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Abstract

By 2030, the number of electric vehicles (EVs) on the road is expected to increase to

11 million in the UK, meaning that there will be an increase in electricity demand.

A potential solution to help manage this increase in demand is to use a technology

called vehicle-to-grid (V2G) which is essentially a connection post that allows a

bidirectional flow of energy, which means that EVs can charge and discharge when

connected. Through this technology, the electrical grid can make use of the energy

already stored in the battery of the EV.

This research aimed to understand the effects of EV availability on V2G technol-

ogy within a microgrid and evaluated the feasibility of providing ancillary services.

A predictive model, primarily trained on internal combustion engine vehicle (ICEV)

trips, used the UK’s historical travel data to predict the location of EVs, achiev-

ing significant understanding of travel behaviour and EV availability. Split into

two tasks—predicting start and end locations—this model utilised light gradient

boosting machine (LightGBM) due to its superior performance. After fine-tuning,

it yielded a weighted average F1 score of 0.900 and 0.902 for tasks 1 and 2, respec-

tively. The model, when informed by new, real-world EV data, derived travel start

and end locations, which was the fed into an optimisation model.

This optimisation model use a mixed integer linear programming (MILP) ap-

proach to schedule EV battery usage at the household level and study various case

studies involving V2G technology. Simulations factored in different photovoltaic

(PV) penetration rates, energy tariffs, and peer-to-peer (P2P) pricing mechanisms

withing a microgrid. First, the technical and economic benefits of home batteries,

smart charging (V1G), and Vehicle-to-home (V2H) systems in EVs were evaluated,

with an emphasis on performance and electricity bill reduction. The second case

studied the potential of EVs to provide short term operation reserve (STOR) ser-

vices. The third case explored a payment mechanism to optimise the state of charge

(SOC) for EVs under V1G and V2H technologies for a week and estimate the energy

available for restoration services.

The study reveals that both stationary home batteries and EVs, when integrated

v
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with solar power and dynamic tariffs, can effectively reduce electricity costs, despite

the fluctuating availability of EVs. Notably, EVs, when combined with P2P energy

sharing and V2H systems, offer comparable performance to stationary batteries, in

addition to their transportation benefit. In terms of STOR provision, EVs meet

the technical requirements, with their availability significantly influencing STOR

provision. Factors like energy tariffs, solar power penetration rates, and P2P mech-

anisms have minimal effect on the STOR energy amount, but they do affect the

overall microgrid performance. The study also highlights the need to maintain a

15% surplus of EVs within the microgrid for ensured resilience. Effective strategies

to maintain a high SOC in EVs include higher payment rate systems, implementa-

tion of V1G and V2H strategies, and dynamic energy tariffs. The study, however,

recommends limiting users to V1G to prioritise potential energy use for restoration

services. Although EV availability affects the minimum SOC, it is not more signifi-

cant than other factors such as EV penetration rates, energy tariffs, and P2P price

mechanisms.

The findings imply that EV availability can reduce some of the benefits that sta-

tionary home battery have, such as surplus noon charging, while V2H might match

home batteries in certain situations. EVs can offer STOR services as the fulfil most

of the technical requirements, but the energy amount is dependant on available EVs

during STOR events. EV availability had minimal effect on maintaining minimum

SOC for a week that could potentially be used for restoration services, with energy

tariffs and end-of-week incentives being more influential. Different PV penetration

rates, energy tariffs, and P2P price mechanisms each have varied impacts on grid

performance and V2G provision depending on the scenario.

Keywords: Electric Vehicles, Smart Charging, Vehicle-to-Home, Vehicle-to-Grid,
Machine Learning, Peer-to-Peer, Solar Generation, Optimisation
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v,t Energy required for driving for v at t (kWh)
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v,t Household load demand for v at t (kWh)
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v,t Solar generation for v at t (kWh)

Edelta,p2p
t Energy imbalance at t (kWh)
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Prbuy,gridv,t Price for household power import from the grid for v at t (£/kWh)
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Prbuy,streett Price for charging in a street charger at t (£/kWh)

Prsell,gridt Price for household power export from surplus solar generation
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Prsell,p2pv,t Price for household power export to peer-to-peer for v at t (£/kWh)

Prsell,v2gv,t Price for household power export to vehicle-to-grid for v at t
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Prmid,p2p
v,t Price mean value used for peer-to-peer prices for v at t (£/kWh)

PrSOC,final Price for the amount of state of charge at the end of the week
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ST event
t Short term operation reserve discharge event at t

ST threshold,theory Theoretical maximum energy from electric vehicle for short term
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Variables

Bch
v,t Binary variable for battery charge for v at t
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v,t Energy for battery charge when at home for v at t (kWh)

Echarge,street
v,t Energy for battery charge from street charging for v at t (kWh)
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v,t Energy from battery discharge to satisfy household load for v at

t (kWh)
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v,t Energy from battery discharge towards vehicle-to-grid for v at t
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Esolar,used
v,t Energy from solar generation used to satisfy household load for
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v,t Energy from solar generation exported to the grid for v at t
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v,t Energy from solar generation exported for peer-to-peer for v at t
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Eimport
v,t Energy imported from the grid for v at t (kWh)
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v,t Energy imported from peer-to-peer for v at t (kWh)
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v,t Net energy flow for household for v at t (kWh)
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Cimport
v Cost from energy imported from the grid for v (£)

Cimport,street
v Cost from energy imported from street charging for v (£)

Cimport,p2p
v Cost from energy imported from peer-to-peer for v (£)

Cexport,solar
v Cost from energy exported from surplus solar generation to the

grid for v (£)

Cexport,v2g
v Cost from energy exported to vehicle-to-grid for v (£)

Cexport,p2p
v Cost from energy exported to peer-to-peer for v (£)

CSOC,final
v Cost for the amount of energy in the battery at the end of the

week for v (£)

ST threshold,max
t Maximum energy than can be provided by all vehicles for short

term operation reserve at t (kWh)

ST percentage Maximum percentage of energy that can be provided by all ve-

hicles for short term operation reserve

ST demand,aggregated
t Aggregated energy provided by vehicles for short term operation

reserve at t (kWh)

BSvalue Minimum state of charge that can be held for all vehicles during

a week.





Chapter 1

Introduction

At the end of 2020, the UK announced the phase out of all new petrol and diesel

automobiles and vans by 2030 [1], this was another step forward towards achieving

the net zero goal by 2050 established in 2019 [2]. All this means that different

industries need to start looking for alternatives to reduce greenhouse gas emissions.

Considering that in the UK 33% of the green house emission were from the transport

sector in 2018 [3], decarbonising the transport sector will represent a significant

challenge.

The electrification of transport has been recognised as a viable option to over-

come this challenge; however, since the number of electric vehicles (EVs) are ex-

pected to increase to 11 million by 2030, there will be an increase in electricity

demand that will require significant investment to improve the electrical grid to

cope with such peak demand [4]. Therefore, understanding the nature of this in-

crease in demand is needed to maintain the security and quality of electricity supply

in the future by finding solutions to this challenge.

A potential solution to reduce the impact of charging a large number of EVs

at the same time in the future and help the penetration of renewable energy is the

use of smart charging (V1G), which means that consumers will charge their EVs

off peak times when electricity demand is low, helping the consumer benefit from a

lower price on electricity, reducing the overall cost of charging and saving additional

costs that otherwise will be necessary to improve the electrical grid to handle peak

demand. This technology can also help integrate renewable energy by charging when

there is surplus generation, such as wind and solar energy [5].

1



2 Introduction

Although the integration of EVs comes with challenges, it can also offer new

opportunities for consumers and the electrical grid. Considering that most vehicles

are parked 95% of the time [6], EVs can be connected to the grid and support and

provide energy already stored in the EVs’ battery [7], connecting millions of EVs

and coordinating their charging and discharging would minimise the costs of EV

charging while allowing the grid to balance the integration of high levels of variable

renewable energy sources [8]. To make this possible, EVs will have to be connected

to a vehicle-to-grid (V2G) enabled charger, a system that provides a bidirectional

flow of energy whenever EVs are connected to a V2G enabled charge station, which

effectively turns EV into a mobile battery that can provide power back to the grid or

directly to a house (Vehicle-to-home (V2H)) or building [9]. This means that EVs

can be considered as another type of storage capable of supporting the electrical

grid; however, using EVs to support the electrical grid must be treated completely

differently from other energy storage systems, such as stationary batteries, due to

the availability of EVs during the day, as the main purpose is to provide travel, which

means that they will not be connected to the grid at all times. Therefore, driving

behaviour, availability of EVs and location of V2G chargers can have a significant

impact on the potential economic value of V2G.

The use of V2G can support the grid by providing different ancillary services to

balance the grid. Figure 1.1 shows the value streams accessible for V2G.

V2GB Vehicle to Grid Britain   |   Project Report
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2.2 Literature review

Long-term market revenues and drivers

This chapter summarises the work performed by the Energy Systems Catapult under the Innovate UK funded 
project V2G-Britain. Work Package 1 (WP1) investigates the long-term market value and where V2G might be 
applicable in a wider energy system context. WP1 is focussed on the 2030 horizon and is separated into three 
deliverables with each deliverable including a different part of the analysis.

The first report from WP1 summarises the findings from the literature review and research to identify the 
drivers and dependencies that affect the value and viability of V2G. The outputs of this work have helped to 
inform the development of the scenarios for the second part of the work package, which includes the use of 
a modelling capability to help understand at what level V2G might be utilised in 2030. The final portion of 
the work package provides estimates of the system flexibility requirements and the V2G market potential.

The literature review identified the services that are accessible by V2G and these are shown in the diagram below.

Figure 1: value streams accessible by V2G

The literature review has also identified competing flexibility providers to V2G and a series of other challenges. 
The principle flexibility competition comes from peaking plant, grid-connected electricity storage, in-home 
heat storage, residential backup boilers and interconnectors. 
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Figure 1.1: Identified services that are accessible by V2G [8].

Ancillary services such as demand side response, frequency response services,
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reserve services, reactive power services, and system security services are among the

services that V2G have the potential to provide to support the grid [10]. However,

driving behaviour, availability of EVs and location of V2G chargers can have a sig-

nificant impact on the potential economic value of V2G when providing ancillary

services. In the existing literature, ancillary services, such as short term operation

reserve (STOR) and restoration services, have received little attention. These ser-

vices can be of significant interest to system operators and potentially generate a

revenue stream for EV owners. The reasoning behind these two is that according

to [8], STOR is one of the most promising ancillary services for V2G, however, a

better understanding of the availability of EVs is required before looking at provid-

ing this service [11]. For restoration services, there has been an increase in interest

from the National Grid to explore nontraditional technologies that could help in the

provision of this service [12, 13], however, they found that there are two challenges

before considering EVs, the uncertainty surrounding the EVs’ availability and state

of charge (SOC) during the day.

In the literature, only a handful of studies have considered the availability of EVs

when studying V2G, while studies that have considered the availability of EVs as

one of the key factors to evaluate the value of V2G, are limited by fixed availability

times and recognised the importance of further studying the impact of availability

of EVs in the delivery of ancillary services [8]. Considering that the provision of

ancillary services through V2G is based on the availability of EVs and the number

of those connected to the grid, it is important to study the impact of the availability

of EVs to connect to the grid to measure the value of V2G in the UK.

Furthermore, the penetration of renewable technologies has continuously in-

creased, particularly in small-scale solar generation, which can also affect the electri-

cal grid, as some studies show that a high number of exports to the grid from local

solar generation can harm the distribution network [14]. For instance, high levels of

solar generation during periods of low demand can cause voltage rise in the distri-

bution network, potentially leading to equipment damage and service interruptions

[15], can cause reverse power flow which creates operational challenges [16] and can

lead to overloading of distribution lines, causing accelerated ageing of infrastructure

and increasing the risk of equipment failure [17]. A recent report stated that cur-
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rently in the UK there are approximately one million of such installations and this

number is expected to increase in the near future [18, 19]. Therefore, it is important

to address the increasing number of solar generation, particularly at the community

level, with alternative solutions such as the formation of local energy communities

with energy traded between households, commonly known as peer-to-peer (P2P)

trading, which could help address this by allowing members of the community to

trade energy with their neighbours [20].

Taking into account the knowledge base explored in this chapter and the liter-

ature reviewed in chapter 2. The research planned in this work will focus on the

following; to assess the impact of the availability of EVs when providing energy when

connected at home through V2G and to evaluate the suitability to provide ancillary

services according to a variety of criteria. The purpose of this research is to close

the gap surrounding the value of V2G.

Therefore, this work aims to answer the following research questions:

• Can machine learning models be trained to predict the start and end locations

of EVs trips for the purpose of optimising V2G services, including V1G and

V2H? Can the travel patterns learned from mostly internal combustion engine

vehicles (ICEVs) data be effectively used to predict the locations of EVs?

• What impact does the availability of EVs have on the effective implementation

of V1G and V2H services services within a microgrid? How does the applica-

tion of the predictive model to real-world EV data inform and optimise V1G

and V2H services, and how does this technology compare to stationary bat-

teries in terms of leveraging the predicted EV availability and location data?

• Are EVs capable of providing STOR services within a microgrid when con-

nected at home? How does the availability of EVs impact the provision of

these services and their ability to fulfil technical requirements as outlined by

the National Grid in the UK?

• What strategies or mechanisms can be implemented to encourage EVs to con-

sistently increase their SOC throughout the week? What are the impacts of

V1G and V2H strategies on the minimum SOC maintained in EVs for potential
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restoration services? How does the availability of EVs influence the capacity

the minimum SOC that can be maintained over the course of a week?

• How do varying conditions, such as different photovoltaic (PV) penetration

rates and energy tariffs, impact the implementation of V1G, V2H and V2G

services within a microgrid throughout different weeks of the year? How does

the P2P energy trading, and specifically the variation in P2P prices, impact

the provision of V2G services within a microgrid?

The work performed in and the major contributions of this thesis are described

as follows:

• An innovative predictive model that uses machine learning designed to predict

the location and availability of EVs by using two separate classifiers. This

model specifically predicts the start and end locations of electric vehicle EV

trips, which significantly improves the understanding of EV availability and

location for optimising V2G services.

• A two-dataset strategy harnessing real-world historical travel data, predomi-

nantly composed of ICEVs, for training and validation of the predictive model

by capturing general travel patterns, and the applying this validated models

to real-world EV data to study V2G services.

• An optimisation model using mixed integer linear programming (MILP) was

developed, building upon a base model of stationary batteries to factor in the

variable daily availability of EVs. This model, integrating V2G and P2P en-

ergy trading, streamlines diverse energy sources to minimise electricity costs

for the participants within a microgrid. This optimisation model, significantly

reduces solving times, enabling the exploration of various microgrid configu-

rations. It demonstrates adaptability in managing multiple EVs using V2G

technology and offers the potential to be modified for exploring the use of

stationary batteries.

• The use of real-world datasets, including household electricity demand, PV

generation, and electricity tariff prices for simulations.
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• An evaluation of the technical and economic benefits of home batteries, V1G,

and V2H systems in EVs, focusing on their performance and capacity to min-

imise consumer electricity costs. Furthermore, it analyses the efficacy of a

grid-connected microgrid in reducing household electric bills, offering valuable

insights into optimal energy management for homes equipped with a stationary

battery or an EV with a bidirectional charger.

• An examination of the feasibility of EVs to provide STOR services when con-

nected at home by considering the aggregated power of available EVs at home

within a microgrid when energy is required for STOR. The feasibility is anal-

ysed based on the technical requirements and the six committed windows of

the year outlined by the National Grid in the UK.

• A new payment mechanism designed to encourage EVs to increase the amount

of SOC throughout the week. Furthermore, we compare the impacts of V1G

and V2H strategies on the minimum SOC maintained in EVs for potential

restoration services.

• An examination of the impact of microgrid operations under varying condi-

tions on stationary batteries and V2G services. The impact is analysed across

different PV penetration rates, energy tariffs, and P2P with two different price

mechanisms, determined by the volume of energy traded within the microgrid.

The remainder of this work is structured in a sequential way starting with

Chapter 2. This chapter provides a literature review on EVs and their role in pro-

viding V2G services. The aim here is to frame the context and purpose of this work,

setting the stage for the subsequent discussions.

In Chapter 3, a machine learning (ML) solution is introduced, designed to predict

the location and availability of EVs for V2G services. This predictive model is

developed and tested on real-world historical travel data, serving as a foundation

for subsequent real-world EV trip data predictions.

Chapter 4 presents an optimisation model that will be used for investigating

various case studies involving V2G technology within a microgrid, including V1G

and V2H application, and the provision of STOR services. It further introduces the
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concept of P2P energy trading within a microgrid, describes the data that will be

used for the simulations, and establishes the performance and solver metrics used in

the analysis.

Chapter 5 evaluates the technical and economic benefits of home batteries, V1G,

and V2H systems in EVs, with a particular focus on their performance and on

minimising consumer electricity bills. This chapter also investigates the impact of

EV availability on their capacity to provide V1G and V2H services, comparing these

services with those of stationary batteries.

In Chapter 6, the feasibility of EVs in providing STOR services when connected

at home is explored, assessing their potential to support the power grid based on

the technical requirements to provide this service. The focus here is to understand

the extent to which the availability of EVs affects their capacity to provide these

STOR services.

Chapter 7 introduces a payment mechanism to maximise the SOC that EVs

can maintain over a week under V1G and V2H technologies. This analysis provides

insights into the potential of EVs and these technologies to support power restoration

during outages.

The work concludes in Chapter 8, where the results of the research are discussed,

evaluated and their limitations are acknowledged. Suggestions for future work in the

field are also provided.





Chapter 2

Literature Review

This chapter focuses on putting the research within the framework of what has

already been published in the scientific literature.

2.1 Background

In 2019, the UK became the world’s first large economy to introduce laws requiring

the reduction of greenhouse gas emissions to zero by 2050 [2]. According to 2018

data, the transportation industry accounted for 33% of UK greenhouse gas emissions

[3]. As a result, decarbonisation of transport presents a significant challenge in

achieving this goal; therefore, electrification of transport has been suggested as one of

the most viable alternatives. Taking into account that, towards the end of 2020, the

UK government announced a plan to restrict the sale of new petrol and diesel vehicles

by 2030 and to promote the adoption of electric vehicles (EVs) throughout the

country [21, 22]. However, with the electrification of transport, electricity demand

is expected to increase in the future as the number of EV increases, with up to 11

million electric vehicles predicted to be registered in the UK by 2030 and 36 million

by 2040 [23]. This is expected to require substantial investment to upgrade the

electrical grid to accommodate the increased demand [24].

In the UK, the growth of integrated renewable generation at the community level,

specifically small-scale solar photovoltaic (PV) systems, also impacts the electrical

grid. With around one million installations already in place and an expected increase

in the near future, these systems contribute to changes in the grid’s performance. [18,

9
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19]. Although the increase in PV solar generation will help in the decarbonisation of

the electrical grid, this renewable source is a variable and non-dispatchable resource,

and it is not guaranteed that the generation will correspond well with electrical

demand [25]. Moreover, multiple households exporting solar energy at the same time

represent a concern for distribution systems, possibly resulting in voltage violations

and line overload [14].

These two technologies, PV solar generation and EVs, certainly come with chal-

lenges and opportunities, which will be discussed in the following sections.

2.2 Smart charging (V1G)

Smart charging (V1G) is a safe and practical method of charging an EV in periods

when the demand for power is lower, during periods of low electricity prices or when

there is a surplus of renewable energy in the grid. In other words, it is a strategy

for managing EV charging in a smart way to avoid overloading or destabilising the

grid [26, 5]. This method of charging is considered the best way to deal with the

rapid increase in EVs, as this benefits both consumers by reducing charging costs

and the electrical network by avoiding further investment to reinforce the network,

where otherwise large investments would have to occur in the electrical grid in

terms of operating conditions if smart charging is not implemented [27]. Therefore,

smart charging has the potential to make the adoption of EVs a smooth transition

towards decarbonisation of transport. Dallinger et al. [28] explored the fluctuating

generation of electricity from renewable energy sources in California and Germany,

and then analysed the potential benefits of connecting EVs to the grid to balance the

generation of energy from renewable energy sources. While their study illustrates

that EVs have the ability to charge during periods of surplus renewable generation

via V1G, they assumed fixed availability times for the EVs throughout the day.

This means that, despite showcasing the potential for EVs to boost the integration

of renewable energy sources into the grid, their model works on the premise of

predetermined charging periods.

Furthermore, studies of the impact on the distribution network when smart

charging is not used have shown that voltage problems on the local grid during the
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day, such an increase in demand at peak times, and recommending the use of smart

charging to avoid causing problems to the network [29, 30]. Their study was predom-

inantly focused on analysing the charging patterns of EVs during the evening, and

only considered the winter season. This could potentially limit the scope of their

research, as it does not account for variations in charging habits across different

times of the day and seasons of the year. Mwasilu et al. [31] undertook a study of

previous work and emphasised the significant economic investment that unregulated

charging can cause in power system networks, citing findings that V1G can avoid

up to 70% of the investment in power distribution systems. They concluded that

further studies should be conducted to analyse the feasibility of using EVs more

efficiently for both system operators and consumers. Schmalfuß et al. [32] found

that a proper implementation of V1G requires having precise availability times and

the minimum required range to cover the travel needs; however, they suggested that

this might only be achieved by having this information provided directly by the EV

owners. They also found that encouraging EV users to interact with the grid will

most likely have an influence on their daily habits, which not all EV owners are

willing to change.

Wang et al. [33] determined that price variations based on time of day can be

advantageous for both the operator and the consumer due to the flexibility to charge

when it is more convenient during the day. Will and Schuller [34] investigated user

acceptance of V1G in Germany, finding that grid stability and improved integration

of renewable energy sources were the mains drivers to include these technologies

according to users. However, Tan et al. [35] raised concerns about the potential

barrier to V1G and vehicle-to-grid (V2G) deployment due to insufficient charging

infrastructure. Therefore, while user approval is important, the expansion of charg-

ing stations remains a critical factor to consider in the future growth of V1G and

V2G systems.

Another potential advantage of using EV is the reduction of greenhouse gas

emissions, as they have zero tailpipe emissions. However, due to EVs’ need for

electric energy, it is crucial that the energy generated comes from sources with

lower environmental impact, such as renewable energies [36]. Furthermore, [37]

conducted an analysis of the impact of greenhouse gas emissions from EVs and
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compared it to greenhouse gas emissions among 70 different countries. They found

that greenhouse gas emissions produced by EVs have less of a negative impact on

the environment than internal combustion engine vehicle (ICEV) in the subcompact,

compact, full-size luxury and SUV vehicle categories. As a result of the correlation

between greenhouse gas emissions of EVs and the electricity generation mix of each

country, they determined that countries with a large proportion of fossil fuels in

their electricity generation mix, EVs were associated with more greenhouse emission

emissions than ICEV.

2.3 Vehicle-to-grid (V2G)

V2G is a system that allows a bidirectional flow of energy whenever an electric vehicle

is plugged into a V2G enabled charging station, effectively turning the EV into a

mobile battery that can supply power back to the grid or directly to a household

(Vehicle-to-home (V2H)) [9]. Figure 2.1 shows a diagram of the energy flow of V2G

and how this technology operates. This type of interaction tends to occur inside

what is called a smart grid, which includes the use of smart meters to monitor the

energy flow. This method also has the benefits of V1G, including improved grid

reliability, facilitating the integration of renewable energy sources, and providing

ancillary services. V2G technology not only enables EVs to act as temporary energy

storage but also contributes to the overall stability of the grid system. As the use of

electric vehicles increases, the potential for V2G to support energy management at

both the micro and macro levels is considerable, forming a robust solution to meet

future energy demands.

Various studies have investigated the integration of EVs and how they can sup-

port the deployment of renewable energy in the grid. This has been done by demon-

strating the benefits of using V2G and storing energy from renewable energy when

excess generation is produced and then returning it to the grid when needed [39]. A

2016 report by the Institution of Mechanical Engineers [40] recognised the impor-

tance of integrating energy storage technologies into the grid in the UK so it can

allow storing excess generation from renewable sources to return it at peak demand

hours. This report highlighted the importance of promoting the adoption of new
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3 Hardware Technical Specifications 

The main concept behind V2G is to utilise the large battery packs on board electric vehicles as energy 
storage, allowing electrical energy to be charged into the vehicles during times (often when electricity 
prices are low, for example during night time hours, or when there is high availability of renewable 
generation) and stored, with the option or intention of selling the energy back to the grid when prices 
are higher (e.g. during the day and early evening peaks in electricity demand).   

Different modes of operation are anticipated for V2G, but it is likely that in most cases management 
systems would be put in place to ensure that a minimum (back stop) state of charge is maintained for the 
vehicles’ battery and the timing of V2G operations are controlled, to ensure the vehicle is always able to 
deliver a reasonable range to allow the driver to use the vehicle should they need to.  

Figure 4: Vehicle-to-Grid system Diagram 

Figure 4 shows that there are two different flows for each direction of travel, the solid arrows indicate 
energy flow and the dashed lines indicate communication or control flows. 

In export mode, the EV operates as a small-scale source of distributed generation.  EV battery storage 
capacity typically ranges between 15 to 60 kWh with only a few vehicles (Tesla EVs, Jaguar I-PACE, 
Hyundai Kona) having a higher battery capacity.  The level of export depends on the power electronics 
within the V2G charger as well as the EV.  Units deployed to-date are capable of exporting between 3 
and 10 kW of power (see Figure 5) which positions the EV as a distributed generation asset comparable 
to a large domestic solar PV.  
 

   
Figure 5: Early prototype V2G units in the UK - Commercial building (left) and domestic unit right) 

For context, it is helpful to compare V2G chargers with the two other types of charging; standard and 
smart (or managed) charging.  
 
 

3.1 Standard Charging 

Conventional EV charging is provided by uni-directional chargers that transfer AC power from building 
power supplies (single or 3-phase) or from local distribution network power supplies (e.g. on-street or car 
park locations) to the EV.   

Figure 2.1: Diagram showing how V2G operates [38]. The blue line shows the flow
of energy from the grid to the electric vehicle. The grey line shows the flow from
the electric vehicle to the grid. The dashed lines represent the communication flow
between the electric vehicle and the V2G charger.

technologies to support the grid, such as the use of energy storage technologies and

the encouragement of the deployment of renewable energy sources. Mwasilu et al.

[31] conducted a study of the relevant literature on the interaction of EVs with

smart grids. The authors discussed the potential of EVs to support the penetration

of renewable energy sources, concluding that surplus energy enables EVs owners to

reduce their electricity bill and added that further studies should focus on under-

standing of the dynamic behaviour of the EVs is indispensable to better understand

their integration in the electrical grid and the potential benefits of V2G. Moreover,

the impact of EVs and V2G technologies has in the electrical grid was investigated

by Gay et al. [41], particularly on developing small island states, and it was deter-

mined that the addition of V2G to the electrical grid can help to adopt renewable

energy sources in isolated islands and maintain a steady electricity supply. They

added that the use of fixed energy price tariffs or not implementing smart charging

technologies can potentially slow down the integration and deployment of renewable

energy sources.

Lund and Kempton [7] studied the impact of V2G on the Denmark energy sys-

tem and how it can help integrate renewable energy sources. They found that using

low-priced periods of the day and V2G can improve the electric power system by

providing ancillary services such as voltage and frequency regulation. While the

authors consider the availability of EVs, their approach appears quite conservative.

They use predetermined fixed times of the day, divided into one-hour lots, to rep-

resent the available EVs. This may overlook the granularity required for a more
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realistic assessment of EV availability. Additionally, they simplify the model by

treating the entire EV fleet’s batteries as one large unit, equivalent to the sum of all

individual batteries. In reality, total battery capacity is not consistently accessible

due to variations in vehicle usage and grid connection availability. This model also

assumes EVs are fully charged when they disconnect to drive, which is not always

the case. The model does not account for vehicles driving for more than an hour and

the associated reduction in total charge. It also presumes all cars are grid-connected

when not in use, which is impractical in some settings like workplaces or mass transit

stations.

Thomas et al. [42] proposed a mixed integer linear programming (MILP) ap-

proach to simulate an energy management system for an office building to analyse

the impact of providing energy to the building through V2G and the uncertainty of

solar generation affects the energy management system and the sale of energy back to

the grid. They reported that the addition of V2G to office buildings can increase ef-

ficiency and help integrate renewable energy sources, significantly reducing building

energy consumption. The authors modelled a fleet of 30 EVs, mentioning that their

behaviour mirrors work-related mobility patterns typically seen with conventional

vehicles. Drawing upon the statistic that 82% of Belgium’s population adheres to

fixed working hours and shifts, they framed usual working hours as between 8 am

and 6 pm. This model, however, may be overly simplistic for a comprehensive un-

derstanding of EV availability. While it is beneficial for creating a baseline scenario,

the assumption of homogeneous mobility patterns does not necessarily reflect the

complex, diverse nature of real-world EV usage. Variations in commuting distances,

non-work-related vehicle use, and irregular travel patterns are all factors that could

significantly affect the actual availability of EVs for grid services. This approach

might oversimplify the model, potentially leading to an over- or underestimation of

the actual availability of EVs for grid services.

Moreover, according to Cenex et al. [8], in the UK, the use of V1G to reduce

demand peaks has been reported to have the potential to save up to £200 million in

investment required to meet electricity demand from 2020 to 2030, with an additional

£90 million per year in potential savings if V2G is used compared to not using either

of these technologies. In general, the usage of V1G and V2G can help to reduce
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congestion in distributed networks, where rewards mechanisms can be introduced

for customer participation in said congestion reduction to increase the adoption of

these technologies [43]. Figure 2.2 shows the potential impact of V2G on reducing the

peak demand in future scenarios. This figure shows how V2G even further reduces

peak demand when coupled with smart charging. V2G is expected to properly

support the grid in locations where plug-in rates are high.

 87Future Energy Scenarios 2019

Figure 4.24
Electric vehicle charging behaviour at system peak

In these figures, the solid line shows peak EV 
demand after taking account of both smart 
charging and V2G. This is the impact we include 
in our scenarios. The dashed line represents 
what peak EV demand would look like if smart 
charging (but not V2G) was adopted. The dotted 
line represents what peak EV demand might 

theoretically look like if there were no smart 
charging or V2G (which is not the case  
in any of our scenarios, as we believe that  
the combination of smart technology and  
innovative tariffs supports the assumption  
that smart charging will take place). 

0

10

5

15

20

25

G
W

2015 2020 2025 2030 2035 2040 2045 2050

EV demand with 
smart charging

Net EV demand (including the 
effects of smart charging and V2G)

EV demand with no smart 
charging or V2G

An increasing number of vehicle 
owners participate in V2G once 
the technology has matured.

In 2030, smart charging could shift 
47% of EV demand at peak.

In 2050, V2G could then also 
offset 85% of the remaining 
EV demand at peak.

Community Renewables 

G
W

2015 2020 2025 2030 2035 2040 2045 2050
0

10

5

15

20

25

No smart charging or V2G With smart charging With smart charging and V2G

In 2050, V2G could then also 
offset 69% of the remaining 
EV demand at peak.

In 2050, smart charging could 
shift 33% of the EV demand 
at peak.

Steady Progression

Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 7Chapter 6Chapter 1

87
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V2G during times of peak demand [4].
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Rodrigues et al. [44] examined the implementation of V2G to provide energy

back to the grid using the energy already stored in the battery of EVs when idle

whenever local demand exceeds local generation. They proposed combining V1G and

V2G to store energy in the EVs for later used to ensure the proper operation of a

microgrid. In this study, the authors also considered the availability of EVs crucial

for estimating the available dispatchable power to adequately support microgrid

operation. In their research, the authors focused primarily on the night hours when

most EVs are typically available for charging. However, this approach might not fully

account for the broader impacts of EV availability on grid stability and renewable

integration. By only studying a few select night hours, they may have overlooked

key aspects of EV utilisation during other periods of the day, potentially limiting

the robustness of their findings.

Yilmaz and Krein [45] analysed different case studies conducted around the

world, considering that V1G and discharging energy to the grid through V2G is

the best option to increase the benefit and profit for both the grid operator and

EV owners. In their review, they found that uncoordinated charging of EVs can

potentially increase peak load issues, leading to problems such as increased power

losses, reduced grid reliability, and increased costs. However, the use of V2G strate-

gies, offer a potential solution, enhancing the use of renewable sources and reducing

costs and emissions. Nevertheless, they concluded that the success of V2G strate-

gies largely depends on the availability of EVs. Factors like vehicle usage patterns

and charging infrastructure accessibility can significantly influence this availability.

Therefore, understanding these patterns is crucial for maximising the potential of

V2G strategies and mitigating challenges posed by uncoordinated charging opera-

tions.

Kiaee et al. [46] proposed an algorithm to make the most profit from charging

and discharging EVs through V2G. This was achieved by charging the vehicle when

the price of electricity is low and discharge energy to the grid when the price of

electricity is high. Their results showed that by applying their proposed algorithm,

a 13.6% charging cost reduction can be achieved when using V2G technologies. Here,

the study acknowledges that EVs are not stationary and tend to move to different

locations during the day. Particularly on weekdays, it assumes that EVs belonging
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to working individuals follow a predictable driving pattern: commuting to work in

the morning and returning home in the afternoon. This predictability potentially

offers a consistent framework for estimating the availability of EVs for V2G services.

However, the algorithm employed in this study allocates the same travel pattern to

each EV for all simulation days but varies the start and duration time of their

daily journey. The daily commute is modelled to occur at a random, but constant

time between 7 am and 10 am, and the return journey between 4 pm and 6 pm.

Despite these assumptions providing some degree of realism, they may still overlook

the inherent variability in real-world EV availability, impacted by factors such as

non-work-related vehicle use, such as travelling for leisure. Therefore, for a more

accurate portrayal of EV availability and its consequential impact on providing V2G

services, further research might need to consider these diverse aspects of EV usage.

While previous studies, such as Dubarry et al. [47], have demonstrated that V1G

usage has a negligible impact on battery degradation, and the intelligent use of V2G

can optimise battery conditions to minimise degradation [48], there are still concerns

about the long-term effects of V2G on battery life. Although demand-side manage-

ment has been shown to be beneficial for most Li-ion batteries on the market, and

Uddin et al. [49] discussed various perspectives on battery degradation, it is impor-

tant to consider that the viability of V2G may be affected by factors such as battery

technology, usage patterns, and the efficiency of smart energy trading. Consequently,

further research and advancements in battery technology and energy management

systems are needed to ensure the long-term profitability and sustainability of V2G.

Loisel et al. [50] studied the penetration of EVs into Germany by 2030 and how

the addition of V1G and V2G can affect the power system. They estimated the loads

of EVs for the year 2030 based on the 2013 driving patterns. They concluded that

incorporation of V1G will facilitate the penetration of renewable energy sources,

but implementation of V2G resulted in almost negligible profit for users, advising

that more incentives should be offered when participating in V2G to compensate

for the high cost of EVs, which will increase EV adoption. Their study analysis of

aggregated demand for electricity from potential EVs demonstrates varying driving

patterns across seasons, days, and passenger car segments. Notably, over 70% of

vehicles are not in use from 7:00 a.m. to 7:00 p.m., and above 90% are available
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from 8:00 p.m. to 6:00 a.m., suggesting potential availability for V2G services.

However, while these patterns provide a useful overview, the impact of variations in

individual behaviour, non-work-related vehicle use and its impact on EV availability

must also be considered for a comprehensive understanding of the potential of V2G

services. Therefore, more understanding of EV availability that covers different

travel patterns is necessary to fully understand the potential of V2G services.

Van der Kam and Van Sark [51] investigated solar energy generation and the

usage of V2G to benefit from surplus solar energy generation. The authors concluded

that the introduction of solar energy generation can benefit the grid by increasing

self-consumption and reducing the demand peak when EVs are introduced. They

also found that the self-consumption rate is decreased when EVs are away due to

the availability of EV to provide or store energy while not connected; however,

they did not consider the energy consumed by EV when travelling, which can also

impact their final results. In this context, the EVs being utilised for car sharing

might introduce potential downsides when considering their availability for V2G

operations. Although the pseudorandom generation of trip patterns attempts to

realistically represent vehicle use in a shared mobility context, it might also increase

the inherent uncertainty in EV availability. Car sharing can result in unpredictable

and sporadic usage patterns, making it challenging to reliably estimate when vehicles

will be available for V2G operations. Furthermore, the energy consumption for

driving is also a significant factor. As the EVs are consuming a certain amount

of energy during their trips, there needs to be a balance between the energy used

for mobility and the energy reserved for V2G services. Thus, extensive use of the

vehicles might limit their potential to provide V2G services. The study states that

the EVs require around 10 MWh annually for the trips, but it doesn’t clarify how

this energy requirement might impact their availability for V2G operations.

Mwasilu et al. [31] found that by absorbing the surplus energy production from

wind or solar energy to later deliver power to the grid through V2G can potentially

enable EVs to support the grid by providing different ancillary services. Tan et al.

[35] reported that V2G has the potential to improve and support the electrical grid

through different ancillary services with appropriate management systems and at-

tractive incentive schemes, which will play an important role in the implementation
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of V2G. In their report they mentioned that V2G technology in the power system

have the potential to improve and support the electrical grid. With the implemen-

tation of appropriate management systems and attractive incentive schemes, V2G

can provide a variety of ancillary services, achieving objectives such as peak load

shaving, load levelling, voltage regulation, and profit maximisation, among others.

Further, V2G technology can provide frequency regulation and even contribute to

system recovery during blackouts, underscoring its potential in maintaining grid sta-

bility and resilience. However, the feasibility of these services highly depends on the

availability of EVs to connect to the power grid. This availability aspect becomes a

crucial consideration in the effective implementation of V2G strategies, emphasising

the need for intelligent charging infrastructure and scheduling systems to maximise

the number the amount of energy that of grid-connected EVs can provide for V2G

services.

2.4 Ancillary Services

Ancillary services are a range of operations beyond energy generation and trans-

mission that help to maintain the stability and security of the electrical grid [52].

In Great Britain, the National Grid Electricity System Operator (NGESO) is the

entity that ensures that electricity is transported from different energy generators

to distribution network operator (DNO) so that they can take the electricity from

the grid to supply it to homes and businesses when they need it. NGESO is also

in charge of system balance, ensuring that energy supply and demand are always

balanced, guaranteeing the stability and security of the electrical grid. [53].

An overview of some of the ancillary services required to provide such grid bal-

ance is provided below.

• Demand Side Response (DSR): that consists of a smart use of energy from

homes and businesses can turn up, turn down, or shift demand in real-time

[54].

• Frequency Response Services: helps to maintain the frequency of the system at

50 hz with a range of ±1%. This ancillary service includes enhanced frequency
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response (EFR), firm frequency response (FFR) and mandatory response ser-

vices [55].

• Reserve Services: that provides different sources of additional power in case

of forecast electricity mismatch in supply and demand. This ancillary service

includes balancing mechanism (BM) start up, demand turn up, fast reserve,

replacement reserve (RR), short term operation reserve (STOR) and super

stable export limit (SEL) [56].

• System Security Services: that, as the name suggests, provides different ser-

vices that keep the security and quality of the electricity supply. This ancillary

service includes intertrips, system operator to system operator, restoration

services (formerly known as black start), transmission constraint management

and maximum generation [57].

Several studies have examined how EVs can help balance electricity demand and

supply by altering their charging levels to ensure correct operation of the grid. The

majority of EVs, including plug-in hybrids, could provide valuable services to the

grid due to the fast response of their batteries inside, which offer a rapid response

time. A recent report by Statnett [58], a Norwegian state-owned enterprise, further

supports this assertion. Published in 2018, the report discovered that EVs are

even capable of providing FFR as their response time was found to be under 2

seconds. However, leveraging these capabilities to provide additional services via

V2G will require the establishment of new market rules [8, 59]. Yilmaz and Krein

[45] conducted an extensive review of different aspects of V2G, such as the possibility

of providing ancillary services to support the grid. They concluded that the cost

reduction benefit that V2G can offer compared to more traditional technologies can

be significant enough to encourage the adoption of V2G to provide ancillary services

and eventually replace traditional technologies.

2.4.1 Demand side management

As it is described by the National Grid ESO [54] “demand side response (DSR) is all

about intelligent energy use. Through DSR services, businesses and consumers can

increase, decrease or shift demand in real time”. DSR is one of the most important



2.4 Ancillary Services 21

tools that can help guarantee the security, sustainability and affordability of the grid

by reducing the peaks in demand and filling in the troughs by taking advantage at

times when there is excess in electricity generation, as well as at times when the

electricity generated is cheaper and cleaner. In this context, EVs are capable of

supporting the grid by charging and discharging when required.

A study by Octopus Energy [60] encouraged consumers to engage in a more

efficient use of energy to avoid high demand peaks. They evaluated the use of a

time-of-use energy tariff that presented participants with price variations through-

out the day, with the goal of engaging customers with their energy use at home to

analyse how particular users, including EV owners, modified their schedules to take

advantage of the drop in energy prices. The trial involved allowing participants to

check energy rates in advance for the next day using a mobile app, giving them the

ability to plan their energy use for the following day, generally offering low energy

pricing during off-peak periods and high energy prices during peak times. The study

lasted 6 months and it was found that peak use was reduced by 28.19% and par-

ticipants saved up to £229.00 during the test period, Participants who owned an

EV were the ones who changed their habits of electricity consumption the most by

charging their EV at off-peak times, which resulted in a 47% reduction in energy

consumed during peak times, concluding that, with the appropriate incentives, a

shift in demand is possible and reduce congestion on the grid. Guo and Chan [61]

studied EV charging during a period of time. They proposed that the implementa-

tion of alternative pricing tariffs may potentially drive owners to charge at specific

times of the day, as well as encourage the use of renewable energy sources during

periods of excess generation. The authors found that demand side response is an

important aspect that can help reduce demand peaks if incentives are offered to EV

owners.

Wang et al. [33] conducted a study on how to achieve peak load reduction by

scheduling EV charging behaviour, suggesting a price negotiation method that re-

quires the consumer to participate in a bid system with the operator in which both

parties compare and negotiate the pricing. This price variation is determined by

various factors, such as the time of day and the amount of power generated by

renewable energy sources. They concluded that their proposed approach can effec-
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tively increase profits for operators, reduce costs for consumers, and balance the

load on the system. Wolinetz et al. [62] studied the long-term influence of consumer

behaviour on the value of vehicle-grid integration to supply backup electrical power,

support load balancing and lower peak loads. They concluded that vehicle-grid in-

tegration impacts the wholesale electricity prices by reducing them to 0.7% by 2050

in the Canadian electricity market. Despite these findings, the study acknowledges

several limitations. The model accounts for consumer choices affecting EV adoption

and utility-controlled charging participation but does not extend this to decisions

regarding home charging power or workplace charging access. The model also over-

looks potential changes in consumer behaviour in response to time-of-use electricity

pricing, as well as how participation in V2G could influence EV usage decisions.

These considerations might, in fact, enhance the value of V2G. Furthermore, the

study does not capture all potential benefits that utility-controlled charging could

offer, such as second-to-second load balancing or deferral of distribution system

upgrades, which occur at more granular levels. It is essential to consider these lim-

itations when interpreting the study’s results and applying them to demand-side

management strategies within the broader context of V2G implementation.

Coignard et al. [63] studied the adoption of EVs and the implementation of V2G

services have substantial implications for demand side management in the context

of California’s energy landscape. With the mandate for 1.3 GW of stationary energy

storage by 2025 in California, the advent of V2G technology can offer an alternative

by potentially providing up to 5.0 GW of storage. They found that this large-scale

integration of EVs could enable more effective demand side management through

controlled charging, smoothing out demand peaks, and improving grid stability. It

can also support valley filling and ramping services, thus optimising the grid opera-

tions and enhancing the renewable energy integration. However, several challenges

could hamper the effective utilisation of EVs and V2G services for demand side

management. These include the lack of sufficient incentives for EV owners to par-

ticipate in V2G, limited availability of EVs capable of delivering V2G services, and

range anxiety, which might deter potential users. Therefore, the implementation of

well-designed policies and incentives is crucial to mitigate these issues and promote

widespread adoption of EVs and V2G services, thus maximising their potential in
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demand side management and supporting a more resilient and sustainable grid.

Lee et al. [64] studied V2G to determine the impact of peak load shaving when

different levels of EV penetration. They concluded that V2G can significantly lower

the peak load demand by returning the energy stored in the battery to the grid.

Schmalfuß et al. [32] studied the impact of the implementation of EVs to balance

the supply and demand of the grid. They found in their analysis that the integration

of EVs into the electrical grid can potentially prevent or greatly reduce these peak

demands. Bishop et al. [65] concluded that peak-shaving and regulation services are

two of the most profitable ancillary services that can be provided by V2G. In these

three studies, particularly, Bishop et al. [65], employed a notably realistic method,

utilising UK data from the national travel survey (NTS) to in their model. However,

irrespective of the varied methodologies, there is a unanimous agreement across

these studies regarding the necessity of enhancing incentives to motivate EV owners’

participation in V2G services, such as peak demand management. Additionally,

despite these insights, significant limitations persist. The unpredictable availability

of EVs for V2G services, owing to diverse driving habits, presents a substantial

challenge. Fluctuations in power demand also pose difficulties in maintaining an

optimal state of charge (SOC) to cover EV owners’ needs, potentially degrading

the performance of EVs when providing V2G services. Moreover, while aggregators

play an integral role in monitoring SOC and managing charging and discharging

behaviours, efficient peak shaving remains an issue, there is a need for more advanced

strategies and technologies to reliably provide control demand-side responses.

Wang and Wang [66] proposed an objective function to control V2G systems

for peak shaving and valley filling. They concluded that V2G can be helpful for

the grid when the number of connected EVs is large enough and that it could even

replace traditional systems that provide such services. Additionally, they mention

that offering a variable price of charge and discharge throughout the day can be

an effective measure to incentive EVs to participate in balancing power demand.

However, in their study they only focus in two diffident 1-hour time windows of the

day where it is assumed that the majority of EVs will be available. This means

that while the strategy of variable charge and discharge pricing shows potential

for demand management, their approach regarding the availability of EVs for V2G
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integration shows that further research is necessary to fully better understand the

of EVsposes a significant limitation.

Aluisio et al. [67] presented a day-ahead operation for integrating EVs and V2G

to reduce the operational daily cost of a microgrid by controlling the load demand.

They concluded that the existence of an EV aggregator coupled with the microgrid

can result in a lower total operational cost for the microgrid and reduced costs for EV

owners. However, the authors assume fixed periods for the availability of EVs, which

may not fully reflect the complexities and dynamic nature of real-world EV usage.

This fixed-time assumption may therefore limit the full cost-saving potential of the

proposed day-ahead operation. Bhandari et al. [68] suggested offering incentives for

providing peak-shaving via V2G can prevent wind or solar curtailment and minimise

the impact of the intermittency nature of renewable sources. The authors determined

EVs’ participation in V2G activities using a randomised generation process. They

flagged whether or not an EV was willing to participate in V2G during a certain

period. By relying on a random flagging system for determining EVs’ availability,

the researchers may not fully capture the intricacies of the actual decision-making

process of EV owners when participating in V2G services.

Ioakimidis et al. [69] proposed an optimisation scheduling model of EVs to min-

imise the power consumption of a non-residential building using V2G. They ap-

proached EV scheduling by combining a linear programming model with real-world

data on power use and parking lot occupancy. They discovered that when a large

number of EVs are available to supply V2G, the building can expect a power de-

crease of up to 20%. However, the availability time used was a traditional 9 to 5

office hours without considering uncertainty in the availability of EVs supply V2G.

Sha’aban et al. [70] proposed an optimisation model to coordinate the charging

schedule of EVs to take advantage of the lowest energy price during the day, re-

sulting in savings of up to 63% when using V2G. However, they did not take into

account driving habits and used fixed availability times.

Jian et al. [71] proposed a stochastic EV scheduling scheme for V2G operation

to optimise charging scheduling, concluding that optimal scheduling can reduce the

variance of the total peak demand for load, enhancing the efficiency of power grid

operation. López et al. [72] analysed V2G as a solution to network congestion issues
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in microgrids with a high penetration of EVs. They concluded that V2G can help

alleviate microgrid congestion by stopping charging or supplying energy back to the

microgrid. Furthermore, these two studies proposed different strategies to manage

the uncertainty of EVs availability for V2G services. The first study proposed a

strategy based on event-triggered scheduling, which reacts to the connection and

disconnection events of EVs to the grid. This system relies on acquiring data such

as the trigger point time, SOC, and the expected departure time of the newly con-

nected EV. The second one, simplifies the availability problem by presuming EVs are

available at fixed times based on a typical workday. Although this approach may not

capture the full variability of real-world usage, it provides a straightforward model

for potential V2G operations. These two different approaches may face challenges

with data accuracy and unexpected user behaviour in the case of the study by Jian

et al. [71], while López et al. [72]’s fixed availability assumption might overlook the

variability in real-world EV usage and individual driving patterns. Both approaches,

therefore, may result in inaccuracies in predicting the true potential and efficiency

of V2G services.

2.4.2 Frequency response

As the National Grid [55] defines it, “System frequency is a continuously changing

variable that is determined and controlled by the second-by-second (real-time) bal-

ance between system demand and total generation. If demand is greater than gener-

ation, the frequency falls, while if generation is greater than demand, the frequency

rises”. Different studies have explored the feasibility and benefits of providing this

ancillary service by making use of EVs via V2G.

Peng et al. [73] reviewed previous research to establish the feasibility and ef-

fectiveness of EVs participating in frequency regulation services. Due to the fast

response of batteries, the authors believe that participation in frequency regulation

services is one of the V2G uses with the most potential. They found economic

advantages for both the electrical grid and EV owners, such as reduced peak load,

minimising the impact of renewable energy intermittency and lowering the total cost

of an EVs. Despite the potential lower cost of owning an EV, they determined that

the incentive should be more attractive for EV owners to participate in the frequency
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service market and promote the adoption of this technology. The authors concluded

that the price of charging and discharging and the availability of EVs to estimate

the capacity available to provide frequency control services are critical aspects that

require more investigation.

Martinenas et al. [74] examined the deployment of a system capable of provid-

ing frequency adjustment through V2G according to Danish technical conditions.

After conducting their tests, they found that due to the quick response of EVs to

any deviation in frequency observed, EVs are a strong fit to provide this ancillary

service. In this study, the authors opted to bypass the availability factor of EVs alto-

gether, concentrating instead on establishing their capability for frequency response

through V2G. By conducting tests over different time windows, these studies aimed

to determine the periods when EVs could optimally deliver this service, thereby

contributing to the broader understanding of EVs’ potential in grid stability and

response.

Ota et al. [75] proposed a control scheme for V2G to provide frequency regulation

services. Their control scheme managed to respond to the frequency deviations

detected at the plug-in terminal. In this case, the total settling time of the system,

including time lags caused by frequency detection, communication, and the response

of the power conditioner, was within one second., demonstrating that V2G can

provide frequency regulation and improve microgrid operation. However, the impact

of availability was not taken into account in this study. Lund and Kempton [7]

studied the integration of renewable energy and V2G to frequency regulation. Due

to the fast response of the batteries inside EVs, V2G has the potential to replace

traditional power plants that offer frequency control. They use predetermined fixed

times of the day, divided into one-hour lots, to represent the available EVs.

Tomić and Kempton [76] analysed the economic potential of V2G. They con-

centrated on the frequency response market, as they believed to have the highest

market value for V2G. They compared the net profits of four different energy regu-

lating market locations across the United States to estimate the economic potential

of V2G by analysing the net earnings of two separate utility fleets. They concluded

that while V2G economic benefits are possible, the value of local ancillary services,

infrastructure, and total EVs capacity are critical variables to make V2G more ap-
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pealing. It is worth noting that the authors assumed that EVs are parked for the

majority of the day, following a conservative daily pattern. This assumption could

potentially oversimplify the dynamic nature of real-world EV usage, failing to ac-

count for the variability in individual driving and parking habits. Furthermore, the

researchers highlighted a key barrier in their study, the absence of vehicle aggrega-

tors to manage multiple fleets and individual vehicles. This constraint could limit

the practical implementation and scalability of their proposed models and strategies

for integrating EVs into power grid management.

DeForest et al. [77] used a MILP model to optimise EV charging schedules and

maximise profits from frequency regulation services via V2G. They used varying

hourly energy rates and set a penalty for low SOC levels to encourage maintaining

sufficient charge for frequency regulation. However, they found that this penalty had

little effect on the results. They tested the model using different EV use patterns,

generated randomly to reflect varied input parameters and based on observations

from a specific site in Los Angeles, US. Their model was sensitive to changes in

energy rates, which could be a problem given the unpredictable nature of energy

prices. Also, using data from one location might not fully represent the varied usage

patterns of EVs across different places and groups of people.

Lam et al. [78] introduced a V2G smart charging method that could offer regula-

tory services to the grid. They accounted for EVs’s availability throughout the day,

with the premise that EVs could engage in V2G based on the owner’s travel require-

ments. They suggested that assessing the capacity of available EVs connected via

V2G could support the design of business models to enhance V2G adoption. They

modeled EV arrivals in the system as a random Poisson process, illustrated through

a parking structure scenario where EVs arrived and departed independently. How-

ever, their research could only estimate the collective contribution from the EVs,

which operated autonomously. This points towards a need for strategies that can

efficiently manage EV integration into power systems considering this autonomy.

Brandt et al. [79] explored the economic aspects of V2G integration by construct-

ing a business model for EVs to aid in frequency regulation in parking garages in

Germany. They factored in the availability of EVs, but utilized fixed times for all

vehicles. Their analysis led them to conclude that due to the substantial investment
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required for setting up the necessary infrastructure, the potential revenues and prof-

its for the aggregator in the 2016 German market were limited. Similarly, profit

expectations for EV owners were also modest. They argued that it would be more

economical to charge EVs immediately upon entering the parking garage, rather

than adjusting the charging profile to offer auxiliary services.

Uddin et al. [80] studied the possibility of prolonging the battery’s life by offering

V2G ancillary services such as frequency regulation and load balancing. They con-

cluded that EVs that provide V2G auxiliary services have a longer battery life than

EVs that do not participate in V2G. However, they considered that the availability

was fixed to a traditional office time. Wang et al. [81] compared the battery degra-

dation of an EV battery pack between driving only and driving and offering various

V2G ancillary services, demonstrating that battery degradation is not significant if

V2G ancillary services are offered intermittently, with periods of time that accumu-

late no more than 2 hours per day, which the authors considered a more realistic

scenario for offering services such as peak load reduction and frequency control.

In their research, Liu et al. [82] stressed the importance of maintaining sufficient

SOC in EVs for travel needs, particularly when these vehicles participate in grid fre-

quency regulation services. They observed that the availability of EVs significantly

influences the capacity that can be offered for such services. However, their assump-

tion of EV users typically operating within a 8:00 to 17:00 timeframe could limit the

practicality of their findings due to variability in users’ schedules. Sarabi et al. [83],

on the other hand, aimed to model the uncertainty of EV availability by considering

daily driving behaviours. They identified frequency regulation as the most compet-

itive ancillary service that V2G could provide in France and asserted that offering

these services in workplaces is more reliable due to less variability in EV availabil-

ity, as opposed to when EVs are connected at home. However, this approach also

has limitations. Sarabi et al. [83] modelled EV availability using stochastic vari-

ables that reflect a Gaussian distribution relating to home and office scenarios. This

may not fully capture real-world variations as it assumes consistent daily driving

behaviour. Both studies underscore the need to consider the dynamic nature of EV

usage and availability for an accurate assessment of V2G’s potential.

Meng et al. [84] proposed a strategy to effectively use EVs for frequency response
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and help integrate wind power into the electrical grid in Great Britain. They inves-

tigated the driving habits of EV drivers and their effect on the frequency response

capacity, indicating that the frequency response capacity is affected by the availabil-

ity of EVs. However, the EVs’ availability times were assumed during fixed times

of the day. They found that by providing frequency regulation, EVs can achieve a

considerable reduction in frequency instability due to wind power generation inter-

mittency and potentially reduce the operating expenses of traditional power plants.

Finally, they added that the implementation of travelling behaviour and the avail-

ability of EVs need to be studied in more depth.

2.4.3 Reserve Services

The NGESO [56] defines reserve services as an extra power in the form of increased

generation or demand reduction that enables the National Grid to compensate in the

case of a mismatch in the forecasted electricity demand in the transmission system.

Previous studies have explored V2G that can support the delivery of this type of

ancillary service, such as Donadee and Ilić [85] that studied the stochastic schedul-

ing of EVs participating in the energy and reserve markets. They concluded that

compared to fixed availability times, the unpredictability of EV availability reduces

profits by up to 24%. Gough et al. [86] conducted an economic feasibility study

of V2G as a EV-based energy storage system. They simulated three distinct V2G

scenarios: direct power supply to a building, participation in the STOR ancillary

service market, and trading in the wholesale energy market. The availability of EVs

for these scenarios was assessed through a Monte Carlo approach, estimating the

vehicles’ arrival and departure times. The study also highlighted the substantial

impact of battery degradation costs on V2G services. They concluded that engag-

ing in these markets could potentially yield profits of approximately £8400 over a

decade. However, the study’s limitations emerge in the context of STOR services.

The authors exclusively considered service provision when EVs are connected to

a commercial building - in this case, a museum. This strategy, while simplifying

the aggregation of power for STOR, is dependent on EVs being parked during the

building’s operating hours. This may not align with the with the different seasonal

requirements of the NGESO, where participants must be ready to provide energy
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during these specific committed windows. Furthermore, the study’s consideration

of only three different driving profiles regarding travel distance may not accurately

represent a more diverse group of participants with differing travel needs and be-

haviours.

Bishop et al. [87] studied the effect of V2G on battery degradation when provid-

ing ancillary services to the grid. They found that providing energy services could

lead to EV battery packs being replaced annually when supplying firm fast reserve,

recommending limiting the amount of time that EVs participate to a couple of hours

per week to minimise the depth of discharge when ancillary services are provided.

Bishop et al. [65] conducted a study to determine the cost related to the degrada-

tion of the battery of EVs when providing V2G ancillary services. After studying a

fleet of EVs providing fast reserves, they concluded that it would be quite difficult

to deliver this service due to the number of EVs required and the number of EVs

registered in the UK by 2015. Moreover, this suggests that energy operators would

need to pay up to £105 to EV owners to compensate for battery degradation. How-

ever, both studies make assumptions about EVs availability and travel patterns that

could potentially limit their conclusions’ applicability. They split trips into morning

and afternoon segments but assumed that trip duration and distance would be the

same within these time frames. Although real-world data from the NTS informed

these assumptions, this simplification could impact their results. They might not

adequately account for variations in daily travel patterns, potentially affecting their

estimates of battery degradation and the feasibility of providing ancillary services.

More robust models might need to consider the heterogeneous nature of EVs usage

and better assess the provision of V2G.

Morgan et al. [11] studied the various driving behaviours and their impact on

the availability of vehicles to provide STOR services, particularly in the amount

of energy required to provide this service. They highlighted the importance of ac-

knowledging the main purpose of an EV and guaranteeing enough SOC that will

be used for travel, as well as the importance of studying the effect of weekdays and

weekends, holidays and seasonal differences on driving behaviour. They believed

that V2G was best suited for STOR services due to the low frequency with which

this service is required, typically around three times a week, potentially minimising
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battery degradation by eliminating continuous cycling. In their study, the authors

concluded that during winter in the UK, none of the three availability profiles stud-

ied by the authors matches the times of day when STOR services are required, such

as the peak demand times in the morning and evening, emphasising the importance

of understanding the availability of the EVs, which will play a crucial role given the

annual increase in the number of EVs registered in the UK.

Predicting the availability of V2G for STOR with a large population of EVs is

challenging. It depends on various factors including the number of EVs connected

to the grid, their battery charge status, and the drivers’ schedules and preferences.

While some studies have created models to estimate this, exact predictions remain

uncertain. More research is needed to improve our understanding and prediction of

this availability and how could this impact the provision of STOR.

2.4.4 System Security Services

The NGESO employs a diverse range of strategies and services to ensure the secu-

rity and quality of the power supply within the UK’s transmission system [88]. A

recent report highlights how NGESO is actively seeking ways to leverage renewable

generation and distributed energy resources (DER) as potential facilitators of power

system restoration. This comes in response to the decommissioning of traditional

restoration service providers, predominantly large, synchronous power stations, due

to significant changes in the energy landscape over the past decade [12]. This com-

prehensive report looks into the potential of several nontraditional technologies to

provide this type of ancillary service, including EVs. Crucially, one of the most con-

siderable challenges identified in qualifying EVs as viable candidates for participating

in the provision of restoration services is their availability. The unpredictability sur-

rounding the availability of SOC, along with knowing their SOC at any given time

throughout the day, are some of the main challenges to overcome.

This report highlights that having enough available resources is critical for the

successful use of EVs and other DERs for restoration or ’black start’ services. As it

is expected that by 2050, nearly 80% of UK households will smart charge their EVs,

with almost 45% providing Vehicle-to-Grid (V2G) services [89], these technologies

could greatly change the energy sector, but their real-world use greatly depends on
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solving this big issue of availability.

Despite these challenges, there have been some explorations of using EVs in

restoration services, as highlighted in the report. For instance, one study investi-

gated the potential of a bi-directional EV charger for emergency power supply during

restoration procedures [90]. Another proposed an intelligent integrated station for

EVs that could provide higher start-up rates, better efficiency, and a more secure

and economical restoration process [91]. However, neither of these studies specifi-

cally addressed the crucial aspect of EV availability and how it could impact the

successful implementation of such systems. Apart from these studies, it’s worth not-

ing that there is a lack of extensive literature surrounding the use of V2G technology

for providing restoration services.

As such, future research must give top priority to devising robust strategies and

innovative solutions to overcome the availability challenge. For example, developing

advanced forecasting models to predict EV availability with greater precision based

on usage patterns could be a game-changing approach. Additionally, establishing

incentive schemes that encourage EV owners to maintain a minimum SOC, thereby

ensuring their availability for restoration services, is another promising avenue for

exploration. While these technologies hold significant potential to transform the

energy sector, their practical application is largely dependent on the resolution of

key challenges, such as the aforementioned issue of availability and SOC for EVs.

Further, comprehensive studies on incorporating EVs and DERs within the cur-

rent power system to provide restoration services are crucial. These studies should

focus mainly on understanding the potential impacts of the availability of EVs on

the power system. In this context, the importance of providing incentives to EV

owners becomes evident, as it can significantly influence the availability of these

vehicles for restoration services.

2.5 Peer-to-peer (P2P) energy trading

Peer-to-peer (P2P) energy trading describes flexible energy transactions in which

any surplus energy from small-scale DER is traded between local customers [92].

In practice, P2P energy trading works by using advanced metering infrastructure
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(smart meters), digital platforms, and automated systems to monitor energy gener-

ation and consumption in real time. Participants with excess energy (from a solar

panel or battery storage, for example) can sell that energy directly to another par-

ticipant who needs it. Pricing mechanisms can be designed to incentivize this kind

of energy sharing, making it more economically attractive to trade energy locally

rather than buying from or selling back to the grid. These systems (like solar panels

or energy storage) can be used to supply power for P2P trading. Even with in-

dependent connections to the DNO, energy can be traded behind-the-meter within

the microgrid, as long as the necessary metering and management systems are in

place [93, 94]. In recent years, interest in participating P2P has increased as they

represent an alternative way to use surplus energy and allow consumers to choose

who they buy power from and to whom they sell it to and increase the use and

implementation of distributed renewable energy. This energy trading can also help

on the decarbonisation of the energy sector; however, the adoption of this type of

energy trading business model, selling and buying energy must be attractive to both

prosumers (who produce as well as consume) and consumers [20, 95].

Different works have explored the integration of P2P energy trading by studying

pricing mechanisms that aim to encourage participants in a microgrid to share energy

with their neighbours. Long et al. [96] proposed a game theory to simulate P2P

energy exchange by using an energy exchange platform. They concluded that P2P

energy trading has the potential to improve the local balance of energy generation

and consumption within a microgrid. However, their simulation was limited to only

one energy tariff to buy energy from the grid, which might not sufficiently capture

the complexities of diverse electricity demand behaviours in larger populations with

participants with a diverse type of energy tariffs. With energy prices calculated

based on this single tariff’s loads and solar generation, their model may overlook

certain dynamics present in a more varied user base. Vangulick et al. [97] proposed

a localised P2P electricity trading model for local buying and selling of electricity

among plug-in hybrid electric vehicles (PHEVs) in microgrid. They explored the

idea of using a blockchain approach set P2P prices. They concluded that their

approach can achieve social welfare maximisation while protecting the privacy of the

participants in the microgrid. However, they authors recognised that this approach
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needs more testing and validation as some of the characteristics that they mentioned

in their system are not compatible with the main existing blockchain technologies.

Morstyn and McCulloch [98] proposed a P2P energy market platform based

on multiclass energy management that coordinates the trade between subscribed

prosumers and the wholesale electricity market. They concluded that this strategy

allows prosumers to change their scheduled power flows according to the wholesale

energy price, reducing the expenses associated with network losses. However, their

method differentiates trading prices across prosumer classes, which may not always

be beneficial for all users. This can potentially discourage participation in P2P

trading, indicating a need for a more balanced trading mechanism that is consistently

profitable for all participants. The current approach may limit the broader adoption

of P2P energy trading due to these profitability concerns.

Guo et al. [99] introduced an iterative settled market pricing mechanism in which

the feedback of each round of bidding is used by the participants to update their new

bids, and the market is settled if and when it converges, otherwise requiring an exit

mechanism of some kind. However, the market pricing mechanism they introduced

can potentially result in the market agent setting bids that may not be favourable to

the participants. This could discourage their continued participation in P2P energy

sharing.

Wang et al. [100] proposed a P2P multi-energy market mechanism. In this study,

participants have the opportunity to join one of two coalitions based on their poten-

tial benefits. The energy markets are cleared separately per coalition and per energy

provider and hence, multi-energy markets are modelled. They concluded that com-

pared to scenarios where there is no P2P trading, the proposed mechanism benefits

most peers, especially small ones. An et al. [101] proposed a pricing mechanism that

calculates P2P prices based on the prosumers and consumer market participation.

They concluded that this pricing mechanism can match the benefits for both pro-

sumers and consumers and encourages trading energy with their peers within the

microgrid.

Long et al. [92] proposed an auction-based pricing that aimed to emulate tra-

ditional energy markets to set P2P prices within a microgrid based on the total

energy demand and generation. This resulted in reduced energy costs by increasing
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self-consumption within the microgrid. Liu et al. [102] designed a dynamic internal

pricing mode based on the supply and demand ratio (SDR) of the shared local PV

generation. They considered the economic costs and willingness of users to partic-

ipate in the trading of energy with their peers, as this would involve sharing data

regarding their demand and generation. Their approach resulted in cost savings for

prosumers and improved sharing of surplus PV energy within the microgrid.

Tushar et al. [103] proposed a game-theoretic approach in which P2P trading

prices are set through the use of mid-market rate (MMR). This approach consists in

offering prices depending on the supply and demand of the microgrid, where having

oversupply resulted in prices close to the export price and having undersupply results

in prices equal to the average of the buying from the grid and export prices to the

grid. This is a similar approach to what Long et al. [96] did in their research, but

with the introduction of stationary batteries among participants which provides a

better perspective of how energy storage can be used to boos the potential of P2P.

Englberger et al. [104] proposed a simple pricing mechanism based on offering fixed

P2P prices based on the average of the buy price from the grid and the export to

the grid. The authors suggested that implementing this simple pricing mechanism

significantly reduces computational times and offers a fairer price for energy sellers

and energy buyers. They also consider the use of stationary batteries and EVs as

part of their model. However, it is worth noting that the authors’ approach offered

a simple P2P pricing mechanism centred on the German energy market. To ensure

broader applicability, future research should aim to extend their model, offering the

potential for its implementation in various energy markets without complications.

Hutty et al. [105] used a pricing calculation mechanism based on SDR which

is an iterative bidding process offering buy and sell prices for each bidding round.

They also considered different penetration rates of EV and PV to model the impact

of having P2P to increase the adoption of these technologies. They concluded that

the combination of V2H and P2P brings more benefits than having each technology

individually, also savings in the electricity cost can exceed £200 in some situations.

It is worth noting that the authors incorporated EV energy load optimisation in their

pricing calculation for P2P, leading to variable prices depending on the optimised

energy load. However, their approach rounds trip durations to 30-minute slots. This
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may not adequately represent the granularity of diverse travel patterns with higher

time resolution. This lack of granularity could affect the calculation of P2P prices, as

microgrid management in real-world scenarios often requires consideration of shorter

term fluctuations.

2.6 Machine learning approaches

Machine learning (ML) is a sub field of artificial intelligence (AI) and computer

science that focuses on the use of data and algorithms to emulate how humans learn

while gradually enhancing its accuracy [106]. It is worth noting that deep learning

is actually a sub field of machine learning, and neural networks are a sub field of

deep learning that differ from each other on how the algorithm learns from the data.

Reports suggests that utilising ML to understand driving patterns can be instru-

mental in optimising charging behaviours of electric vehicles. This predictive ability

not only ensures that vehicles always have sufficient power for regular usage but

also accommodate unforeseen travel needs. This optimisation not only supports the

seamless integration of vehicles into the V2G system but also increases the system’s

reliability and consumer trust [107].

In general, different studies have explored the use of ML, EVs, V1G and V2G

using different techniques and objectives. Shipman et al. [108] used a convolutional

neural network - long short-term memory (CNN-LSTM) neural network and real-

world data collected from a fleet of vehicles at the University of Nottingham to

predict the aggregate available capacity for the next 24-hour period. They showed

that their approach was capable of adapting to provide an accurate prediction of

the amount of energy available for V2G service using historical data, highlighting

the importance of availability of EVs in the delivery of V2G. Shipman et al. [109]

studied machine learning algorithms to predict the potential times when an EV will

connect and be ready for V2G by using travel data collected from a fleet of EVs.

They found that, according to their data used for model training, using automated

machine learning libraries achieved the best performance with an accuracy greater

than 85%. While these studies provided valuable insight into how machine learning

can aid in predicting near-term aggregate capacity forecasts for a fleet, its primary
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focus was a commercial fleet of EVs used in a university setting. In both studies, their

model may not directly apply to domestic usage due to differing driving patterns.

Private owners may exhibit more unpredictable driving behaviours compared to a

commercial fleet, potentially limiting the study’s applicability in a domestic context.

Furthermore, their use of 30-minute time steps might not capture detailed travel

information as real-life management requires attention to shorter-term fluctuations.

Nogay [110] developed a long short term memory (LSTM) to predict the aggre-

gated available capacity of a small fleet of 7 electric vehicles using historical data

collected from 72 real drivers. They concluded that knowing the availability of EVs is

critical when considering participation in ancillary service markets using V2G. While

their model provides valuable insights for generating accurate near-term aggregated

available capacity forecasts for small fleets, and provided valuable knowledge in mar-

ket activity and V2G service export decisions, it is based only on a simulation of

seven vehicles travelling for ten days. The real dataset used a one-second sampling

time, whereas a 30-minute timestep was used in the simulation. This could result in

potential downsides like the omission of driving variations throughout the year, and

the loss of detailed travel data due to rounding drives into 30-minute timesteps.

Scott et al. [111] proposed a ML algorithm to predict the energy consumption

and energy costs of a building and then reduce them using V2G to reduce car-

bon emissions from the building. They found that their approach results in energy

savings between 35% and 65%. Although they successfully modelled a full year of

usage, inconsistencies in the data led to substantial errors in some months. This sit-

uation emphasises the importance of data quality in modelling and when developing

machine learning models. Frendo et al. [112] used historical data to train a regres-

sion model to address uncertain EV availability by predicting their departure times.

They found that their proposed learning model resulted in accurate predictions of

the availability of EVs. Jones et al. [113] developed a regression model aimed at

reducing charging time and extending battery life by predicting charging behaviours

affecting battery performance. However, their study mainly focused on predicting

charge and discharge behaviour, without exploring applications of storage systems

such as stationary batteries or EVs. This could be seen as a limitation, as it may

miss potential optimisations and benefits from these systems.
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Chung et al. [114] developed an ensemble predictive model using various machine

learning algorithms to predict the charging behaviour of a fleet using historical

data from real world EV travel information collected in the UK in combination

with data from charging stations at UCLA University. The prediction results were

then applied to an optimal EV charging scheduling algorithm to minimise the EV

charging cost while providing energy to a building. They concluded that charging

costs can reduce peak load by up to 27% and 4% costs compared to only using

V1G. However, the limitation of this study is its lack of consideration for V2G

technology, potentially missing out on the benefits and implications associated with

bidirectional energy flow. Additionally, rounding travel data to 30-minute intervals

may have its downsides. It could oversimplify the travel patterns, potentially missing

out on crucial short-term fluctuations that might impact the predictive accuracy of

the charging model. Shang et al. [115] developed a predictive model using k-nearest

neighbors (k-NN) and LSTM to reduce the energy demand of a commercial building

using V2G by scheduling the charge and discharge cycles of EVs, concluding that

their proposed algorithm successfully reduces the energy load of the building with

an accuracy of 94% compared to traditional optimisation algorithms. Like previous

studies, they also rounded the travel information to 15-minute intervals, which may

overlook the detailed demands of shorter-term fluctuations. Despite the smaller time

step of 15 minutes, the model might still miss out on capturing some of the more

granular information within these intervals.

2.7 Summary

V2G technology, which can supply energy back to the electrical grid when needed,

can potentially bring higher economic value than V1G alone. However, the integra-

tion of EVs into the energy system as another type of storage must be approached

differently. This is because EVs are mobile, not always grid-connected, and their

available storage capacity is not fixed. Furthermore, EVs have the potential to pro-

vide similar value as stationary home batteries, both in terms of energy storage and

grid support. Yet, they offer the added advantage of mobility, serving as a vehicle

for travel in addition to their role in the energy system. This dual functionality
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could enable EV owners to offset some costs of ownership and charging by partici-

pating in V2G schemes while enjoying the benefits of an electric vehicle for personal

transportation.

A variety of factors can influence the economic value of V2G, including driving

behaviour, the location of the V2G charger, and the plug-in rate, which has been

shown to be about 30% of the time on average [8]. However, only a handful of studies

have examined the availability of EVs, even though it is essential for V2G to rely

on the capacity of EVs to be available and connected to a charger. In the studies

that have considered EV availability, most have used fixed times, which do not

reflect real-world scenarios, or sometimes, they use hourly or half-hourly resolution.

This approach may overlook the importance of shorter-term fluctuations inherent

in real-life management. This reveals the importance of studying the impact of EV

availability on the value of V2G in the UK.

Most studies have shown that frequency response and demand side response are

the most profitable ancillary services that V2G can provide. However, other poten-

tial ancillary services, like the delivery of reserve services or system security services,

haven’t been thoroughly considered. STOR, a reserve service, could potentially pro-

vide a revenue stream for EVs. Figure 2.3, shows some of the ancillary services that

can be provided with V2G with potentially positive revenues. According to this

figure, the income might seem modest initially, but financial incentives can offset

some costs of EV ownership and charging. Plus, participating in STOR services

contributes to the stability and reliability of the grid, as the energy sector transi-

tions towards more renewable and distributed resources. As a result, demand for

services like STOR is expected to grow, offering potentially greater returns for early

EV adopters.

Despite the critical role STOR plays in grid stability, it has received limited at-

tention, partly due to the unpredictability of EV availability. Given the significance

of recent blackouts in the UK, discussion about leveraging new technologies, such as

V2G, to support the grid and provide crucial ancillary services like STOR has in-

creased. Studying the potential of EVs in delivering STOR services could be highly

beneficial for grid stability and reliability in the future.

Even though STOR is essential to the electric grid, it has received limited at-
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Figure 14: Comparison of Suitability of Top 10 V2G Revenue Streams 

From this analysis, a short list of key revenue streams was produced that was taken forwards to the modelling 
work. DNO congestion management was excluded from the analysis since at the time very little information 
was available on this emerging market. It has however been subsequently included in WP3 and WP4. 
Further, given that our available data set for the customer archetypes are primarily residential focused, TRIAD 
avoidance was excluded, since residential customers are not currently exposed to this. 

The short listed of key revenue streams are:

• Low Voltage (LV) and High Voltage (HV) Distribution Use of System (DUoS) charge avoidance

• Demand Turn Up (DTU) 1

• Imbalance management

• FFR (both dynamic and static)

• Short Term Operating Reserve (STOR) – Flexible

• Energy price arbitrage

1   Despite the requirement for a negative reserve service, the volume procured and number of utilisations have fallen substantially since DTU was first procured in 2016. The 

offline dispatch process, long notice period for delivery and small volume procured were identified by National Grid ESO as the key barriers to increased utilisation of DTU in its 

current form: https://www.nationalgrideso.com/sites/eso/files/documents/EXT%20Demand%20Turn%20Up%202019.pdf
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Figure 2.3: Comparison of the suitability of V2G revenue streams [8].

tention. Restoration services have also been understudied, as EVs cannot yet be

considered a reliable provider due to the uncertainty of their availability. Given the

current outlook for the energy sector in the UK, with different plans to ensuring

security of electricity supplies for winter [116], discussion around harnessing new

technologies like V2G to support the grid and offer vital ancillary services, such as

STOR, has increased. As such, exploring the potential of EVs in delivering STOR

services, and consequently generating profit for EV owners, could be incredibly ben-

eficial for future grid stability and reliability.

The blackout event in early August 2019 [117, 118], which affected hundreds of

thousands of UK users, coupled with the decommissioning of traditional black start

providers, has increased discussions on the role of emerging technologies, like V2G, in

grid support [12]. V2G, in particular, could help avert grid disruption by providing

essential ancillary services, such as restoration services. These services demand the

ability to supply power without external dependence, a requirement that V2G can

partially fulfil, given that EVs only need to be connected when such an event occurs

[119]. If some of the highlighted weaknesses like the uncertainty of EV availability

and SOC during the day are addressed, V2G could meet some of the National Grid’s

criteria for this service [12].

The role of P2P transactions in the energy sector has also been studied, covering

areas like pricing mechanisms, user willingness, integration of stationary storage, and
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incorporation of renewable energy. Additionally, only a few studies have considered

EVs and their availability, and these often opt to model EV behavior rather than

use real-world EV travel data. Additionally, such work typically employs hourly or

half-hourly resolution, potentially missing important details in the travel patterns.

Machine learning has significantly influenced various industries, including V2G

technology, particularly in predicting EV availability [120]. However, most studies

are based on data from commercial EV fleets in a workplace setting, which may not

represent private vehicle use. Furthermore, these models often round travel data

to 30-minute or hourly intervals, which could lose essential granular information,

thereby affecting the accuracy of vehicle availability predictions and V2G efficacy.

Despite this, few studies simulate the delivery of ancillary services beyond potential

energy capacity or building energy demand reduction. Therefore, the importance of

machine learning in predicting EV availability, the potential for EVs in providing

STOR and restoration services, and the value of P2P transactions involving EVs

all underscore the need for more comprehensive and real-world-focused studies. By

exploring these areas, we can deepen our understanding of V2G’s potential and

address the current limitations more effectively.

In the literature we have reviewed, most studies examining V2G applications

often focus on a limited time frame within a year and typically use a single energy

tariff for energy drawn from the grid. This highlights the need to consider various

factors that potentially impact V2G delivery, beyond EV availability. Therefore,

studying a grid-connected microgrid inclusive of these considerations could provide

comprehensive insights into diverse EV behaviours.

In summary, the role of EVs in energy systems is multifaceted. They not only

serve as transport vehicles but also have the potential to provide significant ancillary

services like STOR and restoration services. However, the real-world behaviour

and availability of EVs need better consideration to harness their full potential.

Machine learning has the potential to enhance our understanding of EV availability,

thereby improving their utility in grid services. A comparison that needs to be

explored is between EVs and stationary home batteries to understand their relative

cost-effectiveness and efficiency. Moreover, the integration of EVs in P2P energy

transactions within a microgrid environment can open new avenues for research.
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A broader, more in-depth approach is needed to study V2G applications and the

potential impact of the availability of EVs and different factors that could also

impact their potential to provide V2G services should be explored.
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A Data-Driven Approach to

Predict Electric Vehicle (EV)

Availability for Vehicle-to-Grid

(V2G) Services

In this chapter, we introduce a machine learning (ML) solution designed to pre-

dict the location and availability of electric vehicles (EVs) for vehicle-to-grid (V2G)

services. Our predictive model consists of two separate classification models: one

model predicts the start location and the other predicts the end location of EV trips.

Each classification model was trained and validated using three different algorithms,

all applied to historical travel data from the UK. This dataset includes start and

end locations, start and end times, daily journey count, and trip distance. Based

on their performance, one algorithm was selected for each model to best predict

the start and end locations of EVs. These models offer precise insights into EV

availability throughout the day, which results important for implementing V2G ser-

vices. The selected models are then used to predict the start and end locations of

real-world EV trip data from the UK. These predictions serve as the input for the

optimisation model, which will be introduced in Chapter 4. This model will use the

predicted data to optimise and schedule EV charging and discharging for different

V2G services that will be introduced in Chapters 5–7.

In this project, we employ a two-dataset approach for the development and ap-

43
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plication of our machine learning models. The historical travel data, according to

the Department for Transport [121], predominantly composed of internal combus-

tion engine vehicle (ICEV) travel data, serves as the foundation for training and

validation of the two classification models. Despite the technological differences be-

tween ICEVs and EVs, many travel behaviours are universal, making ICEV data an

invaluable resource for capturing general travel patterns. The validation of our mod-

els using the same ICEV data ensures they are robust and capable of generalisation,

a crucial aspect of ML model development [122].

The second dataset, consisting of real-world EV travel data, becomes essential

during the application phase of our models. In this phase, we are not just evaluating

how well the models perform, but more importantly, we are testing their applicability

to new situations. In other words, we are examining if the models can effectively use

the patterns they learned from ICEV data to accurately predict the locations of EVs.

While the EV dataset doesn’t participate in the training and validation phase, its

importance cannot be understated. It allows us to align our models with the primary

objective of the study — optimising EV usage for V2G services. Therefore, our two-

dataset strategy lays the foundation for the development of universally applicable

models using ICEV data and validates their relevance to our V2G goals using real-

world EV data.

Figure 3.1 provides an overview of the process we undertake in this chapter for

each of the two classification models. It begins with the transformation of raw his-

torical data through feature engineering, followed by splitting it into training and

validation sets. These sets are used to develop predictive models using machine

learning algorithms. The resulting predictive models are then applied to real-world

EV data, referred as ”new data”, to predict their locations. These predictions, in-

dicative of potential EV locations based on the patterns learned from historical data,

become the input for our optimisation model which will be introduced in Chapter 4.

Therefore, figure 3.1 effectively illustrates our methodology for developing and ap-

plying machine learning models to predict EV locations for optimising V2G services.
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Figure 3.1: Overview of the process of training a predictive model, testing it, and
then getting predictions from new data.

3.1 Historic Travel Data

This section is devoted to describing the data used to train the predictive classifica-

tion model.

3.1.1 Data processing

For the purpose of training the predictive model, the national travel survey (NTS)

data that contains information about personal travel patterns, such as how, why,

when and where residents of England travel within the UK was used. The NTS

is a household survey designed to track long-term travel trends and help in policy

formulation [123]. These data include information based on hundreds of questions

such as people’s point of view on the quality of the road, whether they are satisfied

with the public transport in their communities, household income, month that a

trip took place, day of the week that a trip took place, etc.

As we further explore the historical data that will be used, it is important

to acknowledge its strenghths and limitations based on information provided by

the Department for Transport [124] in their website. The NTS, running annually

since 1988, offers a wealth of detailed, long-term travel data, making it valuable for

monitoring trends. Its large, representative sample allows for diverse demographic

analyses. Despite fluctuating response rates, measures to boost inclusivity and ac-

cessibility have been implemented, including language accommodations and remote

completion methods. An upcoming digital diary promises further advancements in

data collection. The NTS enjoys a strong reputation as the gold standard of travel

surveys in the UK, informing numerous transport policies and research studies. Its

dataset is openly accessible, encouraging user engagement and self-directed explo-
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ration. Regular consultations ensure the statistics continue to meet user needs and

reflect current transport considerations.

However, while the NTS boasts comprehensive travel data, its reliance on self-

reported data may not always accurately reflect actual travel behaviours due to

inaccurate recall or estimation errors. Whilst there are extensive validation checks

in place to minimise this type of errors, it is not possible to eliminate them entirely.

Additionally, the survey’s geographical coverage has been limited to England since

2013.

At the time of this work, the data, containing information from 2002 to 2019,

are spread over 10 different files, each of which contains identification numbers that

help identify the household or individual who answered the survey. For the data

used to train the model, we had to combine two of the files, one called the main

data (filename = ”trip eul 2002-2019”), which contains most of the data that will

be used to train the predictive model, including data relevant to identifying the start

and end locations of each trip, and another called the supplementary data (filename

= ”household eul 2002-2019”), which contain information that includes the day of

the week and the month of the year in which the trip took place.

In this work, we used data collected from 2002 to 2019 that contained 4,866,698

records of people who reported different travels, such as using their own car, public

transport (bus, train, etc.), cycling or simply walking to their destination. As we

seek to provide Vehicle-to-home (V2H) or V2G services, we are only interested in

privately owned vehicles; therefore, we restrict the data to entries that were reported

as the main driver of a privately owned car and that the car was the main mode of

transport, leaving a total of 2,236,036 records. We then removed outliers based on

the distance travelled, resulting in a final total of 2,120,058 records. It should be

noted that to our knowledge, the survey did not report the type of vehicle (internal

combustion engine (ICE) or electric) until the survey conducted in 2019, where

according to an online report released in 2020 by the Department for Transport

[121], in 2019, 63% of the cars owned by the people were petrol, 34% were diesel and

2% were other fuel types such as plug-in hybrid or electric. Therefore, we assume

that a similar driving behaviour will apply to both EVs and ICE vehicle drivers.

Table 3.1 shows the amount of data for each year that the survey was conducted.
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All data was processed using the Python 3.8.13 [125] programming language and

data manipulation and analysis libraries, such as Pandas 1.1.3 [126] and Numpy

1.18.5 [127].

Table 3.1: The number of records reported as the main driver of a privately owned
vehicle per survey year.

Survey year Number Percentage Survey year Number Percentage
of records (%) of records (%)

2002 122,413 5.77 2011 119,068 5.62
2003 135,705 6.40 2012 128,375 6.06
2004 133,341 6.29 2013 102,302 4.83
2005 141,207 6.66 2014 105,329 4.97
2006 137,444 6.48 2015 98,220 4.63
2007 130,424 6.15 2016 102,807 4.85
2008 126,008 5.94 2017 92,857 4.38
2009 131,214 6.19 2018 94,477 4.46
2010 127,525 6.02 2019 91,342 4.31

As presented in table 3.1, the participation rates in the NTS from 2002 to 2019

show a diverse pattern. There was an initial rise in participation, peaking in 2005,

followed by a period of fluctuation between 2005 and 2012. Post-2012, a more con-

sistent decline is evident. The reasons behind these shifts could be multi-layered,

potentially tied to societal trends such as survey fatigue, economic reasons or par-

ticipants choosing alternative types of transports instead of using their private car,

however, these are speculative hypotheses. Although the investigation of yearly fluc-

tuations in participant numbers is indeed interesting, it falls outside the scope of

this work.

The fluctuation in participation rates from 2002 to 2019 in the UK National

Travel Survey, although intriguing, is beyond the primary focus of our current work.

From an initial increase, peaking in 2005, to a subsequent gradual decrease, espe-

cially noticeable from 2012 onwards, the reasons behind these shifts could range from

survey fatigue and societal trends towards digital communication to the impacts of

the late-2000s economic recession. However, these hypotheses remain speculative

and exploring them further would deviate from our central goal: the development

of a predictive model and its application to optimise Vehicle-to-Grid services.
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3.1.2 Feature engineering

The main objective is to predict the start and end locations of the vehicle during

the day based on historical travel data reported in NTS. Moreover, the trained

model will only be able to make predictions if and only if the same features are

found in the new data from which we want to make predictions. This means that,

for example, if we use data containing ”trip distance travelled in kilometres” when

training the model, the new data that will be fed into the model must have the

same information ”trip distance travelled in kilometres”. To this end, we only kept

features that contain information about the start and end date and time of the trip,

data that contain the number of journeys per day, and data that contain information

about the distance travelled. For date and time data, this was collected from various

separate columns containing the start and end information of the trip; in this case,

the information used was hour, minute, days of the week, year, month and day of the

month. This information was formatted as YYYY-MM-DD hh:mm:ss. Furthermore,

data containing information on the start and end locations of the trip were preserved,

as this will be used as labels or targets to predict. This information includes up to

23 different categories. To simplify the training of the model and obtain the best

results, we reduced the 23 categories to only two categories, Home and Other. Here,

the vehicle is at home if the reported location is ”Home” and away if the reported

location is otherwise. Table 3.2 shows the final distribution of the data on the start

and end locations of the trips.

Table 3.2: Number of records for each of the two location categories used in this
work.

Status Location Total values Percentage (%)

Start Home 905,528 42.71
Other 1,214,530 57.29

End Home 891,789 42.06
Other 1,228,269 57.94

Table 3.3 shows an example of the main data information that was kept and

later used to extract features to train the model, as well as the data columns for

the starting and ending location that will be used as labels. Finally, table 3.4 and
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table 3.5 show an example of the final data used to train the predictive model and a

brief description of the data contained in each column, respectively. For simplicity,

features are indicated as x and targets or labels as y.

Table 3.3: Example of the data extracted from the national travel survey records
that will later be used to obtain features and labels to train the machine learning
model.

start end daily trip location
timestamp timestamp journey distance start end

number in km

2002-01-28 12:18:00 2002-01-28 12:32:00 1 4.83 Home Other
2002-01-28 12:35:00 2002-01-28 12:41:00 2 0.80 Other Other
2002-01-28 17:30:00 2002-01-28 17:56:00 3 4.83 Other Home
2002-01-28 20:20:00 2002-01-28 20:23:00 4 0.48 Home Other
2002-01-28 21:10:00 2002-01-28 21:15:00 5 0.48 Other Home

Table 3.4: Example of the data used in this work that was used to train the predictive
model.

x1 x2 x3 x4 x5 x6 x7 x8 x9 y1 y2

12 18 0 0 1 4.83 14 0 3 Home Other
12 35 0 0 2 0.80 6 3 289 Other Other
17 30 0 0 3 4.83 26 289 144 Other Home
20 20 0 0 4 0.48 3 144 47 Home Other
21 10 0 0 5 0.48 5 47 910 Other Home

Table 3.5: Description of the parameters used to train the predictive model.

Parameters Description

x1 Start travel hour
x2 Start travel minute
x3 Start travel day of the week
x4 Start travel weekend or not
x5 Journey number on a given travel day
x6 Trip distance in kilometres
x7 Trip total time in minutes
x8 Time since last trip in minutes
x9 Time for next trip in minutes

y1 Start location
y2 End location
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3.1.3 Data statistics

After processing the data, the remaining features contain information on the time

and day of the week during which the trip took place. Figure 3.2 and figure 3.3

show the starting location and percentage of trips according to their departure time

between Monday and Friday and between Saturday and Sunday, respectively. Here,

both figures show that most trips start after 05:00 am during the week. For trips

on weekdays, most trips between 07:00 and 10:00 start at Home, and trips between

15:00 and 18:00 start at the location Other. On weekends, most trips before 11:00

start at Home, after this time, most trips start at Other.
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Figure 3.2: NTS data taken from surveys from 2002 to 2019 reported as private
vehicles. Start location and percentage of travels made between Monday and Friday,
according to the start time of the trip.

Similarly, figure 3.4 and figure 3.5 show the destination and percentage of trips

according to their departure time between Monday and Friday and between Saturday

and Sunday, respectively. For trips on weekdays, most trips that end at Other take

place between 07:00 and 10:00, and most trips that end at Home take place between

15:00 and 17:00. On weekends, most trips before 15:00 head to Other and after this

time most trips go to Home.
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Figure 3.3: NTS data taken from surveys from 2002 to 2019 reported as private ve-
hicles. Start location and percentage of travels made between Saturday and Sunday,
according to the start time of the trip.
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Figure 3.4: NTS data taken from surveys from 2002 to 2019 reported as private
vehicles. End location and percentage of travels made between Monday and Friday,
according to the start time of the trip.
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Figure 3.5: NTS data taken from surveys from 2002 to 2019 reported as private
vehicles. End location and percentage of travels made between Saturday and Sunday,
according to the start time of the trip.

According to the data, most drivers make between 1 and 5 trips per day and

most of these trips are between 1 and 10 km long. Furthermore, most trips take less

than 15 minutes to complete. This information is true regardless of the day of the

week on which the trip takes place. Figure 3.6 gives a more detailed look at how the

data is distributed with respect to the number of trips per day, the total distance

travelled and the total time it takes to complete a trip.

3.1.4 Classification tasks

For the predictive model, three different classification algorithms were trained and

compared: Logistic regression (LR), Random forest (RF) and Light gradient boost-

ing machine (LightGBM). In the case of the first two techniques, the implementa-

tion by the Python library, Scikit-learn 0.24.1 [128], was used for this work. For

LightGBM, the Python library, LightGBM 3.1.1 [129], which is the Python imple-

mentation of this technique, was used. These three algorithms were chosen due to

their diverse approaches to classification problems. LR offers simplicity and inter-

pretability, while RF provides robustness and handles complex feature interactions.
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Figure 3.6: National travel survey data taken from surveys from 2002 to 2019 re-
ported as private vehicles. a. Number of trips per day for each day of the week. b.
Total distance travelled per trip for each day of the week. c. Total time per trip for
each day of the week.

LightGBM is efficient and scalable, making it suitable for large datasets. These

algorithms cover a range of complexities, from linear models to ensemble meth-

ods, allowing for a robust comparison to determine the best-suited algorithm for

the given dataset and problem. This comparison also aids in understanding the

predictive power of the selected features.

LR is a statistical model that calculates the probability that a label belongs to

a specific class; it does so by computing a weighted sum of the input features and

outputs a number between 0 and 1 using a sigmoid function [130]. RF is an ensemble

learning method for classification that operates by building multiple decision trees

when training a model. When using RF for classification, the random forest output

is the class that receives the most votes [130]. LightGBM is a gradient boosting

framework that uses tree-based learning algorithms. Similarly to RF, this algorithm

is based on decision tree algorithms [129, 131]. What distinguishes LightGBM from

other tree-based algorithms, is that LightGBM does not grow a tree level-wise –

row by row – as most other implementations do; instead, it grows trees leaf-wise –
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vertically – which makes the process dramatically faster and, in many cases, results

in a more effective model while consuming less memory [132].

In this work, we establish two different classification tasks. These are explained

below:

• A classification model was used to predict only the starting location of the

trip.

This model included all features x1 − x9 and was responsible for predicting

y1, the start location. This means that this model was not consider y2, which

is the end location of the trip. This model was called task 1.

• A second classification model was used to predict the end location of the trip.

For this second model, similar to the previous one, all features were included

x1 − x9 and, in this case, y1 — start location — was also considered as

a feature. Therefore, this model was responsible for predicting y2, the end

location. This model was called task 2.

To this end, the processed data was divided equally into two halves, resulting

in two data sets containing 1,060,029 rows each. The split was performed using a

stratified sample based on the parameter x1 — start travel hour — this makes a

split so that the proportion of values in the sample produced will be the same as

the proportion of values provided to the parameter. Therefore, this will ensure that

each data set gets 50% of each unique value within x1. This was done using the

Scikit-Learn function train test split as shown in listing 3.1 below:

1 # split in two datasets

2 from sklearn.model_selection import train_test_split

3

4 model_1, model_2 = train_test_split(

5 nts_data, # data to split

6 test_size=0.5, # divide equally, 50\% each data set

7 stratify=nts_data['start_travel_hour'],

8 random_state=42) # set random seed to get consistent results

Listing 3.1: Code used to split NTS into two data sets
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The division of the historical data into two distinct subsets for the purpose of

training two individual models follows key principles of model robustness and inde-

pendence. As mentioned, this partition is stratified based on x1 (start travel hour),

which ensures that both subsets retain a similar distribution, thereby maintaining

a balanced representation of the original data. This strategy enhances model relia-

bility and mitigates the risk of overfitting, a phenomenon where models over-adjust

to their training data, resulting in sub optimal performance on unseen data [133].

Moreover, employing separate datasets facilitates independent validation of each

model, allowing for an accurate estimation of each model’s predictive performance

without the risk of data leakage [134]. This is particularly pertinent considering

each model is designed to predict a different target variable.

As explained before, for the in the second model (task 2 ), y1 (start location) is

used as a feature. Importantly, this is not the y1 predicted by the first model (task 1 ),

but the actual y1 values from the dataset used to train this second model. In other

words, by not using the y1 predicted by the first model as a feature for the second

model, we avoid to potentially introduce bias or errors into the predictions produced

by the second model, as any inaccuracies in the prediction of y1 would directly affect

the prediction of y2 (end location). By training each model on a separate, stratified

subset of the data, the independence of the second model’s predictions from the first

model is assured, improving the overall reliability of the models.

3.1.5 Data preparation for training

To obtain the best results and ensure that the final models generalise to new

data, both data sets for each of the two models were split into a training set

and a test set. The training set includes 70% of the data and the test set in-

cludes 30% of the data. This resulted in that each data set task 1 and task 2

had 742,020 records in the training set and 318,009 in the test set. For this, once

again, the Scikit-Learn function train test split which is inside a custom func-

tion preprocess data 02 train model that processes all training data from start

to finish and gets it ready for the predictive model, as shown in listing 3.2 below.

Here, X on line 21 contains the features and y in line 22 contains the labels. Then,

on line 28 the data is split into X train, X test, y train and y test.
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1 import pandas as pd

2

3 def preprocess_data_02_train_model(

4 dataframe: pd.Dataframe = None, # data to process

5 predict_from_or_to: str = "start", # select which "task" to process

6 stratify_col: str = "start_travel_hour",

7 test_size_number: float = 0.3): # test set size -> 30%

8

9 # prepare data for "model_1"

10 if predict_from_or_to == "start":

11 # target column

12 target = "start"

13 # prepare data for "model_2"

14 elif predict_from_or_to == "end":

15 # target column

16 target = "end"

17 # assign features and labels accordingly

18 X = dataframe.drop(target, axis=1).copy() # keep relevant features only

19 y = dataframe[target].copy() # keep relevant target/label only

20

21 # import relevant function

22 from sklearn.model_selection import train_test_split

23

24 # split train and test data

25 X_train, X_test, y_train, y_test = train_test_split(

26 X, # features

27 y, # labels

28 test_size=test_size_number, # test set size

29 stratify=X[stratify_col],

30 random_state=42 # random seed to obtain consistent results)

31 ...

Listing 3.2: Custom function to pre-process the data before training models. Here,
the training and test set are split inside the custom function.

The data in each training and test sets was prepared before passing them onto

each of the three machine learning classification algorithms. This includes processing

columns containing numeric values, features x1 − x9, and string or text values of

the target or label, y1 − y2.

For the numeric values, the Scikit learn function MinMaxScaler was used. This

function ”scales and translates each feature individually such that it is in the given

range on the training set” [135], in this case, each column was scaled between 0
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and 1. This is shown in listing 3.3 which is part of the same custom function

preprocess data 02 train model. In this case, scaler is fitted as shown in line 8

using the X train data set, which contains the features that will be used to train

the predictive model, and then transform the same data set as seen in line 9. Then

we use the fitted scaler to simply transform the features in X test as shown in line

19.

1 ...

2 from sklearn.preprocessing import MinMaxScaler

3

4 # Initiate scaler

5 scaler = MinMaxScaler()

6 # ---

7 # fit and transform features inside "X_train"

8 scaler.fit(X_train[cols_to_scale])

9 scaled_df = scaler.transform(X_train[cols_to_scale])

10 # Assign scaled data into a Dataframe

11 scaled_df = pd.DataFrame(scaled_df,

12 columns=cols_to_scale,

13 index=X_train.index)

14 # Replace original columns in "X_train" with the scaled ones

15 for col in scaled_df:

16 X_train[col] = scaled_df[col]

17 # ---

18 # transform data inside "X_test" using the scaler

19 scaled_df = scaler.transform(X_test[cols_to_scale])

20 # assign the same index as the dataframe in question

21 scaled_df = pd.DataFrame(

22 scaled_df, columns=cols_to_scale, index=X_test.index)

23 # Replace original columns with scaled ones

24 for col in scaled_df:

25 X_test[col] = scaled_df[col]

26 ...

Listing 3.3: Scaling each feature with numeric values to be in the range between 0
and 1.

For columns containing text or string values, in this case y1 − y2, the values were

transformed into binary values where Home = 0 and Other = 1. This was done using

the Scikit-learn function LabelEncoder. This process is shown in listing 3.4 below,

which is the final part of the custom function preprocess data 02 train model.
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Here, the encoder is fitted to the data in y train, which contain the labels that

will be used to train the predictive models, and then transform the same data set

as shown in lines 8 and 9, respectively. The encoder was then used to transform

the labels in y test as shown in line 11. Finally, the custom function returns the

pre-processed training and test sets, as well as the scaler and encoder for later use.

1 ...

2 from sklearn.preprocessing import LabelEncoder

3

4 # initiate encoder

5 encoder = LabelEncoder()

6 # ---

7 # fit and transform "y_train"

8 encoder.fit(y_train)

9 y_train = encoder.transform(y_train)

10 # ---

11 # transform "y_test" dataset

12 y_test = encoder.transform(y_test)

13

14 # return data, scaler and encoder ready for training and testing

15 return X_train, X_test, y_train, y_test, scaler, encoder

Listing 3.4: Labels encoded with Home = 0 and Other = 1 before training the ML
models.

Table 3.6 shows the data distribution for the training and test data sets for task

1 which contains the label y1 — start location. Here, both training and test sets

have similar ratios of Home = 0 and Other = 1 similar to the ratio in table 3.2 that

belongs to the Start data set.

Table 3.6: A summary of the label ratio of the training set and the test set for the
task 1 — start location. Here, the label Home = 0 and the label Other = 1.

Data set Label Total values Percentage (%)

Training 0 317,031 42.73
1 424,989 57.27

Test 0 135,920 42.74
1 182,089 57.26

Similarly to task 1, table 3.7 shows the data distribution for the training and
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test data sets for task 2 that contain the label y2 — end location. Here, for both

data sets, their ratios are similar to Home = 0 and Other = 1 to those that belong

to End data set as shown in table 3.2.

Table 3.7: A summary of the label ratio of the training set and the test set for the
task 2 — end location. Here, the label Home = 0 and the label Other = 1.

Data set Label Total values Percentage (%)

Training 0 317,031 42.11
1 424,989 57.89

Test 0 135,920 42.07
1 184,223 57.93

Finally, figure 3.7 summarises the data process before training the predictive

models as well as the label distribution in each training and test set for both tasks.

NTS data from 2002 - 2019 with 4,866,698 records

People reported as main drivers of a private vehicle resulting in 2,236,036 records

Data cleaning and outliers removed left 2,120,058 records 

Task 1 Task 2

Predict start location Predict end location

1,060,029 records 1,060,029 records

70% training set 30% test set

Other = 1Home = 0 Other = 1Home = 0

424,989
records

317,031
records

182,089
records

135,920
records

57.27 %42.73 % 57.26 %42.74 %

70% training set 30% test set

Other = 1Home = 0 Other = 1Home = 0

429,536
records

312,484
records

184,223
records

133,786
records

57.89 %42.11 % 57.93 %42.07 %

Figure 3.7: Diagram summarising the data pre-processing before training the ML
models. It also shows the number of records in each data set for each task.
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After pre-processing the data, both the training and the test sets are ready to

pass them into the three ML algorithms, which will be discussed in the following

section.

3.2 Results

3.2.1 Metrics

Three different ML classification algorithms were compared. The performance of

these three models was evaluated using three different performance metrics widely

used for classification tasks. The performance metrics considered in this work are

Precision, Recall, and F1-Score. These performance metrics were chosen due to the

imbalanced nature of the labels, as shown in tables 3.2, 3.6 and 3.7 where the Home

label has around 42.00% and the Other has around 58.00% of the total data set for

each task. These metrics provide a more comprehensive view of performance than

just accuracy, which can be misleading in imbalanced scenarios.

Classifier performance metrics are defined using the confusion matrix that re-

sults from each predictive model, which has four fundamental quadrants shown in

table 3.8. The main goal is to determine how frequently examples from class Home

= 0 are labelled as class Other = 1 and the other way around.

Table 3.8: Confusion matrix layout.

Predicted label
Home Other

T
ru

e
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b
e
l
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om

e

True Positive (TP) False Negative (FN)

O
th
er

False Positive (FP) True Negative (TN)

• True Positive (TP): True Positive represents the number of values that were

classified in the relevant class. For example, values that were predicted as

Home that have been properly classified as Home.

• False Positive (FP): False Positive represents the number of values that were

classified in the relevant class but actually belong to the opposite class. For
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example, values that were predicted as Home but their true label was Other,

therefore, the values were incorrectly classified.

• False Negative (FN): False Negative represents the number of values that

were predicted in the opposite class that should be in the relevant class. For

example, values that were predicted as Other but their true label belongs to

Home, therefore, the values were incorrectly classified.

• True Negative (TN): True Negative represents the number of values that were

classified in the opposite class and actually belong to that class. For example,

values that were predicted as Other that have been properly classified as Other.

As stated above, the performance metrics are calculated accordingly based on

the confusion matrix. In addition, Scikit-learn offers multiple functions that can

compute each of these metrics. Each of these metrics are defined below.

• Precision is the proportion of positive predictions that were correctly classi-

fied. This metric shows the classifier’s exactness by measuring the ratio of true

positives to predicted positives, helping minimise false positives [136]. This is

defined by equation (3.1). To calculate this metric, the Scikit learn function

precision score is commonly used.

Precision =
TP

TP + FP
(3.1)

• Recall is the proportion of actual positives that were correctly classified. This

metric measures the classifier’s ability to identify all positive instances, crucial

in imbalanced datasets where missing a positive instance (false negative) can

be costly [136]. This is defined by equation (3.2). To calculate this metric, the

Scikit learn function recall score was used.

Recall =
TP

TP + FN
(3.2)

• F1-Score is the harmonic mean of precision and recall. This metric balances
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Precision and Recall, providing a single metric that seeks to optimise both

[130]. This is defined by equation (3.3). To calculate this metric, the Scikit

learn function f1 score is commonly used.

F1 =
2

1
Precision + 1

Recall

= 2 ∗ Precision ∗Recall

Precision+Recall
=

TP

TP + FN+FP
2

(3.3)

3.2.2 Model Training

In this work, each predictive model was trained using the training set and validated

using the test set. To determine which model is most robust, we obtain the score

for each model by using the Scikit-learn function cross validate which evaluates

a score by cross-validation, in this case Precision, Recall and F1-Score. This is done

to avoid overfitting the training data and to improve the overall final performance

of each model.

Cross-validation randomly divides the training set into K distinct folds — sub-

sets, where K is the number of folds in which the data will be split, then trains and

evaluates the predictive model K times [130]. Then 1 fold will be used for validation,

while the remaining K-1 will be used to train the data. This will be repeated until

every fold has been used as a validation set. For this work, we used K = 5 as widely

used. Listing 3.5 shows the process for the LR algorithm which is the same for the

other two ML algorithms and also for both tasks. In this case, the performance met-

rics were calculated using the scoring parameter of the Scikit-learn cross validate

function. For this work, the training process was conducted using a Mac mini 2018

with a 3.2 GHz 6-Core Intel Core i7 processor and 32 GB of RAM.

Tables 3.9 and 3.10 shows the weighted averages that resulted from training

task 1 and 2, respectively, using the three predictive models. The best results were

obtained by LightGBM which is slightly better than the results from RF.

Here, using a single run for each of the three machine learning algorithm used

with a set random seed (42), was a straightforward and effective approach for the

initial model training, also, the use of a random seed ensured that the results

were reproducible. Moreover, the application of a 5-fold cross-validation, as seen

in listing 3.5 in line 17, significantly enhanced the reliability of the model evalua-
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1 from sklearn.linear_model import LogisticRegression

2 from sklearn.model_selection import cross_validate

3

4 # initiate 'Logistic Rregression'

5 lr = LogisticRegression(random_state=42)

6 # fit data

7 clf_lr = lr.fit(X_train, y_train)

8

9 # cross-validation

10 scores = cross_validate(

11 clf_lr,

12 X_train,

13 y_train,

14 scoring=['precision_weighted',

15 'recall_weighted',

16 'f1_weighted'],

17 cv=5) # number of folds

Listing 3.5: Training process and cross-validation using K=5 for task 1 using logistic
regression.

Table 3.9: Resulting training data metrics for the task 1. Here, the weighted averages
are reported.

Task 1 — start location

Precision Recall F1-Score
Logistic

Regression 0.759± 0.002 0.755± 0.002 0.748± 0.002

Random
Forest 0.897± 0.001 0.897± 0.001 0.897± 0.001

LightGBM 0.899± 0.002 0.899± 0.002 0.899± 0.002

tion, giving us a more accurate and generalised measure of model performance than

a simple train and test split would. Although the decision of training the models

using a set random seed was successful, for an even more robust analysis, we can

execute multiple runs of each algorithm multiple times with different random seeds.

This would provide a more comprehensive view of the potential range of models

performance and their ability to handle new data.

In this case, after training the data set, all three returned adequate results, but

to choose one model, we still need to validate these results against the test set, which
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Table 3.10: Resulting training data metrics for the task 2. Here, the weighted
averages are reported.

Task 2 — end location

Precision Recall F1-Score
Logistic

Regression 0.866± 0.001 0.852± 0.002 0.853± 0.002

Random
Forest 0.898± 0.001 0.898± 0.001 0.898± 0.001

LightGBM 0.901± 0.001 0.901± 0.001 0.901± 0.001

is the next step.

Each trained model was used to obtain predictions on the test set to compute

the relevant metrics and to gauge their performance with data that the models

had not seen. For this, the variable y pred that contains the predictions and the

variable y test that contains the true labels are used in the Scikit-learn function

classification report that returns Precision, Recall and F1-Score at the same

time for each model as seen in listing 3.6. Here in the example below, the LR model

is used for task 1.

1 from sklearn.metrics import classification_report

2

3 # get predictions

4 y_pred = clf_lr.predict(X_test)

5

6 # get relevant metrics

7 classification_report(y_test, y_pred)

Listing 3.6: Get predictions and relevant metrics for the logistic regression model
and task 1.

Table 3.11 shows the weighted averages that resulted from using the trained

models to obtain predictions using the test set. Here, we can see that the results

are quite similar to those obtained in tables 3.9 and 3.10, which means that the

models are able to generalise well to new previously unseen data [137]. Furthermore,

LightGBM produces slightly better results than RF and significantly better than LR

in task 1. For task 2, the results of all three models are not too far from each other,
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and then again LightGBM shows slightly better results for all three models.

Table 3.11: Resulting metrics from the predictions on the test set for both tasks.
Here, the weighted averages are reported.

Task 1 — start location Task 2 — end location

Precision Recall F1-Score Precision Recall F1-Score
Logistic

Regression 0.759 0.755 0.748 0.866 0.851 0.852

Random
Forest 0.898 0.898 0.898 0.898 0.898 0.898

LightGBM 0.899 0.899 0.899 0.900 0.900 0.900

When we consider LR, it can be observed that its performance, as indicated by

precision, recall, and F1-Score values, is generally lower compared to the RF and

LightGBMmodels. As a linear model, LR may not capture the complex relationships

within the data as effectively as ensemble models, thus resulting in relatively lower

performance scores. Nevertheless, its decent performance underscores the utility of

simpler models, especially when computational resources are limited or when the

relationships in the data are not overly complex. In some instances, such straight-

forward methods may offer an adequate balance between prediction accuracy and

computational efficiency.

Additionally, it can be seen that the performance of RF and LightGBM al-

gorithms are remarkably similar across both tasks, indicated by nearly identical

precision, recall, and F1-Score values.

This similarity can be attributed to the fact that both RF and LightGBM are

ensemble methods, meaning they combine multiple decision trees to generate their

output. RF operates by creating numerous decision trees and aggregating their

results, while LightGBM uses gradient boosting to construct a sequence of trees,

each correcting the errors of its predecessor.

Despite their different approaches, both methods are known for their ability to

model complex relationships and reduce the risk of overfitting, leading to reliable

and robust predictions. This could explain the comparability of their performance in

the tasks. However, slight variations in the scores, such as the marginally higher F1-

Score of LightGBM in task 2, might be due to the differences in how these algorithms
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handle certain aspects of the data, like outliers or missing values.

In summary, the close performance of the two models may speak to the strength

of ensemble methods in handling this particular dataset and predictive tasks, yet

further analysis would be necessary to understand the minute differences observed.

3.2.3 Fine-tuning

As LightGBM was the model that performed the best of the three compared, this

model was used for each task to increase its performance by choosing the best hyper-

parameters for each model. For this, the Scikit-learn function RandomizedSearchCV

performs a randomised search of a set of hyperparameters that are passed into the

function, which means that it will explore random combinations of the range of hy-

perparameters values that are passed into the function — in this case, 10 different

combinations, which is the default value — and will train each model 5 times us-

ing cross-validation [130, 138]. The training process is shown in listing 3.7, where

the Scikit-learn function KFold is used to divide each fold that will be used in the

cross-validation process.

Similarly to the process in listing 3.6, the test set is used to obtain predictions

using the fine-tuned models for both tasks and to evaluate the performance of the

model by obtaining the relevant metrics using the classification report function.

Table 3.12 shows the metrics resulting from both tasks. In this case, the results are

slightly better than the original LightGBM models in table 3.11. Therefore, the

fine-tuned models for both tasks will be used to predict the location of new data

will be introduced in the next section.

As shown, the initial LightGBM model was already quite effective, which is ev-

ident from the modest improvement of 0.002 after applying RandomizedSearchCV

for hyperparameter tuning. The decision to test 10 different hyperparameter com-

binations and employ a 5-fold cross-validation provides a smart balance between

computational efficiency and exploration of the hyperparameters space. While ex-

ploring a larger set of hyperparameters or increasing the number of combinations

tested could potentially improve the chosen LightGBM model, we must consider

the computational cost related to his. Each additional combination tested adds

to the computational workload, meaning that a broad hyperparameter search can
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1 from sklearn.model_selection import KFold

2 from sklearn.model_selection import RandomizedSearchCV

3 from lightgbm import LGBMClassifier

4

5 # split in folds

6 kf = KFold(n_splits=5, # number of folds

7 shuffle=True,

8 random_state=42).split(X_train, y_train)

9

10 # initiate "LGBMCLassifier"

11 lgb_estimator = LGBMClassifier(boosting_type='gbdt',

12 objective="binary",

13 n_jobs=-1, # use all processors available

14 random_state=42)

15

16 # parameter grid with the hyper parameters to evaluate

17 param_grid = {'learning_rate': [0.05, 0.1],

18 'max_depth': [7, 10, 13],

19 'num_leaves': [31, 71, 81],

20 'min_data_in_leaf': [100, 300, 400, 900, 1500]

21 }

22

23 # initiate "RandomizedSearchCV"

24 r_search = RandomizedSearchCV(estimator=lgb_estimator,

25 param_distributions=param_grid,

26 cv=kf,

27 random_state=42)

28

29 # fit the model ---> "task 1" - start location

30 lgbm_model_1= r_search.fit(X_train, y_train)

31 # Choose the model with the combination of hyperparameters that performed the best

32 classifier_model_1 = lgbm_model_1.best_estimator_

Listing 3.7: Training of the model with RandomizedSearchCV using LightGBM for
task 1.

become computationally expensive, requiring more time and resources. Balancing

model performance improvement with computational efficiency is a crucial aspect of

effective machine learning modelling [130].

Finally, for simplicity, for the remainder of this work, the fine-tuned Light-

GBM model for task 1 – start location – will be referred as classifier model 1

and the fine-tuned LightGBM model for task 2 – end location – will be called
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Table 3.12: Resulting metrics from the predictions on the test set for both fine-tuned
LightGBM models using RandomizedSearchCV for each task. Here, the weighted
averages are reported.

Task 1 — start location

Precision Recall F1-Score
Fine-tuned
LightGBM 0.900 0.900 0.900

Task 2 — end location

Precision Recall F1-Score
Fine-tuned
LightGBM 0.902 0.902 0.902

classifier model 2. In the next section, the process to get the predictions and the

new travel data will be discussed.

3.3 New travel data

This section is devoted to describing the data used as new data that will be fed into

the predictive model to obtain their starting and end locations.

3.3.1 Data processing

Data used to predict start and end locations contain real world EV travel data

collected by EA technology (EA) [139] as part of a trial project called ”My Electric

Avenue” that was carried out for 18 months between 2014 and 2015 in England.

This data will now be referred to as EA data.

The EA data contains 383,051 records from 215 unique users, which includes

information on the start and end date and time of the trip, the distance travelled

per trip, the power consumption of each trip, and the odometer information at the

start of each trip. The EVs’ telematics systems were used to record the driving

behaviour of the trial participants. The telematics systems recorded the distance,

times, power consumption, and odometer reading for each EV journey. As with all

trial data, there are samples missing. Communication issues between the monitor

controllers and the intelligent control box (ICB), as well as insufficient general packet

radio service (GPRS) signal for the EVs to transmit data to the telematics system,
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led to some missing samples in the data. In instances where there’s an increase in

the odometer reading without a corresponding recorded journey, this signifies a gap

in the data [139]. Table 3.13 shows an overview of the data from the EA data set

with the features the original features recorded during the trial.

Table 3.13: Example of the data included in the EA technology data set that was
used to obtain predictions of start and end location for each trip.

start end journey trip odometer power
timestamp timestamp number distance at the start consumption

in km in km in kWh

2014-08-02 2014-08-02
16:45:00 17:04:00 1 6.914 846 0.857

2014-08-02 2014-08-02
18:11:00 18:13:00 2 0.354 854 0.059

2014-08-02 2014-08-02
18:18:00 18:32:00 3 4.531 854 0.582

2014-08-03 2014-08-03
06:14:00 06:18:00 1 1.320 859 0.204

2014-08-03 2014-08-03
06:20:00 06:24:00 2 1.198 860 0.185

After cleaning the data and removing data from participants with fewer than

500 records in the entire data set as they only cover a few weeks of the year, 342,784

records were left from 205 unique users. For this work, only unique users with

enough information to fill a year’s worth of data were included, from 2014-August-

01 00:00:00 to 2015-July-01 23:59:00, these dates returned the highest number of

profiles that fulfil the requirement of having 365 days reported entries, which, in

turn, left a diverse selection of 170 participants with different total number of trips

ranging from participants with a total of 339 trips to participants with a total of

2,290 trips during those 365 days chosen. The selection criterion used in this work,

which requires users to have 365 days of reported trips, is not necessarily indicative

of selection bias. This criterion was chosen to ensure a consistent data quantity

across all user profiles, thereby providing a more reliable base for analysis in our

work. The intention here was to avoid incomplete data, which could potentially

skew the results or make them less reliable.

Another critical aspect to consider is the temporal variation in the data. By
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selecting profiles with a full year of data, this study ensures a balanced representa-

tion of the four different seasons of the year and their potential impact on driving

behaviour. This is important because travel patterns can significantly vary depend-

ing on the season due to different factors such as weather condition, holidays and

daylight hours. The requirement of 365 days of data allows to capture this seasonal

variability across the participants. As a result, the selected profiles can be compared

across different weeks of the year, maintaining consistency while accounting for po-

tential seasonal fluctuations. Additionally, the final selection of participants showed

a diverse range of total trips, as already mentioned, from 339 to 2,290 trips. This

wide range of trip numbers indicates that both high and low usage participants were

included in the dataset, which results in a comprehensive exploration of user be-

haviours avoiding a potential bias towards only high-frequency users. Therefore, the

data provides the diversity necessary for a robust analysis, covering both frequent

and less frequent users.

A final sample of 50 vehicles is then taken as a stratified sample by the total

number of trips during the 365 days chosen as just explained; this is to help en-

sure that the optimisation models used in this work capture the diversity of having

different vehicle schedules when providing V2H and V2G services.

The stratified sample was accomplished using Scikit-learns’s train test split

function, employing stratified sampling based on the total number of trips the par-

ticipants made during the selected 365-day period. Stratified sampling is a statistical

technique that involves splitting the population into homogeneous subgroups (also

called strata) and drawing a random sample from each stratum. In this case, the

total number of trips was used for that, ensuring the sample included vehicles across

the diverse trip frequencies. Furthermore, each of these 50 vehicles was allocated

to a single household, resulting in a total of 50 households with that own an EV in

the sample. This method of allocating one vehicle per household will be explored

further in Chapter 4 were the optimisation model will be introduced and how was

designed to optimise each household inside of a microgrid.

Finally, the remaining 50 profiles of the EA data were processed to contain the

same information as that used to train the predictive models, as otherwise it would

be impossible to feed the data into the final predictive models and predict the start
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and end locations. For this, data was processed and organised to include the same

features x1 − x9 the same way as the data shown in table 3.4. The original EA data

does not contain any information on its location, which means that labels y1 − y2

are not included, as this will be predicted using the final predictive model as will be

explained in the following sections.

3.3.2 Data statistics

Similarly to the NTS data, the EA data contains trip information on the time and

date when a trip took place. As discussed in the previous section, start and end

locations are not included and will be predicted using the predictive model, hence the

need of the predictive model which can predict the missing information; however,

relevant statistics can still be extracted from date and time information. In this

context, figure 3.8 shows information from the 50 profile samples about the total

number of trips per day, the total distance travelled per trip and the total time to

complete each trip.
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Figure 3.8: Electric vehicle trip information found inside the 50 profile sample ex-
tracted from the EA technology data. a. Number of trips per day for each day of
the week. b. Total distance travelled per trip for each day of the week. c. Total
time per trip for each day of the week.
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According to this data, most users make between 1 and 5 trips per day. Most

of these trips are between 1 and 10 km long and take between 1 and 15 minutes to

complete. This information is true regardless of the day of the week on which the

trip takes place, which is similar to the information found in the NTS data.

3.4 Predict start and end locations

As stated in this chapter, a predictive model was be used to predict the start and

end location of a real world EV from EA to determine the availability to provide

V2H or V2G services as this is only possible when EVs are connected at home. In

this work, the prediction process was divided into two steps:

• First step: Data containing features x1 − x9 will be fed into the task 1 final

predictive model to predict the starting location, y1.

• Second step: Data containing x1 − x9 and the newly predicted start location,

y1, which in this step will be treated as a feature, will be fed into the task 2

final predictive model to predict the end location, y2.

The first step can be seen in listing 3.8 which is part of a custom function that

handles the predictions. As seen in this code snippet, the variable ea profile in line

3 contains a copy of the preprocessed EV data of one profile of the stratified sam-

ple containing 50 profiles which was stored in the variable profile preprocessed.

Then, the variable ea start data only retains the relevant features to predict

the start location, as seen in line 8. Furthermore, the features are scaled using

the scaler model 1 produced during the training process as seen on line 11 and

then reassigned to the variable ea start data before making predictions as seen

on line 14. Then, the variable predicted start contains the predicted labels, y1,

using classifier model 1.

The second step can be seen in listing 3.9. Similarly to the process for the first

step shown in listing 3.8, here the variable ea end data in line 6 contains a copy of

the preprocessed EV data but this time it contains the relevant features to predict

the end location, which means that the content of the variable predicted start will

be used as a feature. Moreover, the numeric data is scaled using scaler model 2
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1 ...

2 # pass preprocessed data of each EV profile

3 ea_profile = profile_preprocessed

4

5 # ---

6 # 1st step

7 # keep columns relevant to make predictions for "step 1"

8 ea___start_data = ea_profile[features___step_1]

9

10 # scale numeric columns

11 data_scaled = scaler_model_1.transform(ea___start_data[cols_to_scale])

12

13 # assign scaled data back to "ea___start_data"

14 ea___start_data[cols_to_scale] = data_scaled

15

16 # predict "Start" --> task 1

17 predicted_start = classifier_model_1.predict(ea___start_data)

18 ...

Listing 3.8: Process to predict start location using the classifier model 1 for one
electric vehicle profile.

and reassigned to ea end data. Then, the variable predicted end contains the

predicted labels, y2, using classifier model 2.

After getting both labels y1 − y2 that contain the start and end locations for

each EV profile of the 50 profile sample, the data is processed as a time series from

2014-08-01 00:00:00 to 2015-07-31 23:59:00 with 1 minute time steps to be fed into

the optimisation model introduced in Chapter 4. The decision to keep the data with

1 minute time steps is due to the random nature of the trips, which according to

the NTS and EA data sets, trips can start and end at any minute of the day.

3.4.1 Resulting profiles

Figure 3.9 shows the dates that will be used in each results chapter — chapters 5–7.

Here, six different dates are reported that are representative of different seasons of

the year.

Each plot consists of the total of EVs that are available at home throughout

the day during the week, where, as seen, follows a trend of EVs mostly unavailable

during typical working hours of the week from 9 am to 5 pm, showing that most EVs
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1 ...

2 # ---

3 # 2nd step

4 # keep columns relevant to make predictions for "step 2"

5 # which contains the "start" label as a feature

6 ea___end_data = ea_profile[features___step_2]

7

8 # scale numeric columns

9 data_scaled = scaler_model_2.transform(ea___end_data[cols_to_scale])

10

11 # assign scaled data back to "ea_profile"

12 ea___end_data[cols_to_scale] = data_scaled

13

14 # predict "End" --> task 2

15 predicted_end = classifier_model_2.predict(ea___end_data)

16 ...

Listing 3.9: Process to predict the end location using the classifier model 2 for
one electric vehicle profile.

are at home after 7 pm. The plots also show that during Monday to Friday, it can

be expected that fewer EVs are at home compared to the weekend. Furthermore,

it should be noted that not all EVs are at home overnight during the week and

depending on their electricity tariff, some participants may reduce the chances of

saving money by not being able to charge their EV during the night, when electricity

prices are usually cheap in some tariffs. All this holds true for the six different dates

in the figure. As mentioned, only six weeks will be considered for the remainder of

this work. These weeks are described below.

• Week 1: For spring, week Spring - S1 from 2015-04-20 00:00:00 to 2015-04-26

23:59:00.

• Week 2: For summer, week Summer - S2 from 2015-06-22 00:00:00 to 2015-

06-28 23:59:00.

• Week 3: For summer, week Summer - S3 from 2014-09-08 00:00:00 to 2014-

09-14 23:59:00.

• Week 4: For autumn, week Autumn - S4 from 2014-10-06 00:00:00 to 2014-

10-12 23:59:00.
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Figure 3.9: Predictions on the EA technology data set showing the number of electric
vehicles that are available during a week for the six dates representative of the
different seasons of the year that will be used in the following chapters. A comparison
of the resulting profiles is made by highlighting the relevant data for each week with
the other five weeks. Here, the black X-axis labels denote data from Monday to
Friday and the red ones, data from Saturday to Sunday.
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• Week 5: For autumn, week Autumn - S5 from 2014-12-08 00:00:00 to 2014-

12-14 23:59:00.

• Week 6: For winter, weekWinter - S6 from 2015-02-23 00:00:00 to 2015-03-01

23:59:00.

3.5 Conclusions

In this chapter, a predictive model was developed using historical data that contain

travel information from the UK to predict the start and end location of new data

that contain data from real EV residential users from the UK. The model was de-

veloped to study the impact of the availability of EVs when using real world EV

travel data. Although the model was trained with historical data containing mainly

information on ICEV vehicle trips, this approach can be beneficial when predict-

ing travel behaviours irrespective of vehicle type. Despite the potential limitations

in reflecting unique EV travel patterns, the predictive model in this chapter, this

model, that was validated on mainly ICEV data, represents a crucial step in under-

standing and generalising travel behaviour. This provided a valuable starting point

for studying the impact of EV availability. For this, the historical data was divided

into two tasks, tasks 1 which will predict the start location and task 2 which will

predict the end location.

Three ML algorithms are used and compared using a training and test set for each

task. The results suggested that LightGBM outperforms the other two models with

a weighted average f1 score of 0.899 and 0.900 for tasks 1 and task 2, respectively.

The predictive model was then fine-tuned to improve the chosen model, obtaining a

weighted average f1 score of 0.900 and 0.902 for tasks 1 and task 2, respectively.

After processing the new data, this was fed into the predictive model to obtain

the start and end location of this new data, which will be used along with the data

and the optimisation model which will be explained in the following section.
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Optimising Household Energy

Management: A Mixed Integer

Linear Programming Model

(MILP) for Vehicle-to-grid

(V2G) Technology with

Peer-to-Peer (P2P) Trading in a

Microgrid Context

This chapter introduces an optimisation model that will serve as a tool for studying

various case studies involving vehicle-to-grid (V2G) technology. Initially adopted

from previous work conducted by Barbour and González [140]. While it was first

designed for stationary batteries, we made various modifications to better reflect

the behaviour of electric vehicles (EVs), such as their availability during the day.

Despite early computational inefficiencies, iterative modifications and testing led to

significant improvement. The current model used in this work will be discussed in

detail in section 4.2

The model uses mixed integer linear programming (MILP) to schedule EV bat-

tery usage at the household level, incorporating V2G technologies to leverage their

potential for enhancing energy management and operates within the framework of a

77
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microgrid, which is a localised energy network. The model additionally incorporates

peer-to-peer (P2P) energy trading between households within the microgrid. This

feature is introduced with the aim of enhancing the performance and value of V2G

services. The direct energy exchanges enabled by P2P trading may not only enhance

grid stability but also optimise the use of renewable energy. P2P energy transactions

are facilitated through the power grid infrastructure within the microgrid, and costs

are calculated based on two different price mechanisms, determined by the volume

of energy traded.

The optimisation model functions to minimise the total cost of electricity for each

household inside the microgrid. It does this by managing different energy sources

and storage devices. Depending on the available resources for each case study, the

model allocates energy usage efficiently, drawing from solar panels, battery storage,

grid import, or P2P transactions. In addition, the model is designed to smartly

utilise surplus solar energy, either by storing it in batteries for later use or selling

it to the grid or to other households via P2P. The presence of a storage device

enables the model to shift energy demand to off-peak hours, reducing the electricity

bill further. The main objective of the system is to reduce grid dependency and

optimise renewable energy use, all while aiming to minimise the household’s total

cost of electricity.

The real-world datasets utilised for our simulations, including household elec-

tricity demand, photovoltaic (PV) generation, and electricity tariff prices are also

introduced in this chapter. Additionally, the different microgrid configurations, each

representing a unique case study that will be explored in Chapters 5–7 will be dis-

cussed. Finally, we introduce a set of performance and solver metrics, essential for

evaluating the microgrid and the optimisation model, respectively. This chapter sets

the stage for a deeper investigation into the potential of V2G, P2P energy trading

and more efficient energy usage within microgrids. Figure 4.1 shows an overview of

the optimisation model used in this work.
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Figure 4.1: Overview of the model showing the flow of data through the optimisation
model and the output of the relevant metrics.

4.1 Data processing

This section presents the source and processing of the data used in this research.

The purpose of this section is to provide an overview of where the data came from

and how it was prepared for use in this thesis. The data was used in Chapter 5,

Chapter 6 and were also used to update previously published work described in this

chapter.

4.1.1 Electricity house demand

Data collected between 2012 and 2014 by UK Power Networks [141] that contain

readings of energy consumption were used for 5,567 London households. The data

in question contained readings that were originally recorded at 30-minute intervals.

In order to increase the time resolution of the data and make it more suitable for the

analysis in this work, the data was processed using the ’interpolate’ function from the

Pandas library [126]. Specifically, the ’linear’ method was applied. As a result, the
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data was transformed to have a 1-minute interval resolution. For this work, we used a

stratified sample of 50 households by their total annual electricity consumption only

considering households with a total annual consumption between 3,000 and 5,000

kWh per year. This range is based on the average household electricity consumption

in the UK of 3,731 kWh per year [142, 143]. Figure 4.2 shows an overview of the

house demand data used in this work.
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Figure 4.2: Household daily electricity consumption mean, minimum and maximum
aggregated values in kWh/day for a year from Jan 01 00:00:00 2013 to Dec 31
23:59:00 2013.

4.1.2 Solar generation

Each modelled household had the same 3.5 kWp PV system. We use data collected

by UK Power Networks [144] between 2013 and 2014 in London. These data contain

readings that were taken at 1-hour resolution intervals and then interpolated into

a 1-minute time resolution for this work. We only considered data collected from

late August 2013 to late August 2014. We consider the same data for all households

used in this work. Figure 4.3 shows an overview of the PV data used in this work.

The impact of using this uniform dataset, is considerable in this study. As every

modelled household had the same 3.5 kWp PV system, this consistency in data
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Figure 4.3: Averaged PV daily solar energy generation for a year from Jan 01 00:00
2014 to Aug 29 23:59 2014 and from Aug 30 00:00 to Dec 31 23:59 2013.

allows for a fair comparison of results across different households. This eliminates

any potential variability that could arise due to differences in PV system capacity.

The 1-minute time resolution, obtained by interpolating from the original 1-hour

interval readings, provides a detailed insight into the PV systems’ performance.

This granularity helps in understanding subtle fluctuations and trends in the energy

output that might have been overlooked in a lower resolution dataset.

However, it is important to note that the data is specific to one geographical

location and one-year period. Consequently, the findings might be less applicable to

other locations or periods with different weather patterns, as solar power generation

is highly dependent on such conditions. Furthermore, the universal use of the same

data for all households may not account for unique household characteristics that

could impact energy consumption and production patterns.

Overall, the high-resolution, consistent dataset allows for detailed and controlled

analysis but may limit the study’s wider applicability.
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4.1.3 Electricity tariffs

The following section will describe various electricity tariffs and their prices used

in this work. This information will be essential in assessing the impact of different

energy tariffs in the following chapters.

4.1.3.1 Agile tariff

A dynamic tariff introduced by Octopus Energy in the UK was used, where the user

has access to half-hourly energy prices tied to wholesale prices and updated daily

[145]. Octopus Energy calls this tariff Agile. This energy price varies depending on

the region in the UK. In this case, we used data for the London area. Figure 4.4

shows an overview of the prices of this tariff for 2019.
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Figure 4.4: Agile energy tariff with mean, minimum and maximum values of daily
prices for a year from Jan 01 00:00 2019 to Dec 31 23:59 2019.

4.1.3.2 Agile outgoing tariff

Figure 4.5 shows an overview of the prices that were used when selling surplus

solar generation, taken from mid-May 2019 to mid-May 2020. These prices were

introduced by Octopus Energy in the UK and they call this tariff Agile Outgoing
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[146]. As in section 4.1.3.1, these sales prices vary depending on the region in the

UK. Again, in this case, we used data for the London area.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
month

0.00

0.05

0.10

0.15

0.20

pr
ice

 (£
 / 

kW
h)

20192020

Agile Outgoing - Min Agile Outgoing - Mean Agile Outgoing - Max

Figure 4.5: Agile outgoing energy tariff with mean, minimum and maximum values
of daily prices for a year from Jan 01 00:00 2020 to May 15 23:59 2020 and from
May 16 00:00 2019 to Dec 31 23:59 2019.

4.1.3.3 Fixed tariffs

For this work, we also used data that contain electricity tariffs for the price of

electricity for a Flat tariff, which has the same price regardless of the time of the

day [147]. A tariff called economy seven (E7) tariff that offers two different prices

depending on the time of day with a lower price for seven hours at night [147]. A

recently introduced tariff called Agile Go with a low rate for four hours every night

and a competitive price rate for the rest of the day [148]. All these tariffs are offered

by Octopus Energy for the London WC1E 6BT area. Finally, we also consider the

price of changing an EV using rapid charging on the street [149, 150]. Table 4.1

shows a summary of the electricity price data for these tariffs.
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Table 4.1: Summary of the fixed tariffs used in this work with prices for each time
of day.

Tariff time price time price
(£ / kWh) (£ / kWh)

Agile Go 00:30 - 04:29 0.05 04:30 - 00:29 0.2376
Economy 7 00:00 - 06:59 0.1766 07:00 - 23:59 0.2893

Flat 00:00 - 23:59 0.1835 - -
Street Charging 00:00 - 23:59 0.30 - -

4.2 Electric vehicle dispatch optimisation for a house-

hold

The optimisation model used in this research to schedule the battery charge and

discharge cycles of EVs was initially adapted from previous work conducted by

Barbour and González [140]. We then modified their model, which involved a sta-

tionary battery, to incorporate parameters indicating the availability and battery

discharge in an EV during travel. This first model, despite effectively reflecting the

behaviour of EVs, it was notably slow due to its design which consumed substantial

computational resources when solving it. This adaptation, nonetheless, marked the

beginning of a series of iterative developments, each aiming to improve efficiency and

reduce resource use. The process culminated in the current study’s model, which

significantly improves its capabilities and efficacy.

Efficient model design is important in linear programming, as it directly influ-

ences the performance of the solver used. It is worth noting, however, that the

model construction itself is also a time-consuming process, often taking up a signif-

icant portion of the overall solution process. Therefore, a thoughtful and efficient

model design not only benefits the optimisation process but also reduces the time

spent on constructing the model itself. The optimisation process heavily relies on

the design of the model, which, if developed effectively, can significantly reduce

computational load and improve solving times, as well as expedite the construction

process [151, 152].

Furthermore, the first significant improvement to the model was described in

Aguilar-Dominguez et al. [153]. The focus of this paper was on analysing EVs util-
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ising Vehicle-to-home (V2H) technology versus traditional home batteries. Here,

the model represented the behaviour of an EV, introducing constraints, parameters,

and variables as necessary. The work published in Aguilar-Dominguez et al. [154]

marked another substantial refinement, where we improved the model to address

the availability of EVs more effectively. This led to further reduction in solving

time, making the model a more efficient tool for analysis and optimisation. In

Aguilar-Dominguez et al. [155], we made additional adjustments to the model to

further improve solving times.

In between and alongside these published works, numerous smaller adjustments

and refinements were made based on extensive testing. These continuous refine-

ments have gradually improved the model’s capabilities and efficacy, leading up to

its current form in this study. Notably, the present model operates much more ef-

ficiently, taking approximately between 7 to 20 minutes per model - a significant

reduction from the previous 6 hours, or in some rare cases more than that, it used

to take to solve each microgrid scenario. This model can also handle multiple EVs

simultaneously within a microgrid, a feature not available in the previous versions of

the model. In addition, we have introduced P2P energy trading into the model in the

current study, a new feature that allows us to explore the impact of implementing

P2P within a microgrid.

Therefore, while the initial model was based on the previous work conducted by

Barbour and González [140], the current model reflects a series of developments and

refinements that we have made over the years. Through this iterative process, the

model has evolved to be a more efficient and practical tool for assessing real-world

scenarios.

The optimisation model described in this section uses a MILP approach and will

be used in chapters 5–7. Any updates or modifications made to the model presented

in this chapter will be discussed further in each respective chapter. Previous versions

of this model can be found in publications [153, 154, 155].

The optimisation model will be solved using the Gurobi 9.5.2 [156] solver and

was built using the Python 3.8.8 [125] programming language and the Pyomo 6.3.0

library [157]. This optimisation model is explained below.
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4.2.1 Constraints on the electric vehicle battery

The model is constrained by the physical limits of EV’s state of charge (SOC), given

by equation (4.1). For this work, we consider SOCmin = 0.05 and SOCmax = 0.95.

These values are used to mimic real-world conditions and preserve the longevity of

the EV’s battery [105].

Fully charging or discharging a battery, especially a lithium-ion battery com-

monly found in EVs, can be detrimental to its health over time, reducing its lifespan.

Therefore, it’s common to set a buffer on both ends to prevent these extremes.

The lower limit, SOCmin = 0.05, ensures that the battery never fully discharges,

which can cause irreversible damage to the battery cells. On the other hand, the

upper limit, SOCmax = 0.95 prevents the battery from being fully charged, which

can also harm the battery due to excessive voltage.

SOCmin ≤ ESOC
v,t ≤ SOCmax, ∀v, t (4.1)

Equations (4.2)–(4.4) describe the energy stored inside the battery for each vehi-

cle, including initial and final values, where η refers to the efficiency of the charger.

ESOC
v,t refers to the state of charge of the electric vehicle at time t. SOCinit and

SOCfinal are the initial and final SOC values for each electric vehicle, 50% of the

original battery capacity in both cases. The SOCfinal is the expected minimum

SOC at the end of each week for each household, while the SOCinit is the initial

SOC already in the battery system. This means that each household is expected to

have at least 50% of its battery’s original capacity at the end of each week, and that

it will start each week with 50% of its battery’s original capacity. Echarge
v,t refers to

the energy charged to the EV at time t when at Home. Echarge,street
v,t refers to the

energy charged to the EV from the use of street charging at time t when the EV is

away from Home and is not used for travel purposes. Edischarge
v,t refers to the energy

discharged to the house at time t. Edischarge,v2g
v,t refers to the energy discharged to

the grid for V2G at time t. Edemand,vehicle
v,t refers to the energy required for the EV’s

travel demand at time t. It is assumed that the same efficiency η applies for both

charge and discharge cycles.
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ESOC
v,init = SOCinit ∗ SOC, ∀v (4.2)

ESOC
v,final ≥ SOCfinal ∗ SOC, ∀v (4.3)

ESOC
v,t = ESOC

v,t−1 +

[(
Echarge

v,t + Echarge,street
v,t

)
∗ η

]

−

[(
Edischarge

v,t + Edischarge,v2g
v,t

)
∗ 1

η

]
− Edemand,vehicle

v,t , ∀v, t > 0

(4.4)

Equation (4.4) is the result of extensive testing aimed at improving the efficiency

and accuracy of our EV energy model In this model, ESOC
v,t−1 plays a crucial role as

it represents the prior state of charge of the EV. It updates the SOC based on any

relevant changes such as energy charged at home or on the street, discharged to the

home or grid, or energy used for travel.

Equations (4.5) and (4.6) describe the maximum charge and discharge power

of the bidirectional charger. In this case, Pmax,ch and Pmax,dis are 7.4 kW [158].

Equation (4.7) reflects the maximum charge power of the EV when using rapid

charging on the street, where the maximum power in this case is 50 kW [149, 150].

dt refers to the time step, in this case dt = 1 min = 1
60 hr.

Echarge
v,t ≤ Pmax,ch ∗ dt, ∀v, t (4.5)

Edischarge
v,t + Edischarge,v2g

v,t ≤ Pmax,dis ∗ dt, ∀v, t (4.6)

Echarge,street
v,t ≤ Pmax,street ∗ dt, ∀v, t (4.7)

Equations (4.8) and (4.9) control the charge / discharge cycles of the EV. Here,

Bcharge
v,t and Bdischarge

v,t are binary variables. Equation (4.10) manages street charging

when the EV is not at Home and not driving. Equation (4.11) restricts charge and

discharge at the same time when the EV is available at home. αavail,home
v,t describes
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the availability at home of each electric vehicle to charge or discharge at time t.

αavail,street
v,t describes the availability to charge with a street charger at time t. In both

cases, 1 means that it is available and 0 means that it is not available. For αavail,street
v,t ,

the EV is available to be charged with a street charger, i.e. αavail,street
v,t = 1, when

it is not at Home and also not in motion. This means that the EV is likely parked

at a different location, which in this work is referred to as Other, and assumed to

be parked with access to a public charging station available for street charging.

Echarge
v,t ≤ Bcharge

v,t ∗M, ∀v, t (4.8)

Edischarge
v,t + Edischarge,v2g

v,t ≤ Bdischarge
v,t ∗M, ∀v, t (4.9)

Echarge,street
v,t ≤ αavail,street

v,t ∗M, ∀v, t (4.10)

Bcharge
v,t +Bdischarge

v,t ≤ αavail,home
v,t , ∀v, t (4.11)

In our study, as mentioned, we effectively managed the charge and discharge

cycles of EVs based on their availability using equation (4.11). Here, αavail,home
v,t in

this equation is sourced from a dataset we produced in Chapter 3. This dataset

is in the form of a time series containing the availability information of the EVs.

αavail,street
v,t is also sourced from the same dataset. This specifically focuses on setting

the availability of vehicles for street charging when they are away and not actively

driving.

Despite some prior studies using availability data directly in the equations that

describe the EV’s SOC, as seen in references [105, 159], we took a different approach.

Instead of directly using αavail,home
v,t into our SOC in equation (4.4), we incorporated

it into equation (4.11). During our testing, equation (4.11) has proven to be more

efficient, improving the solution-finding of our model.
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4.2.2 Solar generation

Equation (4.12) indicates the total power generated by the PV system of each house-

hold, where Esolar
v,t is the solar generation at time t. Esolar,used

v,t the solar power used

by the home to its domestic loads, to charge the EV’s battery or both. Esolar,export
v,t

is the surplus solar power sold to the grid. Esolar,p2p
v,t is the solar power surplus sold

towards P2P.

Esolar
v,t = Esolar,used

v,t + Esolar,export
v,t + Esolar,p2p

v,t , ∀v, t (4.12)

In equation (4.12), we propose to split the solar energy generated into three

parts. This is different from our earlier work. With this equation, we can better

keep track of solar energy use. It allows us to see how much of the solar energy

goes directly to the house, how much is exported to the grid, and how much is used

for P2P sharing. This P2P part is a new addition, and it helps us understand how

much energy is shared with others within a microgrid, as it will be described in

section 4.4.6.

4.2.3 Power Balance

Equations (4.13) and (4.14) describe the power balance and net power of each house-

hold, respectively, where Eimport,total
v,t and Eexport,total

v,t are the total energy imported

and exported from and to the grid at time t. Enet
v,t is the net power required for the

house or exported from the household at time t. Edemand,house
v,t is the energy required

from the house at time t. Equation (4.15) describes that Eimport,total
v,t is the sum of

Eimport,grid
v,t and Eimport,p2p

v,t , which is the energy imported from the grid and from

P2P at time t. Equation (4.16) describes that Eexport,total
v,t is the sum of all energy

exported from the household to the grid or P2P.

Esolar,used
v,t + Eimport,total

v,t + Edischarge
v,t = Edemand,house

v,t + Echarge
v,t , ∀v, t (4.13)

Enet
v,t = Eimport,total

v,t − Eexport,total
v,t , ∀v, t (4.14)
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Eimport,total
v,t = Eimport,grid

v,t + Eimport,p2p
v,t , ∀v, t (4.15)

Eexport,total
v,t = Esolar,export

v,t + Esolar,p2p
v,t + Edischarge,v2g

v,t , ∀v, t (4.16)

Here, we also updated the equation (4.13) from our previous work. In this new

version, we proposed to no longer include any reference to the energy exported, in

this case, Eexport,total
v,t . Instead, this equation consists of energy inputs to satisfy the

demands on the right side of the equation.

It is important to note that now Eimport,total
v,t include two variables, one referring

to the energy drawn from the grid and another include the energy that is imported

from P2P energy sharing. Similarly, Eexport,total
v,t includes three variables, energy

exported from the grid, energy exported to P2P within the microgrid, in this case

both from solar surplus, and energy exported from the EV for V2G services.

We found that these changes improve the solution times, making the whole

process more efficient.

Equations (4.17) and (4.18) prevent energy import when energy is exported from

the household at time t. Bexport
v,t is a binary variable. M is a sufficiently large positive

number.

Eimport,total
v,t ≤

(
1−Bexport

v,t

)
∗M, ∀v, t (4.17)

Eexport,total
v,t ≤ Bexport

v,t ∗M, ∀v, t (4.18)

4.2.4 Peer-to-peer electricity exchange

Equation (4.19) shows that the power transferred into and out of the system by

domestic users who participate in the P2P market should be equal over each period

of time by domestic users who participate in P2P. For this work, only solar surplus

generation will be used for P2P energy trading

∑
v

(
Eimport,p2p

v,t

)
=
∑
v

(
Esolar,p2p

v,t

)
, ∀t (4.19)
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Furthermore, while we were exploring the implementation of P2P dynamics

within a microgrid,, we implemented equation (4.19). We found that the inclusion

of this equation significantly reduced solving times, enhancing both computational

speed and overall model efficiency.

This approach was taken to deepen our understanding of the impact of P2P

energy sharing within a microgrid, particularly in terms of EVs and V2G systems

such as the provision of short term operation reserve (STOR) services, which will

be detailed in Chapter 6. Our tests consistently demonstrated that the addition of

equation (4.19) led to faster solving times and improved result quality.

Interestingly, we found out near the end of our study that similar methodology

had been implemented in earlier research, particularly by Yaldız et al. [160], with a

primary focus on stationary batteries. While it was initially thought to be a novel

contribution, our independent convergence on this method and effective application

of equation (4.19) reaffirms the robustness of our methodology.

Even with prior applications, our study makes a significant contribution by suc-

cessfully applying P2P in a microgrid context involving multiple EVs and V2G

applications. It offers new insights and extends the current understanding of P2P

interactions within microgrids.

4.2.5 Import and export costs

Equations (4.20)–(4.25) describe the different electricity costs involved in the ex-

change of energy in and out of the home. Here, Prbuy,gridv,t is the price of the energy

tariff for importing energy from the grid, and this price will vary depending on the

energy tariff of each user. Prbuy,streetv,t is the price of charging with a street charger.

For this work, this price is £0.30/kWh [149, 150]. Prbuy,p2pv,t is defined as the price

that will be charged for the import of energy from P2P. The price to sell surplus

solar energy to the grid is Prsell,gridt . In this case, it is assumed that all households

are under the same selling tariff when selling energy to the grid. Prsell,p2pt is the

price of selling energy to P2P. The calculation of P2P prices will be explained later.

Finally, Prsell,v2gv,t is the price of selling energy to V2G. This price will be introduced

in the relevant chapter.
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Cimport
v =

∑
t

(
Prbuy,gridv,t ∗ Eimport

v,t

)
, ∀v (4.20)

Cimport,street
v =

∑
t

(
Prbuy,streett ∗ Echarge,street

v,t

)
, ∀v (4.21)

Cimport,p2p
v =

∑
t

(
Prbuy,p2pv,t ∗ Eimport,p2p

v,t

)
, ∀v (4.22)

Cexport
v =

∑
t

(
Prsell,gridt ∗ Esolar,export

v,t

)
, ∀v (4.23)

Cexport,p2p
v =

∑
t

(
Prsell,p2pv,t ∗ Esolar,p2p

v,t

)
, ∀v (4.24)

Cexport,v2g
v =

∑
t

(
Prsell,v2gt ∗ Edischarge,v2g

v,t

)
, ∀v (4.25)

4.2.6 Objective function

From the end user’s point of view, the cost of operation represents a fundamental

target that needs to be minimised.

Here, the objective function represents the total cost of electricity for each house-

hold by choosing the most efficient way to meet its energy needs. This can include

using solar panels, storing energy in a battery, importing electricity from the grid

or from P2P, or selling solar surplus to the grid or for P2P. When solar generation

is present, optimising the total cost of electricity can reduce the amount of energy

that is imported from the grid, store it in the battery for later used, or also sell solar

surplus energy to the grid. Additionally, if P2P energy trading is allowed, house-

holds can sell their excess electricity to other households, which can further reduce

the amount of energy that is imported from the grid. This can benefit both buyers

and sellers, as buyers can get cheaper electricity and sellers can make a profit. The

presence of a battery can also help to shift the energy demand at certain times of
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the day when prices tend to be high, which mostly happens during peak times. This

can help to reduce the household’s energy bill and its impact on the grid.

Therefore, a function that represents the total energy cost of a household is given

by equation (4.26).

min
∑
v

(
Cimport
v + Cimport,street

v + Cimport,p2p
v

− Cexport
v − Cexport,p2p

v − Cexport,v2g
v

) (4.26)

4.3 Peer-to-peer (P2P) price calculation

To calculate the prices for buying and selling energy from P2P, two different settings

are explored. It is worth noting that in this work we considered that users may have

different buying energy tariffs from each other, and, as was mentioned before, users

have the same selling energy tariff. This means that participants will have buy and

sell P2P prices according to the energy tariff they have. In addition, two different

settings will be considered as seen Table 4.2.

Table 4.2: Overview of the different settings in which the microgrid can operate.

Name Setting Description

Setting one P2P Sett One Prices for buying and selling energy between
peers will be calculated according to the
local energy demand and the generation

of the microgrid

Setting two P2P Sett Two Prices for buying and selling energy between
peers will be calculated as the average price

of the retail buying and selling prices
of each participant

4.3.1 Setting one

In this setting, we use the mid-market rate (MMR) to set the trading price for both

buying and selling energy through P2P [161, 103]. This setting applies only when

P2P setting = S1. This trading setting consists of three different scenarios. MMR
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price calculation requires to calculate Prmid,p2p
v,t as in equation (4.27), which is the

mean price of the purchase of the energy tariff for each user of the microgrid and

the sale of the energy tariff to sell the surplus of their solar energy to the grid.

Furthermore, we need to obtain Edelta,p2p
t , which is the energy imbalance between

generation and demand of the entire community system, as given by equation (4.28).

Prmid,p2p
v,t =

Prbuy,gridv,t + Prsell,gridv,t

2
, ∀v, t (4.27)

Edelta,p2p
t =

∑
v

Esolar
v,t −

∑
v

Edemand,house
v,t , ∀t (4.28)

• if Edelta,p2p
t = 0, ∀t

This scenario refers to the case where the total energy generation of the users

is equal to their total energy demand. This means that users who participate

in P2P energy trading will get the same P2P buying and selling prices as given

by equation (4.29).

Prbuy,p2pv,t = Prsell,p2pv,t = Prmid,p2p
v,t , ∀v, t (4.29)

• if Edelta,p2p
t > 0, ∀t

The total energy generation of users is greater than the total energy demand.

This means that the P2P purchase price is equal to Prmid,p2p
v,t and the P2P

sale price may be lower than the agile outgoing price given by equation (4.30).

Prbuy,p2pv,t = Prmid,p2p
v,t , ∀v, t

Prsell,p2pv,t =

Prmid,p2p
v,t ∗

∑
v
Edemand,house

v,t + Edelta,p2p
t ∗ Prsell,gridv,t∑

v
Esolar

v,t

, ∀v, t

(4.30)

• if Edelta,p2p
t < 0, ∀t
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In this case, the total energy generation of the users is less than the total

energy demand. This means that the P2P sale price is equal to Prmid,p2p
v,t and

the purchase price may be equal to the user’s buying price tariff from the grid

or close to Prmid,p2p
v,t as in equation (4.31)

Prbuy,p2pv,t =

Prmid,p2p
v,t ∗

∑
v
Esolar

v,t − Edelta,p2p
t ∗ Prbuyv,t∑

v
Edemand,house

v,t

, ∀v, t

Prsell,p2pv,t = Prmid,p2p
v,t , ∀v, t

(4.31)

4.3.2 Setting two

Similarly to section 4.3.1, MMR is used to calculate the trading price for both buying

and selling energy through P2P. However, in this setting, the Prmid,p2p
v,t described in

equation (4.27) is used to set the buying and selling prices to trade energy between

peers in the microgrid. This setting applies when P2P setting = S2. This

approach has been used successfully by Englberger et al. [104] to assess the impact

of P2P when using energy storage systems. With this approach, the incentive for

participants to trade energy with their peers is the same for buying and selling for

all participants in the microgrid. Therefore, for this setting, the prices are calculated

as described in equation (4.32).

Prbuy,p2pv,t = Prsell,p2pv,t = Prmid,p2p
v,t =

Prbuy,gridv,t + Prsell,gridv,t

2
, ∀v, t (4.32)

4.4 Microgrid system configuration

In this work, we consider different configurations that affect the interaction of par-

ticipants in a microgrid. These configurations affect the way households participate

in smart charging (V1G), V2H, V2G and P2P trading. Table 4.3 shows an overview

of the different modes that will change the way the microgrid will operate, three

control how EVs will interact when connected to the home using a bidirectional

charger, and two control whether or not to allow P2P energy trading. These modes
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are discussed further in the following subsections.

Table 4.3: Overview of the different settings in which the microgrid can operate.

Name Mode P2P Status Description

Smart charging V 1G No P2P
EVs only allowed to use

smart charging

Smart charging V 1G P2P
EVs only allowed to use

smart charging, P2P trading
allowed

Vehicle-to-home V 2H No P2P
EVs allowed to give energy to

the house, includes the
benefits of V1G mode

Vehicle-to-home V 2H P2P

EVs allowed to give energy to
the house, includes the

benefits of V1G mode, P2P
trading allowed

Vehicle-to-grid V 2G No P2P
EVs allowed to give energy to
the grid, includes the benefits

of V1G and V2H mode

Vehicle-to-grid V 2G P2P

EVs allowed to give energy to
the grid, includes the benefits
of V1G and V2H mode, P2P

trading allowed

4.4.1 Smart charging (V1G) mode

V1G is a safe and practical method of charging an EV in periods when the demand

for power is lower, including at night or when there is a surplus of renewable energy

in the grid. Therefore, to achieve this mode and only allow EVs to participate in

V1G, equation (4.33) applies only when V 2G mode = V 1G. This mode will be

considered as the baseline setup, which means that households will take energy from

the grid to cover their energy demand needs and EVs cannot participate in V2H.

In this mode, households with solar energy generation will also be able to use it to

charge the EV battery.

Edischarge
v,t + Edischarge,v2g

v,t ≤ 0, ∀v, t (4.33)
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Applying equation (4.33), the ability of EVs to discharge energy back to the

home or to the grid is effectively deactivated and only allows the flow of energy

from the home to the battery, which means that EVs will only be able to charge the

necessary energy to provide transport.

4.4.2 Vehicle-to-home (V2H) mode

V2H and V2G are similar to each other, since both involve bidirectional power flows

to and from the EVs’ battery. What makes V2H different is that it uses the energy

already stored in the EV’ battery to power the participant’s household.

In this mode, EVs are allowed to discharge energy back to the house whenever

they are connected using the bidirectional charger at home. This will enable EVs to

schedule the charging and discharge behaviour of the energy storage system when

it is more convenient during the day, for example, when electricity prices are high

or low, or if there is a surplus of solar energy and then used it later only to meet

the energy needs of the household. This mode also enables the use of V1G and

its benefits. Therefore, to achieve this mode, equation (4.34) applies only when

V 2G mode = V 2H.

Edischarge,v2g
v,t ≤ 0, ∀v, t (4.34)

With equation (4.34), the ability to provide energy for V2G is completely re-

stricted.

4.4.3 Vehicle-to-grid (V2G) mode

V2G enables EVs to sell energy in the EV’s battery back to the power grid. In

this mode, EVs are allowed to discharge energy back to the grid whenever they are

connected using the bidirectional charger at home. This will allow EVs to sell energy

and will allow the owners to make a profit. This mode also enables the use of V1G

and V2H and its benefits. Therefore, this mode does not apply any restrictions to

the model and allows the energy discharge from the EVs’ battery toward both the

household and the grid. This mode occurs when V 2G mode = V 2G.
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4.4.4 No Peer-to-peer (P2P) mode

For this work, we explore the impact of energy trading through P2P within a micro-

grid. This configuration controls the energy sources allowed to participate in P2P

or not participate in P2P at all. This mode does not affect the self-consumption of

solar generation and its use of EVs subject to V 2G mode.

To assess this impact, we need to establish a baseline system in which households

are not allowed to trade energy to P2P. Therefore, equation (4.35) only applies when

P2P mode = No P2P .

Eimport,p2p
v,t ≤ 0, ∀v, t (4.35)

When this P2P mode is applied to the microgrid, households are not allowed

to trade surplus solar generation between peers and are only allowed to use that

surplus energy for self-consumption or sell it to the grid.

4.4.5 Peer-to-peer (P2P) mode

This mode will allow participants to trade energy with their peers in the microgrid.

This mode is in place only if P2P mode = P2P . To properly operate this mode,

one of the two settings described in section 4.3 must be selected.

4.4.6 Performance Metrics

To compare the performance of the different scenarios that will be explored in this

work, different performance metrics are considered. These metrics are described in

the following.

• Self-suffiency ratio (SSR): This metric is responsible for measuring the

independence of the microgrid and is defined as the percentage of the demand

of the microgrid that is directly met by solar generation or battery discharge on

site, rather than being met by the electrical grid [162, 163]. This is calculated

by equation (4.36).
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SSR =
∑
v

∑
t

[(
Edemand,house

v,t + Echarge
v,t

)
− Eimport,grid

v,t(
Edemand,house

v,t + Echarge
v,t

) ]
∗ 100 (4.36)

• Energy balance index (EBI): This metric is a grid independence metric

similar to SSR, but penalises both imports and exports from and to the grid

[105, 164]. The EBI is a measure of the net power exchange between microgrid

and the electrical grid, specifically the imports and exports between the two.

This can be used to identify areas where there may be a need for network

reinforcement as large power flows in either direction may require costly net-

work reinforcement. It can also be helpful in identifying microgrids that are

exporting a lot of energy or that are importing a lot of energy. This metric is

defined by equation (4.37).

EBI =

{
1−

∑
v

∑
t

[
Eimport,grid

v,t + Esolar,export
v,t(

Edemand,house
v,t + Echarge

v,t

)
+ Esolar

v,t

]}
∗ 100 (4.37)

• Total energy imported between peers: This is the total energy imported

from the energy shared between peers when P2P is allowed in the microgrid.

This is described in equation (4.38).

Total energy imported P2P =
∑
v

∑
t

(
Eimport,p2p

v,t

)
(4.38)

• Maximum power load: This is the maximum power load of the microgrid

registered when energy is imported from the grid.

• Weekly mean electricity cost: This is the mean electricity cost per week

of the profiles in the microgrid.

• Annual electricity cost: This is an estimate of the annual electricity cost

of the profiles in the microgrid. This estimation of annual electricity costs is

done assuming 52 weeks to a year. Each chapter will include details of how
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the dates used will contribute towards the annual electricity cost. Here, the

mean annual electricity costs will be considered.

4.4.7 Solver Metrics

In this work, Gurobi 9.5.2 [156] is used as a solver for the models presented in the

following chapters. Gurobi is a mathematical optimisation solver that can solve a

wide variety of optimisation problems, including linear programming (LP), MILP,

quadratic programming (QP), and mixed integer quadratic programming (MIQP).

In the case of solving MILP problems using Gurobi, these are generally solved

using a LP based branch-and-bound algorithm. This algorithm is based on recur-

sively dividing the problem into smaller subproblems and solving them to find an

optimal solution. The branch-and-bound algorithm relies on the concepts of upper

and lower bounds to find the optimal solution. The upper bound represents the best

known solution, while the lower bound is the minimum possible value that can be

obtained. The difference between these bounds, called the gap, indicates the opti-

mality of the solution. When the gap reaches zero, the optimal solution has been

found [165].

For a MILP minimisation problem, to determine the lower bound, a relaxation of

the subproblem is solved at each surviving node of the search tree and subsequently

selecting the minimal objective value among these nodes. As a result, during the

solving process, at any given point the upper bound is known to be feasible since it

comes from the incumbent solution — the best integer solution identified thus far

during the algorithm’s search process. While it is unclear if further improvements

can be achieved, it is assumed that the optimal objective value cannot exceed the

lower bound. Moreover, the upper bound is improved as new incumbents are found,

and the lower bound is refined as nodes are removed from the search tree [166].

To improve the efficiency of the branch-and-bound algorithm on getting an op-

timal solution as fast as possible, Gurobi implements various techniques, such as

presolve, cutting planes, heuristics, and parallelism. Presolve is a technique that can

be used to reduce the size of the problem before the branch-and-bound algorithm is

applied, making it easier to solve. Cutting Planes are mathematical constraints that

can be used to eliminate parts of the search space, further simplifying the search pro-
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cess. Heuristics generate good starting points for the branch-and-bound algorithm,

which can lead to faster convergence. Parallelism is a technique that can be used to

speed up the solution of the problem by dividing it into multiple subproblems that

can be solved concurrently [165].

In order to evaluate the quality of the solutions produced by Gurobi, and by

extension, the results presented through this work, the optimality gap will be used

as a metric. This metric is described below.

• Optimality gap: As already introduced, the optimality gap, which is the

difference between the upper and lower bounds, shows how good the solution

is. In other words, it provides a clear indication of how far we are from the

optimal solution and how effective the solver is in locating it [167]. This value

was obtained from the log file that Gurobi provides after solving each model.

Moreover, the computer specifications that were used to solve each model will

be described in each chapter. This will include the computer memory size and the

processor used to solve the models.

4.4.8 Assumptions Guiding the Energy Management Model in a

Microgrid Context

In this research, we use a MILP model to schedule household-level EV battery usage,

integrated with V2G technologies, to optimise energy management. This model is

deployed within a microgrid, a localised energy network. The model’s assumptions

are as follows:

• All households own either an EV (same model for all participants), or a sta-

tionary battery, as discussed in Chapter 5.

• Households with solar PV systems all possess 3.5 kWp systems, each household

owns their own system.

• All participants can sell surplus solar energy to the grid at a uniform rate.

• All households are located within close proximity, sharing the same distribution

transformer, thereby forming a suburban neighbourhood-like grid-connected

microgrid.



102 Chapter 4

• When P2P energy sharing is enabled, any participant producing surplus solar

energy can sell it to peers within the microgrid.

• Participants have a single energy tariff price for energy drawn from the grid.

• Each household has distinct electricity demand and driving patterns.

• The optimisation model applies to all 50 households within the microgrid.

These assumptions underpin the proposed model, guiding the scheduling of en-

ergy resources and transactions within the microgrid for enhanced energy manage-

ment.

4.5 Conclusions

In this section, we provided an in-depth overview of the data and methodologies

used in this study. The electricity household demand, solar generation, and different

electricity tariffs data that we used our research.

We also introduced the optimisation model, a tool crucial for scheduling the

charge and discharge cycles of the EV batteries. We the how this model works in-

cluding including the P2P aspect and its objective function. Then, a detailed expla-

nation of the P2P price mechanisms used, in this case two different price mechanism,

was also provided.

Further, we explored the microgrid’s functionality and explained the different

configurations on how the microgrid will behave. Notably, whether V1G, V2H or

V2G was allowed, and the different ways that P2P will work inside the miocrogrid.

The section further introduced the performance metrics, explaining how they

help evaluate the microgrid’s performance and its different aspects. Additionally,

the metric that will help to evaluate the quality of the solutions produced by the

solver. The final part of this section outlined the assumptions that framed the

research, enabling us to study and analyse various aspects effectively.

Overall, this section has provided a comprehensive insight into the work’s frame-

work, bringing together the various elements that contribute to our understanding of

the availability of EVs within a grid-connected microgrid. This underpinning frame-
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work sets the stage for the subsequent in-depth exploration of EVs in the following

chapters.





Chapter 5

Comparison of Smart Charging

(V1G) and Vehicle-to-Home

(V2H) Systems against

Stationary Batteries for

Minimising Consumer

Electricity Costs

In the following chapter, the effectiveness of using a microgrid connected to the grid

to reduce the electric bill of households that own a stationary battery or an electric

vehicle (EV) with a bidirectional charger. We will describe the data used to simulate

the microgrid, an overview of the different scenarios that will be explored, and gauge

the performance of stationary home batteries and EVs using the data and the model

described in previous chapters in different scenarios that will be introduced later in

the chapter.

5.1 Model overview

The optimisation model introduced in chapter 4 is used to simulate the EVs and

data is taken from the resulting profiles in chapter 3. For stationary home batteries,

an adjusted version of the optimisation model from chapter 4 is used to simulate

105
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their behaviour. The objective of the optimisation model is to minimise household

electricity costs. This is achieved through several strategies. If a house has a pho-

tovoltaic (PV) system installed, the model aims to maximise the self-consumption

of solar energy produced. The model also considers the possibility of peer-to-peer

(P2P) energy trading among households. Additionally, it manages the scheduling

of energy storage systems’ charge and discharge cycles to provide Vehicle-to-home

(V2H) and further minimise the electricity bill. This scheduling considers various

factors, such as times of high or low electricity prices, as well as periods with a

surplus of solar energy, to determine the most cost-effective operation. For EVs, a

bidirectional charger is used to allow EVs to discharge energy already stored in the

battery toward the house. The impact of different electricity tariffs is compared,

as well as different PV penetration rates and possible advantages of P2P energy

trading between households within the microgrid is compared. Furthermore, in the

case of EVs, a comparison of smart charging (V1G) and V2H is also explored. The

full list of scenarios explored in this chapter will be described in greater detail in

section 5.1.4.

5.1.1 Data

A grid-connected microgrid consisting of a sample of 50 households located in Lon-

don, previously described in section 4.1.1 is used. All households have a stationary

home battery or an EV. Table 5.1 shows the specifications of the two batteries, EV

and the bidirectional charger that are considered in this work. Here, a Nissan/Eaton

[168] and a Tesla Powerwall [169] are used, as well as a Nissan Leaf 2018 [170]. In

addition, a 7.4 kW bidirectional charger – V1G and V2H enabled – was considered

for the EV simulations [158]. For EVs, a comparison of V1G and V2H is also ex-

plored. Data that resulted from chapter 3 is used to simulate the travel behaviour

of the EVs.

Four different electricity tariffs are used as described in section 4.1.3.1 and ta-

ble 4.1. These four electricity tariffs are the Agile tariff, the Agile Go tariff, the

economy seven (E7) tariff and the Flat tariff.

To assess the impact of local solar generation, different PV penetration rates are

used; in this case, 0%, 10%, 25%, 50%. 75%, 90% and 100%. These PV penetration
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Table 5.1: Overview of stationary home batteries, electric vehicle and the bidirec-
tional charger considered in this work.

Name Type Capacity Power Efficiency
(kWh) (kW) (%)

Nissan/Eaton Stationary battery 6 3.6 90
Tesla Powerwall Stationary battery 13.5 5 90

Nissan Leaf 2018 Electric Vehicle 37 - -
Wallbox Quasar Bidirectional charger - 7.4 93

(charge / discharge)

rates mean the percentage of the 50 houses with solar panels installed, for instance,

a PV penetration rate of 10% will only have 5 houses with solar panels. To simulate

solar generation, the data introduced in section 4.1.2 and the sell tariff, the Agile

Outgoing tariff, from section 4.1.3.2 is used.

In this work, three different P2P scenarios are explored, one without P2P energy

trading, one with P2P energy trading using the setting introduced in section 4.3.1

and one with P2P energy trading using the setting introduced in section 4.3.2.

5.1.2 Representative weeks of the year

The simulations were conducted using four different weeks that are representative

of the four seasons of the year to study any seasonal variation. This information has

already been introduced in figure 3.9 where it is provided for six different weeks of

the year. In this chapter, only four dates are considered, as explained below.

• Week 1: For spring, week Spring - S1 from 2015-04-20 00:00:00 to 2015-04-26

23:59:00.

• Week 2: For summer, week Summer - S2 from 2015-06-22 00:00:00 to 2015-

06-28 23:59:00.

• Week 3: For autumn, week Autumn - S4 from 2014-10-06 00:00:00 to 2014-

10-12 23:59:00.

• Week 4: For winter, weekWinter - S6 from 2015-02-23 00:00:00 to 2015-03-01

23:59:00.
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A total of 28 days are simulated overall, these weeks will contribute equally to

the calculation of the estimate annual electricity cost, which will be discussed later

in the chapter. This means that each week’s weighting is 0.25.

5.1.3 Energy storage system dispatch optimisation for a household

The optimisation model used to schedule the charging and discharge behaviour of

EVs was introduced in section 4.2.

In the case of the stationary home battery, the model in section 4.2 was appropri-

ately modified to reflect availability throughout the day and that there is no energy

discharge for travel purposes. These changes are described in equations (5.1)–(5.3),

where αavail,home
v,t , αavail,street

v,t and Edemand,vehicle
v,t are modified to reflect the be-

haviour of a stationary home battery that is available at all times and does not

need to consume energy for travel purposes.

αavail,street
v,t = 0, ∀v, t (5.1)

αavail,home
v,t = 1, ∀v, t (5.2)

Edemand,vehicle
v,t = 0, ∀v, t (5.3)

5.1.4 Microgrid system configuration overview

A comparison of different microgrid configurations or microgrid scenarios of the

system is considered. These scenarios are summarised in table 5.2. Since the main

purpose of having a stationary home battery is to store energy that can be used later

at home, as opposed to EVs which can be operated in three different modes according

to section 4.4, for stationary home batteries, there is only one configuration, which

will be called Batt. Each battery used here will be called Eaton for the Nissan/Eaton

battery and Tesla for the Tesla Powerwall battery. When EVs are used, the case

studies will be identified using EV and only two modes will be considered, the V1G

mode and the V2H mode.

The different microgrid scenarios described in table 5.2 will be simulated using
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Table 5.2: Overview of the different microgrid configurations explored in this chapter
with a description of the microgrid configuration.

Microgrid Description
configuration or scenario

Nissan/Eaton battery

Batt Eaton No P2P Case Study one; No P2P.
Batt Eaton P2P S1 Case Study one; P2P Setting one.
Batt Eaton P2P S2 Case Study one; P2P Setting two.

Tesla battery

Batt Tesla No P2P Case Study two; No P2P.
Batt Tesla P2P S1 Case Study two; P2P Setting one.
Batt Tesla P2P S2 Case Study two; P2P Setting two.

EVs

EV V 1G No P2P Case Study three; V1G; No P2P.
EV V 1G P2P S1 Case Study three; V1G; P2P Setting one.
EV V 1G P2P S2 Case Study three; V1G; P2P Setting two.

EV V 2H No P2P Case Study four; V2H; No P2P.
EV V 2H P2P S1 Case Study four; V2H; P2P Setting one.
EV V 2H P2P S2 Case Study four; V2H; P2P Setting two.

the four weeks described in section 5.1.2 and the different PV rates and energy

tariffs, both described in section 5.1.1. However, for energy tariffs, five different

energy tariff configurations or tariff scenarios will be explored. These five scenarios

are described in table 5.3 where it shows the number of profiles that each energy

tariff will use for each tariff scenario.

Table 5.3: Overview of the different energy tariff configurations explored.

Tariff Description
configuration

Agile 100% of profiles using the Agile tariff

Agile Go 100% of profiles using the Agile Go tariff

E7 100% of profiles using the Economy seven tariff

Flat 100% of profiles using the Flat tariff

All tariffs 25% of profiles using each of the four energy tariffs
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Finally, the number of simulations considered for each microgrid configuration –

described in table 5.2 – is 140 in total, which considers seven different PV penetration

rates – described in section 5.1.1 – and five different tariff configurations – described

in table 5.3. Therefore, in this chapter, a grand total of 1,680 simulations are

explored.

5.1.5 Metrics

The performance metrics already introduced in section 4.4.6 will be used to eval-

uate the performance of each scenario described in this chapter. Furthermore, to

assess the quality of the results presented, the optimality gap metric described in

section 4.4.7 will be used.

5.2 Results

In this section, we present our findings from a week-long summer microgrid study

– referred to as ’Summer - S2’. Specifically, we focus on the results when using the

Agile Go tariff. We compare the usage and performance of stationary home batteries

and EVs based on the metrics introduced in section 4.4.6. Then, we assess the

impact of various representative weeks on the microgrid’s performance under each

tariff. We also analyse the estimated annual total electricity cost for each scenario

and tariff combination. Finally, we briefly discuss the validity and quality of the

results obtained from our study based on the metrics introduced in section 4.4.7.

For this chapter, as stated in section 4.2, each simulation was built using the

Python 3.8.8 [125] programming language and the Pyomo 6.3.0 library [157] and

then solved using Gurobi 9.5.2 [156].

5.2.1 Results comparison between stationary home batteries and

electric vehicles for a week in summer using the agile go tariff

The simulation results presented in figures 5.1 and 5.2 outline the dynamic be-

haviour of EVs (in this case, EV V 2H P2P S1 ) and stationary home batteries

(in this case, Batt Tesla P2P S1 ) in a microgrid environment with a PV pen-

etration rate of 90% and using the Agile Go tariff during a summer week - in this

case the Summer - S2 week. As observed in both figures, these energy resources
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exhibit a clear preference for charging during periods when the price of electricity

is at its lowest, particularly when solar generation is high. This behaviour signifi-

cantly reduce the energy drawn from the grid. The energy draw from the grid peaks

at night, with EVs reaching up to 205 kW and home batteries up to 180 kW. In

contrast, charging during the day takes advantage of local solar generation, which

significantly reduces the energy drawn from the grid.

EVs and home batteries also display a tendency to discharge during the evening

hours. This coincides with a period of lower solar generation. In the context of

these two scenarios, surplus solar generation is predominantly sold to the grid as it

provides a more beneficial financial return than self-consumption or P2P trading,

as seen in (b) of figures 5.1 and 5.2. The comparatively lower P2P selling prices, a

consequence of solar generation saturation, make selling to the grid a more profitable

option under Setting one (S1), as explained in section 4.3.1.

Over the course of the week, the total energy shared via P2P when using EVs

was observed to be 222 kWh, while home batteries were noted to share 128 kWh

of energy. Interestingly, despite the differing amounts of energy shared, the self-

suffiency ratio (SSR) of both setups was closely matched, with EVs achieving 83.33%

and home batteries 83.26%. This underlines the effective utilisation of predicted

availability and location data, suggesting that both stationary batteries and EVs

can be efficiently integrated into the energy management strategies of a microgrid.

5.2.2 Performance of Microgrid Configurations for a week in sum-

mer using the agile go tariff

Figures 5.3a and 5.3b summarise the performance metrics for scenarios using EVs

and stationary home batteries in different microgrid configurations during the sum-

mer week with the Agile Go tariff. In both figures, each row contains five different

metrics, which are described below.

• Row A: Contains results for SSR.

• Row B: Contains results for energy balance index (EBI).

• Row C: Contains results for the energy imported from the exchange via P2P

in kWh.
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Figure 5.1: Simulation results for the Summer - S2 week showing the microgrid
operation using EVs with a PV penetration rate of 90% and using the Agile Go tariff.
In this case, this date belongs to the microgrid configuration EV V 2H P2P S1
. The tick labels on X-axis in black denote data from Monday to Friday, and the
red labels, data from Saturday and Sunday. a. Power import from the grid. b.
Household demand and energy consumed, shared and sold from solar generation
within the microgrid. c. Buy and sell prices from the grid and from P2P energy
trading. d. Number of EVs available at home charging and discharging and the
total number of numbers available at home.
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Figure 5.2: Simulation results for the Summer - S2 week showing the operation of
the microgrid operation using EVs with a PV penetration rate of 90% and using
the Agile Go tariff. In this case, this date belongs to the microgrid configuration
Batt Tesla P2P S1 . The tick labels on X-axis in black denote data from Mon-
day to Friday, and the red labels, data from Saturday and Sunday. a. Power import
from the grid. b. Household demand and energy consumed, shared and sold from
solar generation within the microgrid. c. Buy and sell prices from the grid and from
P2P energy trading. d. Number of home batteries that are charged and discharged.
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• Row D: Contains results for the maximum power load from the energy im-

ported from the grid in kW.

• Row E: Contains results for the mean electricity cost per week in British

pounds (£).

These results generally show a strong correlation between PV penetration rates,

P2P settings, and SSR. For home batteries, SSR with a PV penetration rate of 100%

increases from 30.71% to 84.16% for Eaton batteries and 41.13% to 88.37% for Tesla

batteries. For EVs with the same PV penetration rate, SSR increases from 0.00%

to 71.81% when only V1G is allowed and 27.70% to 79.85% with V2H. However,

different metrics peak under varying PV penetration rates, such as EBI, maximum

power load, and energy imported from P2P.

In scenarios where P2P is not allowed, SSR results for both Eaton and Tesla

batteries fluctuate according to PV penetration rates, with ranges between 30.71%

to 56.39% and 41.14% to 61.14% respectively at rates of 0% to 50%. These values

increase to between 70.05% to 82.65% for Eaton and 73.87% to 86.54% for Tesla

batteries at rates from 75% to 100%.

In scenarios where only V1G is enabled, SSR ranges from 0% to 28.60% with PV

penetration rates of 0% to 50%. The scenario which allows EVs to discharge energy

via V2H increases SSR from 27.70% to 43.33% with PV penetration rates of 0% to

50%, still lower than the batteries. The import of power from the grid ranges from

91 to 120 kW with V1G and 253 to 299 kW with V2H. Electricity costs are nearly

halved across all PV penetration rates when V2H is enabled compared to V1G.

Allowing P2P trades in Setting two yields optimal results for both technologies,

owing to its more attractive prices for both buying and selling energy. This is

particularly useful for home batteries, whose primary role is storing energy for later

use, and for EVs using V2H, which essentially function as intermittent household

batteries.

Setting two also significantly increases the energy exchanged, with the largest

difference being over 1 MWh in the Batt Tesla P2P S2 microgrid configuration.

In general, the implementation of P2P under this price setting results in reduced

grid energy imports, particularly at higher PV penetration rates, due to the ability
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to sell surplus local solar generation to peers at a mid-market rate price.

Specifically, for home batteries, grid energy imports are significantly reduced

across all PV penetration rates, with the greatest reductions seen at 100% PV pen-

etration: Eaton battery imports decrease from 3,466 kWh to 851 kWh, and Tesla

from 3,714 kWh to 701 kWh. With P2P allowed in both settings, there is a small

further reduction in grid imports at high PV penetration rates.

Similarly, for EVs, grid energy imports decrease proportionally with increasing

PV penetration rates. Without P2P, imports drop from 4,645 kWh at 0% PV

penetration to 1,991 kWh at 100% penetration for V1G, and from 4,940 kWh to

2,389 kWh for V2H. These higher import levels for V2H may be attributed to EVs

charging during periods of low energy prices. With P2P enabled, Setting one yields

minor reductions in grid imports at 100% PV penetration, while Setting two results

in substantial reductions, from 1,991 kWh to 1,309 kWh for V1G, and from 2,389

kWh to 1,246 kWh for V2H. These reductions occur at all PV penetration rates,

with Setting two consistently resulting in less grid energy importation.

Compared to home batteries, EVs yield a less significant reduction in grid energy

imports due to the need to charge extra energy for users’ driving needs. The highest

max power loads are found with EVs using V2H (201-358 kW), possibly as most EVs

charge simultaneously at times of low electricity prices to meet future travel energy

requirements, as well as for later use in the house. Tesla batteries show the second

highest values, followed by Eaton batteries at a lower range (121-260 kW) due to

their smaller charge/discharge power. The lowest maximum power loads occur with

EVs using V1G, suggesting households only charge their EVs to meet any energy

required for trips during the day.

Given all microgrid configurations can sell surplus solar generation to the grid, in

some cases this may be more profitable, reducing SSR, EBI, energy shared to P2P,

and the max power load from the grid, thereby increasing grid energy dependency.

However, it may also reduce weekly electricity bills by earning profits from energy

sold to the grid. A possible solution to balance these factors with financial benefits

for EV owners could be to incorporate incentives into the objective function to

promote self-sufficiency, energy balance, and P2P sharing, while still profiting from

selling surplus energy.
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The lowest mean electricity prices per week are found when using the Tesla

battery in all microgrid configurations or scenarios. Eaton batteries and EVs with

V2H yield similar results for most PV penetration rates, whether P2P is enabled or

not. The highest prices occur when EVs are used with V1G, and in all cases, the

highest PV penetration rates return the lowest mean weekly electricity prices.

The following summary provides a review of this section’s findings, comparing

the impacts of home batteries (Eaton and Tesla) and EVs with V1G and V2H

capabilities under different PV penetration rates and P2P energy sharing.

• SSR increases with higher PV penetration rates across all technologies. Home

batteries (Eaton and Tesla) show an SSR range from 30.71% to 88.37% at 100%

PV penetration, while EVs with V1G and V2H functionalities demonstrate

SSR between 0.00% to 71.81% and 27.70% to 79.85% respectively. The V2H

scenario displays a significant improvement over V1G.

• P2P energy sharing settings (Setting one and Setting two) greatly influence

SSR and grid energy imports. Setting two, providing more advantageous P2P

energy prices, consistently delivers higher SSR and larger reductions in grid

imports across all PV penetration rates compared to Setting one. This leads

to Setting twogenerally resulting in lower weekly electricity costs.

• The import of grid energy decreases across all PV penetration rates with the

most substantial reductions observed at 100% PV penetration for both home

batteries and EVs, and further reductions when P2P is enabled. However,

EVs result in less reduction in grid energy imports due to additional charging

needs for driving.

• The highest maximum power loads, indicating peak energy demands, are ob-

served with EVs with V2H due to combined home and vehicle charging needs.

Tesla batteries show the second-highest values, while Eaton batteries show

lower values due to their smaller charge/discharge power.

• All microgrid configurations tend to sell surplus solar generation to the grid

rather than using it for self-consumption or sell it via P2P, potentially reducing

SSR, increasing grid dependency, but also lowering electricity bills.
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• In terms of mean weekly electricity costs, Tesla batteries consistently result

in the lowest prices across all scenarios, while the highest prices are associ-

ated with EVs with V1G. The lowest prices are achieved at the highest PV

penetration rates.

5.2.3 Results of all microgrid configurations and tariffs over the

different representative weeks in a year

The figures presented in this section include values in all microgrid configurations

or scenarios. The values are divided into two sections, the column on the left –

column 1 – contains the average values from 0% to 50% PV penetration rates and

the right column – column 2 – contains the average values from 51% to 100% PV

penetration rates. Moreover, each row includes each of the five tariff scenarios –

rows 1 to 5 – that were explored, different colours are used to differentiate between

the four representative weeks of the year and different marker shapes are used to

help distinguish them between each microgrid configuration. X-axis tick labels also

include information about each microgrid configuration.

In this section, our focus will primarily be on a select set of performance metrics:

SSR, energy shared from P2P, and the average weekly electricity cost. Additional

metrics, such as EBI, the maximum power load from the grid, and total energy im-

ported from the grid, are detailed in Appendix B, specifically under appendix B.1.1.

Figure 5.4 shows a comparison of the SSR, the different weeks of the year have a

noticeable difference between each other for all scenarios and tariffs. It can be seen

that the Summer - S2 week returns the highest SSR value in most columns and rows

followed by the Spring - S1 week, with the exception of 51-100% PV penetration

rate and the Agile Go tariff during the Spring - S1 week (column 2, row 2) using the

Tesla battery and EVs with V2H. The Winter - S6 week tends to return the lowest

SSR values in most cases in column 1 when using EVs with V1G. Column 1 returns

results close to each other regardless of tariff; there is no major gap between values

in the different weeks. Column 2 shows a larger gap between the different weeks,

depending on the tariff scenario used. In this case, the P2P scenarios return the

highest SSR values for both settings; however, Setting two seems to perform better

than Setting one.
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Date
Spring - S1
Summer - S2
Autumn - S4
Winter - S6

Case
Batt___Eaton___No_P2P
Batt___Eaton___P2P_S1
Batt___Eaton___P2P_S2
Batt___Tesla___No_P2P
Batt___Tesla___P2P_S1
Batt___Tesla___P2P_S2
EV___V1G___No_P2P
EV___V1G___P2P_S1
EV___V1G___P2P_S2
EV___V2H___No_P2P
EV___V2H___P2P_S1
Ev___V2H___P2P_S2

Figure 5.4: Self-suffiency ratio values for the four representative weeks of the year,
the five tariff scenarios and all microgrid configurations explored in this chapter.
The left column contains the average values from 0% to 50% PV penetration rates
and the right column contains the average values from 51% to 100% PV penetration
rates.
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Figure 5.5 shows a comparison of the total energy imported from P2P. In this

case, only relevant scenarios with P2P and PV penetration rates are considered

from 10% to 100%. Here, a higher PV penetration rates result in more energy

being imported from P2P. With lower PV penetration rates , shown in column

1, Summer - S2 has the highest energy values for all microgrid configurations and

tariffs. In column 2 different weeks return the highest energy imported from P2P,

for example, depending on the microgrid configuration and tariff, Winter - S6 is

the one that returns more energy being imported from P2P with Setting one. This

could be because the way the prices of each of the settings P2P prices are calculated

as explained in section 4.3.1, where having more solar generation could result in

lower P2P sell prices, which will result in less motivation to trade energy within the

microgrid and instead sell it to the grid or use it locally as self-consumption. In the

case of Setting two, scenarios in this setting import more energy from P2P during

Summer - S2 week, since the way prices are calculated can influence users to trade

instead of selling to the grid or use it locally, since both buy and sell prices are an

average of the buy and sell prices from the grid, as explained in section 4.3.2.

Figure 5.6 shows a comparison of the mean electricity price per week. Here, the

lowest prices can be met during the Summer - S2 week in all scenarios and tariffs,

opposite to the Winter - S6 week, which results in the highest prices of all weeks.

Overall, mean prices per week are between 30.0 and -7.0 British pounds (£) for

all scenarios, weeks and tariffs, with negative prices found where PV penetration

rates are high, that is, households get paid instead of paying for their bill. Home

batteries returned low electricity costs when using P2P and Setting two, and the

Tesla battery had slightly lower energy costs per week than the Eaton battery. For

EVs, having V1G and no P2P had the highest electricity price with the E7 tariff

and with V2H with P2P and Setting two electricity prices are close to those when

using home batteries.

5.2.4 Annual electricity costs

In this section, the estimated annual electricity costs will be presented. The results

were calculated as explained in section 5.1.2. The figures contain the average esti-

mated annual electricity cost for the four main tariffs, Agile tariff, Agile Go tariff,
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Tariff = All tariffs | PV rate = 51 - 100

Date
Spring - S1
Summer - S2
Autumn - S4
Winter - S6

Case
Batt___Eaton___P2P_S1
Batt___Eaton___P2P_S2
Batt___Tesla___P2P_S1
Batt___Tesla___P2P_S2
EV___V1G___P2P_S1
EV___V1G___P2P_S2
EV___V2H___P2P_S1
Ev___V2H___P2P_S2

Figure 5.5: Energy shared from P2P for the four representative weeks of the year,
the five tariff scenarios and all microgrid configurations explored in this chapter.
The left column contains the average values from 0% to 50% PV penetration rates
and the right column contains the average values from 51% to 100% PV penetration
rates.
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Date
Spring - S1
Summer - S2
Autumn - S4
Winter - S6

Case
Batt___Eaton___No_P2P
Batt___Eaton___P2P_S1
Batt___Eaton___P2P_S2
Batt___Tesla___No_P2P
Batt___Tesla___P2P_S1
Batt___Tesla___P2P_S2
EV___V1G___No_P2P
EV___V1G___P2P_S1
EV___V1G___P2P_S2
EV___V2H___No_P2P
EV___V2H___P2P_S1
Ev___V2H___P2P_S2

Figure 5.6: Mean electricity cost per week for the four representative weeks of the
year, the five tariff scenarios and all microgrid configurations explored in this chapter.
The left column contains the average values from 0% to 50% PV penetration rates
and the right column contains the average values from 51% to 100% PV penetration
rates.
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E7 tariff and Flat tariff in figures 5.7a and 5.7b for home batteries and EVs, respec-

tively. Similarly, in the case of the All tariffs scenario, where 25% of profiles use

each of the four energy tariffs, as described in table 5.3, these results are the average

estimated annual electricity costs according to the number of households that are

under each different tariff, as described in table 5.4. Figures 5.7c and 5.7d show the

results for the All tariffs scenario for home batteries and EVs, respectively.

Table 5.4: Number of users under each different tariff for the All tariffs scenario.

Tariff name Number of households

Agile 13

Agile Go 13

E7 12

Flat 12

In the data represented in figures 5.7a–5.7d, it’s evident that higher PV penetra-

tion rates lead to reduced average annual prices across all microgrid configurations

and tariffs. For both home batteries and EVs, lowest prices are achievable with

100% PV penetration rate in particular settings, such as Agile and Agile Go tariffs

and P2P settings.

Home batteries, particularly the Tesla battery, generate negative prices, implying

users can earn rather than pay for their electricity usage. The Agile tariff consistently

returns the lowest electricity cost, for both home batteries and EVs.

For EVs, the lowest price can be achieved with Agile tariff and 100% PV penetra-

tion rate in the EV V 2H P2P S2 scenario, yet no negative prices are recorded

here. Importantly, EVs with V2H services show significantly lower prices (£28) com-

pared to those with only V1G services (£121), demonstrating the economic benefit

of V2H.

In all configurations, the E7 tariff results in the highest average annual costs. EVs

with V1G services also generate the highest annual electricity costs, but these costs

are substantially reduced when V2H services are implemented. Similarly, allowing

P2P further reduces costs.

Under the All tariffs scenario, the Agile Go tariff beneficiaries are primarily home

battery users and EVs with V2H. Negative prices are observed with the Eaton and



124 Chapter 5
0%

10%
25%

50%
75%

90%
100%

Agile

Agile GoE7

Flat
mean electricity
cost per annum

(£)

292
256

208
118

29
-19

-54

551
490

412
272

132
58

0

906
819

705
497

289
179

96

694
627

538
372

208
119

55

Batt___Eaton___No_P2P
0%

10%
25%

50%
75%

90%
100%

292
241

184
101

15
-31

-64

551
426

308
187

76
17

-26

906
759

607
417

232
136

69

694
595

482
319

166
89

36

Batt___Eaton___P2P_Sett_one
0%

10%
25%

50%
75%

90%
100%

292
247

191
96

12
-30

-59

551
429

290
150

54
7

-24

906
759

581
327

165
102

64

694
600

475
270

129
72

37

Batt___Eaton___P2P_Sett_two
0%

10%
25%

50%
75%

90%
100%

275
239

190
100

10
-39

-74

314
275

222
121

24
-26

-68

824
737

625
415

207
96

14

694
621

524
345

167
70

1

Batt___Tesla___No_P2P
0%

10%
25%

50%
75%

90%
100%

275
228

171
86

-1
-49

-82

314
233

152
75

-5
-50

-82

824
698

552
358

162
59

-6

694
595

474
299

127
40

-15

Batt___Tesla___P2P_Sett_one
0%

10%
25%

50%
75%

90%
100%

275
235

181
86

-2
-47

-78

314
235

163
73

-6
-48

-77

824
697

541
298

116
38

-10

694
600

475
266

103
30

-16

Batt___Tesla___P2P_Sett_two

(a
)
H
o
m
e
b
a
tteries

0%
10%

25%
50%

75%
90%

100%

Agile

Agile GoE7

Flat

mean electricity
cost per annum

(£)

519
481

429
333

237
186

148

922
865

788
645

505
431

373

1320
1243

1138
945

753
652

574

1005
945

860
705

549
467

405

EV___V1G___No_P2P
0%

10%
25%

50%
75%

90%
100%

519
461

401
313

223
174

139

922
798

691
577

463
402

356

1320
1173

1029
860

698
613

549

1005
906

800
630

484
412

362

EV___V1G___P2P_Sett_one
0%

10%
25%

50%
75%

90%
100%

519
467

399
290

198
152

121

922
800

662
523

420
371

337

1320
1173

987
726

567
500

462

1005
911

779
547

401
339

305

EV___V1G___P2P_Sett_two
0%

10%
25%

50%
75%

90%
100%

417
382

333
241

151
101

66

502
458

398
292

183
129

88

1145
1071

965
765

575
469

391

1005
941

848
671

503
408

339

EV___V2H___No_P2P
0%

10%
25%

50%
75%

90%
100%

417
361

303
217

131
83

48

502
390

316
234

145
98

62

1145
1006

878
698

526
428

357

1005
907

795
605

426
334

272

EV___V2H___P2P_Sett_one
0%

10%
25%

50%
75%

90%
100%

417
366

305
205

111
62

28

502
389

307
209

124
79

48

1145
1003

843
590

368
269

207

1005
911

780
538

327
232

173

EV___V2H___P2P_Sett_two

(b
)
E
V
s

0%
10%

25%
50%

75%
90%

100%

Agile

Agile GoE7

Flat

mean electricity
cost per annum

(£)

313
259

232
151

44
-9

-36

524
481

352
195

101
13

-26

862
789

648
387

259
137

64

688
631

583
478

222
172

65

Batt___Eaton___No_P2P
0%

10%
25%

50%
75%

90%
100%

313
254

234
151

37
-17

-45

524
397

234
115

42
-25

-57

862
698

518
282

180
84

31

688
605

490
371

159
110

29

Batt___Eaton___P2P_Sett_one
0%

10%
25%

50%
75%

90%
100%

313
254

219
135

53
15

-4

524
404

188
-55

-123
-162

-166

862
676

496
185

42
-98

-157

688
616

491
358

172
159

100

Batt___Eaton___P2P_Sett_two
0%

10%
25%

50%
75%

90%
100%

297
242

215
132

25
-29

-56

288
260

173
63

3
-54

-81

784
710

570
311

183
56

-14

688
625

575
459

183
130

16

Batt___Tesla___No_P2P
0%

10%
25%

50%
75%

90%
100%

297
236

213
129

18
-38

-66

288
206

105
31

-20
-74

-101

784
665

486
231

114
9

-46

688
562

428
314

89
40

-35

Batt___Tesla___P2P_Sett_one
0%

10%
25%

50%
75%

90%
100%

297
237

203
117

28
-11

-32

288
202

27
-193

-268
-318

-329

784
661

487
175

39
-101

-165

688
572

449
316

124
106

43

Batt___Tesla___P2P_Sett_two

(c)
H
o
m
e
b
a
tteries

0%
10%

25%
50%

75%
90%

100%

Agile

Agile GoE7

Flat

mean electricity
cost per annum

(£)

534
478

449
362

248
192

162

902
863

737
572

479
392

352

1268
1206

1070
806

695
589

524

1014
961

912
813

567
519

412

EV___V1G___No_P2P
0%

10%
25%

50%
75%

90%
100%

534
466

449
352

236
182

155

902
787

635
510

440
370

337

1268
1090

934
730

635
547

495

1014
942

792
677

485
445

366

EV___V1G___P2P_Sett_one
0%

10%
25%

50%
75%

90%
100%

534
467

427
332

260
224

205

902
794

566
313

236
206

205

1268
1075

898
576

420
276

216

1014
948

784
640

461
442

384

EV___V1G___P2P_Sett_two
0%

10%
25%

50%
75%

90%
100%

429
376

348
268

162
106

78

488
459

360
242

173
107

74

1095
1035

896
642

531
408

343

1014
956

907
802

529
476

354

EV___V2H___No_P2P
0%

10%
25%

50%
75%

90%
100%

429
364

345
262

152
94

64

488
385

279
199

138
82

53

1095
972

827
591

474
358

298

1014
894

710
570

368
322

235

EV___V2H___P2P_Sett_one
0%

10%
25%

50%
75%

90%
100%

429
364

328
225

117
85

72

488
383

194
-41

-150
-240

-268

1095
958

795
463

314
171

100

1014
909

720
544

313
288

222

EV___V2H___P2P_Sett_two

(d
)
E
V
s

F
ig
u
re

5
.7
:
(a

)
-
(b

).
E
stim

ated
an

n
u
al

electricity
cost

for
A
gile

tariff
,
A
gile

G
o
tariff

,
E
7
tariff

an
d
F
lat

tariff
w
h
en

u
sin

g
h
om

e
b
atteries

sh
ow

in
g
th
e
m
ean

p
rices

w
ith

in
th
e
m
icrogrid

.
(c
)
-
(d

).
E
stim

ated
an

n
u
al

electricity
cost

for
each

tariff
in
sid

e
th
e
A
ll

ta
riff

s
scen

ario
w
h
en

u
sin

g
h
om

e
b
a
tteries

sh
ow

in
g
th
e
m
ean

p
rices

w
ith

in
th
e
m
icrogrid

.



5.2 Results 125

Tesla batteries, -£45 and -£66 respectively, under specific tariffs and settings. For

EVs, the lowest average annual costs are reported when V2H is allowed and Setting

two is used, resulting in an average annual cost of -£268. Higher PV penetra-

tion rates, appropriate tariff selection, and P2P settings all contribute to reducing

electricity costs, with V2H services offering particular cost advantages over V1G

services.

5.2.5 Solution quality

In this section, the optimality gap explained in section 4.4.7 will be shown. This

metric will measure the quality of the results presented so far in this chapter, which

means that it will give a clearer picture of how far the results are from the opti-

mal solution according to the solver, in this case Gurobi 9.5.2 [166]. Additionally,

the computer specifications that were used to solve each microgrid configuration or

scenario.

Table 5.5 shows the optimality gap value ratio of the 1,680 models in his chapter

obtained after solving each model. Here, the majority of models are under a gap

of 0.50% and only a handful are above this threshold. To put things into context,

a model with a 0.50% gap implies that the feasible solution identified by Gurobi

is quite close to the optimal solution. This small gap is considered satisfactory in

many cases, as it demonstrates its effectiveness in solving the optimisation problem

with reasonable accuracy. The closer the gap to 0.00%, the higher the confidence in

the quality of the solution, which makes it suitable for decision-making or further

analysis [166].

Table 5.5: Optimality gap value ratio of the resulting models.

Gap Number of models

≤ 0.50 1,668

0.50 < 12

Table 5.6 shows the total number of models that were solved on each PC. Ac-

cording to the Gurobi documentation, the results can vary when solved on different

hardware, which means that although optimal results are found, the path to them

might be different, which may yield different data [171].
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Table 5.6: Number of models solved using each computer and their specifications.

Number Processor Processor Cores RAM
of models name speed (GHz) (GB)

631 12th Gen Intel (R) 3.20 16 128
Core (TM) i9-12900K

769 11th Gen Intel (R) 2.30 4 64
Core (TM) i5-1135G7

280 Intel (R) Xeon (R) 2.10 16 128
E5-2620 v4

5.3 Discussion

This work has used an optimisation model to investigate the performance of station-

ary batteries and EVs using V1G and V2H through four different weeks representa-

tive of the seasons of the year, different PV penetration rates, in combination with

four different tariffs and two different mechanisms of P2P price calculation based on

mid-market rate (MMR). This was achieved through the use of real-world data from

home energy demand, local solar generation, and EV travel that included predicted

data on their ability to be connected at home. The simulation results show that

when P2P trading is allowed, the use of home batteries and EVs can produce signif-

icant technical and economic benefits with different energy tariffs. In some cases, the

use of V2H, which allows EVs to provide energy to the household when connected

at home, can provide further benefits for EVs than V1G. For home batteries, the

Agile tariff and the Agile Go tariff can achieve average electricity costs per week

of around £2.00 with 0-50% PV penetration rates during the summer with P2P,

especially the Tesla battery, which has more capacity and power than the Eaton

battery, and with 51-100% PV penetration rates the average electricity cost can be

around -£5.00 for all tariff scenarios explored with P2P allowed, which means that

the household will be paid instead of paying for their electricity bill. EVs with V2H,

P2P with 0-50% PV penetration rates can match the mean electricity cost per week

during the summer that resulted from the same week for home batteries when there

is no P2P. In all scenarios, tariffs and PV penetration rates, the introduction of V2H

and P2P further reduces the weekly cost of electricity compared to the use of V1G
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alone with electricity costs ranging from -£5.00 to £15.00.

PV penetration rates of 51-100% can also increase SSR in all microgrid config-

urations during summer with most tariffs, reducing the need for energy from the

grid, with SSR values from 55% to close to 100% in the case of home batteries with

P2P, for EVs with P2P from 25% to close to 75% for EVs with V1G and from 40%

to close to 100% with V2H. In most cases, Setting two is the one that leads to the

best results with high PV penetration rates. With lower PV penetration rates, Set-

ting one tends to improve the results due to the way the P2P prices are calculated,

where having less solar generation within the grid may result in the best P2P prices.

Furthermore, P2P can benefit PV owners by sharing surplus energy within the mi-

crogrid for users to charge their EVs at a lower cost than buying energy from the

grid regardless of whether they have PV installed at home. This is because unlike

home batteries, EVs are not available at different times of the day because they are

used for travel.

Estimated annual electricity costs show that users with home batteries benefit

more with the Agile tariff and have P2P using Setting one and 100% PV penetration

rate with costs as low as -£64 for the Eaton battery and -£82 for the Tesla battery.

EVs also benefit the most when using the Agile tariff with P2P and having 100%

PV penetration rate, but in this case using Setting two results in a cost of £121 with

V1G and £28 with V2H.

In addition, P2P energy trading, when allowed, notably impacts the cost dy-

namics within the microgrid system. P2P energy sharing allows more flexibility and

potential for cost reduction across all options - V1G, V2H and stationary batteries.

Additionally, the lowest annual costs are observed when P2P is allowed. This high-

lights the importance of incorporating P2P mechanisms into the energy management

strategies of microgrid systems, along with the appropriate selection of EV services

and stationary batteries.

As pointed out in different previous work [105, 172, 173], energy buyers benefit

more from P2P price mechanisms than sellers. In this study, we compared two

different price mechanisms, both based on MMR, based on simulation results, the

first price mechanism, Setting one, tends to favour buyers more than sellers, as the

way this price is calculated penalises the selling prices the higher the solar generation
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is within the microgrid and with selling prices often below the price that the grid

would pay for any surplus energy.

The way in which the optimisation model was designed guarantees that all energy

traded via P2P is used among other participants inside the microgrid, which in some

cases leads some users to be ”forced” to sell energy to their peers even if it is not

profitable for the seller as long as the total cost, the objective function, is minimised.

This results in some microgrid configurations where having a lower PV penetration

rates increases the performance metrics of the model, as selling prices via P2P results

in more profit for the PV owners. To reduce this effect, a second pricing mechanism

Setting two, was introduced in which buyers and sellers buy and sell at the same

price, in this case the price is the average of their energy tariff and the export tariff.

This resulted in a more fair mechanism for participants in the microgrid, which in

most cases resulted in higher performance metrics such as SSR and the amount of

energy shared within the grid.

Finally, when evaluating the economic viability of EVs versus stationary batter-

ies, several factors come into play. The capital expenditure (CapEx) of a Nissan

Leaf 2018 (£26,995) and bidirectional charger (Wallbox Quasar - £5,999) stands at

£32,994. The operating expenditure (OpEx), based on the Agile tariff with P2P

energy sharing using Setting two and assuming a 100% PV penetration rate, as

mentioned, vary between £121 and £28 annually for V1G and V2H, respectively.

These values result in total costs over a five-year period of £33,599 for V1G and

£33,134 for V2H.

Stationary batteries present lower CapEx at £3,500 for the Nissan/Eaton and

£5,700 for the Tesla Powerwall 2. The OpEx, based on using the Agile tariff with

P2P energy sharing using Setting one and assuming a 100% PV penetration rate,

these batteries generate annual income rather than cost, leading to costs as low

as -£64 for the Nissan/Eaton battery and -£82 for the Tesla battery. Over five

years, this translates to total costs of £3,180 for Nissan/Eaton and £5,290 for Tesla

Powerwall.

When comparing these two technologies, the consideration is whether to opt for

the added transportation utility of EVs, despite their higher initial investment, or

to choose the income-generating stationary batteries, which, although lower in cost,
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lack transport utility.

5.4 Conclusions

In this chapter, the potential technical and economic benefits of using home batteries

and EVs with different PV penetration rates, P2P using different price calculation

systems, and five different tariff scenarios were investigated in four different weeks

representing the seasons of the year.

In general, having an energy storage system and PV at home can lower electricity

costs by charging during periods of low energy prices or by charging when during the

day when solar power is readily available and then supplying power to the household

when prices increase. This not only reduces reliance on the grid but also leads to

savings on household electricity bills. In this case, the availability of EVs throughout

the day reduces some of the benefits, and more so when PV generation exists, as this

happens during the time of day when EVs are most likely away. The introduction

of P2P mitigates this by allowing participants with PV to sell energy to their peers

on the microgrid while their vehicle is away and still make a profit. Depending on

the P2P price mechanism, having a higher or lower PV penetration rates within

the microgrid can increase the technical and economic benefits of the microgrid.

Moreover, dynamic tariffs, such as Agile tariff, that follows the wholesale electricity

price, or Agile Go tariff, designed specially for owners with EVs further increases

these benefits, compared to more traditional tariffs such as E7 and Flat Tariff. For

EVs, combining P2P and V2H shows that, in some cases, the performance of EVs

can match the performance of a stationary battery with the added value of providing

travel, which could be of interest for potential EV owners.

Our analysis has shown a marked difference between the costs of EVs and sta-

tionary batteries over a five-year period when using the Agile tariff with P2P energy

sharing and assuming a 100% PV penetration rate. The combined CapEx and OpEx

for the EV options, specifically the Nissan Leaf 2018 with a bidirectional charger,

amounted to £33,599 for V1G and £33,134 for V2H. In comparison, stationary bat-

teries such as the Nissan/Eaton and Tesla Powerwall presented lower overall costs,

£3,180 and £5,290 respectively, over the same period thanks to their ability to gen-
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erate income rather than costs and low initial investment.

While EVs require a larger initial investment, they offer the additional benefit

of personal transportation. On the other hand, stationary batteries, though lacking

in mobility, provide a financially attractive option due to their income generation

capability. Future considerations and policy decisions should carefully evaluate these

trade-offs.
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Provision of short term

operating reserve (STOR) via

vehicle-to-grid (V2G)

This chapter investigates the potential effectiveness of reducing electric bills for

households with electric vehicles (EVs) connected to a microgrid that also provides

vehicle-to-grid (V2G) services for short term operation reserve (STOR). The anal-

ysis involves simulating the microgrid, exploring various scenarios, and evaluating

the performance of EVs when delivering STOR services in different microgrid con-

figurations. Furthermore, the chapter provides an overview of the model and the

data used to simulate the microgrid, and outlines the different scenarios that will be

investigated.

6.1 Model overview

Similarly to chapter 5, the optimisation model introduced in chapter 4 is used to

simulate EVs and travel data is taken from the resulting profiles in chapter 3. The

optimisation model aims to minimise the electrical bill of homes by maximising self-

consumption if a photovoltaic (PV) system is installed in the house, a bidirectional

charger is used to allow EVs to schedule charging and discharging behaviour when it

is more convenient during the day when connected at home, exploring the possibility

of energy trading through P2P, and simultaneously maximising energy supplied for

STOR via V2G. Here, the provision of STOR by the EVs inside the microgrid is

131
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done my considering the aggregated power of the EVs available at home at the

time when energy is required for STOR. The impact of different electricity tariffs is

compared, as well as different PV penetration rates and the possible advantages of

peer-to-peer (P2P) energy trading between households within the microgrid using

two different price calculation settings.

6.1.1 Data

As previously described in section 4.1.1, a grid-connected microgrid is used compris-

ing a sample of 50 London-based households. Every household has an electric vehicle.

The Nissan Leaf 2018 [170] specifications are shown in table 6.1. Furthermore, a 7.4

kW bidirectional V2G and Vehicle-to-home (V2H) charger was considered for EV

simulations [158]. The data from chapter 3 is used to simulate the travel behaviour

of EVs.

Table 6.1: Overview of stationary home batteries, electric vehicle and the bidirec-
tional charger considered in this work.

Name Type Capacity Power Efficiency
(kWh) (kW) (%)

Nissan Leaf 2018 Electric Vehicle 37 - -
Wallbox Quasar Bidirectional charger - 7.4 93

As described in section 4.1.3.1 and table 4.1, four different electricity tariffs are

used. The Agile tariff, the Agile Go tariff, the economy seven (E7) tariff, and the

Flat tariff are the four electricity tariffs.

Different penetration rates are used to assess the impact of local solar generation;

in this case, 0%, 10%, 25%, 50%, 75%, 90% and 100%. Similar to section 5.1.1,

these PV penetration rates mean the percentage of the 50 houses with solar panels

installed, for instance, a PV penetration rate of 10% will only have 5 houses with

solar panels. The data described in section 4.1.2 used to simulate solar generation

and the Agile Outgoing tariff data, introduced in section 4.1.3.2, is used as a feed-in

tariff.

Finally, three different P2P scenarios are explored: one without P2P energy

trading, one with P2P energy trading using the Setting one described in section 4.3.1,

and one with P2P energy trading using the Setting two described in section 4.3.2.
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6.1.2 STOR seasons and committed windows

According to the National Grid [174], STOR runs from April to April and is divided

by seasons, these seasons define the committed windows for each STOR service

day where STOR is required. The need for STOR varies depending on the season,

weekday and time of day, as dictated by the system demand profile at that time;

which is why the National Grid Electricity System Operator splits each running

year into six different seasons accounting for working days, Monday to Saturday,

and non-working days, Sundays and bank holidays, and sets the periods of time for

each STOR service day when STOR might be required. These times are considered

from 05:00 to 05:00 the next day. These service days are called committed windows.

To model these committed windows, in this work the year referred to by the

National Grid as ”Year 15 STOR Seasons – 1 April 2021 to 1 April 2022” was used

[174]. These seasons and committed windows are described in table 6.2 where two

different start and end times can be seen, which belong to the morning and evening

of each day. Here, Mr denotes the morning and and Ee the evening.

Table 6.2: Description of the STOR seasons and committed windows used in this
work. Mr denotes the morning and Ee the evening.

Seasons Dates Time Working days Non-working days

(MM-DD) start time end time start time end time

1 April 01 to Mr 06:00 13:00 10:00 14:00
May 03 Ee 19:00 22:00 17:30 22:00

2 May 03 to Mr 06:30 14:00 10:30 13:30
August 23 Ee 16:00 22:00 17:30 22:00

3 August 23 to Mr 06:30 13:00 10:30 12:30
September 27 Ee 16:00 22:00 17:30 22:00

4 September 27 to Mr 06:00 13:00 10:30 13:00
October 25 Ee 17:00 22:00 17:30 22:00

5 October 25 to Mr 06:00 13:00 10:30 13:30
January 24 Ee 16:00 20:30 16:00 19:30

6 January 24 to Mr 06:00 13:00 10:30 13:00
April 01 Ee 16:30 20:30 16:30 20:00
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6.1.3 STOR technical requirements and case studies

The National Grid requires participants to meet certain technical requirements be-

fore providing STOR services. These technical requirements are described below as

stated by the National Grid [174].

• Participants must provide a minimum of 3 MW of generation or consistent

demand reduction. This can be compiled from multiple sites.

• Respond to an instruction in no more than 20 minutes.

• Sustain the response for a minimum of two hours.

• Respond again after a recuperation period of not more than 1,200 minutes.

Although the microgrid explored in this work may not meet some of the technical

requirements, especially the one that sets the minimum power supply of 3 MW, we

are interested in exploring the impact of the availability of EVs when providing this

service.

It is worth noting that the National Grid states that ”It is not possible to provide

other services at the same time as providing STOR”, this unless the provision of

other balance services is outside the contracted availability windows, i.e. committed

windows. Given that V2H is sometimes regarded as offering balancing services

[39, 175], providing STOR at the same time could represent an issue. With respect

to this, we assume that EVs can participate in V2H and V2G as this can open new

markets for EV owners.

Moreover, since participants are paid in two ways, one for being available during

committed windows and two, for the energy provided for STOR, mostly known as

utilisation payments, a report from National Grid ESO [176] shows that there is an

increase in users willing to participate in a flexible STOR service, that is, they have

the ability to withdraw from STOR and participate in other markets in real time. In

other words, participants are only paid for the energy provided for STOR and have

more flexibility, which could be of interest for EVs owners. Therefore, in this work,

only the utilisation payment is considered. Table 6.3 shows the utilisation payments

for providing energy for STOR taken from Gough et al. [86].
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Table 6.3: STOR utilisation payments for each of the six seasons.

Season Payment (£ / kW h−1)

1 0.1710748

2 0.1704394

3 0.1673483

4 0.1672806

5 0.1711733

6 0.1713413

Furthermore, four different case studies were explored. These case studies were

designed to explore the impact of the availability of EV has when providing STOR

of the EVs predicted in chapter 3. It should be noted that according to Gough et al.

[86], National Grid ESO [176] there are only three STOR events per week during

the year or 155 days per year. Here, random simulated STOR events were generated

for each of the four case studies covering the six STOR seasons and are within each

committed window. These STOR events are unique to each STOR season for the

first two case studies, and for the other two, fixed times and days of the week were

passed into the model. The four case studies are introduced in table 6.4.

Table 6.4: Summary of the representative dates used in this work, the STOR seasons
that each of these weeks will cover, and the weighting considered to estimate the
annual electricity cost.

Case study Description

ST 1 Three events per week per STOR season.
The events were distributed across the 7 days of the week.

ST 2 Six events per week per STOR season.
The events were distributed across the 7 days of the week.

ST 3 Three events per week during weekdays per STOR season.
Two events in the same day, one in the morning,

one in the evening. Followed by one event the next morning.

ST 4 Three events per week during weekends per STOR season.
Two events in the same day, one in the morning,

one in the evening. Followed by one event the next morning.

Case study ST 1 is meant to explore the amount of energy of all EVs within the

microgrid that can be used for STOR when three events occur during the week -
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as mentioned above, the expected amount of events to occur per week during the

year. For this case study, each event will be assigned at random through the week

and time of the day. The latter means that the event can take place either in the

morning or evening. The purpose of this case study is to see the performance of the

microgrid and the amount of energy that can be provided for STOR. Case study

ST 2, explores the amount of energy of all EVs within the microgrid that can be

used for STOR when six events occur during the week. Similar to the case study

ST 1, each STOR event is assigned at random during the week and time of the

day. The purpose of this case study is to test the performance of the EVs when

providing STOR, it would be interesting to observe how they perform under an

increased frequency of STOR events per week, and determine whether this results

in any changes to the efficiency or effectiveness of the EVs. To this end, six events

per week were explored.

Case study ST 3 is meant to explore the possibility of providing energy for

STOR in less than 1,200 minutes during the weekdays. This can be accomplished by

selecting specific days of the week and times of day that remain constant, regardless

of the STOR season. In this way, there will be one event in the morning and another

in the evening on the same day - both on Wednesday, followed by an additional event

the following morning - Thursday. The purpose of this case study was to see the

impact on the performance on the delivery of energy for STOR and if the EVs are

capable to respond to STOR events in less than the required time of 1,200 minutes

during weekdays. Case study ST 4, similarly to case study ST 3, is meant to explore

the possibility of providing energy for STOR in less than 1,200 minutes, but in this

case during the weekends. Here, specific days of the week and times of day that

remain constant, regardless of the STOR season, were selected. This way, there will

be one event in the morning and one event in the evening on the same day - both

on Saturday, followed by another event the next morning - Sunday. The purpose of

this case study was to see the impact on the performance on the delivery of energy

for STOR and if the EVs are capable to respond to STOR events in less than the

required time of 1,200 minutes during weekends.

It is worth noting that all STOR events across the four case studies were gen-

erated by simulating an instruction to provide STOR 20 minutes prior to actually
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providing energy. For case study ST 1 and ST 2, the events were generated ran-

domly, and as already mentioned for case study ST 3, the STOR events take place

at fixed times of the day regardless of the STOR season. For all four cases, the

STOR events were generated taking into account the start and end times of each

committed window for every STOR season, which are listed in table 6.2.

6.1.4 Representative weeks of the year

To comprehensively represent the six STOR seasons of the year, as introduced in

table 6.2, six distinct weeks were selected. Coincidentally, each of these weeks also

corresponds to one of the four seasons of the year, with one week for spring, two

different weeks for summer, two different weeks for autumn, and one week for winter.

Furthermore, each of these weeks represents the six seasons in which the provision

of STOR is divided, as explained in section 6.1.2 as well as being used to study

any seasonal variation. A total of 42 days are simulated overall. These weeks are

described in the following.

• Week 1: For spring, week Spring - S1 from 2015-04-20 00:00:00 to 2015-04-26

23:59:00.

• Week 2: For summer, week Summer - S2 from 2015-06-22 00:00:00 to 2015-

06-28 23:59:00.

• Week 3: For summer, week Summer - S3 from 2014-09-08 00:00:00 to 2014-

09-14 23:59:00.

• Week 4: For autumn, week Autumn - S4 from 2014-10-06 00:00:00 to 2014-

10-12 23:59:00.

• Week 5: For autumn, week Autumn - S5 from 2014-12-08 00:00:00 to 2014-

12-14 23:59:00.

• Week 6: For winter, weekWinter - S6 from 2015-02-23 00:00:00 to 2015-03-01

23:59:00.

Table 6.5 shows a summary of these dates and how each will contribute to the

estimated annual electricity cost metric. These weights are based on the number of

days that each STOR season lasts, as described in table 6.2.
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Table 6.5: Summary of the representative dates used in this work, the STOR seasons
that each of these weeks will cover, and the weighting considered to estimate the
annual electricity cost based on the number of days in each STOR season.

Week - STOR season From To Weighting

Spring - S1 2015-04-20 00:00:00 2015-04-26 23:59:00 32 / 365

Summer - S2 2015-06-22 00:00:00 2015-06-28 23:59:00 112 / 365

Summer - S3 2014-09-08 00:00:00 2014-09-14 23:59:00 35 / 365

Autumn - S4 2014-10-06 00:00:00 2014-10-12 23:59:00 28 / 365

Autumn - S5 2014-12-08 00:00:00 2014-12-14 23:59:00 91 / 365

Winter - S6 2015-02-23 00:00:00 2015-03-01 23:59:00 67 / 365

6.1.5 Electric vehicle dispatch optimisation for a household

As previously stated in this chapter, the optimisation model presented in chapter 4

was employed for the analysis. However, in order to adequately account for the

provision of STOR, additional variables were were taken into consideration. These

additional variables are explained below

Equation (6.1) guarantees that the EVs will only provide energy for STOR when

there is a STOR event in progress. ST event
t is defined as a situation where energy

is required for STOR and is represented by ST event
t = 1, otherwise ST event

t = 0. As

already mentioned, each STOR event has a duration of 120 minutes. Therefore, if

the EVs are requested to respond to an instruction at 09:20, the value of ST event
t

will remain 0 until 09:40, after which it will be set to 1 for the next 120 minutes.

Edischarge,v2g
v,t ≤ ST event

t ∗M, ∀v, t (6.1)

Equation (6.2) describes the theoretical maximum energy expected if all EVs

inside the microgrid were connected and provide energy for STOR. Here, the variable

ST threshold,theory, as mentioned, is the theoretical maximum energy from the EVs

for STOR. Pmax,dis is the discharge power of the bidirectional charger. dt refers to

the time step in this case dt = 1 min = 1
60 hr. Profiles is the number of profiles

inside the microgrid, in this case Profiles = 50.
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ST threshold,theory =
(
Pmax,dis ∗ dt

)
∗ Profiles (6.2)

Equation (6.3) determines the actual maximum energy threshold that EVs can

provide throughout the week for 120 minutes. ST threshold,max
t refers to the maximum

amount of energy that can be sustained for 120 min for all STOR events. ST percentage

is the value that will determine the actual maximum energy provided throughout

the week considering the availability of EVs.

ST threshold,max
t = ST threshold,theory ∗

(ST percentage

100

)
, ∀t (6.3)

Equation (6.4) describes the aggregated energy of EVs that is provided for STOR.

ST demand,aggregated
t =

∑
v

Edischarge,v2g
v,t , ∀t (6.4)

Equation (6.5) makes sure that the aggregated demand is not higher than the

actual maximum energy that EVs can provide for STOR.

ST demand,aggregated
t ≤ ST threshold,max

t , ∀t (6.5)

Equation (6.6) outlines a Min-Max approach that guarantees that the model

yields the highest amount of energy for STOR in each simulation.

∑
t

[(
ST threshold,max

t ∗ ST event
t

)
− ST demand,aggregated

t

]
≤ 0, ∀t (6.6)

In this chapter, the objective function in equation (4.26) is modified to accom-

modate the newly introduced variables. The objective is to minimise the total cost

of operating the microgrid and, at the same time, maximise the energy that can

be provided for STOR. We found that adding ST percentage helps the solver find an

optimal solution faster.
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min

[∑
v

(
Cimport
v + Cimport,street

v + Cimport,p2p
v

− Cexport
v − Cexport,p2p

v − Cexport,v2g
v

)

−
∑
t

(
ST demand,aggregated

t

)
− ST percentage

] (6.7)

In the case of the percentage of energy sustained when providing STOR for all

events of the week, these values are a percentage of the theoretical maximum energy

expected if all EVs within the microgrid were connected and provide energy for

STOR, as described in equation (6.2), this is ST threshold,theory = 6.1667 kWh =

370 kW , as calculated in equation (6.8).

ST threshold,theory =
(
7.4 kW ∗ 1

60
hr
)
∗ 50 = 6.1667 kWh (6.8)

For example, in the case where the solver returns a ST percentage = 40, the maxi-

mum amount of energy that can be provided during the week for each STOR event,

ST threshold,max, and that can be sustained for 120 minutes – the minimum technical

requirement, as explained in section 6.1.3 – is calculated as shown in equation (6.9)

below, as introduced in equation (6.4).

ST threshold,max
t = 6.1667 kWh ∗

(
40

100

)
= 2.4667 kWh, ∀t (6.9)

In this example, the resultant ST threshold,max = 2.4667 kWh = 148 kW is the

maximum amount of energy that can be provided and sustained in all STOR events

of the week.

6.1.6 Microgrid system configuration overview

A comparison of different microgrid configurations or microgrid scenarios of the

system is considered. EVs can be operated in three different modes according to

section 4.4, however, in this case only the V2G mode is considered, which also

includes the benefits of using smart charging (V1G) and V2H. Here, each case study
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will be identified in the same way as described in table 6.4. Similarly, to chapter 5,

microgrid configurations will be referred to as the combination of the different modes

in which the microgrid operates and the type of P2P pricing calculation to be used,

if applicable. These microgrid configurations are explained in table 6.6.

Table 6.6: Overview of the different microgrid configurations explored in this chapter
with a description of the microgrid configuration.

Microgrid Description
configuration or scenario

ST 1 V 2G No P2P Case Study one; V2G; No P2P.
ST 1 V 2G P2P S1 Case Study one; V2G; P2P Setting one.
ST 1 V 2G P2P S2 Case Study one; V2G; P2P Setting two.

ST 2 V 2G No P2P Case Study two; V2G; No P2P.
ST 2 V 2G P2P S1 Case Study two; V2G; P2P Setting one.
ST 2 V 2G P2P S2 Case Study two; V2G; P2P Setting two.

ST 3 V 2G No P2P Case Study three; V2G; No P2P.
ST 3 V 2G P2P S1 Case Study three; V2G; P2P Setting one.
ST 3 V 2G P2P S2 Case Study three; V2G; P2P Setting two.

ST 4 V 2G No P2P Case Study four; V2G; No P2P.
ST 4 V 2G P2P S1 Case Study four; V2G; P2P Setting one.
ST 4 V 2G P2P S2 Case Study four; V2G; P2P Setting two.

The various microgrid scenarios stated in table 6.6 will be simulated using the

six weeks described in section 6.1.4, as well as the various PV penetration rates and

energy tariffs described in section 6.1.1. However, for energy tariffs, five potential

energy tariff configurations or tariff scenarios will be investigated. These five sce-

narios are the same as in chapter 5 as summarised in table 5.3, which also provides

the percentage of profiles that use each energy tariff in each tariff scenario.

For this chapter, the number of simulations considered for each microgrid con-

figuration – described in table 6.6 – is 210 in total each, which considers the seven

different PV penetration rates and the five tariff scenarios – described in table 5.3

and the six different weeks described in section 6.1.4. Therefore, for this chapter, a

grand total of 2,520 simulations will be explored.
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6.1.7 Metrics

The performance metrics already introduced in section 4.4.6 will be used to evaluate

the performance of each microgrid configuration or scenario described in this chapter.

To assess the quality of the results presented, the metric described in section 4.4.7

will be used.

Furthermore, two new metrics are introduced to measure the impact of the avail-

ability of the EVs has when providing energy for STOR. These are described below.

• Highest number of EVs providing energy for STOR: This is the highest

number of EVs registered that discharged energy for STOR of all the STOR

events of the week.

• Percentage of energy sustained when providing STOR: This is the

percentage of energy provided for all STOR events of the week. This is the

variable ST percentage introduced in equation (6.3).

6.2 Results

In this section, we introduce the results of the microgrid for the case studies during

the summer, specifically Summer - S2, using the Agile Go tariff. A description

of its performance according to the established metrics explained in section 6.1.7.

The impact of the different representative weeks, the performance of the microgrid

for each tariff and the provision of STOR is then evaluated before calculating the

estimated annual total electricity cost for each scenario and tariff. Finally, a brief

evaluation of the quality of the results is provided.

For this chapter, as stated in section 4.2, each simulation was built using the

Python 3.8.8 [125] programming language and the Pyomo 6.3.0 library [157] and

then solved using Gurobi 9.5.2 [156].

6.2.1 Results comparison between two case studies for a week in

summer using the agile go tariff

In this section, the plots for ST 1 V 2G P2P S2 and ST 2 V 2G P2P S2 will

be presented first to give a general idea of how the microgrid operates. These two
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scenarios were selected randomly using a simple Python script to choose two out of

the 2,520 resulting simulations.

Figure 6.1 shows the simulation results of the scenario ST 1 V 2G P2P S2

with 90% PV penetration rate PV and using the Agile Go tariff during a week

in summer – Summer - S2. This figure shows the energy imported from the grid,

the house demand and solar generation showing the energy that is locally used,

the energy that is sold to the grid and the energy shared to other members of

the microgrid, the internal microgrid buy and sell prices for importing energy and

selling energy from the grid and from the energy shared via P2P with Setting two

and the total number of EVs available during the day and how many are charging

and discharging. It also shows STOR events for the same case study with a total of

EVs available at home and a total of EVs providing energy for STOR highlighting

the highest number of EVs providing energy of all STOR events and the lowest

number of EVs available at home during the week.

Similarly to figure 6.1, figure 6.2 shows the simulation results of the scenarios

ST 2 V 2G P2P S2, with PV penetration rate of 90% and using the Agile Go

tariff during the summer week – Summer - S2 and the simulated STOR events for

this case study.

In both figures 6.1 and 6.2, row (a) and (b) show an increase in the demand for

energy from the grid during periods when the price of electricity is low, mainly

due to the EVs charging at night. This results in a maximum energy drawn

from the grid of up to 165 kW for ST 1 V 2G P2P S2and up to 235 kW for

ST 2 V 2G P2P S2. Here, the increase in peak demand can be attributed to

EVs charging energy in advance for later use to provide energy for STOR, as in

ST 2 V 2G P2P S2has six STOR events during the week. Moreover, EVs also

tend to charge when local solar generation is available, particularly around 12:00

with a few exceptions where it might make more financial sense to sell surplus en-

ergy to the grid. It could also be the case that EVs are required to provide energy

for STOR when charging is not possible, as EVs can charge or discharge at each

time step.

In these two scenarios, row (b) shows that solar energy is sold to both the grid

and P2P on most days, as in some cases, selling to one or the other will be more
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Figure 6.1: Simulation results for the Summer - S2 week showing microgrid operation
with a PV penetration rate of 90% and using the Agile Go tariff. This date belongs
to the ST 1 V 2G P2P S2 microgrid configuration. The tick labels on X-axis in
black denote data from Monday to Friday, and the red labels, data from Saturday
and Sunday. a. Power import from the grid. b. Household demand and energy
consumed, shared and sold from solar generation within the microgrid. c. Buy and
sell prices from the grid and from P2P energy trading. d. Number of EVs available
at home charging and discharging and the total number of EVs available at home.
e. Simulated STOR events showing the total number of EVs available at home
and the number of EVs providing energy for STOR. The brown dashed line is the
highest number of EVs that provide energy at the same time of all STOR events of
the week.
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Figure 6.2: Simulation results for the Summer - S2 week showing microgrid operation
with a PV penetration rate of 90% and using the Agile Go tariff. This date belongs
to the ST 2 V 2G P2P S2 microgrid configuration. The tick labels on X-axis in
black denote data from Monday to Friday, and the red labels, data from Saturday
and Sunday. a. Power import from the grid. b. Household demand and energy
consumed, shared and sold from solar generation within the microgrid. c. Buy and
sell prices from the grid and from P2P energy trading. d. Number of EVs available
at home charging and discharging and the total number of EVs available at home.
e. Simulated STOR events showing the total number of EVs available at home
and the number of EVs providing energy for STOR. The brown dashed line is the
highest number of EVs that provide energy at the same time of all STOR events of
the week.
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profitable for households with PV generation. It is worth noting that when EVs

discharge energy for STOR, the home is not allowed to import energy from the

grid and if there is a solar surplus, this surplus energy has to be sold to either the

grid or P2P as prices on Setting two can offer better value for PV owners. This is

because the model functions in a way that allows households to either draw energy

from the grid or export energy to it, but not both simultaneously, as explained

in equations (4.17) and (4.18). In essence, the model only allows a one-way flow

of energy between the house and the grid. This could be seen as a limitation, as

it restricts the flexibility of energy exchange between the household and the grid.

This can be seen in both figures 6.1 and 6.2 on some days of the week EVs that the

energy is discharged for STOR when they are connected at home and the solar energy

is exported instead of being used locally. This results in a total energy shared for

ST 1 V 2G P2P S2of 1,678 kWh and self-suffiency ratio (SSR) results of 64.98%,

for the case study ST 2 V 2G P2P S2a total energy shared of 1,610 kWh and

SSR results of 57.26%.

6.2.2 Performance of Microgrid Configurations for a week in sum-

mer using the agile go tariff

In this section, we will present and compare the four case studies, focusing on their

performance metrics. Here, only the metrics outlined in the section 4.4.6 will be

discussed. The two new metrics introduced to evaluate the effect of EV availability

on the provision of energy for STOR, as mentioned in the section 6.1.7, will be

explored in the following section.

Figures 6.3a and 6.3b displays a summary of the resulting performance metrics

of the case studies ST 1, ST 2 and ST 3, ST 4, respectively, for all microgrid con-

figurations or scenarios for the Summer - S2 week using the Agile Go tariff. Each

row in both figures comprises five separate metrics as described in section 6.1.7,

which are detailed in the following.

• Row A: Contains results for SSR.

• Row B: Contains results for energy balance index (EBI).

• Row C: Contains results for the energy imported from the exchange via P2P
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in kWh.

• Row D: Contains results for the maximum power load of the energy imported

from the grid in kW.

• Row E: Contains results for the mean electricity cost per week in British

pounds (£).

Similarly to the results in chapter 5, in general, these findings indicate a consid-

erable link between PV penetration rates and whether P2P is allowed and which of

the two P2P settings is used. As expected, SSR tends to increase at the same time as

the PV penetration rates increase for all microgrid configurations or scenarios. This

metric reaches its highest value in both cases when PV penetration rate is 100%,

P2P is allowed and Setting two is used.

Here, the SSR in ST 1 is between 24.44% and 68.75%, for ST 2, it is between

21.87% and 60.91%, for ST 3, it’s between 24.85% and 70.25% and for ST 4, it falls

between 21.30% and 63.63%. Across the different case studies, ST 1 to ST 4, the

introduction of P2P under Setting one results in only a marginal increase in SSR,

but this growth is significant when PV penetration rates are over 50% under Setting

two. EBI follows the same trend, where higher PV penetration rates increase this

metric value in all case studies and microgrid configurations and Setting two shows

the highest values when compared to not using P2P or using P2P and Setting one.

Concerning energy sharing through P2P, there’s a noticeable difference between

Setting one and Setting two. The shared energy under Setting one is considerably

less due to less advantageous pricing in high PV penetration rates, making self-

consumption of local solar generation or selling to the grid more sensible. However,

Setting two benefits from more beneficial prices for both buyers and sellers, which

in turn increases energy sharing among peers.

For instance, with a 25% PV penetration rate under Setting one, energy sharing

within the microgrid varies from 728 kWh (ST 1) to 782 kWh (ST 4). Under Setting

two, the shared energy peaks at a 100% PV penetration rate for ST 1 and ST 3

(1,681 kWh and 1,673 kWh respectively), and at a 75% PV penetration rate for

ST 2 and ST 4 (1,629 kWh and 1,652 kWh respectively).
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However, it’s important to note that these results across the four studies are

quite similar. This is because the only variable that changes between each case

study is the number and timing of the STOR events, which can influence the EV

charging and discharging behaviours, as they can’t occur at the same time. This is

evident, for example, in the four cases with a 25% PV penetration rate and P2P

allowed under Setting two, where the energy shared between peers ranges from 1,022

to 1,032 kWh.

The maximum power load from the grid varies with the PV penetration rates

across all four studies, generally decreasing as the PV penetration rates increase.

For instance, ST 1 V 2G No P2P ranges from 246 kW (100% PV penetration

rate) to 351 kW (0% PV penetration rate). For ST 1 V 2G P2P S1, the range

is between 351 kW (0% PV penetration) and 270 kW (90% PV penetration). For

ST 1 V 2G P2P S2, the range is from 179 kW (75% and 100% PV penetration

rates) to 351 kW (0% PV penetration rate). In ST 2, the lowest maximum power

from the grid is observed with a 90% PV penetration rate, with respective values

of 290 kW (No P2P), 282 kW (P2P and Setting one), and 231 kW (Setting two).

In ST 3 and ST 4, both with 100% PV penetration and P2P trading under Setting

two, the values are 174 kW and 247 kW respectively.

Across all case studies, energy import from the grid decreases significantly as

PV penetration rates increase. For ST 1 V 2G No P2P , import decreases from

5,850 kWh to 3,386 kWh; for ST 2 V 2G No P2P , from 6,759 kWh to 4,334

kWh; for ST 3 V 2G No P2P , from 5,724 kWh to 3,206 kWh; and finally, for

ST 4 V 2G No P2P , from 6,224 kWh to 3,854 kWh. The introduction of P2P

reduces energy import further. Under Setting one, the decrease is slight, as observed

in ST 2 V 2G P2P S1 with a reduction to 3,758 kWh. However, under Setting

two, the reduction is significant, nearly 900 kWh less compared to not using P2P or

using P2P with Setting one.

High import energy values could be due to EVs charging more energy when

electricity prices are low to participate in STOR provision. The number of STOR

events also impacts energy import. ST 2, with six STOR events during the week,

displays some of the highest values in all its microgrid configurations compared to

other studies.
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Mean electricity costs per week generally decrease with higher PV penetration

rates, ranging from £6.93 to -£7.54, with negative costs implying earnings instead

of payments. Not using P2P tends to return the highest costs, while usingP2P,

particularly with Setting two, results in the lowest costs across all case studies.

Furthermore, the number of STOR events in a week influences the mean electricity

cost, with more events offering more opportunities to supply STOR energy and

increase profits. For instance, ST 2 exhibits the lowest weekly mean electricity

costs compared to the other three studies, which have similar costs to each other.

As in Chapter 5, all microgrid configurations enable participants to sell solar

energy to the grid. However, opting to do so decreases SSR, EBI, and microgrid

P2P energy sharing, while increasing the maximum power load from the grid, thus

making the microgrid more grid-dependent. Nevertheless, selling energy to the grid

can reduce weekly mean electricity costs, depending on whether P2P is allowed

and the selected setting. Overall, allowing P2P under Setting two delivers the best

outcomes for the five performance metrics compared to other scenarios.

The following summary provides a review of this section’s findings when using

the Agile Go tariff during a week in summer:

• In all four case studies (ST 1 to ST 4), both the SSR and the EBI saw increases

with higher PV penetration rates and the inclusion of P2P energy sharing.

The SSR ranged between 21.30% and 70.25%. Both metrics experienced a

minor increase when comparing scenarios where P2P is allowed against the

ones where P2P is allowed under Setting one, while a considerable rise was

seen with Setting two for PV penetration rates over 50%.

• The amount of energy shared via P2P in the case studies differed notably

between Setting one and Setting two. Under Setting one, energy shared within

the microgrid at a 25% PV penetration rate ranged from 728 kWh (ST 1) to

782 kWh (ST 4). In contrast, Setting two, recorded peaks in energy shared at

the highest PV penetration rates (75%-100%), with values between 1,629 and

1,681 kWh.

• The maximum power load drawn from the grid and energy imported from the

grid were inversely related to PV penetration rates across all studies. Higher
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PV penetration rates resulted in lower maximum power load, with the lowest

values seen between 174 kW (ST 3 V 2G P2P S2, 100% PV penetration

rate) and 351 kW (ST 1 V 2G No P2P , 0% PV penetration rate). Addi-

tionally, energy import saw a significant decrease with increasing PV pene-

tration rates and further reduction with P2P trading, especially under Setting

two.

• Mean weekly electricity costs also tended to decrease with higher PV pene-

tration rates, with the lowest costs (even reaching negative values, implying

earnings for the households rather than costs) associated with P2P under Set-

ting two. ST 2, the case study with the most number of STOR events (6

events during the week), consistently exhibited the lowest mean costs.

• The option to sell solar energy to the grid across all case studies resulted in

decreased SSR, EBI, and energy shared within the microgrid, and an increased

maximum power load from the grid. However, it also had the potential to

reduce the mean weekly electricity cost, depending on whether or not P2P

energy sharing was allowed and which price mechanism was used.

• While all studies followed similar trends in terms of PV penetration rates, P2P

settings, and STOR events’ impacts on SSR, EBI, energy sharing, power load,

energy import, and electricity costs, specific values varied. This variance was

primarily due to differences in the number and timing of the STOR events

in each case study, influencing EV charging and discharging behaviours and

overall energy dynamics.

6.2.3 Results of all microgrid configurations and tariffs over the

different representative weeks in a year

This section presents an analysis of the metrics introduced in Section 4.4.6 and

Section 6.1.7. The first part will focus on three performance metrics: SSR, P2P en-

ergy sharing, and the mean weekly electricity cost. These three performance metrics

help assess the practicality and economic viability of the microgrid configurations

and case studies in this work. In the second part, the specific metrics to measure

the role of EVs in providing energy for STOR are analysed. This section covers the
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four different case studies across the different microgrid configurations.

The division of these topics into two distinct subsections was deemed necessary

to ensure clarity. It allows for an in-depth, separate analysis of each aspect of the

research, resulting in a more precise understanding of the outcomes and implications

of each set of metrics in our study.

6.2.3.1 Performance metrics

Similarly to section 5.2.3, the figures presented include values in all microgrid con-

figurations or scenarios. The values are divided into two sections; the column on

the left, column 1 contains the average values from 0% to 50% PV penetration rates

and the right column, column 2 contains the average values from 51% to 100% PV

penetration rates. Moreover, each row includes each of the five tariff scenarios, rows

1 to 5, that were explored, different colours are used to differentiate between the six

representative weeks of the year, and different marker shapes are used to help dis-

tinguish them between each microgrid configuration. X-axis tick labels also include

information about each microgrid configuration.

In this section, as in section 5.2.3, the focus will primarily be on a select set

of performance metrics: SSR, energy shared from P2P, and the average weekly

electricity cost. Additional metrics, such as EBI, the maximum power load from

the grid, and total energy imported from the grid, can all be found in Appendix B,

specifically in appendix B.1.2.

Figure 6.4 presents a detailed comparison of the SSR, across different tariff sce-

narios and different weeks of the year.

The first column shows slight differences between each week for the first three

tariffs and the All Tariffs scenario, ranging from 20% to about 40%. The Flat

tariff, in contrast, shows more noticeable differences, with values ranging from 0%

to approximately 30%. In certain situations, the Summer - S2 tariff outperforms

other weeks in the first column, yet there are instances where the Agile Go, E7

tariffs, or All Tariffs scenario perform comparably.

In the second column, the Summer - S2 tariff again generally performs the best,

except for with the Agile Go tariff, where the Spring - S1 tariff demonstrates superior

performance. This column shows performance values ranging from 15% to nearly
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Date
Spring - S1
Summer - S2
Summer - S3
Autumn - S4
Autumn - S5
Winter - S6

Case
ST_1___V2G___No_P2P
ST_1___V2G___P2P_S1
ST_1___V2G___P2P_S2
ST_2___V2G___No_P2P
ST_2___V2G___P2P_S1
ST_2___V2G___P2P_S2
ST_3___V2G___No_P2P
ST_3___V2G___P2P_S1
ST_3___V2G___P2P_S2
ST_4___V2G___No_P2P
ST_4___V2G___P2P_S1
ST_4___V2G___P2P_S2

Figure 6.4: Self-suffiency ratio values for the six representative weeks of the year,
the five tariff scenarios and all microgrid configurations explored in this chapter.
The left column contains the average values from 0% to 50% PV penetration rates
and the right column contains the average values from 51% to 100% PV penetration
rates.
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100% for the E7 and Flat tariff. A significant difference in performance across

the weeks of the year is observed, likely due to the variations in solar generation

throughout the year. Autumn - S5 often has the lowest performance values, which

corresponds with the decrease in sunlight during this season.

An important observation is that microgrid configurations that allow P2P en-

ergy sharing, especially under the Setting two, consistently have the highest per-

formance values compared to those microgrid configurations where P2P is allowed

under Setting one or those microgrid configurations without P2P allowed. This

finding suggests that enabling P2P energy sharing w could significantly enhance the

effectiveness of microgrid configurations under a price mechanism that benefits both

sellers and buyers such as Setting two.

Figure 6.5 provides a comparison of the total energy imported via P2P energy

sharing within a microgrid. For this analysis, only scenarios with P2P, both Setting

one and Setting two, and PV penetration rates ranging from 10% to 100% are con-

sidered, focusing on how these two systems affect the performance of the microgrid.

These elements are significant within the context of energy import and trade within

a microgrid, and both directly influencing the performance of the microgrid.

In figure 6.5, microgrid configurations in column 1 operating under Setting one,

are observed to trade less energy in comparison to those under Setting two. This

behaviour is primarily attributed to the differences in P2P prices that are offered to

energy buyers and sellers within the microgrid, as explained in section 4.3. Here, the

overall energy shared within the microgrid under Setting one , particularly during

Spring - S1 and Summer - S2, can be around half of the amount of energy traded

under Setting two.

Column 2, compared to column 1, contains the results of higher PV penetration

rates, which in this case shows a substantial increase in the amount of energy traded

within the microgrid, reaching up to 3,700 kWh. This pattern suggests that a higher

degree of solar energy availability potentially facilitates more energy transactions.

Consistent with our previous observation, configurations operating under Setting

two continue to show higher results. Overall, as shown in both columns 1 and 2, the

total energy traded under Setting one shows small increments from week to week.

In contrast, Setting two presents a more dynamic scenario, showing considerable
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Date
Spring - S1
Summer - S2
Summer - S3
Autumn - S4
Autumn - S5
Winter - S6

Case
ST_1___V2G___P2P_S1
ST_1___V2G___P2P_S2
ST_2___V2G___P2P_S1
ST_2___V2G___P2P_S2
ST_3___V2G___P2P_S1
ST_3___V2G___P2P_S2
ST_4___V2G___P2P_S1
ST_4___V2G___P2P_S2

Figure 6.5: Energy shared from P2P for the six representative weeks of the year,
the five tariff scenarios and all microgrid configurations explored in this chapter.
The left column contains the average values from 0% to 50% PV penetration rates
and the right column contains the average values from 51% to 100% PV penetration
rates.
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fluctuations in the weekly energy exchanges.

It is important to note that the amount of energy exchanged within the microgrid

is not solely influenced by settings or PV penetration rates. Seasonal variations in

sunlight also play a crucial role. For instance, during Summer - S2, more energy is

traded, mainly due to the greater availability of solar surplus. In contrast, during

Autumn - S5, energy trading reduces due to lesser sunlight during this time of the

year.

Additionally, the impact of different tariff scenarios on energy trading becomes

apparent. As tariff data is quite important to calculating P2P prices, the choice

of tariff can have significant implications. For instance, when the Agile Go tariff is

used exclusively within the microgrid alongside high PV penetration rates, the total

energy exchanged within the microgrid is less than in the other four tariff scenarios.

In this case, the average energy traded is less than 2,500 kWh, with the highest

results observed during Spring - S1 rather than the sunnier Summer - S2 week.

Figure 6.6 presents a comparative analysis of the mean weekly electricity prices

within different microgrid configurations. One observable trend is that configura-

tions with P2P under Setting two consistently show lower prices compared to other

configurations. The prices span from -£9 to £27 across all the weeks of the year,

both columns (lower and higher PV penetration rates) and all rows (different energy

tariff scenarios).

A closer look shows that the Summer - S2 week typically corresponds to the

lowest costs. There’s an exception when the Agile tariff with PV penetration rates of

0-50% is employed; here, the lowest costs are observed during the Autumn - S4 week.

Moreover, the highest prices generally occur during Autumn - S5 or Winter - S6,

depending on the tariff and PV penetration rates. Additionally, as PV penetration

rates increase, the difference in weekly results also increases. As expected, during

periods of the year with abundant sunlight, there are some instances where electricity

cost are of negative, meaning that the user gets paid instead of paying their electricity

bill.

It is worth noting that these prices are influenced by the frequency of STOR

events each week. Participation in STOR provision can generate profit for house-

holds. However, the timing of these events is crucial. Which means that, during a
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Date
Spring - S1
Summer - S2
Summer - S3
Autumn - S4
Autumn - S5
Winter - S6

Case
ST_1___V2G___No_P2P
ST_1___V2G___P2P_S1
ST_1___V2G___P2P_S2
ST_2___V2G___No_P2P
ST_2___V2G___P2P_S1
ST_2___V2G___P2P_S2
ST_3___V2G___No_P2P
ST_3___V2G___P2P_S1
ST_3___V2G___P2P_S2
ST_4___V2G___No_P2P
ST_4___V2G___P2P_S1
ST_4___V2G___P2P_S2

Figure 6.6: Mean electricity cost per week for the six representative weeks of the
year, the five tariff scenarios and all microgrid configurations explored in this chapter.
The left column contains the average values from 0% to 50% PV penetration rates
and the right column contains the average values from 51% to 100% PV penetration
rates.
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STOR event, any EVs discharging will not be able to take advantage of charging us-

ing solar generation. Instead, any surplus energy from the household must either be

exported to the grid or shared with peers within the microgrid. The results indicated

the importance of STOR events and their influence on a household’s energy gener-

ation and consumption. Particularly, how households responded to these events by

altering how they handle their energy resources, which had potential implications

for cost minimisation and profit generation.

6.2.3.2 Short Term Operating Reserve (STOR) Performance

Up to this point, the performance metrics from section 4.4.6 have been explored.

Moving forward, we will focus on the metrics from section 6.1.7. As mentioned

before, these metrics specifically measure the impact of EV when providing energy

for STOR across the four different case studies.

Figures 6.7 and 6.8 shows a comparison percentage of energy sustained when

providing STOR for all events of the week and the highest number of EVs that

provide energy for STOR. It can be seen that there is a correlation between the

number of EVs and the amount of energy discharged for STOR. Here, the highest

number of EVs provides more energy in all the weeks studied. The difference between

weeks is highly dependent on the amount of EVs available, the number of events per

week, and when these events take place, as this will change the amount of energy

that can be provided for STOR. In general, the different tariffs and the different PV

penetration rates have little impact on the amount of energy that can be provided

for STOR.

As mentioned, these values are highly dependent on the time of day when the

event STOR takes place, as can be seen in figures 6.9 and 6.10, where the different

case studies and their STOR events are shown for the six different weeks of the year

using the Agile Go tariff with 90% PV penetration rate, P2P and Setting two. Each

of these figures shows the total number of EVs available throughout the week and

the number of EVs that provide energy for STOR. In addition, each graph includes

the highest number of EVs that provides energy for STOR identified by a horizontal

brown dashed line, as well as the lowest number of EVs identified by the horizontal

magenta dashed line.
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Figure 6.7: Percentage of energy that can be provided for STOR for all STOR events
of the week for the six representative weeks of the year, the five tariff scenarios and
all microgrid configurations explored in this chapter. This is the resulting value of
ST threshold,max

t , which means the percentage of 50 EV s ∗ 7.4 kW . The left column
contains the average values from 0% to 50% PV penetration rates and the right
column contains the average values from 51% to 100% PV penetration rates.
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Date
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Case
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ST_1___V2G___P2P_S1
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Figure 6.8: The highest number of EVs providing STOR for the six representative
weeks of the year, the five tariff scenarios and all microgrid configurations explored
in this chapter. The left column contains the average values from 0% to 50% PV
penetration rates and the right column contains the average values from 51% to
100% PV penetration rates.
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For example, the case study ST 4 shows that the percentage of energy is higher,

as is the number of EVs that provide energy for STOR, which happens for this

case study, that the STOR events occur during the weekend when there is a higher

number of EVs available at home, compared to other days of the week. Moreover, in

the same case study, figure 6.10, it can be seen that during Winter - S6 the second

STOR event has the highest number of EVs compared to the other two events,

with 30 being the lowest number of EVs instead of 34, and these two events can

still provide the same amount of energy for STOR. In this case, the participant

EVs may be discharging more energy to provide energy for STOR. Similarly, the

case ST 3, figure 6.9, during the Autumn - S5 week where the highest number is

23 during the second event and starts with the same number, 23 and reduces the

number of EVs according to their availability at home. However, this gap between

the highest number of EVs and the lowest number is not too large; in this case the

largest gap is 4 between the highest and lowest number of EVs , as otherwise it can

affect the amount of energy that can be provided for STOR. Of course, depending

on the number of events and the time they occur, affect the different metrics already

explored, as in some cases, like ST 2 (see figure B.7) more energy will be required

to charge the EVs to be able to provide energy for the six STOR events.

All four cases explored can respond to a request to provide STOR within a

20-minute window. This was possible by simulating STOR instructions during com-

mitted windows and then responding to them. This is evident in all four case studies,

where they were all able to provide energy without any issues. The amount of energy

provided can change based on how many EVs are available. Simply put, more EVs

mean more energy for STOR.

In addition, EVs are capable of maintaining a constant energy supply for 120

minutes and respond again after less than 1,200 minutes. Again, this can be seen in

some weeks of the case studies ST 1 and ST 2 (see figures B.7 and B.8), and more

precisely ST 3 and ST 4 where the delivery of three consecutive STOR events as

explained in section 6.1.3, i.e., one in the morning, one in the evening and one in

the following morning, during weekdays and weekends, respectively. Here we can

see that EVs are capable of providing energy for STOR in the three consecutive

events, however, once again depending on the number in which the time of the day
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the event takes place and the number of EVs available at that time is the amount

of energy that will be provided for STOR.

It is worth noting that in all four case studies and microgrid configurations, the

energy from the number of EVs used does not meet the 3 MW requirement, which

is the necessary energy to provide STOR services. Nonetheless, the study of 50 EVs

within a microgrid yields valuable insights, offering a better understanding of the

potential energy contribution they can make for STOR services.

6.2.4 Annual electricity costs

In this section, the estimated annual electricity costs will be presented. The results

were calculated as explained in table 6.5. Here, the results are presented in a way

similar to that of section 5.2.4. Figure 6.11a contains the case studies ST 1 and

ST 2 resulting average estimated annual electricity costs for the four main tariffs,

the Agile tariff, the Agile Go tariff, the E7 tariff, and the flat tariff. The results

of the case studies ST 3 and ST 4 are in figure 6.11b. Similarly to chapter 5, in

the case of the All tariffs scenario, these results are the average estimated annual

electricity costs according to the number of households that are under each different

tariff, as described in table 5.4. 6.11c and 6.11d show the results for the All tariffs

scenario for the case studies ST 1 and ST 2 and for the case studies ST 3 and ST 4,

respectively.

Consistently with Chapter 5, the highest costs appear in the lower left corner,

and the lowest in the upper right of each microgrid configuration. Notably, higher

PV penetration rates and allowing P2P lead to considerable cost reduction. In

this chapter, the average yearly electricity costs are less than those in Chapter 5’s

EVs scenarios when using V2H. This is related to the fact that the participants

in the grid have the choice to sell energy via V2G to provide STOR services and

be paid for it according to the amount of energy provided for this service. Certain

tariffs can decrease costs by approximately £140, as seen when using the Agile tariff.

Particularly, case study ST 2 exhibits the lowest costs due to the provision of energy

for six STOR events weekly, increasing selling opportunities and further reducing

average electricity costs compared to other case studies.

As expected, higher PV penetration rates cut annual electricity costs by utilising
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Figure 6.9: STOR events in the case study ST 3 for the six representative weeks of
the year using the Agile Go tariff with 90% PV penetration rate, P2P and Setting
two. Here, the number of EVs available at home during each week and the number
of EVs that are discharging energy to provide STOR. Here, the black X-axis labels
denote data from Monday to Friday, and the red labels, data from Saturday to
Sunday.
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Figure 6.10: STOR events in the case study ST 4 for the six representative weeks of
the year using the Agile Go tariff with 90% PV penetration rate, P2P and Setting
two. Here, the number of EVs available at home during each week and the number
of EVs that are discharging energy to provide STOR. Here, the black X-axis labels
denote data from Monday to Friday, and the red labels data from Saturday to
Sunday.
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excess solar energy either for self-consumption or grid sales. Further cost reduction is

observed when P2P is allowed, independent of the price mechanism, with Setting two

yielding lower costs than Setting one. In scenarios featuring single tariff use within

the microgrid, the Agile tariff reduces cost across all four case studies. Without

P2P, prices range from £330 (0% PV penetration) to -£76 (100% PV penetration).

With P2P under Settings one and two, the range varies from £330 to -£89 and

-£108, respectively. This is followed by the Agile Go tariff, hitting a low of -£63

with P2P and Setting two for the ST 2 case study. The other two tariffs, E7 and

Flat, result in higher costs, with E7 registering the highest in all case studies and

microgrid configurations.

The All tariffs scenario, as seen in figures 6.11c and 6.11d, shows a comparable

decrease in mean annual electricity costs to the chapter 5 results. Around £170

reduction is noted in relation to the equivalent tariff scenario from chapter 5 for

EVs with V2H. Overall, the Agile Go tariff returns the lowest yearly electricity costs

compared to the rest, hitting lows of -£411, -£625, -£373, and -£347 for ST 1 to

ST 4 respectively, when P2P is allowed under Setting two. These costs are followed

closely by the Agile tariff in similar microgrid configurations.

Under the same All tariffs scenario, users operating under the E7 tariff, annual

electricity costs are the highest. This scenario yields elevated costs for users across

tariffs with lower PV penetration rates as opposed to when only one tariff is allowed

within the microgrid. On the other hand, higher PV penetration rates lower costs

relative to identical results when a single tariff is applied within the microgrid. It

should be noted that in this tariff scenario, P2P prices are calculated based on the

tariff being used, leading to varying buy and sell P2P prices for each participant in

the microgrid.

6.2.5 Solution quality

The resulting optimality gap described in section 4.4.7 will be presented in this

section. This metric will assess the quality of the results reported thus far in this

chapter, providing a clearer picture of how much the results deviate from the ideal

solution determined by the solver, in this case Gurobi 9.5.2 [166]. Also, the computer

specifications used to solve each microgrid configuration.
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After solving each model in his chapter, table 6.7 shows the number of solutions

that are under 0.50% optimality gap threshold for each of the 2,520 models in this

chapter. As explained in Section 5.2.5, a model with a 0.50% gap implies that

the feasible solution identified by Gurobi is quite close to the optimal solution. This

small gap is considered satisfactory in many cases, as it demonstrates its effectiveness

in solving the optimisation problem with reasonable accuracy. The closer the gap

to 0.00%, the higher the confidence in the quality of the solution, which makes it

suitable for decision-making or further analysis [166]. Here, only 1 solution is over

0.50%, meaning that the results are good enough.

Table 6.7: Optimality gap value ratio of the resulting models.

Gap Number of models

≤ 0.50 2,519

0.50 < 1

Table 6.8 shows the total number of models in this chapter that were solved on

each PC. According to the Gurobi documentation, the results can vary when solved

on different hardware, which means that although the optimal results are found, the

path to them might be different, which may yield different data [171].

Table 6.8: Number of models solved using each computer and their specifications.

Number Processor Processor Cores RAM
of models name speed (GHz) (GB)

1,540 12th Gen Intel (R) 3.20 16 128
Core (TM) i9-12900K

592 11th Gen Intel (R) 2.30 4 64
Core (TM) i5-1135G7

388 Intel (R) Xeon (R) 2.10 16 128
E5-2620 v4

6.3 Discussion

Using an optimisation model, a microgrid was examined to assess the impact of the

availability of EVs when providing energy for the provision of STOR in four case
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studies covering six weeks representative of the seasons of the year that also cover

the six STOR seasons and committed windows when STOR is required, different PV

penetration rates, in conjunction with four different tariffs and two different P2P

price calculations based on mid-market rate (MMR). This was achieved using real-

world data from residential energy use, local solar power and EV travel, including

predicted data on their ability to be connected at home. The simulation results

indicate that the availability of EVs has a substantial effect on the amount of energy

that can be offered for STOR regardless of the energy tariff and whether P2P is

allowed that can produce different technical and economic benefits for EV owners,

these benefits are in addition to the benefits of providing V2H. When providing

STOR services via V2G there is a negligible impact when different energy tariffs

are used, different PV penetration rate or whether P2P is allowed, as this does not

reduce or increase the amount of energy provided for STOR, on the other hand, the

availability of the EVs during the day has a significant impact on the provision of

STOR, more precisely, when an STOR event occurs as depending on the time of

the day, the number of EVs available at home will increase or reduce the amount

of energy that can be provided for STOR. However, this does not mean that the

different energy tariffs, PV penetration rates and P2P have no impact on the overall

performance within the microgrid. In general, participants can achieve average

electricity costs per week ranging from £25 to -£9 depending on the energy tariff and

PV penetration rates. With 0-50% the Agile tariff, users can get average electricity

costs between £0 and £10 per week, and with 51-100% PV penetration rates the

lowest costs can be achieved with more traditional tariffs such as the E7 and the Flat

tariff with costs ranging from £23 to -£9. These lowest costs are possible when P2P

is used with the Setting two. SSR in all microgrid configurations shows an increase

during weeks with more hours of sunlight during the year when PV penetration

rates are high, with in some cases values close to 100% under traditional tariffs like

E7 and Flat tariff. Moreover, the energy imported from P2P increases when PV

penetration rates are 51-100%, specially in scenarios where Setting two is used.

When providing energy for STOR, the max power load from the grid increases

with peaks between 150 and 400 kW with 0-50% PV penetration rates due to users

charging energy at the same time during low electricity prices during the day to be
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able to participate in the provision of STOR that can return extra profits at the end

of the week. This behaviour also increases the amount of energy that is drawn from

the grid in different microgrid configurations without P2P. Higher PV penetration

rates can reduce these parameters in certain weeks of the year, but this depends on

the energy tariff used; for example, the Agile Tariff with 51-100% PV penetration

rates results in similar peak demands compared to having lower PV penetration

rates for the six weeks of the year. Estimated annual electricity costs show reduced

costs compared to those in chapter 5, this is due to the additional profit available

from providing energy for STOR, with further reductions between £140 and £170

depending on the tariff and P2P setting.

In terms of the availability of the EVs at home, the simulations show that the

amount of energy for STOR varies depending on the number of EVs available at the

time when a STOR occurs. Showing that in all four case studies EVs are capable

of sustaining the discharge of energy for 120 minutes, respond to an instruction to

provide STOR in no more than 20 minutes and respond again in less than 1,200

minutes after the last STOR event, as required by the National Grid. According

to the results from figures 6.9 and 6.10, which all use the Agile Go tariff, it was

also shown that EVs can sustain the same provision of the same amount of energy

even within a tolerance of 4 EVs between the minimum and the maximum of EVs

providing energy, or in this case 8% percent of the total of participants in the

microgrid. This means that if a STOR event starts, EVs can go and come as

long as the number of participants does not drop more than 4 participants from the

maximum number of EVs when providing energy for STOR.

This tolerance was calculated based on the equation equation (6.3) where is

explained that ST percentage is the value that will determine the actual maximum

energy provided throughout the week considering the availability of EVs, and as

mentioned, the tolerance is then obtaied by the minimum and maximum number of

EVs providing energy for STOR.

Furthermore, according to the results from all microgrid scenarios and tariffs,

15% extra vehicles are required from the total of participants in the microgrid in

order to sustain the response. For example, under ideal conditions, around 410 EVs

with a 7.4 kW bidirectional charger are required to provide 3 MW; however, to
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maintain the provision of this amount of energy for the 120 minutes required, the

number of EVs should be around 485. For instance, under ideal conditions, approx-

imately 410 EVs plugged to a 7.4 kW bidirectional charger are needed to supply 3

MW of power. However, to consistently deliver this energy level for the necessary

120-minute duration, the total number of electric vehicles should be increased to

about 485 in order to guarantee a smooth STOR provision of at least 3 MW.

In this study, participants inside the microgrid know in advance when the STOR

events will occur and can prepare accordingly by charging the EV in advance to

provide energy for STOR when required. This is not the case in the real world,

where STOR events can occur at any time inside the committed windows, therefore,

EVs may not be able to plan ahead and charge enough energy for STOR. Although

the optimisation model used in this chapter does not account for this, one potential

solution to address this challenge is to study the implementation of a payment scheme

based on the state of charge (SOC) of EVs throughout the day. Under this system,

participants would be required to maintain a minimum SOC level to qualify for

STOR participation. Furthermore, as shown in this chapter, the availability of the

EVs generally does not affect the provision of STOR, but it will impact the amount

of energy that can be provided for STOR services, which is something that needs to

be taken into account when considering the option of asking EVs owners to maintain

a minimum SOC level. However, when a minimum SOC level is required for EVs

to participate in STOR, the number of available EVs meeting this criterion might

be low and could directly influence the capacity and responsiveness of the microgrid

during these events. If the availability of EVs with the necessary SOC is limited, the

number of EVs might need to be higher than the around 485 EVs mentioned above -

considering a 7.4 kW bidirectional charger -, ultimately impacting the performance

and reliability of using EVs to provide energy for STOR.

Additionally, the study could impose different rules in the system to further

promote charging during off-peak hours or apply strict rules to discourage charging

during peak demand periods. By doing so, the microgrid can increase the number of

EVs available with sufficient SOC, ensuring a more robust and reliable response to

the unexpected nature of STOR events, and could also improve the overall perfor-

mance of the microgrid. Further exploration of this payment scheme or charge and
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discharge strategies could involve modelling various SOC thresholds and analysing

their impact on the overall reliability and efficiency of the microgrid. As mentioned,

it is important to develop strategies that encourage EV owners to maintain their

vehicles’ SOC above the required threshold, which in consequence, could potentially

increase the pool of available EVs that can provide energy for STOR. Although not

explored in this work, such options could be of interest to both EV owners and

system operators.

6.4 Conclusions

In this chapter, the impact of the availability of EVs has when providing STOR

in four case studies, with different PV penetration rates, P2P using different price

calculation systems, and five different tariff scenarios in six weeks representative

of the seasons of the year which also cover the six STOR seasons and committed

windows when STOR is required, was explored. Concluding that EVs can meet most

of the technical requirement to provide STOR considering that they can respond to

an instruction in less than 20 minutes, sustain the response for 120 minutes and

respond again in less than 1,200 minutes.

In general, the availability of EVs does impact the provision of STOR which

depends on the time of the day when the STOR event occurs, the number of EVs

available will increase or reduce the amount of energy that can be provided for

STOR. In this case, the different energy tariffs, PV penetration rates and having

P2P or not, have a negligible impact on the amount of energy that can be provided

for STOR. These different parameters do impact the performance of the microgrid,

increasing SSR when high PV penetration rates and P2P is using Setting two over

50% during the Summer - S2 week, the Agile tariff produces the lowest estimated

annual electricity cost compared to the results in chapter 5 when using EVs with

V2H. However, this comes with a higher dependence on importing energy from the

grid and a higher maximum power load from the grid due to EVs charging in advance

for the provision of STOR.





Chapter 7

Exploring the possibility to

provide restoration services by

using vehicle-to-grid (V2G)

In the following chapter, a microgrid connected to the grid is considered to study

the effectiveness of reducing the electric bill of households that own an electric ve-

hicle (EV) with a bidirectional charger while maximising the amount of state of

charge (SOC) that can be held in all EVs during a week for the possibility of pro-

viding restoration services (formerly known as black start services). Furthermore,

an overview of the model and the data used to simulate the microgrid will be intro-

duced, as well as a description of the different scenarios that will be investigated.

Finally, an analysis of the findings will be provided.

7.1 Model overview

Similarly to chapters 5 and 6, the optimisation model introduced in chapter 4 is used

to simulate EVs and travel data is taken from the resulting profiles in chapter 3.

The optimisation model aims to minimise the electrical bill of homes by maximising

self-consumption if a photovoltaic (PV) system is installed in the house. It achieves

this by scheduling charging and discharging behaviours for EVs with bidirectional

chargers during optimal times when connected at home. The model also considers

the potential for peer-to-peer (P2P) energy trading. In this chapter, one of the main

goals is focus to maximise the amount of SOC that can be held in all EVs during a

173
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week for the possibility of providing restoration services. This is done by introducing

a payment mechanism that aims to encourage EVs to increase the amount of SOC

throughout the week. The impact of different electricity tariffs is compared, as

well as different PV penetration rates and the possible advantages of P2P energy

trading between households within the microgrid using two different price calculation

settings. Finally, the impact of different payment rates to encourage participants to

increase their SOC during the week are explored.

7.1.1 Data

As previously described in section 4.1.1, a grid-connected microgrid is used, com-

prising a sample of 50 London-based households. Every household has an electric

vehicle. The Nissan Leaf 2018 [170] specifications are shown in table 6.1. Fur-

thermore, a 7.4 kW bidirectional vehicle-to-grid (V2G) and Vehicle-to-home (V2H)

charger was considered for EV simulations [158]. The data from chapter 3 is used

to simulate the travel behaviour of EVs.

As described in section 4.1.3.1 and table 4.1, four different electricity tariffs are

used. The Agile tariff, the Agile Go tariff, the economy seven (E7) tariff, and the

Flat tariff are the four electricity tariffs.

Different penetration rates are used to assess the impact of local solar generation;

in this case, 0%, 10%, 25%, 50%, 75%, 90% and 100%. Similar to sections 5.1.1

and 6.1.1, these PV penetration rates mean the percentage of the 50 houses with

solar panels installed, for instance, a PV penetration rate of 10% will only have

5 houses with solar panels. The data described in section 4.1.2 used to simulate

solar generation and the Agile Outgoing tariff data, introduced in section 4.1.3.2, is

exclusively used as a feed-in tariff.

Finally, three different P2P scenarios are explored: one without P2P energy

trading, one with P2P energy trading using the Setting one described in section 4.3.1,

and one with P2P energy trading using the Setting two described in section 4.3.2.

7.1.2 Restoration services case studies

The National Grid must have resources available to restore power in the event of

a total or partial shutdown of the national electricity transmission system [119].
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Considering that the National Grid is increasingly interested in using distributed

energy resources (DER) such as solar energy as a cleaner and greener alternative

to large fossil fuel generators. Although the size of production for DER is typically

smaller, their rapid rise on distribution networks gives the potential to coordinate

a restoration services based on renewable energy. As the number of EVs in the UK

continues to increase, there is growing potential for these vehicles to contribute to

the energy landscape in a manner similar to that of renewable energy sources. Just

like DER with smaller production sizes, the rapid rise of EVs across the country

presents an opportunity to coordinate restoration services by harnessing the energy

stored in their batteries. This approach could effectively complement renewable

energy sources and further enhance the resilience and sustainability of the power

grid. Additionally, the provision of this service using EVs has been explored before,

where it was found that due to the uncertainty surrounding the availability of EVs

and their SOC in the event of shutdown, EVs need to be further studied before

being considered for the provision of this service [12]. In this work, we will focus on

looking at the minimum SOC available from EVs within a microgrid that can be of

interest for future projects.

For this, a payment for the final energy stored in each EV is introduced to en-

courage participants to increase their available SOC during the week and increase

the minimum amount of SOC that can be held through the week of the microgrid.

This financial model could not only enhance the microgrid’s stability and reliability

but also potentially boosts the energy available for restoration services. By incen-

tivising EVs owners to maintain a higher SOC throughout the week, the model

promotes sustainable practices, more efficient energy management, and overall im-

proved microgrid performance. Furthermore, three case studies are explored with

a starting payment of 0.055 £/kWh for the first case study, then 0.110 £/kWh for

the second and 0.165 £/kWh for the third case study. The starting price was cal-

culated by getting the mean value of the Agile Outgoing tariff data introduced in

section 4.1.3.2, which is a little less than what has been considered as a payment for

the final energy stored in previous work [105]. These case studies are summarised

in table 7.1.
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Table 7.1: Case study payment amount for the final energy stored.

Case study Payment (£ / kWh)

BS 1 0.055

BS 2 0.110

BS 3 0.165

7.1.3 Representative weeks of the year

Similarly to chapter 5, the simulations were carried out using four different weeks

that are representative of the four seasons of the year to study any seasonal variation.

This information has already been introduced in figure 3.9 where it is provided for

six different weeks of the year. In this chapter, only four dates are considered, as

explained below.

• Week 1: For spring, week Spring - S1 from 2015-04-20 00:00:00 to 2015-04-26

23:59:00.

• Week 2: For summer, week Summer - S2 from 2015-06-22 00:00:00 to 2015-

06-28 23:59:00.

• Week 3: For autumn, week Autumn - S4 from 2014-10-06 00:00:00 to 2014-

10-12 23:59:00.

• Week 4: For winter, weekWinter - S6 from 2015-02-23 00:00:00 to 2015-03-01

23:59:00.

A total of 28 days are simulated overall; these weeks will contribute equally to

the calculation of the estimate annual electricity cost, which will be discussed later

in the chapter. This means that each week’s weighting is 0.25.

7.1.4 Electric vehicle dispatch optimisation for a household

As stated above, for this chapter, the optimisation model introduced in chapter 4,

however, additional variables were considered to reflect the minimum SOC that can

be held for all EVs during a week. This is done by introducing a payment for the

amount of SOC that each EV has at the end of the week. Without this payment
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mechanism, EVs might prioritise charging to their maximum SOC (SOCmax) im-

mediately after using energy for driving, since it could be more profitable depending

on the incentives discussed in table 7.1, rather than giving energy back to the house.

However, this is not the scope of this work. By incorporating a payment mechanism

for maintaining a minimum SOC throughout the week and being at the end of the

week, we ensure that EVs can both maximise the minimum SOC that can be held

for all EVs during a week and provide energy back to the house when needed, in

line with the objectives of our study.

In this case, the ESOC
v,final introduced in equation (4.3), is set to 0% to avoid

forcing EVs to get a certain SOC at the end of the week. These new variables

are explained below. The variable BSpercentage shown in equation (7.1) describes

the minimum SOC percentage that can be held during a week for all EVs. This

constraint is applied on an individual EV basis, and each vehicle should maintain

at least this minimum SOC percentage throughout the week. It is worth noting

that this constraint is not an average across all vehicles, as it applies to each EV

individually.

ESOC
v,t ≥

(
SOC ∗ BSpercentage

100

)
, ∀v, t (7.1)

Equation (7.2) describes the payment for the final energy stored in each EV.

CSOC,final
v describes the total cost to be paid for each EV depending on their final

SOC, ESOC
v,final, according to the prices set for each case in table 7.1, where PrSOC,final

will vary depending on the case study.

CSOC,final
v = PrSOC,final ∗ ESOC

v,final, ∀v (7.2)

In this chapter, the objective function in equation (4.26) is modified to accom-

modate the newly introduced variables. The objective is to minimise the total cost

of operating the microgrid and, at the same time, maximise the minimum SOC

percentage that can be held for a week for all EVs. Here, we found that adding

BSpercentage helps the solver find an optimal solution faster. We also discovered
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that excluding CSOC,final
v from the objective function causes the EVs to fully de-

plete their batteries daily, only charge enough energy to cover their driving needs

and maintain a low minimum SOC throughout the week. The vehicles also tend

to charge only on the week’s final day to obtain a high SOC and receive the corre-

sponding payment. This exclusion also results in the solver taking longer to find an

optimal solution.

min

[∑
v

(
Cimport
v + Cimport,street

v + Cimport,p2p
v

− Cexport
v − Cexport,p2p

v − Cexport,v2g
v

− CSOC,final
v

)
−BSpercentage

] (7.3)

7.1.5 Microgrid system configuration overview

A comparison of different microgrid configurations or microgrid scenarios of the

system is considered. EVs can be operated in three different modes according to

section 4.4, however, in this case only the smart charging (V1G) and V2H modes are

considered. Similarly, to chapter 5, microgrid configurations will be referred to as

the combination of the different modes in which the microgrid operates and the type

of P2P pricing calculation to be used, if applicable. These microgrid configurations

are explained in table 7.2.

In this chapter, the number of simulations considered for each microgrid con-

figuration – described in table 7.2 – is 140 in total each, which considers the seven

different PV penetration rates and the five tariff scenarios – described in table 5.3

and the four different weeks described in section 7.1.3. Therefore, for this chapter,

a grand total of 2,520 simulations will be explored.

7.1.6 Metrics

The performance metrics already introduced in section 4.4.6 will be used to evaluate

the performance of each microgrid configuration or scenario described in this chapter.

To assess the quality of the results presented, the metric described in section 4.4.7

will be used.
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Table 7.2: Overview of the different microgrid configurations explored in this chapter
with a description of the microgrid configuration.

Microgrid Description
configuration or scenario

Case Study one

BS 1 V 1G No P2P V1G; No P2P.
BS 1 V 1G P2P S1 V1G; P2P Setting one.
BS 1 V 1G P2P S2 V1G; P2P Setting two.

BS 1 V 2H No P2P V2H; No P2P.
BS 1 V 2H P2P S1 V2H; P2P Setting one.
BS 1 V 2H P2P S2 V2H; P2P Setting two.

Case Study two

BS 2 V 1G No P2P V1G; No P2P.
BS 2 V 1G P2P S1 V1G; P2P Setting one.
BS 2 V 1G P2P S2 V1G; P2P Setting two.

BS 2 V 2H No P2P V2H; No P2P.
BS 2 V 2H P2P S1 V2H; P2P Setting one.
BS 2 V 2H P2P S2 V2H; P2P Setting two.

Case Study three

BS 3 V 1G No P2P V1G; No P2P.
BS 3 V 1G P2P S1 V1G; P2P Setting one.
BS 3 V 1G P2P S2 V1G; P2P Setting two.

BS 3 V 2H No P2P V2H; No P2P.
BS 3 V 2H P2P S1 V2H; P2P Setting one.
BS 3 V 2H P2P S2 V2H; P2P Setting two.

Furthermore, one new metric is introduced to measure the minimum amount of

SOC during a week within the microgrid. This is described below.

• Minimum amount of SOC: This is the percentage of SOC that all EVs

within the microgrid can hold for the entire week. This is measured by the

variable BSpercentage introduced in equation (7.1).

7.2 Results

In this section, we introduce the results of the microgrid for a case study case during

the summer, specifically Summer - S2, using the Agile Go tariff. A description
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of its performance according to the established metrics explained in section 7.1.6.

The impact of the different representative weeks, the performance of the microgrid

for each tariff and the comparison of the minimum amount of SOC that was also

introduced in section 7.1.6. Finally, a brief evaluation of the quality of the results

is provided.

In this chapter, as stated in section 4.2, each simulation was built using the

Python 3.8.8 [125] programming language and the Pyomo 6.3.0 library [157] and

then solved using Gurobi 9.5.2 [156].

7.2.1 Results comparison between two case studies for a week in

summer using the agile go tariff

In this section, the plots for BS 2 V 2H P2P S1 and BS 3 V 2H P2P S1

will first be presented to give a general idea of how the microgrid operates, both

using V2H and P2P with Setting one. The three case studies and their resulting

performance metrics will be introduced and compared during the same week. Here,

the new metric introduced to measure the minimum SOC held during a week for

EVs within the microgrid in section 7.1.6 will not be introduced here; instead, it

will be introduced in the next section.

Figure 7.1 shows the simulation results of the scenario BS 2 V 2H P2P S1

with a PV penetration rate 90% PV and using the Agile Go tariff during a week

in summer – Summer - S2. This figure shows the energy imported from the grid,

the house demand and solar generation showing the energy that is locally used,

the energy that is sold to the grid, and the energy shared with other members of

the microgrid, the internal microgrid buy for importing and from the grid and via

P2P, and selling energy to the grid and through P2P with Setting one and the total

number of EVs available during the day and how many are charging and discharging.

Similarly to figure 7.1, figure 7.2 shows the simulation results of the scenario

BS 3 V 2H P2P S1, with PV penetration rate of 90% and using the Agile Go

tariff during the summer week – Summer - S2.

In both figures 7.1 and 7.2, row (a) and (b) show an increase in the demand

for energy from the grid during periods when the price of electricity is low, mainly

due to the EVs charging at night. Peak demand can be seen at the beginning



7.2 Results 181

0 12 0 12 0 12 0 12 0 12 0 12 0 12 0
hour

0
56

112
168
224
280

po
we

r (
kW

)

(a)

import from grid

0 12 0 12 0 12 0 12 0 12 0 12 0 12 0
hour

0
28
56
84

112
140

po
we

r (
kW

)

(b)

solar - used solar - sold solar - p2phouse demand

0 12 0 12 0 12 0 12 0 12 0 12 0 12 0
hour

0.00
0.05
0.10
0.15
0.20
0.25

pr
ice

 (£
 / 

kW
h)

(c)

buy sell buy - p2p sell - p2p

0 12 0 12 0 12 0 12 0 12 0 12 0 12 0
hour

0
10
20
30
40
50

no
. o

f E
Vs

at
 h

om
e

(d)

total charging discharging

Figure 7.1: Simulation results for the Summer - S2 week showing microgrid operation
with a PV penetration rate of 90% and using the Agile Go tariff. This date belongs
to the BS 2 V 2H P2P S1 microgrid configuration. The tick labels on X-axis in
black denote data from Monday to Friday, and the red labels, data from Saturday
and Sunday. a. Power import from the grid. b. Household demand and energy
consumed, shared and sold from solar generation within the microgrid. c. Buy and
sell prices from the grid and from P2P energy trading. d. Number of EVs available
at home charging and discharging and the total number of EVs available at home.
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Figure 7.2: Simulation results for the Summer - S2 week showing microgrid operation
with a PV penetration rate of 90% and using the Agile Go tariff. This date belongs
to the BS 3 V 2H P2P S1 microgrid configuration. The tick labels on X-axis in
black denote data from Monday to Friday, and the red labels, data from Saturday
and Sunday. a. Power import from the grid. b. Household demand and energy
consumed, shared and sold from solar generation within the microgrid. c. Buy and
sell prices from the grid and from P2P energy trading. d. Number of EVs available
at home charging and discharging and the total number of EVs available at home.
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and end of the low electricity prices, 00:30 and 04:30 hrs, where most of the time

the peak demand is below 150 kW in both scenarios. The highest peak demand

during the week can be observed at the end of the week, Sunday, close to the end of

the low electricity prices under this tariff, this results in a maximum energy drawn

from the grid of up to 280 kW for BS 2 V 2H P2P S1and up to 240 kW for

BS 3 V 2H P2P S1. This increase in peak demand can be attributed to EVs

charging in advance to store more energy before the end of the week, since they will

be paid for the amount of SOC that is registered by the end of the week, that is,

ESOC
v,final. During the day, the EVs that are charged tend to track the rise and fall of

solar generation, then discharge during the evening. In addition, an increase in solar

energy is used towards the end of the week, particularly on Saturday and Sunday,

to charge the EVs and increase the amount of SOC at the end of the week. This

behaviour can be seen in both scenarios.

In these two scenarios, row (b) shows that solar energy is sold to both the grid

and P2P on most days, as in some cases, selling to one or the other will be more

profitable for households with PV generation. Here, most surplus generation is sold

to the grid because it may be more profitable than selling it to its peers due to the

way P2P prices are calculated with Setting one, where having more solar generation

within the microgrid tends to reduce the selling price, which reduces the chances

for generators of selling surplus energy in this way. This results in a total energy

imported from the grid of 2,250 kWh for BS 2 V 2H P2P S1a self-suffiency ratio

(SSR) of 62.07%, for BS 3 V 2H P2P S1a total of 2,252 kWh and a SSR of

62.07%.

7.2.2 Performance of Microgrid Configurations for a week in sum-

mer using the agile go tariff

In this section, we will present and compare the four case studies, focusing on their

performance metrics. Here, only the metrics outlined in the section 4.4.6 will be

discussed. Similarly to Chapter 6, The new metric introduced to evaluate the effect

of EV availability on the minimum amount of SOC of all EVs within the microgrid

during a week, as mentioned in the section 7.1.6, will be explored in the following

section.
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Figures 7.3a–7.3c displays a summary of the resulting performance metrics of

the case studies BS 1, BS 2 and BS 3, respectively, for all microgrid configurations

or scenarios for the Summer - S2 week using the Agile Go tariff. Each row in

both figures comprises five separate metrics as described in section 7.1.6, which are

detailed in the following.

• Row A: Contains results for SSR.

• Row B: Contains results for energy balance index (EBI).

• Row C: Contains results for the energy imported from the exchange via P2P

in kWh.

• Row D: Contains results for the maximum power load of the energy imported

from the grid in kW.

• Row E: Contains results for the mean electricity cost per week in British

pounds (£).

Similarly to the results in Chapters 5 and 6, in general, these findings indicate a

considerable relationship between PV penetration rates and whether P2P is allowed

and which of the two P2P settings is used. As expected, SSR tends to increase at the

same time as the PV penetration rates increase for all microgrid configurations or

scenarios. This metric reaches its highest value in both cases when PV penetration

rate is 100%, V2H is used, P2P is allowed, and Setting two is used.

In the case study BS 1 using V1G, SSR increases substantially with PV penetra-

tion rates exceeding 50%, peaking at 100% rate. When P2P is allowed t allowance

brings a moderate SSR rise in Setting one, peaking at 57.81% at 100% PV pene-

tration. Setting two shows a more notable SSR growth, reaching 65.52% at 100%

PV penetration. V2H usage in BS 1, compared to V1G, results in a 7-10% SSR

surge for PV penetration rates above 50%, and an even larger increase as PV pen-

etration rate increases up to 50%. As mentioned in Chapter 5, this is attributed to

EVs’ capability of charging at times with low electricity costs or during solar sur-

plus, then supplying household energy needs. BS 2 and BS 3 demonstrate similar

trends, with slight SSR increments of 0.05% and 0.10% respectively, in all microgrid

configurations compared to BS 1.
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As for energy shared via P2P, both settings peak at lower PV rates in all three

case studies, specifically, at 50% PV penetration rate. Setting one shares less energy

than Setting two due to the pricing calculation of P2P being less profitable in the

former setting, whereas the latter provides more equitable prices. Energy shared in

each case study is relatively identical, differing by around 40 kWh. Shared energy

varies from 100 to 1,523 kWh across all microgrid configurations. The highest value

occurs in BS 3 V 2H P2P S2 at 75% PV penetration. The amount of shared

energy increases in V2H with Setting two compared to V1G, while an increase is

noted with Setting one and V1G.

In general, higher PV penetration rates generally decrease the grid’s maximum

power load in all three case studies, with similar outcomes differing by approxi-

mately 30 kW. The highest peak demands, varying from 155 to 353 kW, occur with

V2H usage. Allowing P2P energy sharing consistently reduces the peak power load,

with Setting two achieving further reduction. The peaks decline as PV penetration

rates increases when using V1G, unlike with V2H, peak loads fluctuate significantly

across all PV penetration rates. In some instances, the highest peak loads occur at

0% PV penetration rate, closely followed by the maximum peak load at 100% PV

penetration rate. These increases are mainly due to the likelihood of EVs taking

advantage of low electricity prices at night. Also, this is more likely to occur towards

to the end of the week, when EVs charge energy for compensation based on their

end-week SOC, as seen in figures 7.1 and 7.2.

Energy consumption from the grid decreases as the PV penetration rates in-

crease, with all three cases presenting roughly similar results. Energy consumption

varies between 4,496 kWh at 0% PV penetration rate to 1,421 kWh at 100% PV

penetration rate. Allowing P2P energy sharing further reduces grid energy consump-

tion, often by hundreds of kWh under Setting two. Using V2H leads to more energy

drawn from the grid than V1G, as EVs charge at night when electricity costs are low

to supply the house during the day, particularly in the evening when energy prices

tend to be high. The grid’s increased energy consumption can also be attributed to

EVs charging enough energy before the end of the week for compensation based on

their SOC, a potentially more profitable strategy than not charging at all.

The mean electricity cost per week shows reduced costs with higher PV penetra-
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tion rates. In this case, the prices vary between case studies, ranging from £13.47

to -£8.91, where negative costs mean that the participant does not pay the electric-

ity bill but instead gets paid. Using P2P with Setting two returns the lowest cost

for BS 3 V 2H P2P S2 which uses V2H. On the other hand, V1G returns the

highest cost. Here, in the three case studies, costs are around £2.00 away from each

other; this can be caused by the different payments for the amount of energy stored

in the EVs’ battery at the end of the week.

All microgrid configurations, like those described in Chapters 5 and 6, allow

participants to sell solar energy to the grid. Choosing to sell energy to the grid

reduces SSR, EBI, energy shared within the microgrid, and increases the maximum

power load from the grid, making the microgrid more dependent on the use of the

grid. However, depending on whether P2P is allowed and the setting chosen, selling

energy to the grid can reduce the average electricity cost per week.

The following summary provides a review of this section’s findings when using

the Agile Go tariff during a week in summer:

• There’s a strong correlation between PV penetration rates and P2P settings,

with SSR generally increasing as PV penetration rates rise in all microgrid

configurations and all three case studies, BS 1, BS 2, and BS 3. The highest

SSR is observed with 100% PV penetration, V2H usage, and P2P allowed with

Setting two.

• Case study BS 1 using V1G sees a notable SSR surge above 50% PV penetra-

tion, peaking at 100% without P2P. Allowing P2P under Setting one leads to

a modest SSR rise, reaching 57.81% at 100% PV penetration rate. P2P under

Setting two at 100% PV penetration achieves a higher SSR of 65.52%. V2H

usage in BS 1 increases SSR by 7%-10% for PV rates over 50%, a significant

increase over V1G. BS 2 and BS 3 yield similar results to BS 1 across all

microgrid configurations, with slight SSR increases.

• The EBI is impacted by various factors in the study. Notably, the decision to

sell solar energy to the grid results in a decrease in EBI, as it reduces the energy

shared within the microgrid, making it more reliant on the grid. However, this
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effect can vary based on whether P2P energy sharing is permitted and the

price mechanism used.

• Energy sharing via P2P, in most cases, reaches its peak at lower PV pene-

tration rates, specifically, around 50% PV penetration rate. More energy is

shared under P2P with Setting two compared to Setting one due to a more

favourable pricing model for both buyers and sellers. The energy shared across

all three case studies and microgrid configurations ranges from 100 to 1,523

kWh.

• As PV penetration rises, both maximum power and energy drawn from the grid

decrease across all case studies. P2P use, especially with Setting two, further

reduces these values. Peak demand increases are likely when EVs exploit low

electricity costs during the night. Utilising V2H over V1G can lead to more

energy drawn from the grid, as EVs often charge at night with lower prices,

and then discharging to the house during the day.

• The mean electricity cost per week decreases with higher PV penetration rates.

Implementing P2P with Setting two results in the lowest cost, whereas V1G

leads to the highest cost. There is a variance of approximately £2.00 in costs

across the three case studies, which is attributed to different payments received

for the amount of energy stored in the EVs’ batteries. Overall, electricity

costs range from £13.47 to -8.91 across all three case studies and microgrid

configurations

7.2.3 Results through the different representative weeks of the year

This section presents an analysis of the metrics introduced in Section 4.4.6 and

Section 7.1.6. The first part will focus on three performance metrics: SSR, P2P en-

ergy sharing, and the mean weekly electricity cost. These three performance metrics

help assess the practicality and economic viability of the microgrid configurations

and case studies in this work. In the second part, the specific metrics to minimum

amount of SOC that can be held for all EVs within the microgrid. This section

covers the three different case studies across the different microgrid configurations.
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Similarly to Chapter 6, the division of these topics into two distinct subsections

was deemed necessary to ensure clarity. It allows for an in-depth, separate analysis

of each aspect of the research, resulting in a more precise understanding of the

outcomes and implications of each set of metrics in our study.

7.2.3.1 Performance metrics

Similarly to sections 5.2.3 and 6.2.3, the figures presented include values in all mi-

crogrid configurations or scenarios. The values are divided into two sections; the

column on the left, column 1 contains the average values from 0% to 50% PV pene-

tration rates and the right column, column 2 contains the average values from 51%

to 100% PV penetration rates. Furthermore, each row includes each of the five tariff

scenarios that were explored, rows 1 to 5, different colours are used to differentiate

between the four representative weeks of the year, and different marker shapes are

used to help distinguish them between each microgrid configuration. X-axis tick

labels also include information about each microgrid configuration.

Figure 7.4 shows a comparison of the SSR values over different weeks and micro-

grid configurations. The three case studies perform similarly with minor variations

based on the tariff in use. Differences are small in 0-50% PV penetration rates

across all tariffs, except for a minor decrease in the Flat tariff for BS 3’s microgrid

configurations. Higher PV penetration rates of 51-100% show similar patterns with

all tariffs performing uniformly across weeks, displaying a consistent increase in this

metric as microgrid configurations transition from V1G to V2H and from non-P2P

to P2P usage. Notably, P2P usage enhances this metric’s performance, especially

with V2H and P2P in Setting two. SSR scores highest during weeks with more

sunlight, Spring - S1 and Summer - S2, based on tariff types, with traditional tariffs

yielding the highest values near 100% at higher PV penetration rates.

Figure 7.5 highlights the total energy imported from P2P within the microgrid.

Only relevant scenarios with P2P and PV penetration rates of 10% to 100% are

considered. Similar to Chapter 6, Setting one microgrid configurations tend to trade

less energy due to differing pricing mechanisms for buyers and sellers. Lower PV

penetration rates generally share less energy, between 150 and 1,500 kWh during

the Summer - S2 week, depending on the tariff and price machanism used. Higher
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Date
Spring - S1
Summer - S2
Autumn - S4
Winter - S6

Case
BS_1___V1G___No_P2P
BS_1___V1G___P2P_S1
BS_1___V1G___P2P_S2
BS_1___V2H___No_P2P
BS_1___V2H___P2P_S1
BS_1___V2H___P2P_S2
BS_2___V1G___No_P2P
BS_2___V1G___P2P_S1
BS_2___V1G___P2P_S2
BS_2___V2H___No_P2P
BS_2___V2H___P2P_S1
BS_2___V2H___P2P_S2
BS_3___V1G___No_P2P
BS_3___V1G___P2P_S1
BS_3___V1G___P2P_S2
BS_3___V2H___No_P2P
BS_3___V2H___P2P_S1
BS_3___V2H___P2P_S2

Figure 7.4: Self-suffiency ratio values for the four representative weeks of the year,
the five tariff scenarios and all microgrid configurations explored in this chapter.
The left column contains the average values from 0% to 50% PV penetration rates
and the right column contains the average values from 51% to 100% PV penetration
rates.
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Date
Spring - S1
Summer - S2
Autumn - S4
Winter - S6

Case
BS_1___V1G___P2P_S1
BS_1___V1G___P2P_S2
BS_1___V2H___P2P_S1
BS_1___V2H___P2P_S2
BS_2___V1G___P2P_S1
BS_2___V1G___P2P_S2
BS_2___V2H___P2P_S1
BS_2___V2H___P2P_S2
BS_3___V1G___P2P_S1
BS_3___V1G___P2P_S2
BS_3___V2H___P2P_S1
BS_3___V2H___P2P_S2

Figure 7.5: Energy shared from P2P for the four representative weeks of the year,
the five tariff scenarios and all microgrid configurations explored in this chapter.
The left column contains the average values from 0% to 50% PV penetration rates
and the right column contains the average values from 51% to 100% PV penetration
rates.
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Date
Spring - S1
Summer - S2
Autumn - S4
Winter - S6

Case
BS_1___V1G___No_P2P
BS_1___V1G___P2P_S1
BS_1___V1G___P2P_S2
BS_1___V2H___No_P2P
BS_1___V2H___P2P_S1
BS_1___V2H___P2P_S2
BS_2___V1G___No_P2P
BS_2___V1G___P2P_S1
BS_2___V1G___P2P_S2
BS_2___V2H___No_P2P
BS_2___V2H___P2P_S1
BS_2___V2H___P2P_S2
BS_3___V1G___No_P2P
BS_3___V1G___P2P_S1
BS_3___V1G___P2P_S2
BS_3___V2H___No_P2P
BS_3___V2H___P2P_S1
BS_3___V2H___P2P_S2

Figure 7.6: Mean electricity cost per week for the four representative weeks of the
year, the five tariff scenarios and all microgrid configurations explored in this chapter.
The left column contains the average values from 0% to 50% PV penetration rates
and the right column contains the average values from 51% to 100% PV penetration
rates.
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PV penetration rates see shared energy ranging from 86 to 1,100 kWh with Setting

one, and 86 to around 2,450 kWh with Setting two. V1G usage results in less

shared energy than V2H, with BS 3 V 2H P2P S2 sharing more energy than

other microgrid configurations. Weeks with less sunlight, notably during Autumn -

S4 and Winter - S6, typically share less energy. Furthermore, households can import

more energy from P2P with surplus generation to charge their EVs and increase the

SOC by the end of the week, especially with Setting two, as it may be cheaper than

grid importation.

Figure 7.6 shows a comparison of the average weekly electricity price. Similarly

to Chapter 6, a trend can be seen where microgrid configurations with P2P and

Setting two exhibit marginally lower prices than other configurations.

The cost fluctuates between -£9 and £24 across both columns and all rows, with

Summer - S2 and Autumn - S4 (under the Agile tariff) recording the lowest costs.

Higher PV penetration rates considerably cut electricity costs when using V2H and

P2P with Setting two as opposed to similar configuration but using V1G. The E7

tariff with 0-50% PV penetration rates returns the steepest electricity costs. Winter -

S6 shows the highest costs across all case studies and configurations. Moreover, case

study BS 3 typically yields the lowest electricity costs due to a higher end-of-week

SOC payment.

7.2.3.2 Minimum State of Charge (SOC) Performance

So far, the performance metrics described in section 4.4.6 have been presented. The

remainder of this section will present the metrics described in section 7.1.6 which

aim to assess the impact of the availability of EVs on the minimum SOC they can

hold during the week.

Figure 7.7 shows a comparison of the minimum SOC maintained over a week

as a percentage for all EVs within the microgrid. The Agile tariff exhibits some of

the highest values, ranging between 44% and 65% irrespective of the PV penetration

rates and across all three case studies. The availability of low-cost energy throughout

the day may encourage EVs to charge and sustain a high SOC over the week, though

values slightly diminish when using V2H compared to using V1G exclusively. P2P

does not significantly affect these results, with Winter - S6 week presenting the
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lowest values.
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Figure 7.7: Percentage of energy that can be held during the week for all EVs for
the four representative weeks of the year, the five tariff scenarios and all microgrid
configurations explored in this chapter. The left column contains the average values
from 0% to 50% PV penetration rates and the right column contains the average
values from 51% to 100% PV penetration rates.
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The Agile Go tariff results in high values when using V1G across all three case

studies. The results across the four weeks are consistent in all case studies, showing

a minor increase when utilising P2P with Setting two. Higher PV penetration rates

show a notable improvement when using V2H versus exclusively using V1G, with

values fluctuating from 34% to 58% at 51-100% PV penetration rates.

The E7 tariff shows a broad range of values from 5% to 65%. With 0-50%

PV penetration rates, BS 1 using V1G yields values near 30% in Summer - S2

week, while using V2H results in less than 10% in all weeks. BS 2 shows over 30%

using V1G compared to V2H with the same penetration rates. BS 3 significantly

outperforms both with values between 35% and 65%. Lower PV penetration rates

with P2P and Setting two slightly increase, and values surge significantly at 51-100%

penetration using V1G for BS 1 and BS 2. In contrast, BS 3 results for both V1G

and V2H are close to each other with of 0-50% PV penetration rates, and in some

cases allowing P2P occasionally reducing these values.

The Flat tariff behaves similarly to the E7 tariff, with low values when using

V2H at lower PV penetration rates for BS 1 and BS 2. However, BS 3 significantly

exceeds the E7 tariff’s values when using V2H. 51-100% PV penetration rates follow

a similar trend to the E7 tariff across most weeks. P2P increases results with V1G,

but for V2H, P2P with Setting two further reduces values for BS 3.

In the All tariffs scenario, 0-50% PV penetration yields higher values with V1G

compared to using V2H for all weeks studied. These values can be improved using

V2H for BS 2 and BS 3, with results ranging from 30% to 50%. Lower PV pen-

etration rates show similar results regardless of whether P2P is used or not. For

both V1G and V2H, 51-100% PV penetration rates mirror lower penetration results

for BS 1 and BS 2, but improve when using V2H. For BS 3, P2P tends to slightly

lower the results.

7.2.4 Annual electricity costs

In this section, the estimated annual electricity costs will be presented. The results

were calculated as explained in section 7.1.3. Here, the results are presented in a

way similar to that of section 5.2.4. The results of the estimated average annual

electricity costs for the four main tariffs, the Agile tariff, the Agile Go tariff, the E7
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tariff and the Flat tariff are shown in figures 7.8a–7.8c for BS 1, BS 2 and BS 3.

Similarly to chapter 5, in the case of the All tariffs scenario, these results are the

average estimated annual electricity costs according to the number of households

that are under each different tariff, as described in table 5.4. The results of this

scenario are shown in figures 7.9a–7.9c for BS 1, BS 2 and BS 3.

Similar to Chapter 5, the highest costs typically fall in the bottom left corner,

while the lowest costs are in the top right corner of each microgrid configuration.

Higher PV penetration rates significantly reduce these costs, with further reductions

introduced when allowing P2P energy sharing. Compared to Chapter 5, this chap-

ter’s average annual electricity costs are lower for EV scenarios using V1G and V2H

due to the weekly SOC-based payment to EVs. Here, savings of approximately £340

are achieved with some tariffs versus Chapter 5’s results for both V1G and V2H.

Among the three case studies, the Agile tariff produces the lowest electricity costs,

ranging from £231 to -£252 across all microgrid configurations, while the E7 tariff

results in the highest costs, from £1,060 to -£62. BS 3 records the lowest cost with

the Agile tariff when using V2H and P2P with Setting two.

Higher PV penetration rates are expected to decrease annual electricity cost by

utilising excess solar energy for self-consumption or grid sales. Generally, allowing

P2P energy sharing can reduce costs by roughly £100 with V1G and about £50

with V2H versus not allowing P2P. Cost reduction is further improved with Setting

twodue to its more attractive price calculation compared to Setting one.

In the All tariffs scenario figure 7.8c, the mean annual electricity costs display

a similar reduction to Chapter 5, with savings around £200 compared to the same

tariff scenario for EVs with V2H in Chapter 5. BS 3 saves up to £300 with V1G,

depending on the tariff. Agile tariff exhibits the lowest costs for the three case studies

when using V1G, ranging from £424 (0% PV penetration rate) to -£127 (100% PV

penetration rate) without P2P, -£134 with P2P and Setting one, and -£124 with

P2P under Setting two. For V2H, costs span from £306 (0% PV penetration) to

-£209 (100% PV penetration rate) without P2P, -£224 with P2P and Setting one,

and -£219 with P2P under Setting two. The E7 tariff has the highest costs, followed

by Agile Go and Flat tariffs. Overall, P2P results in the lowest cost, with Setting one

outperforming Setting two in some cases. Higher PV penetration rates significantly
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cut costs compared to Chapter 5’s results.

7.2.5 Solution quality

This section will present the resulting optimality gap described in section 4.4.7. This

metric will evaluate the quality of the findings provided thus far in this chapter,

offering a clearer view of how far the results are from the solver’s optimal solution,

in this case the solver uses is Gurobi 9.5.2 [166]. Additionally, the specifications of

the computers used to solve each microgrid configuration.

After solving each model in his chapter, table 7.3 shows the number of solutions

that are below the 0.50% optimality gap threshold for each of the 2,520 models in

this chapter. As explained in Sections 5.2.5 and 6.2.5, a model with a 0.50% gap

implies that the feasible solution identified by Gurobi is quite close to the optimal

solution. This small gap is considered satisfactory in many cases, as it demonstrates

its effectiveness in solving the optimisation problem with reasonable accuracy. The

closer the gap to 0.00%, the higher the confidence in the quality of the solution,

which makes it suitable for decision-making or further analysis [166]. Here, only 4

solutions are over 0.50%, which means that the results are good enough.

Table 7.3: Optimality gap value of the resulting models.

Gap Number of models

≤ 0.50 2,516

0.50 < 4

Table 7.4 shows the total number of models in this chapter that were solved on

each PC. According to the Gurobi documentation, the results can vary when solved

on different hardware, which means that although the optimal results are found, the

path to them might be different, which may yield different data [171].

7.3 Discussion

Using an optimisation model, a microgrid was examined to assess the impact of the

availability of EVs within a microgrid on the minimum amount of SOC that can

be held during a week in three case studies covering four weeks representative of
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Table 7.4: Number of models solved using each computer and their specifications.

Number Processor Processor Cores RAM
of models name speed (GHz) (GB)

1,969 11th Gen Intel (R) 2.30 4 64
Core (TM) i5-1135G7

551 Intel (R) Xeon (R) 2.10 16 128
E5-2620 v4

the seasons of the year, different PV penetration rates, in conjunction with four

different tariffs and two different P2P price calculations based on mid-market rate

(MMR). This was achieved using real-world data from residential energy use, local

solar power and EV travel, including predicted data on their ability to be connected

at home. The simulations indicate that the availability of the EVs have an impact

between the weeks explored on how much SOC can be held during the week, but

this mostly depends on the energy tariff used, the PV penetration rates, and if V1G

or V2H is used. The use of P2P tends to reduce the minimum SOC that can be held

during the week when V2H is used, whereas for V1G there is a slight increase in

the results. These results also vary in the three case studies, where the case study

BS 3, the one with the highest payment rate at the end of the week, shows a higher

minimum SOC that can be held during a week.

Using V1G tends to higher minimum SOC values, which is because the EVs only

charge to meet any travel needs during the week, whereas using V2H allows EVs to

discharge energy to the household during the day, resulting in a lower minimum SOC

per week. Although V1G only means that EVs will not be able to discharge to the

grid, the use of a bidirectional charger that only allows discharge to the grid when an

instruction from the grid to provide restoration services –i.e. otherwise restricted to

V1G – can increase the amount of energy that can be provided to the grid and still

make a profit as restoration services are paid according to their availability [119],

though this type of payment was not explored in this work, it can be of interest for

system operators to explore this further.

In general, participants can achieve average electricity costs per week ranging

from £25 to -£9 depending on the energy tariff, PV penetration rates and whether

P2P is allowed or not depending on Setting two . These average electricity costs
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per week are similar to those of chapter 6. These costs depend on the energy tariff

used, in this case using the Agile tariff as the only tariff in the microgrid is the

one that results in the lowest electricity costs. Furthermore, having PV penetration

rates 51-100% can reduce these costs even further. SSR also increases with higher

PV penetration rates reaching their highest values, close to 100% when using more

traditional tariffs, such as E7 and Flat tariffs, during the Spring - S1 and Summer

- S2 weeks. The SSR significantly increases when using V2H combined with P2P

with Setting twowith 51-100% PV penetration rates.

As participants are paid according to the amount of SOC at the end of the week,

this leads to higher demand peaks close to the end of the week, where participants

tend to take advantage of low prices, for certain energy tariffs, and charge their EVs

before the end of the week. This results in peaks close to 400 kW for the Agile tariff

regardless of using P2P or PV penetration rates . The estimated annual electricity

costs in the case studies BS 1 and BS 2 are approximately £ 200 and up to £

300 less in the case study BS 3 compared to the equivalent microgrid configuration

results in chapter 5. This is due to participants being paid at the end of the week

depending on the amount of SOC when the simulation ends, and showing that, as

expected, getting paid more will result in a higher amount of SOC that can be held

during the week.

It is worth noting that the introduction of a daily payment during our early tests

only lead EVs to exclusively using energy for travel and nothing else, even under

V2H. Perhaps improving the objective function could help when daily payments are

introduced in order to avoid increasing the energy demand during the weekend.

7.4 Conclusions

In this chapter, the impact of the availability of EVs has on the minimum amount

of SOC that can be held during the week for EVs within a microgrid was explored

in three case studies, with different PV penetration rates, P2P using different price

calculation systems and five different tariff scenarios in four weeks representative of

the seasons of the year.

In general, the availability of EVs influences this value throughout the explored
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weeks, but the greatest impact comes from the energy tariff that is used. Depending

on P2P, PV penetration rates and if V1G or V2H is used, this value can increase.

However, these parameters do impact SSR, the maximum power load and the average

electricity cost per week.

We found that using dynamic energy tariffs, like the Agile tariff, in combination

with V1G typically results in higher minimum SOC values throughout the week. The

exceptions are when using V2H with Agile tariff or a Flat tariff, where the values

are nearly as high as with V1G. System operators may be interested in limiting

users to V1G, essentially restricting giving energy back to the house i.e. restricting

V2H, while connected to a V2G bidirectional charger, only allowing energy usage

for restoring services and compensating for availability.

The introduction of incentives for EVs to pay them according to the amount of

SOC at the end of the week tends to increase this minimum SOC value where higher

payment rates yield the highest minimum SOC than can be held for the week in all

EVs. Also, thanks to this payment, average electricity costs tend to be lower than

the previous results in chapter 5 when using EVs with V2H.



Chapter 8

Conclusion

8.1 Electric Vehicles availability prediction

The work presented in Chapter 3 aimed to address the research question:

• Can machine learning models be trained to predict the start and end locations

of electric vehicles (EVs) trips for the purpose of optimising vehicle-to-grid

(V2G) services, including smart charging (V1G) and Vehicle-to-home (V2H)?

Can the travel patterns learned from mostly internal combustion engine vehi-

cles (ICEVs) data be effectively used to predict the locations of EVs?

This study utilised a dual-dataset approach to develop a predictive model for

understanding the availability of EVs during the day. For this, the national travel

survey (NTS) dataset, comprising over 2 million entries of private vehicle travel

information within the UK was used.

Utilising this dataset, the model was trained and validated to predict the start

and end locations of each trip. For this analysis, two key categories of locations were

examined: Home and Other. The Home category represented instances where the

EV was parked at home and available for charging or discharging. In contrast, the

Other category denoted instances where the EV was away from home, potentially in

motion and unable to charge or discharge at home, but capable of charging using a

street charger if the EV was not in motion i.e. not travelling. For this, three machine

learning algorithms were compared and a 5-fold cross-validation strategy was used.

The data was split into two subsets, each tasked with a specific purpose - one to

203
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predict the start location of a vehicle, and the other to predict the end location.

The model achieved F1-scores of 0.900 and 0.902 for tasks 1 and 2, respectively.

Subsequently, the predictive model was applied to a second dataset, consisting

of real-world UK EV travel data. This data included the time of the trip, the

distance travelled, and the energy consumed during the trip. Though not employed

in the training and validation phase, this EV dataset was fundamental in aligning our

models with the study’s primary objective — optimising EV usage for V2G services,

including V1G and V2H. The resultant predicted locations were then utilised for

further analysis in chapters 5–7.

The predictive model was able to reflect the driving behaviour of EVs during

the day and properly classify their location, showing that the majority of EVs are

not at Home between 9 and 5 pm from Monday to Friday, which matches typical

office hours, with the number of EVs available slowly increasing throughout the

evening, showing that the majority of EVs are at home during the night. During

the weekends, the number of EVs is higher during the same hours from 9 to 5 pm.

In general, of the 50 EVs considered, approximately 15 EVs are available at

home at all times during the six weeks studied, with the lowest number of EVs

during the week around 12 pm. The highest number of EVs at Home can be seen

in the evenings and early hours of the morning during the week. In the six weeks

studied covering the four seasons of the year, there is no noticeable difference in the

number of EVs available during the day.

Importantly, the NTS dataset is predominantly composed of ICEV travel data.

Despite the apparent technological differences between ICEV and EVs, many travel

behaviours are universal, which made the ICEV data an invaluable resource for

capturing general travel patterns. Validating our models with the same ICEV data

was a crucial step to ensure their robustness and capacity for generalisation, an

essential aspect of machine learning model development.

However, certain limitations are worth mentioning. The primary concern relates

to the dependence on the NTS data. Although, it is a comprehensive dataset, it

relies on self-reported data, possibly leading to inaccuracies. Additionally, the single-

set random seed approach, while efficient, may not entirely reflect the variability of

model performance.
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While the technological differences between ICEVs and EVs could influence the

accuracy of EV location predictions, this work argues that many travel behaviours

are indeed universal, thus affirming the relevance of ICEV data. However, un-

derstanding the full extent of these technological differences on location prediction

remains an area for future research and model refinement, which is beyond the scope

of this study.

Despite these limitations, this study lays a solid foundation for optimising V2G

services using machine learning models trained on ICEV data. Future work should

explore the training of models on real-world EV data to possibly enhance their

accuracy and applicability.

8.2 Performance of electric vehicles and home batteries

The work presented in chapter 5 aimed to address the research question:

• What impact does the availability of EVs have on the effective implementation

of V1G and V2H services services within a microgrid? How does the applica-

tion of the predictive model to real-world EV data inform and optimise V1G

and V2H services, and how does this technology compare to stationary bat-

teries in terms of leveraging the predicted EV availability and location data?

This study explored the potential technical and economic benefits of using sta-

tionary home batteries and EVs, the role of EV availability in the implementation

of V1G and V2H services, under different conditions, such as varying photovoltaic

(PV) penetration rates, peer-to-peer (P2P) using different price mechanisms, and

five different tariff scenarios, throughout the four seasons of the year. This was done

using the optimisation model introduced in Chapter 4 with a slight modification to

the model to reflect the particularities of a stationary home battery.

It was found that having a stationary home battery or an EV, coupled with a

PV system, can help households lower their electricity costs. These systems can be

charged when energy prices are low or during the day when there is solar surplus

generation, and then supply power to the household when prices are high or nduirng

the evening. This reduces the household’s reliance on the grid and leads to savings

on electricity bills. However, EV availability throughout the day can reduce some of
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these benefits, particularly when PV generation is high as this is usually when most

EVs are away.

The introduction of P2P can mitigate this potential disadvantage, as it allows

participants with a PV system to sell the solar excess to their peers on the microgrid

while their EVs are away, which in most situations it more profitable than selling

it to the grid. Moreover, the benefits of having an EV can be increased depending

on the P2P price mechanism used and PV penetration rates within the microgrid.

Dynamic tariffs like the Agile tariff, which follows the wholesale electricity price,

or the Agile Go tariff, designed specifically for EV owners, can boost these bene-

fits, outperforming more traditional tariffs such as E7 and Flat Tariff. Combining

P2P with V2H for EVs shows that, in some cases, the performance of EVs can al-

most match that of a stationary battery. However, EVs provide an added benefit -

transportation - making them an attractive choice for potential owners.

In this work, the predictive model produced in Chapter 3 contributed to un-

derstanding the effects of EV availability on V1G and V2H services. Despite not

providing absolute accuracy, by capturing common travel patterns from the NTS

data, the model was able to provide a reasonable estimation of the start and end lo-

cations of EVs during the day. This offered valuable insights into how the availability

of EVs could impact the provision of V1G and V2H services.

Besides understanding EV availability, we also considered the economic viability

of EVs versus stationary batteries. The upfront cost, capital expenditure (CapEx),

of a Nissan Leaf 2018 and a bidirectional charger (Wallbox Quasar) totals £32,994.

The running costs, operating expenditure (OpEx), assuming a 100% PV penetration

rate, range from £121 to £28 per year for V1G and V2H, respectively. Over five

years, these costs add up to £33,599 for V1G and £33,134 for V2H.

In contrast, stationary batteries like the Nissan/Eaton and Tesla Powerwall have

lower upfront costs at £3,500 and £5,700 respectively. They also have the potential

to generate income rather than costs, leading to costs as low as -£64 per year for

the Nissan/Eaton battery and -£82 for the Tesla battery. Over five years, this totals

£3,180 for Nissan/Eaton and £5,290 for Tesla Powerwall.

When comparing these two technologies, potential owners need to consider the

added transport utility of EVs, despite their higher initial investment, versus the
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potential to generate income rather than cost of stationary batteries. The latter,

while lower in cost, do not provide any transport utility.

However, this study has a few limitations that may influence the results obtained.

As mentioned before, the model, trained on predominantly ICEV data, could face

accuracy issues in predicting EV locations due to technological differences between

ICEVs and EVs may exhibit varied driving patterns, which could influence the

predictive model’s predictive accuracy. Also, the use of self-reported NTS data

might introduce potential inaccuracies.

Despite these limitations, this study has made an important contribution towards

understanding the impact of EV availability on V1G and V2H service implementa-

tion and the broader implications for microgrid performance. Future work should

be on refining these models and their application in various EV scenarios, with an

emphasis on exploring training the model using real-world EV data for improved

performance and accuracy.

8.3 Using vehicle-to-grid technology for short term op-

erating reserve provision

The work presented in Chapter 6 aimed to address the research question:

• Are EVs capable of providing short term operation reserve (STOR) services

within a microgrid when connected at home? How does the availability of

EVs impact the provision of these services and their ability to fulfil technical

requirements as outlined by the National Grid in the UK?

The potential of EVs to provide STOR services within a microgrid was explored.

This was achieved by utilising the resulting data from Chapter 3 and slightly modi-

fying the optimisation model introduced in Chapter 4 to accommodate the provision

of STOR. The results suggest that EVs successfully meet most of the technical re-

quirements stipulated by the UK’s National Grid, including an ability to respond to

an instruction in under 20 minutes, sustain that response for 120 minutes, and be

ready to respond again within 1,200 minutes.

In this study, some important considerations and potential areas for further de-

velopment have been identified within this context. Firstly, a crucial aspect identified
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is the impact of EV availability on the provision of STOR services. The amount

of energy that can be supplied for STOR is largely dependant on the number of

available EVs during a STOR event. This suggests the necessity for an additional

margin of EVs beyond the total needed, to ensure a consistent energy supply even

during potential fluctuations in EV availability.

In this context, the data suggests a surplus of about 15% EVs over the total

participants in the microgrid can help ensure resilience. As such, to provide 3 MW

of energy under optimal conditions, the number of necessary EVs increases from the

initial 410 EVs, with a 7.4 kW bidirectional charger, to about 480 EVs, factoring in

the 120-minute response requirement.

The study indicates that the effective provision of STOR services within a mi-

crogrid is influenced by the number of available EVs. However, the concept of

aggregator’s role in managing these vehicles and their charging infrastructure is piv-

otal to this process. Aggregators could serve as an intermediary between the EV

owners and the grid, ensuring the optimal utilisation of available resources while

maintaining grid stability.

Moreover, the context of the microgrid as a component within a larger power

system is also a significant aspect to consider. The capacity of a microgrid to provide

STOR services exists within a larger network dynamic, where it contributes to, and

is influenced by, the wider grid’s operational mechanics. An expanded analysis is

necessary, one that includes factors such as load balancing, peak demand manage-

ment, and the role of energy storage in maintaining grid stability. A comprehensive

approach like this is essential to fully understand the potential and constraints of a

microgrid in contributing to overall grid resilience and efficiency.

Secondly, the way that the model used was in this study assumes that EVs

know when STOR events will occur and can charge in advance to provide energy for

STOR. While in reality, STOR events can occur at any time during the committed

windows. Therefore, it would be worthwhile to further study this aspect to account

for this randomness and perhaps suggest participants to maintain a certain level

of state of charge (SOC) if contracted or willing to participate in the provision of

STOR services.

Another limitation is related to the way the model work when EVs discharge
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energy for STOR services. The model used permits only a one-way energy flow,

allowing households to either import or export energy at a given time, but not

both simultaneously. Moreover, if there is a solar surplus during a STOR event

and a household’s EV is participating, this excess energy must be sold to the grid,

as sharing energy P2P would involve other participants importing energy this way,

which is not allowed under current rules as they will also be in ”export” mode. The

model’s one-way flow of energy potentially results in the suboptimal use of surplus

solar energy, particularly when EVs are exporting energy for STOR. A potential

mitigation could involve refining the model to allow flexibility of energy exchange

and allowing for more efficient use of solar surplus.

Despite certain limitations in the model used and the challenges posed by the

availability and charging behaviour of EVs, overall, this study highlight potential

factors that could influence the scalability and reliability of EVs in providing STOR

services in real-world scenarios. For the study’s results and conclusions to be appli-

cable on a larger scale, effective management of, and where possible, prediction of

EV availability is crucial.

In future studies, it is recommended to further develop strategies for managing

EV availability, which has been shown to be a critical factor in providing a steady

energy provision for STOR. Finally, it would be valuable to explore how advance-

ments in EV and charger technology could improve the capacity of EVs to provide

STOR services.

8.4 Minimum amount of state of charge that can be

held for a week

The work presented in chapter 7 aimed to address the research question:

• What strategies or mechanisms can be implemented to encourage EVs to con-

sistently increase their SOC throughout the week? What are the impacts of

V1G and V2H strategies on the minimum SOC maintained in EVs for potential

restoration services? How does the availability of EVs influence the capacity

the minimum SOC that can be maintained over the course of a week?

In this study, the impact of the availability of EVs on the minimum amount of
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SOC that can be held during the week for all EVs within a microgrid was explored.

The optimisation model from Chapter 4 was used with a slight modification to the

model to properly study the minimum SOC during the week.

We found that several mechanisms and strategies were particularly effective in

encouraging EVs to keep a higher EV throughout the week. Most notable among

these was a higher payment rate system where compensation to EV owners was

determined by the SOC level at the end of the week. This approach successfully

increased the minimum EV values while simultaneously reducing average weekly

electricity costs.

The interaction between V1G and V2H strategies and the minimum SOC kept

in all EVs for potential restoration services presents an interesting perspective. Our

findings suggest that the implementation of V1G along with dynamic energy tariffs

such as the Agile tariff typically leads to higher minimum SOC values throughout the

week. Conversely, V2H used in conjunction with Agile or Flat tariffs produces nearly

similar SOC values. Despite this, our study recommends that system operators limit

users to V1G, thereby restricting energy supply back to the home and encouraging

energy usage predominantly for restoration services. Essentially, this would mean

that V2G would be active but without the benefits of V2H, allowing EVs to provide

energy for restoration services if required.

Although the availability of EVs clearly impacts the minimum SOC that can be

held over a week, our findings demonstrate that this impact is not more significant

than other factors such as PV penetration rates, energy tariffs and the different

P2P price mechanisms. Therefore, efforts to increase EV availability should be part

of a larger strategy that includes efficient energy tariffs, power management, and

incentive schemes to improve SOC management.

Nevertheless, the main focus of this study was to evaluate the potential of EVs

by exploring the minimum SOC to estimate the amount of energy that could be

available for restoration services. It is important to consider the study’s limitations

when interpreting the results. Firstly, the study did not include a simulation of a

restoration service, leaving a significant gap in our understanding of how the stored

SOC could be utilised for such services. This area requires further research.

Secondly, this study is inherently limited by the data produced in Chapter 3.
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Any inaccuracies or limitations inherent to this data set could potentially impact

the findings in this study, thereby affecting the reliability and effectiveness of our

results.

Thirdly, the weekly payment scheme, while successful in encouraging a higher

SOC, has unintended consequences. It leads to increased demand on the electrical

grid, especially towards the end of the week as EV owners charge their vehicles

to maximise their SOC and get compensation accordingly. This strategy, while

effective in the short term, could potentially strain the electrical grid, rendering it

unsustainable in the long term.

Finally, it is worth noting that a related concern arose during the early tests of

the study when we were introducing a daily payment scheme. This led to all EVs

maintaining maximum SOC at all times and only consuming energy for travel, even

under the V2H scenario. This behaviour, although ensuring a consistently high SOC,

unexpectedly limited the versatility of energy use by EVs. Future research could

focus on improving the model to address this, creating a more balanced scenario

that can adapt to these behaviours.

In conclusion, this study has provided valuable insights despite its limitations.

It shed light on the role of EV availability, energy tariffs, V1G and V2H strategies,

and different P2P energy price mechanisms in managing minimum SOC over the

week within a microgrid. Particularly noteworthy is the introduction of a payment

mechanism that has shown to effectively incentivise EV owners to maintain a higher

SOC, paving the way for potential improvements in energy management. Future

studies should include simulations of restoration services to better understand the

potential contribution of stored SOC and explore more balanced payment schemes

that encourage high SOC without overloading the grid or limiting the versatility of

energy use.

8.5 PV penetration rates, energy tariffs and P2P im-

pact within a microgrid

The work presented in chapters 5–7 aimed to address the research question:

• How do varying conditions, such as different PV penetration rates and energy
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tariffs, impact the implementation of V1G, V2H and V2G services within a

microgrid throughout different weeks of the year? How does the P2P energy

trading, and specifically the variation in P2P prices, impact the provision of

V2G services within a microgrid?

In the analysis of the microgrid system, the combination between PV penetra-

tion rates and energy tariffs emerges as a vital factor in implementing V2G services

effectively. With higher PV penetration rates, households experience improved per-

formance, while different metrics such as self-suffiency ratio (SSR) increases and

electricity costs decrease. This surplus energy can be stored in the battery for later

use or sold as surplus solar energy back to the grid. Moreover, if P2P energy trading

is allowed, households can sell their excess electricity to others within the microgrid,

thereby reducing grid reliance. This P2P trading system can mutually benefit both

buyers, who acquire cheaper electricity, and sellers, who profit from their surplus.

Importantly, P2P energy sharing was found to offer significant benefits to EV own-

ers. For instance, when owners are away and unable to charge their EVs, they

have the opportunity to sell the surplus energy to their peers, often at prices more

competitive than buying from or selling to the grid.

Certainly, the integration of different systems such as PV, P2P energy trading,

and different energy tariffs, particularly dynamic tariffs, have demonstrated substan-

tial potential in enhancing the performance of EVs within a microgrid. Notably, the

results showed that with the correct combination of these elements, there was an

improve in performance from EVs with V1G, and when V2H is used, the perfor-

mance of the EVs could rival that of stationary batteries, illustrating the potential

benefits of this integrated system approach.

As for EVs providing STOR, the impact of PV penetration rates, P2P, and

energy tariffs was less pronounced. While P2P and higher PV penetration rates

brought benefits in terms of overall system performance and cost efficiency, their

effect on the provision of STOR was minimal. This highlights the need for further

research to explore how these technologies could be better integrated to enhance the

capability of EV to provide STOR.

Regarding the effect of these system combinations on the minimum SOC that

EVs can hold during the week that could potentially be used for restoration services.
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The different PV penetration rates, energy tariffs and the choice of using P2P do not

have a significant impact on this. Interestingly, the use of dynamic tariffs, like the

Agile tariff, in combination with V1G typically often resulted in higher minimum

SOC values throughout the week. It was also found that when using Agile tariff or

a Flat tariff in combination with V2H, the SOC values during the week are nearly

as high as with V1G. This suggests a promising potential to increase the energy

available for restoration services when using EVs, highlighting the benefits of this

integrated system for improving microgrid resilience.

Throughout the various studies conducted in this research, dynamic tariffs, such

as the Agile tariff and the Agile Go tariff, this last one specifically designed for EVs,

consistently returned the best results across most weeks of the year. This tariff

performance, combined with higher PV penetration rates, significantly increased

the performance of the microgrid. Interestingly, during weeks with more sunlight,

especially in the summer, these tariffs consistently yielded better results compared

to other periods of the year, like winter. This pattern underscores the potential

of leveraging seasonal variations in sunlight for more efficient energy use within

the microgrid. In particular, the consistent use of P2P under Setting two, which

calculates the price for buying and selling energy within the microrgrid based on the

mid-market rate (MMR) prices, yielded further enhancements in performance. This

finding points to the value of maintaining higher PV penetration rates and the use

of P2P trading for maximum microgrid efficiency.

However, one limitation of these results lies in the objective of the optimisation

model from Chapter 4, which was primarily focused on minimising electricity costs

for participants within the microgrid. In some instances, this led to demand peaks

that could potentially affect the stability of the electrical grid. To address this,

future studies could consider incorporating the energy demand from the grid into

the objective function of the optimisation model. This approach could help strike

a balance between reducing electricity costs and maintaining grid stability, thereby

contributing to the overall sustainability of the microgrid system.

Another potential limitation of this study is that the simulations only represented

six distinct weeks of the year, corresponding to the four seasons. A more thorough

exploration spanning a full year could provide deeper insight into seasonal impacts
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on the results. Future studies might also consider including more energy tariffs

available to the public to better understand each tariff’s unique effects. This ex-

panded approach would provide a more comprehensive understanding of how tariffs

and seasonality influence the performance of microgrids, especially when providing

V2G services.

Additionally, this study’s findings are inherently tied to the data from Chapter 3.

Any inaccuracies or limitations within this data could potentially influence our con-

clusions, impacting their reliability and effectiveness.

Despite these limitations, the research has provided valuable insights into the

impact of PV penetration rates, energy tariffs, P2P energy trading on V2G services

within a microgrid. Future work should focus on addressing the limitations high-

lighted in this work to improve energy management and the performance of EVs

within a microgrid.

8.6 Future work

Through the course of developing this research, several opportunities for additional

research were identified that were beyond the scope of the original work. Neverthe-

less, it would be interesting to investigate them more in the future, and they are

described below.

• Although the predictive model proved useful in this work, travel data only

includes information on the UK. It would be useful to adapt the proposed

methodology and to use travel information from other countries to make a

comparison of potential markets where V2G can be useful.

• The simulations in this work were restricted to only 7 days a week due to time

constraints and computation time to solve each model. Increasing the number

of days studied may be interesting to consider, as it could capture in more

depth the impact of the availability of EVs and V2G.

• An analysis of environmental impacts when providing ancillary services with

V2G could be beneficial for policy makers and system operators.
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• Including other technologies in the optimisation model such as combined heat

and power (CHP) and other renewable energies may be interesting to look at.

• Combining the use of a home battery and an EV using V2G can be interesting

to investigate.

• Adapting the optimisation model to use EVs as community storage is some-

thing that has been examined in the literature, but it may be interesting to

use the proposed predictive model to assess the impact of the availability of

EVs.

• Studying battery degradation when providing V2G is something that has been

done before; however, in most cases, the availability of EVs is not considered

or is considered during fixed times of the day.





Appendix A

List of publications

The work carried out during the course of this PhD has led to the following publi-

cations.

• Donovan Aguilar-Dominguez, Alan Dunbar, and Solomon Brown. ”The elec-

tricity demand of an EV providing power via vehicle-to-home and its potential

impact on the grid with different electricity price tariffs”. In Energy Reports,

volume 6, pages 132–141. Elsevier Ltd, 5 2020.

• Donovan Aguilar-Dominguez, Jude Ejeh, Alan D.F. Dunbar, and Solomon

F.Brown. ”Machine learning approach for electric vehicle availability forecast

to provide vehicle-to-home services”. Energy Reports, 7:71–80, 2021. ISSN

23524847.

• Donovan Aguilar-Dominguez, Jude Ejeh, Solomon Brown, and Alan Dunbar.

”Exploring the possibility to provide black start services by using vehicle-to-

grid.” Energy Reports, 8:74–82, 11 2022.

217





Appendix B

Supplementary results

B.1 Expanded results through the different representa-

tive weeks of the year

In this section, we present extended data sets and analyses of the different microgrid

configurations across a variety of representative weeks throughout the year. Each

figure in this section contains data collected from the metrics that were not covered

in their relevant results section of each chapter, specifically in sections 5.2.3, 6.2.3

and 7.2.3. Therefore, energy balance index (EBI), maximum power load from the

grid and energy imported from the grid are included.

The figures presented in this section include values in all microgrid configura-

tions or scenarios. The values are divided into two sections, the column on the left –

column 1 – contains the average values from 0% to 50% photovoltaic (PV) penetra-

tion rates and the right column – column 2 – contains the average values from 51%

to 100% PV penetration rates. Moreover, each row includes each of the five tariff

scenarios – rows 1 to 5 – that were explored, different colours are used to differen-

tiate between the four representative weeks of the year and different marker shapes

are used to help distinguish them between each microgrid configuration. X-axis tick

labels also include information about each microgrid configuration.

B.1.1 Chapter 5 - Performance metrics supplementary results

In Chapter 5, the effectiveness of using a microgrid connected to the grid to reduce

the electric bill of households that own a stationary battery or an electric vehicle

219
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(EV) with a bidirectional charger was analysed.

Figure B.1 shows a comparison of the results of EBI where it can be seen that

the scenarios with peer-to-peer (P2P) perform better than those without P2P. As

this metric penalises both imports and exports from and to the grid, the results

differ between columns, rows, and weeks; however, it can be seen that this metric

increases when there is a higher PV penetration rate present.

Figure B.2 shows a comparison of the maximum power load from the grid. Here,

in most rows in columns 1 and 2, the Winter - S6 week has the highest maximum

power load, and Summer - S2 the lowest compared to the other weeks. Furthermore,

scenarios with P2P tend to draw more power from the grid at the same time com-

pared to those without it. In column 1, home batteries seem to have lowest values

across all scenarios and weeks, which is mostly true as well for column 2, however,

all this depends on the tariff that is used. Column 2 shows more diversity across all

scenarios and tariffs with dynamic pricing during the day, such as Agile tariff, Agile

Go tariff and economy seven (E7) tariff, compared to Flat tariff and the All tariffs

scenario. EVs with Vehicle-to-home (V2H) tend to draw more energy than the rest

of the scenarios; again, this could be due to charging when prices are low to meet

travel needs and give energy back to the house during the day.

Figure B.3 shows a comparison of the energy imported from the grid. Columns

1 and 2 show that Winter - S6 import the most energy for scenarios and tariffs, with

the exception of the Agile tariff with 51-100% PV penetration rates where home

batteries and EVs with V2H are used, and the lowest energy imported from the

grid occurs during the Summer - S2 week in most cases. Furthermore, the most

energy imported from the grid occurs when using EVs where it can reach more than

6,000 kWh with 0-50% PV penetration rates and up to 5,000 kWh with 51-100%

PV penetration rates.
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Figure B.1: Comparison of stationary batteries and EVs energy balance index values
for the four representative weeks of the year, the five tariff scenarios and all microgrid
configurations explored in this chapter. The left column contains the average values
from 0% to 50% PV penetration rates and the right column contains the average
values from 51% to 100% PV penetration rates.
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Figure B.2: Comparison of stationary batteries and EVs max power load from the
grid for the four representative weeks of the year, the five tariff scenarios and all
microgrid configurations explored in this chapter. The left column contains the
average values from 0% to 50% PV penetration rates and the right column contains
the average values from 51% to 100% PV penetration rates.
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Figure B.3: Comparison of stationary batteries and EVs energy imported from the
grid for the four representative weeks of the year, the five tariff scenarios and all
microgrid configurations explored in this chapter. The left column contains the
average values from 0% to 50% PV penetration rates and the right column contains
the average values from 51% to 100% PV penetration rates.
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B.1.2 Chapter 6 - Performance metrics supplementary results

Chapter 6 investigated the potential effectiveness of reducing electric bills for house-

holds with EVs connected to a microgrid that also provides vehicle-to-grid (V2G)

services for short term operation reserve (STOR).

Figure B.4 shows a comparison of the results of EBI, similarly to self-suffiency

ratio (SSR), column 1 shows that depending on the tariff there is a slight difference

between the weeks of the year for PV penetration rates from 1-50%. In column

2 shows a noticeable difference between each week of the year. Here, the scenarios

with P2P perform better than those for which P2P is not allowed. Setting two shows

a significant advantage compared to Setting one. The Summer - S2 week scores the

highest in most tariffs and microgrid configurations, but there are some exceptions

where Spring - S1 scores the highest, for example, column 2 row 5 (51-100% PV

penetration rates and All tariffs scenario).

Figure B.5 shows a comparison of the maximum power load of the grid. The

Agile tariff in column 1 shows that the maximum power load in most weeks is over

350 and column 2 shows a similar behaviour, with a few exceptions during Spring -

S1 and Summer - S2. Agile Go shows a similar behaviour in column 1 and column 2,

where the power load is between 275 and 370 kW in column 1 and column 2 showing

the same exceptions during the Spring - S1 and Summer - S2. This is true for all

case studies and microgrid configurations, regardless of whether P2P is used and the

setting. E7 tariff max power load is between 225 and 350 kW when PV penetration

rates are between 0-50% and for higher rates, 51-100%, this tariff shows lower max

power loads, Summer - S2 being the lowest in some case studies. The flat tariff

shows a more varied range of maximum power load in columns 1 and 2, with values

ranging from around 0 kW during Summer - S2 with P2P and Setting two, to close

to 300 kW during the Autumn - S5 week. The All tariffs scenario has very close

max power loads across the six weeks in column 1 and a more significant difference

between weeks in column 2. Here, values range from 200 to 330 kW with a lower

PV penetration rates and a higher PV penetration rates from 100 kW to over 300

kW. These high peak demand values can be mainly due to EVs taking advantage of

low electricity prices during the day to charge enough energy in advance for travel,
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supply to the house when prices are high, and / or provide STOR.

Figure B.6 shows a comparison of the energy imported from the grid. Columns

1 and 2 show that weeks with fewer sunlight during the year depend more on draw-

ing energy from the grid. Here, Autumn - S5 and Winter - S6 draw more energy

compared to the other weeks, especially the Summer - S2 week which is the one that

results in lower total energy imported from the grid. The total energy imported

from the grid is between close to 0 kW and up to more than 8,000 kWh depending

on the tariff used, showing that traditional tariffs such as E7 and Flat tariffs are less

dependent on the grid with high PV penetration rates present. Also, as expected,

having higher PV penetration rates significantly reduces the amount of energy im-

ported from the grid; this is further reduced when P2P is present, particularly when

Setting two is used. However, the energy imported from the grid can also be af-

fected depending on the STOR events and the number of events during the week.

As mentioned above, ST 2 is the case study in which more energy is drawn from

the grid due to having six events during the week compared to the other scenarios

that only have three events during the week and similar PV penetration rates.

B.1.3 Chapter 6 - Short Term Operating Reserve (STOR) Perfor-

mance supplementary results

Figures B.7 and B.8 show the ST 1 and ST 2 case studies and their STOR events

for the six different weeks of the year using using the Agile Go tariff with 90% PV

penetration rate, P2P and Setting two.

Each of these figures shows the total number of EVs available throughout the

week and the number of EVs that provide energy for STOR. In addition, each graph

includes the highest number of EVs that provides energy for STOR identified by a

horizontal brown dashed line, as well as the lowest number of EVs identified by the

horizontal magenta dashed line.

Here, the STOR events were chosen at random at do not happened at the same

time for each week, compared to ST 3 and ST 4. In the case of ST 1, there are only

three events at random during the week inside of the committed windows of each

season that that week cover, as explained in section 6.1.3. Similarly, ST 2 shows

STOR events chosen at random, but in this case, there are six STOR events per
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week.
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Date
Spring - S1
Summer - S2
Summer - S3
Autumn - S4
Autumn - S5
Winter - S6

Case
ST_1___V2G___No_P2P
ST_1___V2G___P2P_S1
ST_1___V2G___P2P_S2
ST_2___V2G___No_P2P
ST_2___V2G___P2P_S1
ST_2___V2G___P2P_S2
ST_3___V2G___No_P2P
ST_3___V2G___P2P_S1
ST_3___V2G___P2P_S2
ST_4___V2G___No_P2P
ST_4___V2G___P2P_S1
ST_4___V2G___P2P_S2

Figure B.4: Comparison of the different short term operation reserve case studies
energy balance index values for the six representative weeks of the year, the five
tariff scenarios and all microgrid configurations explored in this chapter. The left
column contains the average values from 0% to 50% PV penetration rates and the
right column contains the average values from 51% to 100% PV penetration rates.
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Date
Spring - S1
Summer - S2
Summer - S3
Autumn - S4
Autumn - S5
Winter - S6

Case
ST_1___V2G___No_P2P
ST_1___V2G___P2P_S1
ST_1___V2G___P2P_S2
ST_2___V2G___No_P2P
ST_2___V2G___P2P_S1
ST_2___V2G___P2P_S2
ST_3___V2G___No_P2P
ST_3___V2G___P2P_S1
ST_3___V2G___P2P_S2
ST_4___V2G___No_P2P
ST_4___V2G___P2P_S1
ST_4___V2G___P2P_S2

Figure B.5: Max power load from the grid for the six representative weeks of the
year, the five tariff scenarios and all microgrid configurations explored in this chapter.
The left column contains the average values from 0% to 50% PV penetration rates
and the right column contains the average values from 51% to 100% PV penetration
rates.
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Date
Spring - S1
Summer - S2
Summer - S3
Autumn - S4
Autumn - S5
Winter - S6

Case
ST_1___V2G___No_P2P
ST_1___V2G___P2P_S1
ST_1___V2G___P2P_S2
ST_2___V2G___No_P2P
ST_2___V2G___P2P_S1
ST_2___V2G___P2P_S2
ST_3___V2G___No_P2P
ST_3___V2G___P2P_S1
ST_3___V2G___P2P_S2
ST_4___V2G___No_P2P
ST_4___V2G___P2P_S1
ST_4___V2G___P2P_S2

Figure B.6: Energy imported from the grid for the six representative weeks of the
year, the five tariff scenarios and all microgrid configurations explored in this chapter.
The left column contains the average values from 0% to 50% PV penetration rates
and the right column contains the average values from 51% to 100% PV penetration
rates.
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Figure B.7: STOR events in the case study ST 1 for the six representative weeks of
the year using the Agile Go tariff with 90% PV penetration rate, P2P and Setting
two. Here, the number of EVs available at home during each week and the number
of EVs that are discharging energy to provide STOR. Here, the black X-axis labels
denote data from Monday to Friday, and the red labels, data from Saturday to
Sunday.
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Figure B.8: STOR events in the case study ST 2 for the six representative weeks of
the year using the Agile Go tariff with 90% PV penetration rate, P2P and Setting
two. Here, the number of EVs available at home during each week and the number
of EVs that are discharging energy to provide STOR. Here, the black X-axis labels
denote data from Monday to Friday, and the red labels, data from Saturday to
Sunday.
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B.1.4 Chapter 7 - supplementary results

Chapter 7 focused on investigating the maximum amount of state of charge (SOC)

that can be held in all EVs within a microgrid during a week for the possibility of

providing restoration services (formerly known as black start services). This was

done by introducing payment mechanism that aims to encourage EVs to increase

the amount of SOC throughout the week.

Figure B.9 shows a comparison of the results of EBI, similar to SSR, in columns

1 and 2, the three case studies show a similar behaviour. Using P2P with Setting

two produces the best results for both smart charging (V1G) and V2H compared to

not using P2P or using Setting one. More traditional energy tariffs such as E7 and

Flat tariff show almost similar performance with PV penetration rates of 51-100%.

All tariffs similar to each other with PV penetration rates of 0-50%. Spring - S1

week returns the highest values with PV penetration rates of 51-100% and Summer

- S2 week with PV penetration rates of 0-50%.

The EBI values present the same pattern as the SSR where in all three case

studies the results are not too far from each other,with the case study BS 3 being

the ones with slightly higher results from the three case studies. This metric tends

to peak with lower PV penetration rates due to the way it is calculated, penalising

exports as well as imports, and as seen in figures 7.1 and 7.2 that most of the surplus

energy is exported to the grid instead of being used for self-consumption or shared

among participants within the microgrid.

Figure B.10 shows a comparison of the maximum power load of the grid. Sim-

ilarly to chapter 6, the Agile tariff shows the highest power loads regardless of PV

penetration rates . This can be caused by a sudden reduction in electricity cost that

leads all EVs to charge at the same time. Maximum peak loads range from 8 to 404

kW, where higher PV penetration rates tend to reduce this value depending on the

tariff used. The lowest peak loads are produced by the Flat tariff followed by the

All tariffs scenario. Using V1G shows the highest peak demand compared to suing

V2H because energy is consumed from the grid only to provide enough energy for

travel purposes.

Having V2H significantly reduces peak demands when having P2P allowed with
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Setting two and higher PV penetration rates. In general, higher PV penetration

rates reduce peak demand depending on the energy tariff used compared to not

allowing P2P. Traditional tariffs manage to reduce the peak to as low as 8 kW with

51-100% PV penetration rates. Spring - S1 and Summer - S2 are the weeks with

lower peak demands of the four weeks of the year explored. Furthermore, as with

other metrics, users may be inclined to charge as much energy as possible during

certain times of the day with low electricity prices to increase the amount of SOC

at the end of the week.

Figure B.11 shows a comparison of the energy imported from the grid. Similarly

to chapter 6, columns 1 and 2 show that weeks with fewer sunlight during the year

depend more on the energy being drawn from the grid. Here, Autumn - S5 and

Winter - S6 draw more energy compared to the other weeks, especially the Summer

- S2 week, which results in lower total energy imported from the grid. The total

imported energy ranges from 104 to 6,200 kWh with the Agile tariff being the one

that results in the mos energy imported from the grid and more traditional tariffs

with the lowest imported energy from the grid. P2P using the Setting two shows

the lowest amount of energy imported from the grid in the three case studies when

combined with V2H due to the ability to store energy from solar surplus and then

use it later during the day. Higher PV penetration rates result in lower dependence

of the grid.
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Figure B.9: Energy balance index values for the four representative weeks of the year,
the five tariff scenarios and all microgrid configurations explored in this chapter. The
left column contains the average values from 0% to 50% PV penetration rates and
the right column contains the average values from 51% to 100% PV penetration
rates.
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Case
BS_1___V1G___No_P2P
BS_1___V1G___P2P_S1
BS_1___V1G___P2P_S2
BS_1___V2H___No_P2P
BS_1___V2H___P2P_S1
BS_1___V2H___P2P_S2
BS_2___V1G___No_P2P
BS_2___V1G___P2P_S1
BS_2___V1G___P2P_S2
BS_2___V2H___No_P2P
BS_2___V2H___P2P_S1
BS_2___V2H___P2P_S2
BS_3___V1G___No_P2P
BS_3___V1G___P2P_S1
BS_3___V1G___P2P_S2
BS_3___V2H___No_P2P
BS_3___V2H___P2P_S1
BS_3___V2H___P2P_S2

Figure B.10: Max power load from the grid for the four representative weeks of the
year, the five tariff scenarios and all microgrid configurations explored in this chapter.
The left column contains the average values from 0% to 50% PV penetration rates
and the right column contains the average values from 51% to 100% PV penetration
rates.
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Figure B.11: Energy imported from the grid for the four representative weeks of the
year, the five tariff scenarios and all microgrid configurations explored in this chapter.
The left column contains the average values from 0% to 50% PV penetration rates
and the right column contains the average values from 51% to 100% PV penetration
rates.
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[85] Jonathan Donadee and Marija Ilić. Stochastic co-optimization of charging

and frequency regulation by electric vehicles. 2012 North American Power

Symposium, NAPS 2012, 2012. doi: 10.1109/NAPS.2012.6336373.

[86] Rebecca Gough, Charles Dickerson, Paul Rowley, and Chris Walsh.

Vehicle-to-grid feasibility: A techno-economic analysis of EV-based en-

ergy storage. Applied Energy, 192:12–23, 2017. ISSN 03062619.

doi: 10.1016/j.apenergy.2017.01.102. URL http://dx.doi.org/10.1016/

j.apenergy.2017.01.102.

[87] Justin D.K. Bishop, Colin J. Axon, David Bonilla, Martino Tran, David Ban-

ister, and Malcolm D. McCulloch. Evaluating the impact of V2G services

on the degradation of batteries in PHEV and EV. Applied Energy, 111:

206–218, 2013. ISSN 03062619. doi: 10.1016/j.apenergy.2013.04.094. URL

http://dx.doi.org/10.1016/j.apenergy.2013.04.094.

[88] National Grid ESO. System security services — National Grid ESO,

2022. URL https://www.nationalgrideso.com/balancing-services/system-

security-services.

[89] National Grid ESO. Future Energy Scenarios - 2020. Technical report, Na-

tional Grid ESO, 7 2020.

http://dx.doi.org/10.1016/j.apenergy.2016.03.064
http://dx.doi.org/10.1016/j.apenergy.2016.03.064
http://dx.doi.org/10.1016/j.apenergy.2017.01.102
http://dx.doi.org/10.1016/j.apenergy.2017.01.102
http://dx.doi.org/10.1016/j.apenergy.2013.04.094
https://www.nationalgrideso.com/balancing-services/system-security-services
https://www.nationalgrideso.com/balancing-services/system-security-services


References 249

[90] Yang Song, Pengcheng Li, Yuanliang Zhao, and Shuai Lu. Design and In-

tegration of the Bi-directional Electric Vehicle Charger into the Microgrid

as Emergency Power Supply. 2018 International Power Electronics Con-

ference, IPEC-Niigata - ECCE Asia 2018, pages 3698–3704, 10 2018. doi:

10.23919/IPEC.2018.8507385.

[91] Junbo Sun, Da Xie, Yucheng Lou, Minxia Yang, and Yu Zhang. Black-start

scheme based on EV’s intelligent integrated station. POWERCON 2014 -

2014 International Conference on Power System Technology: Towards Green,

Efficient and Smart Power System, Proceedings, pages 3118–3123, 12 2014.

doi: 10.1109/POWERCON.2014.6993609.

[92] Chao Long, Jianzhong Wu, Chenghua Zhang, Lee Thomas, Meng Cheng, and

Nick Jenkins. Peer-to-peer energy trading in a community microgrid. IEEE

Power and Energy Society General Meeting, 2018-January:1–5, 1 2018. ISSN

19449933. doi: 10.1109/PESGM.2017.8274546.

[93] Deloitte. Peer to peer energy trading — Future of Energy — Deloitte Nether-

lands, 2021. URL https://www2.deloitte.com/nl/nl/pages/energy-resources-

industrials/articles/peer-to-peer-energy-trading.html.

[94] EDF Energy. Peer-to-peer-trading — R&D UK Blog — EDF, 2018.

URL https://www.edfenergy.com/energywise/research-development-peer-to-

peer-trading.

[95] Community Energy England. Peer to peer local energy trading — Community

Energy England, 2020. URL https://communityenergyengland.org/how-to-

pages/peer-to-peer-local-energy-trading.

[96] Chao Long, Yue Zhou, and Jianzhong Wu. A game theoretic approach for

peer to peer energy trading. Energy Procedia, 159:454–459, 2 2019. ISSN

1876-6102. doi: 10.1016/J.EGYPRO.2018.12.075.

[97] David Vangulick, Bertrand Cornelusse, and Damien Ernst. Blockchain for

Peer-to-Peer Energy Exchanges: Design and Recommendations. In 2018

Power Systems Computation Conference (PSCC), pages 1–7. IEEE, 6 2018.

https://www2.deloitte.com/nl/nl/pages/energy-resources-industrials/articles/peer-to-peer-energy-trading.html
https://www2.deloitte.com/nl/nl/pages/energy-resources-industrials/articles/peer-to-peer-energy-trading.html
https://www.edfenergy.com/energywise/research-development-peer-to-peer-trading
https://www.edfenergy.com/energywise/research-development-peer-to-peer-trading
https://communityenergyengland.org/how-to-pages/peer-to-peer-local-energy-trading
https://communityenergyengland.org/how-to-pages/peer-to-peer-local-energy-trading


250 References

ISBN 978-1-910963-10-4. doi: 10.23919/PSCC.2018.8443042. URL https:

//ieeexplore.ieee.org/document/8443042/.

[98] Thomas Morstyn and Malcolm D. McCulloch. Multiclass Energy Man-

agement for Peer-to-Peer Energy Trading Driven by Prosumer Preferences.

IEEE Transactions on Power Systems, 34(5):4005–4014, 9 2019. ISSN 0885-

8950. doi: 10.1109/TPWRS.2018.2834472. URL https://ieeexplore.ieee.org/

document/8356100/.

[99] Zhenwei Guo, Pierre Pinson, Shibo Chen, Qinmin Yang, and Zaiyue Yang.

Chance-Constrained Peer-to-Peer Joint Energy and Reserve Market Consider-

ing Renewable Generation Uncertainty. IEEE Transactions on Smart Grid, 12

(1):798–809, 1 2021. ISSN 1949-3053. doi: 10.1109/TSG.2020.3019603. URL

https://ieeexplore.ieee.org/document/9178314/.

[100] Ni Wang, Ziyi Liu, Petra Heijnen, and Martijn Warnier. A peer-to-peer mar-

ket mechanism incorporating multi-energy coupling and cooperative behav-

iors. Applied Energy, 311:118572, 4 2022. ISSN 0306-2619. doi: 10.1016/

J.APENERGY.2022.118572.

[101] Jongbaek An, Minhyun Lee, Seungkeun Yeom, and Taehoon Hong. Determin-

ing the Peer-to-Peer electricity trading price and strategy for energy prosumers

and consumers within a microgrid. Applied Energy, 261:114335, 3 2020. ISSN

0306-2619. doi: 10.1016/J.APENERGY.2019.114335.

[102] Nian Liu, Xinghuo Yu, Cheng Wang, Chaojie Li, Li Ma, and Jinyong Lei.

Energy-Sharing Model With Price-Based Demand Response for Microgrids of

Peer-to-Peer Prosumers. IEEE Transactions on Power Systems, 32(5):3569–

3583, 9 2017. ISSN 0885-8950. doi: 10.1109/TPWRS.2017.2649558. URL

http://ieeexplore.ieee.org/document/7809095/.

[103] Wayes Tushar, Tapan Kumar Saha, Chau Yuen, Thomas Morstyn, Mal-

colm D. McCulloch, H. Vincent Poor, and Kristin L. Wood. A motiva-

tional game-theoretic approach for peer-to-peer energy trading in the smart

grid. Applied Energy, 243:10–20, 6 2019. ISSN 03062619. doi: 10.1016/

j.apenergy.2019.03.111.

https://ieeexplore.ieee.org/document/8443042/
https://ieeexplore.ieee.org/document/8443042/
https://ieeexplore.ieee.org/document/8356100/
https://ieeexplore.ieee.org/document/8356100/
https://ieeexplore.ieee.org/document/9178314/
http://ieeexplore.ieee.org/document/7809095/


References 251

[104] Stefan Englberger, Archie C. Chapman, Wayes Tushar, Tariq Almomani,

Stephen Snow, Rolf Witzmann, Andreas Jossen, and Holger Hesse. Evaluat-

ing the interdependency between peer-to-peer networks and energy storages: A

techno-economic proof for prosumers. Advances in Applied Energy, 3:100059,

8 2021. ISSN 2666-7924. doi: 10.1016/J.ADAPEN.2021.100059.

[105] Timothy D. Hutty, Alejandro Pena-Bello, Siyuan Dong, David Parra, Rachael

Rothman, and Solomon Brown. Peer-to-peer electricity trading as an enabler

of increased PV and EV ownership. Energy Conversion and Management, 245:

114634, 10 2021. ISSN 0196-8904. doi: 10.1016/J.ENCONMAN.2021.114634.

[106] IBM Cloud Education. What is Machine Learning? - United Kingdom— IBM,

2020. URL https://www.ibm.com/uk-en/cloud/learn/machine-learning.

[107] Chris Wright. UK’s drivers-first approach to vehicle-to-grid — Current

News, 2018. URL https://www.current-news.co.uk/blogs/uks-drivers-first-

approach-to-vehicle-to-grid.

[108] Rob Shipman, Rebecca Roberts, Julie Waldron, Sophie Naylor, James Pinchin,

Lucelia Rodrigues, and Mark Gillott. We got the power: Predicting available

capacity for vehicle-to-grid services using a deep recurrent neural network. En-

ergy, 221:119813, 4 2021. ISSN 03605442. doi: 10.1016/j.energy.2021.119813.

URL https://linkinghub.elsevier.com/retrieve/pii/S0360544221000621.

[109] Rob Shipman, Julie Waldron, Sophie Naylor, James Pinchin, Lucelia Ro-

drigues, and Mark Gillott. Where Will You Park? Predicting Vehicle Locations

for Vehicle-to-Grid. Energies 2020, Vol. 13, Page 1933, 13(8):1933, 4 2020.

ISSN 1996-1073. doi: 10.3390/EN13081933. URL https://www.mdpi.com/

1996-1073/13/8/1933/htmhttps://www.mdpi.com/1996-1073/13/8/1933.

[110] H. Selcuk Nogay. Estimating the aggregated available capacity for ve-

hicle to grid services using deep learning and Nonlinear Autoregressive

Neural Network. Sustainable Energy, Grids and Networks, 29:100590, 3

2022. ISSN 23524677. doi: 10.1016/j.segan.2021.100590. URL https://

linkinghub.elsevier.com/retrieve/pii/S2352467721001491.

https://www.ibm.com/uk-en/cloud/learn/machine-learning
https://www.current-news.co.uk/blogs/uks-drivers-first-approach-to-vehicle-to-grid
https://www.current-news.co.uk/blogs/uks-drivers-first-approach-to-vehicle-to-grid
https://linkinghub.elsevier.com/retrieve/pii/S0360544221000621
https://www.mdpi.com/1996-1073/13/8/1933/htm https://www.mdpi.com/1996-1073/13/8/1933
https://www.mdpi.com/1996-1073/13/8/1933/htm https://www.mdpi.com/1996-1073/13/8/1933
https://linkinghub.elsevier.com/retrieve/pii/S2352467721001491
https://linkinghub.elsevier.com/retrieve/pii/S2352467721001491


252 References

[111] Connor Scott, Mominul Ahsan, and Alhussein Albarbar. Machine Learning

Based Vehicle to Grid Strategy for Improving the Energy Performance of Pub-

lic Buildings. Sustainability 2021, Vol. 13, Page 4003, 13(7):4003, 4 2021.

ISSN 2071-1050. doi: 10.3390/SU13074003. URL https://www.mdpi.com/

2071-1050/13/7/4003/htmhttps://www.mdpi.com/2071-1050/13/7/4003.

[112] Oliver Frendo, Nadine Gaertner, and Heiner Stuckenschmidt. Improving

Smart Charging Prioritization by Predicting Electric Vehicle Departure Time.

IEEE Transactions on Intelligent Transportation Systems, 22(10):6646–6653,

10 2021. ISSN 1524-9050. doi: 10.1109/TITS.2020.2988648. URL https:

//ieeexplore.ieee.org/document/9082829/.

[113] Penelope K. Jones, Ulrich Stimming, and Alpha A. Lee. Impedance-based

forecasting of lithium-ion battery performance amid uneven usage. Nature

Communications, 13(1), 8 2022. ISSN 20411723. doi: 10.1038/S41467-022-

32422-W. URL https://www.cam.ac.uk/research/news/machine-learning-

algorithm-predicts-how-to-get-the-most-out-of-electric-vehicle-batteries.

[114] Yu Wei Chung, Behnam Khaki, Tianyi Li, Chicheng Chu, and Rajit

Gadh. Ensemble machine learning-based algorithm for electric vehicle

user behavior prediction. Applied Energy, 254(April):113732, 2019. ISSN

03062619. doi: 10.1016/j.apenergy.2019.113732. URL https://doi.org/

10.1016/j.apenergy.2019.113732.

[115] Yitong Shang, Hang Yu, Ziyun Shao, and Linni Jian. ISCP-Data: A Vehicle-

to-grid Dataset For Commercial Center And Its Machine Learning Application.

In 2021 IEEE 5th Conference on Energy Internet and Energy System Integra-

tion (EI2), pages 3246–3250. IEEE, 10 2021. ISBN 978-1-6654-3425-6. doi:

10.1109/EI252483.2021.9713203. URL https://ieeexplore.ieee.org/document/

9713203/.

[116] Department for Business Energy & Industrial Strategy. Ensuring se-

curity of electricity supplies for winter 2022 to 2023 - GOV.UK,

2022. URL https://www.gov.uk/government/publications/ensuring-security-

of-electricity-supplies-for-winter-2022-to-2023.

https://www.mdpi.com/2071-1050/13/7/4003/htm https://www.mdpi.com/2071-1050/13/7/4003
https://www.mdpi.com/2071-1050/13/7/4003/htm https://www.mdpi.com/2071-1050/13/7/4003
https://ieeexplore.ieee.org/document/9082829/
https://ieeexplore.ieee.org/document/9082829/
https://www.cam.ac.uk/research/news/machine-learning-algorithm-predicts-how-to-get-the-most-out-of-electric-vehicle-batteries
https://www.cam.ac.uk/research/news/machine-learning-algorithm-predicts-how-to-get-the-most-out-of-electric-vehicle-batteries
https://doi.org/10.1016/j.apenergy.2019.113732
https://doi.org/10.1016/j.apenergy.2019.113732
https://ieeexplore.ieee.org/document/9713203/
https://ieeexplore.ieee.org/document/9713203/
https://www.gov.uk/government/publications/ensuring-security-of-electricity-supplies-for-winter-2022-to-2023
https://www.gov.uk/government/publications/ensuring-security-of-electricity-supplies-for-winter-2022-to-2023


References 253

[117] Department for Business Energy & Industrial Strategy. Energy Emer-

gencies Executive Committee: Interim Report. Technical report,

UK Government, 2019. URL https://assets.publishing.service.gov.uk/

government/uploads/system/uploads/attachment data/file/836626/

20191003 E3C Interim Report into GB Power Disruption.pdf.

[118] Financial Times. National Grid electricity blackout report points to failure

at wind farm — Financial Times, 2019. URL https://www.ft.com/content/

8b738eac-c024-11e9-89e2-41e555e96722.

[119] National Grid ESO. Black Start — National Grid ESO, 2019.

URL https://www.nationalgrideso.com/balancing-services/system-security-

services/black-start?technical-requirements.

[120] Entrepeneur Europe. How Machine Learning Is Changing the World -

and Your Everyday Life, 2018. URL https://www.entrepreneur.com/article/

312016.

[121] Department for Transport. National Travel Survey: 2020 - GOV.UK,

2020. URL https://www.gov.uk/government/statistics/national-travel-

survey-2020/national-travel-survey-2020.

[122] Google. Generalization — Machine Learning — Google Developers,

2022. URL https://developers.google.com/machine-learning/crash-course/

generalization/video-lecture.

[123] Department for Transport. National Travel Survey - GOV.UK,

2021. URL https://www.gov.uk/government/collections/national-travel-

survey-statistics.

[124] Department for Transport. National Travel Survey 2021: Quality report -

GOV.UK, 2022. URL https://www.gov.uk/government/statistics/national-

travel-survey-2021/national-travel-survey-2021-quality-report.

[125] Python Software Foundation. Welcome to Python.org, 1991. URL https:

//www.python.org/.

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/836626/20191003_E3C_Interim_Report_into_GB_Power_Disruption.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/836626/20191003_E3C_Interim_Report_into_GB_Power_Disruption.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/836626/20191003_E3C_Interim_Report_into_GB_Power_Disruption.pdf
https://www.ft.com/content/8b738eac-c024-11e9-89e2-41e555e96722
https://www.ft.com/content/8b738eac-c024-11e9-89e2-41e555e96722
https://www.nationalgrideso.com/balancing-services/system-security-services/black-start?technical-requirements
https://www.nationalgrideso.com/balancing-services/system-security-services/black-start?technical-requirements
https://www.entrepreneur.com/article/312016
https://www.entrepreneur.com/article/312016
https://www.gov.uk/government/statistics/national-travel-survey-2020/national-travel-survey-2020
https://www.gov.uk/government/statistics/national-travel-survey-2020/national-travel-survey-2020
https://developers.google.com/machine-learning/crash-course/generalization/video-lecture
https://developers.google.com/machine-learning/crash-course/generalization/video-lecture
https://www.gov.uk/government/collections/national-travel-survey-statistics
https://www.gov.uk/government/collections/national-travel-survey-statistics
https://www.gov.uk/government/statistics/national-travel-survey-2021/national-travel-survey-2021-quality-report
https://www.gov.uk/government/statistics/national-travel-survey-2021/national-travel-survey-2021-quality-report
https://www.python.org/
https://www.python.org/


254 References

[126] Pandas Dev Team. pandas - Python Data Analysis Library, 2010. URL

https://pandas.pydata.org/.

[127] Charles R. Harris, K. Jarrod Millman, Stéfan J. Van der Walt, Ralf Gom-
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