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Abstract
The term life sciences refers to the disciplines that
study living organisms and life processes, and in-
clude chemistry, biology, medicine, and a range
of other related disciplines. Research efforts in
life sciences are heavily data-driven, as they pro-
duce and consume vast amounts of scientific data,
much of which is intrinsically relational and graph-
structured.

The volume of data and the complexity of sci-
entific concepts and relations referred to therein
promote the application of advanced knowledge-
driven technologies for managing and interpreting
data, with the ultimate aim to advance scientific
discovery.

In this survey and position paper, we discuss

recent developments and advances in the use of
graph-based technologies in life sciences and set
out a vision for how these technologies will im-
pact these fields into the future. We focus on
three broad topics: the construction and manage-
ment of Knowledge Graphs (KGs), the use of KGs
and associated technologies in the discovery of new
knowledge, and the use of KGs in artificial intel-
ligence applications to support explanations (ex-
plainable AI). We select a few exemplary use cases
for each topic, discuss the challenges and open re-
search questions within these topics, and conclude
with a perspective and outlook that summarizes
the overarching challenges and their potential so-
lutions as a guide for future research.
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1 Introduction1

The term life sciences refers to those disciplines that study living organisms and life processes,2

and include chemistry, biology, medicine, and a range of other related areas. Research efforts in3

life sciences are increasingly data-driven, as they produce and consume vast amounts of scientific4

data, much of which is intrinsically relational and graph-structured.5

Much of this data is large-scale, complex, and presents many interrelationships and dependen-6

cies, thus being well suited to be represented in graph structures. For this reason, graph-based7

technologies are frequently used in the life sciences, and these disciplines have been drivers and8

early adopters of innovative methods and associated technologies.9

In this brief survey and position paper we discuss recent developments and advances in the10

use of graph-based technologies in life sciences, and set out a vision for how these technologies11

will impact these fields in future. We illustrate the contribution in this paper in Figure 1.12

We consider Knowledge Graphs (KGs) and their associated technologies to broadly include13

(i) different forms of graph-based representations, (ii) the logical languages that assign explicit14

semantics to such representations, and their associated automated reasoning technologies, and15

(iii) machine learning approaches that ingest data in graph-based representations and that process16

these graph-based representations to perform some task, e.g., data analytics.17

These different forms of graph-based representations can be further categorized based on the18

type of content represented. We therefore distinguish schema-less and schema-based Knowledge19

Graphs. More specifically, a typical KG contains either or both a schema part (terminologies20

or TBox1) and a data part (facts, assertions, or ABox). The formal semantics of KGs can be21

expressed with the OWL ontology language2.22

In the remainder of this paper we will focus on three broad topic areas in which graph-based23

technologies have been used extensively, and we illustrate each area with some specific projects or24

use cases that guide our discussion and summary of the challenges that have been encountered.25

The construction and management of KGs to represent life science knowledge;26

The use of KGs and associated technologies in the discovery of new knowledge;27

1 We introduce a list of key terms relevant to Knowledge Graphs and Life Sciences in Appendix A.
2 Web Ontology Language: https://www.w3.org/OWL/

https://doi.org/10.1234/0000000.00000000
https://www.w3.org/OWL/


Chen, Dong, Hastings, Jiménez-Ruiz, Lopez, Monnin, Pesquita, Škoda, Tamma 42:3

Life Science 
Knowledge 
Discovery
(Sect. 4)

Knowledge Graph 
Construction and 

Management
(Sect. 3)

Knowledge Graph 
for Explainable AI

(Sect. 5)

Challenges for Life Science KGs (Sect. 6)

v Scalability
v Evolution & Quality Assurance
v Heterogeneity: Multi-domain & Multi-

modality
v Human Interaction & Explainability
v Personalized & Customized KGs
v Distributed KGs
v Representation Learning: Symbolic & Sub-

symbolic Integration

§ Alignment for Knowledge Validation
§ Knowledge Integration
§ Repositories of Ontologies and Mappings
§ Ontology Extension
§ Instance Matching

§ Therapeutics and Drug Discovery
§ Protein Function Prediction
§ Predictions for Healthcare

§ Explainable AI for Healthcare Practice
§ Explainable AI for Knowledge Discovery
§ Explainable AI for KG Construction

KG in Life Sciences (Sect. 2)

v Schema-less KGs: Facts in RDF triples
v Schema-based KGs: RDFS, OWL, SHACL, etc.
v Simple ontologies: Taxonomies
v Expressive OWL ontologies

Figure 1 An overview illustration of definitions (upper right, in grey), topics (left column, in blue),
use cases (middle), and challenges (bottom right, in green) for the research of KGs in the life sciences.

The use of KGs in artificial intelligence applications to support explanations (eXplainable AI28

or XAI).29

We then provide a summary of the general challenges across the topics, that include intrinsic30

characteristics of KGs (e.g., scalability, evolution, heterogeneity) and their operational aspects in31

the real world (e.g., human interaction, personalization, distributed setting, and representation32

learning). We present the challenges by means of use cases and the current research efforts that33

address them. It is worth mentioning that while we aim to focus on the life sciences, many of the34

topics and challenges discussed in this work, especially those of KG construction and management35

in Section 3, are general and applicable to KGs in other domains such as finance, e-commerce,36

material, and urban management [114, 32], etc. The KG-based problem modeling and solving37

approaches in life science knowledge discovery could be applicable for addressing many other use38

cases and problems in a broader domain of AI for scientific discovery [178, 62].39

In the next section, we introduce several different categories of KGs as they have been used in40

life sciences. Thereafter in Sections 3-5, each of the above topics is described in a dedicated section41

together with a survey of recent advances. Finally, in Section 6 we synthesize the overarching42

challenges and trends into a perspective on the outlook for the future.43

2 Knowledge Graphs in the Life Sciences44

KGs represent semantically-described real-world entities, typically through ontologies (vocabu-45

laries or schemas) [70, 63] and the data instantiating them, and thus provide descriptions of the46

entities of interest and their interrelations, by means of links to ontology classes describing them,47

organized in a graph [161]. KGs have been widely adopted in the life sciences, as can be seen in48

the composition of the Linked Open Data Cloud3, where life sciences represent one of the largest49

subdomains. A prominent example is the KG representing annotations regarding proteins by50

means of terms in the Gene Ontology describing different protein functions [4].51

Whilst KGs are becoming increasingly popular in different domains including the life sciences,52

there is no single accepted definition of KG [45]. A KG can be formally described as a directed,53

3 http://cas.lod-cloud.net

TGDK
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edge-labeled graph G = (V, E), where V refers to the vertices or nodes, representing real-world54

entities of interest (e.g., proteins, genes, compounds, cellular components, but also pathways,55

biological processes and molecular functions, to name a few) while E refers to the edges in the56

graph, representing relationships or links between the entities in V (e.g., binds, associates, etc.).57

These may be represented as statements about entities in the form of RDF4 triples: (subject,58

predicate, object).59

However, this formal definition only focuses on the components of KGs, but does not pose60

any constraint on what a KG should model or represent, and how. This is particularly true61

in life sciences, where the term Knowledge Graph has been used to refer to diverse graph data62

structures, typically interconnected, but often isolated.63

Many of the everyday tasks faced by researchers in this domain require the systematic pro-64

cessing and integration of data and knowledge from data sources that are characterized by het-65

erogeneous syntaxes and structures, formats, entity notation, schemas and scope, e.g., ranging66

from molecular mechanisms to phenotypes. Researchers in this area have been early adopters67

of Semantic Web and linked data approaches as a means to facilitate knowledge integration and68

processing to support tasks including semantic search, clinical decision support, enrichment anal-69

ysis, data annotation and integration. However, a recent analysis of life science open data has70

identified several stand-alone data sources that exist in isolation, are not interlinked with other71

sources, and are schema-less (or use unpublished schemas), with limited reuse or mappings to72

other data sources [90]. Therefore, we can define a life sciences KG, following [133], as a data73

resource integrating one or more possibly curated sources of information into a graph whose74

nodes represent entities and edges represent relationships between two entities. This definition is75

consistent with other definitions found in the literature, e.g., [138].76

These considerations underlie the reasons why KGs in life sciences can be of different types,77

and can be categorized across different dimensions. One of the most critical dimensions (in terms78

of support for complex queries and integration) is the categorization of KGs into schema-based79

and schema-less knowledge bases. In turn, the expressivity of the schema provides a further80

categorization criterion, depending on whether schemas are modelled as simple taxonomies (e.g.,81

the NCBI taxonomy [157] included in the UMLS Metathesaurus [10]), RDFS5 vocabularies or82

(fully axiomatized) OWL ontologies. In particular, this paper refers to this broad definition of83

KGs, which we then divide into:84

Schema-less KGs composed of only relational facts in the form of RDF triples. Examples85

include the PharmaGKB dataset, an integrated online knowledge resource capturing how86

genetic variation contributes to variation in drug response [183]. Note that many semantic87

networks (defined in Appendix A) could be assigned to this category as their triples form a88

multi-relational graph.89

Schema-based KGs composed of relational facts and their schema (meta information) in e.g.,90

RDFS, OWL, and constraint languages such as SHACL6. Examples include Wikidata with its91

property constraints, and DBpedia with its DBpedia ontology. Whilst Wikidata and DBpedia92

are general-purpose KGs, they also include large-scale life science knowledge.93

Simple ontologies representing taxonomies. Notable examples include the tree structure of94

the UMLS Semantic Network7 and the International Classification of Diseases, version 1095

(ICD-10) [185].96

4 Resource Description Framework: https://www.w3.org/RDF/
5 RDF Schema: https://www.w3.org/TR/rdf-schema/
6 https://www.w3.org/TR/shacl/
7 https://uts.nlm.nih.gov/uts/umls/semantic-network/root

https://www.w3.org/RDF/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/shacl/
https://uts.nlm.nih.gov/uts/umls/semantic-network/root
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Expressive OWL ontologies, with complex axioms beyond simple taxonomies. OWL ontologies97

may be composed of a TBox and an ABox. Depending on the expressivity of the axioms98

modeled in the ontology, i.e., the basic statements that an OWL ontology expresses, OWL99

ontologies can fall into one of the previous categories: for instance, an OWL ontology with100

just an ABox can be seen as the case above of a KG composed of relational facts alone. In101

this final category we include fully axiomatized OWL ontologies, e.g., with complex classes102

and property restrictions. Notable examples of these ontologies include SNOMED CT [39],103

the Gene Ontology [4, 29], and the Food Ontology (FoodOn)8.104

3 Knowledge Graph Construction and Management105

The adoption of KGs in the life sciences is motivated by the need for standardisation of tax-106

onomies and vocabularies to support the integration, exchange and analysis of data. More re-107

cently, richly annotated data is also being used in combination with machine learning methods108

for many applications, including helping to overcome issues related to the sparsity of data and109

helping to select promising candidates for reducing expensive and time-consuming physical ex-110

periments [66]. Graph-based machine learning approaches such as Graph Neural Networks have111

been applied to a number of life science tasks [51], including drug repurposing [123] and predicting112

polypharmacy side effects [199].113

Given the diverse nature of the knowledge and tasks supported by KGs, the focus of state-114

of-the-art approaches has been the description of how individual KGs are developed within the115

specific domain [193], typically in terms of the specific approaches used for the development of the116

KG (e.g., data extraction process, relation extraction and entity discovery), rather than on the117

overall development process. More recently, some efforts have focused on providing an overview118

of development approaches and pipelines for the construction of KGs in the life sciences, and119

beyond [133, 167]. The process of constructing a KG depends heavily on:120

The type of data sources integrated and annotated by the KG, e.g., CSV files, public and121

proprietary data sources, structured databases, full-text publications, etc.122

The granularity of the KG to be constructed, e.g., schema-less KG, simple or expressive123

ontology.124

The usability expectations in downstream applications, e.g., the ability to customize and125

manipulate the graph to support different use cases, or the ease of consumption as input to126

machine learning methods [53].127

A recent systematic review [167] surveyed different KG development approaches to determine128

a general development framework. The review identified six main phases that are common across129

different KG development approaches:130

1) Data source selection.131

2) Ontology construction.132

3) Knowledge extraction.133

4) Knowledge ingestion and validation.134

5) KG storage and inspection.135

6) KG maintenance and evolution.136

8 http://foodon.org

TGDK

http://foodon.org


42:6 Knowledge Graphs for Life Sciences

In the remainder of this section we will present the individual phases and the role they play137

in a KG development process by means of two use cases, where we illustrate the construction138

of KGs and discuss how these support knowledge integration and validation (Section 3.2). We139

then present some recent technical developments in Section 3.3, while Section 3.4 discusses open140

challenges for the construction and management of KGs.141

3.1 Knowledge Graph Construction Phases142

This section provides more details on the phases involved in the KG construction process, with143

the aim of identifying recent trends, rather than providing an exhaustive literature survey. These144

phases are discussed in order of execution, however the ontology construction phase can occur145

either together with the data source selection (if an ontology covering the domain of interest146

already exists or can be constructed through a set of given requirements) or as part of the147

knowledge ingestion and validation phase, where an ontology is built semi-automatically from the148

available data or through modularization and alignment of existing ontologies.149

3.1.1 Data source selection150

This phase identifies the data sources that are to be integrated by the KG, which in turn affects151

the choice of knowledge extraction techniques. Generally, life science KGs ingest knowledge152

from structured, semi-structured and unstructured data sources. By structured we refer to data153

modeled according to an existing structure, e.g., data in tables or public or proprietary reference154

(relational) databases such as UniProt [30] or ChEMBL [52]. Semi-structured data refer to, e.g.,155

XML documents [119], whereas unstructured data refer to data that do not conform to a given156

structure, i.e., free-text sources, such as scientific publications from PubMed9. Data ingested157

from manually curated databases [133] and semi-structured sources constitute the foundation of158

a KG [53], generally defining the entities and some of the relations in the KG. This data is then159

further enriched by performing text mining on large-scale free text sources, in order to extract160

relationships, which is the objective of the knowledge extraction phase.161

3.1.2 Ontology construction162

The aim of this phase is to define a common, consensus-based, controlled vocabulary to describe163

the data in an ontology [149]. The existence of a common structure, or schema, supports querying,164

integration and reasoning tasks over the KG.165

Traditional ontology engineering approaches are divided into top-down or bottom-up. Top-166

down approaches are based on more or less formal ontology engineering methodologies [47, 98, 134]167

or common practices [3] to build ontologies from a description of the domain elicited from domain168

experts [132], and/or by reusing or extending existing ontologies [84]. Ontology engineering169

methodologies define the ontology development process in terms of requirement analysis, entity170

and property definitions, ontology reuse, validation and population. In contrast, bottom-up171

approaches utilize semi-automatic data driven techniques, e.g., ontology learning from text [113],172

and can be used to refine and validate an ontology. These approaches are discussed in more detail173

when presenting the knowledge ingestion and validation phase.174

Whilst general purpose ontology engineering methodologies have evolved to be used in the175

development of KGs [142], a considerable number of ontologies in the life science domain have been176

9 https://pubmed.ncbi.nlm.nih.gov

https://pubmed.ncbi.nlm.nih.gov
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built as part of the Open Biological and Biomedical Ontologies (OBO) Foundry effort,10 which177

defines a set of development principles for biological and biomedical ontologies and provides a suite178

of high-quality, interoperable, free and open source tools that support ontology development [118].179

3.1.3 Knowledge extraction180

Knowledge extraction refers to the identification of entities and their relations from the data181

sources, which is a crucial step in the development of a KG [167]. Entity extraction identifies182

entities from the various data sources selected using Natural Language Processing (NLP) ap-183

proaches and text mining techniques to analyse and extract relevant information from large text184

corpora [181, 106, 73]. Named entity recognition (NER) supports the identification of named185

entities in text, such as drug names, diseases, or chemical compounds, and their classification186

according to pre-defined entity types [130]. NER approaches in the life sciences are typically187

based on labour intensive tasks such as the definition of generic (e.g., orthographic, morpholog-188

ical, or dictionary-based) and specific rules that are typically defined by experts, and are not189

easily applicable to other corpora [198]. There are a number of issues hindering these approaches:190

a) the pace of scientific discovery and the identification of new entities; b) the large number of191

synonyms and term variations associated with an entity; and c) entity identifiers that are com-192

posed of a mixture of letters, symbols and punctuation, often in large sentences [104]. More193

recent approaches have proposed the use of supervised machine learning methods (e.g., condi-194

tional random fields, or Support Vector Machines, SVMs, neural networks, and neural language195

models in particular) [115, 88, 36] either in isolation, or combined in hybrid approaches to improve196

accuracy [152].197

Entity recognition generates entities that are isolated and not linked [167]. The goal of Rela-198

tion extraction is to discover relationships of interest between a pair of entities, thus describing199

their interaction. Relation extraction is a necessary step for entities defined in semi-structured or200

unstructured sources, whereas structured data sources are characterized by explicitly identifiable201

relationships. Typical approaches for relation extraction include rule-based [77, 148, 147], super-202

vised [109, 50] and unsupervised approaches [101, 133]. Rule-based relation extraction identifies203

keywords (based on existing ontologies or expert defined dictionaries) and grammatical patterns204

to discover relations between entities. Supervised relationship extraction methods utilize publicly205

available pre-labelled datasets (e.g., BioInfer [144] or BioCreative II [100]) to construct generalized206

patterns that separate positive examples (sentences implying the existence of a relationship) from207

negative ones. Supervised approaches include SVMs, Recurrent Neural Networks (RNNs) and208

Convolutional Neural Networks (CNNs) [7, 133]. Unsupervised relation extraction methods [116]209

have emerged to address the lack of scalability of supervised relation extraction methods, due to210

the high cost of human annotation. Unsupervised methods involve some form of clustering or211

statistical computation to detect the co-occurrence of two entities in the same text [133].212

More recently, end-to-end approaches (End-to-End Relation Extraction – RE) have been used213

to tackle both tasks simultaneously. In this scenario, a model is trained simultaneously on both214

the NER and Relation Extraction objectives [76]. Furthermore, rule-based approaches can be215

combined with relation classification using specialized pre-trained language models adapted for216

life science domains, e.g., BioBERT [105], SapBERT [111], and RoBERTa-PM [107], to name a217

few. There is also a recent trend to probe and prompt pre-trained language models to extract218

relations (e.g., disease-to-disease, disease-to-symptoms) [190, 166].219

10 https://obofoundry.org

TGDK
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3.1.4 Knowledge ingestion and validation220

The aim of this phase is to ingest the entities and relationships extracted in a previous phase,221

which models knowledge from different sources. These entities and relations can be incomplete,222

ambiguous or redundant, and need to be appropriately aligned and integrated, and finally anno-223

tated according to the ontology constructed in phase 2.224

Knowledge integration or fusion can critically improve the quality of data by performing entity225

resolution, i.e., the detection of different descriptions of the same real-world entity (also called226

entity matching, deduplication, entity linkage or entity canonicalization), prior to ingesting them227

in the KG. This reconciliation step is particularly crucial in the life sciences, where duplication can228

be caused by data modelled using different vocabularies or ontologies, or when data is extracted229

from literature sources that are rapidly changing. The severity of the ambiguity depends on the230

number of ontologies available for the domain. For instance, the number of gene vocabularies231

is far smaller than the number of disease vocabularies that could be present in the ingested232

datasets. Linking these entities requires costly alignment processing; in particular the alignment233

of disease entities is especially problematic given the number of different coding systems, whose234

conversion is often not trivial [53]. We further explore this issue in two of the use cases presented235

in Section 3.3, where we explore the problem of aligning vocabularies and ontologies through the236

use of mapping repositories and instance matching in automated clinical coding.237

Entities are assigned unique identifiers (URI or IRI) that support the definition of bespoke238

namespaces, and support integration by reusing identifiers in related namespaces. Entity resolu-239

tion is based on clustering similar entities together in a block, where similarity measures are used240

to detect duplicates [167]. Typical methods include sorted neighborhoods and traditional block-241

ing; and machine learning methods are commonly used for similarity computation, e.g., feature242

vector computation [96].243

This phase may also include the bottom-up construction of the ontology for those applications244

where a top-down approach is not feasible. Bottom-up approaches extract the relevant knowledge245

first, and then they construct the data schema / ontology based on the extracted data, typically246

using (semi-)automated methods, based on machine learning. Ontologies define the structure of247

the knowledge graph, which supports querying and data analytics. In bottom-up ontology devel-248

opment the structure of the knowledge graph is determined based on the extracted knowledge,249

thus providing a structure for this knowledge [71].250

Often the construction of ontologies (either bottom-up or top-down) relies on the ability to251

correctly align and reuse entities defined across different domains and KGs. Furthermore, reuse252

of (or conformance to) existing upper level ontologies, e.g., BFO (Basic Formal Ontology) [3]253

provides the basis for the consistent and unambiguous formal definition of entities and relations254

that prevents errors in coding and annotation. The alignment of ontologies in life sciences and255

other domains is an active area of research, and we provide an overview of recent technical256

developments and challenges in Section 3.3.257

Whilst bottom-up approaches, especially those based on alignment, are becoming more viable,258

especially given the support of language models, such as BERT [65], their performance is not259

always adequate for the task, as discussed in the second challenge in Section 3.4.260

Knowledge enrichment and completion improve the KG quality by performing reasoning (KG261

materialization), inference [58] and optimization. Reasoning and inference support the assertion262

of new relations based either on logical reasoning (e.g., [131, 173]) or machine learning tech-263

niques (e.g., statistical relational learning or through embedding based link predictors for new264

concepts [35, 36, 68, 78] and node classifiers, also called KG refinement [138]). The extent and265

type of logical inferences depends on the expressivity of the ontology built in phase 2, or in a266

bottom-up fashion in this phase, together with any associated mappings. Description Logic for-267
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malisms, such as OWL, use logic-based reasoning for detecting and correcting incorrect assertions268

and ontology alignments [25].269

3.1.5 KG storage and inspection270

KGs need to be accessible to support a variety of different tasks, beyond the mere integration of271

different knowledge sources, and thus KG storage management [167, 145, 180] is an active area272

of research. Current KG storage mechanisms are divided into relation based stores (e.g., [1]) and273

native graph stores (e.g., [200]). Relational KG stores, either based on relational databases or274

through NOSQL databases and / or triple stores such as Jena TDB11, have reached a considerable275

level of maturity and have been optimized in order to avoid common problems, e.g., a large number276

of null values in columns or optimized query performance [145]. Graph databases store nodes,277

edges and properties of graphs natively, and support query and graph mining tasks. Examples278

of state of the art implementations include Neo4J12, GraphDB13, and RDFox14. The evolution279

of the performance of these systems has been the object of systematic studies [9], whereas [171]280

explicitly focuses on biomedical use cases.281

Storage management has implications on the ways KGs support expressive queries for nodes282

and edges and visualization, to support data analysis, navigation and discovery of related knowl-283

edge [96, 165]. Graph databases often provide built-in tools for visualization, e.g., Neo4J, whereas284

different Javascript libraries (e.g., SigmaJS15) are available for developing visualization front ends.285

Support for complex queries is also either built in a graph database or a triple store by support-286

ing the SPARQL query language [143, 200], or proprietary query languages such as Cypher [49],287

supported by Neo4J.288

3.1.6 Knowledge maintenance and evolution289

Given the rapid scientific development in the life sciences, and the consequent continuous update290

of ontologies for this domain, artefacts annotated with these ontologies can become outdated291

very quickly, and require some form of update (also called ontology extension). These update292

mechanisms need to be automated to ensure that they scale to the size of KGs. Automatic update293

approaches are based on the periodical detection and extraction of new knowledge that is then294

mapped to existing entities and relations in the KG [186].295

Update mechanisms are typically based on the detection of changes [124] that can affect an296

ontology, e.g., addition, removal or modification of meta-entities (i.e., entities, relations and their297

definitions). These changes include renaming concepts and properties, setting domain and range298

restrictions, or setting a subsumption relation. To date, the most comprehensive account of299

ontology change is given in [48], where change is described for different sub-fields, e.g., ontology300

alignment, matching and mapping, morphisms, articulation, translation, evolution, debugging,301

versioning, integration and merging; each with different requirements and implications. The302

study [140] further investigates the impact of biomedical ontology evolution on materialization.303

Currently available tools and methodologies use (semi)-automated methods to perform many304

of the operations that trigger a change in an ontology and the consequent creation of a new ver-305

sion [56, 65]. Different ontology management platforms and portals mandate different principles306

11 https://jena.apache.org/documentation/tdb/index.html
12 https://neo4j.com
13 https://graphdb.ontotext.com
14 https://www.oxfordsemantic.tech/product
15 https://github.com/jacomyal/sigma.js
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and frameworks for handling ontology versioning (e.g., OBO foundry16 or BioPortal17), but these307

are typically implemented by ontology developers with limited tool support. Section 3.3 presents308

an example of automated ontology extension that relies on machine learning to cope with the309

scale of data.310

3.2 Examples of Life Science KG Construction311

In this section we provide two examples of life science KGs that illustrate in practice the phases312

composing the generic KG construction process discussed in Section 3; namely a KG for Phar-313

macogenomics, PGxLOD [121], and one for Ecotoxicological Analysis, TERA [127, 128].314

Alignment for Knowledge Validation: An Example of Pharmacogenomics. As men-315

tioned in Section 3, the task of aligning knowledge in KGs supports several downstream appli-316

cations and domains. For instance, pharmacogenomics studies the influence of genetic factors317

on drug response phenotypes (e.g., expected effect, side effect). Hence, pharmacogenomics is of318

interest for personalized medicine. The atomic knowledge unit in pharmacogenomics is a ternary319

relationship between a drug, a genetic factor, and a phenotype. Such a relationship states that320

a patient being treated with the specified drug while having the specified genetic factor may321

experience the described phenotype. Semantic Web and KG technologies have been employed in322

this application domain, for example by building ontologies in which patients and pharmacoge-323

nomic knowledge are represented, and then using deductive reasoning mechanism to conditionally324

recommend genetic testing before drug prescription [156]. However, the knowledge relevant to325

pharmacogenomics is scattered across several sources including reference databases such as Phar-326

mGKB, and the biomedical literature. Additionally, this knowledge may lack sufficient validation327

to be implemented in clinical practice. For example, some relationships may have only been328

observed in smaller cohorts of patients or in non-replicated studies. Hence, there is a need to329

align different sources of pharmacogenomic knowledge to detect additional evidence validating330

(or moderating) a knowledge unit. To this aim, the PGxLOD KG was proposed [121]. Automatic331

knowledge extraction approaches were applied on semi-structured and unstructured data from332

PharmGKB and the biomedical literature to represent their knowledge in the KG. Then, match-333

ing approaches were developed to align knowledge units from various sources [120, 122]. The334

resulting alignments outlined some agreements between PharmGKB and the biomedical litera-335

ture, which was expected since PharmGKB is manually completed by experts after reviewing the336

literature. Interestingly, this automatic knowledge extraction pipeline could guide the manual re-337

view process by automatically pointing out studies confirming or mentioning a pharmacogenomic338

knowledge unit.339

Knowledge Integration: An Example of Ecotoxicological Analysis. In ecotoxicological340

analysis, data and knowledge from different domains such as chemistry and biology are often341

needed. These are usually located in different sources such as spreadsheets or CSV files for342

local experimental results, open databases for public research results, and ontologies for domain343

knowledge. Thus knowledge integration becomes a critical and fundamental challenge before344

real analysis can be conducted. In the study by Myklebust et al. [127, 128], which aims to345

predict adverse biological effects of chemicals on species, a toxicological effect and risk assessment346

KG named TERA was constructed for knowledge integration. TERA includes three sub-KGs:347

(i) the Chemical sub-KG, which is constructed by integrating the vocabulary MeSH (Medical348

16 http://www.obofoundry.org/principles/fp-004-versioning.html
17 https://bioportal.bioontology.org

http://www.obofoundry.org/principles/fp-004-versioning.html
https://bioportal.bioontology.org
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Subject Headings) with selective knowledge from two chemical databases PubChem and ChEMBL349

utilizing the chemical mappings in Wikidata; (ii) the Taxonomy sub-KG, which is constructed by350

integrating EOL (Environment Ontology for Livestock) and the NCBITaxon ontology utilizing351

NIBI-EOL mappings in Wikidata; and (iii) the ECOTOX sub-KG, which is composed of RDF352

triples transformed from experimental risk results and is aligned with the other two sub-KGs by353

the ontology alignment system LogMap [82] and the chemical mappings in Wikidata. Another354

example of knowledge integration is for drug repurposing, where the KG Hetionet18 is created by355

integrating 29 public resources, including biomedical KGs and other types of data [69].356

3.3 What has been done: recent technical developments357

Given the many existing ontologies in life sciences, e.g., ontologies available in the OBO Foundry358

collection or in BioPortal [135], KG construction usually involves the reuse, alignment, and en-359

richment of state-of-the-art ontologies. The existing ontologies in life sciences need to be updated360

given the new discoveries in the field. This is broadly a key issue in the management, mainte-361

nance, and evolution of ontologies. We select a few promising use cases below to highlight some362

recent developments that support the KG construction in the life sciences.363

Repositories of Ontologies and Mappings. Ontologies and their mappings play a central role364

in semantically enabled products and services consumed by life science companies, academic in-365

stitutions and universities, as highlighted by the Pistoia Alliance ontology mapping project [60].19
366

Ontology mappings are essential in knowledge graph construction tasks to bridge the knowledge367

provided by different ontologies and expand their coverage. Ontology mappings can also play a368

key role when identifying the right ontologies to be reused as they will enable the retrieval of369

the relevant (overlapping) ontologies for the domain of interest. For this reason, a number of370

notable efforts in life sciences have created large repositories of ontologies and mappings to serve371

the research within the community. Prominent examples include the UMLS Metathesaurus [10],372

BioPortal [135, 155], MONDO [175], and the EBI services: OLS [177], OxO [86] and the RDF373

platform [87]. The UMLS Metathesaurus is a comprehensive effort for integrating biomedical374

ontologies through mappings. In its 2023AA version, it integrates more than two hundred vo-375

cabularies, with more than 3 million unique concepts and more than 15 million concept names.376

BioPortal is a repository containing more than 1,000 biomedical ontologies and more than 79377

million lexically computed mappings among them (as of July 13, 2023). The Mondo Disease378

Ontology (MONDO) is a manually curated effort to harmonize and integrate disease concep-379

tualizations and definitions across state-of-the-art ontologies (e.g., HPO [99], DO [158], ICD,380

SNOMED CT, etc.). The services provided by the European Bioinformatics Institute (EBI) also381

deserve a special mention. The Ontology Lookup Service (OLS) has become a reference to explore382

the latest versions of more than two hundred ontologies via its graphical interface or program-383

matically via its API. OxO is a repository of ontology mappings and cross-references extracted384

from the OLS and UMLS. OxO allows users to visually traverse the graph of mappings to identify385

additional potential mappings beyond direct ones (i.e., multi-hop mappings). Finally, the EBI386

RDF platform provides a unified KG with all the RDF resources at the EBI. Complementary to387

the efforts from the life sciences, the Semantic Web has also contributed to the systematic eval-388

uation of mappings in public repositories (e.g., [83, 46]) and mappings produced by automated389

ontology mapping systems (e.g., the Ontology Alignment Evaluation Initiative (OAEI) [141]).390

Automatically generated mappings of high quality have the potential to be integrated within the391

18 https://github.com/hetio/hetionet
19 https://www.pistoiaalliance.org/projects/current-projects/ontologies-mapping/
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aforementioned repositories and hence, the OAEI has always had a special focus on life science392

test cases with evaluation tracks like Anatomy [41], LargeBio [85], Phenotype [61] and the newly393

created track BioML [66]. The Simple Standard for Sharing Ontological Mappings (SSSOM) [117]394

represents a joint effort between the life sciences and Semantic Web communities to facilitate the395

exchange of mappings across different parties and repositories, while keeping the provenance and396

other relevant characteristics of the mappings.397

Ontology Extension. Ontology extension in life sciences aims to connect new concepts and398

their relations to an ontology from updated sources, e.g., scientific papers in PubMed and chemical399

information in PubChem20. Manual ontology extension, while essential for the development of400

gold standard resources, is not scalable to the full scope of large domains due to its high cost and401

low efficiency, and sometimes is even unfeasible as human beings may not be able to review the402

quantities of new information at the rate they become available. Thus machine-learning-based,403

automated methods are needed. One recent example is the use of deep learning, specifically404

a Transformer-based model, to categorize new chemical entities within the ChEBI ontology21
405

[55]. In addition, recent studies have explored enriching SNOMED CT by mining new concepts406

from texts [36] and placing them into the ontology [112, 35]. A new concept can be identified407

by NIL entity linking, i.e., exploring unlinkable mentions, usually through setting a “linkable”408

score threshold or through classification [36]. Resolution and disambiguation of NIL mentions409

with clustering can help to represent NIL entities [68, 94]. For concept placement, similar to410

the aforementioned CHEBI ontology extension [55], machine learning, especially in the form of411

Transformer-based deep learning, has been applied to predict subsumption relations between412

a new concept and the existing concepts. Complex concepts in OWL ontologies that contain413

logical operators (e.g., existential quantifier and conjunction in SNOMED CT) can be supported414

in subsumption prediction [24] and new concept placement [35]. Another group of studies use415

post-coordination or formalising a new term with existing concepts and attributes [17, 95], which416

is similar to composing subsumption axioms with complex concepts. The methods include using417

lexical features [95], word embeddings and KG embeddings [17]. Pre-trained and Large Language418

Models, through fine-tuning, zero-shot and few-shot prompting have the potential to support the419

mining [36] and placement of new concepts (e.g., by subsumption prediction [24, 67]).420

Instance Matching: Automated Clinical Coding. A main source for patients’ KG construc-421

tion is Electrical Health Records (EHR). Using medical ontologies as backbones, it is possible to422

add a layer of data by instance matching (or patient matching) through Clinical Coding. Clinical423

coding is the task of transforming medical information in EHR into structured codes described424

in medical ontologies [37], e.g., ICD and SNOMED CT. Recent approaches mainly formulate the425

problem as a multi-label classification problem. Various neural network architectures have been426

proposed and knowledge plays a key role to enhance the neural architectures [37, 81]. Pre-trained427

language models, e.g., BERT [33], have been applied to clinical coding and gradually achieved428

better results with adapted modelling methods and more advanced language models, e.g., PLM-429

ICD [72] with RoBERTa-PM [107], according to studies [37, 44, 80]. Other studies formulate the430

task as a Named Entity Recognition and Linking (NER+L) problem, by extraction of concepts431

and linking them with the ontologies [37]. Overall, the recent progress in clinical coding, along432

with the advent of Large Language Models (LLMs) suggests a trend in this area for patients’ KG433

construction from EHR. However, there is still room for improvement in knowledge integration to434

better address explainability (see Section 5 for more details) and in zero-shot learning problems,435

20 https://pubchem.ncbi.nlm.nih.gov/
21 https://www.ebi.ac.uk/chebi/
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i.e., for classifying into rare codes or concepts [37, 44, 81]. There are also further recent examples436

of instance matching with EHR data, including the works [16, 169].437

3.4 What are the challenges?438

KG construction and management often play a fundamental role in supporting life sciences with439

computation. There are still quite a few technical challenges, and many of the current tools and440

algorithms can be improved by modern machine learning and AI techniques. Here we present441

some critical and fundamental technical challenges.442

How to construct a customized KG? For a specific application, we often need to extract443

relevant data and knowledge from multiple sources, and at the same time integrate extracted444

knowledge from different sources. Considering a case study of personal health assistance,445

a customized KG with knowledge of at least exercise (sports), food, disease and medicine446

are required, while fine-grained knowledge of these aspects will lie in different domain KGs.447

The key challenge for integrating different ontology modules lies in estimating the seman-448

tic similarity and discovering the equivalence of two knowledge elements with their contexts449

considered, as well as the subsequent refinement like KG completion and knowledge represen-450

tation canonicalization. Adequate tool support to minimize manual curation but enabling the451

user involvement when required is also paramount (e.g., [108]).452

How to ensure adequate performance using machine learning based approaches for453

automated KG construction? At the TBox level, the state-of-the-art alignment between454

classes (especially for subsumption relations) seems to not yet be achieving good enough455

performance, as reflected in recent biomedical ontology alignment benchmarking [66]. At the456

ABox level, predicting missing facts for practical KG construction expects high precision (e.g.,457

beyond 90% or 95%) but only a few relations can be populated with a precision above 80%458

using prompt learning with BERT as evaluated in [176]. This is also the case to associate459

patients’ EHR (as a part of ABox) with clinical codes or concepts in medical ontologies,460

where a micro F1 score is below 60% [37]. Learning subsymbolic representations (see defined461

in Appendix A) of KG and data sources may help address the challenge. Transformer-based462

language models have achieved great performance in recent years. Among them, pre-trained463

language models such as BERT have been applied for KG construction with a promising464

performance achieved (see e.g., the package DeepOnto [65]), while the more recent and more465

powerful generative language models like GPT series [14] have not been well applied at the466

time of writing, especially in the life science domain.467

How to ensure reliable semi-automated deep learning-based KG construction with468

human interaction? Many tasks in the KG life cycle unavoidably rely on human experts469

to achieve consensus on reliable knowledge; on the other hand, as the automated KG con-470

struction process is growing opaque with deep learning methods, it is important to ensure471

trustworthiness and reliability [194]. Apart from enhancing performance metrics with novel472

methods, results with certain explainability are needed, for example, highlighting key parts in473

the data input when they are used as sources for KG construction. We discuss other aspects of474

explainability with KG, on life science knowledge discovery and healthcare decision making, in475

Section 5. Human-in-the-loop learning design for explainable KG construction may ensure the476

use of experts’ knowledge for the task across the KG life cycle, which still remains a challenge477

for future research [194].478
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4 Life Science Knowledge Discovery479

Research into AI technologies – including machine learning and KG-based reasoning – to acceler-480

ate the pace of scientific discovery is an emerging and rapidly developing field. The challenge lies481

in assisting scientists to uncover new knowledge and solutions, such as discovering novel therapeu-482

tic opportunities, identifying candidate molecular drugs to treat complex diseases or alternatively483

new uses for existing drugs, and supporting more personalized predictions.484

Knowledge Graphs are powerful tools for representing complex biomedical knowledge, includ-485

ing molecular interactions, signalling pathways, disease co-morbidities, and more. Overviews486

of graph representation learning in biomedicine for healthcare applications and polypharmacy487

tasks are presented in [110] and [54] respectively. In graph representation learning, the graph’s488

topology is leveraged to create compact vector embeddings. Through nonlinear transformations,489

high-dimensional information about a node’s graph neighborhood is distilled into low-dimensional490

vectors, where similar nodes are embedded close together in the vectorial space. Embeddings have491

been shown to be valuable for handling numerous relations in a KG while efficiently exploiting re-492

lation sparsity using vector computations. These optimized representations are subsequently used493

to train downstream models for various tasks, such as predicting property values of specific nodes494

(e.g., protein function), predicting links between nodes (e.g., binding affinity between molecules495

and protein targets), or performing classification tasks (e.g., predicting the toxicity profile of a496

candidate drug, or risk of readmission for a patient).497

It is worth mentioning that among the existing works for life science knowledge discovery,498

different kinds of KGs have been exploited. The schema-less KG can be used to model different499

kinds of interaction between instances such as proteins and drugs; the taxonomy alike simple500

ontology is often used to represent concepts and their hierarchy such as protein functions defined501

in the gene ontology, chemical compounds, species, and diseases; expressive OWL ontologies502

and schema-based KGs can be used to model complex logical relationships between concepts,503

besides simple interaction between instances. Such diverse knowledge representation capabilities504

make KGs more flexible in modeling the input data and prediction targets of different knowledge505

discovery tasks, than graphs and tabular data that are widely used in previous pure machine506

learning-based methods.507

In the following, we present some typical use cases, where machine learning techniques (includ-508

ing graph representation learning and language models) are applied over KGs built from diverse509

sources and domain ontologies, to facilitate life science discovery.510

4.1 What has been done: use cases and their recent developments511

Therapeutics and Drug Discovery: Learning a representation using multi-modal and512

heterogeneous knowledge. Drug discovery entails exploring an extremely large space of poten-513

tial drug candidates. AI can help to accelerate this process by narrowing down the most promis-514

ing candidates before expensive experimentation. The key to leveraging predictive and generative515

models for candidate solution generation lies in learning an effective multi-modal representation516

of protein targets, molecules and diseases among others. Recent research has focused on applying517

language models over large databases of proteins or molecules for self-supervised representation518

learning, such as ESM [151] and ProteinBERT [11] for protein sequences, or Molformer for the519

molecule simplified molecular-input line-entry system (SMILES) [154]. These models have exhib-520

ited remarkable success in tasks such as predicting protein interactions, binding affinity between521

drugs and targets, and protein functions and structures. However, these existing pre-trained522

sequence-based models often neglect to incorporate background knowledge from diverse sources,523

for example, biological structural knowledge.524
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Nonetheless, recent research indicates that incorporating existing expressive factual knowl-525

edge can improve results in downstream machine learning tasks. To enhance Protein Language526

Models (PLM), approaches such as OntoProtein [195] and KeAP [197] use a KG of protein se-527

quences augmented with textual annotations from the Gene Ontology (GO). OntoProtein was528

the first to inject gene ontology descriptions into a PLM for sequences to predict protein interac-529

tions, function and contact prediction. OntoProtein proposes to reconstruct masked amino acids530

while minimizing the embedding distance between the contextual representation of proteins and531

associated knowledge terms. Similarly, ProtST [189] uses a dataset of protein sequences aug-532

mented with textual property descriptions from biomedical texts and jointly trains a PLM with533

a biomedical language model.534

Knowledge Graphs are suitable data models for expressing heterogeneous knowledge and fa-535

cilitating end-to-end learning [184]. An entity in a KG can have multiple attributes with different536

modalities - where each modality provides extra information about the entity - as well as relations537

to and from entities in other sources. Graph Neural Networks (GNN) have been used to capture538

inter-dependencies and diverse types of interactions between heterogeneous entity types and mul-539

timodal attributes in KGs [103]. They achieve this by iteratively aggregating information from540

neighbouring nodes (through a process called message passing) and employing scoring functions541

to optimize the learned embeddings for downstream tasks. Otter-Knowledge [103] incorporates a542

heterogeneous KG (schema-based, containing concepts and their attributes) from diverse sources543

and modalities, i.e., each node has a particular mode that qualifies its type (text, image, protein544

sequence, molecule, etc.) and initial embeddings for each node are computed based on their545

modality. A GNN is then used to enrich protein and molecule representations and train a model546

to produce final node embeddings. The model is able to produce representations for entities547

that were not seen during training and achieve state-of-the-art results in the Therapeutic Data548

Commons (TDC) benchmarks [75] for drug-target binding affinity prediction. TxGNN [74] uses a549

GNN pre-trained on a large heterogeneous, multi-relational KG of diseases and therapeutic can-550

didates constructed from various knowledge bases. TxGNN obtains a signature vector for each551

disease based on its neighboring proteins, exposure and other biomedical entities to compute a552

disease similarity and predict drug indication/contraindication for poorly characterized diseases.553

Protein Function Prediction with the Gene Ontology. Conducting physical experiments554

for identifying protein functions is time and resource consuming. With the development of ma-555

chine learning, protein function prediction (which is the task of predicting a given protein with556

multiple and potentially hierarchical classes – functions – defined in GO) has been widely inves-557

tigated in recent years [196, 174]. A large part of these works such as GOLabler [192] focus on558

exploring feature extraction, feature ensemble, and automatic feature learning of the proteins.559

For example, GOLabler [192] utilizes five kinds of different protein sequence information while560

DeepGraphGO [191] builds a network of proteins and learns protein features via a Graph Neural561

Network. Recent methods attempt to further exploit inter-function (class) relationships that are562

defined in GO for better performance. For example, DeepGOZero [102] and HMI [188] use formal563

semantics including the class hierarchy, class disjointness axioms and complex class restrictions564

in OWL as additional constraints for training the multi-label classifier for protein function pre-565

diction. Protein function prediction is a representative multi-label classification problem where566

complex relationships of the labels are defined in a KG and can be used for performance aug-567

mentation. It is quite common in machine learning applications in the life sciences, such as the568

above mentioned automated clinical coding where the codes’ semantics are modeled by the ICD569

ontology, and ecotoxicological effect prediction where the multiple affected species of a chemical570

to predict form a taxonomy.571

Predictions for Healthcare using Ontologies with Clinical Data. Digital Healthcare572
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involves predictions using clinical data and ontologies, including diagnosis (e.g., rare diseases)573

and procedure predictions (e.g., ICU readmissions). A related concept is personalized medicine,574

which is achieved through the matching and fusion of knowledge from diverse sources, and plays575

a significant role in the prediction tasks. This often involves matching multiple ontologies [159],576

integrating curated databases (e.g., pharmacogenomics, molecules and proteins knowledge bases),577

mining knowledge from scientific literature [187] and person-centered clinical knowledge extracted578

from EHR or claim data, with distinguishing risk factors or cohorts’ demographics (e.g., age and579

gender), which could enhance predictions related to adverse effects [126] or rare diseases for580

which there are not enough labeled datasets [2]. For example, SHEPHERD [2] incorporates a581

multi-relational KG (extracted from PrimeKG [20]) of diseases, phenotypes and genes, and lever-582

ages patient simulated data to discover novel connections between patients’ clinical, phenotype583

and gene information to accelerate the diagnoses of rare diseases. Knowledge-guided learning584

is achieved by training a GNN to represent each patient’s subgraphs of phenotypes in relation585

to other gene, phenotype, and disease associations within the KG, such that embeddings are586

informed by all of the existing biomedical knowledge captured in the network topology.587

The approach in [16] constructs a KG (using expressive OWL ontologies) to predict ICU588

(intensive care units) readmission risk by enriching EHR data with semantic annotations from589

various biomedical ontologies in BioPortal. These predictions are based on KG embedding, such590

as RDF2vec, OPA2vec, and TransE, and classical machine learning methods, such as Logistic591

Regression, Random Forest, Naive Bayes and Support Vector Machines. Drawing from the Health592

& Social Person-centric Ontology (HSPO) [168], which focuses on multiple clinical, social and593

demographic facets for a patient or cohort, the approach presented in [169] builds a person-594

centric KG (expressive OWL ontology with TBox and ABox) from structured and unstructured595

data in EHR). Subsequently, a representation learning approach using GNNs is used to predict596

readmissions to the ICU.597

4.2 What are the challenges?598

We present four of the open challenges to unlock the full potential of methods to advance knowl-599

edge discovery for the life sciences using KGs, based on the use cases above.600

How to incorporate the semantics from a KG in machine learning? Many life601

science knowledge discovery tasks are modeled as a machine learning classification problem,602

whose input and output labels have additional valuable information in one or multiple ex-603

ternal KGs. The challenge lies in extracting this information, optionally encoding it into604

vector representations, and injecting that knowledge into machine learning and pre-trained605

language models. Doing this effectively remains an important open challenge especially for606

protein-related pre-trained language models [195, 189, 197]. Besides improving the accuracy607

in knowledge discovery, injecting semantics from KGs can also contribute to making the model608

more explainable (see Section 5), but to this end, much research is still required.609

How to deal with the long-tail phenomenon in machine learning with KGs? In610

machine learning classification for real-world life science knowledge discovery, the candidate611

labels often exhibit a long-tailed distribution, i.e., a small ratio of them are common with a612

large number of training samples available, while most of them are infrequent or even have613

never appeared before. For example, imbalance in training data may occur for rare diseases614

or adverse drug effects that affect only a small portion of the population [2, 74, 38]. KGs615

sometimes have encoded the relationships of the labels, and could be used to help train the616

model for predicting those long-tailed labels or enable the inference of such labels.617
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How to create an efficient multi-modal representation of knowledge to enable dis-618

covery? Most current state-of-the-art methods build learned graph representations based on619

isolated modalities. Multimodal KGs can explicitly capture labelled nodes and edges, each620

with well-defined meanings, across heterogeneous node types, relations and modalities (such621

as text, images, protein sequences, molecules fingerprints, diseases and more) [20, 103]. Incor-622

porating KGs with multiple modalities for representation learning requires computationally623

scalable methods to compute the initial embeddings for each modality, as a preliminary step624

to learn computable representations of large knowledge. Furthermore, robust learning tech-625

niques are needed for generalizing the learned representations to nodes with unseen or missing626

modalities, thereby enabling the discovery of new knowledge. An example would be inferring627

properties of proteins for which only the sequence is known.628

How to efficiently utilize and fuse heterogeneous datasets, such as human-curated629

domain knowledge bases, scientific literature and person-centered health records,630

for knowledge discovery? State of the art shows that representations can be enhanced by631

incorporating richer information available across different sources [74, 103, 159]. Bringing in632

more data during training is needed to learn representations that can be applied to a broader633

range of downstream prediction tasks. However, learning from large and diverse KGs requires634

addressing challenges such as alignment, noise handling, balancing rich expressive knowledge635

with scalability and dealing with knowledge inconsistency. Moreover, more robust learning636

methods are needed for generalizing the learned representation to multiple downstream tasks637

(e.g., knowledge-aware transfer, zero-shot and few-shot learning [23]). An important aspect638

in this regard is addressing the disparity between all of the knowledge accessible during pre-639

training and the knowledge accessible or relevant for the downstream fine-tuning [74, 103].640

5 Knowledge Graphs for Explainable AI641

Machine Learning (ML) and Artificial Intelligence (AI) methods are widely employed to tackle642

complex problems in many domains, including life sciences such as chemistry or biomedicine. Yet643

many of those methods operate as a “black-box”, not enabling domain experts to understand644

the reasoning behind their predictions [93]. This is a major concern, especially for applications645

in areas with a potential impact on human lives, or areas with legally enforced accountability646

or transparency [146]. Moreover, understanding the workings of AI methods is also crucial in647

the context of scientific applications, such as those described in Section 4, where explaining the648

prediction process can help elucidate natural phenomena [42].649

One way to address this issue is to employ the methods of eXplainable Artificial Intelligence650

(XAI). Although this is a topic long explored in the AI research community, there is still no651

widely-accepted definition of explainability, with many terms being used interchangeably, such as652

interpretability, comprehensibility, understandability and transparency [8]. Barredo et al. define653

explainability as the ability of a model to make its functioning clearer to an audience [8]. A654

slightly different definition is given in the previous survey [57]: “an interface between humans655

and a decision maker that is at the same time both an accurate proxy of the decision maker656

and comprehensible to humans”. Both definitions focus on the audience, for whom is the model657

explainable, but the second suggests an explanation is another artefact produced by a model or658

alongside the model.659

There are two distinguishable audiences in the context of the life sciences: scientists (re-660

searchers) and healthcare practitioners [170]. For the first group, the explanation is used as a661

guide to understanding within life sciences research for scientific discovery. As a result, the ex-662

planation may exist in a well-bounded context of a hypothesis or research project. On the other663
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hand, practitioners are involved directly in decisions with impact on healthcare. They need to664

consider the output of the model in an open context, and sometimes also to explain the output665

to a patient who is not a domain expert.666

A number of approaches for XAI emerge from the literature and broadly contain two parts:667

(1) transparent box design, which includes algorithms such as decision trees, where models can be668

directly interpreted by users and therefore an explanation of an output results in simply following669

the decision paths that relate input to output; (2) post hoc interpretability, which provides an670

explanation to a black-box model using additional methods such as probing, perturbing, or by671

constructing surrogate models for general ML or AI methods [93, 170].672

Utilization of KGs can greatly enhance XAI qualities as KGs are ideal for improving the673

model’s interpretability, explainability, and understandability. Some methods are directly built674

around KGs and thus take full advantage of them. Examples of those methods may include675

methods that are using paths [164], predicting links, or performing reasoning [34]. Other methods676

can be enhanced using the KG (e.g., [129]). Yet the enhancement effect greatly depends on677

the place where KGs are employed and iteratively applied: pre-model (e.g., KG construction,678

potentially multi-modal), in-model (e.g., integrating KG with machine learning models), and post-679

model (e.g., reviewing and updating KG by domain experts to be applied in the next iteration680

to enhance machine learning models and their explanability) [146]. For example in in-model681

use, a model can be pre-trained using a KG, and an example of a pre-trained language model is682

SapBERT [111], which utilises synonyms in the UMLS Metathesaurus to further pre-train a BERT683

language model. This can not only be beneficial for performance [195], but can also potentially684

enhance post-model explanation since the trained features are aligned with the KG [146].685

5.1 What has been done: use cases and recent developments686

Explainable AI for Healthcare Practice. The utilization of AI in healthcare practice raises687

the concern of leaving life-critical decisions to black-box models [146, 170]. For example, in688

the field of precision medicine which aims at tailoring drug treatments and dosages to each689

patient, clinicians require more information from a model than a simple binary decision [8]. The690

interpretability and explainability of AI models is thus an essential characteristic to make outputs691

understandable and transparent. This would enforce both clinicians’ and patients’ trust in models692

by complementing (and not substituting) clinicians’ explanations [21, 146, 170].693

To illustrate, this direction has been envisioned for several healthcare scenarios. Explainable694

AI models could support the experts in finding clinical trials that are appropriate based on patient695

history [170]. Counterintuitive or unreliable predictions that could have serious consequences696

could be explained, and thus prevented [170, 15, 92]. Some also envision such models to be697

used to explain and debunk healthcare-related misinformation [146]. As aforementioned, it is698

noteworthy that different kinds of explanations should be employed depending on the target699

audience, e.g., scientific explanations for evidence or trace-based explanations for treatment [21].700

Explainable AI for Knowledge Discovery. As introduced in Section 4, KGs can support701

knowledge discovery in life science, including the explainability of the process and the discovered702

units. In this view, Ritoski and Paulheim [150] explain that ontologies, linked data, and KGs are703

used in the interpretation step of a data mining process, e.g., for interpreting sequential patterns704

in patient data [79], or to describe subgroups in a semantic subgroup discovery process [172].705

KGs can also serve both as the basis for knowledge discovery processes and the interpretation706

process. For example, Linked Open Data connecting drugs and adverse reactions can be analyzed707

with Hidden Conditional Random Fields to predict adverse drug reactions, where the paths from708

selected drugs to outcomes visually explain the prediction [89]. Similarly, Bresso et al. [13] lever-709



Chen, Dong, Hastings, Jiménez-Ruiz, Lopez, Monnin, Pesquita, Škoda, Tamma 42:19

age features extracted from KGs (interpretable features such as paths, neighbors, path patterns)710

and white box models (e.g., decision trees) to reproduce expert classifications of drugs causing711

or not specific adverse drug reactions. The rules extracted from the decision trees contain fea-712

tures that provide explanations for the molecular mechanisms behind these adverse reactions713

according to experts. Sousa et al. [162] employ KGs to explain both protein-protein interaction714

predictions and gene-disease association predictions based on shared semantic aspects.715

Explainable AI for KG Construction The final use case considers the situation that XAI716

is applied to KGs themselves. We discussed the challenge to support human intervention in KG717

construction in Section 3.4. Recent KG construction gradually relies on data-driven, deep learning718

based methods to automatically induce knowledge from data. The deep learning models are719

opaque, and thus the process requires explainability. The resulting KG may not be accountable to720

be used for downstream applications. Trustworthy KG engineering is proposed in [194] to highlight721

the importance of embedding explainable AI and human intervention in the KG life cycle. XAI722

methods have been applied in many NLP related tasks (entity and relation extraction, entity723

resolution, link prediction, etc.) in KG construction from texts. The XAI methods rely either on724

feature-based explanations or knowledge-based explanations. While feature-based explanations725

try to infer explanations from the data or the models’ interpretation of the data, knowledge-based726

explanations aim to interpret the process with rules, reasoning paths, and structured contextual727

information. Rules and paths have mainly been used for explanation, especially for link prediction,728

a task comprehensively surveyed in [194].729

5.2 What are the challenges?730

How to integrate KGs for better XAI, especially with recent deep learning and731

language model based methods? KG may provide better data provenance for the model732

output. This can ensure explainability for communicating the model to domain experts in733

data science applications [8]. In terms of recent generative LLMs, life science KGs, with careful734

curation based on scientific publications, may help to provide provenance data to the answers735

generated by LLMs. Studies need to understand to what extent, and how, LLMs can be applied736

to induce knowledge (e.g., by probing LLMs with biomedical ontologies [67]), which then may737

provide a foundation to create better approaches to integrate KGs with LLMs. Another area738

is neuro-symbolic methods which may provide models that are inherently more interpretable739

(see further discussions in Section 6.1). Also, regarding language models (especially LLMs),740

they are capable of generating fluent texts, which can potentially serve as textual explanation741

generators from symbolic knowledge for XAI. Meanwhile, a key issue is the hallucination of742

LLMs, and KGs may support better prompting, fine-tuning and interpretable inference of743

LLMs for higher decisiveness and trustfulness [137].744

How to evaluate XAI methods that involve KG? How to measure the quality of ex-745

planations, to ensure they are corresponding to users? The majority (around 70%) of XAI746

studies for KG construction do not evaluate the quality of the explanations or only informally747

visualize or comment on a limited number of cases to show the intuitive outcome [194]. Also,748

an XAI method needs to consider the target audience, as the explainability is to be finally749

received by a group of humans [8]. For instance, only a small number of current approaches750

to XAI for KG construction involve a user study, human evaluation or task-specific met-751

rics [194]. Evaluating the quality of explanations requires some expert evaluation performed752

as ex-post evaluation, and well-defined metrics are needed for this task. An example is in [59]753

to use a combination of users’ scores for each predicted explanation in a KG link prediction754

task, where there are multiple possible explanations. More expert validated and automated755
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evaluation methods and associated metrics are required for KG-related XAI.756

6 Discussion and Conclusion757

In this work, we have summarized the recent developments of KG research in life science on three758

important topics – KG Construction and Management, Life Science Knowledge Discovery, and759

KG for XAI. While each topic has its specific challenges, there are some common challenges and760

trends for the life science KG research in general.761

6.1 Overall challenges and trends762

Meanwhile, more scalable and efficient knowledge retrieval, query and reasoning systems, includ-763

ing life science KGs and mapping repositories, are still worthy of investigation and development.764

Evolution and Quality Assurance of KGs. KGs need to be updated as new data and765

knowledge are emerging, and the schema and facts can easily become outdated or less useful for766

existing applications in life sciences. In terms of KG construction, we discussed ontology extension767

as a use case to address the evolution issue or emergence of new concepts and relations, and also768

instance matching to extend new instances for the KG. Updating KGs is also a prerequisite for769

life science knowledge discovery and knowledge discovery methods should be able to support the770

evolution of KGs with e.g., the capabilities of continuous learning and zero-shot learning. Quality771

assurance is another issue for KGs, including the tasks of knowledge error detection and correction,772

knowledge completion, knowledge canonicalization, etc. On the one hand, more effective KG773

quality assurance methods and systems should be developed, including schema and constraint774

languages for quality verification and learning-based models for prediction (e.g., [25] combines775

both for fact correction); on the other hand, knowledge discovery methods should be robust to776

noisy KGs by investigating e.g., robust KG embeddings and multi-modal representation learning.777

Heterogeneity in KGs: Multi-domain and Multi-modality. KGs contain heterogeneous778

information, which brings challenges to their construction, representation, and reasoning. Differ-779

ent schema and data in KGs can have different focuses in their scopes and domains. Integrating780

data of different domains for building multi-domain KGs is difficult with challenges in e.g., ontol-781

ogy and data matching. Besides, recent studies have explored integrating different modalities to782

construct Multi-modal KGs [27, 125, 179], for instance text [136], images [182], etc. One challenge783

to address is how to learn effective machine learning models over multi-modal KGs fused from784

different sources (patients’ records, curated knowledge bases, and scientific literature) to support785

scientific discovery as well as KG construction and management. Another challenge is developing786

accurate and efficient knowledge representation approaches for texts and images in multi-modal787

KG construction. For example, careful consideration should be given to when to simply use an788

annotation property to associate an image with an entity, and when to use a property with specific789

semantics to connect an image and an entity.790

Human Interaction and Explainability with KGs. In KG construction, human experts791

are required for many sub-tasks of KG construction and provide oversight [194]. In life science792

knowledge discovery, human experts are necessary to finally validate the predicted new knowl-793

edge. The whole process of interacting with KG in life sciences requires explainability, especially794

when sub-symbolic models (e.g., pre-trained language models) are used. How to generate clear795

explanations for human interaction and how to evaluate the quality of explanations remains a796

challenge, as well as how to achieve consensus regarding scientific understanding with automati-797

cally discovered knowledge when organizing knowledge in life science [132]. The recent growth of798

Neuro-Symbolic methods suggests their support for explainability [91, 92, 153]. A recent survey799
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[92] summarizes XAI in bioinformatics with a chapter on knowledge-based explanations, whereas800

Karim [91, Chapter 8] provides a neuro-symbolic framework for KG construction and utilisation801

for medical experts’ decision making in the cancer domain. The approach presented in [153] is802

another recent example of neuro-symbolic integration for image classification with KG-based XAI803

in the cultural heritage domain.804

Personalized and Customized KGs. A key challenge for KG construction is customisation, as805

we discussed in Section 3, to construct application-oriented KGs, where relevant sub-KGs have to806

be extracted for large-scale KGs (a.k.a. modualization) and integrated with other knowledge and807

data from different sources. Besides, many life science KGs are about individuals, e.g., patients in808

healthcare applications, where Personal Health KG enables the integration of instance-level (or809

patient-level) information and their computation is required [125]. An example is the Personal810

Health KG in [22] that supports the dietary recommendation for users, where the construction811

and population of the KG requires reusing and integrating existing ontologies, dietary guidelines,812

and time-series patient data. The other examples of KGs integrating patients’ EHR data [169, 16]813

are presented in Section 4.1. In personal KG construction, personal data should be protected.814

KG scalability should also be considered in order to be used on small devices such as cellphones.815

This is still a big challenge that has been rarely considered in using KGs in the life sciences.816

Distributed KGs. The value of healthcare data for improving clinical knowledge and standard of817

care and the potential of semantic technologies to further enhance it are well recognized. However,818

a responsible use of healthcare data at the global level (beyond each healthcare provider and819

even each country) must take into account both legal and ethical issues in data sharing, privacy820

and security. Distributed knowledge graphs can mitigate these issues, by allowing for access821

control and privacy protection. Furthermore, distributed knowledge graphs can also address the822

challenges of scientific data ownership and stewardship by enabling the decentralized publishing823

of high quality data. Several approaches for federated querying and embedding of knowledge824

graphs have been proposed in recent years [26, 139, 160], however a wide adoption of semantic825

technologies in healthcare is still lacking, with a proliferation of terminological standards and a826

disconnection between data and meaning.827

Representation Learning with KGs: Symbolic and Sub-symbolic Integration. Across828

the topics and use cases, we see the importance of transforming symbolic knowledge into sub-829

symbolic representations or combining both representations. The combination of both the neural830

and the traditional symbolic representation methods leads to a trend in neural-symbolic ap-831

proaches in the field [12]. Recently, Pre-trained and Large Language Models provide new methods832

to transfer self-supervised learning from a vast amount of corpora to support KG construction,833

e.g., OntoGPT [18] and OntoLAMA [67]. LLMs are especially good at representing texts of834

life science publications in sub-symbolic spaces for semantic understanding. KGs may also pro-835

vide a layer of explainability by validating the output of LLMs. A recent survey [137] proposes a836

roadmap for integrating LLMs and KGs. OntoProtein [195] is a recent example of how to integrate837

KGs into the process of pre-training LLMs in the bioinformatic domain, thus achieving improved838

results on protein-related knowledge discovery tasks. Also, geometry-informed representations839

of more formal KGs, especially in hyperbolic spaces or using complex geometric structures, e.g.,840

[19, 102], can usually represent the structure of the KG with low dimensional vectors. Graph841

Neural Networks may also support the encoding of KG structures in a more explainable way with842

logical rules [31].843
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6.2 Conclusion844

Knowledge Graphs have become a popular and effective method to represent heterogeneous con-845

cepts, relations, and data in life sciences. They require scalable solutions to represent and reason846

with heterogeneous data and require constant updates. Throughout this work, we covered the847

main topics and their corresponding use cases of KGs in multiple life science domains such as pro-848

tein analysis, drug discovery, ecotoxicology, and healthcare, and summarized the corresponding849

challenges. As new methods in knowledge representation appear, for instance the recent trends850

of human-in-the-loop, sub-symbolic knowledge representations, pre-trained and large language851

models, and neuro-symbolic integration, we envisage deeper applications of KGs to life science852

processes, that support the construction of more applicable KGs and the discovery of more re-853

liable scientific knowledge, with explainability and human interaction better supported. KGs in854

combination with other modern machine learning and natural language processing techniques will855

become a foundation for AI for the life sciences.856

Appendix A: Terms in Knowledge Graphs and Life Sciences857

Below we provide a list of key terms used in this paper, as well as their definitions and expla-858

nations. Note we mainly use the original sentences in the sources that are referenced as the859

definitions.860

Description Logics: a family of knowledge representation languages that can be used to rep-861

resent knowledge of an application domain. DLs differ from their predecessors, such as semantic862

networks and frames, in that they are equipped with logic-based semantics, the same semantics863

as that of classical first-order logic. Most ontologies are implemented in OWL, whose semantics864

are given by the Description Logic SROIQ. [6]865

TBox and ABox: the two components of domain knowledge in Description Logics, i.e., a866

terminological part called the TBox and an assertional part called the ABox, with the combination867

of a TBox and an ABox being called a knowledge base (KB). The TBox represents knowledge868

about the structure of the domain (similar to a database schema), while the ABox represents869

knowledge about a concrete situation (similar to a database instance). [6]870

Semantic Networks: a graph structure for representing knowledge in patterns of intercon-871

nected nodes and arcs [163]. We use the term to denote a graph of concepts and relations without872

formal semantics.873

Gene Ontology: The Gene Ontology (GO) knowledgebase provides a comprehensive, struc-874

tured, computer-accessible representation of gene function, for genes from any cellular organism875

or virus [5, 29].876

SNOMED-CT: Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) is877

a structured clinical vocabulary. It has a general and comprehensive coverage of clinical terms to878

support electronic healthcare systems and clinical applications. [40, 28]879

UMLS (UMLS Metahesaurus and UMLS Semantic Networks): Unified Medical Lan-880

guage System (UMLS) is a repository of biomedical vocabularies developed by the US National881

Library of Medicine. The UMLS is composed of three “knowledge sources”, a Metathesaurus,882

a semantic network, and a lexicon. The UMLS Metathesaurus is a comprehensive effort for in-883

tegrating biomedical ontologies through mappings. The UMLS Semantic Networks define the884

types or categories, or Semantic Types, of all Metathesaurus concepts and their relationships, or885

Semantic Relations. [10, 28]886

ChEBI: Chemical Entities of Biological Interest (ChEBI) is a database and ontology contain-887

ing information about chemical entities of biological interest. [64]888

Symbolic vs. subsymbolic representations: Rooted in cognitive science, symbolic sys-889
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tems of human cognition are related to the representation and manipulation of symbols; sub-890

symbolic or connectionist systems are most generally associated with the metaphor of a neuron,891

e.g., perceptrons as an early system [97]. In terms of AI, symbolic systems contain logic-based892

and knowledge representations, while subsymbolic systems typically contain neural networks and893

deep learning based methods [43]. Neural language models and pre-trained language models [88]894

are also classified under subsymbolic systems.895

Pre-trained and Large Language Models: Neural language modelling is the task of896

using neural network approaches to predict words from prior their contexts in a sequence. Pre-897

training is the process of learning some sort of representation (usually neural embedding based)898

of meaning for words or sentences by processing very large amounts of text (or other data in a899

sequence form, e.g., proteins and KG facts). This results in pre-trained language models. The900

dominating architecture for neural language modeling is Transformer-based models, including901

BERT, its domain specific versions, and later large variants, like the GPT series. The pre-trained902

language models of very large sizes are recently coined Large Language Models (LLMs). [88]903

Neuro-symbolic representations: refers to the integration of neural networks and symbolic904

representations to design AI models that base their prediction on both data and knowledge. [43]905
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