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Abstract 

Major Depression (MD) is a leading cause of global disease burden, and both experimental and 
population-based studies suggest that differences in DNA methylation (DNAm) may be associated 
with the condition. However, previous DNAm studies have not so far been widely replicated, 
suggesting a need for larger meta-analysis studies. In the present study, the Psychiatric Genomics 
Consortium Major Depressive Disorder working group conducted a meta-analysis of methylome-wide 
association analysis (MWAS) for life-time MD across 18 studies of 24,754 European-ancestry 
participants (5,443 MD cases) and an East Asian sample (243 cases, 1846 controls). We identified 
fifteen CpG sites associated with lifetime MD with methylome-wide significance (p < 6.42×10-8). Top 
CpG effect sizes in European ancestries were positively correlated with those from an independent 
East Asian MWAS (r = 0.482 and p = 0.068 for significant CpG sites, r = 0.261 and p = 0.009 for the 
top 100 CpG sites). Methylation score (MS) created using the MWAS summary statistics was 
significantly associated with MD status in an out-of-sample classification analysis (β = 0.122, p = 
0.005, AUC = 0.53). MS was also associated with five inflammatory markers, with the strongest 
association found with Tumor Necrosis Factor Beta (β=-0.154, p=1.5×10-5). Mendelian randomisation 
(MR) analysis demonstrated that 23 CpG sites were potentially causally associated with MD and six 
of those were replicated in an independent mQTL dataset (Wald’s ratio test, absolute β ranged from 
0.056 to 0.932, p ranged from 7×10-3 to 4.58×10-6). CpG sites located in the Major Histocompatibility 
complex (MHC) region showed the strongest evidence from MR analysis of being associated with 
MD. Our study provides evidence that variations in DNA methylation are associated with MD, and 
further evidence supporting involvement of the immune system. Larger sample sizes in diverse 
ancestries are likely to reveal replicable associations to improve mechanistic inferences with the 
potential to inform molecular target identification.  
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Introduction  

Major depression (MD) is a common psychiatric disorder arising from a complex combination of 
genetic and environmental factors that include lifestyle factors such as physical activity, smoking, 
alcohol consumption, and body mass index (BMI)1-3. The heritability of MD estimated from twin 
studies is 37%4, and polygenic risk scores (PRS) trained on genome-wide-association (GWAS) 
currently explain 1.5-3.2% of the variance in MD3.  

DNA methylation (DNAm) is one of the most studied epigenetic processes and is influenced by both 
genetic and environmental factors5. DNAm is dynamic and is associated with changes in 
environmental and lifestyle factors, including smoking6, alcohol7, and BMI8, all factors that are 
implicated in MD3. A recent study9 identified associations between methylation scores (MS), 
calculated using methylome-wide association study (MWAS) summary statistics for several relevant 
lifestyle factors and MD10. These environmental MS measures were able to capture additional 
variation associated with MD when added to direct lifestyle measures, and it is thought this may be 
due to their ability to act as an archive of environmental exposure.   

There is growing evidence from MWAS that DNAm measured in whole blood may be associated with 
MD. Jovanova et al. (2018) looked at 11 cohorts comprising 11,256 participants of European and 
African ancestry and identified 3 cytosine-phosphate-guanine (CpG) sites associated with depressive 
symptoms, which were annotated to genes implicated in axon guidance11. Starnawska et al. (2019) 
investigated depressive symptomatology in a sample of 724 monozygotic twins, with top findings 
annotated to genes previously implicated in depression12. Finally, Huls et al. (2020) identified DNAm 
associations with MD in dorsal lateral prefrontal cortex samples from N=608 participants and 
uncovered CpGs annotated to several genes that are relevant to MD13. In addition, MS calculated 
using penalised regression models have previously been utilised to investigate MD14. We recently 
used lasso regression to calculate an MD MS in N=1,780 participants and found that the scores 
explain approximately 1.75% of the variance in liability to life-time MD, acting additively with 
PRS14. Findings from these studies have been somewhat inconsistent regarding the specific 
associations. Larger MWAS studies may provide more reliable estimates of the differences in DNAm 
between MD cases and controls, and in doing so, bring insight to the molecular mechanisms 
associated with MD.  

Given previous evidence highlighting the role of DNAm in MD, we conducted an MD MWAS meta-
analysis using DNA extracted from whole blood in 18 cohorts comprising 24,754 individuals (5,443 
cases) of European ancestry. We sought to identify whether differences in DNAm were a potentially 
cause or consequence of MD using a two-sample Mendelian Randomisation framework. Further, we 
trained a DNAm classifier of MD status from our summary statistics, and assessed whether it could 
classify MD case-control status in an independent testing sample and its association with the 
abundance of inflammatory protein markers. Finally, we assessed whether significant effect sizes 
were positively associated with those in an independent East Asian sample. 
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Methods 

Cohort information 

Participants 

A total of 24,754 European-ancestry participants (5,443 MD cases) from 18 studies were included in 
the meta-analysis. The mean age of participants in each study ranged from 15 to 59 years. Details for 
each individual study can be found in Table 1 and Supplementary Methods. Written consents were 
obtained from all participants. 

DNAm data preparation and quality check 

DNAm data were obtained from DNA extracted from whole blood. Eight studies used the Infinium 
Human Methylation 450 (450K) BeadChip array (Illumina Inc., number of CpG sites ranged from 
275,868 to 438,752 after quality check) and the other ten studies used the Illumina Infinium 
Methylation EPIC array (Illumina Inc., number of CpG sites ranged from 673,085 to 809,447 after 
quality check). Quality checks and data normalisation were conducted by each individual study team. 
Details are provided in the protocol papers for each individual study (Table 1 and Supplementary 
Methods). In brief, the majority of studies used functional normalisation for methylation data pre-
processing, unless stated otherwise in the Supplementary Methods15. Similar quality check procedures 
were used, including removing probes with outlying signal intensity, bead count and detection p-
values, removing participants with mismatched sex prediction from DNA methylation data and 
removing cross-hybridising probes that map to common genetic variants (at MAF > 0.05) and 
polymorphic probes15. M-values were used for the association analysis16. 

Diagnosis of Major Depression (MD) 

Life-time diagnosis for MD were derived based on structured clinical interview or self-reported 
symptoms. Those studies that derived diagnoses of MD based on structural clinical interviews used 
criteria from The Diagnostic and Statistical Manual of Mental Disorders, Fifth/Fourth Edition (DSM-
5/DSM-4)17. Self-declared MD was based on depressive symptoms lasting for more than two weeks 
and help-seeking due to depression. Studies that derived MD diagnosis based on multiple time points 
defined cases as those who experienced any depressive episodes during their lifetime, and controls 
were those who did not declare MD throughout. A total of 7 studies defined MD cases using structural 
clinical interview (N cases = 3,246), 5 studies used DSM-criteria questionnaires (N cases = 1,130), 3 
studies used self-administered questionnaires for depressive symptoms (N cases = 528), and 3 studies 
defined MD cases based on self-declared visits to general practitioner (N cases = 539). Details for MD 
diagnosis for each cohort can be found in Table 1 and the Supplementary Materials, and Methods 
sections. 

Additional exclusion criteria per study are stated in the Supplementary Methods. 

Association analysis 

Linear regression was used to test the association between DNA methylation (M-values, dependent 
variable) and MD diagnosis (independent variable) using a pipeline available at the URL: 
https://github.com/psychiatric-genomics-consortium/mdd-mwas. Those cohorts that used their own 
specific pipelines were specified in the Supplementary Methods. The pipeline uses the R package 
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‘limma’ for linear regression on large omic data18. Three models representing increasingly rigorous 
correction for potential confounders were estimated. The simplest model contained age, sex, batch, 
the first 20 methylation principal components (PCs) or surrogate variables (SVs)19 based on the study 
protocol for each individual cohort, and white-blood cell proportions estimated from DNA 
methylation data of CD8+T, CD4+T, natural killer cells, B cells and granulocytes19. The AHRR (aryl 
hydrocarbon receptor repressor)-adjusted model had an additional covariate that adjusted for smoking 
status by including the M-values for the AHRR probe (cg05575921), due to its known accuracy in 
predicting smoking20 and its consistency and availability in all studies. Finally, a third model with 
additional covariates (referred to as the ‘complex model’) was fitted that contained body mass index 
(BMI) and alcohol consumption in addition to all the other covariates included in the previous 
models. 

Results for the AHRR-adjusted model (referred to as the ‘main model’) are reported as the main 
findings. Standardised Cohen’s d between MD cases versus controls were reported as effect sizes. 

Meta analysis 

Meta analysis was conducted using METAL (version 2011)21 in a two-stage process. First, meta-
analysis was performed on studies that used 450K and EPIC arrays separately, due to the difference of 
CpG sites available for each array (Figure 1).  

 

Figure 1. Workflow of meta-analysis. 

Those CpG sites that were either available for more than half of the studies using the given array or 
had a total sample size over 80% of the max sample size were kept for further analysis. CpG sites 
with excessive standard errors (SE>0.5, see Supplementary Figure 1) were removed from analysis. 
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Second, the summary statistics for 450K and EPIC array were meta-analysed. A fixed-effect inverse-
variance model was used without genomic control correction. P-values were Bonferroni corrected (p-
value threshold = 6.55×10-8 to reach Bonferroni-corrected significance) for all 763,265 CpGs included 
in the analysis. CpGs were mapped to genes using an annotation object generated by the 
‘IlluminaHumanMethylationEPICanno.ilm10b4.hg19’ R package (version 3.13)22. We searched the 
EWAS Atlas (https://ngdc.cncb.ac.cn/ewas/atlas) and EWAS catalog (http://www.ewascatalog.org/) 
for significantly associated CpGs and genes and the GWAS Catalog (https://www.ebi.ac.uk/gwas/) for 
annotated genes.  

Pathway enrichment analysis 

We used the ‘gometh’ function from the ‘missMethyl’ R package23 for pathway analyses using the 
results of the AHRR-adjusted model. Significant CpGs found in the MWAS after Bonferroni 
correction were selected, and the rest of the CpGs profiled in the EPIC array were included as the 
background list. Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways were analysed separately. P-values for both enrichment analyses were FDR 
corrected. 

Identification of differentially methylated regions (DMR)  

DMR were analysed using the ‘dmrff’ R package24. A DMR was identified if contained at least two 
CpG sites within a maximum of 500-bp window, showed consistent direction of effect and both/all 
had meta-MWAS p < 0.05. Statistics were meta-analysed within the identified region. P-values were 
Bonferroni-corrected for all regions (>2 CpG sites) and single CpG sites altogether. Significant DMR 
were identified if the Bonferroni-corrected p < 0.05 and the number of CpG sites within the region 
was ≥ 2. 

Analysis of the confounding effect of body mass index (BMI) and alcohol 
consumption 

BMI and alcohol consumption are risk factors for MD and are known to have widespread associations 
with DNAm7,25. To investigate whether the signals found in the main model were due to the effects of 
BMI and alcohol consumption, we conducted an additional meta-analysis of a ‘complex model’ for 
the 14 cohorts that had BMI and alcohol consumption data available (Ntotal = 20,196, see 
Supplementary Figure 2 for sample sizes of individual studies). BMI and alcohol consumption were 
added as additional covariates for the complex model. Effect sizes and p values for the significant 
associations between the basic model and complex model were compared. 

Out-of-sample classification of MD using MD-MS 

Calculation of MD-MS and statistical model 

We created MD-MS in an independent testing sample by calculating the weighted sum of M-values. 
Effect sizes from the MD meta-MWAS summary statistics were used as weights. Five p-value 
thresholds were used to select the CpG sites: p≤1, ≤0.01, ≤0.001, ≤1×10-6, and ≤5×10-8, resulting in 
five MD-MS. 
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MD diagnosis was set as the independent variable and MS as the dependent variable in the logistic 
regression model using the ‘glm’ function in R. Covariates were age, sex and M-values of AHRR 
probe. DNAm-estimated cell proportions were not associated with any of the MD-MS (p>0.5) and 
were therefore not included as covariates. Batch and genomic relationship matrix were pre-corrected 
by residualizing M-values against these covariates. 

Testing sample 

Generation Scotland (GS) DNAm data Set 3 was used for out-of-sample classification (GS DNAm 
data Set 1 and 2 were included in the meta-MWAS). GS DNAm data Set 3 used the Illumina Infinium 
Methylation EPIC array, had no overlap with the GS DNAm data used in the meta-MWAS, and 
relatedness within Set 3 and with the rest of the GS sample was removed by regressing the M-values 
against genomic relationship matrix. Quality check and preprocessing were kept consistent with the 
GS sample used in the meta-MWAS (Set 1 and 2).  

MD diagnosis was derived using electronic health records (EHR) from General Practitioners’ (GP) 
diagnosis26. Details for the EHRs were explained in the protocol paper by Kerr et al26. In brief, a 
subset of participants (N = 20,032) of GS with genotyping data gave consent to link their data to 
EHRs. All Read codes from the PH1021 
(https://phenotypes.healthdatagateway.org/phenotypes/PH1021/version/2204/detail/)27,28 and PH149 
(https://phenotypes.healthdatagateway.org/phenotypes/PH149/version/298/detail/)29 inventories of the 
HDR UK Phenotype Library for primary care data of depression were used to identify cases of life-
time MD. Participants with ≥ 1 entry of diagnosis of depression were classified as cases and those 
with no entry of any diagnosis for depression or no data to indicate depressive status were controls. 
The final testing sample contained 504 cases and 8,372 controls. 

Association between MD-MS and inflammatory protein markers  

A previous study demonstrated wide-spread association between protein abundance and DNAm30. We 
conducted a proteome-wide association analysis study (PWAS) for MD-MS seeking to reveal the 
potentially downstream proteomic consequences of the measured DNAm differences.  

Lothian Birth Cohort 1936 (LBC1936), a cohort independent of the MD MWAS, was used for the 
PWAS analysis. LBC1936 is a community-based birth cohort of participants born in 1936, recruited 
in Scotland. The sample used in the PWAS analysis had 875 people with both DNAm and proteome 
data collected at mean age 69.8±0.8�years. DNAm in LBC1936 was profiled in whole blood samples 
using the HumanMethylation450 BeadChip Kit (Ilumina, San Diego, CA, USA). Proteomic data was 
profiled using lithium heparin collected plasma samples analysed using a 92-plex proximity extension 
assay (inflammation panel), Olink® Bioscience, Uppsala Sweden. For 22 proteins over 40% of 
samples fell below the lowest limit of detection, leaving 70 post-quality-check proteins. Full details 
on sample preparation and quality check have been reported previously31. 

General linear models (GLM) were used to test the association between relative abundance across all 
70 proteins and MD-MS created at p-threshold ≤ 5×10-8. Protein abundance levels were residualised 
against age, sex, first four genetic PCs and array for proteomic data before entering association 
analysis. Residual scores of protein abundance were set as dependent variable. Array for DNAm data 
and the AHRR probe were included as covariates in the GLM. P-values were corrected using false 
discovery rate (FDR) correction. 
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Heterogeneity analysis 

Leave-one-out analysis  

To investigate whether a particular study had disproportionate influence on any meta-analytic 
association, we conducted leave-one-out meta-analyses. For each significant CpG, 18 iterations of 
meta-analysis were conducted leaving each individual study out, regardless of profiling arrays.  

Meta-regression for age 

For the CpGs that were significant in the MWAS meta-analysis, we used meta-regression to analyse 
the potential effect of age across studies. A mixed-effect model with the ‘metareg’ R package32 was 
used for the meta-regression analysis. Mean age of each individual cohort was set as a random effect. 
Standardised regression coefficients from summary statistics of each individual study were set as 
estimates of treatment effects (the ‘TE’ option). Between-study variance was estimated using the 
Restricted Maximum Likelihood (REML) method.  The standardised regression coefficient of the 
random effect of age was reported as effect sizes for the meta-regression analysis. 

Comparison between MD and BMI associations 

To further evaluate the heterogeneity of MD-DNAm associations between studies, we looked at the 
correlation of effect sizes for the summary statistics of the MD MWAS for individual studies. 
Generation Scotland (GS) that was included in the MWAS, being the largest study sample in the 
meta-analysis (N=9,502), was used to select a list of CpG sites of interest. The 1000 most 
significantly MD-associated CpG sites in GS were selected. Effect sizes for these CpG sites were 
extracted for all other studies. Correlation analysis was conducted on the effect sizes. We also 
performed a MWAS of BMI and conducted a similar analysis, for comparison with MD, to assess 
whether BMI-DNAm associations were similarly heterogeneous. 

 

Mendelian randomisation (MR) 

MD GWAS summary statistics 

GWAS summary statistics were obtained from the Howard et al. meta-analysis for MD GWAS from 
the PGC, 23andMe and UK Biobank3. A total of 807,553 individuals (246,363 cases and 561,190 
controls) of European ancestry were included in the MD meta-GWAS.  

Genetics of DNA Methylation Consortium (GoDMC) and GS methylation quantitative trait loci 
(mQTL) 

Quantitative trait loci associated with DNAm (mQTL) summary statistics were obtained from GS and 
GoDMC. For GS, full mQTL summary statistics (N=17,620) were obtained without any p-value 
thresholding. OmicS-data-based Complex trait Analysis (OSCA) was used for mQTL estimation33. 
Details for the mQTL analysis in GS can be found elsewhere34. Covariates were kept consistent with 
the main model for the MD MWAS, except for using self-reported smoking behaviour (current 
smoker, past smoker, or non-smoker) and pack years (quantity of smoking) to control for smoking and 
adding ten genetic PCs as covariates. GoDMC mQTL data were obtained through the consortium 
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website (http://www.godmc.org.uk/), using the same pipeline described in the GoDMC protocol paper 
by Min et al. (2021)35. The mQTL data contains 32 cohorts with 25,561 participants of European 
ancestry. The mQTL meta-analysis from GoDMC adopted a two-stage approach. First, a truncated set 
of mQTL data that reached the threshold of p-value < 1×10-5 were obtained from participating 
cohorts. This initial stage created a candidate list of mQTL associations (n = 120,212,413). Next, 
meta-analyses for mQTL were then conducted on these candidate associations. A full description of 
the GoDMC analysis can be found elsewhere34,35.  

Samples for GS mQTL analysis, GoDMC mQTL analysis and MD GWAS were mutually exclusive. 

Selection of CpG list 

A list of CpG sites that were either 1) significant in the MD MWAS or 2) within the identified DMRs 
were selected as CpG sites of interest. We extracted cis mQTL for further MR analysis35. 

In the GoDMC dataset, a total of 156 CpG sites that met the above criteria had at least one cis mQTL. 
cis mQTL summary statistics for these CpG sites were extracted from the GoDMC dataset. For those 
CpG sites that had more than one cis mQTL after clumping (1 Mb window, p<5×10-8), the most 
significant mQTL with the lowest p-value was selected for analysis. Those CpG sites that showed 
significant causal association with MD were selected for replication analysis using the GS mQTL 
summary statistics. 

MR methods 

MR analysis was conducted using the ‘TwoSampleMR’ R package (version 0.5.6)36. To identify 
causal effects of DNAm on MD, we used the Wald’s ratio MR method37 to analyse causal effects on 
MD using cis mQTLs (within a 1Mb window in vicinity of the chosen CpG site). The most significant 
mQTL for each CpG site that reached the threshold of p<5×10-8 was selected. Causal effects from 
DNAm to MD were tested using both GoDMC and GS mQTL data. For the causal effect in the 
reverse direction (from MD to DNAm), MD GWAS summary statistics were clumped at p ≤ 5×10-8, 
with a 1Mb window and r=0.001. Causal effects from MD to DNAm were tested using mQTL data 
from the entire GS sample (Set 1, 2 and 3). 

MWAS in East Asian ancestry 

We sought to investigate MD associations with DNAm in participants of East Asian (Taiwan 
Biobank) ancestry. Demographic and descriptive statistics are included in the Supplementary 
Materials. As in the main meta-analysis, biological and technical covariates, as well as age, sex, and 
smoking (indexed by AHRR probe cg05575921) were included as covariates. Evidence of trans-
ancestry transferability of MD-CpG effects was investigated by testing for the correlation of effect 
sizes in both ancestries. We then used the function “gometh” in package ‘missMethyl’ to assess 
ontology and pathway enrichment (GO and KEGG) for differentially methylated CpG sites at a 
threshold of�p < 1x10−5�(NCpG=24), as used in previous studies38. 
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Results 

MD meta-MWAS 

A total of 15 CpG sites were significant after Bonferroni correction from the basic model (p < 
6.55×10-8, pBonferroni < 0.05, see Table 1 for details of participating studies, Figure 2 and Table 2 for 
significant findings).  

Five of the significant CpG sites positionally map to genes associated with mental health, 
neurodegenerative and developmental disorders. The gene mapped from cg17002328 (CCDC88C) 
was associated with schizophrenia39 and ADHD40 in epigenetic studies, and brain structural measures 
in GWAS studies, such as cortical surface area41 and accumbens volume42. CpG site cg17494199 was 
associated with preterm birth43, birthweight44 and foetal brain development45 in previous epigenetic 
studies. Genes mapped from cg01150646 (MYO1C), cg10604091 (DLEU2) and cg07063853 (API5) 
were associated with Alzheimer’s disease in brain-tissue methylation levels46-48. 

A total of five significant CpG sites were associated with autoimmune diseases and biomarkers in 
previous studies, one of which was the most significantly CpG site (cg19432791 on chromosome 3), 
mapping to gene LZTFL1. From the EWAS catalog, the LZTFL1 gene was associated with biomarkers 
related to pain, such as glucose level49, and autoimmune disease or markers, such as rheumatoid 
arthritis50 and C9 protein levels30. Four of the significant CpG sites, cg12187985 (SS18), cg10145533, 
cg09726355 (GPATCH8) and cg07063853 (API5), map to genes previously found associated with 
autoimmune markers (e.g. rheumatoid arthritis50) in MWAS studies.  

Other CpG sites, cg03671627 and cg02948555 (ZNF106), were associated with traits and markers 
relevant to obesity in both genetic and epigenetic studies. These markers include, for example, BMI25 
and cholesterol to total lipids ratio51. 

A complete list of CpG sites and related genes and traits can be found in Table 2. The inflation factors 
of the association statistics for each individual cohort can be found in Supplementary Figure 3. See 
Supplementary Figure 4 for effect sizes of each study for the significant CpG sites. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 28, 2023. ; https://doi.org/10.1101/2023.10.27.23297630doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.27.23297630
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

Figure 2. Manhattan plot for the meta-analysis of MWAS for MD. Each dot represents a CpG probe. 
X-axis represents the relative position of the probes in the genome. Y-axis represents −log10-
transformed p-values. The red and yellow dashed line represents the significance threshold for 
Bonferroni and FDR correction, respectively.  

 

Identification of DMR 

A total of 37 DMRs were identified after Bonferroni correction. The most strongly associated region 
locates within the major histocompatibility complex (MHC) region, discoidin domain receptor 
tyrosine kinase 1 (DDR1) gene (CHR6:30,853,258-30,854,233), previously implicated in major 
psychiatric disorders (e.g. schizophrenia, MD and bipolar disorder). 

The top ten most significant DMRs are listed in Table 3, and the full list of significant DMRs can be 
found in Supplementary Table 1. 

 

Pathway enrichment analysis 

No GO term or KEGG pathway was significantly enriched after FDR correction (Supplementary 
Table 2). The top 10 most significantly enriched GO terms included pathways relevant to protein and 
metabolic processes (e.g. negative regulation of protein localisation to ciliary membrane) (p ranged 
from 0.003 to 8.14×10-4). For KEGG, ‘transcriptional misregulation in cancer’ and ‘lysine 
degradation’ were the only pathways that reached nominal significance (p ≤ 0.007). 

 

The basic model versus complex model 

Results for the basic model (18 cohorts, Ntotal = 24,754) and complex model (15 cohorts, Ntotal = 
20,196, see Supplementary Figure 2) were compared to evaluate the confounding effect of BMI and 
alcohol consumption (Figure 3). Effect sizes of the two models were highly correlated for the 
significant CpG sites (r=0.988) and for CpG sites across the entire methylome (r = 0.920). All 
significant CpG sites in the basic model remained significant in the fully adjusted model after 
Bonferroni correction across the 15 significant CpGs found in the basic model, despite a significant 
reduction in sample size (p < 2.51×10-4, pBonferroni < 0.004 corrected across the significant CpG sites in 
discovery analysis). 
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Figure 3. Comparison between basic and complex models. In both (a) comparison of effect sizes and 
(b) comparison of p values, each dot represents a CpG probe. In panel (a), x-axis represents effect 
size, and in panel (b), x-axis represents -log10-transformed p value. Differences in p-values reflect 
both the model used and the sample sizes. Y-axis represents individual CpG site. The yellow dashed 
line in panel (b) represents the significance threshold for nominal significance (p < 0.05).  

 

Out-of-sample classification of MD using MD-MS 

All five MD-MS showed positive effect sizes (higher score associated with higher liability of MD). 
There was an increasing trend of effect sizes as the p-value threshold for MS calculation becomes 
increasingly stringent (see Figure 4). Out of the five scores tested, only MS at p-value threshold of 
≤5×10-8 was found associated with MD diagnosis (β = 0.13, p = 0.003, see Figure 4). P-values for 
other MS ranged from 0.069 to 0.314. 
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Figure 4. Out-of-sample classification of MD using MS. (a) Bar-plot for effect sizes of associations. 
Length of bar represents standardised log-transformed odds ratio and standard error (error bar). Y-axis 
represents MS. (b) Statistics for MS association tests.  

 

Association between MS for MD and inflammatory protein abundance 

Five proteins were significantly (p < 3.5×10-3) associated with the MD-MS created at the p-threshold 
of ≤5×10-8. The strongest association was found in TNFB (β = -0.15, p = 2.37×10-5). Other proteins 
were: IL6 (β = 0.12, p = 5.18×10-4), TFG alpha (β = 0.11, p = 2.8×10-3), CD5 (β = -0.11, p = 2.1×10-3) 
and EN-RAGE (β = 0.11, p = 3.5×10-3). See Supplementary Figure 5. 

 

Heterogeneity analysis 

Leave-one-out analysis 

For every CpG site, all effect sizes for leave-one-out analyses remained in the same direction as the 
meta-analysis (Supplementary Figure 6). All tested CpG sites remained significant after leaving 
individual studies out except when the largest study, Generation Scotland, was left out (p < 1.03×10-

4). When Generation Scotland was left out, 11 out of the 15 tested CpG sites remained nominally 
significant (p < 8.91×10-3). The four sites that became non-significant when Generation Scotland was 
omitted were: cg02948555 (βmeta-MWAS = 0.036, βLOO = 0.008, pLOO = 0.511), cg11101030 (βmeta-MWAS = 
-0.035, βLOO = -0.01, pLOO = 0.235), cg07063853 (βmeta-MWAS = 0.02, βLOO = 0.01, pLOO = 0.232) and 
cg01150646 (βmeta-MWAS = 0.013, βLOO = 0.007, pLOO = 0.054). 

Effect of age difference between studies 

Out of the 15 CpG sites significant in the meta-MWAS, 14 sites did not show an effect of age 
difference across studies (absolute β ranged from 1.11×10-6 to 6.09×10-4, p >0.234, Supplementary 
Figure 7). One site, cg04173586, showed a significant effect of age (β = -9.25×10-4, p =0.006). 
However, leave-one-out analysis both showed highly consistent findings for cg04173586 across 
studies. There were 11 out of 15 participating cohorts that showed effect sizes consistent with the 
meta-MWAS (Supplementary Figure 7) and leave-one-out analyses were significant for all iterations 
(p ranged from 1.03×10-4 to 2.38×10-8, Supplementary Figure 4 and Supplementary Table 3).  

Correlation matrix for effect sizes 

Heterogeneity between studies was analysed by looking at the between-study correlation of effect 
sizes estimated using the basic model (see Figure 5). Correlations between the 18 studies participating 
in the MD meta-MWAS ranged from -0.19 to 0.31. The highest positive correlation was found 
between the Netherland Twin Register and Janssen (r=0.31). Out of the 153 pairwise correlations, 96 
were positive (62.7%). Compared to the MD meta-MWAS, BMI MWAS (10 studies) showed higher, 
positive effect size correlations between studies (r ranged from 0.305 to 0.864, 100% of the pairs were 
positively and significantly correlated). 
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Figure 5. Correlation matrices for MD and BMI MWAS, respectively. Panel (a) shows the correlation 
matrix for the top 1000 CpG sites in GS MD MWAS. Pair-wise correlation of effect sizes are shown 
in the figure. Panel (b) shows the correlation matrix for the top 1000 CpG sites in GS BMI MWAS. 
Pair-wise correlation of effect sizes are shown in the figure. 

Mendelian Randomisation (MR) 

Using cis mQTL data from GS and Wald’s ratio MR method, we found 23 significant and potentially 
causal effects of DNA methylation on MD (absolute β ranged from 0.06 to 0.93, p ranged from 
6.88×10-3 to 4.58×10-6, see Figure 6a and Supplementary Data 1).  There were 17 CpG sites located in 
the MHC region (mapping to the DDR1R gene) on liability to MD (β ranged from 0.06 to 0.17, p 
ranged from 1.1×10-3 to 8.05×10-5). See Supplementary Data 1 for the full list of significant causal 
effects found in the discovery analysis in GS. 

Out of the 23 potentially causal effects found in the discovery analysis, four CpG sites were specific 
to the EPIC array, while 19 were available on both array types and could, therefore, be included in the 
replication analysis. Seven CpG sites tested were replicated (p<0.003, Figure 6b). Six of the replicated 
CpG sites were in the MHC region (β: 0.047 to 0.073, p: 1.22×10-4 to 1.19×10-9). In addition, a 
potentially causal effect from cg26829071 to MD (mapping to GPR133, β = -0.056, p = 0.004) was 
found on chromosome 12. 

No significant causal effects from MD to DNAm were found (absolute β: 1.62×10-5 to 0.22, puncorrected 
> 0.001, pFDR > 0.4). 
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Figure 6. Significance of Mendelian Randomisation analysis of the causal effect of DNAm on MD. 
(a) P-plot for discovery MR analysis in GS. Each dot represents a CpG site. X-axis represents 
chromosomes and base pair position. Y-axis represent -log10-tranformed p-value of Wald’s ratio MR 
analysis. The grey dashed line shows the FDR-corrected significance threshold. Discovery MR 
analysis was performed on CpG sites available in the EPIC array. (b) Replication analysis in GoDMC 
for the significant CpGs found in the discovery analysis. Replication analysis was performed on CpG 
sites available on the 450K array. Out of the 23 significant CpG sites in the discovery analysis, 19 
were available on both EPIC and 450K arrays and therefore were included in the replication analysis. 
X-axes represent effect size and -log10-transformed p value on the left and right panels. Y-axis 
represents individual CpG site. The yellow, dashed line in the right panel represents FDR-significance 
threshold. 

 

MWAS in East Asian ancestry 

We sought to identify DNAm associations with MD in East Asian ancestry using data from Taiwan 
Biobank (TBB). There were no methylome-wide significant findings identified. Correlation between 
the methylome-wide significant CpGs identified in the main results (N=15) and the same CpGs in 
TBB was r = 0.48. Effect direction across the two cohorts was the same for 11 of the 15 CpGs (73.3% 
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in the same direction, see Supplementary Table 4-6). Positive correlations of effect sizes when we 
extended the comparison in the top 100 and top 1,000 CpG sites found within the MWAS from 
European samples (top 100 CpG sites found in European samples: r = 0.26, p = 0.009; top 1,000 CpG 
sites found in European samples: r = 0.22, p = 4.07×10-12). 
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Discussion 

Our meta-MWAS of 24,754 individuals found 15 CpG sites to be significantly associated with MD, 
an increase of 12 CpGs on previously reported associations11. Significant findings revealed CpGs 
mapped to genes associated with autoimmune markers and depression-related traits, such as BMI. 
Seven potentially causal effects from DNAm to MD were identified and replicated. Leave-one-out 
analysis showed that effects were highly consistent across studies for the significant sites. However, 
the correlation in CpG-MD association effect sizes was relatively heterogeneous and low for MD, in 
contrast to BMI which showed uniformly positive, significant and more homogeneous correlations 
across all available studies. A positive correlation was observed for top MD CpG sites between 
European and East Asian samples (r = 0.48 for significant CpG sites and r = 0.26 for top 100 CpG 
sites), and effects of 11 of the 15 significant CpG sites found in the European sample remained in the 
same direction in the East Asian sample.  

Five CpG sites mapped to genes previously reported in association with autoimmune disorders and 
markers relevant to activity of the hypothalamic-pituitary-adrenal (HPA) axis. The top CpG, 
cg19432791, mapped to LZTFL1, a gene that was identified as an effector gene that contributes to 
severe autoimmune responses and inflammation, such as risk of respiratory failure caused by COVID-
1952. In addition to its association with inflammation, LZTFL1 regulates ciliary localisation of the 
Bardet–Biedl syndrome (BBSome) protein complex. The BBSome complex is a well-replicated 
causative protein marker for obesity53 and highly relevant to the HPA-axis activity by being involved 
in transducing leptin signals in hypothalamic neurons54,55. Consistent with the top CpG site, other 
sites, such as cg02948555 and cg10604091, mapped to genes associated with C-reactive protein 
(CRP)8,56. CRP is one of the most well-studied predictors of vulnerability to depression57 and 
persistence of depressive symptoms58. As a pro-inflammatory cytokine, CRP has been found as an 
indicator of hyper-activity in the HPA-axis associated with stress59. The PWAS findings provided 
additional evidence for the association between the top CpG sites and inflammation, for example, in 
tumor necrosis factor-beta (TNFB) and Interleukin 6 (IL6). Our findings, provide further evidence 
supporting the association between MD and chronic inflammation, particularly involving the HPA-
axis. However, no association between these results and MD had been identified in previous MWAS, 
likely due to the limited sample sizes of MWAS conducted on mental health-related traits.  

Three CpG sites were associated with traits (e.g blood cholesterol levels, waist-to-hip ratio and pulse 
pressure) related to BMI. Obesity has been repeatedly associated with depression, and MR analyses 
from previous studies have indicated that this may be a causal association3,60. Within the genes in 
vicinity of the four CpG sites, ZNF106 is involved in the regulation of calcium homeostasis that is 
crucial for cell survival and death61. Other genes, including MYO1C and FNDC3B, are understood to 
be involved in energy metabolism and homeostasis and highly sensitive to stress coping and 
inflammation62,63. Although the previous findings relevant to the BMI-related genes were based on 
GWAS studies, one of the genes, FNDC3B, was found in an earlier MD MWAS study based on brain 
tissue samples13. Taking into account the dynamic nature of DNA methylation and its high sensitivity 
to environmental stressors, our findings suggest metabolic processes may play a potentially crucial 
role in depression, which may be exacerbated by adverse environmental factors and dysfunctional 
stress coping mechanisms. 

We observed varying results from different cohorts in our study, with little evidence of systematic 
differences in age differences between studies contributing to the heterogeneity. The higher degree of 
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effect size heterogeneity in the MD versus BMI MWAS meta-analyses suggests that phenotype may 
be a reason for differences between the studies and not other methodological factors, such as sample 
processing or covariate adjustment. In the MD meta-analysis, larger studies (N > 1000) showed 
stronger correlation for the top associations, suggesting that sufficient statistical power may help 
overcome the issue of phenotyping inconsistency. This suggests that future individual MWAS studies 
of MD should be larger in size. The considerable costs of DNAm profiling, compared to genotyping, 
unfortunately act as a barrier towards achieving these aims.  

Although there was no significant finding in the MWAS conducted in non-European studies, it is 
notable that effects were consistent with the significant findings on European samples. Top pathways 
associated with MD also showed convergent results with the main analysis (e.g. pathways relevant to 
inflammation and immune processing). Correlations for effect sizes between European and East Asian 
samples were positive with the South Asian sample, consistent with previous evidence showing 
relatively high genetic consistency between European and East Asian groups64. Developing larger 
non-European DNA methylation samples will be crucial to give statistical balanced comparison 
between ancestry groups and to identify ancestry-group-specific DNA methylation sites for MD65. 

Our study combined many studies with widely varying sample sizes, compared results between two 
ancestry groups, and replicated MR findings using two large mQTL datasets. We provided a 
comprehensive evaluation of sampling and analytic strategies to guide future large-scale meta-MWAS 
for mental health disorders. While the blood draw was not timed to coincide with the onset of a 
depressive episode, limiting causal inferences based on the temporal order of DNAm exposure and 
MD onset, the MR analyses helped to address this potential limitation. Additionally, there is the lack 
of replication in other tissue types that are directly relevant to mood regulation, such as brain tissue. 
Studies have shown that the genetic drivers of DNAm have similar effects across multiple cell types66. 
Future clinical applications and larger sample sizes make whole-blood DNAm data more feasible than 
post-mortem tissue samples. However, to ensure the validity of the findings, future studies should 
broaden their scope by encompassing additional cell and tissue types.  
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nformation for cohorts that participated in the methylome-wide meta-analysis. 

 

Cohort name PMIDs N cases 
Sample 

size 

MD prevalence 
Case phenotype Mean age 

Gender 
(% male) 

Genetic ethnicity 
DNAm 
array 

Tissue type 

IES/ALSPAC 25991711 204 657 31.1% Questionnaire 29.4/~45(m
ums) 

All 
women 

 Europeans 450K Whole 
blood 

OME/OPTIMA 32393358; 
33054737 

222 305 72.8% DSM-criteria questionnaire 37.5 38.4% European EPIC whole 
blood 

BiDirect 24924233 287 561 51.5% Questionnaire 51.6 49.7%  Europeans EPIC Whole 
Blood 

ublin Cohort 26419460 37 186 19.9% Questionnaire 38.0 52.7%  Europeans 450K PBMCs 

E-risk 12236608 ; 
12537874 

322 1625 19.8% DSM-criteria questionnaire 18.5 51.0% Predominantly  
European 

450K Whole 
blood 

EXTEND 29790996 190 1181 16.1% Self-reported diagnosis/GP visit 56.3 48.0% Predominantly  
European 

450K Whole 
blood 

win Cohort (450K set) 31796134; 
31640839 

163 985 16.5% Clinical interview 23.8 45.9% Finnish,  
Europeans 

450K Whole 
blood 

win Cohort (EPIC set) 31796134; 
31640839 

93 366 25.4% Clinical interview 25.4 49.5% Finnish,  
Europeans 

EPIC Whole 
blood 

FOR2107 30267149 340 667 51.0% Clinical interview 35.3 36.7% Europeans EPIC Whole 
blood 

 Scotland (Set 1 and 2) 30918249 1,632 9,502 17.2% Clinical interview 49.8 41.0%  Europeans EPIC Whole 
blood 

Janssen 36319817 191 222 86.0% DSM-criteria questionnaire 42.8 19.7% Predominantly  
European 

EPIC whole 
blood 

ioMD-Y/LMU 30947532 381 633 60.2% Clinical interview 15.1 33.3% European EPIC whole 
blood 

MARS/GSK 18586274; 
16822851 

311 497 62.6% DSM-criteria questionnaire 48.1 42.5% European 450K whole 
blood 

lands Twin Register 31666148 436 2701 16.1% Clinical interview/DSM-criteria 
questionnaire 

36.5 33.0% Europeans 450K Whole 
blood 

SHIP-Trend 35348705 84 492 17.1% DSM-criteria questionnaire 51.1 46.3%  Europeans EPIC Whole 
blood 

TwinsUK 30760334 201 692 29.0% Clinical interview 59.0 All 
women 

 Europeans 450K Whole 
blood 

anding Society / UK 
ld Longitudinal Study 
KHLS) Set 1 

30401456 72 1121 6.4%  Self-reported diagnosis/GP visit 58.4 41.9%  Europeans EPIC Whole 
blood 

anding Society / UK 
ld Longitudinal Study 
KHLS) Set 2 

30401456 277 2361 11.7%  Self-reported diagnosis/GP visit 51.1 45.9%  Europeans EPIC Whole 
blood 
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CHR BP beta se p p-
adj N UCSC 

gene 

Relation 
to 
Island 

Array 
EWAS catalog / EWAS atlas (PMID) GWAS catalog gene look-up (PMID) 

3 45894556 0.025 0.004 
1.70E-
09 

0.001 16545 LZTFL1 OpenSea EPIC 
C9 protein levels (35945220); Glucose 
(33151971); Schizophrenia (26619358) 

Multiple sclerosis (31604244); COVID19 
(35910207); CD3 protein levels (32929287) 

13 93744566 
-
0.035 

0.006 
4.99E-
09 

0.004 15901 -- OpenSea EPIC -- -- 

8 20350779 0.019 0.003 
5.34E-
09 

0.004 24191 -- OpenSea Both 
Crohn's disease* (27279921); Preterm birth* 
(28428831); Autoimmune disease* 
(31024609) 

-- 

18 23654410 0.021 0.004 
5.43E-
09 

0.004 16850 SS18 OpenSea EPIC 
Preterm birth (28428831); Rheumatoid 
arthritis (23334450); LRIG1 protein 
(35945220) 

Neuroticism (30595370);  Autoimmune 
thyroid disease (32581359) 

17 42544621 0.019 0.003 
8.53E-
09 

0.007 16628 GPATCH8 OpenSea EPIC 
Rheumatoid arthritis (23334450); HIV 
infection (27105112); Alcohol consumption 
(27843151) 

Cerebrospinal fluid progranulin levels 
(33087363); Brain morphology (32665545); 
Educational attainment (35361970) 

2 209185667 0.026 0.005 
9.85E-
09 

0.008 16850 PIKFYVE OpenSea EPIC 
Kidney disease* (33933144); Alcohol 
consumption (31789449); Childhood obesity 
(28614626) 

BMI (36581621); Asthma (27611488) 

13 106834942 
-
0.011 

0.002 
1.22E-
08 

0.009 24748 -- OpenSea Both 
Very early preterm birth* (30833390), 
birthweight* (31015461), fetal brain 
development* (25650246) 

-- 

14 91751773 0.016 0.003 
2.32E-
08 

0.018 24750 CCDC88C N_Shelf Both 

Multiple sclerosis* (30479356); Chronic 
fatigue syndrome (30036399) Schizophrenia 
(33279932); Autism (27404287); BMI 
(33517419); ADHD (28785368) 

White matter hyperintensity volume 
(33293549); Subcortical volume 
(32665545); Autism (35215271); 
Alzheimer disease (26830138) 

3 123672734 0.024 0.004 
3.11E-
08 

0.024 16850 CCDC14 OpenSea EPIC -- 
Intelligence (29844566); General cognitive 
ability (29326435) 

2 232549224 0.019 0.003 
3.79E-
08 

0.029 24752 -- S_Shelf Both -- -- 

17 1377304 0.013 0.002 
3.80E-
08 

0.029 16850 MYO1C S_Shore EPIC 

Insulin resistence (30792424); BMI 
(29278407); Alzheimers disease 
(33257653); Alcohol consumption 
(27843151); Preterm birth (28428831) 

Alzheimer disease (35770850); Educational 
attainment (30038396) 

15 42749848 0.036 0.007 
4.72E-
08 

0.036 15911 ZNF106 OpenSea EPIC 
Downs syndrome (33547282); Early onset 
intracranial atherosclerotic stenosis 
(31142690) 

CRP (31900758); Cholesterol to total lipid 
ratio in LDL (35213538) 

13 50650086 0.023 0.004 
5.27E-
08 

0.040 16850 DLEU2 OpenSea EPIC 

BMI (29278407); Inflammatory bowel 
disease (32281463); Alzheimers disease 
(25129075); Birthweight (31015461); 
Insufficient sleep (30718923)  

BMI (31669095); Creatinine (35710981, 
34594039); Non-HDL cholesterol levels 
(34887591) 

19 2167496 0.025 0.005 
6.30E-
08 

0.048 24043 DOT1L S_Shore Both 
Schizophrenia* (33646943); Alcohol 
consumption* (31789449) 

BMI-adjusted waist-hip ratio (30575882); 
gamma-linolenic acid (26584805) 

11 43333512 0.020 0.004 
6.42E-
08 

0.049 23395 API5 Island Both 

HIV infection* (27105112); Obesity 
(29692867); Rheumatoid arthritis 
(27585642); Alzheimer's disease 
(33257653) 

-- 
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Top ten significant differentially methylated regions (DMRs) identified in the basic model. Start/End = start/end base pair position of the DMR. 

CHR Start End Gene(s) NCpG Beta se p p.bonferroni 

6 30853258 30854233 DDR1 12 0.036 0.005 9.89E-13 6.75E-08 

19 37825211 37825455 HKR1 8 0.036 0.005 5.66E-12 3.87E-07 

10 135342560 135343248 CYP2E1 5 0.031 0.005 1.42E-10 9.68E-06 

3 18480242 18481064 SATB1 8 0.048 0.009 1.16E-07 0.008 

6 30698784 30698936 FLOT1 4 0.046 0.009 1.45E-07 0.010 

11 43333495 43333512 API5 3 0.055 0.009 2.59E-09 1.77E-04 

17 7832769 7832932 KCNAB3 3 0.036 0.005 1.14E-13 7.78E-09 

9 139557250 139557920 EGFL7 4 -0.059 0.011 2.20E-08 0.002 

2 219738714 219738732 WNT6 2 0.074 0.014 5.44E-08 0.004 

3 11643427 11643630 VGLL4 3 0.083 0.015 4.45E-08 0.003 
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