNSATISFIED = 2,
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DIZZY = 3,
SMILE = 4,
MEH = 5

}

public void Generate_Questions()
{

AttachedQuestionText.text = TheMainQuestion;

for (int rep_question = 0; rep_question < TheQuestionaireQuestions.Length; rep_question++)
{

QuestionaireButtonScript quick_button = Instantiate(AttachedQuestionButton, transform);
quick_button.transform.SetSiblingIndex(rep_question+2);
if (rep_question == 0)
{

quick_button.TheSprite = AttachedGUIExpressions[(int)TheStartImageIndex];
quick_button.TheColour = QuestionaireButtonScript.EColour.LOW;

}
else if (rep_question == TheQuestionaireQuestions.Length -1)
{

quick_button.TheSprite = AttachedGUIExpressions[(int)TheEndImageIndex];
quick_button.TheColour = QuestionaireButtonScript.EColour.HIGH;

}
else

quick_button.TheColour = QuestionaireButtonScript.EColour.NONE;

quick_button.TheIndex = rep_question;
quick_button.TheText = TheQuestionaireQuestions[rep_question];

quick_button.TheAttachedQuestionaire = this;
}

}

// Start is called before the first frame update
void Start()
{
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}

// Update is called once per frame
void Update()
{

if (my_anim_active)
{

if (my_confirm_bounce <= 0f)
{

foreach (QuestionaireButtonScript rep_button in GetComponentsInChildren<QuestionaireButtonScript>())
{

//Squish animation
rep_button.TheImage.transform.localScale = new Vector3(1f, 2f, 1f);

}
AttachedConfirmedAnswer.transform.localScale = new Vector3(1f, 1f, 1f);
my_anim_active = false;

}
else
{

foreach (QuestionaireButtonScript rep_button in GetComponentsInChildren<QuestionaireButtonScript>())
{

//Squish animation
rep_button.TheImage.transform.localScale = new Vector3(

1f / (1f + Mathf.Cos((my_confirm_bounce) * Mathf.PI * 2f) * (my_confirm_bounce * my_confirm_bounce) / 2f),
2f * (1f + Mathf.Cos((my_confirm_bounce) * Mathf.PI * 2f) * (my_confirm_bounce * my_confirm_bounce) / 2f),
1f);

}
AttachedConfirmedAnswer.transform.localScale = new Vector3(

1f / (1f + Mathf.Cos((my_confirm_bounce) * Mathf.PI * 2f) * (my_confirm_bounce * my_confirm_bounce) / 2f),
1f * (1f + Mathf.Cos((my_confirm_bounce) * Mathf.PI * 2f) * (my_confirm_bounce * my_confirm_bounce) / 2f),
1f);

}
}

my_confirm_bounce -= Time.deltaTime * 5f;
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}

public string Print_Answer()
{

return "Question: " + TheMainQuestion + "\nAnswer: " + (TheAnswerIndex+1) + "-" + TheAnswerText + "\n\n";
}

}
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QuestionaireGroupScript.cs

using System;
using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class QuestionaireGroupScript : MonoBehaviour
{

private static QuestionaireGroupScript self;
public static QuestionaireGroupScript TheActiveQuestionaire
{

get
{

return self;
}

}

[Serializable]
public struct QuestionaireForm
{

public string TheMainQuestion;
public string[] TheQuestionaireQuestions;
public QuestionaireSetScript.EExpression TheHighExpression;
public QuestionaireSetScript.EExpression TheLowExpression;

}

public QuestionaireSetScript AttachedQuestionaire;
public QuestionaireForm[] TheQuestions;

public bool TheAutoGenerate = true;

public void Generate_Questionaire()
{

foreach (QuestionaireForm rep_question in TheQuestions)
{

QuestionaireSetScript quick_question = Instantiate<QuestionaireSetScript>(AttachedQuestionaire);
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quick_question.TheStartImageIndex = rep_question.TheLowExpression;
quick_question.TheEndImageIndex = rep_question.TheHighExpression;
quick_question.TheMainQuestion = rep_question.TheMainQuestion;
quick_question.TheQuestionaireQuestions = rep_question.TheQuestionaireQuestions;

quick_question.transform.SetParent(transform, false);
quick_question.Generate_Questions();

}
}

public int Check_Answer_Index(int its_question)
{

return GetComponentsInChildren<QuestionaireSetScript>()[its_question].TheAnswerIndex;
}

public bool Check_Answered()
{

foreach (QuestionaireSetScript rep_question in GetComponentsInChildren<QuestionaireSetScript>())
{

if (rep_question.TheAnswerIndex < 0 || rep_question.TheAnswerIndex >= rep_question.TheQuestionaireQuestions.Length)
return false;

}
return true;

}

public string Print_Answers()
{

string returner = "";
int quick_index = 1;
foreach (QuestionaireSetScript rep_question in GetComponentsInChildren<QuestionaireSetScript>())
{

returner += quick_index++ + "-" + rep_question.Print_Answer();
}
return returner;

}
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private void Awake()
{

self = this;
}

// Start is called before the first frame update
void Start()
{

if (TheAutoGenerate)
Generate_Questionaire();

}

// Update is called once per frame
void Update()
{

}
}
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GeneralNextButton.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;

public class GeneralNextButton : MonoBehaviour
{

// Start is called before the first frame update
void Start()
{

}

// Update is called once per frame
void Update()
{

}

public void On_Click_TaskComplete()
{

SurveyMaster.Load_Next_Task();
GetComponent<Button>().interactable = false;

}
}
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CSharpGrammar.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using Antlr4.Runtime;
using Antlr4.Runtime.Tree;
using AntlrHarvest;
using Antlr4.Runtime.Misc;

public class CSharpGrammar : LanguageSettings
{

public override IParseTree Create_Abstract_Syntax_Tree(string its_text)
{

AntlrInputStream quick_input = new AntlrInputStream(its_text);
Lexer quick_lexer = new CSharpLexer(quick_input);
CommonTokenStream quick_tokens = new CommonTokenStream(quick_lexer);
CSharpParser quick_parser = new CSharpParser(quick_tokens);
ParserRuleContext quick_ast = quick_parser.compilation_unit();
Tree_Compare(its_text, quick_ast);
return quick_ast;

}

public override string Language_Literal()
{

return "C#";
}

}
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