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Abstract 11 

Background: Morphometric image analysis enables the quantification of differences in the 12 

shape and size of organs between individuals.  13 

Methods: Here we have applied morphometric methods to the study of the liver by 14 

constructing surface meshes from liver segmentations from abdominal MRI images in 33,434 15 

participants in the UK Biobank. Based on these three dimensional mesh vertices, we 16 

evaluated local shape variations and modelled their association with anthropometric, 17 

phenotypic and clinical conditions, including liver disease and type-2 diabetes.  18 

Results: We found that age, body mass index, hepatic fat and iron content, as well as, health 19 

traits were significantly associated with regional liver shape and size. Interaction models in 20 

groups with specific clinical conditions showed that the presence of type-2 diabetes 21 

accelerates age-related changes in the liver, while presence of liver fat further increased 22 

shape variations in both type-2 diabetes and liver disease.  23 

Conclusions: The results suggest that this novel approach may greatly benefit studies aiming 24 

at better categorisation of pathologies associated with acute and chronic clinical conditions. 25 
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Abbreviations: T2D: Type 2 Diabetes; BMI: Body mass index; WHR: waist-to-hip ratio; 30 

AST:ALT: ratio of aspartate aminotransferase to alanine aminotransferase; FIB-4: Fibrosis-4 31 

index; Liver PDFF: Liver percentage density fat fraction; MUR : Mass univariate regression; 32 

TFCE: Threshold-free cluster enhancement; SPMs: Statistical parametric maps; S2S: 33 

Surface-to-surface. 34 

 35 

Introduction 36 

 37 

Despite improvements in global health [1], incidence of liver disease continues to rise, 38 

with deaths due to hepatic conditions increasing by 400% since the 1970s (British Liver Trust 39 

- https://britishlivertrust.org.uk/), making it the leading cause of death in those aged 35-49 40 

years in the UK (ONS 2019 - https://www.ons.gov.uk/). Significant progress has been made 41 

in recent years in the use of non-invasive imaging methods to measure the pathological 42 

changes that are features of increasingly common liver conditions. This  includes non-alcoholic 43 

fatty liver disease (NAFLD) [2, 3], fibro-inflammation [4, 5] and fibrosis [6]. The prevalence of 44 

these conditions, associated with obesity, insulin resistance and type-2 diabetes (T2D), are 45 

likely only to increase further given the current obesogenic environment. New approaches are 46 

needed to differentiate between those with mild disease, compared with those at risk of more 47 

significant conditions (cirrhosis/end stage liver disease), and particularly those who may 48 

experience accelerated disease processes [7]. One potential approach to address these 49 

issues is the implementation of novel morphometric methods to gain a deeper understanding 50 

of the processes underpinning  the development and progression of many clinical conditions 51 

[8]. For instance, investigating whether changes beyond simple volume or fat measurements, 52 

such as liver shape, are associated with particular environmental risk factors, or whether they 53 

https://paperpile.com/c/jcEP9C/S62CT
https://britishlivertrust.org.uk/
https://www.ons.gov.uk/
https://paperpile.com/c/jcEP9C/iYsH9+vBITh
https://paperpile.com/c/jcEP9C/7lNRz+aEnWS
https://paperpile.com/c/jcEP9C/wR8GF
https://paperpile.com/c/jcEP9C/w0WS7
https://paperpile.com/c/jcEP9C/1PHWa
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can be differentially related to the aetiology of a particular condition. These methods may 54 

potentially provide insight into different mechanisms of disease development and enable 55 

optimised treatment strategies to be developed. 56 

 57 

Automated segmentation of the liver to produce image-derived phenotypes (IDPs) 58 

such as volume or fat deposition measurements are becoming more commonplace at scale 59 

as deep learning methods gain traction [9]. While these methods enhance our understanding 60 

of the liver at a population level, they are limited when it comes to providing additional 61 

knowledge regarding morphological, functional and regional variation in response to a 62 

particular condition.  63 

 64 

Mapping organ segmentations to a standardised three-dimensional (3D) surface 65 

mesh, enables many thousands of measurements relating to variation in organ shape to be 66 

performed using statistical parametric maps (SPMs). A similar widely applied technique is 67 

statistical shape analysis, which transforms the 3D surface mesh measurements into a smaller 68 

number of principal components, known as shape parameters, has been used to characterise 69 

variations in organ shape across a population. These approaches have been successfully 70 

applied in neuroimaging [10, 11], abdominal computer tomography (CT) images [12, 13], and 71 

cardiac imaging [14, 15] and they have shown to be useful in identifying genetic interactions 72 

with cardiac pathology [16] and brain ageing [17]. However, they have been less frequently 73 

applied to abdominal organs, where morphological changes are known to take place in a 74 

variety of clinical conditions [18, 19]. 75 

 76 

In the current study  we have applied SPM methods to determine morphological 77 

variations in the liver and their potential association with anthropometric traits and clinical 78 

conditions. We further investigated whether the emerging 3D liver mesh-derived phenotype 79 

can add value to the prediction of disease outcomes. Our study made three main contributions. 80 

The first contribution is that we investigate the impact of the population size and the robustness 81 

https://paperpile.com/c/jcEP9C/iYtgy
https://paperpile.com/c/jcEP9C/WO31N+uaSGr
https://paperpile.com/c/jcEP9C/2P6z3+72hmX
https://paperpile.com/c/jcEP9C/LyipK+Wmwv7
https://paperpile.com/c/jcEP9C/cKh2M
https://paperpile.com/c/jcEP9C/uze7N
https://paperpile.com/c/jcEP9C/mj4bI+mIrfy


4 

of the liver template construction. Specifically, we investigated how the template image and 82 

statistical parametric mapping are affected, providing valuable insights into determining the 83 

optimal number of subjects for the liver template to represent the broader cohort. We also 84 

examined the relevance of different participant samples in the template construction process. 85 

The second contribution and also a novelty of our work is that we extend the SPM method to 86 

the domain of liver image analysis. Here, we delve deeper into the application of SPM in liver 87 

image analysis and applied it to the UK Biobank dataset, which comprises a large-scale 88 

population-based cohort, resulting in increased statistical power. Through the linear 89 

regression model, we examined the impact of anthropometric, phenotypic and clinical 90 

conditions on regional geometry of the liver and visualised these findings on the template 91 

surface mesh. The third contribution is that we extracted shape features derived from the 3D 92 

mesh-derived phenotype by dimensionality reduction and evaluated whether these shape 93 

features were better predictors of disease outcomes than the conventional measurement of 94 

liver volume. 95 



 5 

Methods 96 

 97 

Data 98 

The UK Biobank [20] is a population-based study in which 500,000 participants aged 99 

40 to 70 years were recruited for deep phenotypic profiling. There is also a currently ongoing 100 

imaging sub-study, in which 100,000 of the participants have been recruited to undergo an 101 

imaging protocol including MRI of the brain, the heart, and the abdominal region. The 102 

abdominal scans include a neck-to-knee Dixon 3D acquisition that can be used to derive 103 

volumes of adipose tissue, skeletal muscle and abdominal organs. Full details regarding the 104 

UK Biobank abdominal acquisition protocol have previously been reported [21]. We processed 105 

and segmented the data using our automated methods [9]. In this study on liver morphology, 106 

we included 41,800 participants with Dixon MRI data acquired at the imaging visit, between 107 

2014 and 2020 with data comprising imaging, health-related diagnoses and biological 108 

measurements.   109 

 110 

Fully anonymized participant  data  was  obtained through UK Biobank Access 111 

Application number 44584. The UK Biobank has approval from the North West Multi-Centre 112 

Research Ethics Committee (REC reference: 11/NW/0382) written informed consent was 113 

obtained from all participants prior to inclusion in the UK Biobank.  114 

 115 

Phenotype Definitions 116 

 Anthropometric measurements including age, body mass index (BMI), waist and hip 117 

circumferences were taken at the UK Biobank imaging visit and ethnicity was defined based 118 

on the continental genetic ancestry (https://pan.ukbb.broadinstitute.org). AST:ALT ratio, 119 

defined as the ratio of aspartate aminotransferase (AST) to alanine aminotransferase (ALT), 120 

commonly used to indicate presence of more advanced liver disease including fibrosis and 121 

cirrhosis [22, 23] was calculated from the biological samples taken at the initial assessment 122 

visit. The fibrosis-4 index (FIB-4), also designed to identify more advanced stages of liver 123 

https://paperpile.com/c/jcEP9C/Nkx1C
https://paperpile.com/c/jcEP9C/Ylk8m
https://paperpile.com/c/jcEP9C/iYtgy
https://pan.ukbb.broadinstitute.org/docs/technical-overview/index.html
https://paperpile.com/c/jcEP9C/neHTk+cuN8G
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disease and fibrosis in particular, was calculated as previously described [24] using age, AST, 124 

ALT and platelet count taken from the initial assessment visit. Diagnosis of liver disease and 125 

T2D was obtained from UK Biobank hospital records and self-reported information (see 126 

Disease Categories in supporting information). Due to the relatively limited number of scanned 127 

participants within the UKBB diagnosed with specific liver diseases, a broad umbrella definition 128 

of liver disease was implemented which included, alcoholic liver disease, fibrosis, cirrhosis, 129 

and chronic hepatitis. 130 

 131 

Quality Control 132 

 We included liver segmentations from an overall 41,800 participants. For details on the 133 

segmentation process and quality control refer to the supplementary data in [9]. Participants 134 

with missing clinical, anthropometric or biochemical data, as well as those with Dixon MRI 135 

datasets that did not have full anatomical coverage were excluded from the study, including 136 

organs with zero volume. More specifically, we removed 8,297 data that were missing 137 

ethnicity, BMI, WHR, AST, ALT, platelet count and liver IDPs. We also conducted quality 138 

control measures to determine potential extreme values in the liver volume and ensure the full 139 

anatomical coverage of the organs by visually examining values falling outside from randomly 140 

selected quantiles (0.1% and 99.9%) and excluding eight outliers. We visually inspected 141 

segmentations with 3D liver mesh-derived values to potentially identify extremely high values, 142 

resulting in the exclusion of 61 datasets with segmentation errors. Overall, from the initial 143 

41,800 participants, 33,434 participants were included in the final analysis (20% of data 144 

excluded). 145 

 146 

Study Design 147 

Template Definition  148 

Deformation of an image to a standard organ template is a key part of MRI organ shape 149 

assessment. Given the potential variation in morphology, it is important to identify a suitable 150 

population sample size for constructing a template image [25]. To assess the impact of 151 

https://paperpile.com/c/jcEP9C/qf3wN
https://paperpile.com/c/jcEP9C/iYtgy
https://paperpile.com/c/jcEP9C/Aq7Pn
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population size on template construction, we constructed three distinct templates using liver 152 

segmentations from a gender-balanced European ancestry cohort of 20, 100 and 200 153 

participants with BMI<25 kg/m2 and low liver fat (<5%). The characteristics for each template 154 

population are provided in Supplementary Table S1. To test the 3 templates, we selected 500 155 

participants, derived from the full cohort, with European genetic ancestry, aged between 46 156 

and 62 years old, without any disease reported or diagnosed here [26] (Supplementary Table 157 

S2). We then registered the three liver templates to the 500-participant cohort and investigated 158 

the associations between the 3D mesh-derived phenotype and the anthropometric covariates 159 

across the three templates.  160 

 161 

Association between mesh-derived phenotypes, IDPs and Disease  162 

To assess the associations between the 3D mesh-derived phenotype, the 163 

anthropometric covariates and liver IDPs (volume, fat, iron), we first analysed the liver MRI 164 

data from the entire UK Biobank imaging cohort. The cohort of 33,434 participants was 97.6% 165 

European, 48.7% male and aged between 44 and 82 years old (Supplementary Table S3). To 166 

determine the potential association between disease and liver shape, we first selected 167 

diseases that are known from previous studies to impact liver health, and are associated with 168 

changes in liver fat accumulation or volume [9]. These included  449 participants with liver 169 

disease (207F/242M; 48-81 years old; BMI 18.6-43.8 kg/m²) and 1,780 participants with T2D 170 

(67% males; 46-82 years old; BMI 18.3-50.1 kg/m²) (Supplementary Table S4).  171 

 172 

Prediction of disease outcomes  173 

To determine whether the 3D mesh-derived phenotype was a better predictor of 174 

disease outcomes than the conventional measurement of liver volume, we identified 182 175 

participants with liver disease  (45% males; 45-78 years old; BMI 16.5-46.1 kg/m²) and 144 176 

participants with T2D (61% males; 45-80 years old; BMI 19.9-47.9 kg/m²) that were diagnosed 177 

after the baseline imaging visit (see supporting information). We then identified a control cohort 178 

without any reported conditions and designed a case-control study for each disease 179 

https://paperpile.com/c/jcEP9C/yRWsz
https://paperpile.com/c/jcEP9C/iYtgy
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population, achieving a 364 case-control cohort with liver disease and 288 case-control cohort 180 

with T2D. The control cohort was chosen by matching one individual with every case by age 181 

(± 1 year), gender and BMI (± 2 kg/m²) using the R package ccoptimalmatch [27].  182 

 183 

Image Registration and Mesh Construction 184 

The process for template construction of the liver has been previously described [28]. 185 

Here, we constructed three distinct templates using liver segmentations from 20, 100 and 200 186 

subject-specific volumes in order to evaluate the impact of cohort size on template 187 

construction. It also allows us to test if cohort size influenced the statistical associations in our 188 

mesh-based analysis. We constructed surface meshes from each template using the 189 

marching cubes algorithm and smoothed using a Laplacian filter [29]. The template 190 

construction was performed using ANTs software (https://picsl.upenn.edu/software/ants) with 191 

mutual information as the similarity metric and the B-spline non-rigid transformation. Briefly 192 

the process of the template construction is performed in two stages: affine registration to 193 

account for translation, rotation, scaling and shearing, and non-rigid registration to account for 194 

local deformation using the symmetric image normalisation (SyN) method with mutual 195 

information as the similarity metric [30, 31]. The analysis was performed using 196 

“antsMultivariateTemplateConstruction2.sh” script provided from ANTs, with the following 197 

default parameters: -i (iteration limit) = 4, -g (gradient step size) = 0.25, -k (number of 198 

modalities) = 1, -w (modality weight) = 1. The rest parameters were customised depending on 199 

the machine used, image dimension and the metrics applied, including: -d (image dimension) 200 

= 3, -j (number of CPU cores) = 10, -c (control for parallel computation) = 2, -q (max iteration 201 

for each pairwise registration) = 100x70x50x10, -n (NBiasFieldCorrection of moving image) = 202 

0, -r (do rigid body registration of inputs to the initial template) = 1, -m (similarity metric) = MI 203 

and -t (transformation model) = BSplineSyN. 204 

 205 

Surface meshes were first constructed from each subject’s segmentations using 206 

marching cubes algorithm and smoothed using a Laplacian filter. Then the template-to-subject 207 

https://paperpile.com/c/jcEP9C/it3MC
https://paperpile.com/c/jcEP9C/pMd4
https://paperpile.com/c/jcEP9C/Xr5C8
https://picsl.upenn.edu/software/ants/
https://paperpile.com/c/jcEP9C/kQxN+kpDK
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registration was performed by first applying rigid registration to remove the position and 208 

orientation difference between all subject-specific surfaces and template surfaces and an 209 

affine transformation with nearest neighbour interpolation was computed between template 210 

and subject segmentations. The resulting affine transformations were used to warp the 211 

template to the subject's space. The template segmentation is then mapped into each subject 212 

segmentation by computing a non-rigid transformation modelled by a free-form deformation, 213 

based on B-Splines, with label consistency as the similarity metric between the subject and 214 

template liver segmentations [32]. To enable subject comparison with vertex-to-vertex 215 

correspondence, the template mesh is then warped to each subject mesh using the 216 

deformation fields obtained from the non-rigid registration. Hence, all surface meshes are 217 

parameterised with the same number of vertices (approximately 18,000). This ensures that 218 

each vertex maintains approximate anatomical accuracy and consistency across all subjects, 219 

while preserving the size and shape information for subsequent analyses [29].  220 

 221 

To determine the regional outward or inward adaptations in the liver surface in 222 

comparison to an average liver shape, the surface-to-surface (S2S) distance, a 3D mesh-223 

derived phenotype for each subject was measured. This was achieved by computing the 224 

signed distance between each vertex in the template mesh and each corresponding vertex in 225 

the subjects' mesh. This indicates positive distances for outward expansion in the subject’s 226 

vertices compared to template vertices and negative distances for inward shrinkage in the 227 

subject’s vertices. All the steps for the template-to-subject registration were performed using 228 

the Image Registration Toolkit (IRTK) (https://biomedia.doc.ic.ac.uk/software/irtk). After 229 

conducting the described manual quality control process, which involved identifying extremely 230 

high S2S values, we found that all the values fell within the range of -48.3 to 70.5 mm. This is 231 

to ensure that the organ sizes were within an expected range and to suggest that there were 232 

no significant segmentation errors, such as the inclusion of surrounding tissues in the liver 233 

segmentations.  234 

 235 

https://paperpile.com/c/jcEP9C/wUW4o
https://paperpile.com/c/jcEP9C/Xr5C8
https://biomedia.doc.ic.ac.uk/software/irtk/
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Mass Univariate Regression  236 

Associations between the S2S values and anthropometric variables were modelled 237 

using a linear regression framework. To enhance the detection of spatially contiguous signals 238 

and discriminate them from noise, we utilised threshold-free cluster enhancement (TFCE) [33]. 239 

TFCE not only provides improved sensitivity and stability compared to other cluster-based 240 

techniques but also identifies local maxima in the resulting significance map that is not 241 

possible in other enhancement and thresholding techniques [14, 33]. A permutation testing 242 

was then performed on the TFCE maps and the derived TFCE p-values were corrected to 243 

control the false discovery rate (FDR), as previously described [28]. Specifically, we performed 244 

mass univariate regression (MUR) analysis using the R package mutools3D [34] and adjusted 245 

for multiple comparisons by applying the FDR procedure [35] to all the TFCE p-values derived 246 

from each vertex using 1,000 permutations. The estimated regression coefficients �̂� for each 247 

of the relevant covariates and their related TFCE-derived p-values were then displayed at 248 

each vertex in the mesh on the whole 3D liver anatomy, providing the spatially-distributed 249 

associations. Regions of the liver exhibiting significant associations (p-values < 0.05) between 250 

variables were identified, and the estimated regression coefficients �̂� for each relevant 251 

covariate within those regions were reported. The MUR model for deriving associations 252 

between clinical parameters and a 3D phenotype is outlined in Supplementary Fig. S1.  253 

 254 

To determine which factors influence the design and performance of the liver template, 255 

we used a regression model to address: (1) how many participants are required to construct 256 

a representative liver template, (2) whether the template population size affected the 257 

associations between the S2S and the anthropometric covariates, (3) which factors have an 258 

impact on regional S2S distances and (4) how are the changes in S2S distances linked to liver 259 

disease and T2D.  260 

 261 

https://paperpile.com/c/jcEP9C/Vu0it
https://paperpile.com/c/jcEP9C/Vu0it+LyipK
https://paperpile.com/c/jcEP9C/pMd4
https://paperpile.com/c/jcEP9C/YY9Kb
https://paperpile.com/c/jcEP9C/wdyzC
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We constructed three models adjusting for additional covariates. Model 1 was 262 

adjusted for age, gender, ethnicity, body mass index (BMI) and waist-to-hip ratio (WHR), liver 263 

fat (referred to as proton density fat fraction (PDFF)) and liver iron concentration with 264 

correction to control the FDR. To investigate the morphological changes related to liver 265 

function Model 2 had all the covariates from model 1 plus AST:ALT, FIB-4 index and disease 266 

conditions. We further adjusted with interaction terms between age and disease status and 267 

between liver fat and disease. In order to test whether there is a circadian effect in the liver 268 

morphology, Model 3 included all the covariates from model 2 plus time of the day for the MRI 269 

scan, discretised into hours of the day.  270 

 271 

Predictive Model 272 

To determine whether S2S distance improves the prediction of disease outcomes 273 

prospectively, we used a logistic regression model. This model allowed us to investigate the 274 

associations between liver volume as well as the S2S values from the baseline imaging visit 275 

and the occurrence of disease outcomes in two distinct case-control cohorts: one comprising 276 

individuals with liver disease and the other with T2D. 277 

 278 

Due to having a large number of S2S values for small population groups, we first 279 

calculated the sparse principal component analysis (SPCA) using the R package sparsepca 280 

[36] and extracted principal component scores representing the shape features of the S2S 281 

distances for each disease case-control group that were diagnosed after the baseline imaging 282 

visit. We utilised the principal component scores for each individual corresponding to the 283 

modes that summarised 90% of the cumulative variation for each group. We then performed 284 

this analysis in two models. In the first model (the volume model), the disease outcome was 285 

regressed on age, gender, ethnicity, BMI, WHR, AST/ALT, FIB-4 index, liver volume, PDFF 286 

and iron concentration. In the second model (the S2S model), we included all the covariates 287 

from the volume model, adding the principal component scores of the S2S distances for each 288 

disease group. 289 

https://paperpile.com/c/jcEP9C/sMCiA
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 290 

Predictive modelling was performed using the R package caret [37]. Model training 291 

was conducted with leave-one-out cross validation for each group. Our model performance 292 

was evaluated using several metrics, including the Area Under the Curve (AUC) of the 293 

Receiver Operating Characteristic (ROC) curve, the F1 score, accuracy, and 294 

sensitivity/specificity. Additionally, we employed Delong’s test to compare the AUC of the ROC 295 

curves from S2S and liver volume models [38]. 296 

 297 

Results 298 

 299 

Template Consistency 300 

We constructed three separate template meshes using gender-balanced cohorts of 301 

20, 100 and 200 participants and computed the distances between each template mesh for 302 

each subpopulation (Supplementary Fig. S2). The results showed that cohort size had little 303 

impact on the shape of the template, with differences less than 8mm, especially for the 304 

templates constructed using 100 participants compared with the 200-participant template. 305 

More specifically, the median absolute distance between the 20-participant and 200-306 

participant templates was found to be -1.1 (IQR: 3.2) mm, whereas the median distance 307 

between the 100-subject and 200-subject templates was even smaller (-0.4 (1.8) mm). To 308 

further examine the relevance of different participant samples in the template construction 309 

process, we constructed five templates, each constructed from different samples drawn from 310 

a population of 20 participants each. The Dice coefficients of the template images for the 20-311 

participant template experiment consistently demonstrates a high level of overlap across the 312 

distinct cohorts (Supplementary Table S5). It is important to note that when constructing 313 

templates using larger cohort sizes (e.g., 100 or 200 participants), it is expected that the 314 

variability will be reduced due to the averaging effect. Based on these findings, we are 315 

confident in the robustness and consistency of our template construction process.  316 

 317 

https://paperpile.com/c/jcEP9C/K9V7o
https://paperpile.com/c/jcEP9C/FfFP
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We further investigated for each template the associations between S2S distances and 318 

anthropometric variables, adjusting for the covariates in Model 1 to examine how the statistical 319 

parametric mapping is influenced across the three templates. We only looked at the 320 

associations between BMI and WHR with S2S distances, as only these variables exhibited 321 

statistically significant associations. Here we visually presented the 3D SPMs, with the TFCE 322 

corrected p-values, of BMI and WHR with the S2S distance on the 500-participant cohort 323 

(Supplementary Fig. S3) and presented the significance areas of their associations across the 324 

three templates (Table 1). By combining qualitative and quantitative assessments, we showed 325 

that the distribution of the corrected p-values were consistent across all three different 326 

templates and that there was no apparent difference in the areas of association between BMI 327 

and WHR with S2S distances across the three templates. 328 

 329 

Significance 

area 

 

20-participant 

template 

 

100-participant 

template 

 

200-participant 

template 

BMI WHR BMI WHR BMI WHR 

Total 58.08% 14.48% 55.20% 18.28% 56.73% 12.12% 

�̂� < 0 2.74% 4.79% 3.28% 7.42% 2.66% 4.67% 

�̂� > 0 55.34% 9.69% 51.92% 10.85% 54.07% 7.46% 

Table 1. Significance areas from the association between BMI and WHR with S2S distances 330 

on a 500-participants cohort, in the MUR model using a template with 20, 100 and 200 331 

participants. The significance area is the percentage of vertices on the liver mesh where the 332 

regression coefficients are statistically significant (p < 0.05) after adjustment for multiple 333 

comparisons. The total area has been split into areas of negative (�̂� < 0) and positive (�̂� > 0) 334 

associations. 335 
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 336 

To test template consistency on a disease population, all three templates were 337 

registered on a cohort of 449 participants with liver disease and the 3D S2S phenotype 338 

computed between template and participants’ surface. We then modelled the associations 339 

between the S2S distances and anthropometric variables adjusting for the covariates in model 340 

1. The TFCE corrected p-value maps on the cohort with liver disease were consistent across 341 

the three templates, with little difference in the significance area for the association between 342 

BMI and S2S distances (97.58% using the 20-participant template, 97.46% using the 100-343 

participant template and 96.43% using the 200-participant template)  (Supplementary Fig. S4 344 

and Table 2).  345 

 346 

Significance 

area 

 

20-participant 

template 

 

100-participant 

template 

 

200-participant 

template 

BMI WHR BMI WHR BMI WHR 

Total 97.58% 91.02% 97.46% 90.31% 96.43% 90.98% 

�̂� < 0 0.01% 0.01% 0% 0% 0% 0% 

�̂� > 0 97.57% 91.01% 97.46% 90.31% 96.43% 90.98% 

Table 2. Significance areas from the association between BMI and WHR with S2S distances 347 

on a cohort with liver disease (N=449), in the MUR model using a template with 20, 100 and 348 

200 participants. The significance area is the percentage of vertices on the liver mesh where 349 

the regression coefficients are statistically significant (p < 0.05) after adjustment for multiple 350 

comparisons. The total area has been split into areas of negative (�̂� < 0) and positive (�̂� > 0) 351 

associations. 352 

 353 
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Associations with Anthropometric Characteristics, Liver IDPs and Disease  354 

As the liver template was relatively insensitive to the number of participants included, 355 

we performed all subsequent analyses using the 200-participant template. We proceeded to 356 

register the template on the full cohort (N=33,434), computing S2S distances between the 357 

template and surface of each individual liver mesh and performed MUR analysis adjusting for 358 

the covariates in Model 2.  359 

 360 

A summary of the model for the whole cohort, representing the regression coefficients 361 

and the significance areas on the liver, is provided in Table 3 and Supplementary Fig. S5. The 362 

SPMs that represent associations between S2S distances and the anthropometric 363 

measurements and liver IDPs with units in standard deviations for each covariate, are shown 364 

in Fig. 1.  365 

 366 

Lower S2S distances were associated with greater age over 96.63% of the liver, with 367 

a median change of -0.11 mm/year, while BMI and WHR had statistically significant positive 368 

associations with S2S distances, covering 97.82% and 58.11% of the liver, respectively. The 369 

AST:ALT ratio showed mostly statistically significant positive association with S2S distances 370 

in the anterior part of the left lobe and the posterior part of the right lobe, with a median 371 

difference of 0.30 mm (significance area = 48.05%). FIB-4 index on the other hand showed a 372 

median S2S distance of -0.22 mm (significance area = 82.62%). Liver PDFF was positively 373 

associated with S2S distances, showing median outward shape variations of 0.26 mm/%, 374 

whereas liver iron concentration was associated with S2S distances of -0.59 mm/(mg/g) in the 375 

anterior part of the right lobe and the posterior part of the left lobe and a median 0.34 376 

mm/(mg/g) in the anterior part of the left and caudate lobe. Additionally, we included MRI scan 377 

time as an additional covariate in the model since liver size is known to vary during the day 378 

[9], but this had no apparent effect on any of the associations (Supplementary Table S6, 379 

Supplementary Fig. S6). 380 

 381 

https://paperpile.com/c/jcEP9C/iYtgy


 16 

A diagnosis of liver disease was associated with a median S2S of -2.13 mm when 382 

compared to the controls (significance area = 21.90%) in the anterior part of the right lobe as 383 

well as at the posterior part of left and right lobe and a median of 1.95 mm (significance area 384 

= 25.14%) in the anterior part of the left lobe. T2D was positively associated with S2S 385 

distances, with a median of 2.42 mm for participants with T2D covering a significance area of 386 

86.40% of the liver. The time of day at which the MRI scan was conducted had no effect on 387 

the associations between S2S and T2D, although we observed a reduction in the significance 388 

area for the associations between S2S and liver disease (significance area = 28.34%, 389 

Supplementary Table S6, Supplementary Fig. S6). 390 

 391 
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 392 

Figure 1. Three-dimensional statistical parametric maps (SPMs) of liver morphology, two 393 

projections are shown for each SPM providing anterior (left) and posterior (right) views of the 394 

liver. The SPMs show the local strength of association for each covariate in model 2 with S2S 395 
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distances on the full cohort (N=33,434). Yellow contour lines indicate the boundary between 396 

statistically significant regions (p < 0.05) after correction for multiple testing, with positive 397 

associations in red and negative associations in blue. Standardised regression coefficients 398 

are shown with units in standard deviations for each covariate. BMI: body mass index, WHR: 399 

waist-to-hip ratio, AST:ALT: aspartate aminotransferase/alanine aminotransferase ratio, FIB-400 

4: Fibrosis-4 score, Liver PDFF: Liver percentage density fat fraction, T2D: type-2 diabetes. 401 

 402 

 

 

�̂� < 0 �̂� > 0 Total 

Beta 

coefficients 

Significance 

area 

Beta 

coefficients 

Significance 

area 

Significance 

area 

Age (𝑦𝑟𝑠.) -0.11 (0.06) 96.63% 0.02 (0.04) 1.46% 98.10% 

BMI (𝑘𝑔/𝑚2) -0.08 (0.07) 1.61% 0.30 (0.22) 97.82% 99.43% 

WHR -3.88 (4.02) 33.99% 3.87 (3.65) 58.11% 92.10% 

AST:ALT  -0.32 (0.32) 35.17% 0.30 (0.29) 48.05% 83.22% 

FIB-4  -0.22 (0.17) 82.62% 0.23 (0.13) 2.09% 84.70% 

Liver PDFF  

(%) 

-0.03 (0.02) 0.17% 0.26 (0.10) 99.65% 99.82% 

Liver Iron 

(𝑚𝑔/𝑔) 

-0.59 (0.74) 58.00% 0.34 (0.32) 24.99% 82.98% 

Liver disease  -2.13 (2.95) 21.90% 1.95 (2.43) 25.14% 47.05% 

T2D  -0.61 (0.77) 5.35% 2.42 (1.94) 86.40% 91.76% 

Age * Liver ns ns ns ns ns 
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disease 

Liver PDFF *  

Liver disease 

-0.09 (0.01) 0.09% 0.09 (0.03) 12.59% 12.68% 

Age * T2D -0.03 (0.02) 71.23% 0 0% 71.23% 

Liver PDFF * 

T2D 

-0.06 (0.04) 6.24% 0.10 (0.08) 82.84% 89.08% 

Table 3. Significance areas for covariates in the MUR model between the anthropometric 403 

covariates and liver IDPs (N=33,434) in model 2. The total area has been split into areas of 404 

positive and negative associations. The regression coefficients are presented as median 405 

(interquartile range - IQR) and the significance areas as a percentage (%) of the vertices. 406 

Where BMI: body mass index, WHR: waist-to-hip ratio, AST:ALT: aspartate 407 

aminotransferase/alanine aminotransferase ratio, FIB-4: Fibrosis-4 score, Liver PDFF: Liver 408 

percentage density fat fraction, T2D: type-2 diabetes, ns: not significant. 409 

 410 

We undertook further analysis to determine whether there was an interaction between 411 

clinicalstate and factors such as age and liver PDFF adjusted for all covariates in Model 2. 412 

Our results varied according to the disease of interest. While there were no significant 413 

associations for the interaction between age and liver clinical condition, we found a median 414 

association of -0.14 mm/year in T2D participants, compared with -0.11mm/year in non-T2D 415 

participants, over a similar anatomical region. The interaction term between age and T2D in 416 

this model was significantly different from zero, with a significance area = 71.23% (Table 3 417 

and Fig. 1). The association between age and S2S distances in participants with and without 418 

T2D are directly compared in Fig. 2, where participants diagnosed with T2D display 419 

accelerated decreases in the anterior part of the left and right lobe as well as at the posterior 420 

part of left and right lobe of the liver.  421 

 422 
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 423 

Figure 2. Three-dimensional statistical parametric maps (SPMs) of liver morphology, 424 

projections are anterior (left) and posterior (right). The SPMs show the local rate of change as 425 

a function of age for S2S distances in participants (i) without T2D versus those (ii) with T2D 426 

on the full cohort (N=33,434). Positive associations are in red and negative associations in 427 

blue. Standardised regression coefficients are shown with units in standard deviations. 428 

 429 

The presence of liver PDFF in participants with liver disease resulted in an additional 430 

median variation of 0.09 mm/% over an area 12.59% of the liver, in addition to the median 431 

variation of 0.26 mm/% associated with the main effect of liver PDFF (Table 3 and Fig. 1). 432 

Interestingly this effect was no longer significant after including scan-time as an additional 433 

covariate in the model (Supplementary Table S6, Supplementary Fig. S6). A change of similar 434 

magnitude, over a much larger proportion of the liver was observed for the interaction between 435 

liver PDFF and T2D (Table 3 and Fig. 1). Here we observed an accelerated increase in S2S 436 

distances with a median change of 0.10 mm/%, over the majority of the liver surface area 437 

(significance area = 82.84%), in addition to the median increase of 0.26 mm/% for the main 438 

effect of liver PDFF. The rates of change in S2S distances due to changes in liver PDFF for 439 
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participants with liver disease only, with T2D only and those without either disease are directly 440 

compared in Fig. 3. The local variations associated with liver PDFF fluctuates significantly with 441 

disease diagnosis. Participants diagnosed with liver disease (Fig. 3ii) display accelerated 442 

increases in S2S distances in the anterior and posterior parts of the right lobe with increasing 443 

liver PDFF, with slight decreases in the rate of change in both the anterior and posterior left 444 

lobe when compared to participants without either liver disease or T2D. Participants with T2D 445 

(Fig. 3iii) display accelerated increases in S2S distances in the anterior and posterior right 446 

lobe and the posterior left lobe when compared to participants without T2D, and display 447 

substantial decreases in the rate of change in S2S distances in the anterior left lobe when 448 

compared to participants who have been diagnosed with liver disease but not T2D or 449 

participants who have not been diagnosed with either liver disease or T2D.  450 

 451 
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Figure 3. Three-dimensional statistical parametric maps (SPMs) of liver morphology, 452 

projections are anterior (left) and posterior (right). The SPMs show the rate of change as a 453 

function of liver PDFF for S2S distances in participants (i) without liver disease or T2D, (ii) with 454 

liver disease only and (iii) with T2D only on the full cohort (N=33,434). Positive associations 455 

are in red and negative associations in blue. Standardised regression coefficients are shown 456 

with units in standard deviations. 457 

  458 

Predictive Analysis 459 

We investigated whether S2S distances add value to disease prediction beyond those 460 

obtained using liver volume. We compared the performance of two models; one including age, 461 

gender, ethnicity, BMI, WHR, AST:ALT, FIB-4 index, liver PDFF, liver iron and liver volume 462 

(the volume model); the other including age, gender, ethnicity, BMI, WHR, AST:ALT, FIB-4 463 

index, liver PDFF, liver iron, liver volume and the principal component scores of the S2S 464 

distances (the S2S model), for the liver disease (N=364) and T2D (N=288) case-control 465 

cohorts. We found that the liver volume model achieved an AUC=0.57 and accuracy=0.54 466 

(sensitivity/specificity=0.42/0.66) for liver disease prediction and AUC=0.64 and 467 

accuracy=0.62 (sensitivity/specificity=0.54/0.70) for T2D prediction (Table 4). The first 40 468 

modes of the SPCA were sufficient to describe over 90% of the S2S distances in both cohorts, 469 

thus the first 40 scores in each cohort were used as independent variables in the model. The 470 

S2S model improved the prediction of liver disease achieving an AUC of 0.61, accuracy of 471 

0.59 and sensitivity/specificity values of 0.57/0.60. However, when comparing the S2S and 472 

the volume models, the improvement was not statistically significant (p=0.1). Additionally, 473 

there was no statistically significant improvement in T2D (AUC=0.64, accuracy=0.62, 474 

sensitivity/specificity=0.59/0.64) compared to the model with liver volume.  475 

 476 

Supplementary Fig. S7 shows the increase in AUC with the increasing numbers of 477 

modes, from 1 until 40 for the prediction of liver disease and T2D. Notably, the S2S model for 478 

liver disease prediction reached its peak performance when utilising 21 modes, resulting in an 479 
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AUC of 0.63 (95% confidence interval (CI): 0.57-0.69) and an F1 score of 0.64. This 480 

improvement was statistically significant (p=0.013), with an accuracy of 0.63 and 481 

sensitivity/specificity values of 0.60/0.65. Furthermore, we observed a slight enhancement in 482 

T2D prediction using the S2S model with 11 modes, resulting in an AUC of 0.67 (with 95% CI 483 

of 0.60 to 0.73) and an F1 score of 0.63. However, this improvement was not statistically 484 

significant (Supplementary  Fig. S7).  485 

 486 

Case - 

Control 

Cohort 

 

Models 

 Volume  S2S 

AUC (95% CI) F1 

score 

Accuracy 

(Sensitivity / 

Specificity) 

AUC  (95% CI) F1 

score 

Accuracy 

(Sensitivity / 

Specificity) 

Liver 

disease 

0.57 (0.50-

0.62) 

(0.59) 0.54  

(0.42 / 0.66) 

0.61 (0.55-

0.67) 

(0.60) 0.59  

(0.57 / 0.60) 

T2D 0.64 (0.58-

0.71) 

(0.65) 0.62  

(0.54 / 0.70) 

0.64 (0.57-

0.70) 

(0.62) 0.62  

(0.59 / 0.64) 

Table 4. Predictive models trained with leave-one-out cross validation for both liver disease 487 

(N=364) and T2D (N=288) case-control groups. Each cell contains the area under the curve 488 

(AUC) with 95% confidence intervals (CI) in parentheses, F1 score and accuracy with 489 

sensitivity and specificity in parentheses. 490 

 491 

Discussion  492 

 493 
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In this study, we mapped local shape variations across the liver and determined how 494 

these changes were associated with anthropometric, phenotypic and health traits. To achieve 495 

this we constructed surface meshes from liver segmentations of 33,434 participants from the 496 

UK Biobank. Previous studies using similar SPMs have suggested that this is a useful 497 

technique in neuroimaging [10] and cardiac imaging [14], enabling the associations between 498 

phenotypic and genetic variation in specific anatomical regions to be mapped [16].  499 

 500 

We constructed a representative liver template, and showed that a 200-participant 501 

template was sufficient to represent the broader cohort. Indeed, the number of participants 502 

included in the template construction did not impact the power of the statistical analysis across 503 

a 500-participant test cohort, or a second cohort of 479 participants with liver disease. This is 504 

in line with previous studies that found a cohort with 100 participants was sufficient to construct 505 

a representative cardiac template to investigate the shape of the left ventricle [29].  506 

 507 

Liver size has been explored extensively using a variety of approaches from autopsy 508 

measurements [39], CT [40], ultrasound [41], and MRI [19], as well as regression-based 509 

algorithms designed to predict liver size based on body surface area [42]. Given accurate 510 

assessment of liver volume is essential for many aspects of hepatic surgery and determining 511 

disease progression [43], suitable methods are needed. However, until recently, the manual 512 

annotation required to make true volumetric measurements of the liver from CT and MRI 513 

images has been extremely time consuming. Imaging studies tended to rely on more easily 514 

measured metrics, such as liver span or diameter [44, 45], or calculation of volume indices 515 

from the measurement of multiple diameters [46]. Consequently, these approaches limit in 516 

depth morphometric assessment and only provide information associated with overall 517 

changes to liver size or volume. The SPM method implemented in the current study 518 

demonstrates significant regional variations in liver shape associated with anthropometric 519 

variables and disease status, including simultaneous inwards and outwards adaptations. 520 

These novel phenotypic variables may be useful in longitudinal population studies, as well as 521 

https://paperpile.com/c/jcEP9C/WO31N
https://paperpile.com/c/jcEP9C/LyipK
https://paperpile.com/c/jcEP9C/cKh2M
https://paperpile.com/c/jcEP9C/Xr5C8
https://paperpile.com/c/jcEP9C/jXRe7
https://paperpile.com/c/jcEP9C/VCPh7
https://paperpile.com/c/jcEP9C/PJKLG
https://paperpile.com/c/jcEP9C/mIrfy
https://paperpile.com/c/jcEP9C/YzbZR
https://paperpile.com/c/jcEP9C/8KzxQ
https://paperpile.com/c/jcEP9C/uhpjd+vqInk
https://paperpile.com/c/jcEP9C/KjFnQ
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determining trajectories of progression in aggressive clinical conditions, including monitoring 522 

liver cirrhosis and hepatic oncology.    523 

 524 

While studies of liver volume have generally focussed on patient populations, there is 525 

increasing interest in understanding how hepatic volume and form is influenced by age, 526 

anthropometry and metabolic markers in the wider population [9, 46]. Despite this, few studies 527 

employ methods that enable precise measurements of these parameters, particularly with 528 

regard to regional variation in liver shape and size. In the present study we observed that 529 

decline in the liver S2S distances were associated with increasing age. This is in agreement 530 

with previous observations, by ourselves and others, that overall liver volume decreases with 531 

age [9, 41, 47]. However, there are some ultrasound reports suggesting liver size increases 532 

with age [44]. This discrepancy may relate to variations in methodology since ultrasound 533 

measurements of liver diameter may not reflect overall changes in liver volume. This clearly 534 

reinforces the importance of absolute volumetric measurements, which, when combined with 535 

statistical parametric mapping, enables simultaneous extraction of global and local changes. 536 

 537 

Additionally, we found a strong and distinct regionality in liver morphometry which was 538 

associated with body composition and liver PDFF. Specifically, we found that higher BMI and 539 

WHR were strongly associated with positive S2S distance, in line with others who have 540 

reported a positive correlation between liver size and anthropometric variables [45, 46]. We 541 

also found that higher liver PDFF was significantly associated with positive S2S distances, 542 

suggesting that hepatic fat is associated with both liver size and shape, with some clear 543 

regional variations. We further explored whether the time of day the participants were scanned 544 

was associated with S2S distances, given we have previously shown this to be associated 545 

with fluctuations in liver volume [9]. However, we did not find a measurable effect.  546 

 547 

We investigated whether conditions with known involvement of hepatic function had 548 

discernible effects on our S2S measurements. For this we selected T2D, commonly 549 

https://paperpile.com/c/jcEP9C/iYtgy+KjFnQ
https://paperpile.com/c/jcEP9C/iYtgy+PJKLG+HEoJU
https://paperpile.com/c/jcEP9C/uhpjd
https://paperpile.com/c/jcEP9C/vqInk+KjFnQ
https://paperpile.com/c/jcEP9C/iYtgy
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associated with increased deposition of liver PDFF, and subjects with known liver conditions, 550 

which we expected to be associated with a more adverse phenotype. We found that T2D was 551 

associated with outward shape variations in the liver after adjusting for PDFF, suggesting that 552 

T2D affects liver morphology. It is well recognised that T2D is associated with a range of liver 553 

conditions, with the prevalence of NAFLD in patients with T2D reported to be 55% and NASH 554 

37.3% [48], substantially higher than the proportion of individuals in the general population 555 

with NAFLD (19.9%) [3] or NASH (2.2%) [49]. Given the clinical heterogeneity of our current 556 

T2D cohort, in terms of time of diagnosis and medication, as well as the possibility of collider 557 

bias or reverse confounding, it is impossible to identify causal mechanisms for the observed 558 

variation in S2S distances. Interestingly when we considered the interaction between age and 559 

disease, we found no statistically significant interaction for liver disease, but there was a 560 

significant interaction between age and the presence of T2D. We also considered whether the 561 

interaction between disease and the presence of liver PDFF was associated with S2S 562 

distances. Moreover, the variations covered a larger proportion of the liver in T2D compared 563 

with liver disease. This may suggest that the hepatic tissue in T2D retains its overall relative 564 

plasticity (i.e. less fibrotic-cirrhotic tissue), while in liver disease there may be regions that 565 

have reduced capacity to accumulate fat or lost their plasticity and thus be less responsive to 566 

geometrical changes. Further work is needed to determine how these changes may be utilised 567 

to improve diagnosis or monitoring of disease progression. Future work in patients with biopsy-568 

characterised hepatic tissue should help to shed light  on the heterogeneity of response to the 569 

interaction between liver fat accumulation and liver health status. 570 

 571 

We further identified regional variations in liver morphometry that are associated with 572 

liver disease. Specifically, we observed an inward shape variation at the anterior part of the 573 

right lobe, and posterior parts of the left and right lobes accompanied by an outward increase 574 

in liver S2S distances in the anterior part of the left lobe in participants diagnosed with liver 575 

disease. Previous studies have suggested that statistical shape modelling is a viable approach 576 

for enhancing the understanding of the liver shape variations linked to the stage fibrosis and 577 

https://paperpile.com/c/jcEP9C/9pFiD
https://paperpile.com/c/jcEP9C/vBITh
https://paperpile.com/c/jcEP9C/C7jR8
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even predicting it [13, 50]. With limited outcome and longitudinal data in the current study, the 578 

clinical significance of these changes, particularly the simultaneous regional inward and 579 

outward deformations in S2S distances are unclear. However, histological and radiological 580 

studies of the liver in patients with cirrhosis have shown that the degree of volume reduction 581 

and fibrosis is greater in the right lobe compared to the caudate lobe (which reportedly 582 

expands) [51]. This suggests regional changes in S2S distances may reflect physiological 583 

processes in the liver. It is well established that many diseases do not progress uniformly 584 

across the liver, with differences reported within different zones (periportal, mid-lobular and 585 

pericentral) of the liver lobule, which may reflect populations, different cell types, metabolic 586 

function and differences in blood flow [52]. Whilst it is premature to adjudicate a mechanism 587 

responsible for the changes described in the current study, the regional shape differences 588 

associated to both AST:ALT and FIB-4, hinting at hepatocellular changes underpinning the 589 

variation in S2S distances.  590 

 591 

We assessed the predictive performance using shape features derived from the S2S 592 

distances on the case-control cohorts with liver disease and T2D. We aim to determine 593 

whether these shape features can add to prediction of disease beyond those obtained using 594 

conventional volumetric measurements. We demonstrated that the model using the shape 595 

features of the S2S distances improved the prediction of liver disease, however, there was no 596 

improvement in T2D compared to the model with liver volume. Our methods using the shape 597 

features, particularly in which histology is available, may provide additional information to 598 

confirm the utility of our approach in monitoring disease and potentially predicting outcomes. 599 

This in turn would open up the possibility of applying this methodology, in conjunction with 600 

other techniques to determine and predict the overall trajectory of progression of disease and  601 

identify those subjects requiring closer monitoring and more aggressive forms of treatment. 602 

Future work is also needed to explore variations in liver morphometry by condensing the entire 603 

coordinate matrix or deformation matrix into most distinct principal component modes to 604 

https://paperpile.com/c/jcEP9C/72hmX+2hsq
https://paperpile.com/c/jcEP9C/7WyRY
https://paperpile.com/c/jcEP9C/qh8Lp
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categorise population variations, which could be used in genetic association studies to 605 

enhance our understanding of chronic liver disease [17, 53].  606 

 607 

Our study was not without limitations. To ensure sufficient numbers of participants in 608 

the liver disease group, we included all participants in the imaging cohort who had a diagnosis 609 

of liver disease, regardless of aetiology (alcoholic, toxic and inflammatory liver disease, 610 

hepatitis, fibrosis and cirrhosis). This precludes us from a more in-depth granular analysis, 611 

although our data does suggest that hepatocellular damage, particularly in more advanced 612 

disease stages, resulted in significant S2S changes across the liver. Variation in disease 613 

aetiology, the point of disease progression and the impact of on-going treatment may further 614 

confound the interpretation of our observations in the liver disease cohort. Furthermore, this 615 

study has only 3,088 follow-up data since the imaging visit, which limits the identification of 616 

more severe cases and may limit the predictive power. Additional longitudinal measurements 617 

will need to be required to assess age-related changes in disease cohorts. 618 

 619 

Conclusion 620 

 621 

  This study demonstrates that methods to assess changes in liver morphology, beyond 622 

simplistic volumetric analysis, can be applied at scale. In a population-based study we show 623 

that inter- and intra-subjects' morphometric variations are associated with age, body 624 

composition and liver phenotypes, as well as disease. Moreover, morphometric scores were 625 

shown to improve the prediction of liver disease over-and-above conventional measures of 626 

liver volume. The approach developed here will allow large-scale studies of patient-based 627 

cohorts, enable disease-specific changes in morphology to be defined and tracked during both 628 

progression and remission and facilitate disease prediction and stratification. 629 

 630 
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