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Preface

My PhD at the University of Leeds comes as part of the QuanTII (Quantitative

T cell Immunology and Immunotherapy) ITN European network funded by the

Horizon 2020 programme of the European Union (No.764698, https://quantii.

leeds.ac.uk/). This training and research H2020 network has both academic

and non-academic beneficiaries and I have been hosted, since the beginning of

my PhD, by Bayer AG with headquarters in Leverkusen (Germany). As an

early-stage researcher of QuanTII, my research project was focused on T cell

immunotherapies and, in particular, on developing new mathematical models

of T cell exhaustion during chronic viral infection or cancer; indeed, a deeper

understanding of this biological process might bring to the development of novel

treatments and relevant for immunotherapies.

After the first virtual onboarding period, I have been visiting the University

of Leeds for three months during which I met my professors in person and at-

tended required modules. During this period, Professor Carmen Molina-Paŕıs and

I started a collaboration with Professor Susan Kaech and a post-doctoral scientist

in her group, Dr. Thomas Mann, both at the Salk Institute for Biological Studies

in La Jolla, California (US). Kaech Lab aims to shed light into the mechanisms

of development of immunological memory and T cell exhaustion as well as to

enhance the efficacy of immunotherapies, including checkpoint blockade. After

months of virtual collaboration, I obtained a scholarship to have the opportunity

to visit Kaech Lab and Dr. Mann. The in vitro experiments Dr. Mann carried

out were based on a novel optogenetic technique and were intended to stimulate

CAR-T cells and analyse different emerging populations from a “functional” to an

“exhausted” phenotype. The aim of the visit, planned for summer 2020, was to
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enhance the mathematical and computational models of CD8+ T cells differenti-

ation during exhaustion that were set up during the virtual collaboration. Model

inference and parameter estimation should have been based on Dr. Mann experi-

mental measurements. This was considered, as part of QuanTII secondment, one

of the requirements of the network to ensure PhD student to receive interdisci-

plinary training in the fields relevant for their research. This work would have

constituted the main content of my PhD thesis. However, the originally planned

experiments revealed the complexity of the exhaustion landscape. Specificity of

population properties and experimental challenges, that were unforeseeable be-

fore, came up and the focus of the experiment has been then refined to investigate

a signalling cascade upon cell activation first. Moreover, the SARS-CoV-2 pan-

demic hit only few months before my arranged visit; the laboratory was closed

for several weeks and the experiment delayed. Nevertheless, the collaboration

has been fostered by regular weekly virtual meetings to push an exchange of both

biological and mathematical knowledge. This work, carried out during the first

year of my PhD, constitutes the content of Chapter 6. Importantly, I want to

underline that the mathematical techniques that I learnt with the idea of ap-

plying them to model CD8+ T cell exhaustion process, in collaboration with

the Salk Institute, could be also applied to parameterise different deterministic

mathematical models.

In addition, I was offered a research visiting status by CNLS (Center for Non

Linear Studies in the Theoretical Division) at Los Alamos National Laboratory

in New Mexico (USA), where my Professor C. Molina-Paŕıs currently is. Unfor-

tunately, also this visit was postponed given the Presidential Proclamation and

travel ban during the COVID-19 pandemic. However, the collaboration has been

fostered by regular weekly virtual meetings; this was precious for the conceptu-

alisation and supervision of the work published in Feliciangeli et al. (2022). This

work of a more theoretical nature, and reported in Chapter 3, has been partic-

ularly pushed by my supervisors and I during the SARS-CoV-2 pandemic and

travel ban. From this initial work, I started further analysis to consider time

dependency or different biological transitions. These further studies are reported

in Chapters 4 and 5 which is published in Dreiwi et al. (2021). This explains why
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my PhD thesis contains mathematical models of such different mathematical na-

ture: from a stochastic, more theoretical model to a deterministic one applied to

experimental data.
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Abstract

In this PhD thesis, mathematical models for cell differentiation are presented.

Cell differentiation is a widely observed process in cellular biology allowing a

small pool of not specialised cells to develop and maintain a bigger population of

cells with a specific function. Different mathematical techniques are employed in

this thesis, to study cell differentiation process.

We propose a time-independent stochastic mathematical model to represent a

general differentiation process via a sequence of compartments. Since we are

interested in the ultimate fate of the system, we define a discrete-time branch-

ing processes and consider the impact, on the final population, of cells passing

through only one or multiple compartments. Further, we include time dependency

and define a continuous-time Markov chain to analyse cells dynamics along the

sequence of compartments over time. Also, we focus on the journey of a single

cell over time and compute a number of summary statistics of interest. Moreover,

the impact of different types of differentiation events is considered and numeri-

cal results inspired by biological applications, mainly related to immunology, are

summarised to illustrate our theoretical approach and methods.

In the last Chapter, we focus on a specific cell differentiation process: cells of the

immune system have been observed to differentiate towards a dysfunctional state,

called exhaustion, during a chronic infection or cancer. One of the aims of this

PhD thesis is to shed light into the exhaustion-differentiation process of CD8+

T cells and its reversibility which is a topic of interest for the current and future

development of immunotherapies. In particular, based on data collected by the

Kaech Lab, several deterministic mathematical models are defined to investigate

cells’ trajectory towards the exhausted state as well as the duration of the antigen

signal at early time point of stimulation.
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Chapter 1

Biological introduction

Humans, animals, plants, and even fungi are multicellular organisms made up

of several types of cells specialised for various functions and working together to

perform tasks and maintain the body in a steady state of internal conditions,

called homeostasis. All cells have the same DNA (genetic information), and are

only the variations in their gene expression (which genes are turned on or off)

that cause cells to acquire different functions. Cell differentiation is the process,

controlled through changes in gene expression, of cells becoming more specialised.

At the beginning of the differentiation process, cells retain pluripotency as the

potential to become any cell type; this is slowly lost as cells differentiate gaining

specialised functions. Stem cells are special human cells retaining the potential

to develop into many different types of cells. This term, however, has a specific

meaning in biology and stem cells, categorised into embryonic and adult stem

cells, are a clearly defined type of cells. A terminology inspired by this specific

cell type is nevertheless commonly applied even to other differentiation processes.

So, generally speaking we can say that stem-like cells are able to differentiate into

multiple cells of a restricted lineage and, thus, give rise to more matured cells

performing specific functions. Within the human body there are a large number

of differentiation processes occurring, wherever specialised cells are generated.

Mathematical models of cell differentiation can be defined appropriately for dif-

ferent types of differentiation process and, then, used to explain biological data.

Moreover, by fitting the model to experimental data, one can shed light into cell

behaviour relating cellular rates of more progenitor or mature cells, as well as
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into differentiation timelines or to related pathological conditions. Examples of

different types of differentiation, analysed from a mathematical perspective, are:

keratinocyte differentiation and psoriasis pathogenesis (Zhang et al., 2015), differ-

entiation of cells of the human gastrointestinal tract (Murray et al., 2011), blood

cell differentiation and hematopoiesis (Barile et al., 2020; Busch et al., 2015), can-

cer differentiation as in chronic myeloid leukaemia (Michor et al., 2005), T cell

development and thymus selection (Sawicka et al., 2014; Yates, 2014) or the T cell

dysfunctional exhaustion process, detailed in this PhD thesis.

A differentiation process is not restricted to different cell types, but it might

involve different spatial locations as well, such as in the keratinocyte differenti-

ation process. The epidermis, the outermost layer of skin, is organised into a

stratified structure of cells, called keratinocytes, characterised by several differ-

entiated stages. During its lifespan, a keratinocyte spatially transits from a more

inner to an outer stratum, experiencing several biochemical and morphological

changes (Montagna et al., 1992). Similarly, for the colonic cell differentiation

process. The endothelial tissue of the human gastrointestinal tract consists of

several cell types with different functions, from an outermost layer that acts as a

protective barrier and absorbs nutrients to an inner one of proliferative stem-like

cells. In their model, Murray et al. (2011) aim to investigate cell proliferation

and movement of cells in the intestinal crypt (invaginations typical of the colonic

tract).

Moreover, a same differentiation hierarchy can apply to both a healthy and

cancerous system, showing that a cancer population of cells might arise from cell

mutations generating a subpopulation with different cellular events rates. This

is the case considered in Michor et al. (2005), where a mathematical model rep-

resenting stem-like cells, progenitors, differentiated and terminally differentiated

cells is defined. If this hierarchy applies to both normal and leukaemic cells,

differences arise from leukaemic stem-like cells highly dividing by self-renewal.

In many of these examples, the immune system is somehow involved and

considered. This is a complex system composed by a variety of different cell

types and organs harmonised and working together to ensure our health and

fights external dangerous agents. A key role is played by the white blood cells

(also known as leukocytes) that, as part of the immune system, circulate in the
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1. BIOLOGICAL INTRODUCTION

blood, locate the site of an infection and defend the body against infections. T

cell, also called T lymphocyte, are a specific type of leukocyte that originate in

the bone marrow and mature in the thymus. In particular, CD8+ T cells, also

known as killer T cells, are immune cells that are specialised in direct killing

external agents. During cancer or chronic infections, CD8+ T cells progressively

differentiate into a dysfunctional state, called exhausted state, leading to cancer

or pathogen immune evasion (Janeway et al., 1999).

A differentiation process, arising from diverse stimuli both in space and time,

is not always an irreversible process: in some cases, specific set of genes can be

reprogrammed so that the cell is back to a more primitive state. This is the hope

for the dysfunctional process of exhaustion. Indeed, reversing T cell exhaustion

would have the potential of restoring an effector immune response; thus, several

cancer immunotherapies are directed to reinvigorate exhausted CD8+ T cells.

However, on the one side, the molecular and cellular mechanisms which drive

T cell exhaustion are not clearly identified; on the other side, it has not clearly

determined if, and when, a point of no return for T cell exhaustion-differentiation

pathway exists as well as if there is only, or more, subsets of exhausted T cells

that positively respond to immunotherapy. The partial understanding of T cell

exhaustion process leads to drawbacks within cancer immunotherapy. Despite

important improvements in cancer treatment, disease relapse eventually occurs

in many patients, with higher occurrence in specific tumour type and stage, and

according to patient conditions. Thus, a better understanding of the process

of exhaustion development as well as of the impact of immunotherapies on this

dysfunctional state, would be beneficial for enhancing patient survival (Barber

et al., 2006; Chow et al., 2022; Hashimoto et al., 2018). Parallel to this, a new

treatment arose: transfer into the patient of autologous (from patient itself)

T cells engineered with a chimeric antigen receptor (CAR T cells) directed against

specific tumour markers. Few studies have been performed on exhausted CARs,

but this could be of crucial importance to improve the efficacy of novel CAR

T cells treatments. Fundamental questions remain still open about how and why

T cells become dysfunctional under a persistent stimulation, such as in cancer

and chronic infections. Moreover, the antigen load, the degree of exhaustion as
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well as the type of infection seem to impact the reversing of exhausted T cells to

a functional effector state.

Within this PhD thesis we particularly focus on immune processes in the con-

text of T cell development and CD8+ T cell exhaustion-differentiation process

(towards a dysfunctional state). In particular, this Chapter comes as a review

of the biological literature relevant for this PhD project. In Section 1.1 we out-

line the main concepts about immune system activation and, in particular, about

the role of CD8+ T cells; here, biological details about the thymocytes selection

process are also given. In Section 1.2 we focus on the dysfunctional state of ex-

haustion, its reversibility and its drawbacks in cancer immunology. Some of the

aforementioned types of differentiation process are considered as an application

of theoretical techniques in this PhD thesis; for example, the developed math-

ematical techniques are illustrated with a case study about hematopoiesis (see

Section 5.2.2). Deterministic mathematical models for CD8+ T cell exhaustion

process are defined in Chapter 6 based on the collaboration with Prof. Kaech of

the Salk Institute for Biological Studies (California, USA). Moreover, the reader

can find a mathematical application of the thymocytes selection process in Sec-

tions 5.2.3 and 3.5. In Chapters 3, 4 and 5 we propose a general stochastic

model of cell division, death and differentiation (or migration) across an ordered

sequence of compartments that can represent different types of biological differ-

entiation processes.

As mentioned, cell differentiation is driven by changes in gene transcription

(gene expression), triggered by cells receiving multiple stimuli from surrounding

environment and cells. This results in a complex mechanism and is the subject of

ongoing research. Recent studies highlight the role of asymmetric division (Berika

et al., 2014) as taking part in cellular differentiation in niche-adjacent cells, where

it is more likely that two halves of a cell receive different signals. When cells di-

vides by asymmetric division, the two daughter cells will have different develop-

mental fates. Also, embryonic stem cells are known to divide by asymmetric cell

division, so that one of the two daughters will differentiate into a specific lineage

and the other cell may continue to remain as a stem cell still dividing asymmet-

rically. This particular type of cellular division is considered in the mathematical

models defined in Chapters 3 and 5.
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1.1 The body’s security force

1.1.1 The immune system and chronic infection

Viruses and bacteria on Earth are estimated to be more than 1031 and they are

essentially in every environment (Mushegian, 2020); when eating, breathing and

just living, we are constantly exposed to other microorganisms. Fortunately,

some of them can even be beneficial and only a few have a negative effect on

us, ending up infecting the body and causing diseases. Those are the pathogens,

defined as microbial organisms that cause diseases to the host (human, animal

or plant). Viruses, bacteria, fungi, and parasites are the most common types of

pathogens. They can cause a variety of different diseases: from a more to a less

severe infection, as well as a short, longer or recurrent infection persisting in our

body.

The immune system recognises a pathogen by the expressed antigens, that

are molecules on the surface of the pathogen that uniquely identify its type. As

soon as the pathogen is recognised, the immune system is triggered and starts

producing cells that are able to attack and eliminate the pathogen. At the same

time, the immune system starts producing small molecules, called antibodies,

that bind to the pathogen and allow more types of cells of the immune system

to recognise and attack it. This antigen-antibody trigger is the foundation of the

immune system specificity; indeed, antigens are expressed either on the surface of

pathogens but also on allergens, proteins, tumour cells or normal cells. Generally

speaking an antigen is, indeed, a marker (usually a protein) that the immune

system recognises as “foreign” or “dangerous” and, thus, it triggers activation of

the immune response against it.

Technically, the immune system is divided into two subsystems, the innate

and the adaptive immune system. The innate system is the first line of defence

against pathogens. Cells of the innate system are able to recognise antigens and

mount a quick response. The adaptive immune system takes longer to mount an

effective response upon pathogen recognition but it has evolved to provide a ver-

satile response, thanks to the ability to generate pathogen-specific receptors. In

addition, the adaptive immune system provides protection against subsequent re-
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infections of the same pathogen. It is, indeed, characterised by an immunological

memory and the latent presence of an antigen-specific population of memory im-

mune cells that can rapidly respond upon secondary or subsequent infection. In a

subsequent response to the same antigen, previously generated memory cells are

rapidly activated leading to a response that is quicker and more effective than the

primary one. Dendritic cells, monocytes, macrophages, granulocytes, and natural

killer T cells are the cellular components of the innate immune system; whereas,

T and B lymphocytes are the cellular elements of the adaptive immune system.

The synergy between the adaptive and innate immune systems is critical for the

elimination of infectious agents: the flexibility and the immunologic memory of

the adaptive immune system relies upon the innate immune system for a proper

initiation and direction of antigen responses.

T lymphocytes are antigen-specific cells of the immune system developing in

the thymus and having a key role in determining either pathogen clearance or

its persistence. During a typical acute infection, a rapid and large pathogen

production is observed. The immune system gets activated and is able to ef-

ficiently clear the infection in a short time (within around 2 weeks) (Janeway

et al., 1999). However, if the primary infection is not cleared and the pathogen

continues replicating either latently or in specific niches, the infection persists

leading to a chronic infection. In this case, the immune system is constantly ac-

tivated without reaching pathogen clearance; examples of chronic infections are

Herpesvirus, HIV or Hepatitis C (Janeway et al., 1999).

In order to accomplish both short and long-term goals in fighting the pathogen,

T cells have developed a specific ability, called T cell plasticity : according to

the environmental conditions (such as nutrients, oxygen and glucose levels and

signals released from surrounding cells), T cells are able to differentiate into

several types (Buchholz et al., 2013; Gerlach et al., 2013). Cells’ plasticity is

higher for less differentiated cells and decreases as cells differentiate further to a

more stable terminal differentiation state. This ability allows T cells to give rise,

upon infection, to heterogeneous subsets of cells, each characterised by different

functions. With the advancement of flow cytometry technology, it was possible to

analyse, on one single cell, a greater number of expressed proteins simultaneously;

in this way, specific differentiation subsets of an heterogeneous pool of cells can
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be identified (Kaech et al., 2002a; Sallusto et al., 1999; Wherry et al., 2003).

With the advent of single-cell technologies, it was possible to look at DNA and

RNA sequences and thus, analyse the transcriptomes, epigenomes, as well as

clonotypes (TCR repertoire) of T cells (Beltra et al., 2020; Chen et al., 2019;

Pauken et al., 2016). These technologies open the door to a deconvolution of

T cell heterogeneity but, given the broadness of the topic, a full understanding

of the undergoing molecular and signalling processes might be still lacking.

In both an acute and chronic infection, subsets of T cells for either a short

and long-term control of the pathogen have been observed. However, if in an

acute infection the antigen is cleared, the inflammation is resolved and long-

term memory cells are generated upon pathogen clearance. In a chronic infection

the long-term fate of T cells is a dysfunctional state, usually called exhausted

state (Chen et al., 2019; Khan et al., 2019; Seo et al., 2019; Thommen et al.,

2018). As pathogens, tumour cells are identified as “not-in-host” cells and are

targeted by the immune system. Similarly than in a chronic infection, during

cancer progression, the antigen stimulation persists and the immune system might

fail to efficiently control tumour development (McLane et al., 2019).

As mentioned, T cells can be divided, according to their functionality, into

a number of different subsets. For the purpose of this PhD thesis, we focus on

reviewing CD8+ T cell with an in-depth look at their exhaustion process.

1.1.2 CD8+ T cells killing force

Cells of the immune system originate in the bone marrow and migrate to different

parts of the body via the blood or the lymphatic system. Stem cells that reach

the thymus, a lymphoid organ of the immune system, differentiate into thymus-

derived cells (T cells). The thymus generates cells of the immune system and has

a great variety of spanning cells of different types. In particular, the thymus is

responsible for the maturation of stem-cell to mature CD4 or CD8 T cells, each

with a unique T cell receptor (TCR), that is a set of proteins on the cell’s surface

responsible for receiving signals. (Pham et al., 2015; Singer et al., 2008). A criti-

cal step in T cell maturation is making a functional TCR. Figure 1.1 summarises

the process of thymocytes development in the thymus. This starts with lymphoid
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precursor cells; these cells lack expression of both CD4 and CD8 co-receptors and

are, thus, known as double-negative (DN) thymocytes. DN thymocytes undergo

several differentiation steps, each of them defined by the cell-surface expression

of developmentally regulated markers, before reaching the so called pre-selection

DP thymocytes (pre-DP). In particular, according to thymocytes expression of

two receptors (CD25 and CD44), they can be further subdivided into DN1, DN2,

DN3, DN4 stages (Bailis & Pear, 2014; Ciofani & Zúñiga-Pflücker, 2007). At first,

cells enter the thymus as DN1 and, after a gene rearrangement at the TCRβ gene

locus is initiated, they progress to DN2. At the DN3 stage, cells start expressing

the pre-T cell receptor (pre-TCR), composed of pre-TCRα and TCRβ. Here,

there is a checkpoint as cells are now allowed to undergo β-selection process.

Cells entering this transition are subjected to dramatic changes in their tran-

scriptional profile, thus some studies differentiate the stages before and after the

β-selection into DN3a and DN3b stages (Pham et al., 2015). Cells arising from

this checkpoint proceed to DN4 stage. Further development involves the up-

regulation of both CD4 and CD8 co-receptors to generate double positive (DP)

cells. DP cells go through gene rearrangement at the TCRα gene locus; when

a mature TCR complex is expressed, thymocytes undergo the so called positive

selection. During this process, DP thymocytes undergo major histocompatibility

complex (MHC)-mediated selection. Post-DP cells that are positively selected

transition to the single positive (SP) stage, where they can express either the

CD4 or CD8 co-receptor. Thymocyte development is completed after the nega-

tive selection process: here self-reactive SP thymocytes are eliminated (Ciofani

& Zúñiga-Pflücker, 2007).

At the end of the process, only cells with a functional receptor, capable of

recognising foreign antigen, survive and leave the thymus. Cells exiting the thy-

mus, called näive T cells, express either CD4 or CD8 molecules on their surface

and they are functionally monospecific for antigen recognition. Näive T cells enter

the periphery, meaning that they circulate in the blood, through the body, rather

than being localised to specific organs (such as the spleen or lymph nodes). Upon

encounter with a foreign antigen, they start differentiating and, thus, specialising

into different cell types. They can now be called mature T cells. According to

their function, T cells can be divided into helper T cells (called CD4+ T cells),
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Figure 1.1: Stages of thymocyte development. A lymphoid primed multipotent

progenitor (LMPP) that has migrated from the bone marrow, enters the thymus

and starts the differentiation process towards thymocyte maturation. Thymo-

cytes with a mature TCR complex undergo positive and negative selection to

eliminate both cells with TCRs incapable of interacting with host-MHC (major

histocompatibility complex from endogenous cells) as well as self-reactive cells.

Figure reprinted with permission (RightsLink service) from Bailis & Pear (2014).

regulatory CD4+ T cells, cytotoxic T cells (namely CD8+ T cells or killer T cells)

and memory T cells. For this PhD thesis, we focus on CD8+ T cells, specialised

in killing foreign agents as well as infected or tumour cells. We will review in

the remaining of this Section, the main concepts of CD8+ T cells activation and

signalling program; Section 1.2 is dedicated to the CD8+ T cells exhaustion dys-

functional state.
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T cell activation

The activation of näive T cells by antigen is one of the central events in an

adaptive immune response and quite a complex process. CD8+ T cells leaving

the thymus are characterised by one functional receptor specificity; they circulate

through the body until they recognise the specific cognate antigen on the surface

of an antigen presenting cell (APC), a second type of cells of the immune system.

When APCs come across an antigen, they break it apart and show on their

surface that specific part that can be recognised by specialised T cells. Indeed,

T cell receptors (TCRs) cannot recognise a “free” antigen, but they can bind to

it only using a specific structure, the major histocompatibility complex (MHC),

placed on the surface of the APC (see Figure 1.2). The encounter and binding

between a T cell and an APC initiates an adaptive immune response. A correct

activation of the T cell takes place only in the presence of a second binding with a

co-stimulatory receptor, such as CD28 (see Figure 1.2). Once the cell is activated,

it starts proliferating; a single näive CD8+ T cell can produce even 104 daughter

cells (Kaech et al., 2002b). These cells have extraordinary effector functions in

killing infected cells showing that specific antigen on their surface. However, they

do not live long: following pathogen’s clearance, more than 95% of the effector

cells die while the remaining small pool of CD8+ T cells ultimately develops into

long-lived memory T cells. Further details are given in Janeway et al. (1999).

Activated T cells express specific molecules to prevent their continuous and

persistent activation; these are called co-inhibitory receptors (IRs) and includes,

for example, CTLA-4 and PD-1 (Hashimoto et al., 2018; Janeway et al., 1999).

The delicate balance between co-stimulatory and co-inhibitory receptors signals

determines the T cell activity. The TCR signalling is triggered by the recogni-

tion of the cognate antigen peptide (small protein), but the T cell - APC binding

alone is not enough: T cell differentiation and survival and, thus, cell fade, are

driven by co-stimulatory and co-inhibitory receptors signalling (Chen & Flies,

2013). Mueller et al. (1989) show for the first time how co-stimulatory signals are

necessary for a functional T cell activation. Moreover, the expression of many

co-stimulatory and co-inhibitory molecules on the surface of T cells is also in-

duced after activation: co-signals are continuously varied in response to dynamic
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changes in environmental conditions (Chen & Flies, 2013; Chung et al., 2021).

Figure 1.2: Three signals are required for T cell activation. Presentation, to

a T cell, of the antigen peptide (Ag) via an MHC molecule on an APC cell;

the antigen is recognised by the antigen-specific TCR. This binding needs to be

stabilised by a co-stimulatory signal resulting from a second binding between

specific molecules on the surface of APCs and T cells. For example, the binding

between CD28 and CD80, on a T cell and APC respectively, triggers an activatory

signal, whereas other interactions, such as with CTLA4, generate an inhibitory

signal (see Section 1.2). Finally, a signal from cytokines produced by the antigen

presenting cell interacting with specific receptors on the T cell is required to drive

the T cell’s phenotype. Figure reprinted with permission (RightsLink service)

from Gutcher & Becher (2007).

Cell signalling and programming instructions

During an immune response, cells of the immune system communicate via differ-

ent signals. As soon as the pathogen is recognised and the immune system ac-

tivated, immune cells start producing cytokines. Cytokines are small molecules,

made by proteins, that cells release in order to communicate with other cells

(such as survival, proliferation, differentiation, functional activity and death sig-

nal); moreover, cytokines can be used to influence and stimulate cells’ behaviour,

e.g. movement towards the site of infection. The most common cytokines are

interleukins and interferons. For example, Interleukin-2 (IL-2) is known to fa-

cilitate the growth of immune cells and enhance their division rate. Whereas,
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interferon-gamma (IFN-γ) is a cytokine secreted mainly by activated CD4+ and

CD8+ T cells and whose expression is induced by other cytokines such as IL-

12 and IL-15. Secreted IFN-γ acts in upregulating MHC molecules and, thus,

it plays a role in regulating the antigen presentation during an infection or in

tumour micro-environment. However, what was just briefly described is an over-

simplification: cytokines biology is usually complex; they interact and influence

each other and might have different effects under different environmental contour

conditions (Dinarello, 2007; Janeway et al., 1999).

As ultimate effect, extracellular signals as cytokines are converted into intra-

cellular signals as transcription factors (TFs). TFs are proteins that regulate

gene transcription, the process by which genes of DNA are copied to make an

RNA molecule. The transcription of a gene is followed by its translation into a

protein that will be expressed by the cell and, eventually, influence its function.

In particular, TFs bind to the DNA sequence around the gene of interest and

they can either promote or repress the beginning of the transcription. In this

way, TFs can alter proteins synthesis (production) and, thus, cellular functions.

Overall, cell behaviour is determined by a delicate and complex balance: on the

one hand, signals and cytokines are transformed into specific nuclear informa-

tion and consequently determine TFs production; on the other hand, cytokines

production is regulated by transcription factors as a response to environmental

stimuli (Janeway et al., 1999; Muegge & K.Durum, 1990).

During T cells activation and differentiation, triggered by pathogen encounter,

cells with an identical genome (DNA sequence) transcribe, express and release

different proteins according to their functions and location; that is, T cells of

different types secrete different cytokines and produce different TFs to modulate

their function. These differences can be used for cells’ classification. T cell’s

phenotype results from cell cytokine production and cell surface markers, as well

as the inter-play between the multiple transcription factors that are co-expressed

within the cell (Evans & Jenner, 2013). Theoretically speaking, the cell’s pheno-

type can uniquely indicate the state of a cell, that is its type and its functional

activity.

Unfortunately, determination of cells’ phenotype relies onto advances in ex-

perimental techniques. Fluorescence microscopy is a broadly adopted method
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Figure 1.3: An example of a T cell density plot (Manescu et al., 2020). The

gating strategy allows to identify, from left to right, single cells, CD3+ cells as

well as CD4+ (bottom right, expressing low CD8) and the cytotoxic T cells on the

top left, expressing high CD8 and low CD4. Figure reprinted under the Creative

Commons License.

used for analysing cells and investigating their heterogeneity. In particular, flow

cytometry measures cell light scatters and the fluorescence intensities produced

by fluorescent-labelled molecules that have been previously loaded in the cells

sample. Figure 1.3 reports an example of how, using two labels, it is possible

to identify two different populations of T cells expressing CD4 and CD8 trans-

membrane proteins, respectively. If on the one hand flow cytometry provides

single-cell resolution, from the other the analysis can be carried out only for

some pre-selected markers that are known to characterise cell types. On the con-

trary, single-cell sequencing technologies allow DNA and RNA quantification: an

analysis of the genome can be done without need of prior knowledge about cells’

type. This flexibility, however, comes at a high cost per cell analysis; moreover,

a pre-enrichment of the cells (cells co-culture with nutrients) is often require to

increase sample size. Consequently, some subpopulations might be lost due to

their evolution during the enrichment period. Unfortunately, both these methods

provide only a single screenshot of the cells’ states, without giving insights into

the spatio-temporal dynamics. An analysis of cells’ states at different time points

is only possible if multiple measurements of the cells sample are acquired; this

comes with a higher cost in performing the experiment as well as an increase in

its complexity.

40

http://creativecommons.org/licenses/by/4.0/.
http://creativecommons.org/licenses/by/4.0/.
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1.2 CD8+ T cell exhaustion

In contrast to acute infections, in persistent chronic infections and cancer, most

effector CD8+ T cells become dysfunctional in the long-term. These cells have

been first observed at the end of the last century in Rafi Ahmed’s lab (Zajac

et al., 1998) and have brought immunologists to start wondering about how T cell

response differs between an acute and chronic infection. In chronic infections and

cancer, it has been observed that virus-specific CD8+ T cells persist but they lose

their effector functions and turn into a less functional state, commonly referred as

exhausted state (see Figure 1.4). Only more recent biological studies highlighted

the complexity of the exhaustion paradigm. In particular, studies carried out

by John Wherry’s lab on lymphocytic choriomeningitis virus (LCMV) chronic

infection were the first to characterise T cell exhaustion by a loss of inflammatory

cytokines, a high expression of inhibitory surface receptors, as well as a modified

transcriptional and epigenetic program (Wherry, 2011; Wherry et al., 2007).

Moreover, Shin & Wherry (2007) were the first to identify different populations

of exhausted cells. Only later, the process leading to T cell exhaustion has been

observed to be heterogeneous by many following studies (Im et al., 2016; McLane

et al., 2019; Miller et al., 2019; Paley et al., 2012; Wherry, 2011). In these terms,

CD8+ T cell exhaustion is a differentiation process, observed during chronic

infections, where cell lineage is comprised of stem-like progenitor exhausted cells

that, eventually, differentiate into a terminal and dysfunctional exhausted state.

However, the differentiation to this dysfunctional state might also be beneficial

for the body. If at the beginning of a chronic stimulation (such as HIV, hepatitis

or malaria) the immune system tries to destroy the pathogen and eliminate the

infection, with the differentiation of immune cells toward an exhausted state the

immune system tries to learn how to manage the infection, keeping the virus in

check without causing too much damage (Gao et al., 2022). T cell exhaustion is

also a major problem in human cancer; exhausted cells have been later observed

also in the tumour micro-environment characterised by a persistent antigen signal,

similarly to a chronic infection with a constant pathogen load (Schietinger et al.,

2016; Weinberg, 2013). Tumour cells have indeed develop a mechanism to trigger

T cell exhaustion and slow down the reaction of the immune system against
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them. We also see T cell exhaustion in autoimmunity, when immune cells are

also inappropriately chronically stimulated by parts of our own body. Here, when

T cell exhaustion is more severe, the immune response against our own cells is

lower and thus the symptoms of autoimmunity tend to decrease. Overall, in all

these three scenarios, the immune system needs to control and balance immune

cells count and development of immunopathologies.

Figure 1.4: Overview of the T cell differentiation process during an acute (on

top, light blue) and chronic (at the bottom, darker blue) infection. This Figure

highlights the divergence of the differentiation pathway in an acute and chronic

infections, as well as some similarities (such as between memory cells and pro-

genitor exhausted cells). Moreover, the loss of effector functions (proliferative

potential, IRs expression, epigenetic changes) during the differentiation path-

way from a progenitor to a more terminally exhausted state, is represented in a

qualitative way by the grey bars. Finally, the possibility, crucial in immunother-

apies, of restoring a functional response of terminally differentiated exhausted

cells is outlined: a dashed arrow depicts an hypothesesd reverse transition. Fig-

ure reprinted with permission (RightsLink service) from Blank et al. (2019).
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As depicted in Figure 1.2, a signal from antigen, a co-stimulatory signal,

i.e. IRs, and a signal from inflammation and soluble mediators, i.e. cytokines,

constitute the basic framework for T cell activation. Alterations of antigen and co-

stimulatory signals, typical of a chronic infection, will lead T cells to an exhausted

state, functionally different from the effector state observed in an acute infection

(a schema is reported in Figure 1.4). Moreover, during a chronic infection, the

landscape of cytokines (that is molecules floating in the extracellular medium

and influencing T cell activation and differentiation) released by cells is complex

and still not completely explored. For example, cytokines that are known to play

a role in the exhaustion fate are IL-10 and IL-2, promoting and antagonising

exhaustion, respectively (McLane et al., 2019). The possibility of tuning co-

stimulatory signals or cytokine levels and, thus, boosting the immune response,

is being exploited by many therapeutic strategies for cancer’s treatment.

In simple words, exhausted T cells are functionally impaired, unable to effec-

tively produce cytokines and clear the infected or cancer cells. More technically,

they have been defined by the following set of features (McLane et al., 2019;

Wherry, 2011; Wherry et al., 2007):

1. Loss of effector functions in a hierarchical manner. At early stages of ex-

haustion, T cells lose the ability to produce cytokines IL-2 and TNF (tu-

mour necrosis factor); a decrease in their cytotoxicity, that is the ability

of being toxic for infected or cancer cells, is also observed. This involves

a reduction of perforin and granzyme B release and, at later stages, a de-

crease in the production of IFN-γ. Final stages might bring cellular death

via apoptosis.

2. Loss of the ability to undergo homeostatic proliferation driven by IL-7 and

IL-15 cytokines. Exhausted T cells are, instead, maintained by a persistent

antigen signal that stimulates the proliferation of early exhausted cells.

3. Expression of multiple inhibitory receptors (IRs) in a sustained manner. In-

hibitory receptors can inhibit the immune activation signal and, thus, they

constitute a way cells can dampen their response and keep the immune

system in balance preventing immunopathology. Within the most studied
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IRs, there are PD-1 (programmed cell death 1) and CTLA-4 (cytotoxic T

lymphocyte-associated Antigen 4). If in an acute infection they are tran-

siently expressed by T cells, in a chronic infection PD-1 and CTLA-4 are

constantly produced by cells after activation. Similarly, both Lag-3 and

TIM-3 are IRs known to be expressed transiently during T cell activation

and differentiation, but they are kept to a sustained level in case of a chronic

infection. In general, the co-expression of multiple IRs is a common feature

of exhausted cells and, in most cases, other IRs are co-expressed with PD-

1. Therapeutic strategies have been developed exploiting the fact that, by

blocking the interaction of PD-1 with its conjugate ligand PD-L1, functions

of exhausted T cells can be partially restored (see Section 1.2.1).

4. Maintenance of a quiescence oxidative phosphorylation metabolism. Ex-

hausted T cells are not able to switch their metabolism to aerobic glycoly-

sis; the metabolic switch from a fatty acid oxidation pathway to glycolysis

allows, instead, functional effector cells to sustain the required enzymatic

activity and the transport of nutrients.

5. Distinct transcriptional and epigenetic profile compared to effector and

memory T cells. Transcriptional changes include genes encoding IRs, tran-

scription factors (as Tbet or TCF1), or molecules involved into cytokines

production, co-stimulatory signals as well as metabolic behaviour. In partic-

ular, molecules, such as Tbet or TCF1, can be expressed in both functional

effector or memory cells as well as in exhausted cells, but with a different

biology. Differences in the epigenetic profile involve changes in the accessi-

bility of chromatin regions, meaning there is a difference in cells’ phenotype

but not in their genotype. Chromatin changes affect proteins formation

and, thus, cells’ fate commitment.

Each one of these features, taken by itself, is not sufficient to clearly identify

an exhausted cell; but, taken all together, they characterise exhausted cells. How-

ever, the mechanisms behind this change of program as well as the reasons of its

origin still remain elusive. In recent years, several studies have been carried out
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defining a multiplicity of exhausted subsets each characterised by specific mark-

ers (proteins expressed on cellular surface). These results do not always align

and the inconsistencies between the subpopulations arising from different studies

might suggest the exhaustion-differentiation process to be more heterogeneous

and complex than what was originally thought (see Figure 1.4). One hypothesis

is that multiple distinct exhausted subsets are formed as a way to better fight a

chronic infection and adapt the immune response to minimise the damage and

keep low the antigen load (Utzschneider et al., 2013).

Recent techniques allow to analyse the transcriptional and epigenetic land-

scape of exhausted cells (Miller et al., 2019; Pauken et al., 2016) as well as the

importance of some factors, such as TOX (Khan et al., 2019; Scott et al., 2019),

in driving the exhausted-specific epigenetic program being established. Here, we

would like to give the reader an overview of the most common hallmarks that

have been used to analyse and characterise a functional-dysfunctional T cell pop-

ulation.

At the peak of the CD8+ T cell response in an acute infection, effector cells

can be divided into different subsets according to their expression of the IL-7 re-

ceptor and the inhibitory receptor KLRG1; in particular, at early stages, effector

cells lack both IL-7 receptor and KLRG1 and they differentiate into short-lived

effector cells (expressing KLRG1) and memory precursor effector cells (express-

ing IL-7 receptor) (Plumlee et al., 2013). Moreover, upon T cell activation, the

expression of the inhibitory receptor PD-1 (programmed death 1) is rapidly upreg-

ulated and decreased upon clearance (Sharpe & Pauken, 2018); this is not the case

in a chronic infection where the expression of PD-1 is maintained substantially

higher (Wherry & Kurachi, 2015). The role of PD-1 has been first investigated

by Day et al. (2006); resulting in PD-1 being the first, and still one of the most

important, markers for the dysfunctional exhausted state. Evidence supports the

proposal of a progressive differentiation process where PD-1 has an intermediate

expression in progenitor exhausted cells and a higher expression in a terminal

stage of exhaustion (Abdel-Hakeem et al., 2021; Blackburn et al., 2008; Mann

& Kaech, 2019). In particular, precursor exhausted cells have been described as

a PD-1int population, whereas a more terminal subset of cells as characterised

by PD-1+ (Blackburn et al., 2008; He et al., 2016; Paley et al., 2012). Studies
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of Utzschneider et al. (2016), Im et al. (2016) and Wu et al. (2016) focus, instead,

on TCF1, that is a transcription factor, namely T cell factor 1, essential for nor-

mal T cell development. They identify a TCF1+ progenitor exhausted population

and a TCF1− terminally exhausted population of cells. However, a recent study

of Chen et al. (2019) shows a non-homogeneous behaviour, over differentiation, of

the expression of PD-1 and TCF1 as both being strongly expressed already at day

8 of a chronic infection. They, thus, suggest the influence of PD-1 in preserving

TCF1+ cells and their mutual importance in determining cells fate. Overall, the

PD-1+ TCF1− subset is associated with a terminally exhausted T cell population,

whereas PD-1int TCF1+ cells are shown to be able to undergo antigen-driven pro-

liferation and, thus, retain stem-like behaviours (Beltra et al., 2020). Indeed, this

latter subpopulation shares several features with multipotent PD-1− TCF1+ cells

that are typical of an acute infection and can further differentiate into either the

above mentioned KLRG1+ cells or the memory precursor effector cells. Moreover,

lineage-tracing studies performed by Angelosanto et al. (2012), demonstrated that

terminal differentiated cells marked as KLRG1+ survive poorly during chronic in-

fection and cannot give rise to exhausted cells, whereas KLRG1− cells can give

rise to either memory-type cells or to exhausted cells. In general, gene studies

looking at gene chromatin regions highlight the key role of the interplay between

PD-1 and the transcription factor TCF1 in coordinating and maintaining the

formation of progenitor exhausted cells (Abdel-Hakeem et al., 2021; Chen et al.,

2019; Im et al., 2016; Kasmani et al., 2022). In addition, they clearly define a

distinct and stable (at day > 180 post clearance) epigenetic state of exhausted

cells compared to effector and memory cells.

After PD-1, one of the most studied surface molecules to identify exhausted

cells as well as enhance immunotherapy treatments is the co-inhibitory receptor

TIM-3. This is involved in the production of the IFN-γ cytokine (decreased in

exhausted cells, see point 1. of the exhaustion feature list) and, thus, it has a key

role in defining the immune responses in different T cell subsets. Several works

characterise terminally exhausted T cells as highly expressing PD-1 and TIM-3.

In particular, Wherry et al. (2007) and Wu et al. (2016) found that CD8+ T cells

differentiate into TCF1+ TIM-3− and TCF1− TIM-3+ even at early time points

(before 30 days after infection) of a chronic infection. These two subsets define
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a progenitor reversible exhausted state and a terminally exhausted state, respec-

tively. In addition, Im et al. (2016) and Seo et al. (2019) characterise terminally

exhausted T cells as highly expressing PD-1 and TIM-3; He et al. (2016) define

a more exhausted subset of T cells as less expressing the chemokine receptor

CXCR5 and highly expressing PD-1 and TIM-3. These observations, together

with the ones mentioned in the previous paragraph, could lead to the characteri-

sation of a terminally exhausted subset as PD-1+ TCF1− TIM-3+ and a progen-

itor subset of cells as PD-1int TCF1+ TIM-3−. However, the key steps in T cell

differentiation towards exhaustion are still not clearly defined, as several stud-

ies employ different markers and highlight different subpopulations; for example

the work of Beltra et al. (2020) reveals four different developmental states in the

exhaustion-differentiation process (from progenitor to intermediate to terminal)

according to the expression of PD-1 and TCF1 inhibitory receptors, chemokine

CXCR5 as well as Tbet, Eomes transcription factors. Similarly, Hudson et al.

(2019) suggest the existence of an intermediate exhausted state subdividing the

cell population according to TIM-3, TCF1 and CX3CR1 factors: the intermedi-

ate subpopulation, characterised by CX3CR1+, is still able to proliferate, whereas

the terminal population (CX3CR1−) can only undergo little to no division and

poorly contribute to viral control.

Moreover, details about how effector T cells become programmed, at early

time of stimulation, to terminal exhaustion have remained poorly understood un-

til now. Indeed, our understanding of the molecular and intracellular mechanisms

by which, even well-known, inhibitory receptors (such as PD-1) control T cell ex-

haustion is incomplete. Recent studies broaden the spectrum, investigating other

markers as well as the influence of cytokines. For example, Mo et al. (2021) found

that the IL-2 cytokine, known to promote expansion of T cells, can, at the same

time, drive terminal differentiation and induce expression of co-inhibitory recep-

tors such as TIM-3 and PD-1 (both hallmarks of exhaustion, see point 3 of the

exhaustion feature list). Moreover, it has been found that the population of PD-

1int TCF1+ progenitor exhausted cells might be maintained by TOX activation

and upregulation, highlighting the importance of this transcriptional factor (Alfei

et al., 2019; Khan et al., 2019; Mann & Kaech, 2019).
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In addition, Paley et al. (2012), Im et al. (2016), Utzschneider et al. (2016) and

Beltra et al. (2020) assess the heterogeneity of exhausted CD8+ T cells according

to the expression of Tbet and Eomes transcription factors. During an acute in-

fection, Tbet and Eomes are upregulated following T cell activation; they operate

in contrasting ways driving the development of KLRG1+ terminal effector cells

or of the memory phenotype, respectively. Whereas, in a chronic infection, Tbet

and Eomes are indispensable for the formation of exhausted cells. The behaviour

of these two subpopulations, that is proliferating TCF1+ and not proliferating

exhausted CD8+ T cells, is governed by these two transcription factors, Tbet

and Eomes (Paley et al., 2012): cells characterised by a high expression of Tbet,

demonstrated extensive division, whereas the ones expressing high Eomes were

associated with a more dysfunctional PD-1+ phenotype. Also, findings by Li et al.

(2018) support this hypothesis showing that high levels of Eomes are expressed

by severely exhausted PD-1+ cells. In addition, expression of the transcription

factor NFAT has been associated with an anergy (cell inactivation) and exhausted

state (Zhang et al., 2020), and it is suggested to drive the production of IFN-

γ (Teixeira et al., 2005). On the other hand, the program of NFAT (mechanisms

of NFAT accessing the genome) might be dictated by TOX, another transcrip-

tion factor downstream of NFAT (Seo et al., 2019), that we mentioned before as

driving the formation of PD-1int TCF1+ cells.

Co-stimulatory signals, induced for example by CD28 and 4-1BB molecules,

usually drive the activation, expansion, and differentiation of näive T cells; how-

ever, during chronic infections these same signals can lead to T cell exhaustion.

For example, CD28 is associated with increased susceptibility to exhaustion as

well as decreased T cell persistence compared to 4-1BB stimulation. Indeed, Kim

et al. (2020) underline how co-stimulatory signals can antagonise a functional re-

sponse of CD8+ T cells and, in the context of a hepatocellular carcinoma tumour,

they identify a population of exhausted T cells as expressing 4-1BB. In conclusion,

if persistency of antigen is necessary for exhaustion to arise, both IRs, transcrip-

tion factors and co-stimulatory receptors interact during T cell response, leading

to a complex landscape and contributing to T cell exhaustion,

Another crucial point, deeply investigated but still not fully clarified, of T cell

exhaustion research is the timeline of exhaustion to arise. For example, An-
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gelosanto et al. (2012) show how 15 days after the initial infection, T cells are par-

tially impaired but still retain some plasticity and effector functionality; whereas,

at day 30 after infection, these same cells are fully committed to an irreversible

exhausted state. This fits with the timeline for the transcriptional and epigenetic

exhausted profile being established (Philip et al., 2017). In addition, studies at

early time points after infection have been performed. Surprisingly, Khan et al.

(2019) found that the first signs of exhaustion arise within 4 days of infection: the

exhaustion transcription factor TOX begins to be expressed at day 4 of LCMV

chronic infection and cells expressing TIM-3 are visible within 6 days. However,

the question if these cells are already committed or they still retain plasticity

remains open. Utzschneider et al. (2020) suggest that exhaustion is imprinted

early during T cell activation, and inherited by progenitor cells. They show that

the divergence between a precursor and an effector type of cell is initiated early

during T cell activation: precursors TCF1+ TIM-3− (retaining high proliferative

potential) and terminal TCF1− TIM-3+ can be recognised already after three cell

divisions; moreover, they hypotheses that KLRG1+ cells are a subset of TCF1−

TIM-3+ cells.

In addition, a clear understanding of the stage at which CD8+ T cells make

the decision to change their intra-cellular state, responding to infection, and dif-

ferentiate, and of the differences between an acute and chronic infection, is miss-

ing. The landscape is quite complex as, on one side, the persistency of antigen

drives cells towards an exhausted state (lacking memory potential) and, on the

other side, similarities in expressed molecules between exhausted and memory

cells (e.g. TCF1) have been observed (Wherry & Kurachi, 2015). In particular,

Angelosanto et al. (2012) investigate when cells differentiation pathway starts

diverging towards exhaustion. Since an exhausted phenotype arises in case of a

sustained antigen stimulation, the initial hypothesis focused on exhausted cells

arising from terminal differentiated cells, that are effector cells subjected to mul-

tiple differentiation steps due to a sustained antigen stimulation. However, as

mentioned above in this Section, both long-lived memory cells in an acute infec-

tion and progenitor exhausted cells might arise from a subset of cells characterised

by a low expression of the KLRG1 inhibitory receptor. These two hypothesess

have not been confirmed by clear studies yet, also due to the difficulties in the
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analysis of memory cells (which are arising in long-term and thus require long

experiments). Also, a related open question is whether memory cells can commit

to an exhausted phenotype upon subsequent and sustained reinfection.

One of the problems in identifying, characterising and, thus, quantifying, sub-

sets of cells is that some surface receptors that have been observed to discriminate

a population are lacking of a corresponding antibody capable of fixed staining.

This prevents the possibility of analysing via flow cytometry exactly that marker

and requires the use of a workaround: use another protein with a known staining

antibody assuming that is expressed (or not expressed) in the population of inter-

est in the same way of the intended initial marker. For example, the chemokine

receptor CXCR5 lacks a corresponding staining antibody. For this, Im et al.

(2016) were pioneers in identifying two different subsets of CD8+ T cells accord-

ing to their expression of TCF1. In particular, the subset CXCR5+ TIM-3− was

identified by TCF1+ PD-1+, whereas subset CXCR5− TIM-3+ by TCF1− PD-

1+ cells. Note that, here, the stain on PD-1 has been used to distinguish näive

TCF1+ cells from the two subsets CXCR5+ and CXCR5−. Similarly, expression

of PD-1 can be used as a surrogate marker to separate subpopulations accord-

ing to Tbet and Eomes expression: cells PD-1int are associated with Tbet+ and

cells PD-1+ with Eomes+, respectively (Paley et al., 2012). Moreover, cellular

subpopulations can be identified only via known markers: panels of specific anti-

bodies (cellular markers) need to be decided before the flow cytometry analysis.

This brings to limitations when analysing a population of cells whose expected

subpopulations are still not well studied: one need to forecast relevant markers,

according to the known functional behaviour of the subpopulations of interest.

This is one of the reasons why several studies about the exhaustion-differentiation

process are carried out considering different markers. For example, Hudson et al.

(2019) analysed RNA data sets to systematically identify CD8+ T cells exhaus-

tion markers. Their results include surface proteins well-known to be associated

with exhaustion, such as inhibitory receptors PD-1, TIM-3 and Lag3, as well as

molecules with a less studied role in exhaustion. In particular, they focus on

the gene encoding the protein CD101 and show how the TIM-3 subpopulation

of terminal cells can be further subdivided into TCF1− TIM-3+ CD101− and
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TCF1− TIM-3+ CD101+ subpopulations. Since exhaustion is quite a novel re-

search area, the involved molecular mechanisms are not completely understood

yet and upcoming studies clarifying the underneath dynamics are expected.

1.2.1 Exhaustion reversibility and immunotherapies

In the previous Section, we have highlighted how the exhaustion-differentiation

process leads to an heterogeneous pool of cells: functional cells progressively de-

cline in their capabilities and diverge from their state towards a dysfunctional

one. This transition comes with epigenetic modifications that sustain the differ-

ent characterisation of exhausted T cells (Gray et al., 2017; Philip et al., 2017).

Epigenetic changes are driven by environmental factors and do not imply changes

in DNA sequence; they identify cell’s status and which genes are “turned on” to

make corresponding proteins and which, instead, “turned off”. In this perspec-

tive, cell epigenetic status can tell the spectrum of functionalities the cell is taking

over. Some epigenetic changes are stable, whereas some do not persist but can

still change during development and they are not transmitted to cell progeny. Epi-

genetic studies show that exhausted T cell subpopulations differ from the effector

or memory cells by approximately 6×103 open chromatin regions (Pauken et al.,

2016; Philip et al., 2017); but it is not clear at which differentiation stage those

changes are still plastic and when, instead, they become fixed. Consequently,

current standing questions are when and at which stage exhaustion becomes irre-

versible as well as at what extent exhausted cells can be reinvigorated. Preventing

epigenetic fixation or acting, i.e. via immune checkpoint blockade, when changes

are still plastic might be a method to counteract T cell exhaustion.

Recent studies show how this modified epigenetic state can persist despite ex-

hausted cells resting for a long time in absence of the antigen (Pauken et al., 2016).

However, the commitment to the exhausted phenotype seems to be reversible at

early stages; that is, some T cells can recover and reacquire effector functions

(killing and cytokine production, for instance). Barber et al. (2006) opened the

door to the studies about exhausted CD8+ T cells reinvigoration. They found

that functionally exhausted CD8+ T cells are characterised by a high expression
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of the PD-1 inhibitory receptor; and they showed how, by blocking PD-1 inter-

actions, exhausted cells could be rejuvenated (see Figure 1.5). More recently,

in vitro studies employing advanced technologies (Pauken et al., 2016; Sharpe &

Pauken, 2018), highlight that the epigenetic profile of functionally reinvigorated

(by PD-1 blockade) exhausted T cells differs only slightly from the exhausted

one. Consequently, a burst of reinvigoration is observed at the beginning of the

PD-1 blockade, but then, after the cessation of the treatment, CD8+ T cells re-

vert back to the previous exhausted state (proliferation and effector functions,

IRs expression).

Ways of reversing the effects of T cell exhaustion, such as immune checkpoint

blockade, i.e. PD-1 blockade (Tabana et al., 2021), are explored by cancer im-

munotherapy techniques (Raskov et al., 2021; Waldman et al., 2020). Inhibitory

receptors are fundamental to prevent autoimmunity, but many tumours exploit

these mechanisms to evade the immune system. The tumour cell (expressing

receptors as PD-L1 and PD-L2, for example) acquired the ability to bind to co-

inhibitory receptors (in this case PD-1) and impair immune response: T cells

perceive a negative, inhibitory signal and start losing their abilities showing ex-

hausted features similar to those observed in a chronic infection (McLane et al.,

2019). Thus, immunotherapies have been developed to modulate immune activ-

ity by blocking the binding between tumour and T cells; in particular, research

focused on the development of antibodies specifically formulated to target regula-

tory proteins, such as inhibitory receptors, expressed on the surface of exhausted

cells.

PD-1 is known to contribute to T cell activation, determining cell fate as well

as T cell return to homeostasis (Sharpe & Pauken, 2018). These observations

have been translated to the clinic and PD-1 pathway blockade has been made

the foundation of immunotherapy leading to the availability on the market of

nivolumab and pembrolizumab. These two drugs, based on PD-1 blockade, are

approved by the Food and Drug Administration (FDA) for treatment of some

types of solid cancer (such as melanoma (Huang et al., 2019) and non–small cell

lung carcinoma). Despite the proven success in enhancing the survival of can-

cer patients, the response is not homogeneous among tumour types as well as

52



1.2 CD8+ T cell exhaustion

Figure 1.5: Besides specific antigen recognition (provided by MHC-TCR bind-

ing, reported in red), T cell activation requires a co-stimulation signal for a full

response. Inhibitory receptors belong to the family of co-stimulatory signal de-

livering, instead, a negative signal to T cells: following their engagement, they

negatively modulate T cell activation to maintain self-tolerance and prevent exac-

erbated activation and autoimmunity. Tumour cells acquire the ability to employ

IRs signal to evade the immune system. In particular, PD-1 is one of the most

well-known inhibitory receptor and normally expressed on T cells. Many tumour

cells over-express PD-L1 (the corresponding binding receptor of PD-1) on their

surface, as a mechanism to lead to T-cell dysfunction and prevent proper immune

response (depicted in subfigure (a) ). Immunotherapies targeting IRs signalling

(in this case PD-1-PD-L1) have been developed: the administration of a specific

antibody that is able to bind PD-1 or PD-L1 receptor results in blocking the

inhibitory signal and, thus, in restoration of effector functions and significant

reduction of tumour load (Barber et al., 2006). Figure reprinted from Caldwell

et al. (2017) under the Creative Commons License.

patients clinical conditions (Hudson et al., 2019). Consequently, studies target-

ing others inhibitory receptors (such as CTLA-4 and PD-L1) have been carried

out; in addition, combinations of different therapies have been considered, i.e.
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multiple checkpoint blockade; checkpoint blockade and co-stimulatory signals; or

checkpoint blockade and radiotherapy.

Moreover, these antibody treatments are shown to be effective only on re-

stricted subpopulations. In particular, precursor TCF1+ cells, still able to pro-

liferate, can better respond to immune checkpoint blockade (Hudson et al., 2019;

Im et al., 2016). A burst in proliferation after PD-1 blockade is observed for this

subset of cells. In addition, it has been recently observed how mTOR inhibition

improves the efficacy of PD-1 blockade therapy by suppressing more differentiated

TIM-3+ cells and promoting further formation of progenitor TCF1+ cells (Ando

et al., 2023). Also, TOX knockdown (temporary stop or decrease of TOX ex-

pression) in tumour-specific CD8+ T cell exhibits synergy with PD-1 blockade

immunotherapy (Zhang et al., 2020). Novel and different approaches are con-

stantly studied and developed to face the complexities of tumour and immune

system interactions. For example, Kumar et al. (2020) focus on combining PD-1

blockade therapy with a boost of mitochondrial activity. Indeed, mitochondria

play a crucial role in managing the energy metabolism, and exhausted cells are

impaired being unable to switch to an aerobic glycolysis metabolism (see point

4. of exhaustion feature list). Consequently, a boost in mitochondrial activation

could enhance effects of PD-1 blockade therapy.

Overall, it is of crucial importance, for the development of any effective im-

munotherapies, to fully understand exhaustion mechanisms so that the opportu-

nities to prevent or reverse T cell exhaustion therapeutically can be enhanced.

In this sense, time is a key factor in cancer treatment: different patients survival

responses have been reported, depending on if the treatment has been adminis-

tered at early or late stage of exhaustion (Pauken & Wherry, 2015). Exhausted

cells that, during the first one to three weeks of a chronic infection, have been

adoptively transferred into uninfected mice, can recover and develop into long-

lived memory-type cells, suggesting a still plastic epigenetic profile (Angelosanto

et al., 2012). A question that researchers are currently facing is whether pro-

genitor TCF1+ exhausted cells are already committed to terminal exhaustion or

still able to revert their phenotype. Alternatively, a “precursor” reversible ex-

hausted state should be identified: several hypotheses have been made about this
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hypothetical state as a transition between a functional effector and a progenitor

proliferating TCF1+ exhausted state (Chen et al., 2019).

1.2.2 Overview of the experiment performed by the Salk

Institute of Biological Study

The exhaustion-differentiation process has been associated with progressive changes

in cells epigenetic profile (Pauken et al., 2016; Philip et al., 2017; Wherry et al.,

2007). While the long-term profile has been more studied and characterised, the

early events regulating exhaustion fate compared to an effector or memory one

still remain not well identified. Moreover, the first studies about CD8+ T cells

exhaustion and antibody blockade treatments have been performed with endoge-

nous CD8+ T cells (cells arising inside the body). Only in recent years, with the

advent of CAR T cell therapy as a potentially curative treatment, it has been

observed that engineered CD8+ T cells can become dysfunctional and acquire

exhausted features in a similar way as endogenous CD8+ T cells (Weber et al.,

2021).

For part of this doctoral project, a collaboration with Professor Susan Kaech

and a post-doctoral scientist in her group, Dr. Thomas Mann (both at the Salk

Institute for Biological Studies in La Jolla, California) has been carried out.

The research of Prof. Kaech and Dr. Mann focuses on exploring the in vitro

CD8+ T cell differentiation towards an exhausted phenotype at early time points.

In particular, they employ novel optogenetic approaches and use blue light to

perform a precise and high-throughput investigation of how engineered T cell

signalling dynamics influence cell fate towards an effector or exhausted state. As

mentioned, the experimental conditions focus on early time scales: in the carried

out experiments T cells are optogenetically stimulated in a range of duration

intervals within 48 hours. Sample data are analysed by flow cytometry to identify

the different populations of CAR T cells, from functional effector to a progenitor

and terminally exhausted phenotypes.

In particular, Dr. Mann has made use of an optogenetically controllable

version of a chimeric antigen receptor, named “OptoCAR”, that is sensitive to

blue light and, thus, allows to control signal dynamics in the T cell receptor
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pathway. The engineered receptor can transduce antigen signal when the cell is

in the dark, but signalling is inhibited when the cell is exposed to blue light.

That is, when cells are in the dark, the antigen signalling is mediated by blue

light which stimulates the binding of a light sensitive domain, attached to the

engineered cellular receptor (light blue in Figure 1.6), and a peptide, attached

to the signalling domains of the CAR. A schematic representation is reported

in Figure 1.6. Going more into biochemical details, the so called LOVTRAP

optogenetic system (depicted in red) is made of two different domains, the LOV

and the Zdk fragments, that are inserted within the signalling chain from the

cellular membrane to the CAR’s signalling domain (where the signal starts the

downstream pathway towards the nucleus). In light time, the two fragments are

separated and the transduction is prevented. Re-association of the LOV-Zdk is

required to reactivate the signal: in the dark, indeed, the two halves gradually

re-bind (over a period of 5-10 minutes) so that, once bound, the signal can be

transduced by the receptor.

Figure 1.6: In orange the target cell; in light blue the CD8+ T cell surface

receptor. In the dark, the two halves of the LOVTRAP domain (in red) are bound

and the TCR signalling cascade is induced. Whereas when cells are enlightened,

the signal coming from the antigen-receptor binding is not spread (the LOV and

the Zdk fragments are separated) and the signalling cascade not initiated.

For this experiment CD19 CAR T cells have been used, i.e. CARs have been

engineered to recognise CD19 antigen (in orange in Figure 1.6). Cells have been

cultivated under specific cytokine conditions (intermediate IL-2), CD19 peptide

has been presented to the cells for a time window of 18 to 24 hours; then, cells
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have been washed from the antigen before the start of the actual optogenetic

experiment. Only cells showing CD19 receptor (a blasticidin selection has been

applied) and cells that have positively received the OptoCAR vector (mScarlet

fluorescence protein has been used as a transduction marker), and are thus Op-

toCAR+, are then placed in the wells ready for the blue-light stimulation period.

The special optoPlate-96 used for the experiment is depicted in Figure 1.7. Cells

that have been stimulated with different light duration, are then collected after 48

hours and analysed via flow cytometry. This method allows to gather single-cell

resolution data on which proteins are expressed: by quantifying the variation in

proteins’ expression one can identify different subsets of cellular populations.

Figure 1.7: An expanded view of the optoPlate-96 showing its components. The

96-position LED array can independently illuminate each well. Figure reprinted

with permission (RightsLink service) from Bugaj & Lim (2019)

A preliminary study to identify relevant exhaustion markers that could char-

acterise effector and exhausted differentiation states has been performed by Dr.

Mann. As outlined in previous Section, inhibitory receptors PD-1 and TIM-3 and

the transcription factor TCF1 have a clear expression in the exhausted T cell pop-

ulation (Mann & Kaech, 2019; McLane et al., 2019; Wherry et al., 2007). The
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data collected by the collaborators and used for the mathematical modelling re-

ported in Chapter 6, focus on TIM-3−TCF1+ and TIM-3+TCF1− populations,

as characterising a progenitor reversible and a terminally exhausted state, re-

spectively. Unfortunately, markers specific for functional effector differentiation

states, could not be identified within reasonable time to be included in this PhD

thesis.

After the 48 hours of optogenetic experiments, cells are withdrawn from the

wells and analysed via flow cytometry. A preliminary step to the analysis is

the cells’ staining: cells are labelled with fluorescence antibodies for the target

markers so that corresponding fluorescence intensities can be measured by the

flow cytometer and thus cellular populations can be tracked. Unfortunately, a

loss of cells has been observed during the staining procedure; in order to quantify

it, some beads are added at the beginning of the staining. The collected number

of beads out of the initial amount represents a correction factor for the total

number of cells reported for each well.

The optogenetic experiment considered within this PhD project was repeated

seven times between August and December 2020. In each experiment repeat,

cells placed in different wells have been stimulated for different lengths of time.

In particular, at the beginning of the optogenetic experiment, all the wells are

placed in the dark (LOVTRAP domain bound); the time when light is switched

on (antigen signalling interrupted) differs for each of the 96 wells of the plate.

The provided data consider 36 different signal lengths administrated among the

total duration of 48 hours. Regardless of the length of the light period, cells

have been collected and analysed via flow cytometry only at the end of the 48

hours of the optogenetic experiment. Percentages of TIM-3−TCF1+ and TIM-

3+TCF1− exhausted population of cells have been measured for different antigen

stimulation periods. The question of how the length of the antigen stimulus,

and thus the duration of the dark delay, affects T cell differentiation towards an

exhausted state, has been addressed by Dr. Mann.
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Chapter 2

Mathematical background

This Chapter details the important concepts, definitions and methods about the

theory of stochastic processes and Markov chains which are applied in this thesis

to represent the intrinsic randomness involved in biological systems such as the

T cell differentiation process and thymocytes development. In Sections 2.1 and 2.2

of this Chapter, we report some of the most relevant concepts in probability theory

and the theory of stochastic processes, respectively. For large populations of cells,

random fluctuations can typically be ignored and deterministic models can be

used to study such biological systems. Experimental data sets and quantitative

models can be brought together with Bayesian inference to quantify and identify

molecular and cellular mechanisms or timescales. We give in Section 2.3 an

overview of the statistical techniques which will be used in this thesis. Also,

in Section 2.4 analytical methods to analyse the parameter space are reported.

Finally, we present in Section 2.5 the key concepts and methods that are applied

to study the differential equations arising in both the deterministic and stochastic

processes of interest for this thesis.

2.1 Probability theory

In Chapters 3, 4 and 5 of this thesis, we use branching processes or continuous-

time Markov chains to model cell differentiation. Thus, we present in this Section

the probability theory required to understand such stochastic processes. In Sec-

tion 2.2, stochastic processes will be introduced.
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2.1.1 Random variables, independence and conditional prob-

ability

In probability theory, a sample space S is a set, a collection of objects. Each

element of S is called a sample point and each subset of S is referred to as

an event. For example, when tossing a coin we can get head (H) or tail (T ).

The sample space is {H,T} and an event may be {H}, {T}, {H,T} and ∅. In

general, for any experiment, the sample space is the set of possible results from the

experiment. Moreover, we can formally define the probability space underlying

the random experiment.

Definition 2.1 (Properties of A). Let S be a sample space and A a collection

of subsets in S. Then, A is called the σ-algebra of events and has the following

properties:

• S ∈ A,

• if B ∈ A ⇒ BC ∈ A where BC denotes the complement of B,

BC = {s : s ∈ S, s /∈ B} ∈ A,

• if Bn ∈ A for n = 1, 2, 3, . . . ⇒
+∞⋃
n=1

Bn ∈ A.

Definition 2.2 (Properties of P). The function P : A → [0, 1] defined on the σ-

algebra A is called the probability measure or probability function. In particular,

P and has the following properties:

• P(S) = 1,

• if {B1, B2, . . . } are mutually exclusive events in A, that is Bi ∩ Bj = ∅ for

i ̸= j and i, j = 1, 2, . . . , then

P

(
+∞⋃
i=1

Bi

)
=

+∞∑
i=1

P(Bi).

Definition 2.3. A probability space describing a random phenomenon is a triple

(S,A,P), where S is the sample space, A is the collection of subsets or events in

S, and P is a probability function defined on A.
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We now introduce the concepts of conditional probability and independence.

Definition 2.4 (Conditional probability). Let (S,A,P) be a probability space

and B1, B2 ∈ A two events. Given P (B2) > 0, the conditional probability of

event B1 given event B2 is defined as

P (B1|B2) =
P (B1 ∩B2)

P (B2)
.

Definition 2.5. Let (S,A,P) be a probability space and B1, B2 ∈ A two events;

B1, B2 are said to be independent if and only if

P (B1 ∩B2) = P (B1)P (B2).

In other words, the occurrence of either one of the events does not affect the

probability of occurrence of the other, P (B1|B2) = P (B1).

Theorem 1 (Law of total probability). Let {B1, . . . , Bn} be a partition of a

sample space S, then for any event A in the sample space S,

P (A) =
n∑
i=1

P (A|Bi)P (Bi) .

Theorem 1 has a key importance in the formulation of the first-step analysis

carried out in Sections 5.1.2, 5.1.3. We can now formulate the Bayes theorem

which is the most important concept used in Section 2.3 for Bayesian methods.

Theorem 2 (Bayes theorem). Let {B1, . . . , Bn} be a partition of a sample space

S, and let A be an event in the sample space S such that P (A) > 0. Then, for

i = 1, . . . , n, the conditioned probability of Bi given event A is

P (Bi|A) =
P (A|Bi)P (Bi)

P (A)
=

P (A|Bi)P (Bi)∑n
j=1 P (A|Bj)P (Bj)

.

A central concept of probability theory is a random variable whose value depends

on the possible outcomes in S.
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Definition 2.6. Let (S,A,P) be a probability space. A random variable X is

a real-valued function defined on the sample space S, X : S → R, such that

∀a ∈ R
X−1(−∞, a] = {s ∈ S : X(s) ≤ a} ∈ A.

The range of X, also called state space or support of the random variable X is

defined as the set of all the possible values that X can take

SX = {x ∈ R : X(s) = x, s ∈ S} ,

The random variable X is called a discrete random variable if the state space

SX is finite or countably infinite; if the state space is uncountably infinite, the

random variable X is said to be a continuous random variable.

2.1.2 Cumulative distribution function and probability mass

and density function

In this Section, we define the cumulative distribution which describes the proba-

bility that a random variable with a given probability distribution will be found

at a value less than or equal to a certain value, as well as the probability mass

and density functions which define the probability measure for a discrete and

continuous random variable, respectively.

Definition 2.7. The cumulative distribution function (c.d.f.) of the random

variable X is the function FX : R → [0, 1], defined by

FX(x) = P (X ∈ (−∞, x]) .

The function FX is non-decreasing, right continuous, and satisfies

lim
x→−∞

FX(x) = 0 and lim
x→+∞

FX(x) = 1 .

Definition 2.8. If X is a discrete random variable, the probability mass function

(p.m.f.) of X is defined, for each x in the state space of X, as the function

fX : SX → [0, 1] such that

fX(x) = P (X = x) .
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The c.d.f. FX of a discrete random variable X satisfies

FX(x) =
∑

a∈SX , a≤x

fX(a)

where FX(x) = 0 if x < inf{a ∈ SX}.

Similarly, if X is a continuous random variable, the probability density function

(p.d.f.) of X is a non-negative, integrable function fX : R → [0,+∞] such that,

for x ∈ R,

FX(x) =

∫ x

−∞
fX(y)dy

where FX is the cumulative distribution function of X.

When several random variables are associated to the same sample space, then

X = (X1, . . . , Xn) is called multivariate random variable or random vector ; where

Xi : S → R are n real-valued random variables. If each Xi is a discrete random

variable, then X is called discrete random vector ; similarly, for the continuous

case. If the distribution of a single discrete random variable X can be charac-

terised in terms of its probability mass function, when studying random vectors

we can define the marginal probability mass function and the joint probability

mass function, which characterise the distribution of the single discrete variable

Xi and the joint distribution of all the entries of the random vector considered

together, respectively. Similarly, the joint probability density function is defined

for continuous random vectors.

Definition 2.9. If X = (X1, . . . , Xn) is a discrete random vector, the joint cu-

mulative distribution function is defined as

FX(x) = P (Xi ≤ xi, i = 1, . . . , n) ,

where x = (x1, . . . , xn) ∈ Rn and xi ∈ SXi
. Moreover, the joint probability mass

function is given by

fX(x) = P (Xi = xi, i = 1, . . . , n), xi ∈ SXi
.

For any i = 1, . . . , n and xi ∈ SXi
, the marginal probability mass function of Xi is

defined as the sum of the joint p.m.f fX(x) over the vector x such that xj ∈ SXj

for all j = 1, . . . , n and their ith component is equal to xi.
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For a discrete random variable X = (X1, X2), that is

fX1(x1) =
∑

x2∈SX2

fX(x1, x2) .

Similarly, for continuous random variables.

Definition 2.10. A continuous random vector X = (X1, . . . , Xn) is said to be

a jointly continuous random vector if there exists a function fX(x1, x2, . . . , xn),

called joint probability density function, such that

FX(x1, x2, . . . , xn) =

∫
yn≤xn

· · ·
∫
y1≤x1

fX(y1, y2, . . . , yn) dy1 . . . dyn .

For any i = 1, . . . , n and xi ∈ SXi
, the marginal probability density function of

Xi is defined as the integral of the joint p.d.f. with respect to all the variables

except xi.

For a continuous random variable X = (X1, X2), that is

fX1(x1) =

∫
SX2

fX(x1, x2)dx2 .

2.1.3 Expectation, standard deviation and covariance

The expectation, the standard deviation and the covariance are important con-

cepts that help characterise the probability distribution of a random variable.

Definition 2.11. If X is a discrete random variable with p.m.f. fX defined on

state space SX , then the expectation of X is defined as

IE(X) =
∑
x∈SX

xfX(x).

Similarly, if X is a continuous random variable with p.d.f. fX defined on state

space SX , then the expectation of X is defined as

IE(X) =

∫
SX

xfX(x) dx.
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Given a random variable X, the expectation IE(Xk) for k ∈ N is called the kth

moment of X. The kth moment about the mean (or kth central moment) is

defined as,

IE((X − IE(X))k).

In particular, if k = 2 we define the variance.

Definition 2.12. The 2nd order central moment, or variance, of a random vari-

able X is

var(X) = IE((X − IE(X))2).

The standard deviation of a random variable X is defined as the square root of

the variance, that is σ =
√

var(X).

Theorem 3 (Law of total expectation). If X, Y are two random variables, then

IE(X) = IE(IE(X|Y )).

In particular, if we condition on a partition {B1, . . . , Bn} of the sample space S,

IE(X) =
n∑
i=1

IE(X|Bi)P (Bi) .

2.1.4 Generating functions

Generally speaking, a generating function is a way of writing a sequence of num-

bers. They arise in enumeration problems and discrete mathematics following

the idea that a single function can encode an infinite sequence. The terms of the

sequence are given by the power series of the function. More formally, if we let

{gk}k≥0 be a sequence of numbers, then the generating function associated to this

sequence is a function

G(z) =
+∞∑
k=0

gkz
k

of a symbolic argument z ∈ R, z ∈ [0, 1]. For a discrete random variable X,

the probability mass function P (X = k) is the element of the sequence gk we

would like to encode within a generating function. In Chapters 3 and 4 we make

an extensive use of probability generating functions and their properties. We

summarise below their main characteristics and refer to Wilf (2005) and Allen

(2010) for more details.
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Definition 2.13. If X is a discrete random variable taking non-negative integer

values, we can define the probability generating function (p.g.f.) of X as

ϕX(z) = IE(zX) =
+∞∑
k=0

P (X = k) zk .

where z ∈ [0, 1] is symbolic argument.

If ϕX(z) is the probability generating function of a discrete random variable X,

we can derive the p.m.f. by taking the kth derivative of ϕX ,

P (X = k) =
1

k!

(
dk

dzk
ϕX(z)

) ∣∣∣∣
z=0

, k ≥ 0, z ∈ [0, 1] .

Moreover, we can express the normalisation of the p.m.f. of a random variable

X in terms of its probability generating function as

ϕX(1) =
+∞∑
k=0

P (X = k) = 1 .

Finally, the kth factorial moment of X is defined as

IE(Xk) = IE(X(X − 1) . . . (X − k + 1)) .

Consequently, given that ϕ′′
X(1) = IE(X2) − IE(X), the variance of a random

variable X is given by (Grimmett & Welsh, 2014)

var(X) = IE(X2) − (IE(X))2 = ϕ′′
X(1) + ϕ′

X(1) − (ϕ′
X(1))2 .

If X = (X1, . . . , Xn) is a multivariate discrete random variable, then the

probability generating function of X is defined as

ϕX(z1, . . . , zn) =
+∞∑

k1,...,kn=0

pX(k1, . . . , kn)zk11 . . . zknn (2.1)

where pX(k1, . . . , kn) is the joint probability mass function of X and zi ∈ [0, 1]

symbolic arguments, for i = 1, . . . , n.
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2.1.5 Laplace-Stieltjes transform

In this Section, we report the definition of the Laplace-Stieltjes transform of a

random variable and its different order moments (see Gross et al. (2008) for more

details). An application can be found in Section 5.1.3.

Definition 2.14. Let X be a non-negative real-valued continuous random vari-

able with probability density function fX . The Laplace-Stieltjes transform (LST)

of X is defined as

L⋆[fX ](s) = IE(e−sX) =

∫ +∞

0

e−sxfX(x) dx ,

for s ≥ 0 symbolic argument. Note that, for s = 0, it holds L⋆[fX ](0) =

P (X < +∞) = 1, since fX is a probability density function. Also, by taking

the derivatives of the LST, we can find the kth order moment of X as

IE(Xk) = (−1)k
(
dk

dsk
L⋆[fX ](s)

) ∣∣∣∣
s=0

, for k ≥ 1.

2.2 Stochastic processes

In this Section, stochastic processes are introduced; the theory is based mainly on

the books Allen (2010), Bailey (1964), Kimmel & Axelrod (2002) and Kulkarni

(2017).

Definition 2.15. A stochastic process is a collection of random variables

X = {X(t), t ∈ T} ,

on the common sample space S and indexed by the parameter t ∈ T . The random

variables take values in a common set SX , called the state space of the stochastic

process. For a fixed t ∈ T , X(t) denotes a single random variable defined on S.

For a fixed element of S, a sample path or stochastic realisation of the process is

{X(t), t ∈ T} defined as a function on T .

Depending on whether the random variables and the index set are discrete or

continuous, stochastic processes are usually classified into three different types:
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both index set and the random variables are discrete-valued; the index set is con-

tinuous but the random variables are discrete-valued; both index set and random

variables are continuous-valued. For the purpose of this thesis, we consider the

first two types of stochastic processes, with discrete-valued random variables.

Throughout this thesis, the parameter t represents time; for example the

random variable X(t) can represent the number of births in a given population

during the time period [0, t]. In this case, T = R+ = [0,+∞) and the state space

is {0, 1, 2, . . . } for a continuous-time stochastic process; or T = N ∪ {0} in case

of a discrete-time stochastic process.

Markov chains are a particular type of stochastic processes in which the cur-

rent state of the process depends only on the immediately previous state and

not on any other previous ones. A relevant type of stochastic processes, mainly

used to model reproduction, are branching processes. In particular, a branching

process is a Markov chain that models a population in which each individual in

generation n produces a random number of offspring in generation n+1. Branch-

ing processes have been originally defined to model survival of family names but

find numerous applications in biology, immunology, ecology, medicine and epi-

demiology (Kimmel & Axelrod, 2002).

In Section 2.2.1, we aim to provide the reader with the mathematical back-

ground about continuous-time Markov chains; in Section 2.2.3, a background

about discrete-time branching processes is given. These mathematical techniques

are then used in Chapters 3, 4 and 5 as a modelling tool for the cellular differen-

tiation processes such as the ones described in Chapter 1.

2.2.1 Continuous-time Markov chains

Among stochastic processes, continuous-time Markov chains are widely used in

biological applications as they can be theoretically and computationally analysed.

The idea is to represent the size of a population by a continuous or discrete random

variable where the time is continuous (the system can change state at any time).

We stress here that, by convention in the theory of stochastic processes, we usually

refer to Markov chain if the state space is discrete, and to Markov process when

the state space is continuous. Following Norris (1997), Allen (2010), Bailey (1964)
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and Kulkarni (2017), we recall below the main mathematical results as well as

the key properties of continuous-time Markov chains.

Definitions and main results

Definition 2.16. Let X = {X(t) : t ≥ 0} be a set of continuous-time random

variables taking values in a discrete state space SX . The stochastic process X is

a continuous-time Markov chain (CTMC) if, for any sequence of real numbers

satisfying t0 < t1 < · · · < tn+1,

P (X(tn+1) = in+1 |X(tn) = in, . . . , X(t0) = i0) = P (X(tn+1) = in+1 |X(tn) = in) ,

where ik ∈ SX for k = 0, 1, 2, . . . , n+ 1. This is known as the Markov property.

Each random variable X(t) has an associated probability distribution {pi(t)}t≥0

for i ∈ SX , where pi(t) = P (X(t) = i). Moreover, we can relate random variables

at different times via transition probabilities pij(s, t) indicating the probability

that the Markov chain moves from state i at time s to state j at time t,

pij(s, t) = P (X(t) = j |X(s) = i), for s < t and i, j ∈ SX .

Definition 2.17. If the transition probabilities do not depend explicitly on the

different times s, t but only on the length of the time interval t−s, they are called

stationary or homogeneous transition probabilities. In this case, for s < t,

pij(t− s) = P (X(t) = j |X(s) = i) = P (X(t− s) = j |X(0) = i) .

The matrix P (t) = [pij(t)]i,j∈SX
is called transition probability matrix.

Theorem 4 (Characterisation of a CTMC). Let X = {X(t), t > 0} a CTMC

and a = [ai]i∈SX
its initial distribution such that ai = P (X(0) = i) for i ∈ SX .

Then X is completely described by the vector a and the matrices P (t) for all time

t ≥ 0.

If a fixed initial distribution a of process X is given, that is X(0) = i and aj = δij,

then the transition probability pij(t) is the same as the state probability pj(t) =

P (X(t) = j |X(0) = i) for i, j ∈ SX .
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The process X is said non-explosive if the transition probabilities satisfy∑
j∈SX

pij(t) = 1, t ≥ 0 and i ∈ SX .

In this case, the matrix P (t) is a stochastic matrix, that is all the elements of a row

sum to 1. For more details about explosive processes we refer to Norris (1997); in

this thesis, we will consider only homogeneous and non-explosive Markov chains.

Definition 2.18. A state i ∈ SX is said absorbing state for the Markov chain X

if, for all t ≥ 0, pii(t) = 1. Thus, once the state is entered, it is impossible to

leave.

Transition matrix and Kolmogorov equation

A Markov chain is described by the set of its transition probabilities pij(t) for

each time t ≥ 0. The transition matrix P (t) of a CTMC can be found by solving

the so called Kolmogorov equation; this is a differential equation expressing the

rate of change of the transition probabilities. Before defining the backward Kol-

mogorov equations, we need to introduce the generator matrix Q containing the

infinitesimal transition rates qij. We assume the transition probabilities pij(∆t)

are continuous and differentiable for t ≥ 0, consider a small time step ∆t and

derive the transition rates qij as follows; for t > 0 and i, j ∈ SX ,

qij = lim
∆t→0

pij(∆t) − pij(0)

∆t
=


lim
∆t→0

pij(∆t)

∆t
if i ̸= j

lim
∆t→0

pii(∆t) − 1

∆t
if i = j

given that pij(0) = 1 for i = j and zero otherwise. Since P (t) is a stochastic

matrix, by definition,

1 − pii(∆t) =
∑
j ̸=i

pij(∆t) =
∑
j ̸=i

(qij∆t+ o(∆t)), for i, j ∈ SX .

Thus, for i = j,

qii = lim
∆t→0

pii(∆t) − 1

∆t
= lim

∆t→0

−
∑

j ̸=i(qij∆t+ o(∆t))

∆t
= −

∑
j ̸=i

qij .
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If the limit is finite, we get a relationship between pij(∆t) and qij

pij(∆t) = qij∆t+ o(∆t) + δij , (2.2)

where δij is the Kronecker’s delta symbol. The generator matrix Q is defined as

Q = lim
∆t→0+

P (∆t) − I

∆t
,

where I is the identity matrix of the infinitesimal transition matrix P (∆t).

Given Theorem 4, we can describe a CTMC by specifying its transition matrix

P (t). Assuming P (t) is differentiable with respect to t, one can derive a set of

differential equations whose solution gives the probability distribution of X(t) for

all the times.

Theorem 5 (Backward Kolmogorov equation). Let P (t) be the matrix of tran-

sition probabilities of a CTMC X with state space SX and generator matrix Q.

Then, if P (t) is differentiable, the backward Kolmogorov differential equations are

represented by the system

d

dt
pij(t) =

∑
k∈SX

qik pkj(t), i, j ∈ SX .

Expressed in matrix form, we have

d

dt
P (t) = QP (t) .

This system of equations is often referred to as the master equation (ME) or the

chemical master equation (CME) of the stochastic process.

Proof. To derive this set of differential equations, we observe that the transition

probabilities of the matrix P (t) satisfy

pij(t+ s) =
∑
k∈SX

pik(s) pkj(t), for i, j ∈ SX and t, s ≥ 0.

We differentiate probabilities pij(t) with respect to time and apply Equation (2.2);

for i, j ∈ SX ,

d

dt
pij(t) = lim

∆t→0

pij(t+ ∆t) − pij(t)

∆t
= lim

∆t→0

∑
k∈SX

pik(∆t)pkj(t) − pij(t)

∆t
=

= lim
∆t→0

∑
k∈SX

(qik∆t+ o(∆t) + δik) pkj(t) − pij(t)

∆t
=
∑
k∈SX

qik pkj(t) .
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If a fixed initial distribution a of process X is given, that is X(0) = i and

aj = δij, then we can express the Kolmogorov differential equations in terms of

the state probabilities
d

dt
p(t) = Qp(t)

where p(t) = (p0(t), p1(t), . . . )
T .

For finite state space continuous-time Markov chain, the Kolmogorov equa-

tions have a unique solution and thus it is possible to find an explicit solution

P (t). In this case, the following theorem holds.

Theorem 6. The transition probability matrix of a CTMC X on a finite state

space SX and with infinitesimal generator matrix Q, is given by

P (t) = eQt, t ≥ 0 .

However, in general, specifying the matrix P (t) can be quite hard (both analyt-

ically and numerically); another method (applied in Chapters 3 and 4) to obtain

information about the probability distribution associated with a CTMC relies on

partial differential equations and generating functions (see Section 2.1.4).

The Kolmogorov differential equations can be used to define a stationary

probability distribution π = (π0, π1, . . . )
T with πi ≥ 0 for i ∈ SX and such that

Qπ = 0 and
∑
i∈SX

πi = 1 .

If the process is non-explosive, irreducible and positive recurrent, it can be proved

that the stationary distribution is unique and positive (Allen, 2010). If the pro-

cess has an absorbing state, a quasi-stationary distribution can be defined; prior

to reaching the absorbing state, the probability distribution of X(t) can be ap-

proximately stationary for a long period of time. In this case, we define qi(t) the

quasi-stationary probability distribution conditioned on not-reaching the absorb-

ing state a ∈ SX as, for t ≥ 0,

qi(t) =
pi(t)

1 − pa(t)
, for i ∈ SX , i ̸= a ,

where we denote with pa(t) the state probability of reaching the absorbing state

a given an initial distribution of the process X.
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Inter-event times

Knowing the distribution for the time between successive event, one can calculate

the sample paths of a CTMC X. In a discrete-time Markov chain, the state space

SX is a finite or infinite discrete set, such as {1, 2, . . . , N} or {1, 2, . . . ,+∞};

whereas, in a continuous-time Markov chain the transition to a new state may

occur at any time t ≥ 0. In both cases, however, we can represent the progression

of time as made by a “jump” from the current state to the following one.

Definition 2.19. Let Wn be the random variable for the time of the nth change

of state of the process. Assuming W0 = 0, the collection {Wn}+∞
n=0 is called

jump times or waiting times of the process. Moreover, the random variable

Tn = Wn −Wn−1 is called the nth interevent time or sojourn time.

One of the key properties of Markov processes is that their interevent times Tn

are exponentially distributed with parameter
∑

j∈SX , j ̸=i
qij, where qij represent the

transition rates. We recall that the expectation of an exponentially distributed

random variable with parameter λ is given by 1
λ
. Thus, assuming a CTMC X is

in state i at the nth jump, the mean of random variable Tn is given by

IE(Tn) =
1∑

j∈SX , j ̸=i
qij

.

The analytical explanation of interevent times of a Markov chain being exponen-

tially distributed is based on the fact that the exponential distribution is the only

continuous probability distribution for which the so called memoryless property

holds (Allen, 2010):

P (Tn ≥ t+ s |Tn ≥ t) = P (Tn ≥ s), for any t, s ≥ 0

First-step analysis

First-passage analysis aims to break down the possibilities resulting from the first-

step (first transition) in the Markov chain X. The law of total probability (see

Section 2.1.1) and Markov property can be used to derive a set of relationships

among some unknown variables of interest. For example, let X = {X(t) : t ≥ 0}
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be a CTMC on the state space SX = {0, 1, 2, . . . , } and consider the random

variable

T = inf{t ≥ 0 : X(t) = 0};

that is the first time at which the process X enters into state 0, for some initial

state X(0) ̸= 0. T is called the first-passage time to 0 and represents the first

time at which the variable X(t) is equal to 0. The same techniques can be used

to study the first-passage time to any set A ⊂ SX .

Given the random variable T one can study its cumulative distribution func-

tion and its expectation; moreover, the probability of reaching the state of inter-

est (state 0 in this case) can be computed. Pioneer works focusing on computing

first passage times in systems with discrete states are Castro et al. (2018); de la

Higuera et al. (2019); Gómez-Corral et al. (2020); López-Garćıa et al. (2018). An

application of these techniques can be found in Sections 5.1.3 for a stochastic

compartment model of cell differentiation.

2.2.2 Birth-and-death process

Birth-and-death processes are one of the most well studied continuous-time Markov

chains. Let X = {X(t) : t ≥ 0} be a CTMC on state space SX which might be

either infinite SX = {0, 1, 2, . . . ,+∞} or finite SX = {0, 1, 2, . . . , N}. Now, the

random variable X(t) represents the population size at time t. We assume there

are only two types of events: a birth of an individual or a death. If the process

X is in state n, a birth happens at rate λn and moves the process to state n+ 1;

whereas a death, happening at rate µn, moves the process to state n−1, as shown

in Figure 2.1.

Figure 2.1: State diagram for a birth-and-death process.
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Given the random variable X(t) we denote the change of state in the process

with

∆X(t) = X(t+ ∆t) −X(t) for t ≥ 0 ;

thus, the infinitesimal transition probabilities, for i, j ∈ SX , are

pij(∆t) = P (∆X(t) = j|X(t) = i)

=


λi∆t+ o(∆t) for j = i+ 1

µi∆t+ o(∆t) for j = i− 1

1 − (λi + µi)∆t+ o(∆t) for j = i

o(∆t) otherwise

,

for ∆t small enough and where o(·) is the Landau order symbol.

The infinitesimal generator matrix Q for the process X is a tridiagonal matrix

and is given by

Q =


−λ0 λ0 0 0 · · ·
µ1 −(λ1 + µ1) λ1 0 · · ·
0 µ2 −(λ2 + µ2) λ2 · · ·
0 0 µ3 −(λ3 + µ3) · · ·
...

...
...

...
. . .

 .

Moreover, one can consider immigration happening at rate ν. In this case,

the infinitesimal transition probabilities are

pij(∆t) = P (∆X(t) = j|X(t) = i)

=


(ν + λi)∆t+ o(∆t) for j = i+ 1

µi∆t+ o(∆t) for j = i− 1

1 − (ν + λi + µi)∆t+ o(∆t) for j = i

o(∆t) otherwise

.

2.2.3 Branching processes

Branching processes are a relevant type of stochastic processes, mainly used to

model reproduction. In particular, a branching process is a Markov chain that

models a population in which each individual in generation n produces a random

number of offspring who belongs to generation n + 1. Branching processes were
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originally defined to model survival of family names but find numerous appli-

cations in biology, immunology, ecology, medicine and epidemiology (Kimmel &

Axelrod, 2002). The study of branching processes was introduced in 1873 when

the mathematician Reverend Henry William Watson and the biometrician Francis

Galton started a study about the survival of British family names in aristocracy.

In particular, they were wondering about the proportion of surnames that will

become extinct after r generations as well as about the number of instances of

the same surname being held by m individuals (Allen, 2010).

When working with discrete-time branching processes and considering the

progeny of an individual, we follow the common notation in the literature and

use the index n instead of t, i.e. random variable Xn. Let {Xn : n ≥ 0} be

a family of non-negative integer-valued random variables defined on a common

state space SX . We consider a single ancestor individual present at time n = 0

and we look at the number of its progeny produced at its death. Both the lifes-

pan of the individual and the number of offspring can be considered as random

variables. Then, the number of individuals present in the process at time n > 0

is equal to the sum of the progeny of the ancestor and their subsequent progeny.

If each individual’s lifespan is a fixed length of time, e.g. one unit of time for con-

venience, the branching process is known as a Galton-Watson process. Another

important special case is when the lifespan is exponentially distributed or it is an

arbitrary non-negative random variable, in the latter case the process is known

as Bellman–Harris process (Harris, 1963; Kimmel & Axelrod, 2002). Regardless

of the lifespan, multi-type branching processes can be defined if different types

of individuals are considered within the same population.

A Galton-Watson branching process, as introduced in the XIX century, is a

discrete-time Markov process defined as follows.

Definition 2.20. A Galton-Watson branching process follows the assumptions:

• Each individual in generation n gives birth to Xn offspring in the next

generation, where Xn is a random variable that takes values in the countable

state space {0, 1, 2, . . . }, with offspring distribution {pk = P (Xn = k), for

k = 0, 1, 2, . . . }.

• Each individual gives birth independently from all other individuals.
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• The same offspring distribution applies to all n generations, Xn = X.

A discrete-time branching process can be used to describe the number of indi-

vidual in one generation. Let Zn be the random variable describing the number

of individuals in the nth generation. We have

Zn+1 =
Zn∑
i=0

Xi

where the random variable Xi is an independent realisation of X and represents

the offspring of the ith member of the nth generation. Notice that the number

Zn of random variables that we sum is itself a random variable.

In a Galton-Watson process the lifespan of an individual is fixed to one unit,

however, one can also consider the case of the lifespan being a random variable.

If so, there is a probability that any individual in generation n dies and leaves

Xn offspring, in a time interval of duration ∆t. Throughout this thesis, we

will focus on discrete-time and continuous-time branching processes where the

lifespan is an exponentially-distributed random variable; an application to the

cellular differentiation process can be found in Chapters 3 and 4, respectively.

In the single-type Galton-Watson process, each individual is of the same type

and is replaced by its progeny. In order to model biological processes, we may

need to define different types of individuals within the same population: a multi-

type branching process allows for different kinds of individuals in each generation.

For example, in the context of a Galton-Watson process, individuals might not

be all alike: old men are likely to generate less offspring that younger ones.

Definition 2.21. For a branching process containing k types of individuals, we

define a continuous-time multi-type branching process {Z(t), t ≥ 0} where Z(t) =

(Z1(t), . . . , Zk(t)) and where Zi(t) is the number of individuals of type i, for

i = 1, . . . , k, at time t ≥ 0.

2.2.4 Gillespie algorithm

Based on their property of an exponential waiting time distribution, a numerical

method to generate stochastic realisations of CTMC was developed in Gillespie
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(1976, 1977). Monte Carlo simulation methods are a class of computational al-

gorithms relying on random numbers to generate a realisation of the process.

In particular, the stochastic simulation algorithm (SSA), usually called Gillespie

algorithm, uses two different random numbers to compute the time the system

stays in the current state as well as which reaction occurs next (Erban et al.,

2007; Gillespie, 1976).

Let X = {X(t) : t ≥ 0} be a CTMC defined on state space SX and with

infinitesimal generator matrix Q = [qij]i,j∈SX
. Algorithm 1 outlines the Gillespie

algorithm for the process X.

2.3 Bayesian inference

In this Section, we outline the main concepts of Bayesian inference and intro-

duce the Approximate Bayesian Computation (ABC) algorithm. By a systematic

comparison between observed and simulated data, the ABC algorithm is able to

overcome the issue of intractable likelihood functions in data modelling. Further,

we outline the principles of Bayesian model selection which can be used to decide

which model, among the hypothesised ones, is the most viable. Chapter 6 shows

an application to a model of CD8+ T cell exhaustion-differentiation process.

Let X be a random variable defined on a sample space S; we can think of

it as an outcome of a model which can arise from different hypotheses Hi, for

i = 1, . . . , h. We can make use of Bayes theorem (see Theorem 2) and compute the

conditioned probability P (Hi|X = x⋆) for i = 1, . . . , h, known as posterior belief

about the hypothesis Hi based on the observed occurrence of X = x⋆. Usually,

the Bayes theorem is reformulated in a statistical inference framework as follows.

Let X be a discrete random vector that represents the discrete output of our

mathematical model (the observed data), and let θ be a continuum of hypotheses

representing the possible values of the parameters of the model. Theorem 2 reads

π(θ|X) =
π(θ)π(X|θ)∫

θ
π(X|θ)π(θ)dθ

, (2.3)

where π(θ) is known as the prior distribution about the hypothesis θ, π(θ|X)

is the posterior distribution, and π(X|θ) is the likelihood, the probability of ob-

taining the data X given the value of the parameters θ. Performing an inference
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Algorithm 1: Gillespie algorithm (Gillespie, 1976)

1 Initialise the system. Set the initial conditions t = 0 and i = X(0) = X0.

2 Generate two random numbers r1, r2 uniformly distributed in [0, 1).

3 Assume that from state i a number of m reactions can occur, each

moving the process to another state (j1, . . . , jm).

4 Compute the so called propensity function by summing all the transition

rates to the states where the process can jump to from i in a single step.

For j ∈ (j1, . . . , jm),

R =
∑
j ̸=i

qij .

5 Compute the time when the next reaction takes place as t+ τ where τ is

given by

τ =
1

R
log

1

r1
.

6 Using the second generated random number, compute which reaction

occurs at state i at time t+ τ . The lth reaction takes place, moving the

process to state jl, if

r2 ≥
1

R

l−1∑
k=1

qijk and r2 ≤
1

R

l∑
k=1

qijk .

7 Compute the new state according to the lth reaction that takes place

X(t+ τ) = jl. Update the current state of the process to i = jl and go

back to step 1. Repeat for all the time-steps until the final time

t = tmax is reached.

study we aim to evaluate the posterior distribution π(θ|X), by using quantities

on the right-hand-side of Equation (2.3). The prior distribution π(θ) encodes the

users prior beliefs about the parameters; usually there is not a strong knowledge

and thus, a uniform distribution is used. However, in special situations, a more

informative distribution can be assumed, e.g. normal distribution. The integral

in the denominator of Equation (2.3) corresponds to the probability of generating
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the data,

P (X) =

∫
θ

π(X|θ)π(θ)dθ .

This integral does not depend on parameters and is very difficult to calculate, so

P (X) is usually assumed as a normalising constant. Instead of Equation (2.3),

we can then use the proportionality equation

π(θ|X) ∝ π(θ)π(X|θ) .

Since the computation of the likelihood π(X|θ) in a mathematical model often

represents a challenge, alternative methods, such as Approximate Bayesian Com-

putation (ABC for short) methods, have been developed to estimate the posterior

distribution π(θ|X) (Csilléry et al., 2010; Toni et al., 2009).

2.3.1 Approximate Bayesian Computation

Given a mathematical model M with parameter vector θ, and given the observed

data X, the Approximate Bayesian Computation method can infer the posterior

distribution for the parameter values by making use of the experimental data and

by updating the prior beliefs. The idea is to sample parameters θ⋆ from the prior

distribution π(θ) and then simulate data from the model as X⋆ ∼ π(X|θ⋆). A

comparison between simulated data and the observed experimental data X can be

done by making use of a distance function δ. The simplest form of this algorithm is

based on the rejection algorithm: if the simulated data are sufficiently close to the

observed data, that is the measure distance is smaller than a tolerance threshold

ε, then the sample (θ⋆,X⋆) is accepted, otherwise it is rejected. Reiterating the

method, ns ∈ N samples of the posterior distribution are generated. For ε = 0

the algorithm corresponds to the exact rejection algorithm; for small enough

choices of the tolerance rate ε, the ABC method will closely approximate the true

posterior, but for too small choices of ε the algorithm leads to a high rejection

rate. For more details we refer to Toni et al. (2009), Toni & Stumpf (2010).

Moreover, given a model M, different types of distance δ can be chosen according

to the problem; the common choice is the Euclidean distance,

δ(X,X⋆;M) =

[
n∑
j=1

(x⋆j − xj)
2

]1/2
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where X = (x1, . . . , xn) is the experimental data set and X⋆ = (x⋆1, . . . , x
⋆
n)

the simulated data. Alternatively, instead of considering the distance between

real and simulated data, one can define a distance between summary statistics,

δ(S(X⋆), S(X);M).

We report the pseudocode of the ABC rejection algorithm in Algorithm 2.

Algorithm 2: ABC rejection algorithm (Toni et al., 2009)

1 Initialise the system. Choose the sample size ns, the acceptance

threshold ε and the distance function δ. Set i = 0.

2 Sample θ⋆ from the prior distribution π(θ).

3 Simulate a data set X⋆ with the model M from π(X|θ⋆).
4 Compute the distance δ(X,X⋆;M).

5 If δ(X,X⋆;M) ≤ ε, accept and store θ⋆. Set i = i+ 1.

6 If i < ns go to Step 2, otherwise end the algorithm.

2.3.2 Bayesian model selection

Experimental data can be usually described by several mathematical models,

with different complexity and dependency in the dynamics. The Bayesian model

selection method allows to identify, given a number of potential models, which

model structure and set of parameters can better explain the data. In particular,

we focus on the ABC-rejection selection method which can assess the similarity

between the observed and simulated data by making use of a distance function.

Let assume that we have M different candidate models to reproduce a given

experimental data set; let us explain the method for M = 2. The aim of Bayesian

ABC model selection is to determine, via the ABC algorithm, which of the two

models, M1 or M2, better represents the data. In particular, for m = 1, 2, we

denote with π(Mm|X) and π(Mm) the marginal posterior distribution and the

prior of model Mm, respectively. The Bayes factor can be computed as,

B12 =
π(M1|X)/π(M2|X)

π(M1)/π(M2)
=
π(M1|X)

π(M2|X)
,

where, in the last step, we assumed uniform priors for the two models M1 and

M2.
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For the general case of M models, parameters set θm as well as a prior distri-

bution π(Mm) specific for each model Mm, for m = 1, . . . ,M , need to be defined.

In case of no prior information, one can set a discrete uniform prior so that each

model has prior probability 1
M

. Running the ABC rejection algorithm with accep-

tance threshold ε, we can approximate the marginal posterior distribution with

the relative probability for model Mm,

π(Mm|X) ≈ f(Mm)

ns

where ns is the posterior sample size and f(Mm) is the acceptance frequency for

model Mm (Grelaud et al., 2009). Algorithm 3 summarises the Bayesian model

selection algorithm.

Algorithm 3: Bayesian model selection algorithm (Grelaud et al., 2009)

1 Initialise the system. Choose the sample size ns, the acceptance

threshold ε and the distance function δ. Set i = 0.

2 Draw M⋆
m from the prior distribution π(Mm).

3 Sample θ⋆ from the prior distribution π(θ |M⋆
m).

4 Simulate a candidate data set X⋆ from π(X |θ⋆,M⋆
m).

5 Compute the distance δ(X,X⋆;M⋆
m).

6 If δ(X,X⋆;M⋆
m) ≤ ε, accept (M⋆

m,X
⋆), otherwise reject it. Set i = i+ 1.

7 If i < ns go to Step 2, otherwise end the algorithm.

2.4 Analysis of sensitivity and identifiability

Sensitivity analysis and identifiability analysis are two groups of methods used

to determine whether a given model with set of parameters is too complex for

the data. Assume to have a model M to describe some experimental data and,

for simplicity of notation, we restrict to a scalar output. If the model has n

parameters, we can represent it as a function f : θ → X⋆ ∈ R where θ ∈ Rn.

Sensitivity analysis aims in answering the question of how the trajectory of

a model output X⋆ is influenced by small perturbations of a single or multiple
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parameter values. In particular, local sensitivity methods look at the individ-

ual contribution of a parameter, by computing the partial derivative ∂X⋆

∂θi
for

i = 1, . . . , n. Whereas, global sensitivity methods, by simultaneously varying

parameters, can determine also the relative contribution of groups of parameters.

Moreover, via a parameter identifiability analysis we can investigate how ac-

curately the model parameter values can be determined given the experimental

data. In particular, we need to distinguish between a practical identifiability

that depends on limitations set by the data, and a structural identifiability that

depends on the structure of the model (Castro & de Boer, 2020).

2.4.1 Local sensitivity

Local sensitivity methods focus on changes of model output with respect to vari-

ations of a single parameter. We refer the reader to Section 5.2.3 for a local

sensitivity analysis performed for a stochastic model of T cell thymic develop-

ment process; for this we followed the approach suggested by Gómez-Corral &

López-Garćıa (2018) and López-Garćıa et al. (2018).

Given a parameter vector θ ∈ Rn, the relative response to parameter θi, for

i = 1, . . . , n, is measured by the partial derivative

∂X⋆

∂θi
,

where X⋆ is the simulated output. This ratio can be then normalised to a dimen-

sionless values, so that the effect of different parameters on different descriptors

can be easily compared.

Definition 2.22. Let X be a Markov process on state space SX and assume it

is characterised by the parameter rates θ = (θ1, ..., θn). Let m be a summary

statistic of interest; the elasticity of m with respect to parameter θi is the ratio

∂m/∂θi
m/θi

.
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2.4.2 Global sensitivity

Global sensitivity analysis estimates the influence on model output of parameters

changes over a large range of parameter space. In this Section, a brief description

of the Sobol sensitivity analysis’ method, one of the most used methodologies, is

given (Saltelli et al., 2008; Sobol, 2001).

Consider a model M represented by the function f : θ → X⋆ ∈ R, with

θ = (θ1, θ2, ..., θn) ∈ Rn and X⋆ the model scalar output. In particular, without

loss of generality, we can assume each parameter distributed in [0, 1] and write

the mathematical model as

X⋆ = f(θ)

where θ ∈ In and In is the n-dimensional unit hypercube. The idea of the Sobol

method is to compute the model output for several set of parameters, sampled

within their respective ranges. The variance associated to the simulated outputs

is then decomposed into a sum of variances; each of those gives the contribution

of a single input parameter to the total variance.

Mathematically, we consider the model output X⋆ as a random variable and

the parameter vector θ as a random vector of independent and uniform random

variables over In. That is θi ∼ U(0, 1) and f : In → R. If the function f is

integrable over In, Sobol idea is to decompose the model into 2n terms,

f(θ1, ..., θn) = f0+
n∑
i=1

fi(θi)+
∑

1≤i<j≤n

fi,j(θi, θj)+...+f1,2,...,n(θ1, θ2, ..., θn) , (2.4)

where each term is integrable and it is a function only of the factors in its index.

Given a model f , there could be infinite choices for terms of the expansion; Sobol

(2001) proves indeed that this decomposition is unique only under the assumption

that all the terms have zero mean, i.e.∫ 1

0

fk(θk)dθk = 0 .

This is equivalent to asking the orthogonality between pairs i, j of terms,∫ 1

0

fi(θi)fj(θj)dθidθj = 0 .
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Under this assumption the terms of the decomposition can be univocally cal-

culated using the conditional expectations of the model output X⋆, such that

f0 = IE(X⋆), fi(θi) = IE(X⋆|θi) − IE(X⋆), fi,j(θi, θj) = IE(X⋆|θi, θj) − fi(θi) −
fj(θj)− IE(X⋆) and so on. Under orthogonality condition, f(θ) can be expressed

in the so called ANOVA representation,

f(θ) = f0 +
n∑
s=1

n∑
i1<...<is

fi1,...,is(θi1 , θi2 , ..., θin) .

Squaring and integrating over In we get∫ 1

0

f 2(θ)dθ − f 2
0 =

n∑
i=1

∫ 1

0

f 2
i (θi)dθi +

∑
1≤i<j≤n

∫ 1

0

f 2
i,j(θi, θj) dθi dθj + . . .

+

∫ 1

0

f 2
1,2,...,n(θ1, θ2, . . . , θn) dθ1, . . . , dθn .

Thus, for model output X⋆ we get,

V (X⋆ =
n∑
i=1

Vi +
∑

1≤i<j≤n

Vi,j + · · · + V1,2,...,n .

Here, we denoted with V (X⋆) the total output variance of X⋆; moreover, Vi

represents the variance attributed only to the parameter θi, and Vi,j the variance

attributed to the interaction of the parameters θi and θj and similarly for higher

order terms (V1,2,...,n is the variance attributed to all the n parameters θi for

i = 1, . . . , n). Given the decomposed variances, we can define the first-order

Sobol index Si,

Si =
Vi

V (X⋆
,

which estimates the variance explained by a single parameter excluding interac-

tion effects; it measures, indeed, the contribution of a single parameter to the

output variance. Moreover, a total-order Sobol index STi can be defined as

STi =
1

V (X⋆

(
Vi +

n∑
j=1

Vi,j + ...+ V1,2,...,n

)
.

The total-order index takes into account the main, the second-order and higher

order effects, estimating all the interactions between the parameters. For exam-

ple, for a three-parameters model, we have ST1 = S1 + S1,2 + S1,3 + S1,2,3. The
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total-Sobol index, thus, provides a broader picture of the model’s behaviour. Sim-

ilar definitions, for first and total Sobol index, can be given for a time-dependent

model output X⋆(t). In Chapter 6, we used the SALib package of Python to

perform a sensitivity analysis and compute the Sobol indices of first and total

order of a model for T cell exhaustion.

2.4.3 Structural identifiability

A parameter identifiability analysis can tell us how accurately parameter values

of a given model can be determined given the experimental data. For example, in

some situations, changing either of two parameters of the model can results in the

same model output. In this case, the two parameters can not be independently

identified. Consequently, structural identifiability is an important condition for

model fitting. Here, we focus on the technique developed by Castro & de Boer

(2020) to test the structural identifiability of a mathematical model.

Consider a mathematical model of ordinary differential equations, with m

parameters and n variables,

dxi
dt

= fi(x1, ..., xn; θ1, ..., θm), i = 1, . . . , n

with initial conditions xi(0) = xi,0, for i = 1, . . . , n. Assume to have x1, ..., xr

observable variables, with 1 ≤ r ≤ n, and xr+1, ..., xn latent variables, that is

variables that cannot be measured experimentally. Each fi of the system can be

decomposed in a sum of k̄ functionally independent functions fik,

dxi
dt

=
k̄∑
k=1

fik(x̃k, θ̃k) , (2.5)

where x̃k, θ̃k are the subset of variables and parameters of fik and functions fik,

fil are functionally independent for every k ̸= l. For example, the terms a x1x2

and b x1x2 are not functionally independent (for variables x1, x2 and parameters

a, b), whereas the terms a x1 and b x1x3 are independent. We scale parameters

and unobserved variables by the unknown scaling transformations

θj → uθjθj and xi → uxixi ,
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for j = 1, . . . ,m and i = r+1, . . . , n, respectively. By substituting the scaled vari-

ables into Equations (2.5) and equating each functionally independent function,

fik, to its scaled version, we get the identifiability equations of the model

fik(x̃k, θ̃k) = fik(ux̃k x̃k, uθ̃k θ̃k), for i = 1, . . . , r ,

fik(x̃k, θ̃k) =
1

uxi
fik(ux̃k x̃k, uθ̃k θ̃k), for i = r + 1, . . . , n .

We solve the system for uθ̃k and find parameters θ̃k that are structurally identi-

fiable: if uθ̃k = 1, then parameter θ̃k is identifiable.

We apply this method to study the identifiability of the deterministic math-

ematical model developed in Chapter 6 for the CD8+ T cell exhaustion process.

Full details of the method, including a proof can be found in Castro & de Boer

(2020).

2.5 Differential equations

During the analysis of either stochastic and deterministic models we might need

to address the study of differential equations. In particular, deterministic math-

ematical models for cell biology are naturally systems of ordinary differential

equations representing dynamics of a population, e.g. population of cells, or

receptors’ copy numbers, or cytokines. Also, when working with stochastic pro-

cesses and generating functions we might need to solve differential equations in

terms of probability generating functions. We outline, in this Section, the main

concepts we used for the analysis carried out in Chapters 4 and 6.

2.5.1 Steady states and stability

In Chapter 4 and Chapter 6 we define deterministic systems of differential equa-

tions to describe dynamics of cells populations. In particular, the model defined

in Chapter 6 for the CD8+ T cell exhaustion process, developed in collaboration

with the Salk Institute of Biological Studies, consists of first-order differential

equations,
dX

dt
= F (X(t), t) .
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Here, the variable X(t) = (x1(t), x2(t), . . . , xn(t))T represents n populations of

cells over time and F (X(t), t) = (f1(X(t), t), f2(X(t), t), . . . , fn(X(t), t))T . In

many cases, the solution of linear ODEs systems can be found analytically.

An important aspect we can analyse (also in the cases where an analytic so-

lution is not straightforward to find) is the steady state solutions. In general, in

a mathematical model there might be none, one or several steady states. When

working with a mathematical model of a biological system, it is important to find

the steady state solutions because they represent the homeostasis of the popula-

tions we are considering. As a simple example of homeostasis one can mention

the temperature of our body which is maintained in a narrow range despite the

large variation of the environment temperature. In our case of population of cells,

when the solution reaches a steady state, the amount of cells is no longer chang-

ing over time. Mathematically, the steady state solution X⋆ of an ODE model is

computed as solution of algebraic equations and it satisfies

F (X⋆, t) = 0 .

Steady states of a system of ODEs can be classified as either stable, asymp-

totically stable or unstable.

Definition 2.23. A steady state solution X⋆ of a system of ODEs is locally stable

if for every ε > 0 there exists δ > 0 such that for every solution X(t) with initial

condition X(t0),

∥X(t0) −X⋆∥ < δ ⇒ ∥X(t) −X⋆∥ < ε

for all t ≥ t0, where ∥·∥ denotes the Euclidean distance in Rn.

Definition 2.24. A steady state solution X⋆ of a system of ODEs is locally

asymptotically stable if it is locally stable and there exists δ > 0 such that

∥X(t0) −X⋆∥ < δ ⇒ lim
t→+∞

∥X(t) −X⋆∥ = 0 .

In order to study the asymptotic stability of the steady states we can apply

the linearisation theory and determine the sign of the real part of the eigenvalues

of the Jacobian matrix.
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Theorem 7 (Stability Criterion). A steady state X⋆ of a system of ODEs is

asymptotically stable if all the eigenvalues of J⋆, the Jacobian evaluated at X⋆,

have negative real parts. The steady state is unstable if at least one of the eigen-

values has a positive real part.

2.5.2 Riccati equation

In Chapter 4, we define a time-dependent stochastic compartmental model for

cells differentiation and consider the corresponding time-dependent probability

generating functions and their differential equations which result to be of Riccati’s

type. In this Section, we recall the main concepts about Riccati differential

equations.

Let x(t) be a scalar variable and let us denote with x(i)(t) its ith derivative

with respect to t, for i = 1, . . . , n. An ordinary differential equation of the nth

order,

F (t, x(t), x′(t), . . . , x(n)(t)) = 0 ,

is said to be linear if F is a linear function of the variables x(t), x′(t), . . . , x(n)(t).

The generalised Riccati equation is a first-order non-linear ordinary differential

equation and it is widely encountered in analytical mechanics and engineering

(filtering theory) (Freiling, 2002). In particular, it is defined as

x′(t) + P (t)x(t) +Q(t)x2(t) −R(t) = 0 (2.6)

where P (t), Q(t) and R(t) are arbitrary functions of t. Depending on the func-

tions P (t), Q(t) and R(t), several methods have been developed to solve the Ric-

cati equations (Murphy, 1960; Pala & Ertas, 2017). In particular, if one of the

following conditions (C1) - (C4) holds, Equation (2.6) can be easily solved by

quadrature:

(C1) The coefficients P (t), Q(t), R(t) are constant;

(C2) R(t) = 0, thus the equation is linear;

(C3) P (t) = 0, thus Equation (2.6) is a Bernoulli equation;

(C4) Q(t) = 0, R(t) is constant and P (t) is a power function, e.g. P (t) = p tn.
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2. MATHEMATICAL BACKGROUND

If, as in our case in Chapter 4, none of the conditions (C1) - (C4) holds we fall

in a more general case. If so, a change of variable is required so that the Riccati

Equation (2.6) is transformed into a second-order linear ODE (Sugai, 1960). In

particular, let x(t) = − x̄′(t)

x̄(t)R(t)
and solve

x̄′′(t) −
[
Q(t) +

R′(t)

R(t)

]
x̄′(t) + P (t)R(t) x̄(t) = 0 .

Alternative transformation methods are reported by different authors in Allen &

Stein (1964); Rao (1962) and Pala & Ertas (2017).

In Chapter 4 and the respective Appendix C, we follow Sugai (1960) and show

how the Riccati equation arising from the probability generating functions of a

time-dependent compartmental model can be transformed into a second-order

linear, and thus more tractable, differential equation. In particular, the resulting

equation is a second-order linear equation where the coefficients are functions of

the independent variable. Here, we thus consider the homogeneous equation

P̄ (t) x̄′′(t) + Q̄(t) x̄′(t) + R̄(t) x̄(t) = 0 . (2.7)

A point t0 such that P̄ (t0) ̸= 0 is called an ordinary point, whereas, if P̄ (t0) = 0,

then t0 is called a singular point of Equation (2.7). In this case, at least one of

Q̄(t0) and R̄(t0) should not be zero for the structure of Equation (2.7) to hold.

Definition 2.25. A point t0 is a regular singular point of Equation (2.7) if it is

a singular point and if both

(t− t0)
Q̄(t)

P̄ (t)
and (t− t0)

2 R̄(t)

P̄ (t)
(2.8)

have convergent Taylor series about t0; that is both expressions (2.8) are ana-

lytic in t = t0. If the coefficients are polynomials, the condition simplifies into

Expressions (2.8) having a finite limit as t→ t0.

Since Expressions (2.8) are analytic in the regular singular point t0 and have

a finite limit for t → t0, they have convergent power series expansions about an

interval ∥t− t0∥ < ρ, with ρ > 0. Thus, Equation (2.7) can be rewritten in terms

of power series coefficients for x̄′(t) and x̄(t) (Boyce & di Prima, 2009). The
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2.5 Differential equations

Frobenius method is thus based on the fact that it is natural to seek for solutions

in the form of power series

x̄(t) =
+∞∑
n=0

an x̄r+n(t), r ∈ R, a0 ̸= 0 .

Following (Boyce & di Prima, 2009, Chapter 5), we apply the method con-

structed by Frobenius for the analysis of the time-dependent probability gener-

ating functions of a compartmental mathematical model and report those results

in Chapter 4 and Appendix C.
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Chapter 3

Why are cell populations

maintained via multiple

intermediate compartments?

Cells are able to sense and respond to various internal and external stimuli and

they grow, reproduce and specialise influenced by the surrounding environment.

Also, populations of cells are maintained over host lifetimes and cell populations

in organs and tissues are continuously replenished. Mechanisms of cell main-

tenance and cells differentiation are key to a healthy and functional body. A

common observed pattern is that a small population of progenitor cells main-

tains, via a pathway of intermediate states, a larger population of product cells

that perform a function in the host (MacLean et al., 2018). As mentioned in

Chapter 1, progenitor cells may be thought of as stem cells, defined by their

ability to both self-renew and generate mature cells (Ogawa, 1993; Reya et al.,

2001). In different contexts (Johnston et al., 2007; Robert et al., 2021; Thomas-

Vaslin et al., 2008), the product cells may be termed “mature”, “active”, “fully

differentiated” or “effector” cells. An example, detailed in Chapter 1, is the mat-

uration and selection of T cells in the thymus: it takes place via a sequence of

states from bone-marrow precursors to mature thymocytes leading, in the case

of an adult mouse, to about one million T cells per day exiting the thymus (den

Braber et al., 2012). The numbers and phenotypes of descendants of individual

näive T cells are highly variable, but the magnitude of total response is repro-
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ducible when the output of many families is combined. The heterogeneity of a

differentiation process can be quantified by the number of intermediate states

in the process; those corresponds to different cell phenotypes, identified by cells

surface markers. We refer to Chapter 1 for an overview of the known markers of

CD8+ T cell; for example, in a study of the long-term CD8+ T cell response to

persistent T.gondii infection, the surface markers CXCR3 and KLRG1 were used

to identify an intermediate T cell subset between memory and effector cells (Chu

et al., 2016). Moreover, recent studies highlight the heterogeneity of the CD8+

T cell exhaustion-differentiation process as characterised by at least a progenitor,

an intermediate and a terminal exhausted state (Beltra et al., 2020; Utzschneider

et al., 2020).

In many circumstances, the ability of product cells to perform their function

is negatively affected by the number of rounds of cell divisions that separates

them from their progenitor; every round of division brings, indeed, with it a risk

of mutation. During each replication cycle, a cell replicates its DNA with a non-

null probability of mistake and thus errors in gene expression can arise. We refer

to clonality as the population of cells arising from one single cell. Variability

of family sizes is unavoidable because the fates of individual cells are subject to

chance (Duffy & Hodgkin, 2012; Gerlach et al., 2013; Höfer et al., 2016; Perié

et al., 2014). The variation in family size, from one progenitor to another, causes

the population of product cells to be dominated by large families arising from few

progenitor cells. It has been observed (Lyne et al., 2021; Wainscoat & Fey, 1990)

that excessive clonality may increase the risk of cancerous mutations becoming

established. For example, as observed in Section 5.2.2, clonal hematopoiesis,

observed in older mice and humans (Bowman et al., 2018), is strictly linked to the

accumulation of mutations in the haematopoietic population and an increasing

risk of leukemia. Low rates of division of cells in early compartments of a lineage is

conjectured to reduce the risk that potentially cancerous mutations accumulate.

A quantification of cells development can be done considering the size of the

population of cells as well as the number of cell cycle events that cells need to

undergo. In Section 3.5 we illustrate a second example inspired by immunology,

and consider the T cell development in the thymus (Pham et al., 2015).
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3. WHY ARE CELL POPULATIONS MAINTAINED VIA
MULTIPLE INTERMEDIATE COMPARTMENTS?

Even if cells have nearly identical genome, they carry out their specific func-

tions and exhibit very different phenotypes. New experimental techniques make it

increasingly possible to track individual cells as well as their progeny (Marchingo

et al., 2016; Perié et al., 2014) and, thus, open the opportunity to quantify cellular

proliferation and differentiation. Imaging methods, such as flow cytometry and

fluorescence dye labelling, are experimental methods that allow to measure these

aspects. Flow cytometry technology allows scientists to measure the fluorescent

intensity of single examined cells and quantify the total number of cells within

an assay or tissue. Absolute cell counts, can indeed be obtained by combining

information about cells’ concentration. Moreover, fluorescence molecules, such as

green fluorescent protein (GFP), carboxyfluorescein succinimidyl ester (CFSE),

or CellTrace Violet labelling dye, can be used to label small molecules or pro-

teins and thus monitor cells (Lemieszek et al., 2022; Lyons, 2000). Cell tracking

dyes are used to monitor the proliferative status of cells and to trace multiple

cells’ generations. In particular, CFSE labelling is widely used to monitor the

proliferative responses in complex populations in vitro (Hawkins et al., 2007).

After a division event, the daughter cells of a CFSE labelled cell show a reduced

CFSE intensity. At each round of cell division, CFSE intensity is halved and thus

daughter cells can be distinguished, even if with a limitation in the depth of the

cell’s family tree.

In this Chapter, we examine how a small flux of cells may be amplified through

a sequence of compartments, based on stochastic rules governing the fates of in-

dividual cells. We calculate the distributions of the number of product cells per

progenitor cell, and of the number of rounds of division that separates them.

Our particular focus is on how these distributions depend on the number of

compartments that might represent spacial location or cells’ phenotype. Rather

than focusing on probability distributions of numbers of cells, previous theoret-

ical work on compartmental models has used linear systems of ordinary differ-

ential equations for mean quantities (Colijn & Mackey, 2005; Whichard et al.,

2010; Zierler, 1981). Deterministic compartmental models are widely used in

pharmaco-dynamics, as well as in mathematical ecology (Matis & Wehrly, 1994),

immunology (Eftimie et al., 2016) and epidemiology (Capasso, 2008). In Chap-

ter 6 of this PhD thesis, a deterministic model for the exhaustion-differentiation
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process and cells reinvigoration is defined. In this Chapter, instead, we focus

on the theory of branching processes to model cellular dynamics across compart-

ments, where cells in the same compartment are assumed to be homogeneous and

behave identically. Within the field of stochastic analysis, the theory of branch-

ing processes has been widely used in cellular dynamics (Kimmel & Axelrod,

2002). For instance, the classic Galton-Watson model, which was originally de-

veloped to study the extinction of family surnames (Watson & Galton, 1875),

has been successfully applied to quantify the progeny of a cell (Kimmel & Ax-

elrod, 2002). The theory of branching processes can answer questions related to

the limiting behaviour (e.g. probability of extinction versus unlimited growth)

of cell populations. A natural generalisation is the multi-type branching process,

where individuals are not all of the same type. These models can effectively rep-

resent cells changing their spatial location (de la Higuera et al., 2019), or their

phenotype (Nordon et al., 2011) over time. Among studies in literature, we high-

light the seminal work by Matis (1970), proposing a stochastic compartmental

model of cell dynamics, where cells in the same compartment are assumed to be

homogeneous and behave identically.

In this Chapter, a compartmental stochastic model is defined; specifically, we

treat the journey from a single progenitor cell (depicted in green in Figure 3.2) to

a population of product cells as a realisation of a branching process with multiple

types (Antal & Krapivsky, 2011; Luria & Delbrück, 1943). We study the mean

and probability distribution of several random variables of interest, related to

cell number and replication. In particular, in Section 3.1 a mathematical model

for cell differentiation among a sequence of compartments is defined. Given the

sequence of compartments Ci and the events cells can undergo independently

in each compartment, we proceed by defining, in Sections 3.2 and 3.3, two dif-

ferent random variables of interest. Their first and second moments as well as

their probability distribution are studied. With the aim of linking this theo-

retical framework to natural biology and cell development processes, we relate

the considered random variables to the size of cell population as well as to the

number of cell cycle events that the cells undergo. In particular, Section 3.2 in-

troduces the random variable R for the family size. This represents the number

of product cells that are descended from one progenitor cell (depicted in green
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3. WHY ARE CELL POPULATIONS MAINTAINED VIA
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in Figure 3.2), for one realisation of the stochastic process. Consequently, we

denote by N the amplification factor, that is the mean number of product cells

per progenitor, N = IE(R). A realisation of the stochastic process via “direct”

differentiation, M = 1, is depicted in Figure 3.4. If in Section 3.2 individual

cells are characterised by the compartment each belongs to, in Section 3.3 we

introduce the concept of generation. The progenitor initial cell is said to be in

generation 0. Whenever a cell in generation n divides, the result is two cells in

generation n+1. Thus, the population of product cells in the last compartment is

heterogeneous: made up of cells of different generations n ∈ N0. In particular, we

define the random variable G for the generation number of a randomly-selected

product cell and we calculate D, the mean age of product cells, measured in num-

ber of generations from the progenitor. A realisation of the stochastic process

via “direct” differentiation, M = 1, is depicted in Figure 3.14. In Section 3.4 the

relationship between the two expected values, N and D, for the number of cells

and for the number of divisions, respectively, is investigated. Here, we focus on

how the relationship between N and D varies with the number of compartments

in the sequence. For Sections 3.2, 3.3 and 3.4, the case of “direct” differentiation

(M = 1) is considered at first. Secondly, in Sections 3.2.6, 3.3.2 and 3.4.3, the

arguments and results are extended to the multi-compartments case of M > 1.

Finally, we accommodate asymmetric division event in our mathematical

framework. Asymmetric division (see Figure 3.1) is subject of recent research:

when this type of division happens one daughter cell remains in the mother’s

compartment while the other moves to the next compartment (Barile et al., 2020;

Böttcher et al., 2018; Gerlach et al., 2013; Pham et al., 2015; Shahriyari & Ko-

marova, 2013; Stiehl & Marciniak-Czochra, 2017; Werner et al., 2015; Yang et al.,

2015). From the point of view of Markov processes, an asymmetric division event

may be seen as unnatural, in that division and change of type are supposed to

be simultaneous. From the biological point of view, on the other hand, the idea

is more natural: the mother’s intracellular and cell-surface proteins will not be

exactly evenly partitioned between the two daughters, who may experience dif-

ferent conditions during the process of cell division (Borsa et al., 2019; Chang

et al., 2007). The asymmetric division event brings complexity in the model,
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3.1 Mathematical model

Figure 3.1: On the left self-renewal cell division: the two daughters cells receive

identical genetic information as well as the same cell fate determinants. They thus

have identical cell fate, such as the mother. On the right asymmetric division:

a cell divides to give rise to two daughter cells with distinct cell fates. Figure

reprinted with permission (RightsLink service) from Zion & Chen (2021).

thus, for Sections 3.2, 3.3 and 3.4, we start illustrating the analysis and the re-

sults for the simpler case where cellular events are restricted to death, self-renewal

and differentiation, setting the asymmetric division rate to zero. Later, in Sec-

tions 3.2.7, 3.3.3 and 3.4.4, we extend the performed calculations for random

variable R and G as well as the relationship between N and D, to include asym-

metric division. Moreover, in Section 3.5, we show how the developed theoretical

methods can be applied to thymus development, a biological system in which

asymmetric cell division may play a role (Pham et al., 2015).

3.1 Mathematical model

We propose a stochastic model of cell proliferation, death and differentiation

across a sequence of compartments. We consider cells belonging to the same

compartment as sharing the same spatial location, or biological role, i.e. function,

or simply the same set of cell-surface attributes (the same phenotype). We aim
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at investigating how a population of cells performing a specific role is maintained,

via a sequence of compartments, from a progenitor source.

We consider a sequence of M compartments, depicted in Figure 3.2, so that,

for i = 1, . . . ,M , cells that exit compartment Ci enter compartment Ci+1. Indi-

vidual cells in compartment Ci may die or divide, via self-renewal or asymmetric

division, or make the transition to the next compartment, meaning that they

change phenotype or differentiate. We assume cells exiting the last compartment

CM cannot die, further divide, or differentiate more. Product cells, depicted in

orange in Figure 3.2, are thus an accumulative pool and may represent a specific

cell type population which can be experimentally measured.

C1 C2 CM

Figure 3.2: An initial cell, in green, enters the sequence of M compartments from

progenitor cells (blue compartment C1) to maturation state (in orange) via a

sequence of intermediate compartments (in grey).

In this Chapter, we restrict ourselves to counting cells’ number and generation,

ignoring both inter-event times and the total time taken for progeny to disappear

from all intermediate compartments. The product population of cells, depicted

in orange in Figure 3.2, has exited the sequence of M compartments; we focus

here in analysing the product population when all cells left previous intermediate

compartments, either dying or moving forward in the differentiation chain. The

reader should refer to Chapters 4 and 5 for a time-dependent analysis of a similar

stochastic compartmental model for cell differentiation.

Starting from a single progenitor cells, we are interested in the ultimate fate

of the system; thus, we proceed as in the theory of discrete-time branching pro-

cesses, by defining relationships between random variables using probability gen-

erating functions. We refer the reader to Section 2.1.4 for the definition and the

main properties of generating functions. Following the fundamental assumption

of the theory of branching processes (Harris, 1963; Kimmel & Axelrod, 2002),

we assume each cell in a given compartment follows the same rules and behaves
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3.1 Mathematical model

independently. We refer the reader to Section 2.2.3 for a mathematical overview

of branching processes. As depicted in Figure 3.3, a cell in compartment Ci can

undergo four, biologically meaningful, cellular events. In particular, each cell,

independently, may die, exit the compartment or divide. When a division oc-

curs, daughter cells might both belong to the same compartment as the mother

(typically referred to as self-renewal), or one daughter cell might belong to the

same compartment as the mother while the other belongs to the next compart-

ment (asymmetric division) (Barile et al., 2020; Zhang et al., 2015). By definition,

each event of a continuous-time Markov process is characterised by an exponential

waiting time with a probability. We associate, to each of these events in compart-

ment Ci, a probability, namely pd(i) for death, pe(i) for differentiation, pb(i) for

self-renewal, pa(i) for asymmetric division, so that pd(i)+pb(i)+pa(i)+pe(i) = 1.

We assume that the balance of probabilities between fates depends on the com-

Ci
pb(i)

pe(i)

pd(i)

∅

pa(i)

Figure 3.3: Each cell in compartment Ci is characterised by different events:

death, self-renewal, direct differentiation and asymmetric division. Those hap-

pens with probabilities pd(i), pb(i), pe(i), pa(i) respectively such that pd(i)+pb(i)+

pe(i) + pa(i) = 1.

partment but each cell in a compartment chooses its fate independently. Also, in

order to ensure extinction as the ultimate fate of the population of cells in the

chain of compartments (blue and grey in Figure 3.2) we assume that

pd(i) + pe(i) > pb(i), for all i = 1, . . . ,M . (3.1)

This corresponds to the subcritical assumption within the theory of branching

processes described in Kimmel & Axelrod (2002). Note that cell differentiation
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has the same effect as death on the population in the compartment because ex-

ited cells play no further role in the dynamics of that compartment. Moreover,

asymmetric division events happening in compartment Ci do not impact the pop-

ulation balance of that compartment where the division takes place. Rearranging

the terms of Equation (3.1), we get

2pb(i) + pa(i) < 1, for all i = 1, . . . ,M .

In the case of no asymmetric division, that is pa(i) = 0 for i = 1, . . . ,M , the

condition ensuring that the mean number of cells descending from a progenitor

cell is finite, reads

pb(i) < 1/2 .

In this Chapter, we will define the random variables R and G in terms of the

events’ probabilities pb(i), pd(i), pe(i), pa(i). However, by definition of discrete-

time Markov chains, we can relate them to corresponding event rates. Let µi

be the death rate, ai and λi be the asymmetric and self-renewal division rate

respectively and νi be the cell differentiation rate; then it holds

pd(i) =
µi

µi + νi + ai + λi
, pb(i) =

λi
µi + νi + ai + λi

,

pa(i) =
ai

µi + νi + ai + λi
, pe(i) =

νi
µi + νi + ai + λi

.

In the analysis carried out in this Chapter we only considered population of cells

for large values of time t and thus we could neglect differences in the parameter

rates of cells in each of the M compartments of the sequence; for this reason we

define cellular rates in terms of probabilities. On the contrary, the time-dependent

analysis in Chapters 4 and 5 has been carried out in terms of event rates to take

into account differences in compartment dynamics.

The following Sections are organised as follow: in Section 3.2, a stochastic

model is formulated such that R is the total number of product cells, through

the sequence of compartments, starting from a single progenitor cell. Secondly, in

Section 3.3, we define a discrete-time multi-type branching process initiated by a

single progenitor cell. We define Zn(i) as the number of cells in generation n and

in compartment Ci of the process and we study the random variable G describing
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3.2 Counting product cells

the generation number of a randomly-selected product cell. For both Sections 3.2

and 3.3 the analysis is carried out for the case of M = 1 and pa(1) = 0 at first and

then results are generalised to a sequence of compartments as well as to include

the asymmetric division event, that is pa(i) ̸= 0.

3.2 Counting product cells

Figure 3.4: One compartment. A single progenitor cell (green) enters the com-

partment. Each (blue) cell in the intermediate compartment is descended from

the progenitor. Each, independently, may die, divide, or exit. Cells (orange) that

have exited the compartment do not die or divide further. The random variable

R is the number of orange cells remaining when there are no remaining blue cells.

Let R be the random variable describing the number of cells that exit the

sequence of M compartments, descended from one cell entering the first com-

partment C1. In this Section, the random variable R and its density function are

studied. We start restricting ourselves to the case of “direct” differentiation, that

is M = 1, depicted in Figure 3.4. The population of product cells (in orange) is

maintained via a single compartment and it results from the sum over realisations

of families, each founded by a single progenitor cell, depicted in green. Moreover,

we assume that only three types of single-cell events contribute to the creation

of a family of product cells: self-renewal, death and differentiation. This means

that, for now, we set pa(1) = 0 for the unique compartment in the sequence.

Sections 3.2.1 to 3.2.5 report the main results obtained for the random variable

R for the simpler case of only self-renewal division and “direct” differentiation

(M = 1). Sections 3.2.6 and 3.2.7 extend our results to the case of M > 1 and of

pa(i) ̸= 0 for i = 1, . . . ,M respectively.

101



3. WHY ARE CELL POPULATIONS MAINTAINED VIA
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In Sections 3.2.1 to 3.2.5, when working with only one compartment, we sim-

plify the notation and drop the compartment-index i = 1. For example, we denote

event probabilities pb(1), pd(1), pe(1) with pb, pd, pe such that pb + pd + pe = 1.

3.2.1 R and its probability generating function

Let R be the random variable describing the number of cells exiting compartment

C1, descended from one cell entering that compartment. We compute the first

and second order moments of R and we analyse qk defined as the probability

distribution of R:

qk = P (R = k), k = 0, 1, 2, . . . .

The distribution qk can be found by a first-step argument: if the first event

occurring after the green progenitor enters the blue compartment is cell death,

then the population becomes extincted and the process ends; whereas if the first

event is cell division (self-renewal) then the two daughter cells, independently,

follow the same rules as their mother cell. Therefore, q0 satisfies the quadratic

equation

q0 = pd︸︷︷︸
death

+ pb q
2
0︸︷︷︸

self-renewal

. (3.2)

Equation (3.2) can be also derived making use of the total expectation law∑
s∈{d,e,b}

ps P (R = 0 | first event is s) = pd1 + pe0 + pb q
2
0.

Note that Equation (3.2) is a quadratic equation with two solutions. Because q0

is a probability, it can not be greater than one; thus, we take the solution in [0, 1]

given by

q0 =
1 − ∆

2pb
=

2pd
1 + ∆

where ∆2 = 1 − 4pd pb. (3.3)

Next we have,

q1 = pe + pb 2q0 q1, so q1 =
pe
∆
, (3.4)

q2 = pb 2q0 q1 + pbq
2
1 .

102



3.2 Counting product cells

We may find further qk using qk = pb (qkq0 + qk−1q1 + . . .+ q1qk−1 + q0qk) so

qk =
pb
∆

k−1∑
i=1

qiqk−i , k ≥ 2.

In this simple case the distribution qk can be computed by hand; however,

in general, it is useful to compute qk via a probability generating function ap-

proach (Allen, 2010; Wilf, 2005). This method gives the terms of the distribution

qk as the coefficients of a power series. It works for more complicated stochastic

processes and can be used here to find a general expression of qk in a quicker

way. For example, if pa > 0, we will show in Section 3.2.7 how the generating

function approach is needed to describe the distribution function qk. We let the

probability generating function of R be

ϕ(z) = IE(zR) = q0 + q1z + q2z
2 + · · · , z ∈ [0, 1]

with z a symbolic argument and such that ϕ(1) = 1. The probability generating

function satisfies a quadratic equation (Steel, 2001; Wilf, 2005):

ϕ(z) =
∑

s∈{d,e,b}

psIE(zR | first event is s)

= pdz
0 + pez

1 + pbϕ
2(z).

Taking the sign of the square root that yields ϕ(1) = 1,

ϕ(z) =
1 − (1 − 4pbpd − 4pbpez)1/2

2pb
. (3.5)

Using (3.5) and applying the Newton’s generalised binomial series, we find

qk =
(pb

∆

)k−1 (pe
∆

)k
ck−1 , k ≥ 1, (3.6)

where c0 = 1 and

ck =
(2k)!

k!(k + 1)!
.

The ck are known as the Catalan numbers (Singmaster, 1978) arising in various

counting problems in combinatorial mathematics. Examples of qk distribution

are shown in Figure 3.5 for two different choices of pb and pe.
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0 1 2 3 4 5 6 7 8

0.5
pb =0.463
pe =0.451

k

q k

0 1 2 3 4 5 6 7 8

0.5
pb =0.270
pe =0.409

k

q k

Figure 3.5: The quantity qk is the probability that k cells exit the compartment

C1, given that one cell enters. Results, using Equation (3.6), are shown for two

different choices of pb and pe taken from the work of Sawicka et al. (2014) about

thymocytes maturation. On the left, we used pb = 0.463 and pe = 0.451 as

computed from single positive CD4 (SP4) thymocytes rates and on the right, we

used pb = 0.270 and pe = 0.409 as computed from single positive CD8 (SP8)

thymocytes rates reported in Sawicka et al. (2014).

The generating function ϕ(z) of Equation (3.5) contains all the information

of the process defined by R. Nevertheless, it is useful to compute the first and

the second moments of random variable R. The expected value of R satisfies

IE(R) =
∑

s∈{d,e,b}

ps IE(R | first event is s) = pd0 + pe1 + pb2N,

so rearranging, we get

N = IE(R) =
pe

1 − 2pb
. (3.7)

The quantity N = IE(R) is the “amplification factor”: the mean number of

product cells per progenitor. If there is a constant influx J of progenitor cells,

then there is a constant outflux N J of product cells. The size of a population

of cells is easily measurable (for example via flow cytometry) and it is usually

quantified during experiments in cell biology. Thus, the quantity N allows us to

create a bridge between our mathematical framework and experimental biology.

In addition to the first moment of R, we can compute the variance V =
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var(R). The second derivative of (3.5) is

ϕ′′(z) = 2pbp
2
e(∆

2 − 4pbpez)−3/2 .

Thus, by definition,

V = ϕ′′(1) +N −N2

=
2pb

1 − 2pb
N2 +N −N2 . (3.8)

3.2.2 Parameterisation in terms of N

Given that pd + pb + pe = 1, we can recover any of the probabilities pd, pb or

pe given the other two. Consequently, we may parameterise the compartment in

terms of any two, linearly independent, combinations of pd, pb and pe.

Given the concreteness of N in biological experiments, we will, on occasions,

make use of its expression in Equation (3.7) and write all parameters as a function

of pd and N :

pb =
N − 1 + pd

2N − 1
and pe =

N(1 − 2pd)

2N − 1
. (3.9)

In addition, we can use (3.9) and express the variance V = var(R) using N

itself along with pd. Using (3.9), expression (3.8) can be rewritten as

V = 2
N − 1 + pd
N(1 − 2pd)

N3 +N −N2 .

One can observe that the standard deviation of R is proportional to N3/2 as

N → +∞. Figure 3.8 reports (in red, for M = 1) the standard deviation
√
V as

a function of the amplification factor N .

Moreover, Figure 3.16 reports the quantity N , that characterises the popu-

lation of cells exiting compartment C1, as functions of pb and pd. In particular,

each blue line is the set of pairs (pb, pd) corresponding to the indicated value of

N . Note that, if pd >
1
2

then N < 1
2

always. The triangular part of the pa-

rameter space corresponding to N > 1 is at bottom right. Also, if pd is fixed,

limpb→0N = 1 − pd.
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3.2.3 Recurrence relation

We showed how either a first-step argument or a generating function approach can

be used to find an expression of the distribution qk = P (R = k). By definition

of probability generating function, we can determine the distribution qk of R by

repeatedly differentiating the probability generating function of R, as

qk =
1

k!

d(k)

d z(k)
ϕ(z)

∣∣∣∣
z=0

.

However, this requires the calculation of the kth derivative of the probability gen-

erating function which is not always straightforward. Moreover, numerical differ-

entiation is inaccurate for large values of k and thus, in practice, it is convenient

to generate qk via a recurrence relation. We rewrite the probability generating

function in Equation (3.5) as

2pbϕ(z) = 1 − w(z), where w2(z) = 1 − 4pbpd − 4pbpez.

Differentiating ϕ(z) we get

w(z)ϕ′(z) = pe,

and thus, ϕ(z) satisfies the differential equation

w2(z)ϕ′(z) + 2pepbϕ(z) − pe = 0.

We recall ϕ(z) is a generating function and that, by definition, ϕ(z) and its

derivative can be expressed as power series,

ϕ(z) =
+∞∑
k=0

qkz
k and ϕ′(z) =

+∞∑
k=0

(k + 1)qk+1z
k .

Matching terms proportional to zk yields the recurrence relation

qk+1 =
2k − 1

k + 1

2pbpe
1 − 4pbpd

qk. (3.10)

Equation (3.10) is a 2-term recurrence for the distribution qk.

106



3.2 Counting product cells

3.2.4 Asymptotic behaviour

Given a generating function f(z) =
∑+∞

k=0 fk z
k, one may analyse its analytic

properties in order to obtain asymptotic information about the sequence fk. Fol-

lowing Flajolet & Sedgewick (2009), we can interpret the algebraic object of

generating functions as an analytic object, that is a map f : C → C of the com-

plex plane to itself. When f(z) has a simple description such as a singularity of

square root type, we can apply the method of singularity analysis and exploit the

correspondences between properties of the function f(z) singular at an isolated

point and the asymptotic behaviour of its coefficients fk of the series expansion.

The probability generating function ϕ(z) in Equation (3.5) is a rational function

of square root type; thus, its singular expansion involves fractional powers and

the method of singularity analysis developed by Flajolet & Sedgewick (2009) can

be applied.

Given a function f(z) =
∑+∞

k=0 fk z
k, we denote with [zk]f(z) the coefficient fk

of zk in the power series. If f(z) has a singularity in z = σ, then via the scaling

rule of Taylor expansion

[zk]f(z) = σ−k[zk]f(σ z) = σ−k[zk]g(z) ,

where g(z) = f(σ z) has a singularity in z = 1. Rational functions involve, near

a singularity σ, fractional powers of the form
(
1 − z

σ

)−α
and one can apply the

method for singularity analysis developed by Flajolet & Sedgewick (2009). In

particular, if g(z) = (1 − z)−α, for a general α ∈ R or α ∈ C, Theorem 6.1

in (Flajolet & Sedgewick, 2009, Chapter 6) proves that

[zk](1 − z)−α ∼ kα−1

Γ(α)

(
1 +

α(α− 1)

2k
+O

(
1

k2

))
.

Thus, for a function with singularity in z = σ,

[zk]
(

1 − z

σ

)−α
∼ σ−k

Γ(α)
kα−1 . (3.11)

Recall that if M = 1 and pa = 0, the probability generating function of R is given

by Equation (3.5),

ϕ(z) =
1 −

√
∆2 − 4pbpez

2pb
,
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that is a rational function with a single singularity in σ = ∆2

4pbpe
. We can then

use the results of the asymptotic analysis of g(z) = (1− z)−α, with α = −1/2, to

derive the asymptotic behaviour of the series’ coefficients of ϕ(z). In particular,

we write

ϕ(z) =
1

2pb
−

√
pe√
pb

√
∆2

4pbpe
− z ,

and, following Flajolet & Sedgewick (2009), we find

[zk]ϕ(z) ∼ −
√
pe√
pb

(
∆2

4pbpe

)−k
k−3/2

Γ(−1/2)
.

Making the Gamma function explicit, we get

[zk]ϕ(z) ∼
√
pe

2
√
πpb

(
4pbpe
∆2

)k
k−3/2 =

pe√
π∆

γk−1k−3/2 ,

where σ = 1/γ,

γ =
4pbpe

1 − 4pbpd
. (3.12)

We can thus conclude that, for k → +∞,

qk ∼
pe√
π∆

γk−1k−3/2 . (3.13)

This is in agreement with the observation made by Flajolet & Sedgewick (2009):

square root singularities universally translate into an asymptotic estimate with

exponent −3
2
. Moreover, as underlined by Flajolet & Sedgewick (2009), if g(z) =

(1 − z)−α, one can apply the binomial expansion for a general α, and carry out

an asymptotic analysis of the resulting binomial coefficient by means of Stirling’s

formula.

An example of the long behaviour of distribution qk is depicted in Figure 3.6 for

thymocytes SP4 and SP8 population, in light and dark green respectively (Saw-

icka et al., 2014).

Equation (3.13) outlines the presence of two règimes in the behaviour of qk

for N ≫ 1: when k is small enough that γk ≈ 1, qk is governed by the power law;

then, for greater k, by the geometric γk. Also, from Equation (3.13) we get

lim
k→+∞

log

(
qk+1

qk

)
= log γ − 3

2
log

(
1 +

1

k

)
.
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Figure 3.6: The probability that the number of product cells is k, logarithmic

scales, with and without death. The dashed line is the power law qk = k−3/2.

The lower panel plots k3/2qk in the same two cases. The vertical dotted lines, at

k = 6N2/(1 − 2pd), indicate where the behaviour of qk begins to deviate from

the power law. The parameter values, calculated using (3.9) so that N = 6.1,

are taken from the work of Sawicka et al. (2014) about thymocytes maturation.

In particular, we consider SP4 (in light green) and SP8 (in dark green), single

positive CD4 and CD8, respectively. Black dots show qk distribution for pd = 0.

Making use of Equations (3.9), one can write γ in terms of pd and N , and find

γ = 1 − 1 − 2pd
4N2 + 1 − 4N − 2pd + 4Npd

.

Then, if N ≫ 1

lim
k→+∞
N→+∞

log

(
qk+1

qk

)
= −1 − 2pd

4N2
− 3

2

1

k
, (3.14)

where we used that, for |x| < 1, log(1+x) = x+O(x2) and log(1−x) = −x+O(x2).

Thus, the decrease in qk as a function of k is primarily due to factor k−3/2 when

(1 − 2pd)k < 6N2; thereafter, for k > 6N2

1−2pd
, it is due to the factor γk.

3.2.5 Analysis of cell’s clonality

A population of product cells is said to have a high degree of clonality, if it is

dominated by a few large families (cells originated from the same progenitor).

Biologically this is relevant when looking at gene mutations, random alterations
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of nucleotides in DNA sequences that can occur during DNA replication (the

construction of a new DNA filament). When a mutation happens, it is then

propagated into all descendants of the mutant cell. It has been observed that

every round of division brings with it a risk of mutation and that a high degree of

clonality may increase the risk of cancerous mutations becoming established (Lyne

et al., 2021; Wainscoat & Fey, 1990). Mathematically, in a population of cells

made up of multiple realisations of R, we can understand the dominance of large

families of cells by evaluating k50, the lowest value of k such that half of cells are

part of a family of fewer than k cells. Given N = IE(R), we define k50 as the

value of the index k such that

k50∑
k=0

k qk =
N

2
. (3.15)

Solving Equation (3.15) and finding an exact expression of k50 is not straightfor-

ward. We can, however, determine a lower bound for k50 by making use of the

inequality

qk <
pe√
π∆

γk−1
1 k−3/2 ,

derived from Equation (3.13). We recall, as outlined in Section 3.2.4, that for k

small enough, we have γk ≈ 1 and thus qk is governed by the factor k−3/2. Thus,

it holds

N

2
=

k50∑
k=0

k qk <
pe√
π∆

k50∑
k=1

k−1/2 . (3.16)

We look for an upper and lower bound for the sum
∑k50

k=1 k
−1/2 by making use

of Riemann sums (Oberbroeckling, 2021). Since the function f(k) = k−1/2 is

monotonic decreasing in (0,+∞) as a function of k, then

k50∑
k=1

k−1/2 ≤ f(1) +

∫ k50

1

k−1/2dk ,

and we can find an upper bound for our sum of interest,

k50∑
k=1

k−1/2 ≤ 1 +

∫ k50

1

k−1/2dk = 1 + 2
√
k50 − 2 = 2

√
k50 − 1 ≤ 2

√
k50 .
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Applying the inequality to (3.16), we have

N

2
<

2pe√
π∆

√
k50 ,

that is

k50 >
N2∆2π

16p2e
=

π

16

∆2

(1 − 2pd)2
(2N − 1)2 ,

where we made use of (3.9) to express pe in terms of N and pd.

If N ≫ 1, the quantity k50 is proportional to N2. Moreover, Figure 3.7 shows

how k50 is an increasing function of the death probability pd and of amplification

factor N . For example, if N = 10 and pd = 0, then k50 = 83 and the analytical

bound is k50 > 71; if N = 100 and pd = 0, then k50 = 9000 and the analytical

bound is k50 > 7775. Consequently, if M = 1 (that is progenitor cells directly

differentiate into product cells), a large mean number of product cells N can be

reached only via a high value k50; likewise, it is high the risk of mutations.

Figure 3.7: We consider three different values of the amplification factor N , that

is red for N = 5, blue for N = 15 and green for N = 75. Using (3.10), we compute

the analytical bound k50 for increasing values of pd ∈ [0, 0.1, 0.2, 0.3, 0.4]. Note

the log scale of the y-axis.
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3.2.6 Generalisation to a sequence of M compartments

In biology a large population of product cells is often maintained via a sequence

of intermediate states, or compartments (MacLean et al., 2018). For example,

in the context of immune cells differentiation, the maturation and development

of T cells in the thymus pass through a sequence of intermediate stages (Yates,

2014). In this Section, we assume M > 1 and we derive properties of product cells,

investigating how they depend on the number of intermediate compartments M .

Since we consider now the case of at least one intermediate compartment in the

sequence, so M > 1, we find it helpful to define either “compartment” or “total”

variables. In particular, we define the random variable Ri for the number of cells

exiting compartment Ci descended from one cell that enters compartment Ci. We

still denote with R the random variable representing the number of product cells

(depicted in orange in Figure 3.2) exiting the final compartment CM , given that

one cell enters compartment C1. Following the sequence of compartments, the

product cells exiting compartment CM have undergone M differentiation events

between the progenitor and the product type phenotype.

R and its probability generating function

Let Qk(M) be the probability that the number of product cells, descended from

a single progenitor via M intermediate compartments, is equal to k; that is

Qk(M) = P (R = k), k = 0, 1, 2, . . . . (3.17)

In this case of a sequence of M compartments we cannot apply a first-step ar-

gument to directly compute the distribution Qk(M), but a generating function

approach is required. The probability generating function of R, ΦM(z), is defined

as

ΦM(z) = IE(zR) = Q0(M) + zQ1(M) + z2Q2(M) + · · · , (3.18)

with ΦM(1) = 1. Let the probability generating function of Ri be

ϕi(z) =
1 − (∆2

i − 4pb(i)pe(i)z)
1/2

2pb(i)
, i = 1, . . . ,M, (3.19)
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where ∆2
i = 1 − 4pd(i)pb(i). As in Section 3.2.1 for M = 1, we can define the

amplification factor Ni of each compartment

Ni = IE(Ri) = ϕ′
i(z)|z=1 =

pe(i)

1 − 2pb(i)
, (3.20)

as the mean number of cells exiting compartment Ci for each cell entering com-

partment Ci. The probability generating function for the total process can be

written as the compositions of the probability generating functions of each inter-

mediate compartment Ci (Harris, 1963; Kimmel & Axelrod, 2002; Wilf, 2005).

That is, for a sequence of M compartments, the probability generating func-

tion (3.17) of the “total” random variable R can be written as

ΦM(z) = ϕ1(ϕ2(· · ·ϕM(z))) = ϕ1(χM(z)). (3.21)

The function χM(z) has been defined as needed for the calculations of the second

moment of R (see Equation (3.23)) as well as for the asymptotic coefficient γM

(see Equation (3.26)). Of course, when M = 1 we fall in the case of “direct”

differentiation with no intermediate compartments, detailed in Section 3.2.1; then

Qk(1) = qk and Φ1(z) = ϕ(z).

We denote with N the expected value of R; that is the overall amplification

factor (from one single progenitor cell), given by

N =
M∏
i=1

Ni.

Moreover, in addition to the first moment, one can compute the second moment

of R,

var(R) = Φ′′
M(1) +N −N2 . (3.22)

Recall ΦM(z) = ϕ1(χM(z)), thus Φ′
M(z) = ϕ′

1(χM(z))χ′
M(z) and

Φ′′
M(1) = ϕ′′

1(1) (χ′
M(1))

2
+ ϕ′

1(1)χ′′
M(1),

where Φ′
M(z) = d

dz
ΦM(z). If we assume identical compartments, that is ϕi(z) =

ϕ(z), i = 1, . . . ,M , and if, in each compartment Ci, Ni = N1/M is independent
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of i and pd(i) = 0, we can make further comments on the distribution of R. In

this case, indeed,

ϕ′(1) = N1/M , ϕ′′(1) = 2
pb
pe
N3/M ,

and

Φ′′
M(1) = 2

pb
pe

(
N3/MN2(1−1/M)

)
+N1/Mχ′′

M(1).

We find

Φ′′
1(1) = 2

pb
pe
N3, Φ′′

2(1) = 2
pb
pe

(
N5/2 +N2

)
, Φ′′

3(1) = 2
pb
pe

(
N7/3 +N2 +N5/3

)
and, for a general M ,

Φ′′
M(1) = 2

pb
pe
N2+1/M

M−1∑
j=0

N−j/M . (3.23)

Thus, the variance of R is proportional to N2+ 1
M as N → +∞ (see Figure 3.8). In

Section 3.4.3, we show how by assuming identical compartments, we can reduce

the number of parameters and show that these assumptions are optimal from the

perspective of minimising the mean number of divisions per cell.

Figure 3.8: The standard deviation of R as a function of the N = IE(R), with

different numbers of compartments. The lines use the formula (3.22); each line

corresponds to one value of M . The dots are obtained as averages over 104

numerical realisations.
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Recurrence relation

As done in Section 3.2.3 for the case M = 1, we now look for a recurrence to

generate values of Qk(M). The calculation of an analytical recurrence relation

for Qk(M), for the general case of a sequence of M compartments, is not straight-

forward. In Appendix A, we report the calculations for the case M = 2. This

method is inspired by the work of Mathar (2021) and it can be, in principle,

generalised for longer sequences of compartments, M > 2; we reserve to do that

in future work.

For M = 2 and pa(1) = pa(2) = 0, we find the three-term recurrence relation,

a2(k + 1)(k + 2)Qk+2(2) + a1(2k + 1)(2k + 2)Qk+1(2)

+ a0
(
64k2 − 4

)
Qk(2) = 0 , (3.24)

where

a2 = ∆2
2

(
∆2

1(4pe(1) rb − ∆2
1) − 16p2e(1)pb(1)pd(2) rb

)
,

a1 =
(
∆4

1 − 4pe(1) rb∆
2
1 + 4p2e(1) r2b (1 − 2∆2

2)
)
pb(2)pe(2) ,

a0 = p2e(1)p2e(2)p2b(1) ,

where rb = pb(1)/pb(2). For more technical details about the derivation of (3.24),

we refer the reader to Appendix A. In Figure 3.9, we report Qk(1) and Qk(2) for

three different scenarios regarding the amplification factors N1 and N2. Moreover,

Figure B.1 reports the behaviour of Qk(M), for M = 1, 2, 3, for large values of k;

distributions Qk(1) and Qk(2) (in green and red, respectively) diverge for larger

values of k.

In addition, we can study the dominance of large families of cells and estimate

k50 for the case M > 1. For example, if M = 2 and N = 10 then the minimum

k50 value is 33; whereas if M = 2 and N = 100 it is 1010. For M = 3, the

minimum k50 values are 25 and 528 for N = 10 and N = 100 respectively. This

indicates how k50 is decreasing with the number of compartments. In particular,

Figure 3.10 reports the clonality index k50 for the case M = 2, computed using

the recurrence (3.24). Here, we focus on three different scenarios with fixed

total amplification factor N = 75 and varying ratios of N1/N2. We consider two

compartments having equal amplification factor, that is N1/N2 = 1; the first
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Figure 3.9: We set N = 75 and plot Qk(M) as a function of k for M = 1, 2. For

M = 2 we consider three different scenarios, two compartments with the same

amplification factor (in blue) and the second compartment with greater (in red)

and smaller (in green) amplification than the first one.

compartment having a lower amplification than the second one, that is N1/N2 =

1/3; and vice-versa, N1/N2 = 3. In agreement with the case M = 1, one can

observe that k50 is an increasing function of pd(1) and pd(2). In particular, we

observe a higher variability in the value of k50 if the second compartment has a

higher amplification factor than the first, that is N1 = 5 and N2 = 15 (blue lines).

Most importantly, we observe that, given a fixed value of pd(2), a variation of

pd(1) ∈ [0, 0.4] has a greater impact on the value of k50 (dotted lines).

Asymptotic behaviour

Given definition (3.18), the coefficients of the probability generating function

ΦM(z) are the elements of the distribution Qk(M). In this Section, we apply the

method developed by Flajolet & Sedgewick (2009) to analyse the long tail and

the asymptotic behaviour for k → +∞ of the distribution Qk(M). We proceed by
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Figure 3.10: We consider the total amplification factor N = 75 as fixed, and

vary N1, N2. In particular, in red we have two compartments with the same

amplification factor, in blue we consider the case of the second compartment

having a greater amplification than the first one, and in green the vice-versa.

Using (3.24), we compute k50 for increasing values of pd(1) or pd(2). In particular,

dotted lines shows the value of k50 for increasing pd(1) as in x-axis and pd(2) = 0

(circle) or pd(2) = 0.3 (cross). Continuous lines, shows the vice-versa: pd(2)

increases as in x-axis and pd(1) = 0 (circle) or pd(1) = 0.3 (cross). Parameters

pb(i), pe(i), for i = 1, 2, are chosen appropriately to get the desired amplification

factor using (3.9).

locating the singularities of the function ΦM(z) and find the long-term behaviour

of the coefficients of its series expansion denoted as [zn]ΦM(z). Details about

how the singularity of ΦM(z) results from the most outer root of the function,

are shown in Appendix B for M = 2 and M = 3 as a generalisation of the case

M = 1 detailed in Section 3.2.4.

In case of a sequence of M compartments, the probability generating func-

tion of R is a composition of functions ΦM(z) = ϕ1(ϕ2(. . . ϕM(z))) where each

ϕi(z) is a square root function of the form of Equation (3.19). The asymptotic
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analysis of Qk(M) can be directly based on the general discussion of composi-

tion of singularities of ϕ1(z), ϕ2(z), . . . , ϕM(z). Since each ϕi(z) has a square root

type singularity and the outer functions are analytic in the singularity of the inner

function, the coefficients of the asymptotic estimate still have the form k−3/2 (Fla-

jolet & Sedgewick, 2009). That is an interesting feature of the distribution of R:

for large k we observe a universal behaviour

Qk(M) ∼ γkMk
−3/2, as k → +∞ , (3.25)

where γM is determined by locating the square-root singularity of ΦM(z).

Moreover, Figure 3.11 shows that the distribution of R narrows as the number

of compartments increases: here k3/2Qk(M) is plotted as a function of k, with

pd(i) = 0 for i = 1, . . . ,M . In all three cases shown, the mean number of

product cells, N , is equal to 25. In terms of the underlying dynamics, we see that

individual realisations may yield numbers of product cells many times greater

than N , but, within the same amplification factor N , such realisations become

rarer as the number of intermediate compartments is increased.

Figure 3.11: Plot of k3/2Qk(M) as a function of k, with logarithmic scales, for

M = 1, M = 2 and M = 10. The solid lines are the exact results, com-

puted using (3.10) and (3.24). The dots are averages obtained from Gillespie

realisations. Parameter values, chosen using (3.9) with N = 25, are M = 1:

pd = 0, pb = 0.4898. M = 2: pd(1) = pd(2) = 0, pb(1) = pb(2) = 0.4444 and

N1 = N2 = 5. M = 10: pd(i) = 0, pb(i) = 0.2158 and Ni = 1.38 for each

i = 1, . . . , 10.

The reader may also note from (3.25) the two different regimes of the distri-

bution Qk(M): for k small enough the terms of distribution are driven by the
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universal term k−3/2; for larger k the behaviour is driven by the power γkM . The

constant γM < 1, driving the behaviour of Qk(M) for large k, may be deter-

mined by locating the square root singularity of ΦM(z) (Flajolet & Sedgewick,

2009; Greene & Knuth, 1990; Knuth & Wilf, 1989). If M = 1 we found the

constant γ as in Equation (3.12); for consistency of notation, we denote it as

γ1 = 4pb(1)pd(1)/∆2
1. Then, using Φ2(z) = ϕ1(ϕ2(z)), we have that γ2 satisfies

4pb(1)pe(1)ϕ2(1/γ2) = ∆2
1. In general, making use of (3.21) we can write

(1 − 2pb(1)ΦM(z))2 = ∆2
1(1 − γ1χM(z)). (3.26)

Since the singularity of χM(z) is close to one, we can approximate χM(z) by its

Taylor expansion in z = 1. Recall that, by definition, χM(z) is a probability

generating function, and thus χM(1) = 1 and χ′
M(1) = N/N1. Thus, we get

1 − γ1χM(z) ∼ 1 − γ1

(
1 − (1 − z)

N

N1

)

=

(
γ1

(
N

N1

− 1

)
+ 1

)1 −
γ1

N
N1

γ1

(
N
N1

− 1
)

+ 1
z

 .

This gives the approximation

γM ∼
(

1 +
1 − γ1
γ1N/N1

)−1

.

Now, if N1, N ≫ 1 then 1 − γ1 ∼ 1
4N2

1
and

γM ∼ 1 − 1 − 2pd(1)

4N1N
,

in agreement with what we observed in Equation (3.14) for M = 1. Moreover,

under the hypothesis of identical compartments, pd(i) = 0 and Ni = N1/M inde-

pendent,

γM = 1 − 1

4

1

N1+1/M
+

1

16

1

N2(1+1/M)
+O

(
1

N3(1+1/M)

)
.
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3.2.7 Generalisation to asymmetric division

In this Section, we accommodate asymmetric division in our framework by in-

troducing it as a fourth type of event, that is pa(i) > 0, for i = 1, . . . ,M . From

the mathematical point of view, asymmetric division introduces complexity in

the model and the calculation. For ease of notation, in this Section and in the

following where asymmetric division is considered (Sections 3.3.3 and 3.4.4), we

denote the functions and quantities with the corresponding symbol used in Sec-

tions 3.2.1- 3.2.5, but with a tilde on top, e.g. ϕ̃ instead of ϕ. Moreover, as in

previous Section, we omit the index i = 1 for the case of M = 1.

If M = 1, we compute the probability generating function of the random

variable R and compute its distribution q̃k. Moreover, we find an expression

for the recurrence relation of q̃k and its asymptotic behaviour. The universal

behaviour observed in (3.25) for large k still holds. Similar analysis performed in

Section 3.2.6 is carried out here for M = 2 tackling the complexity introduced by

the asymmetric division event.

R and its probability generating function Following the same argument

as before, we start looking at the distribution Q̃k(M) of the random variable R. If

M = 1, we denote Q̃k(1) = q̃k and observe that q̃0 = P (R = 0) still satisfies (3.3)

but now (3.4) becomes ∆ q̃1 = pe + paq̃0 and

q̃k =
pb
∆

k−1∑
i=1

q̃iq̃k−i +
pa
∆
q̃k−1 , k ≥ 2.

The complexity introduced by the second addend pa
∆
q̃k−1 prevents us to di-

rectly derive the corresponding of Equation 3.6. As for the case of a sequence

of compartments, a generating function approach is required. Let ϕ̃(z) be the

probability generating function of the random variable R; it satisfies

ϕ̃(z) = pd + pbϕ̃
2(z) + pez + pazϕ̃(z) ,

and its solution is given by

ϕ̃(z) =
1 − paz − ((1 − paz)2 − 4pbpd − 4pbpez)1/2

2pb
. (3.27)
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3.2 Counting product cells

Figure 3.12: The quantity q̃k is the probability that k cells exit the compartment

C1, given that one cell enters. Results, using (3.27), are shown for three different

choices of pb, pa and pe, and pd = 0.01.

The well known Binomial Theorem in Elementary Algebra, can be generalised to

real exponents (Arfken & Weber, 2016). Let α ∈ R, then

(1 + x)α =
+∞∑
k=0

(
α

k

)
xk ,

which converges for |x| < 1. We can apply the generalised Binomial Theorem to

the square root of Equation (3.27),

√
(1 − paz)2 − 4pbpd − 4pbpez

=
√

1 − 4pbpd

(
1 − 2pa + 4pbpe

1 − 4pbpd
z +

p2a
1 − 4pbpd

z2
)1/2

= ∆
+∞∑
k=0

(
1/2

k

)(
−2pa + 4pbpe

∆2
z +

p2a
1 − 4pbpd

z2
)k

= ∆
+∞∑
k=0

(
1/2

k

)(
−2pa + 4pbpe

∆2
z

)k k∑
j=0

(
k

j

)(
−p2a

2pa + 4pbpe
z

)j
.
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Substituting into the probability generating function we get

ϕ̃(z) =
1 − paz

2pb
− ∆

2pb

+∞∑
k=0

(
1/2

k

)( k∑
j=0

(
k

j

)(
−p2a

2pa + 4pbpe

)j
zj

)(
−2pa + 4pbpe

∆2

)k
zk

=
1 − paz

2pb
+

+∞∑
k=0

ck−1
pk−1
b

∆2k−1

(
pa
2pb

+ pe

)k( k∑
j=0

(
k

j

)(
−p2a

2pa + 4pbpe

)j
zj

)
zk

=
1 − paz

2pb
+

+∞∑
k=0

ck−1
pk−1
b

∆2n
∆k+1

(
q1 +

pa
2pb

)k( k∑
j=0

(
k

j

)(
−p2a

2pa + 4pbpe

)j
zj

)
zk

=
1 − paz

2pb
+

+∞∑
k=0

ak

(
k∑
j=0

(
k

j

)(
−p2a

2pa + 4pbpe

)j
zj

)
zk ,

where ak = ck−1
pk−1
b

∆2k ∆k+1
(
q̃1 + pa

2pb

)k
and ck = −1

2

(
1/2
k+1

)
(−4)k+1 denotes the Cata-

lan numbers. The coefficients of the generating function ϕ̃(z) are the q̃k we are

interested in, that is,

q̃0 =
1 − ∆

2pb
,

q̃1 =
pa(1 − ∆) + 2pbpe

2∆pb
,

q̃k =

⌊k/2⌋∑
i=0

(
k − i

i

)
biak−i, for k ≥ 2 with b = − p2a

2pa + 4pbpe
,

where q̃0 agrees with Equation (3.3) as we observed at the beginning of this

Section. In order to make the expression of q̃k more explicit, we expand the term

ak−i as

ak−i = ck−i−1
∆

pb

(
2∆

2pbq̃1 + pa

)i(
2pbq̃1 + pa

2∆

)k
.

Thus, for k ≥ 2,

q̃k =
∆

pb

⌊k/2⌋∑
i=0

ck−i−1

(
k − i

i

)(
−2p2a∆

(2pa + 4pbpe)(2pbq̃1 + pa)

)i(
2pbq̃1 + pa

2∆

)k

=
∆

pb

(
2pbq̃1 + pa

2∆

)k ⌊k/2⌋∑
i=0

1

k − i

(
2k − 2i− 1

k − i

)(
k − i

i

)(
−2p2a∆

(2pa + 4pbpe)(2pbq̃1 + pa)

)i
.

(3.28)
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3.2 Counting product cells

Examples of q̃k are shown in Figure 3.12 for three different choices of pb, pa and

pe.

The probability generating function ϕ̃(z) contains all the information of the

random variable R. Nevertheless, it is useful to compute the expected value of

R

Ñ = IE(R) =
pe + pa

1 − 2pb − pa
. (3.29)

Figure 3.19 reports the quantity Ñ that characterises the population of cells

exiting compartment C1, as functions of pb and pd. In particular, we set pa = 0.2

so that each blue line is the set of pairs (pb, pd) corresponding to the indicated

value of Ñ given by (3.29). The part of the parameter space corresponding to

Ñ > 1 is at bottom right. Note that if pa = 0, Ñ = N as in (3.7).

Moreover, if pe = 0, that is cells can die and self-renew, but they exit the

compartment only via asymmetric division, Equation (3.27) is replaced by

ϕ̃(z) =
1 − paz − ((1 − paz)2 − 4pbpd)1/2

2pb
,

and Equation (3.28) simplifies into

q̃k =
∆

pb

( pa
2∆2

)k ⌊k/2⌋∑
i=0

1

k − i

(
2k − 2i− 1

k − i

)(
k − i

i

)(
−∆2

)i
, for k ≥ 2

with

q̃0 =
1 − ∆

2pb
and q̃1 =

pa
∆
q̃0 .

Recurrence relation As outlined in Section 3.2.3, in some situations it is

convenient to generate q̃k via a recurrence relation. We rewrite (3.27) as

2pbϕ̃(z) = 1 − paz − w̃(z), where w̃2(z) = ∆ − (2pa + 4pbpe)z + p2az
2.

Thus, ϕ̃(z) satisfies the differential equation

w̃2(z)ϕ̃′(z) + w̃′(z)w̃(z)ϕ̃(z) + c(z) = 0

with c(z) = (p2a − pa + 2papbpe − 4pbpe)z + ∆2 − pa − 2pbpe. As in Section 3.2.3,

we make use of the fact that ϕ̃(z) is a generating function and it can be written
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as a power series of z. Matching terms proportional to zk yields the recurrence

relation

∆2(k + 2)q̃k+2 = (2k + 1)(pa + 2pbpe)q̃k+1 − (k − 1)p2aq̃k. (3.30)

Note that, since w̃2(z) is a second-order polynomial in z, the recurrence rela-

tion (3.30) for q̃k with M = 1 is a three-term recurrence; whereas, if pa = 0, qk is

given by the two-term recurrence (3.10).

Asymptotic behaviour The probability generating function ϕ̃(z) contains in-

formation about the long tail of the distribution q̃k. We follow the approach

of Flajolet & Sedgewick (2009) and proceed as in Section 3.2.4 by locating the

singularities of the probability generating function

ϕ̃(z) =
1 − paz −

√
(1 − paz)2 − 4pbpd − 4pbpez

2pb
.

Note that, as for ϕ(z), ϕ̃(z) is a square root function. However, now the squared

polynomial is a second-order polynomial, and thus ϕ̃(z) has two singularities at

z1, z2 such that

paz
2 − 2(pa + 2pbpe)z + ∆2 = 0 .

Then,

ϕ̃(z) =
1 − paz −

√
(z2 − z)(z1 − z)

2pb
=

1 − paz

2pb
−

√
z − z2
2pb

√
z1 − z .

Following Flajolet & Sedgewick (2009) and without loss of generality, one can

assume z1 to be the dominant singularity (z1 ≲ 1 and z2 ≳ 0). Since ϕ̃(z)

is analytic in z1 − z2, we singularly expand the term
√
z1 − z around z = z1

and analytically expand the factor
√
z−z2
2pb

around the point z = z1. By linking,

as in Flajolet & Sedgewick (2009), the coefficients of the power series with the

location of the singularities, the following estimate holds

[zk]ϕ̃(z) ∼ −
√
z1 − z2
2pb

√
z1 − z ∼

√
z1 − z2
2pb

z−k1

k−3/2

Γ(−1/2)

=

√
z1 − z2

4
√
πpb

(
1

z1

)k
k−3/2 .
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3.2 Counting product cells

Thus, as k → +∞,

q̃k ∼ γ̃kk−3/2, (3.31)

where γ̃ = 1/z1 satisfies

(1 − 4pbpd)γ̃2 − (2pa + 4pbpe)γ̃ + p2a = 0.

We would like to underline, one more time, the universal behaviour k−3/2 for

small-k. In Figure 3.13, we report a comparison between the long-term behaviour

of q̃k in the purely asymmetric case (in yellow), where cells can exit the compart-

ment only via asymmetric division (pe = 0) and in the self-renewal case with

pa = 0 (in green).

Figure 3.13: Comparing exit with and without asymmetric division. In green, the

distribution qk for the self-renewal case (3.6) with pa = 0. In yellow, the purely

asymmetric case where we set pa > 0 and pe = 0, using (3.30). In both cases,

N = Ñ = 25 and pd = 0.25.

Generalisation to a sequence of M = 2 compartments We consider two

non-identical compartments, i.e. ϕ̃1(z) ̸= ϕ̃2(z) and, as in (3.21), we define, by

composition of generating functions,

Φ̃2(z) = ϕ̃1(ϕ̃2(z)) ,
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the probability generating function of the random variable R for the number of

cells exiting the second compartment C2, for one cell entering C1; in particular,

Φ̃2(z) =
1 − pa(1)ϕ̃2(z) −

√
(1 − pa(1)ϕ̃2(z))2 − 4pb(1)pd(1) − 4pb(1)pe(1)ϕ̃2(z)

2pb(1)
.

We can observe that Φ̃2(z) and the probability generating function Φ2(z) for the

self-renewal case are both nested square root functions of the form,

p3(z) +
r

√
p1(z) +

√
p2(z) ,

with p1(z), p2(z), p3(z) polynomials. As detailed in Appendix A, if pa(1) =

pa(2) = 0, then p1(z) = ∆2
1 − 2pb(1)pe(1)

pb(2)
is a constant; whereas in this scenario

where asymmetric division is included, p̃1(z) is a z-dependent function. This

brings complexity in the recurrence relation for Q̃k(2) = P (R = k). Following

what done before in this Section for the case M = 1, we denote, for i = 1, 2,

w̃2
i (z) = 1 − 4pb(i)pd(i) − (2pa(i) + 4pb(i)pe(i))z + p2a(i)z

2.

Then, one can show that

2pb(1)Φ̃2(z) = H(z) −G(z) ,

where H(z) = 1 − pa(1)

2pb(2)
+
pa(1)pa(2)

2pb(2)
z +

pa(1)

2pb(2)
w̃2(z) and

G(z) =

[
p2a(1)p2a(2)

2p2b(2)
z2 +

(
pa(2)

pb(2)
(pa(1) + 2pb(1)pe(1) − p2a(1)

p2b(2)
(pa(2) + pb(2)pe(2))

)
z

+

(
pa(1) + 2pb(1)pe(1)

pb(2)
− p2a(1)(1 − pa(2)z)

2p2b(2)

)
w̃2(z)

+∆2
1 +

p2a(1)

2p2b(2)
(1 − 2pd(2)pb(2)) − pa(1) + 2pb(1)pe(1)

pb(2)

]1/2
.

The reader may notice the different nature of the two functions H(z) and G(z):

the first one is of first order in w̃2(z), whereas G(z) is a square root function of

w̃2(z). Thus, in order to generate the distribution Q̃k(2), one needs to compute

two recurrences, namely hk for H(z) and gk for G(z). This strategy (inspired by

126
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the work of Mathar (2021)) leads to a three-term recurrence for H(z) and a six-

term recurrence for G(z). We report in Appendix A.2 the detailed mathematical

calculations. Here, we just want to highlight the main two differences between

the self-renewal case (analysed in Sections 3.2.3 and 3.2.6) and the one where

asymmetric division is included. First of all, the functions wi(z) and w̃i(z) are

of first and second order respectively. For the case M = 1, this leads to a two

(if pa(1) = pa(2) = 0) and three-term recurrence (if pa(1), pa(2) > 0). As we can

see in Appendix A.2, this difference in the degree of wi(z) and w̃i(z) is inherited

also by the case of a sequence of two compartments and the six-term recurrence

of the function G(z). Secondly, and most importantly, there is a difference in the

term p̃3(z). For pa(i) > 0, for i = 1, 2, the probability generating function is such

that p̃3(z) is a function of z and this implies the need of two recurrence function

of separate nature for Q̃k(2); namely hk and gk as detailed in Appendix A.2.

3.3 Tracking age of product cells

In this Section, we focus on the age of product cells, rather than on the num-

ber of product cells reached at the end of the realisation. During its life, a cell

undergoes mitosis (i.e. cellular nuclear division occurring when a cell divides to

produce two daughter cells) a certain number of times that depends on its division

rate. During this process the cellular DNA is replicated and this comes with an

intrinsic risk of errors and onset of mutations in the daughters cell. In our math-

ematical model of cell differentiation, we assume the number of divisions a cell

has undergone is strictly correlated with its age. With the aim of understanding

how the product population is influenced by the differentiation via one or multi-

ple compartments, we analyse the differentiation process in terms of number of

divisions that cells have undergone during the sequence of compartments from a

progenitor to product phenotype.

The initial cell, depicted in green in Figure 3.14, is said to be in generation

zero and a cell that differentiate maintains its generation number. Daughter cells

of the progenitor cell are said to be in generation 1 and daughter cells of a cell

in generation n are in generation n+ 1. The product population is consequently

divided into classes by their generation number (see Figure 3.14 for M = 1). We
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Figure 3.14: One-compartment system, M = 1. The green progenitor cell on the

left is the founder of the population. The progenitor cell is said to be in generation

0. Blue cells may divide before they either die or leave the compartment. Thus,

we may classify the set of product (orange) cells according to generation (number

of divisions from the progenitor cell). Whenever a cell in generation n divides,

the result is two cells in generation n + 1. Whereas differentiation event retains

generation number. The final state of the process is a population of orange cells,

each with its own generation number.

consider the random variable G for the generation number of a randomly-selected

product cell, and its mean value D = IE(G) that represents the mean age of the

product cell population, measured in number of generations from the progenitor.

As done in Section 3.2 for the random variable R, we start by analysing a simple

case and then generalise our observations: Section 3.3.1 reports the main results

for the random variable G for the case of self-renewal division (pa = 0) and

“direct” differentiation, that is M = 1; Section 3.3.2 and Section 3.3.3 extend

our results to consider a sequence of M compartments and the asymmetric event

(pa ̸= 0) respectively.

3.3.1 G and its probability generating function

We let G be the random variable representing the generation number of a randomly-

selected product cell. One realisation of the process is reported in Figure 3.15. To

define the random variable G, we begin by defining two simple random variables

U and V with state space {0, 2} and {0, 1}, respectively. Let

P (U = 0) = 1 − pb, P (U = 2) = pb, P (V = 0) = 1 − pe, and P (V = 1) = pe.

If M = 1, we recall the random variables of a standard discrete-time branching

process (Harris, 1963; Kimmel & Axelrod, 2002; Stirzaker, 2005); whereas later
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3.3 Tracking age of product cells

Figure 3.15: One realisation, M = 1, showing generation numbers from left to

right, with Z0 = 1. Cyan cells divide, red cells exit, black cells die. In this

realisation Y0 = 0, Y1 = 0, Y2 = 0, Y3 = 2, Y4 = 4 and Y5 = 3. Thus, we have

R = 9. We set parameters pb = 0.45, pd = 0.15.

in Section 3.3.2, where a sequence of compartments is analysed, we will consider

a multi-type branching process with immigration. Let us introduce Z0 = 1 and

Zn+1 =
Zn∑
j=1

Uj, n = 0, 1, 2, . . . , (3.32)

where, for each j, Uj is an independent copy of U representing the number of

daughter cells from one cell. The random variable Zn, defined in (3.32), represents

the number of cells in generation n, whatever their fate. Moreover, since cells can

exit the compartment, we define Yn as the number of product cells in generation

n

Yn =
Zn∑
j=1

Vj, n = 0, 1, 2, . . . , (3.33)

where each Vj is an independent copy of V. We can relate the mean values of
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the random variables Zn and Yn as

IE(Yn) = peIE(Zn) = pe(2pb)n. (3.34)

For M = 1, the random variables R and G are defined so that the following

equations hold

R =
+∞∑
n=0

Yn and P (G = n) =
1

N
IE(Yn). (3.35)

We recall that in our framework the extinction condition (3.1), that is 2pb < 1,

holds. Accordingly, all cells in the sequence of compartments eventually die or

reach the final compartment of product cells, that is IE(Zn) → 0 and IE(Yn) → 0,

as n→ +∞.

To keep track of the generation number of cells exiting compartment C1, we

introduce ξ(z) the probability generating function of the random variable G. By

definition, we can find ξ(z) from Equation (3.35),

ξ(z) =
1

N

+∞∑
n=0

IE(Yn)zn

=
1

N

(
pe +

+∞∑
n=1

IE(Yn)zn

)
=

pe
N(1 − 2pbz)

=
1 − 2pb
1 − 2pbz

, (3.36)

where in the last step we used (3.7) for the average number of product cells N .

Given Equation (3.36), we can differentiate twice and find the average generation

number in the product cell population, D, and the variance of G. In particular,

we get

D = IE(G) =
pe
N

+∞∑
n=1

n(2pb)n =
2pb

1 − 2pb
and var(G) = D(D + 1) . (3.37)

Figure 3.16 reports the quantity D that characterises the population of cells

exiting compartment C1, as functions of pb and pd. In particular, each red line is
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the set of pairs (pb, pd) corresponding to the indicated value of D. Recall that,

if pd is fixed, limpb→0N = 1 − pd. Similarly, we can observe that limpb→0D = 0.

Moreover, we have

lim
pb→ 1

2

D

N
=

2

1 − 2pd
.
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Figure 3.16: Lines of constant D (red) and lines of constant N (blue) in the part

of the plane representing possible parameter values. The two quantities char-

acterising the population of cells exiting a compartment are given, as functions

of pb and pd by (3.7) and (3.37), respectively. Each blue line is the set of pairs

(pb, pd) corresponding to the indicated value of N . Each red line is the set of

pairs (pb, pd) corresponding to the indicated value of D. The triangular part of

the parameter space corresponding to N > 1 is at bottom right.

3.3.2 Generalisation to a sequence of M compartments

In this Section, we consider the case of a sequence of M > 1 compartments. We

assume that, for all i = 1, . . . ,M , cells exiting compartment Ci via differentiation

retain their generation number. We define a multi-type branching process with

immigration, of which one realisation for M = 2 is illustrated in Figure 3.17.

Using the same notation as in Section 3.2.6, cells exiting compartment CM are

said to be product cells (depicted in orange in Figure 3.2).
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Figure 3.17: One realisation, showing generation numbers from left to right. Cells

in the first compartment are shown as circles; cells in the second compartment are

shown as squares. Cyan cells divide, red cells exit, black cells die. Arrows indicate

transition from the first to the second compartment. In this realisation Y0(1) = 0,

Y1(1) = 0, Y2(2) = 2, Y3(1) = 1, Y4(1) = 0 and Y5(1) = 1; Y0(2) = 0,

Y1(2) = 0, Y2(2) = 0, Y3(2) = 3, Y4(2) = 1 and Y5(2) = 2. Thus R = 6. Here

M = 2 and we set parameters pb(1) = pb(2) = 0.45, pd(1) = pd(2) = 0.15.

To analyse the differentiation process via a sequence of compartments with re-

spect to the generation number of the cells, we start by defining, for i = 1, . . . ,M ,

the random variables U(i) and V(i), with state space {0, 2} and {0, 1}, respec-

tively:

P (U(i) = 0) = 1 − pb(i), P (U(i) = 2) = pb(i)

and P (V(i) = 0) = 1 − pe(i), P (V(i) = 1) = pe(i).

Consequently, we can define two important random variables, Zn(i) and Yn(i),

typical in branching processes:

• for n ≥ 0 and 1 ≤ i ≤ M , Zn(i) is the number of generation n cells in

compartment Ci, whatever their fate;

• for n ≥ 0 and 1 ≤ i ≤ M , Yn(i) is the number of generation n cells that

exit compartment Ci. That is, Yn(i) ≤ Zn(i).
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Then, for cells in generation zero,

Z0(1) = 1 and Z0(i) = Y0(i− 1), i = 2, . . . ,M ,

and, for n = 0, 1, . . . , we have Zn+1(1) =
Zn(1)∑
j=1

Uj(1) and

Zn+1(i) = Yn+1(i− 1) +

Zn(i)∑
j=1

Uj(i), i = 2, . . . ,M ,

where, for each j, Uj(i) is an independent copy of U(i). Also, for n = 0, 1, . . . ,

Yn(i) =

Zn(i)∑
j=1

Vj(i), i = 1, . . . ,M .

where, for each j, Vj(i) is an independent copy of V(i).

When working with a sequence of compartments we find helpful to define

either “compartment” or “total” variables. In particular, we denote with Gi

the “compartment” random variable for the generation number of a randomly-

selected cell exiting compartment Ci for a cell entering that compartment. Its

probability distribution is defined as

P (Gi = n) =
1

Ni

IE(Yn(i)) ,

where Ni = IE(Ri) is the amplification factor defined in Equation (3.20). For

each Gi, we introduce its probability generating function:

ξi(z) =
pe(i)

Ni

+∞∑
n=1

(2z pb(i))n =
1 − 2pb(i)

1 − 2pb(i)z
, i = 1, . . . ,M . (3.38)

Single-compartment quantities can be defined as well: we let Di be the average

increase in the generation number in compartment Ci,

Di = IE(Gi) =
2pb(i)

1 − 2pb(i)
i = 1, . . . ,M. (3.39)

The corresponding “total” variables are denoted with R and G. In particular,

we express the number of product cells R in terms of the number of cells, of all

generations, exiting the last compartment of the sequence,

R =
+∞∑
n=0

Yn(M).
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Also, the probability distribution of the generation number of a randomly-selected

product cell, denoted with G, is defined as

P (G = n) =
1

N
IE(Yn(M)). (3.40)

Recall in Section 3.2.6 we defined, for a sequence of M compartments, N as the

mean number of product cells for every progenitor cell; now we define D as the

average generation number of a product cell. It holds

N = IE(R) = N1N2 . . . NM and D = IE(G) = D1 +D2 + · · ·DM . (3.41)

Moreover, we denote with Ξ(z) the probability generating function of G. In

particular, Ξ(z) =
+∞∑
n=0

P (G = n)zn and it can be expressed as product of the

single-compartment functions

ΞM(z) = ξ1(z)ξ2(z) · · · ξM(z) , (3.42)

where, for each i = 1, . . . ,M , ξi(z) has been defined in (3.38).

Figure 3.18 shows the distribution of G, defined as in (3.40), for M = 1, 2, 3.

Here, we assumed equal compartments, that is pa(i) = pa, pd(i) = pd for i =

1, . . . ,M , and we consider two different scenarios, pa = 0 and pa = 0.3. Note that

P (G = n) narrows as the number of intermediate compartments increases and as

pd decreases. Moreover, in case of only self-renewal division, that is pa = 0, the

distribution of G has a longer tail and it is thus more likely to observe product

cells that underwent a higher number of divisions.

3.3.3 Generalisation to asymmetric division

In Section 3.2.7, asymmetric division has been accommodated in our framework

to study the number of product cells; here, we include asymmetric division in

the cells’ generations analysis. In Section 3.3.1 we defined G via some simpler

random variables U, V; now with the inclusion of asymmetric division, we need

to define a third variable to consider cells that are increasing both the generation

and the compartment index at the same time, i.e. the daughter cell exiting Ci

when an asymmetric division event happens in Ci.
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Figure 3.18: The probability distribution of the random variable G, the genera-

tion number in the product cell population. One, two and three compartments

have been shown, in green, red and blue respectively. In all cases, N = 100 and

we assume equal compartments, that is pd(i) = pd, pb(i) = pb, pe(i) = pe and

pa(i) = pa, for i = 1, . . . ,M . Solid lines represents the distribution for pd = 0

and two different choices of probability of asymmetric division, pa = 0 (darker

colour) and pa = 0.3 (lighter colour). Dotted lines represents the distribution for

pd = 0.05 and two different choices of probability of asymmetric division, pa = 0

(darker colour) and pa = 0.3 (lighter colour).

We assume to have a sequence of M compartments and, following arguments

in Section 3.3.2, we define for i = 1, . . . ,M , “compartment” random variables

U(i), V(i) and W(i) with state space {0, 1, 2}, {0, 1}, {0, 1} respectively:

P (U(i) = 0) = 1 − pb(i) − pa(i), P (U(i) = 1) = pa(i), P (U(i) = 2) = pb(i),

P (V(i) = 0) = 1 − pe(i), P (V(i) = 1) = pe(i),

and P (W(i) = 0) = 1 − pa(i), P (W(i) = 1) = pa(i) .
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Similarly to Section 3.3.2 for the case of self-renewal division, we introduce Zn(i)

for the number of cells in generation n in compartment Ci, whatever their fate.

We have

Z0(1) = 1, Z0(i) = Y0(i− 1), i = 2, . . . ,M

Zn+1(i) = Yn+1(i− 1) +

Zn(i)∑
j=1

Uj(i), i = 2, . . . ,M, n = 0, 1, 2, . . . ,

where, for each j, Uj(i) is an independent copy of U(i). Also, definition (3.33)

is replaced by

Yn(i) =

Zn(i)∑
j=1

Vj(i) +

Zn−1(i)∑
j=1

Wj(i), i = 1, . . . ,M, n = 1, 2, . . . ,

where each Vj(i), Wj(i) are an independent copy of V(i) and W(i) respec-

tively. A generalisation of Equation (3.34), for the mean values of Yn(i), for

i = 1, . . . ,M , is

IE(Y0(i)) = pe(i)

IE(Yn(i)) = pe(i) IE(Zn(i)) + pa(i) IE(Zn−1(i))

= pe(i)(2pb(i) + pa(i))
n + pa(i)(2pb(i) + pa(i))

n−1, n ≥ 1 .

Note that condition (3.1) ensures the extinction of the process thus, for k ≥ 1

and i = 1, . . . ,M ,

lim
n→+∞

P (Zn(i) = k) = 0 and lim
n→+∞

P (Yn(i) = k) = 0 .

Recall that, for ease of notation, we denote the asymmetric variables and

quantities with the corresponding symbol used in Sections 3.3.1 and 3.3.2, but

with a tilde on top, e.g. Ñ where N . Given the “compartment” variable Gi we

can define its probability generating function as

ξ̃i(z) =
1

Ñi

+∞∑
n=0

E(Yn(i))zn =
1

Ñi

[
pe(i) +

+∞∑
n=1

E(Yn(i))zn

]

=
pe(i) + pa(i)z

Ñi(1 − (2pb(i) + pa(i))z)
. (3.43)
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Differentiating once, one can compute the expected value of Gi for the case of

asymmetric division,

D̃i = IE(Gi) =
1

pe(i) + pa(i)

pa(i) + pe(i)(2pb(i) + pa(i))

1 − 2pb(i) − pa(i)
(3.44)

where we used that 1 = pd(i) + pa(i) + pb(i) + pe(i) for i = 1, . . . ,M . Also, the

variance of Gi can be computed from Equation (3.43),

var(Gi) =
2pa(i) + pe(i)

pe(i)
D̃i (D̃i + 1) .

Equation (3.42) still holds. Thus, the probability generating function of G is

given by the product of the single-compartment generating functions

Ξ̃M(z) = ξ̃1(z) ξ̃2(z) · · · ξ̃M(z) .

In particular, if M = 2 we let Ñ = Ñ1Ñ2 and we have

Ξ̃2(z) = ξ̃1(z) ξ̃2(z) =

(
1

Ñ1

+∞∑
n=0

E(Yn(1))zn

) (
1

Ñ2

+∞∑
n=0

E(Yn(2))zn

)

=
pe(1)pe(2)

Ñ
+
pe(1)

Ñ

(
pe(2) +

pa(2)

2pb(2) + pa(2)

)
(2pb(2) + pa(2))z

1 − (2pb(2) + pa(2))z

+
pe(2)

Ñ

(
pe(1) +

pa(1)

2pb(1) + pa(1)

)
(2pb(1) + pa(1))z

1 − (2pb(1) + pa(1))z

+
1

Ñ

(
pe(1) +

pa(1)

2pb(1) + pa(1)

)(
pe(2) +

pa(2)

2pb(2) + pa(2)

)
×

+∞∑
n=1

(
n−1∑
k=1

(2pb(1) + pa(1))k(2pb(2) + pa(2))n−k

)
.

IfM = 1, then D̃ = D̃i and one can plot D̃ in the plane pb-pd, as in Figure 3.19.

Since pa ̸= 0, we restrict to the part of the plane bounded by

2pb + pa < 1 and pd < 1 − pb − pa ,

corresponding to the extinction condition in (3.1) and condition pe > 0 derived

from (3.44), respectively. We recall the reader that Figure 3.19 reports also N as

a function of pb, pd summarising the effects of asymmetric division, compared to

Figure 3.16.
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Figure 3.19: We set asymmetric division probability to pa = 0.2. Lines of con-

stant D̃ (red) and lines of constant Ñ (blue) in the part of the plane, delimited

by the dashed line, representing possible parameter values. The two quantities

characterising the population cells exiting a compartment, as functions of pb and

pd, (3.29) and (3.44). Each blue line is the set of pairs (pb, pd) corresponding to

the indicated value of Ñ . Each red line is the set of pairs (pb, pd) corresponding

to the indicated value of D̃. The part of the parameter space corresponding to

N > 1 is at bottom right.

3.4 The relationship between events’ probabili-

ties, N and D

Given our compartmental mathematical system, we can express mean quantities

N and D as a function of probabilities pb, pd as well as find a relationship between

these two quantities. This can be extremely useful from an experimental point

of view: design of experiments in cell biology often allows to easily quantify

population of cells and their replicative age, that is N and D respectively.

3.4.1 Parameterisation in terms of N and D

If pa(i) = 0, then pd(i) +pb(i) +pe(i) = 1 and we can recover any of the probabil-

ities pd(i), pb(i) or pe(i) given the other two. We can generalise (3.9) and express

138



3.4 The relationship between events’ probabilities, N and D

probabilities of compartment Ci in terms of Ni itself along with pd(i):

pb(i) =
Ni − 1 + pd(i)

2Ni − 1
and pe(i) =

Ni(1 − 2pd(i))

2Ni − 1
. (3.45)

Moreover, we may express events’ probabilities in terms of Ni and Di. In partic-

ular,

pb(i) =
1

2

Di

Di + 1
and pe(i) =

Ni

Di + 1
.

These relationships enable model parameters, pb(i) and pe(i), to be determined

from experimentally-measurable quantities, Ni = IE(Ri) and Di = IE(Gi). More-

over, we can rearrange Equation (3.8) and express the variance of the “total”

variable R in terms of N and D,

V = var(R) = N2(D − 1) +N .

If considering a sequence of compartments, e.g. M = 10, we can visually

represent the number of cells of generation n exiting compartment Ci in a heat

map. Figure 3.20 shows how the number of cells in generation n varies according

to the compartment Ci; we consider equal compartments and we set pd = 0.1 and

pa = 0.

Figure 3.20: Heat map for the number of cells of generation n exiting compart-

ment Ci for a sequence of M = 10 identical compartments. We set N = 10,

pd = 0.1 and pa = 0.
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3.4.2 Relationship between N and D

If M = 1 and pa = 0, we can combine (3.7) and (3.37) and get the following

linear relationship between D and N :

D =
2N − 1

1 − 2pd
− 1 . (3.46)

A similar equation holds for “compartments” quantities Di and Ni. We observe

that, given N > 1, the minimum possible value of D is found when pd = 0. That

is

Dmin = 2(N − 1).

Figure 3.21, on the left, shows the linear relationship (3.46) between N and D

for increasing values of pd. We show in Section 3.4.3 that, for M ≥ 1, D is a

decreasing function of pd.
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pd = 0.4

pd = 0.45
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pd(1) = pd(2) = 0 pd(1) = pd(2) = 0.1

pd(1) = pd(2) = 0.2 pd(1) = pd(2) = 0.4

pd(1) = pd(2) = 0.45

Figure 3.21: The average generation number of product cells, as a function of the

mean number of exiting cells. Left: M = 1. Given (3.46), N and D are linearly

related. Right: M = 2, with parameters chosen so that N1 = N2. Given a value

of N , D is lower when M = 2 (proportional to
√
N as N → +∞) than when

M = 1 (proportional to N as N → +∞).

3.4.3 A sequence of compartments and minimisation of D

Every round of division brings with it a risk of mutation, senescence or exhaus-

tion (Frank, 2007), thus an excessive clonality may increase the risk of cancerous

140



3.4 The relationship between events’ probabilities, N and D

mutations becoming established (Wainscoat & Fey, 1990). The compartmental

model that has been developed in this Chapter may help in understanding how

should a sequence of M compartments be constructed in order to yield a given

amplification of progenitor to product cells and, at the same time, minimise the

average number of divisions. Mathematically, given the mean number of product

cells N resulting from a sequence of compartments, we seek to minimise D, given

by Equation (3.41). In order to do that, we make use of single-compartment

quantities Ni in Equation (3.20) and write (3.39) as

Di = αiNi − βi, where αi =
2

1 − 2pd(i)
and βi =

2 − 2pd(i)

1 − 2pd(i)
.

Consequently, if N ≥ 1, the mean number of divisions over the whole sequence

of compartments is given by

D =
M∑
i=1

(αiNi − βi) =
M∑
i=1

(
2Ni

1 − 2pd(i)
− 2 − 2pd(i)

1 − 2pd(i)

)
. (3.47)

Equation (3.47) is an increasing function of pd(i). Indeed, by differentiating (3.47)

with respect to pd(i), we get

∂D

∂pd(i)
=

4Ni − 2

(1 − 2pd(i))2
.

That is,
∂D

∂pd(i)
> 0 ⇔ Ni >

1

2
.

Since Ni ≥ 1, the average generation number D is always an increasing function

of pd(i). Thus, the minimum D is observed if pd(i) = 0 for all compartments Ci,

for i = 1, . . . ,M . One can use the Lagrange multiplier method to impose the

constraint N = N∗ and find the compartments’ arrangement that minimise the

average generation of product cells. Let

L(pd(1), . . . , pd(M), pb(1), . . . , pb(M),Λ)

= D − Λ(N −N∗)

=
M∑
i=1

2pb(i)

1 − 2pb(i)
− Λ

(
M∏
i=1

1 − pb(i) − pd(i)

1 − 2pb(i)
−N∗

)
.
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We compute the gradient of the Lagrangian, i = 1, . . . ,M(
∂L(pd,pd,Λ)

∂pb(i)
,
∂L(pd,pd,Λ)

∂pd(i)
,
∂L(pd,pd,Λ)

∂Λ

)
=

(
2

(1 − pb(i))2

(
1 − Λ

N∗

αiNi

)
,

Λ

1 − 2pb(i)
, N −N⋆

)
.

where we denoted with pd = (pd(1), . . . , pd(M)) and pd = (pb(1), . . . , pb(M)).

By setting it to zero we find

1 − Λ
N∗

αiNi

= 0, i = 1, . . . ,M .

Thus, the minimum average generation D is reached if the following conditions

are satisfied

α1N1 = α2N2 = · · · = αMNM . (3.48)

We define the arithmetic and geometric means of the parameters αi:

ᾱ =
1

M

M∑
i=1

αi and α̃ =

(
M∏
i=1

αi

)1/M

,

so that we can re-write condition (3.48) for the optimal values of Ni as

αiNi = N1/M α̃ , for each 1 ≤ i ≤M.

The corresponding minimum value of D is then given by

Dmin =
M∑
i=1

(αiNi − βi) = M

(
α̃N1/M − 1

2
ᾱ− 1

)
, (3.49)

which is an increasing function of each of the pd(i), for 1 ≤ i ≤M and a decreasing

function of the number of M compartment in the sequence. We can observe that

if pd(i) does not depend on i, then Ni is also independent of i. That is, if the

death probability does not vary from compartment to compartment, then the

optimal arrangement of division rates is such that each compartment has the

same amplification factor Ni = N1/M . Then, we have

Dmin =
2M

1 − 2pd

(
N1/M − 1 + pd

)
.
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In Figure 3.21 we plot the average generation number, D, as a function of

the mean number of exiting cells N for M = 1 (on the left) and M = 2 (on

the right) and two identical compartments, that is N1 = N2. The green lines

show cases where there is no cell death; note that for pd(1) = pd(2) = 0 we

have the lowest value of D. A comparison between direct differentiation M = 1

and the case of one intermediate compartment M = 2, given the same value

of N , already shows the difference between a single compartment and multiple

compartments sequence. We can observe how if M = 1, N and D are linearly

related, whereas for M = 2, D is proportional to the square root of N , according

to expression (3.49).

3.4.4 Generalisation to asymmetric division

When generalising to the case pa(i) > 0, we have pd(i) + pb(i) + pe(i) + pa(i) = 1

and we can still recover anyone of pd(i), pb(i), pe(i) or pa(i) given the other three.

In this case, however, we have an additional degree of freedom and thus a third

variable to express events’ probabilities of compartments Ci is needed. In terms

of Ñi, D̃i and pa(i) we have

pb(i) =
Ñi

(
D̃i(1 − pa(i)) − pa(i)

)
− pa(i)

2Ñi(D̃i + 1)
, pe(i) =

Ñi − pa(i)D̃i

D̃i + 1

and pd(i) =
Ñi

(
2 + D̃i(1 + pa(i)) − 2Ñi − pa(i)

)
+ pa(i)

2Ñi(D̃i + 1)
.

Moreover, if M = 1, we may choose Ñ , pa and pd as the three independent

parameters, so that (3.46) is replaced by

D̃ =
2Ñ − 1

1 + pa − 2pd

(
1 +

pa

Ñ

)
− 1.

3.5 Discussion

In this Chapter, the importance of having a sequence of compartments in main-

taining a population of product cells is explored. Using theoretical arguments, we

show why a sequence of multiple compartments is often observed in biology. In
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our model, individual cells in a compartment may die or divide (via self-renewal or

asymmetric division), or transition to the next compartment, meaning that they

differentiate and change phenotype. In our stochastic approach, all population

properties are deduced from a complete understanding of the possible progeny of

a single progenitor. We assume that each cell in a given compartment, indepen-

dently, chooses its fate according to compartment-specific division, transition and

death probabilities. We do not consider inter-event times, but each realisation

is a sequence of events that ultimately results in extinction of cells in the inter-

mediate compartments, with only product cells surviving. We let Qk(M) be the

probability that the number of product cells, descended from a single progenitor

via a sequence of M compartments, is equal to k. Using probability generating

functions, we study the distribution Qk(M) as well as its behaviour for large

values of k. An interesting feature we found is the universality of the large-k

behaviour of Qk(M), for M compartments and pa(i) = 0 or pa(i) > 0,

Qk(M) ∼ γkMk
−3/2, k → +∞ ,

where γM has to be determined by locating the square root singularity of the

probability generating function ΦM(z).

Moreover, we relate the events probabilities with two important quantities N

and D that can be often measured experimentally, via flow cytometry and Cell-

Trace Violet or CFSE fluorescent dyes (Lemieszek et al., 2022; Lyons, 2000). In

case of direct differentiation and only one compartment, these two experimentally

measurable quantities have both a long-tailed distribution. The analysis outlined

in this Chapter shows how a sequence of compartments allows to achieve the am-

plification factor N of progenitor to product cells required in a specific biological

framework while avoiding excessive clonality and minimising the average number

of divisions D.

The analysis performed in this Chapter, has been carried out for a simpler case

at first. In particular, we consider direct differentiation, that is M = 1, and only

self-renewal division, that is pa = 0. Later we extend the results for the random

variable R and G to consider a sequence of compartments as well as to include the

asymmetric division event, pa(i) > 0. Additional details have been provided in

the appendices: the recurrence relations to obtain the probability that k cells exit
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from one or two compartments are given in Appendix A; calculations (Flajolet &

Sedgewick, 2009) to obtain the asymptotic behaviour of distribution Qk(M) for

large values of k are given in Appendix B.

The asymmetric division event introduces complexity in the mathematical

model as division and change of cell type are happening simultaneously in the

defined Markov process. However, asymmetric division plays a role in many

biological situations and thus, in Sections 3.2.7, 3.3.3, 3.4.4, we show how to

accommodate our theoretical methods to asymmetric division and how these can

be applied to a biological system in which asymmetric cell division may play a

role.

Thymus generates cells of the immune system and has a great variety of span-

ning cells of different types. In particular, it is responsible for the maturation

process of T cells. We refer the reader to Section 1 for more biological details

about thymocytes development and CD4, CD8 T cells formation. Here, we apply

our compartmental model to the negative selection process of T cells, extending

the deterministic model developed by Pham et al. (2015) to study thymocytes

development from the DN3a to SP transition. We set up a model of five com-

partments and consider SP cells as the product cells population; we compute the

distributions of the two biologically significant random variables in our stochastic

model: the number of product cells in a family founded by one progenitor and the

generation number of a product SP cell. Within our compartmental framework,

cells behave independently and choose their fate following compartment-specific

events. In particular, Pham et al. (2015) suggested a possible role for the asym-

metric division event during the β-selection step, that, in this case, is represented

by C1, C2 and C3 compartments, namely DN3a-pre and DN3a-post. It has been

experimentally observed that cells have already divided at least once when they

undergo β-selection; thus, we assume a first compartment of DN3a cells that

can only die or divide asymmetrically, namely DN3a-pre (Pham et al., 2015). In

particular, DN3a-pre cells have a higher probability to die than divide asymmet-

rically; thus, given (3.1) and pa(1) + pd(1) = 1, we have

pb(1) = pe(1) = 0, pa(1) < 1/2 and pa(1) < pd(1) .

145



3. WHY ARE CELL POPULATIONS MAINTAINED VIA
MULTIPLE INTERMEDIATE COMPARTMENTS?

Cells of all the subsequent populations can, independently, die, divide (via self-

renewal) or differentiate to the next thymocytes development stage. The final fate

of all cells is either death or SP stage. We define probabilities of death, division

and differentiation, pb(i), pd(i), pe(i) for i = 2, 3, 4, 5 such that pb(i) + pd(i) +

pe(i) = 1. In addition, Pham et al. (2015) suggest that during the β-selection

cells are more likely to die, that is pd(i) > pb(i) for i = 1, 2, 3; whereas, cells in

the following development stages are more likely to divide, that is pb(i) > pd(i)

for i = 4, 5. Here, we study the distribution of R and G in two different scenarios

defined by different values of the asymmetric division probability, pa(1) = 0.1

and pa(1) = 0.45 < 1/2. In particular, we consider parameter values as in

Table 3.1 and show how the amplification factor as well as the average generation

of product cells are affected. We refer the reader to Section 3.2 for the analytical

details about the methods applied to R. Also, DP cells classification by their

generation is done following Section 3.3.

Parameter DN3a-pre DN3a-post DN3b DN4 DP

pb(i) 0 0.25 0.25 0.45 0.45

pe(i) 0 0.3 0.3 0.3 0.3

pd(i) 0.55 or 0.9 0.45 0.45 0.25 0.25

pa(i) 0.45 or 0.1 0 0 0 0

Ni 9/11 or 1/9 0.6 0.6 3 3

Di 20/11 or 10/9 1 1 9 9

Table 3.1: Parameter values for the five-compartment model of thymocyte de-

velopment. We consider two possible scenarios to show how asymmetric divi-

sion during β-selection step, can influence subsequent sub-populations of thymo-

cytes development (Pham et al., 2015). In particular, we consider pa(1) = 0.45

and pa(1) = 0.1. Values of Ni and Di are computed using (3.20), (3.29)

and (3.39), (3.44).

If pa(1) = 0.1, the resulting SP product population has a smaller average

family size per single progenitor DN3a-pre cell, compared to the case of pa(1) =

0.45. This difference results from the higher or lower death probability of the

first compartment, where the difference in the asymmetric events probabilities is
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introduced. On the contrary, when computing the distribution of the generation

number G for a product SP cell, we see a small difference between the two

scenarios pa(1) = 0.1 and pa(1) = 0.45. This can be explained as, in both cases,

the majority of cells that make the transition from DN3a-pre to DN3a-post do

so in the first generation. In both cases, cells reach the product SP stage after

few division and an older SP cell with G > 100 is very rare. In particular, with

parameter values as in Table 3.1 we get

N = 0.36 and D = 21.1, if pa(1) = 0.1 ,

N = 2.65 and D = 21.9, if pa(1) = 0.45 .

Figure 3.22 shows the distribution of random variable R and G for scenario

pa(1) = 0.1 (in blue) and pa(1) = 0.45 (in green), respectively.

Figure 3.22: Numerical results for two cases of the five-compartment mathe-

matical model for T cell development in the thymus from the DN3a to the SP

stage (Pham et al., 2015). The histograms show the distributions of family sizes

(on the left) and of cell generation number (on the right) in the population of

product SP cells. The difference between the two cases is the first compartment,

where only death and asymmetric division have non-zero probabilities. We set

parameter values as in Table 3.1.

As mentioned, asymmetric cellular division is a subject of recent research.

However, other events might be of biological interest. For example, it is possi-

ble to consider a fifth event, the symmetric division, where both daughter cells

exit their mother’s compartment at birth (Derényi & Szöllősi, 2017; Zhang et al.,

2015); or to incorporate “de-differentiation” of cells moving backward in the hier-

archy, for biological processes where cells revert their phenotype to the previous
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state (Zhang et al., 2015; Zhou et al., 2019). Both symmetric division and de-

differentiation events open the door to a wide range of possible mathematical

models and discussion; in this PhD thesis, we partially tackle them in Chapter 5

where a general stochastic and time-dependent compartmental model is defined.

A limitation of the analysis outlined in this Chapter is the fact that the popu-

lation of “product” cells is analysed at the end of the stochastic realisation when

cells from intermediate compartments have died out or differentiated to subse-

quent compartments. Information about the time-dependent distribution of the

number of exiting cells and of the generation of cells over time is lacking. Com-

partmental stochastic models with time-dependent random variables are defined

in Chapters 4 and 5 of this thesis. In particular, Chapter 4 reports a gener-

alisation of the time-independent analysis performed in this Chapter; however,

the increased in the complexity as well as the timeline of this thesis result in a

restricted study which would require further analysis and development of ad hoc

mathematical methods.
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Chapter 4

The importance of time in cell

differentiation process

In Chapter 3, we consider the compartmental model depicted in Figure 3.2 and

analyse the system in discrete-time; that is we ignore inter-event times as well

as the total time taken for cells to proceed through the sequence of intermediate

compartments leaving it either by death event or differentiation to the product

state (depicted in orange in Figure 3.2). Product cells exiting the last compart-

ment CM are thought of as an accumulative pool for modelling purposes and,

thus, they cannot die, further divide or differentiate. We define the random vari-

able R for the total number of product cells in one realisation and we analyse its

mean N = IE(R) as well as its variance and its distribution qk; that is defined

as, for k = 0, 1, 2, . . ., qk = P (R = k) the probability there are k cells in the final

state of product orange cells. Moreover, we divide the population of product

cells into classes by their generation number. The random variable G represents

the generation number of a randomly-selected product cell, and its mean value

D = IE(G) is the mean age of the product cell population, measured in number

of generations from the initial progenitor.

In this Chapter, instead, we focus on a time-dependent model. Indeed, dif-

ferences in the times cells reach the final state of the sequence of compartments

and differentiate to the product state, might be biologically relevant. Different

types of cellular differentiation processes might require either a rapid response,

such as during the generation of skin fibroblasts to repair damage resulting from
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a cut or wound, or a long-term response. For example, the differentiation pro-

cess of mesenchymal stem cells has been observed to be extremely slow, even if

the physiological and morphologial reasons are not well understood (Kim et al.,

2014); also, hematopoietic stem cells (HSCs) are characterised by a slow cycle

which is probably meant to reduce the metabolic stress and ensure a long-term

maintenance of the subsequent differentiated stem cells (Tower, 2012).

Given a certain average number of product cells N that can be measured in an

experiment, we wonder how this quantity influence the dynamics of cells through

compartments over time as well as the number of cells reaching the product state

at time t. The population of product cells is found to be heterogeneous with

respect to both the time cells differentiate to the final state as well as the genera-

tion number cells are characterised with when reaching that state. Hence, in this

Chapter we aim to investigate the time it takes for cells to differentiate to the

product state and we define time-dependent random variables representing the

number of cells in each compartment at time t. The time-dependent compartmen-

tal model, defined in Section 4.1, is a continuous-time Markov chain representing

a sequence of M compartments. Cells in each compartment can, independently,

divide, die or differentiate to the next compartment; cellular events are defined

as per cell rates but, by definition of a continuous-time Markov process with ex-

ponential waiting times, can be clearly related to corresponding probabilities of

death, division and differentiation. This same approach is also applied in Chap-

ter 5, where we define a general stochastic model of a sequence of compartments

and analyse the impacts of different cellular events. Section 4.2 describes the

mean behaviour of the system of cells dividing, dying or exiting across a sequence

of compartments over time, in terms of a continuous-time Markov chain. In Sec-

tion 4.3, time-dependent probability generating functions for random variables

Ci(t) are defined and the corresponding system of differential equation is explic-

itly solved for M = 1 and M = 2 (see Appendix C). Finally, in Section 4.4, our

focus is a number of summary statistics related to the time cells exit the sequence

of compartments. We are aware that the work outlined in this Chapter, is still

preliminary and would require further analysis as mentioned in Section 4.5. An

analytical expression for the case of M > 2 as well as a study about product cells

generation number with respect to time are missing and left for future work.
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4.1 Model definition

We propose a stochastic model, depicted in Figure 4.1 for cell differentiation

across an ordered sequence of M compartments towards a product state. We as-

sume cells of the same compartment behave independently of each other and are

characterised by three possible fates: death, division via self-renewal or differen-

tiation. Note that, differently than in Chapter 3, we restrict to the case with no

asymmetric division event (pa = 0). Moreover, as in Chapter 3, we assume cells

exiting the last compartment CM cannot die, further divide (via self-renewal) or

differentiate. These product cells, depicted in orange in Figure 4.1, are thus an

accumulative pool and may represent a specific cell type population which can

be experimentally measured.

C1(t) C2(t) CM(t) CM+1(t)

Figure 4.1: An initial cell, in green, enters the sequence of M compartments from

progenitor cells (blue compartment C1) to maturation state (in orange) via a

sequence of intermediate compartments (in grey). The system is described by a

continuous-time Markov chain (CTMC) {(C1(t), C2(t), . . . ,CM(t), CM+1(t)) :

t ≥ 0}, with state space {0, 1, . . . }M+1.

If in Chapter 3 we work in terms of a discrete-time Markov chain, we now

describe the model in terms of a continuous-time Markov chain (CTMC) {(C1(t),

C2(t), . . . ,CM(t), CM+1(t)) : t ≥ 0}, with state space {0, 1, . . . }M+1 = NM+1
0 .

The random variable Ci(t) represents the number of cells in compartment Ci at

time t, for i = 1, . . . ,M , and CM+1(t) represents the number of product cells (cells

exiting compartment CM) at time t; note that since product cells can not die or

differentiate further, CM+1(t) represents the number of product cells accumulated

until time t. We may want to remind the reader that, given a sequence of M

compartments, the necessity of defining an additional random variable CM+1(t) is

arising from the time-dependent analysis that is carried out in this Chapter. With

the aim of describing how cells differentiate to the product state over time, we find
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convenient to define CM+1(t) describing the number of product cells over time

(cells exiting compartment CM). Using notation of Chapter 3, one could denote

the random variable CM+1(t) as R(t), representing the cumulative quantity of

product cells up to time t. In this case, we have

lim
t→+∞

R(t) = R .

We assume that cells behave independently and define cellular events of self-

renewal, death and differentiation to the next compartment as transitions across

states. In particular, for i = 1, . . . ,M , a cell in compartment Ci can divide via

self-renewal at rate λi, die at rate µi and differentiate to compartment Ci+1 at

rate νi. That is, given state (n1, . . . , nM , nM+1) ∈ NM+1
0 , possible cellular events

are represented as follows:

(E1) Self-renewal (cellular division where both daughter cells remain in the same

compartment as the mother) can occur in any compartment Ci, with per

cell rate λi, for i = 1, . . . ,M ,

(n1, . . . , ni−1, ni, ni+1, . . . , nM+1)
λini−−→ (n1, . . . , ni−1, ni + 1, ni+1, . . . , nM+1).

(E2) Differentiation to the subsequent compartment can occur with per cell rate

νi, for i = 1, . . . ,M ,

(n1, . . . , ni−1, ni, ni+1, . . . , nM+1)
νini−−→ (n1, . . . , ni−1, ni − 1, ni+1 + 1, . . . , nM+1).

(E3) Cells can die in any compartment Ci with per cell rate µi, for i = 1, . . . ,M ,

(n1, . . . , ni−1, ni, ni+1, . . . , nM+1)
µini−−→ (n1, . . . , ni−1, ni − 1, ni+1, . . . , nM+1).

In the following of this Chapter we will denote ki = µi + νi − λi and the sum

of the rates as Si = µi + λi + νi for i = 1, . . . ,M . As in Chapter 3, we assume,

that extinction is the ultimate fate of the population of cells in the intermediate

compartments; that is, for i = 1, . . . ,M ,

µi + νi > λi .
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Thus, each realisation is a sequence of events that ultimately results in extinction

of cells in the intermediate compartments, with only product cells surviving. The

system defined by the CTMC reaches the absorbing state (n1, . . . , nM , nM+1) =

(0, . . . , 0, n⋆M+1), with n⋆M+1 ≥ 0. By definition, product cells are an accumulative

pool that is, the random variable CM+1(t) can only increase over time. Whereas,

random variables Ci(t), for i = 1, . . . ,M , can either increase or decrease over

time, as both division as well as death and differentiation events are modelled.

However, for large time t, their values tend to zero as system approaches the

absorbing state.

Finally, we would like to underline that cellular events in the time-independent

model of Chapter 3 are defined in terms of event probabilities; whereas, the math-

ematical analysis carried out here as well as in Chapter 5 is performed in terms

of cell rates. We might justify this since, when analysing the behaviour of the

system for large values of t as in Chapter 3, differences in the parameter rates of

cells in each of the M compartments of the sequence can be neglected. In this

respect, one can define the compartmental model via probabilities with the aim

of normalising compartments rates. Whereas, when including time in the com-

partmental analysis (as in this Chapter), the values of event rates might become

relevant. Indeed, differences in the rates of cell death, division and differentia-

tion identify slower and faster dynamics in a compartment. Of course, one could

relate these three event rates to the compartment probabilities pd(i), pb(i) and

pe(i), respectively. This is natural since the defined model is a continuous-time

birth-death-migration Markov process with exponential waiting times, thus

pd(i) =
µi

µi + νi + λi
, pb(i) =

λi
µi + νi + λi

and pe(i) =
νi

µi + νi + λi
.

We define a general compartmental model and analyse the case of “direct

differentiation” and one intermediate compartment, at first. Overall, the aim

would be to extend the performed analysis to M > 1 compartments; however,

due to the complexity of the mathematical analysis, the analytical work outlined

in this Chapter is restricted to the case M = 1, 2. In some cases, numerical

considerations are done for M > 2 but, in general, we leave for future work an

analytical analysis of the case of a sequence of several intermediate compartments.
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4.2 Time and mean populations’ behaviour

We first describe the dynamics of the process and study the mean number of cells

in each compartment, IE(Ci(t)), which obeys the following system of differential

equations

d IE(C1(t))

dt
= −(µ1 + ν1 − λ1)IE(C1(t)) ,

d IE(Ci(t))

dt
= νi−1 IE(Ci−1(t))

− (µi + νi − λi) IE(Ci(t)), i ∈ {2, ...,M} ,
d IE(CM+1(t))

dt
= νM IE(CM(t)) ,

(4.1)

where IE(Ci(t)) represents the expectation of the random variable Ci(t). We con-

sider the initial value problem of System (4.1) with IE(C1(0)) = 1 and IE(Ci(0)) =

0 for i = 2, . . . ,M + 1. Variables of this system of differential equations are time-

dependent and the solution of the initial value problem (IE(C1(t)), . . . , IE(CM+1(t)))
T

describes, in a quantitative way, the differentiation process of cells towards the

product state over time. For a general solution of System (4.1) we refer the reader

to Equation (5.5) where parameters for symmetric division event needs to be set

to zero that is, si = 0 for all i = 1, . . . ,M .

Dynamics of the mean number of product cells are influenced by parame-

ter rates of intermediate compartments. For example, Figure 4.2 reports cellu-

lar dynamics when M = 2 for three different illustrative scenarios: one where

compartments C1 and C2 have equally fast rates, and two scenarios where one

compartment has faster or slower rates than the other one. Parameter rates are

chosen so that, in all three scenarios, corresponding birth, death and differen-

tiation probabilities in compartments are constant; in particular, pb(i) = 0.4,

pe(i) = 0.5 and pd(i) = 0.1, for i = 1, 2. We can observe that, for large values of

t, the number of cells in a compartment is not affected by differences in the pa-

rameter rates. Since pb(i) < pd(i)+pe(i), the number of cells in compartments C1

and C2 tends to zero and cells accumulate in the product state reaching the same

steady state. This is in agreement with what outlined in Chapter 3: the mean

number of product cells for large time t is determined by the so called amplifi-

cation factor N . However, transient dynamics differ and product cells take a bit
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Figure 4.2: Plot of the solution for the mean number of cells if M = 2 with

progenitor, intermediate and product compartment in blue, orange and green,

respectively. We set three different illustrative scenarios: C1 faster than C2 (solid

line), C1 and C2 equally fast (dots), and C2 faster than C1 (dashed line). The

fastest compartment has parameters λi = 4, νi = 5, µi = 1, the slowest λi = 0.4,

νi = 0.5, µi = 0.1, for i = 1, 2. In case of equal compartments we set parameter

values λi = 0.4, νi = 0.5, µi = 0.1 for i = 1, 2. Note that for all the three cases,

N1 = N2.

longer to accumulate if compartment C2 has faster rates than the C1. Moreover,

cells tend to leave earlier the first compartment C1 if that is the faster compart-

ment. Also, in the latter case, the maximum number of cells in compartment C2

is reached before extinction.

In addition, we can define the half-time tM50 as the average time for half of the

population of product cells to reach that state; that is

tM50 =

{
t : IE(CM+1(t)) =

1

2
lim
t→+∞

IE(CM+1(t))

}
,

where IE(CM+1(t)) is the solution of System (4.1) for the mean number of product

cells. Figure 4.3 reports values of tM50 numerically calculated for M = 1, 2, 3.
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As detailed below, even if the same amplification is maintained for the three

cases of a sequence of M = 1, 2, 3 compartments, dynamics and corresponding

half-times tM50 differ. Values of tM50 can be computed as a solution of a transcen-

dental equation derived from the expression of IE(CM+1(t)).

In the remaining of this Section, we report the calculations about cellular

dynamics for M = 1, 2, 3. If M = 1, we let C1(t) and C2(t) be the random

variables of the CTMC and IE(C1(t)) and IE(C2(t)) their expected values for

cells in the progenitor and product state, respectively; System (4.1) is reduced to

dIE(C1(t))

dt
= −(µ1 + ν1 − λ1)IE(C1(t)) ,

dIE(C2(t))

dt
= ν1IE(C1(t)) ,

(4.2)

with initial conditions IE(C1(0)) = 1, IE(C2(0)) = 0. Denoting k1 = µ1+ν1−λ1 >
0, the solution of System (4.2) reads

IE(C1(t)) = e−k1t , IE(C2(t)) =
ν1
k1

(
1 − e−k1t

)
.

In this case, t150 satisfies

IE(C2(t
1
50)) =

1

2

ν1
k1
,

that is

t150 =
1

k1
log 2 . (4.3)

Similarly, if M = 2, the analogous of System (4.1) reads

dIE(C1(t))

dt
= −k1IE(C1(t)) ,

dIE(C2(t))

dt
= ν1IE(C1(t)) − k2IE(C2(t)) ,

dIE(C3(t))

dt
= ν2IE(C2(t)) ,

with initial conditions IE(C1(0)) = 1, IE(C2(0)) = IE(C3(0)) = 0 and ki =

µi + νi − λi for i = 1, 2. Then,

IE(C1(t)) = e−k1t, IE(C2(t)) =
ν1

k2 − k1

(
e−k1t − e−k2t

)
,
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IE(C3(t)) =
ν1ν2
k1k2

(
1 +

k1e
−k2t

k2 − k1
− k2e

−k1t

k2 − k1

)
.

One can clearly see that lim
t→+∞ IE(C3(t)) = ν1ν2

k1k2
and thus, the average half-time t250

satisfies the transcendental equation

log
k2

k2 − k1
= k1 t

2
50 + log

1

2

(
1 +

2k1 e−k2t
2
50

k2 − k1

)
.

Similarly, if M = 3, we have

IE(C4(t)) =
ν1ν2ν3
k1 k2 k3

(
1 − k2k3 e−k1t

(k2 − k1)(k3 − k1)
− k1k2 e−k3t

(k3 − k1)(k3 − k2)
+

k1k3 e−k2t

(k2 − k1)(k3 − k2)

)
and the average half-time t350 satisfies

1

2
=

k2k3e
−k1t350

(k2 − k1)(k3 − k1)
+

k1k2 e−k3t
3
50

(k3 − k1)(k3 − k2)
− k1k3 e−k2t

3
50

(k2 − k1)(k3 − k2)
.

Figure 4.3: Normalised average population of product cells

rM+1 =
IE(CM+1(t))

limt→+∞ IE(CM+1(t))
for M = 1, 2, 3, 10 in blue, green, red and

purple, respectively. We set N = 10, Si = 1 and pd(i) = µi
Si

= 0.1, for

i = 1, . . . ,M . Dotted vertical lines show the half-time tM50 .

The analytical t150 and the numerical solutions of the transcendental equations

for the half-time for M = 2 and M = 3 are reported in Figure 4.3 (vertical dashed
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lines). Moreover, we depict the dynamics of the population of product cells for

M = 1, 2, 3, 10 in blue, green, red and purple, respectively. In particular, the

ratio rM+1 =
IE(CM+1(t))

limt→+∞ IE(CM+1(t))
is reported to quantify the accumulation of

product cells over time. In the Figure, we set a fixed amplification factor N = 100,

Si = 1 and pd(i) = µi
Si

= 0.1, for i = 1, . . . ,M ; then division and differentiation

rates of intermediate compartments are deduced according to (3.45), so

λi =
N1/M − 1 + µi

2N1/M − 1

for i = 1, . . . ,M ; numerical values, rounded at the second decimal place, used in

Figure 4.3 are reported in Table 4.1.

λ1 λ2 λ3 · · · λ10

M = 1 0.48

M = 2 0.42 0.42

M = 3 0.38 0.38 0.38

M = 10 0.24 0.24 0.24 · · · 0.24

Table 4.1: Numerical value (rounded at the second decimal place) used in Fig-

ure 4.3. For all M , we set Si = 1 and µi = 0.1, for i = 1, . . . ,M .

We can observe that, when setting the same amplification factor N =
∏M

i=1Ni

for a sequence of M = 1, 2, 3 or 10 compartments, the time dynamics are adjusted

accordingly, generating faster or slower dynamics. For this choice of parameter

values we find t150 = 16 for the case of direct differentiation; whereas, when

including an intermediate compartment the time to reach half of the population

of product cells increases, as t250 = 23; and when M = 3 we find t350 = 28. That is,

when M = 1 more cells reach the product state at earlier times compared to the

case of one, two or ten intermediate compartments; however, we can observe that

the time by which all cells differentiate to the final compartment (and N = 10 is

reached) does not differ significantly between the four cases.
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4.3 Time-dependent probability generating func-

tion

The probability generating function of a random variable contains all the in-

formation about the associated random variable and can be used to find key

properties of its distribution. In this Section, we will employ a probability gener-

ating function approach to analyse the population of product cells over time. We

consider one initial progenitor cell that is, C1(0) = 1 and C2(0) = C3(0) = · · · =

CM+1(0) = 0, and we assume that for a small time step ∆t only one or none

event (death, division, differentiation) can happen for each compartment Ci, for

i = 1, . . . ,M . Given that the defined model is a CTMC with multiple random

variables, we define time-dependent joint probabilities

pni,...,nM+1
(t) =P (Ci(t) = ni,Ci+1(t) = ni+1, . . . ,CM+1(t) = nM+1 |

Ci(0) = 1,Ci+1(0) = · · · = CM+1(0) = 0) ,
(4.4)

with nj ∈ N+, for j = i, . . . ,M + 1 and for i = 1, . . . ,M + 1. For each i, the

probability generating function can be defined

Fi(xi, xi+1, . . . , xM , xM+1, t) =
+∞∑

ni,...,nM+1=0

pni,...,nM+1
(t)xni

i x
ni+1

i+1 . . . x
nM+1

M+1 .

Each function Fi contains all the joint probabilities pni,...,nM+1
(t) and is a function

of M + 3 − i variables, where |xj| < 1 for j = i, . . . ,M + 1 and t ∈ [0,+∞).

Probabilities pni,...,nM+1
(t) can be deduced by solving the system of differential

equations defined by the time derivatives of the probability generating functions.

The following holds, for i = 1, . . . ,M ,

∂

∂t
Fi(xi, . . . , xM+1, t) = µi + νiFi+1(xi+1, . . . , xM+1, t) − SiFi(xi, . . . , xM+1, t)

+ λiF
2
i (xi, . . . , xM+1, t),

(4.5)

where Si = µi + λi + νi and with initial conditions Fi(xi, . . . , xM+1, 0) = xi for

i = 1, . . . ,M + 1. Moreover, without loss of generality, we can assume that

for all times t ∈ [0,+∞), FM+1(xM+1, t) = xM+1; this because, product cells

exited compartment CM can only accumulate without further dying, dividing or

differentiating. Thus, ∂
∂t
FM+1(xM+1, t) = 0.
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We may want to observe that, in spite of the dependency of the probabil-

ity generating function Fi on M + 3 − i variables, its analytical solution can be

found by solving a system of partial differential equation where only the time

derivative is considered. In general, however, solving System 4.5 is a challenging

task since the right-hand-side of each differential equation has a time-dependent

inhomogeneous term. Only two cases are different. Indeed, by model definition,

the differential equation for i = M + 1 is trivial; moreover, if i = M , the corre-

sponding differential equation is simplified as the inhomogeneous term is constant

over time. The resulting differential equation is then a standard Riccati equation.

This is exploited in the cases of M = 1 and M = 2, as detailed below,

We start considering the case of direct differentiation (M = 1). We assume

(C1(0),C2(0)) = (1, 0) and that, for a small time step ∆t, only one or none event

(death, division, differentiation) can happen:

(C1(∆t),C2(∆t)) =



(1, 0) with probability 1 − ∆t (µ1 + λ1 + ν1)

(2, 0) with probability ∆t λ1

(0, 0) with probability ∆t µ1

(0, 1) with probability ∆t ν1

.

We define, 0 ≤ x1, x2 ≤ 1, the time-dependent probability generating functions

F1(x1, x2, t) =
+∞∑

n1,n2=0

P (C1(t) = n1,C2(t) = n2 |C1(0) = 1,C2(0) = 0) xn1
1 x

n2
2 ,

F2(x2, t) =
+∞∑
n2=0

P (C2(t) = n2 |C2(0) = 1) xn2
2 .

where nj ∈ N+, for j = 1, 2. Thus, for a small time step ∆t,

F1(x1, x2, t+ ∆t) = F1(x1, x2, t)(1 − ∆t (µ1 + λ1 + ν1)) + µ1∆t+ ν1∆t x2

+ λ1∆t F
2
1 (x1, x2, t) .

Here, we make use that F2(x2, t) = x2 for all t > 0, as we consider product cells

as an accumulating pool, i.e. product cells can not die, divide or differentiate

further. Consequently, the probability generating function satisfies the partial

differential equation

∂

∂t
F1(x1, x2, t) = µ1 + ν1x2 − (µ1 + ν1 + λ1)F1(x1, x2, t) + λ1F

2
1 (x1, x2, t) . (4.6)
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with initial condition F1(x1, x2, 0) = x1 and F2(x2, 0) = x2. For a solution of (4.6),

we refer the reader to Section 4.3.1.

C1(t) C2(t) C3(t)

Figure 4.4: An initial cell, in green, enters the sequence of compartments from

progenitor cells (blue compartment C1) to maturation (in orange) via one inter-

mediate compartment C2.

Similarly, if M = 2 we consider a sequence of two compartments C1 and C2,

depicted in Figure 4.4, and analyse the population of cells exiting compartment

C2. Random variables Ci(t), for i = 1, 2, 3, represent the number of cells in

compartment C1, C2 and the number of product cells at time t, respectively. One

can define the time-dependent joint probabilities pn1,n2,n3(t), pn2,n3(t) and pn3(t)

as in (4.4), for nj ∈ N+ for j = 1, . . . , 3. Then, for 0 ≤ x1, x2, x3 ≤ 1, the

time-dependent probability generating functions can be defined

F1(x1, x2, x3, t) =
+∞∑

n1,k2,k3=0

pn1,n2,n3(t)x
n1
1 x

n2
2 x

n3
3 ,

F2(x2, x3, t) =
+∞∑

n2,n3=0

pn2,n3(t)x
n2
2 x

n3
3 ,

F3(x3, t) =
+∞∑
k3=0

pn3(t)x
n3
3 .

Since product cells exiting compartment C2 can only accumulate over time

F3(x3, t) = x3 for all t > 0; then, for a small time step ∆t, we have

F1(x1, x2, x3, t+ ∆t) = F1(x1, x2, x3, t)(1 − ∆t S1) + µ1∆t+ ν1∆t F2(x2, x3, t)

+ λ1∆t F
2
1 (x1, x2, x3, t) ,

F2(x2, x3, t+ ∆t) = F2(x2, x3, t)(1 − ∆t S2) + µ2∆t+ ν2∆t x3

+ λ2∆t F
2
2 (x2, x3, t) ,
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where Si = µi + λi + νi for i = 1, 2. Thus, the following system of differential

equations is satisfied

∂F1(x1, x2, x3, t)

∂t
= µ1 + ν1F2(x2, x3, t) − S1F1(x1, x2, x3, t) + λ1F

2
1 (x1, x2, x3, t) ,

∂F2(x2, x3, t)

∂t
= µ2 + ν2 x3 − S2F2(x2, x3, t) + λ2F

2
2 (x2, x3, t) ,

(4.7)

with initial conditions F1(x1, x2, x3, 0) = x1, F2(x2, x3, 0) = x2, F3(x3, 0) = x3,

In the following two Sections, we consider the case of M = 1 and M = 2

and we show how to compute the solution of Equation (4.6) and System (4.7),

respectively.

4.3.1 Direct differentiation, M = 1

In this Section, we assume M = 1 and compute the solution F1(x1, x2, t) of

Equation (4.6). When looking at the case of direct differentiation, for the sake

of notation, we will omit the compartment-index for events’ rates λ1, µ1, ν1 and,

thus, denote λ1 = λ, µ1 = µ, ν1 = ν and S = µ + λ + ν. By the method of

separation of variables, the solution of System (4.6) is

F1(x1, x2, t) =
ab
(
e−λ(b−a)t − 1

)
+ x1

(
a− b e−λ(b−a)t

)
a e−λ(b−a)t − b+ x1 (1 − e−λ(b−a)t)

, (4.8)

where a < b are the two roots of r(F1) = λF 2
1 − SF1 + µ+ ν x2,

a, b =
S

2λ

(
1 ±

√
S2 − 4λ(µ+ ν x2)

)
.

Given (4.8), one can look at the long-term behaviour of the probability generating

function

lim
t→+∞

F1(x1, x2, t) =
−ab+ x1a

−b+ x1
= a .

Here, we would like to observe that the limit for t→ +∞ of F1(x1, x2, t) is finite

and equals the probability generating function in Equation (3.5) from the time-

independent analysis of Chapter 3. This can be explained because for large time

t the system tends to reach the absorbing state (0, n⋆2), with n⋆2 ≥ 0; that is cells

leave intermediate compartments and either die or accumulate to the product
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4.3 Time-dependent probability generating function

state. Thus, for this case of M = 1, C2(t → +∞) corresponds to the random

variable R that we defined and analysed in Chapter 3.

By definition, the probability generating function is a power series representa-

tion of the probability density function of the respective random variable C1(t).

Thus, one can compute the probability pn(t) of having n cells in the first com-

partment as

pn(t) = P (C1(t) = n) =
1

n!

∂(n)

∂x
(n)
1

F1(x1, 1, t)

∣∣∣∣
x1=0

.

We see how the probability density pn(t) depends on the marginal distribution

F1(x1, 1, t). Setting x2 = 1 in Equation (4.8), we find

F1(x1, 1, t) =
x1
(
λ− (µ+ ν)e−kt

)
− (µ+ ν)

(
1 − e−kt

)
x1 (1 − e−kt)λ− (µ+ ν − λe−kt)

, (4.9)

where we denote k = µ + ν − λ. Now we observe that F1(x1, 1, t) is a rational

function of the form (c1(t)x1+c2(t))/(c3(t)x1+c4(t)) where ci(t), for i = 1, 2, 3, 4,

are exponential functions in terms of the time variable t. In particular,

c1(t) = λ− (µ+ ν)e−kt, c2(t) = −(µ+ ν)
(
1 − e−kt

)
,

c3(t) = λ
(
1 − e−kt

)
, c4(t) = −(µ+ ν − λe−kt) .

Clearly, p0(t) = P (C1(t) = 0) = F1(0, 1, t). Differentiating once Equation (4.9)

we get
∂

∂x1
F1(x1, 1, t) =

c1(t)c4(t) − c2(t)c3(t)

(c3(t)x1 + c4(t))2
,

and thus,

p1(t) =
(λ− (µ+ ν))2 e−kt

(µ+ ν − λ e−kt)2
.

In general, we can express the nth derivative as

∂(n)

∂x
(n)
1

F1(x1, 1, t) =
(−1)n−1 n! c3(t)

n−1(c1(t)c4(t) − c2(t)c3(t))

(c3(t)x1 + c4(t))n+1
.

The probability of having n cells in compartment C1 at time t can then be easily

derived as

pn(t) =
(−1)n−1 c3(t)

n−1(c1(t)c4(t) − c2(t)c3(t))

(c4(t))n+1
. (4.10)
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For the defined stochastic process {(C1(t),C2(t)) : t ≥ 0}, states {(0, n⋆2)},

with n⋆2 ≥ 0, are absorbing states. Cells indeed tend to die or exit compartment

C1 and accumulate as product cells. Thus, extinction of cells in C1 is certain

that is, limt→+∞ p0(t) = 1. However, the expected time until absorption might

be large and one could examine the dynamics of the process prior this state is

reached. One can wonder what is the size of the non-extinct population at a large

time t. From a mathematical perspective it is, thus, interesting to compute the

quantity (pn(t))/(1−p0(t)), for n = 1, 2, . . . , that is the conditional probability of

n cells being in compartment C1 at time t, given that absorption has not occurred

up until then. In particular, a study of the asymptotic behaviour of this quantity

when t→ +∞ can be done. The defined stochastic process {(C1(t),C2(t)) : t ≥
0}, can be seen as a birth-and-death process with death rate µ+ ν and birth rate

λ; the stationary distribution of such a process is well studied by Allen (2010).

Under our assumption, λ < µ + ν, it is known that the stationary probability

distribution is given by a geometric distribution with parameter λ
µ+ν

; this is,

indeed, confirmed by our findings,

lim
t→+∞

pn(t)

1 − p0(t)
= lim

t→+∞
(−1)n−1

(
c3(t)

c4(t)

)n−1
c1(t)c4(t) − c3(t)c2(t)

c4(t)(c4(t) − c2(t))

= lim
t→+∞

(−1)n−1

(
c3(t)

c4(t)

)n−1
p1(t)

1 − p0(t)

= lim
t→+∞

(−1)n−1

(
λ(1 − e−kt)

−(µ+ ν − λ e−kt)

)n−1
k

µ+ ν − λ e−kt

=

(
λ

µ+ ν

)n−1
k

µ+ ν

4.3.2 One intermediate compartment, M = 2

In this Section, we consider the case of one intermediate compartment (M = 2)

and we will see how, including just one intermediate compartment in the dif-

ferentiation chain, the mathematical description of the time-dependent process

become more complex. The probability generating functions F1(x1, x2, x3, t) and

F2(x2, x3, t) satisfy System (4.7), and we report in Figure 4.5 the discretised solu-

tion for three different illustrative scenarios and with different initial conditions
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(x1, x2) for x1 ∈ {0.2, 0.4, 0.6, 0.8, 0.9} and x2 = 0.1, and for x3 = 1. In particular,

similar to Figure 4.2, we consider from left to right the case where compartment

C1 has faster rates that compartment C2, the two compartments C1 and C2 have

equally fast rates, and the case where compartment C1 has slower rates than the

last one. Since boundary conditions of probability generating functions need to

be satisfied, we know that F1(1, 1, 1, t) = F2(1, 1, t) = 1 and thus state (1, 1) is

a steady state. Moreover, we can observe in Figure 4.5 that state (1, 1) is al-

ways reached, regardless the starting point (x1, x2), represented by the blue dots.

Thus, state (1, 1) is an asymptotically stable steady state. Population of cells in

intermediate compartments C1 and C2 tends to the extinction state but the tran-

sient dynamics vary according to compartments’ events rates: on the left, C1 has

faster rates than C2 and population of cells quickly leave the first compartment;

in this case, regardless the initial condition x1, the dynamics are mainly driven by

the second compartment and reach a stable manifold. On the contrary, if C2 has

faster rates than C1, the first compartment slowly contribute to the population

of product cells.

We now focus on solving System (4.7) in the general case, for x1, x2 and x3

in [0, 1]. Since the considered System is defined in terms of derivatives with re-

spect to time, we will omit, for simplicity of notation, dependencies of variables

x1, x2, x3 and, thus, denote the two probability generating functions as F1(t) and

F2(t) in the remaining of this Section. System (4.7) consists of two Riccati equa-

tions, but with different characteristics. The function F2(t) satisfies a differential

equation with constant coefficients of the type of Equation (4.6); its solution is

given by

F2(t) =
a2(x2 − b2) + b2(a2 − x2)e

−λ2(b2−a2)t

x2 − b2 + (a2 − x2)e−λ2(b2−a2)t
=
d1 + d2 e−γ2t

d3 + d4 e−γ2t
, (4.11)

with a2 < b2 and a2, b2 = (S2 ±
√
S2
2 − 4λ2(µ2 + ν2 x3))/2λ2. In the second step,

we short the notation and denote γ2 = λ2(b2 − a2) and d1 = a2(x2 − b2), d2 =

b2(a2−x2), d3 = x2−b2 and d4 = a2−x2. If the differential equation for F2(t) has a

known solution, the differential equation for F1(t) has time-dependent coefficients

and specific solving methods are required. Indeed, considering System (4.7) and
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(a) C1 has faster rates than

C2.

(b) C1, C2 have equally fast

rates.

(c) C2 has faster rates than

C1.

Figure 4.5: Transient dynamics resulting from System (4.7) with different initial

conditions (x1, x2), shown as blue dots, and x3 = 1. In particular, we set x1 ∈
{0.2, 0.4, 0.6, 0.8, 0.9} and x2 = 0.1. In all cases the solution reaches state (1, 1),

since F1(1, 1, 1, t) = F2(1, 1, t) = 1. The fastest compartment has parameter

values λi = 4, νi = 5, µi = 1, the slowest λi = 0.4, νi = 0.5, µi = 0.1, for i = 1, 2

as in subplots (a) and (c). In subplot (b) we consider equal compartments with

parameter values λi = 0.4, νi = 0.5, µi = 0.1 for i = 1, 2.

substituting Equation (4.11), one needs to solve a first order differential equation

with non-constant coefficients,

∂F1(t)

∂t
= µ1 + ν1F2(t) − S1F1(t) + λ1F

2
1 (t)

= µ1 + ν1
d1 + d2 e−γ2t

d3 + d4 e−γ2t
− S1F1(t) + λ1F

2
1 (t) . (4.12)

The quadratic and first order coefficients, λ1 and S1 respectively, are constant;

whereas, the inhomogeneous term, µ1 + ν1F2(t), is time-dependent. A change

of variables may transform the first order Riccati equation into a linear second

order equation with non-constant coefficients for which more solving methods are

available in the literature (Pala & Ertas, 2017; Sugai, 1960). Following the usual

substitution method for Riccati equations, we introduce a new function f1(t),

such that F1(t) = − f ′1(t)

λ1f1(t)
. Thus, f1(0) = 1, f ′

1(0) = −λ1x1 and

f ′′
1 (t) + S1f

′
1(t) + λ1 (µ1 + ν1F2(t)) f1(t) = 0 , (4.13)
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where we denoted with f ′
1(t) and f ′′

1 (t) the first and second derivative of f1(t)

with respect to the independent variable t.

Equation (4.13) is a differential equation with an exponential coefficient, which

is a function of the independent variable; thus, the change of variable τ = e−
γ2
2
t

is required before applying the Frobenius’ method to solve the equation (Boyce

& di Prima, 2009). As detailed in Section 2.5, this method exploits the idea that

the solution of the given differential equation has a power series expansion whose

coefficients need to be determined. In Appendix C.1, we show that the solution

of Equation (4.13), and consequently of Equation (4.12), is a linear combination

of Gaussian hypergeometric functions with different parameter values; moreover,

the mathematical steps to obtain such hypergeometric solution F1(t) are reported.

In addition, given the complexity of the solution of Equation (4.13), we report

in Appendix C.2 the calculations required to solve the equation for a simpler case.

There, we assume the solution of F2(t) is a simple exponential with parameter γ

(instead of (4.11)); moreover, we let µ1 = 0 and S1 = λ1 + ν1 = 1. Under this

restrictions, the resulting solution is a linear combination of Bessel functions of

first order. Since this case is more tractable by hand, the solution is explicitly

reported in Appendix C.2.

As done above for the case M = 1, one can compute the long-term behaviour

of the probability generating function F1(t) that is, the limit for t→ +∞. Given

Equation (4.11), it holds

lim
t→+∞

F2(x2, x3, t) = F ⋆
2 =

S2 −
√
S2
2 − 4λ2µ2 − 4λ2ν2 x3

2λ2
,

and we can observe that F ⋆
2 = a2, where a2 is the smaller root of r(F2). Conse-

quently, for F1(t) we have

lim
t→+∞

F1(x1, x2, x3, t) = F ⋆
1 =

S1 −
√
S2
1 − 4λ1µ1 − 4λ1ν1F ⋆

2

2λ1
.

Again, we would like to observe that the limit for t→ +∞ of F2(x2, x3, t) is finite

and equals the probability generating function in Equation (3.5) from the time-

independent analysis in Chapter 3. Also, the limit of function F1(x1, x2, x3, t)

for large values of t depends on the limiting value of F2(x2, x3, t). This, can

be generalised to a sequence of M compartments as limt→+∞ F1(x1, . . . , xM+1, t)
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corresponds to ΦM(z) as defined in Equation (3.21) during the time-independent

analysis. The described behaviour can be observed also from Figure 4.6 which has

been done by setting the right-hand-side of the partial differential equation for

F1(x1, x2, x3, t) to zero (see Equation 4.7); so that the steady state of the system

could be found.

For a birth-and-death process with parameters λ and µ respectively, it is

well known that the probability generating function tends to 1 if λ < µ (ex-

tinction is an absorbing state) and to µ
λ

if λ > µ (the system reach extinction

with nonzero probability) (Allen, 2010). In our case, the stochastic process in

each compartment is a birth-and-death process with migration and immigration.

When looking at the case M = 2, we have r(F1) = λ1F
2
1 − S1F1 + µ1 + ν1 F2

and graphing the quadratic function on the right-hand-side can provide infor-

mation about the long-term behaviour limt→+∞ F1(x1, x2, x3, t). In particular, in

Figure 4.6 we report r(F1) and consider two different sets of parameter values:

x1 = 0.7, x2 = 0.4, x3 = 0.8, on the left, and x1 = 0.4, x2 = 0.7, x3 = 0.1, on

the right plot. On the x-axis, the function F1. Colours represent different times:

to represent the limiting behaviour as t → +∞, we consider five different in-

creasing times t ∈ {0, 1, 4, 10, 50}, and compute the function F2 at those fixed

times; the resulting r(F1) computed for t ∈ {0, 1, 4, 10, 50} is reported in the plot.

The blue vertical dashed line indicates the limit limt→+∞ F1(x1, x2, x3, t). We

can observe how, for t ∈ {0, 1, 4, 10, 50} the function r(F1) is always a parabola

with one root bigger than 1 and one smaller. The latter is the one we con-

sider as within the boundary limits of a probability generating function. Despite

the similar behaviour, given by the quadratic structure, it is clear how as time

changes, solution F2 is changing as well and function F1 adjusts so that, as time

increases, the smaller root of r(F1) always approaches the limiting value given

by limt→+∞ F1(x1, x2, x3, t). This is in agreement with the fact that we assumed

λi < µi + νi, for i = 1, 2, so that extinction of intermediate compartments is

certain. In addition, we can observe that, if x2 < x3 (as on the left plot) the root

of r(F1) is increasing with time, approaching the limit from the left. Also, as

x3 → 1, then the limiting value F ⋆
1 tends to 1. Whereas, on the second case the

smaller root of r(F1) decreases over time and the limit is reached from the right.
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Figure 4.6: Plot of r(F1) for two different values of x1, x2, x3 and five different

time points t ∈ {0, 1, 4, 10, 50}. The blue vertical dashed line indicates the limit

limt→+∞ F1(x1, x2, x3, t). In particular, on the left we consider the case of x1 =

0.7, x2 = 0.4, x3 = 0.8 (x3 > x1 > x2); on the right x1 = 0.4, x2 = 0.7, x3 = 0.1

that is, x2 > x3 and x2 > x1.

4.4 First, last and exiting times

In Chapter 3, we define a time-independent model of M compartments with total

amplification factor N discarding information about inter-event times as well as

the time cells exit the last compartment CM reaching the product state. Thus,

questions such as when, starting from one progenitor cell, does the first or the

last differentiation event towards the product state happens remain unanswered.

Moreover, one can investigate the overall distribution of times cells exit compart-

ment CM differentiating to the product state. In Section 4.3, we focus on solving,

analytically, the system of differential equations for probability generating func-

tions for M = 1, 2. Here, we define some summary statistics of interest. An

analytical solution is computed for the case M = 1 and numerical simulations

are run for M ≥ 1 to highlight the impact, with respect to time, of sequence of

compartments on the cellular differentiation process.
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4.4.1 When will the first product cell arrive?

In this Section, we focus on the first cellular differentiation event towards the

product state. In particular, for a sequence of M compartments we define

TMp = inf{t ≥ 0 : CM+1(t) ̸= 0 |C1(0) = 1,C2(0) = · · · = CM+1(0) = 0} ,

as the random variable representing the time to observe the first product cell that

is, the first cell exiting compartment CM , starting from one progenitor cell.

Consequently, one could analyse the probability distribution of TMp as well its

expected value IE(TMp ). We start observing that, since death event is included

in the stochastic model, single cells can die before reaching the product state;

mathematically, we have for every t ≥ 0,

P (C1(t) = · · · = CM+1(t) = 0 |C1(0) = 1,C2(0) = · · · = CM+1(0) = 0) > 0 ,

and IE(TMp ) = +∞. Thus, we are interested in computing the restricted time

IE(TMp 1{TM
p <+∞}) = IE(TMp |TMp < +∞)P

(
TMp < +∞

)
, (4.14)

where 1{TM
p <+∞} is the indicator function defined as

1{TM
p <+∞} =

{
1, if TMp < +∞,

0, if TMp = +∞.

We start analysing the case of direct differentiation, M = 1. The random

variable T 1
p represents the time to observe a first cell exiting compartment C1,

starting from one cell in that compartment; it is defined as

T 1
p = inf{t ≥ 0 : C2(t) ̸= 0 |C1(0) = 1,C2(0) = 0} .

From Equation (4.8), we can set x1 = 1, x2 = 0 and find the marginal distribution

F1(1, 0, t) = P (C2(t) = 0). Given that P (C2(t) ̸= 0) = 1− P (C2(t) = 0), we can

differentiate F1(1, 0, t) with respect to time and find the probability density of

the random variable T 1
p ,

d

dt
P
(
T 1
p < t

)
=
λ(1 − a)(1 − b)(a− b)2 e−λ(b−a)t

(1 − b+ (a− 1) e−λ(b−a)t)
2 ,

170



4.4 First, last and exiting times

where a < b are the roots of r(F1) = λF 2
1 −SF1+µ. This is the probability density

function when IE(T 1
p ) is finite. By definition of the expected value of a random

variable, the restricted mean time IE(T 1
p 1{T 1

P<+∞}) to get the first product cell

can be then computed as

IE(T 1
p 1{T 1

p<+∞}) =

∫ +∞

0

t
λ(1 − a)(1 − b)(b− a)2 e−λ(b−a)t

(1 − b+ (a− 1) e−λ(b−a)t)
2 dt

= λ(1 − a)(1 − b)(b− a)2
∫ +∞

0

t e−λ(b−a)t

(1 − b+ (a− 1)e−λ(b−a)t)
2dt .

Computing and evaluating the integral, we get

IE(T 1
p 1{T 1

p<+∞}) =
1

λ
log

(
b− a

b− 1

)
.

We apply Equation (4.14) and find the conditioned mean time to observe the first

product cell

IE(T 1
p |T 1

p < +∞) =
IE(T 1

p 1{T 1
p<+∞})

1 − a
=

1

λ(1 − a)
log

(
b− a

b− 1

)
.

Similarly, when M = 2 we let

T 2
p = inf{t ≥ 0 : C3(t) ̸= 0 |C1(0) = 1,C2(0) = 0,C3(0) = 0} ,

be the random variable representing the time to observe the first cell exiting

compartment C2 (first product cell), starting from one cell in compartment C1.

The probability distribution of T 2
p is given by − d

d t
F1(1, 1, 0, t). However, the

complexity of computing a solution of System (4.7) reflects also on the case where

x1 = x2 = 1 and x3 = 0. Given the preliminary nature of this work, we leave

as future work the calculation of an analytical expression of F1(1, 1, 0, t). Here,

we restrict in considering the simplified case of λ1 = λ2 = 0 and µ = µ1 = µ2,

ν = ν1 = ν2. Solving System (4.7), it is easy to find

F2(1, 0, t) =
µ

k
+
ν

k
e−k t

F1(1, 1, 0, t) = 1 −
(ν
k

)2
+
(ν
k

)
e−k t +

ν2

k
t e−k t .

(4.15)

Differentiating with respect to time we get

− d

d t
F1(1, 1, 0, t) = ν2t e−k t .

171



4. THE IMPORTANCE OF TIME IN CELL DIFFERENTIATION
PROCESS

Thus we can conclude that the probability distribution of the random variable

T 2
p 1{T 2

p<+∞} follows a Gamma distribution. This can be explained as, in this

case where division is absent, cells either die or move through the sequence of

compartments via differentiation. We find,

T 2
p 1{T 2

p<+∞} ∼ Gamma

(
2,
k3

ν2

)
.

Moreover, the restricted mean time can be computed as

IE(T 2
p 1{T 2

p<+∞}) =

∫ +∞

0

t

(
− d

dt
F1(1, 1, 0, t)

)
dt

and

IE(T 2
p |T 2

p < +∞) =
IE(T 2

p 1{T 2
p<+∞})

1 − F ⋆
1

.

These analytical considerations, can be supported by numerical results that

could highlight interesting properties about the time cells differentiate through a

sequence of M compartments. A total of 105 numerical simulations has been run

to analyse the probability distribution of TMp , for M = 1, 3, 10. In particular, we

report in blue, in Figure 4.7, the probability distribution for the case M = 1,

P
(
T 1
p = t

)
, t = 0, 1, 2, . . . .

Figure 4.8 reports in blue the probability distribution P
(
TMp = t

)
, t = 0, 1, 2, . . . ,

for the case M = 3 (on the top) and M = 10 (bottom). With the white blended

blue we depict the probability distribution of the time a first cell differentiates,

exiting the first compartment C1 of a sequence of M = 3 and M = 10 compart-

ments, on the top and bottom plots, respectively. Differences in these distribution

as well as with the distribution for M = 1, can be justified because in all the

three cases we consider the same amplification factor N = 10. In this way we

could keep consistency with respect to the population of product cells and analyse

how the differences in the number of intermediate compartments reflect on com-

partments’ events probabilities and the differentiation time. Looking at TMp for

M = 1, 3, 10, we can observe that its probability distribution resemble a Gamma

distribution with different shape parameters. A non zero rate of division should

clearly make an impact on the dynamics of population of cells compared to the
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simplified System (4.15); however, this result might hint that the overall distri-

bution could still be approximated by a Gamma distribution. As M increases

the probability distributions of TMp tends to skew to the right having a longer

tail. This supports the natural thought that, given an total amplification fac-

tor N , the time to observe a first product cell (cell exiting compartment CM)

increases with the number of compartments in the sequence. Moreover, one can

note that, in a sequence of M compartments, the time between the first differ-

entiation event (first cell exiting compartment C1) and the first differentiation

event to the product state (first cell exiting CM) increases as well with the num-

ber of intermediate compartments. Further mathematical studies are required to

describe in analytical way this observed trend; for example one could think about

how to approximate the solution of System (4.7), so that the resulting differen-

tiated function reflects the numerical probability distribution function that has

been found.

Figure 4.7: Plot of the probability distribution of the time a first cell exit (first

product cell) and the last cell exit (last product cell) compartment CM for M = 1,

given one initial cell in that compartment. We set N = 10 and pd(1) = µ1
S1

= 0.1.

4.4.2 When will the last cell exit?

In this Section, we focus on the last differentiation event towards the product

state. First, we want to observe that, within our compartmental model, the
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Figure 4.8: Plot of the probability distribution of the time a first cell exit (first

product cell) and the last cell exit (first product cell) compartment CM for

M = 3, 10 (from top to bottom). Also, we report, in white blended colours,

the probability distribution of the time the first (in blue) and the last (in green)

cell exit compartment C1, differentiating to the following one, for a sequence of

M = 3 and M = 10 compartments. We set N = 10 and, for i = 1, . . . ,M ,

pd(i) = 0.1.

dynamics of cells in compartment Ci, for i = 2, . . . ,M can be seen as a birth-

and-death process with immigration (happening at rate νi−1 from the previous

compartment) (Allen, 2010). Different of course is the first compartment of pro-

genitor cells. Indeed, we do not consider an external source of cells arriving to

the first compartment and if C1(t) = 0 for a time t = τ , then C1(t) = 0 for all

t > τ . We recall that in our system we assume, µi + νi > λi for i = 1, . . . ,M , so
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4.4 First, last and exiting times

that limt→+∞ IE(Ci(t)) = 0 for i = 1, . . . ,M and cells accumulate in the product

state, limt→+∞ IE(CM+1(t)) ≥ 0. In order to quantify the time it takes for cells

to traverse the sequence of compartments and leave the system, one can consider

an initial progenitor cell and look at the time the last cell leaves (by death or

differentiation) the sequence of M compartments C1, . . . , CM , before the system

reaches the steady state (0, . . . , 0, n⋆M+1), with n⋆M+1 ≥ 0. We let

TM0 = inf{t ≥ 0 : C1(t) = · · · = CM(t) = 0 |C1(0) = 1, C2(0) = · · · = CM(0) = 0}

be the random variable for the time to observe the first M compartments empty

that is, the system reaches the steady state (0, . . . , 0, n⋆M+1), with n⋆M+1 ≥ 0. As

observed for the random variable TMp , since death event is included in the stochas-

tic model, single cells can die before reaching the product state. When looking at

the case of a non-zero population of product cells, we are interested in the case

CM+1(T
M
0 ) > 0; thus, one might consider the random variable TM0 1{TM+1

0 =+∞}

where 1{TM+1
0 =+∞} is the indicator function defined as

1{TM+1
0 =+∞} =

{
1, if TM+1

0 = +∞,

0, if TM+1
0 < +∞.

In the case of direct differentiation (M = 1), the time to observe C1(t) = 0

is equivalent to the time to reach the absorbing state in a linear birth-and-death

process (without immigration). We let

T 1
0 = inf{t ≥ 0 : C1(t) = 0 |C1(0) = 1} ,

be the random variable for the first time we observe C1(t) = 0, i.e. all cells in

compartment C1 either have died or differentiated to the product state.

As mentioned in Section 4.3.1, setting x1 = 0 and x2 = 1 in Equation (4.8),

gives p0(t) = P (C1(t) = 0) that is, the probability there are no more cells in

compartment C1 at time t. By differentiating p0(t) = P (C1(t) = 0) with respect

to time, one can find the probability distribution of the first compartment to

reach extinction,
d

dt
P
(
T 1
0 < t

)
=

(µ+ ν)k2 e−k t

((µ+ ν) − λe−k t)2
,
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where k = µ + ν − λ. Indeed, given x1 = 0 and x2 = 1, it holds λ(b − a) =

µ + ν − λ = k where a, b are the roots of function r(F1). Similarly, for M = 2,

one could set x1 = x2 = 0 and x3 = 1 and solve System (4.7). The probability

distribution of the first and second compartments to reach extinction, is then

given by
d

dt
F1(0, 0, 1, t).

Moreover, when looking at summary statistics related to the system reaching

the absorbing state (0, . . . , 0, n⋆M+1), we find interesting to consider the time the

last differentiation event to the product state takes place, conditioned on at least

one cell reaching the product state, n⋆M+1 > 0. Let us imagine, for example, to

have a sequence of M = 2 compartments. We start at time t = 0 with only one

cell in the first compartment, C1(0) = 1 and C2(0) = C3(0) = 0, and observe

that at time τ1 > 0, the following state of the system

C1(τ1) = 2, C2(τ1) = 1, C3(τ1) = 10 .

If now, at time τ1, the cell in compartment C2 differentiates to the product state

and afterwards, at times τ2 and τ3, the two cells in C1 die, then the system would

reach the absorbing state (0, 0, 11) at time τ3. However, what we would like to

investigate here is τ1, as the time the last differentiation event to the product

state happens. Note that, in case of µi = 0 for i = 1, . . . ,M , the distribution

given by τ1 equals the distribution of the random variable TM0 .

In order to analyse this summary statistic, we run 105 numerical simulations.

Figure 4.7 reports in green the probability distribution of time to observe the last

cell leaving compartment C1 and differentiating to the product state, before the

system reaches the absorbing state. Similarly, we report in Figure 4.8 in green

the probability distribution of time to observe the last cell leaving compartment

CM and differentiating to the product state, for M = 3 and M = 10 on the

top and bottom plots, respectively. As noted in previous Section for TMp , we

depict in white blended green the probability distribution of the time the last

cell in C1 differentiates, exiting the first of a sequence of M = 3 and M = 10

compartments, on the top and bottom plots, respectively. Differences in these

distribution as well as with the distribution for M = 1, can be justified because for

the three choices of M we consider the same amplification factor N = 10. In this

way, we could keep consistency with respect to the population of product cells and
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analyse how the differences in the number of intermediate compartments reflect on

compartments’ events probabilities and the differentiation time. If for M = 1, the

time to observe the last differentiation event follows an exponential distribution,

when adding more compartments in the sequence, the distribution is skewed to

the right with a shape parameter depending on the number of compartments M .

For consistency we restrict, for M = 10, the x-axis to a time t = 60; however, we

want to underline that the probability distribution has a very long tail and, as a

result of the 105 simulations, probability approaches zero only for larger times,

t > 250.

4.4.3 Exiting time

Finally, in this Subsection, we consider the distribution of times cells differen-

tiate among compartments before the system reaches the absorbing state. In

Section 4.2 we show how to compute IE(Ci(t)) the mean number of cells in com-

partment Ci, for i = 1, . . . ,M , at time t. Then, given that the defined model is

a CTMC where cells in compartment Ci behave independently, the probability

of observing a differentiation event of a cell in compartment Ci at time t is given

by the differentiation rate times the number of cells present at that time in the

compartment. That is,

ρi(t) = νiIE(Ci(t)) .

In particular, we can look at the population of cells in the last compartment

CM and analyse the distribution of the time cells exit CM , that is i = M . Then,

if M = 1,

ρ1(t) = ν1 IE(C1(t)) = ν1e
−k1 t = ν1

+∞∑
n=0

n pn(t) ,

with pn(t) = P (C1(t) = n) as in Equation (4.10). In this case of M = 1, we do

have an analytical expression of both the mean number of cells IE(C1(t)) and the

probability P (C1(t) = n). Whereas, for M > 1 only an analytical expression of

IE(Ci(t)), given by Equation (5.5), is found. However, a corresponding probability

mass function pMn (t) = P (CM(t) = n) can be always defined. For example, for
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M = 2 one would have

ν2 IE(C2(t)) = ν2(e
−k1 t − e−k2 t) = ν2

+∞∑
n=0

n p2n(t) .

It is left for the future, the problem to find this probability mass function, whose

analytical expression would be extremely interesting to analyse.

Figure 4.9: Plot of the distribution of the differentiation times towards a product

state (time cells exit compartment CM via differentiation event) for M = 1, 3, 10,

starting from one progenitor cell in C1. In all three cases, we set N = 10 and, for

i = 1, . . . ,M , pd(i) = µ
Si

= 0.1.

Here, we perform a numerical analysis by running 105 Gillespie simulations

where we track when each differentiation event happens. Figure 4.9 reports the

probability distributions of the time differentiation events in compartments C1,

C3 and C10 happen (in blue, orange and green) for a sequence of M = 1, 3, 10

compartments, respectively. As expected, we note that for M = 1, the distribu-

tion follows an exponential with parameter k1. Exiting times to the product state

for a sequence of M > 1 compartments are shifted to the right. In particular, at

around time t = 12, a differentiation event towards the product state for M = 3

is the most probable; whereas a differentiation event to the product state of a cell

in compartment C10 is likely to happen even at larger times and it is unlikely at

very early times, for t < 5.
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So overall, even if the three considered sequences of M = 1, 3 and 10 com-

partments are characterised by the same amplification factor N (and the same

probability of death among different Ci, for i = 1, . . . ,M) cells arrive to the

product-final state at different times. Also, when M = 1, by differentiating the

probability generating function of the process, we do find a closed expression for

the time of a first cell differentiates to the product state. Whereas, if M > 1,

the nature of the differential equation for F1(x1, . . . , xM+1, t) drives an increase

in the complexity: for this PhD thesis, instead of finding a closed formula, we

carried out numerical simulations to understand the key aspects of the process.

4.5 Discussion

In this Chapter, a time-dependent stochastic model for cell division, death and

differentiation through a sequence of M compartments has been developed. We

focus on understanding how cells proceed in the sequence of compartments over

time, reaching the product state changes at different times, and how these ob-

servations are impacted by differences in the number of compartments in the

sequence. At each time step, the number of cells in compartment Ci, for i =

1, . . . ,M , is represented by the random variable Ci(t); the number of product

cells at time t is represented by the random variable CM+1(t). The mean num-

ber of cells at each time step is computed and a probability generating function

approach is followed With this, we aim to characterise the distribution of exiting

cells and find P (CM+1(t) = n) at time t that is the probability the number of

product cells, descended from a single progenitor via M intermediate compart-

ments, is equal to n at time t. The calculation of such distribution is challenging

since it requires the knowledge, at each time step, of the number of cells in all

previous intermediate compartments. Thus, a second stochastic approach is pro-

posed to compute summary statistics of interest, such as the first and the last

time a cell of compartment CM differentiate to the product state, starting from

one cell in the progenitor state and conditioned on having an non-zero population

of product cells.

Overall, the work presented in this Chapter is preliminary work setting up

the space for future work. The analytical analysis has been carried out only for
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M = 1 and M = 2; and an exact solution of System (4.5) for M > 2 requires

further analytical studies as the complexity of dealing with multi-compartments

is already evident from the case M = 2. Indeed, when M = 3, the probability

generating function F3(x3, x4, t) can be directly computed as in Equation (4.8);

then, F2(x2, x3, x4, t) can be solved in terms of hypergeometric functions, apply-

ing the Frobenius method as we did for the case M = 2. Consequently, one need

to deal with a differential equation with respect to time for F1(x1, x2, x3, x4, t)

where the time-dependent coefficient of the inhomogeneous term is a linear com-

bination of hypergeometric functions. An exact solution of such differential equa-

tion involves complex calculations; alternatively, one might think to approximate

F2(x2, x3, x4, t) with a sum of exponential (i.e. Taylor expansion) and, thus, solve

a simplified differential equation for F1(x1, x2, x3, x4, t). Similar to what we did

when we considered a simplified function, F2(t) ∼ eγ t, for the case M = 2 (see

Section 4.3.2 and Appendix C.2). Generalisation of analytical methods for the

case of M > 2 is out of this PhD thesis and is the aim of future work.

In the time-analysis of the compartmental model outlined in this Chapter, we

have not considered the generation number of cells differentiating through the

sequence of compartments and eventually reach the product state. We believe

rather that investigating how the generation number of product cells changes

over time and as a function of the number of intermediate compartments in the

sequence, is a crucial point, interesting both from a mathematical and biological

perspective. Indeed, as mentioned in Chapter 3, in many circumstances a high

number of rounds of cell divisions brings a risk of mutation becoming established.

Already in Chapter 3 we analyse the differentiation process in terms of the number

of divisions that cells have undergone during the sequence of compartments; in

particular, we consider the time the system reached the absorbing state and

analyse the population of product cells. This has been done by definition of the

random variable G for the generation number of a randomly-selected product cell

as in Equation (3.35) for a sequence of M compartments.

In the framework on the time-dependent analysis performed in this Chapter,

we can investigate how the generation number varies over time, by defining the

random variable G(t) for the generation number of a randomly-selected product

180



4.5 Discussion

cell at time t for a sequence of M compartments; such a mathematical investiga-

tion requires more calculations and definition of specific random variables. For

example, one could consider, similarly to Section 3.3.1, random variables describ-

ing the number of cells of generation n in each compartment at time t as well as a

random variable describing the number of product cells of generation n at time t.

In particular, for M = 1, we can define Zn(t) as the random variable describing

the number of cells of generation n in compartment C1 at time t and Yn(t) as the

random variable describing the number of product cells of generation n at time

t. In order to apply a generating function approach, we find necessary to limit

the generation space and, thus, set a boundary to the generation number that is

tracked. In particular, we could assume that only cells up to a generation G are

distinguished and cells of generation n ≥ G belong to the same class. Under this

assumption, random variables Z0(t), . . . ,ZG(t) and Y0(t), . . . ,YG(t) need to be

defined and, consequently, the joint probabilities

pmn,...,mG,ln,...,lG(t)

= P
(
Zn(t) = mn, . . . ,ZG(t) = mG,Yn(t) = ln, . . . ,YG(t) = lG |

Zn(0) = 1, Zn+1(0) = · · · = ZG(0) = 0, Yn(0) = · · · = YG(0) = 0
)
,

with mj, lj ≥ 0 for j = n, . . . , G. Then, we can define the time-dependent

probability generating function ξ1,n and ξ2,n for random variables Zn(t) and Yn(t),

respectively. We have

ξ1,n(zn, . . . , zG, yn, . . . , yG, t) =
+∞∑

mn,...,mG,
ln,...,lG=1

pmn,...,mG,ln,...,lG(t)zmn
n · · · zmG

G ylnn · · · ylGG

and ξ2,n(yn, . . . , yG, t) = yn, for all n = 0, . . . , G, since product cells do not have

dynamics, by definition. Note that function ξ1,n is a function of 2G − 2n + 3

variables and we are interested in its partial derivative with respect to time. In
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particular, when M = 1 and G = 2, the following differential equations hold

∂

∂t
ξ1,0(z0, z1, z2, y0, y1, y2, t) = −S ξ1,0(z0, z1, z2, y0, y1, y2, t) + µ

+ λ ξ21,1(z1, z2, y1, y2, t) + νy0 ,

∂

∂t
ξ1,1(z1, z2, y1, y2, t) = −S ξ1,1(z1, z2, y1, y2, t) + µ+ λ ξ21,2(z2, y2, t) + νy1 ,

∂

∂t
ξ1,2(z2, y2, t) = −S ξ1,2(z2, y2, t) + µ+ λ ξ21,2(z2, y2, t) + νy2 .

with S = λ + µ + ν the sum of the rates of compartment C1. Given system’s

structure, the last equation for the highest generation needs to be solved at first.

The right hand side is a quadratic equation with an inhomogeneous term constant

with respect to time, thus we can use (4.8) and find

ξ1,2(z2, y2, t) =
α2β2(e

−λ(β2−α2)t − 1) + z2(α2 − β2e
−λ(β2−α2)t)

a2e−λ(β2−α2)t − β2 + z2(1 − e−λ(β2−α2)t)
,

where α2 < β2 roots of the second order polynomial µ+νy2−(λ+µ+ν) ξ1,2(z2, y2, t)+

λ ξ21,2(z2, y2, t) = 0. Solutions of ξ1,1 and ξ1,0 come by time-integration of the corre-

sponding differential equation that is now a linear first order differential equation

with time-dependent inhomogeneous term. Thus, the desired probabilities could

be computed but at a cost of complex and tedious calculations. We reserve for fu-

ture work the mathematical analysis, following a probability generating function

approach, for cells generation number within a sequence of M compartments.

Nevertheless, one can make use of numerical simulations to investigate how

the generation number of a randomly-selected product cell changes over time,

by analysing the distribution of the random variable G(t). In particular, we

can consider P (G(t) = n) for different numbers of intermediate compartments

M . Figure 4.10 reports a heat map for the distribution of G(t) for M = 3 (on

top) and M = 10 (on bottom). Here, we fix an average number of product cells

N = 100 descended from a single progenitor cell as well as pd(i) = µi
Si

= 0.1 for

all compartments Ci, i = 1, . . . ,M so that probabilities pb(i) = λi
Si

and pe(i) = νi
Si

are computed as in (3.45). One can note that the presence of many intermediate

compartments is advantageous for the generation number of product cells. Indeed,

Figure 4.10 shows that, given N , it takes more for cells to exit a longer sequence

of compartments and reaching the product state, but they do it with a lower
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Figure 4.10: Heat map of P (G(t) = n) for M = 3 (on the top) and M = 10

(bottom). On the x-axis time, on the y-axis generation number. In both cases,

we set N = 100 and pd(i) = µi
Si

= 0.1 for all compartments Ci, i = 1, . . . ,M .

Probabilities pb(i) = λi
Si

and pe(i) = νi
Si

are computed as in (3.45).

generation number. Indeed, when M = 10 most of the cells reach the product

state around time t = 100 but with a maximum generation number of 20.

Beyond the future research that we mentioned above, a natural prosecution of

this study would consist in the inclusion of different cellular events. For example,

in Chapter 5, we define a time-dependent compartmental model where the sym-

metric division event (when a cell in compartment Ci divides, the two daughter

cells both belongs to compartment Ci+1) as well as the reverse transition (a cell

de-differentiate moving from compartment Ci to Ci−1) are considered. A study

of distributions P (CM+1(t) = k) and P (G(t) = n) could be extended when these

two types of event are included in the model definition.
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Chapter 5

Stochastic journeys of cell

progenies through compartments:

self-renewal, symmetric and

asymmetric division

Cellular division, death and differentiation are essential ongoing processes during

all stages of life. A well-known example is embryonic development, where non-

specialised cells give rise to functional and differentiated cells (Evans & Kaufman,

1981; Martin, 1981). In Chapter 1, we give an overview of cell differentiation pro-

cess in human body (Barile et al., 2020; Michor et al., 2005; Murray et al., 2011;

Sawicka et al., 2014; Zhang et al., 2015) with a specific focus on the dysfunctional

exhaustion process (Chen et al., 2019; Wherry & Kurachi, 2015).

Recent experimental techniques in cell biology have made it possible to track

individual cell states (or compartments) and the progeny of a single cell (Hodzic,

2016; Perié et al., 2014). In recent decades, the development of mathematical

models in biology has significantly increased our ability to gain a quantitative

understanding of cellular fate and cell population dynamics. Deterministic models

are typically easier to analyse; they do not incorporate randomness and allow one

to describe the dynamics over time of populations of hosts, cells or molecules.

However, when interested in tracking single-cell behaviour, stochastic fluctuations
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arising from complex cellular interactions and the molecular events which regulate

cellular fate, must be considered.

Here, similar to Chapters 3 and 4, we consider a sequence of M + 1 com-

partments and model the process by which, from a stem-like (progenitor) state

(compartment C1), cells can undergo differentiation/migration events across ad-

jacent compartments, potentially leading to the rise of a terminally differentiated

product population (compartment CM+1). Cells in each compartment can divide,

die or transit to adjacent compartments (e.g representing potentially reversible

phenotype change). In contrast to Chapters 3 and 4, in the stochastic model

defined in this Chapter, differentiation event can be either considered to be re-

versible (e.g cancer cell mutations) or arising from a mutation event that has a

negligible probability of being reversed (e.g embryonic cell development).

Moreover, here, additional cell events are considered. Indeed, advances in ge-

netic labelling (Klein & Simons, 2011) have confirmed the existence of different

types of division, which affect the flexibility of a cell pool to expand or con-

tract. Different division events can drive a range of biological processes according

to whether the less differentiated pool expands by one new cell (self-renewal),

stays the same size (asymmetric division, where one of the daughter cells changes

phenotype), or shrinks (symmetric division, where both daughter cells change

phenotype) (Barile et al., 2020). In the time-dependent mathematical model de-

fined in this Chapter, we consider two additional cellular events compared to

previous Chapters: a reversible differentiation event, and the symmetric division

event.

The Chapter is organised as follows. In Section 5.1 we describe the dynamics

of cells dividing, dying or exiting across a sequence of compartments over time,

in terms of a continuous-time Markov chain. The mean behaviour of the system

is analysed in Section 5.1.1 and results are applied also in Section 4.2 as Sys-

tem 4.1 results as a simplified case of what considered here. In Section 5.1.2,

we make use of the probability generating function approach and we study the

proliferative potential of the system by quantifying the number of cells within

the genealogy of a single progenitor cell. In both Sections, we consider either the

situation where differentiation events can be reversible, or a mathematically more

simple irreversible model, where differentiation to the next compartment cannot
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be reversed. In Section 5.1.3, our focus is a number of summary statistics related

to a single cell which we track over time. Finally, in Section 5.2, we propose a

set of numerical results inspired by biological applications to illustrate our ap-

proach and methods, and to highlight the impact that asymmetric and symmetric

division can have on the fate of a population of cells arising from a progenitor.

5.1 Stochastic compartmental model

We propose a stochastic model of cell division, death and differentiation (or migra-

tion) across an ordered sequence of compartments. Cells in a given compartment

may represent a spatial location, a common phenotype, or share some common

characteristics. As in Chapters 3 and 4, we consider a sequence of compartments

Ci, i ∈ {1, . . . ,M + 1}, which cells, behaving independently of each other, follow.

Our general stochastic model considers a number of cellular events inspired by

some recently proposed mathematical models (Barile et al., 2020; de la Higuera

et al., 2019; Sawicka et al., 2014; Zhang et al., 2015). If in Chapter 3 we work with

event probabilities defining cells transitions between compartments, here and in

Chapter 4 we assume that each of these cell events takes place at a certain per

cell rate. Of course, since the defined model is a continuous-time birth-death-

migration Markov process with exponential waiting times, one could relate the

defined event rates to the corresponding compartment probabilities. Particular

situations of interest arise from setting some of these rates equal to zero, so some

events are not allowed to happen, as we illustrate in three different case studies

in Section 5.2. Each cell in a given compartment, Ci, can divide, die or exit to

one of the two adjacent compartments. When a division occurs, daughter cells

might both belong to the same compartment as the mother (this event is referred

to as self-renewal), both daughter cells might instantaneously move to the next

compartment (symmetric division), or one daughter cell might belong to the same

compartment as the mother, and the other will belong to the next compartment

(asymmetric division) (Barile et al., 2020; Zhang et al., 2015).

The stochastic model, depicted in Figure 5.1, is a continuous-time Markov

chain (CTMC) X = {(C1(t),C2(t), . . . ,CM+1(t)) : t ≥ 0}, where the random

variable Ci(t) represents the number of cells in compartment Ci at time t, with
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Figure 5.1: General stochastic model of cell division, death and differentiation

across an ordered sequence of compartments. Grey cells represent cellular death.

Self-renewal events take place with rate λ, symmetric division events with rate s,

and asymmetric division events with rate a. Differentiation events happen with

rate ν (forward) or ξ (backward). Death events have per cell rate µ. All rates

are assumed to be real positive numbers.

state space given by {0, 1, 2, . . .}M+1 = NM+1
0 . Cellular events, labelled E1 to E5

below, represent transitions across states (n1, . . . , nM+1) ∈ NM+1
0 as follows:

(E1) Self-renewal (cellular division where both daughter cells remain in the same

compartment as the mother) can occur in any compartment Ci, with per

cell rate λi, for i ∈ {1, . . . ,M + 1},

(n1, . . . , ni−1, ni, ni+1, . . . , nM+1)
λini−−→ (n1, . . . , ni−1, ni + 1, ni+1, . . . , nM+1).

(E2) Symmetric division (cellular division where both daughter cells instanta-

neously move to the next compartment) occurs in compartment Ci with

per cell rate si, for i ∈ {1, . . . ,M},

(n1, . . . , ni−1, ni, ni+1, . . . , nM+1)
sini−−→ (n1, . . . , ni−1, ni − 1, ni+1 + 2, . . . , nM+1).

(E3) Asymmetric division (cellular division where one of the daughter cells re-

mains in the same compartment as the mother, while the other goes to

the next compartment) occurs in compartment Ci with per cell rate ai, for

i ∈ {1, . . . ,M},

(n1, . . . , ni−1, ni, ni+1, . . . , nM+1)
aini−−→ (n1, . . . , ni−1, ni, ni+1 + 1, . . . , nM+1).
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(E4) Differentiation (or migration) between adjacent compartments can occur

with per cell rates νi, for i ∈ {1, . . . ,M} and ξi, for i ∈ {2, . . . ,M + 1},

(n1, . . . , ni−1, ni, ni+1, . . . , nM+1)
νini−−→ (n1, . . . , ni−1, ni − 1, ni+1 + 1, . . . , nM+1),

(n1, . . . , ni−1, ni, ni+1, . . . , nM+1)
ξini−−→ (n1, . . . , ni−1 + 1, ni − 1, ni+1, . . . , nM+1).

(E5) Cells can die in any compartment Ci with per cell rate µi, i ∈ {1, . . . ,M+1},

(n1, . . . , ni−1, ni, ni+1, . . . , nM+1)
µini−−→ (n1, . . . , ni−1, ni − 1, ni+1, . . . , nM+1).

We note that cells in the last compartment CM+1 cannot symmetrically or asym-

metrically divide, or differentiate to the next compartment. All per cell rates are

assumed to be positive real numbers. Moreover, we would like to underline the

reader that, when si = ξi = 0 for all i = 1, . . . ,M and ξM+1 = λM+1 = µM+1 = 0

we fall back into the hypothesis considered in previous two Chapters.

5.1.1 Mean number of cells in each compartment over

time

We first describe the dynamics of the process and study the mean number of cells

in each compartment, IE(Ci(t)), which obeys the following system of differential

equations (Matis, 1970)

d IE(C1(t))

dt
= −(µ1 + ν1 + s1 − λ1)IE(C1(t)) + ξ2IE(C2(t)),

d IE(Ci(t))

dt
= (νi−1 + ai−1 + 2si−1) IE(Ci−1(t)) − (µi + νi + ξi + si − λi) IE(Ci(t))

+ξi+1 IE(Ci+1(t)), i ∈ {2, ...,M}, (5.1)

d IE(CM+1(t))

dt
= (νM + aM + 2sM) IE(CM(t))

−(µM+1 + ξM+1 − λM+1)IE(CM+1(t)),

where IE(Ci(t)) represents the expectation of the random variable Ci(t). These

equations constitute a homogeneous first-order linear system of ODEs with con-

stant coefficients, which can be written more succinctly in matrix form as follows

dC(t)

dt
= AC(t), (5.2)
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where C(t) = (IE(C1(t)), IE(C2(t)), . . . , IE(CM(t)), IE(CM+1(t)))
T ,

A =


−K1 ξ2 0 · · · 0

L1 −K2 ξ3 . . .
...

0
. . . . . . . . . 0

...
... LM−1 −KM ξM+1

0 · · · 0 LM −KM+1

 , (5.3)

and

K1 = µ1 + ν1 + s1 − λ1,

Ki = µi + νi + si + ξi − λi, Li−1 = νi−1 + ai−1 + 2si−1, i ∈ {2, . . . ,M},

KM+1 = µM+1 + ξM+1 − λM+1, LM = νM + aM + 2sM .

Note that if si = 0 for i = 1, . . . ,M and ξi = 0 for i = 2, . . . ,M + 1 then

Ki = µi + νi − λi; recalling the ki defined in Chapter 4, we then have Ki = ki.

The initial value problem of Equation (5.2) with C0 = C(0) has a unique

solution (Allen, 2010, Theorem 4.1)

C(t) = eAtC0, (5.4)

where eAt represents the matrix exponential,

eAt = I + At+ A2 t
2

2!
+ A3 t

3

3!
+ ... =

+∞∑
i=0

(At)i

i!
.

System (5.2) admits limt→+∞ C(t) = 0M+1 (column vector of zeros) as an asymp-

totic solution. It is exponentially stable (all solutions of the system from any

initial conditions converge to extinction) if and only if each eigenvalue of A has a

negative real part (see, for example, Corollaries 3.5 and 3.6 of the work of Teschl

(2012)).

We note that, in certain biological applications, some of the rates in Figure 5.1

will be zero, and thus, the analysis of such systems would simplify. For instance,

differentiation may be irreversible (Barile et al., 2020; Sawicka et al., 2014), so

that ξi = 0 for i ∈ {2, . . . ,M + 1} as shown in Figure 5.2. We will refer to

this scenario as the irreversible model. In this case, and if one considers a single

189



5. STOCHASTIC JOURNEYS OF CELL PROGENIES THROUGH
COMPARTMENTS: SELF-RENEWAL, SYMMETRIC AND
ASYMMETRIC DIVISION

Figure 5.2: Irreversible stochastic model of cell division, death and forward differ-

entiation across an ordered sequence of compartments. Grey cells represent cell

death happening at per cell rate µi. For a compartment Ci, self-renewal events

take place with rate λi, symmetric division events with rate si, and asymmetric

division events with rate ai. Differentiation events happen with rate νi. All rates

are assumed to be real positive numbers.

progenitor cell starting in compartment C1 at time t = 0, C(0) = (1, 0, . . . , 0)T , it

is possible to obtain the mean behaviour of the system in terms of the following

expressions

IE(Ci(t)) =


e−K1t, i = 1,(
i−1∏
l=1

Ll

)
i∑

j=1

e−Kjt
i∏

m=1
m̸=j

(Km −Kj)
−1, i ∈ {2, . . . ,M + 1}.(5.5)

The expression above is only well-defined if Ki ̸= Kj for all pairs (i, j) with i ̸= j.

If this is not the case, alternative analytic solutions can be found. For example,

if Ki = Kj for all i, j ∈ {1, . . . ,M + 1}, Equation (5.5) simplifies to

IE(Ci(t)) =

(
i−1∏
l=1

Ll

)
ti−1

(i− 1)!
e−Kit, t ≥ 0. (5.6)

Thus, it is clear that in the irreversible model limt→+∞ IE(Ci(t)) = 0 when Ki > 0

∀i ∈ {1, . . . ,M + 1}. This is consistent since {−Ki, i ∈ {1, . . . ,M + 1}} are the

eigenvalues of A in this case.

For specific biological applications such as those considered in Section 5.2 (Saw-

icka et al., 2014; Zhang et al., 2015), it is of interest to quantify the cumulative

190



5.1 Stochastic compartmental model

number of cells, on average, that exit compartment CM and arrive to the final

compartment, CM+1, starting with a single progenitor cell in compartment C1.

To this end, one can set in the irreversible model λM+1 = µM+1 = 0, so that

cells exiting compartment CM accumulate and can be counted. Then, for the

last compartment KM+1 = 0. We may underline the reader that these are the

assumptions made in Chapters 3 and 4. In this case, Equation (5.5) leads to

IE(CM+1(t)) =

(
M∏
l=1

Ll

) M∑
j=1

e−Kjt

M∏
m=1
m ̸=j

(Km −Kj)
−1 +

M∏
m=1

K−1
m

 , (5.7)

which is well-defined for Ki ̸= Kj for all i, j ∈ {1, . . . ,M}. From here, we have

lim
t→+∞

IE(CM+1(t)) =
M∏
i=1

Li
Ki

. (5.8)

Interestingly, this limit holds also if Ki = Kj for all i, j ∈ {1, . . . ,M} and KM+1 =

0. Then, one can obtain

IE(CM+1(t)) =
M∏
i=1

Li
Ki

−
M∑
j=1

IE(Cj(t))
M∏
i=j

Li
Ki

.

Under population extinction conditions (Ki > 0 for all i ∈ {1, . . . ,M}, so that

the population of cells in intermediate compartments {1, . . . ,M} dies out and

only product cells remain in CM+1 at late times), limt→+∞ IE(Ci(t)) = 0 for all

i ∈ {1, . . . ,M}, and thus Equation (5.8) also holds.

A particular feature of this system is that cells behave independently from each

other. This means that the dynamics of the genealogy of a set ofK progenitor cells

in compartment C1 at time t = 0, can be analysed as K independent stochastic

processes. Thus, in Section 5.1.2 we consider a number of summary statistics of

interest related to the genealogy of a single cell starting in a given compartment

(typically compartment C1).

5.1.2 The genealogy of a single progenitor cell

For a cell starting in compartment Ci, we can define gi to be the random variable

representing the total number of cells in the genealogy of this cell. Cells in the
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genealogy are the daughters, granddaughters, etc. of the progenitor cell, which

originate from division events (either self-renewal, asymmetric or symmetric) in

any compartment over time, not including the progenitor cell. It is a summary

statistic of the process which quantifies the proliferative potential of a single cell

in compartment Ci, and its offsprings. For example, in Figure 5.3, we represent

a particular realisation of the stochastic process, where g1 = 8.

The mean number of cells in the genealogy of a progenitor cell, mi = IE(gi), for

any initial compartment of interest i ∈ {1, . . . ,M + 1}, can be obtained via first-

step arguments by conditioning on the next event that occurs in the stochastic

process. This approach leads to the following system of equations

K1m1 = L1m2 + 2(λ1 + a1 + s1),

Kimi = Limi+1 + ξimi−1 + 2(λi + ai + si), i ∈ {2, . . . ,M},

KM+1mM+1 = ξM+1mM + 2λM+1.

The system above can be expressed in matrix form via the column vectors m =

(m1, . . . ,mM+1)
T and b = (2(λ1 + a1 + s1), . . . , 2(λM + aM + sM), 2λM+1)

T , as

follows

Jm = b, (5.9)

with a tri-diagonal coefficient matrix

J =



K1 −L1 0 0 · · · 0
−ξ2 K2 −L2 0 · · · 0

0 −ξ3 K3 −L3 · · · 0
...

. . . . . . . . . . . .
...

0 · · · 0 −ξM KM −LM
0 · · · 0 0 −ξM+1 KM+1


. (5.10)

One can exploit the tri-diagonal structure of J to obtain an explicit or recursive

solution of this system. In particular, by following a Gaussian forward-elimination

backward-substitution approach, such as the Thomas algorithm (Conte & De Boor,

2017; Thomas, 1949), one can obtain the recursive equations

mM+1 = ρM+1, mi = ρi − γimi+1, i ∈ {1, . . . ,M}, (5.11)
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C1

C2 C3

C4

ϕ

ϕ
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ϕ
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Time
T1

Figure 5.3: A realisation of the stochastic process following the genealogy of a

single progenitor cell which starts in compartment C1. The cell tracked (see

Section 5.1.3) is depicted as striped. For each cell, the colour indicates the

compartment where it is at any given time. Here, the tracked cell dies in C3

(brown), while its genealogy continues up to C4. In this example, g1 = 8 =

g1(1) + g1(2) + g1(3) + g1(4) = 4 + 0 + 2 + 2.

where γ1 = −K−1
1 L1, ρ1 = 2K−1

1 (λ1 + s1 + a1), and

γi = − Li
Ki + ξiγi−1

, i ∈ {2, . . . ,M},

ρi =
2(λi + si + ai) + ξiρi−1

Ki + ξiγi−1

, i ∈ {2, . . . ,M + 1}.

This recursive scheme leads to the explicit solution

mi =
M+1∑
j=i

(−1)j−iρj

(
j−1∏
l=i

γl

)
, i ∈ {1, . . . ,M + 1}, (5.12)
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where
∏i−1

l=i γl = 1. A condition on the parameters arises during the implemen-

tation of the recursive scheme,

K1 > 0, Ki + ξiγi−1 > 0, i ∈ {2, . . . ,M + 1},

so that the mean values m1, . . . ,mM+1 are finite and non-negative, for all i ∈
{1, . . . ,M + 1}. This ensures that the number of cells in the genealogy of a pro-

genitor cell is finite with probability one, P (gi < +∞) = 1, since mi = IE(gi) =

IE(gi|gi < +∞)P (gi < +∞) + IE(gi|gi = +∞)P (gi = +∞).

In the irreversible case, where ξi = 0 for i ∈ {2, . . . ,M+1}, the solution above

simplifies to

mi = 2
M+1∑
j=i

λj + aj + sj
Kj

(
j−1∏
l=i

Ll
Kl

)
, i ∈ {1, . . . ,M + 1}, (5.13)

where for j = M+1, we set aM+1 = sM+1 = 0. For i = M+1, the empty product

above is equal to one, so that mM+1 = 2λM+1

µM+1−λM+1
. In this irreversible model the

condition on the parameters for finite and non-negative solutions becomes Ki > 0

for all i ∈ {1, . . . ,M+1}. Direct inspection of Figure 5.2 shows that the condition

Ki > 0 avoids unlimited accumulation of cells in compartment Ci.

Probability generating function

Let us now go beyond the mean number of cells in a given compartment or

genealogy. For the irreversible model we can consider the probability generating

function of gi,

Υi(z) = IE(zgi) =
+∞∑
k=0

P (gi = k)zk.

We recall that the variable gi counts the cells in the genealogy of a progenitor cell

starting in compartment Ci, arising from division events (self-renewal, asymmetric

and symmetric division), and not including the progenitor cell itself. If one wants

to consider the progenitor cell in the genealogy, one can define si ≡ gi + 1, and

denote the new generating function by Ωi(z) = IE(zsi). The total expectation

law over all possible events implies that

IE(zsi) =
∑
Ej

IE(zsi | event Ej)P(Ej), (5.14)

194



5.1 Stochastic compartmental model

with Ej ∈ {death, differentiation, self-renewal, asymmetric division, symmetric

division}. This leads to

Ωi(z) =
µi
Si
z +

νi
Si
zΩi+1(z) +

λi
Si
z(Ωi(z))2 +

ai
Si
zΩi(z)Ωi+1(z)

+
si
Si
z(Ωi+1(z))2,

with Si = µi + νi + λi + ai + si. Since si = gi + 1, one can write

Υi(z) =
Ωi(z)

z
,

so that

λiz
2Υ2

i (z)+(aiz
2Υi+1(z)−Si)Υi(z)+(νiz+siz

2Υi+1(z))Υi+1(z)+µi = 0. (5.15)

We note that these probability generating functions are in agreement with the

mean values obtained above. In particular, by differentiating and setting z = 1,

we have

(Si − ai − 2λi)Υ
′
i(1) = 2(ai + λi + si) + (νi + ai + 2si)Υ

′
i+1(1), (5.16)

which can be solved recursively, leading to

IE(gi) = Υ′
i(1) = 2

M+1∑
j=i

aj + λj + sj
Kj

(
j−1∏
l=i

Ll
Kl

)
, (5.17)

in agreement with Equation (5.13). We also note that when i = M + 1, the

number of cells in the genealogy of a single progenitor cell in final compartment

CM+1 arises from a linear birth-and-death process, which in discrete-time has

death probability, pd = µM+1

µM+1+λM+1
, and birth probability, pb = λM+1

µM+1+λM+1
. Then,

a first-step argument for the random variable sM+1 leads to

ΩM+1(z) = pdz + pbzΩ2
M+1(z) = zϕM+1(ΩM+1(z)),

with ϕM+1(z) = pd + pbz
2. We can then write

ΥM+1(z) =
ΩM+1(z)

z
=
z ϕM+1(ΩM+1(z))

z
= ϕM+1(z ΥM+1(z)),
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which has solution

ΥM+1(z) =
SM+1 −

√
S2
M+1 − 4λM+1µM+1z2

2λM+1z2
.

This allows one to solve Equation (5.15) recursively via backwards substitution.

We finally note that by differentiating and setting z = 1, and since λM+1 < µM+1,

one gets

IE(gM+1) = Υ′
M+1(1) =

2λM+1

µM+1 − λM+1

,

in agreement with Equation (5.13).

Compartmental analysis of the genealogy

Cells in the genealogy of a single progenitor can belong, in principle, to different

compartments, as shown in Figure 5.3. For a progenitor cell starting in compart-

ment Ci, those compartments Cj, j ∈ {1, 2, . . . ,M + 1} with greater proliferative

potential will contribute more to gi. The proliferative potential of compartment

j depends on the parameters λj, aj, sj, µj, νj, ξj, but also on the number of cells

in the genealogy arriving into that compartment. It is of interest then to write

gi =
∑M+1

j=1 gi(j), with gi(j) the number of cells in compartment Cj which belong

to the genealogy of the progenitor cell from compartment Ci. For example, for

the stochastic realisation in Figure 5.3, g1 = g1(1) + g1(2) + g1(3) + g1(4) =

4 + 0 + 2 + 2 = 8.

One can follow similar arguments to the ones in Section 5.1.2 to compute the

mean quantities mi(j) ≡ IE(gi(j)). In particular, for an initial compartment Ci,

a first-step argument yields the following equations

Kimi(i) = 2λi + ai + Limi+1(i) + ξimi−1(i),

Kimi(i+ 1) = 2si + ai + Limi+1(i+ 1) + ξimi−1(i+ 1),

Kimi(j) = Limi+1(j) + ξimi−1(j), j /∈ {i, i+ 1},

where we implicitly set ξ1 = 0, and ∀j ∈ {1, 2, . . . ,M+1}, mM+2(j) = mM+1(M+

2) = m0(j) = 0 for notational convenience. Making use of a recursive approach

one can show that for any j ∈ {1, . . . ,M + 1},

mM+1(j) = ρM+1(j), mi(j) = ρi(j) − γimi+1(j), i ∈ {1, . . . ,M},
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where γ1 = −K−1
1 L1, ρ1(j) = K−1

1 d(1,j), and

γi = − Li
Ki + ξiγi−1

, i ∈ {2, . . . ,M},

ρi(j) =
d(i,j) + ξiρi−1(j)

Ki + ξiγi−1

, i, j ∈ {2, . . . ,M + 1},

with

d(i,j) =


2λi + ai, if j = i,

2si + ai, if j = i+ 1,

0, otherwise.

This recursive scheme leads to the solution

mi(j) =
M+1∑
k=i

(−1)k−iρk(j)

(
k−1∏
p=i

γp

)
, (5.18)

where
∏i−1

p=i γp = 1. This expression simplifies further for the irreversible model,

since ξi = 0 for all i ∈ {2, . . . ,M + 1}. In this instance, mi(j) = 0 whenever

i > j, and we can write

mi(i) = K−1
i (2λi + ai),

mi(j) = K−1
j−1

(
j−2∏
p=i

K−1
p Lp

)(
d(j−1,j) + d(j,j)K

−1
j Lj−1

)
, j ∈ {i+ 1, ...,M + 1},

for any i ∈ {1, ...,M}. Finally, we note that
∏i−1

p=iK
−1
p Lp = 1, and mM+1(M +

1) = 2λM+1

KM+1
.

5.1.3 Single-cell analysis

In the previous section we have analysed summary statistics of the genealogy of

a progenitor cell. We now turn to a number of summary statistics related to

the lifespan of a single cell, extending the single-cell analysis originally proposed

by de la Higuera et al. (2019), which was focused on T cell migration. In what

follows we assume that no symmetric or asymmetric division occurs, so that

si = ai = 0 for all i ∈ {1, . . . ,M + 1}. We propose to track the dynamics of a
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single cell, starting in compartment Ci, until it dies. In any given compartment,

this cell can divide (and, since both daughter cells are indistinguishable, we keep

tracking one of them), move to the next or previous compartment, or die. The

dynamics can then be represented by the CTMC Y = {Y(t) : t ≥ 0} over the

state space {C1, C2, . . . , CM+1, ∅}, where Y(t) represents the state of the cell at

time t; the cell is either in some compartment, Cj, or it has died (state ∅). A

schematic representation of the process Y is given in Figure 5.4, and a particular

realisation of this stochastic process is shown in Figure 5.3, where the tracked

cell is shown with stripes.

We study the stochastic process with the following summary statistics:

• the lifespan, Ti, of the cell, starting in compartment Ci,

Ti = inf{t ≥ 0 : Y(t) = ∅ |Y(0) = Ci},

which quantifies the survival potential of cells in the system depending on

their initial state,

• the number of divisions carried out by the cell during its lifespan, Di, which

quantifies the proliferative capacity of cells according to their initial state,

and

• the probability of the cell to die in a given compartment Cj; that is, βi(j) =

P(Y(Ti − ∆t) = Cj) for a small enough ∆t.

Lifespan of a single cell

Let Ti be the lifespan of a single cell starting in compartment Ci, i ∈ {1, . . . ,M +

1},

Ti = inf{t ≥ 0 : Y(t) = ∅ |Y(0) = Ci},

and consider τi = IE(Ti), its average lifespan. By conditioning on the next event

that the cell can undergo in this process, we obtain the following recursive equa-
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Figure 5.4: Representation of the process Y to follow the fate of a single cell.

tions

(µ1 + ν1)τ1 = ν1τ2 + 1,

(µi + νi + ξi)τi = νiτi+1 + ξiτi−1 + 1, i ∈ {1, . . . ,M},

(µM+1 + ξM+1)τM+1 = ξM+1τM + 1.

These equations have the general solution

τi =
M+1∑
k=i

(−1)k−iρ̄k

(
k−1∏
p=i

γ̄p

)
,

where
∏i−1

p=i γ̄p = 1. We have made use of the notation γ̄1 = −K̄−1
1 ν1, ρ̄1 = K̄−1

1 ,

with

γ̄i = − νi
K̄i + ξiγ̄i−1

, i ∈ {2, . . . ,M},

ρ̄i =
1 + ξiρ̄i−1

K̄i + ξiγ̄i−1

, i ∈ {2, . . . ,M + 1},

where K̄i = µi + νi + ξi. A simpler solution is obtained in the irreversible model

(ξi = 0 for all compartments), given by

τi =
M+1∑
k=i

1

µk + νk

(
k−1∏
p=i

νp
µp + νp

)
, i ∈ {1, . . . ,M + 1},
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where
∏i−1

p=i
νp

µp+νp
= 1, and we set νM+1 = 0 for notational convenience.

A similar approach allows one to compute the Laplace-Stieltjes transform of

Ti, and any of its higher order moments (Castro et al., 2018). For example, in

the irreversible model, the second order moment of the lifespan of a cell starting

in compartment Ci is given by

E[T 2
i ] =

M+1∑
j=i

Rj

(
j−1∏
r=i

νr
µr + νr

)
, i ∈ {1, . . . ,M},

where
∏i−1

p=i
νr

µr+νr
= 1, Ri = 2(νiτi+1+1)

(µi+νi)2
, and RM+1 = 2

µ2M+1
. We note that if the

cell starts in the product compartment CM+1, IE(T 2
M+1) = 2µ−2

M+1 since TM+1 ∼
Exp(µM+1).

Number of divisions during the lifespan of a single cell

We denote by Di the number of division events performed by the tracked cell

during its lifespan, starting in compartment Ci. One can compute its average

value, ηi = IE(Di), via first-step arguments, which lead to

(λ1 + µ1 + ν1)η1 = λ1(η1 + 1) + ν1η2,

(λi + µi + νi + ξi)ηi = λi(ηi + 1) + νiηi+1 + ξiηi−1, i ∈ {1, . . . ,M},

(λM+1 + µM+1 + ξM+1)ηM+1 = λM+1(ηM+1 + 1) + ξM+1ηM ,

with solution

ηi =
M+1∑
k=i

(−1)k−iρ̃k

(
k−1∏
p=i

γ̄p

)
, (5.19)

where
∏i−1

p=i γ̄p = 1, ρ̃1 = K̄−1
1 λ1, and

ρ̃i =
λi + ξiρ̃i−1

K̄i + ξiγ̄i−1

, i ∈ {2, . . . ,M + 1},

with K̄i and γ̄i defined as above. In the irreversible model, this expression sim-

plifies to

τi =
M+1∑
k=i

λk
µk + νk

(
k−1∏
p=i

νp
µp + νp

)
, i ∈ {1, . . . ,M},
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where
∏i−1

p=i
νp

µp+νp
= 1. We note that in this case ηM+1 = λM+1µ

−1
M+1 sinceDM+1 ∼

Geometric
(

λM+1

µM+1+λM+1

)
.

These division events can occur at any time during the lifespan of the cell,

which is visiting different compartments over time. Thus, one can quantify the

proliferation potential of the cell during its eventual visit to each compartment

by considering Di =
∑M+1

j=1 Di(j), where Di(j) is the number of divisions which

occur exactly in compartment Cj during the lifespan of the cell, which started in

compartment Ci. The average values ηi(j) ≡ IE(Di(j)) can be computed (again)

with first-step arguments. For instance, in the irreversible model, one has

ηi(i) =
λi

µi + νi
,

ηi(j) =
λj

µj + νj

(
j−1∏
k=i

νk
µk + νk

)
, j ≥ i+ 1,

for i ∈ {1, . . . ,M + 1} and ηM+1(M + 2) = 0. We note that the expression above

is consistent with the interpretation that, in the irreversible model, Di(j) ∼
Geometric

(
λj

λj+νj+µj

)
conditioned on the arrival of the cell to compartment Cj.

In general, one can write

ηi(j) = IE(Di(j)) = IE(Di(j) | cell ever visits Cj) P(cell ever visits Cj)

+ IE(Di(j) | cell never visits Cj) P(cell never visits Cj),

and, since IE(Di(j) | cell never visits Cj) = 0, the quantity ηi(j) accounts for the

probability of the cell not visiting this compartment.

More generally, one can go beyond the computation of mean values and con-

sider the probability distribution of Di, defined by ωi(n) ≡ P(Di = n), the

probability that a single cell starting in compartment Ci divides exactly n times

before it dies or leaves the system, for any integer n ≥ 0. This can be computed

recursively (following our previous arguments). One can show that

ωi(n) =
M+1∑
k=i

(−1)k−iρ̂k(n)

(
k−1∏
j=i

γ̂j

)
, i ∈ {1, . . . ,M + 1}, n ≥ 0,

201



5. STOCHASTIC JOURNEYS OF CELL PROGENIES THROUGH
COMPARTMENTS: SELF-RENEWAL, SYMMETRIC AND
ASYMMETRIC DIVISION

where
∏i−1

j=i γ̂j = 1. We have introduced the notation ρ̂1(n) = (λ1ω1(n − 1) +

µ11n=0)K̂
−1
1 , γ̂1 = −ν1K̂−1

1 , and

ρ̂i(n) =
λiωi(n− 1) + µi1n=0 + ξiρ̂i−1(n)

K̂i + ξiγ̂i−1

, γ̂i =
−νi

K̂i + ξiγ̂i−1

,

with K̂i = µi+λi+ξi+νi. We note that ωi(−1) = 0 and that 1n=0 is the indicator

function, equal to 1 if n = 0, and zero otherwise. Thus, the probabilities ωi(n)

can be computed recursively for increasing values of n, since ωi(n) depends on

ωi(n− 1).

Cellular death

Finally, one can compute the probability of the tracked cell to die in a given

compartment, which we denote by

βi(j) = P(Y(Ti − ∆t) = Cj),

for small enough ∆t, and for any i, j ∈ {1, . . . ,M + 1}. Once again, a first-step

argument leads to the following recursive relationship

(µ1 + ν1)β1(j) = ν1β2(j) + µ11j=1,

(µi + νi + ξi)βi(j) = νiβi+1(j) + ξiβi−1(j) + µi1i=j,

(µM+1 + ξM+1)βM+1(j) = ξM+1βM(j) + µM+11j=M+1,

with solution

βi(j) =
M+1∑
k=i

(−1)k−iρ̄k(j)

(
k−1∏
p=i

γ̄p

)
i, j ∈ {1, . . . ,M + 1},

where ρ̄1(j) = µ1K̄
−1
1 1j=1 for j ∈ {1, . . . ,M + 1}, and

ρ̄i(j) =
µi1i=j + ξiρ̄i−1(j)

K̄i + ξiγ̄i−1

, i ∈ {2, . . . ,M + 1}, j ∈ {1, . . . ,M + 1}.

For the irreversible model, this simplifies to

βi(i) =
µi

µi + νi
, βi(j) =

µj
µj + νj

j−1∏
k=i

νk
µk + νk

, j ∈ {i+ 1, . . . ,M + 1},
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for i ∈ {1, . . . ,M + 1}.

We conclude this analysis with a note. A particular advantage of deriving ana-

lytical expressions for these summary statistics is that they allow one to explicitly

compute sensitivities, ∂βi(j)/∂θ, or elasticities, (∂βi(j)/∂θ)/(βi(j)/θ), with re-

spect to model parameters of interest, θ (see Definition 2.22). This can be rather

useful when considering a complex model (with many parameters), as illustrated

in Section 5.2.3. A local sensitivity analysis of this kind provides a quantifica-

tion of the impact that small perturbations of model parameters can have on a

given summary statistics of interest. This is especially relevant when a subset of

parameter values are being estimated from experimental data sets, and thus, will

have inherent uncertainties.

5.2 Results

We illustrate our methods with three case studies. In Section 5.2.1, we imple-

ment the methods from Section 5.1.1 and Section 5.1.2 to explore the impact of

asymmetric and symmetric division events, for the specific case of M = 3 com-

partments. We perform sensitivity analysis for the probabilities of self-renewal,

asymmetric and symmetric division. The impact of asymmetric and symmetric

division is further analysed in Section 5.2.2, where we consider hematopoietic stem

cells, in light of recent experimental data and a mathematical model proposed

by Barile et al. (2020). Finally, in Section 5.2.3 we apply the single-cell analysis

from Section 5.1.3 to an existing model of thymic T cell development (Sawicka

et al., 2014).

5.2.1 Asymmetric and symmetric division: the case of

four compartments

Let us consider the case M = 3, for illustrative purposes, where the last compart-

ment, C4, of product cells does not involve any death, division or differentiation

events (µ4 = λ4 = ξ4 = 0), to represent the terminal accumulation of cells in

it. The same assumption has been done in Chapters 3 and 4 for a sequence of

M compartments; in this case, it allows us to quantify the number of cells that
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exit the system formed by the first three compartments, which can be of biologi-

cal interest in processes such as thymic development (Sawicka et al., 2014). We

choose µi = 1 = µ for all i ∈ {1, 2, 3}, so that the unit of time for the system

is the mean lifetime of a cell. We now want to study the impact of asymmetric

and symmetric division on the dynamics, and thus, set ν1 = ν2 = ν3 = 1/2 in the

irreversible model.

Cells can divide in each compartment at a rate H; this division rate represents

self-renewal with probability pSR, asymmetric division with probability pAD, and

symmetric division with probability pSD. This is equivalent to setting, with the

notation introduced in Section 5.1, λi = pSRH, si = pSDH and ai = pADH, for

i ∈ {1, 2, 3}. We choose H = 0.9 < 1.0 = µ, so that the system has significant

proliferative potential, and focus on the following scenarios of interest:

Only-SR. pSR = 1.0, pSD = 0, pAD = 0.

Dominant-SR. pSR = 0.8, pSD = 0.1, pAD = 0.1.

Dominant-SD. pSR = 0.1, pSD = 0.8, pAD = 0.1.

Dominant-AD. pSR = 0.1, pSD = 0.1, pAD = 0.8.

Our aim in what follows is to explore the impact that asymmetric or symmetric

division has on the dynamics of the system (dominant-SR/SD/AD scenarios),

compared to the situation where only self-renewal takes place (only-SR scenario).

In Figure 5.5 we plot the mean number of cells, IE(Ci(t)), in compartments

i ∈ {1, 2, 3, 4} for each scenario. For compartments Ci with i ∈ {1, 2, 3}, and

since K = K1 = K2 = K3 and L = L1 = L2 = L3, one can directly use

Equation (5.6). For compartment CM+1, with M = 3, one has

IE(CM+1(t)) =

(
L

K

)M
−

M∑
j=1

IE(Cj(t))

(
L

K

)M+1−j

.

In Figure 5.5, we consider initial conditions C1(0) = 102, C2(0) = C3(0) =

C4(0) = 0, representing 102 initial cells in the first compartment and no cells in

the other compartments. We observe that an exponential decay in the number

of cells in C1 is followed by sequential increases in the subsequent compartments
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until a steady state number of cells is achieved in the product state of compart-

ment C4. Interestingly, the dynamics of the system is faster once symmetric or

asymmetric division is considered (dominant-SR/SD/AD scenarios compared to

only-SR): the decay in compartment C1 is quicker and the steady state is reached

faster. The fastest dynamics is observed for the dominant-SD case, where sym-

metric division is more likely, and the two daughters of a cell move directly to the

next compartment. We note that symmetric or asymmetric division does not only

affect the dynamics but also the total average number of cells exiting the system

in Figure 5.5 (i.e., reaching the product state in compartment C4). In partic-

ular, limt→+∞ IE(C4(t)) is significantly larger when asymmetric and (especially)

symmetric division can occur. We note that, importantly, the per cell division

rate, H, is equal in all four scenarios. This suggests that, in this type of sys-

tems, asymmetric or symmetric division (compared to self-renewal proliferation)

facilitates the generation of a larger population of product cells with the same

overall proliferative capacity; that is, in the only-SR scenario, a larger number of

divisions would be required in each compartment for enough cells to escape death

and differentiate to the next compartment, and to eventually reach C4.

Our comments above are consistent with the results shown in Figure 5.6,

where we plot the mean number of cells, m1(j), in the genealogy of a single

cell starting in C1, belonging to compartments Cj, j ∈ {1, 2, 3, 4}, for all four

scenarios. In the only-SR scenario, the mean number of cells in the genealogy of

the progenitor cell decreases monotonically across the sequence of compartments,

m1(1) > m1(2) > m1(3) > m1(4). We note that m1(4) = 0 can be explained

since it only accounts for progeny cells which arrive into compartment C4 as a

direct result of cell proliferation, and no symmetric or asymmetric division is

considered in the Only-SR scenario. We also stress here that this monotonic

decrease happens even though the division and differentiation rates are equal in

all compartments j ∈ {1, 2, 3}. This can be explained by the fact that some cells

in the genealogy will die before reaching compartments C2 or C3. On the other

hand, and as discussed for Figure 5.5, scenario only-SR leads to the largest mean

progeny, m1 = m1(1) + m1(2) + m1(3) + m1(4). This suggests that the only-

SR scenario is an inefficient way to reach a desired population size of product

cells. Asymmetric and (especially) symmetric division events significantly reduce
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Figure 5.5: Dynamics of the mean number of cells, IE(Ci(t)), in compartments

i ∈ {1, 2, 3, 4} for each of the four scenarios considered in this section.

the number of descendants from a single progenitor cell in all compartments,

while maximising the number of product cells (see Figure 5.5). In particular,

the dominant-SD scenario is characterised by the highest total mean number of

product cells, IE(C4(+∞)), as well as the smallest progeny size, m1, while leading

to the largest progeny, m1(4), in the product compartment.

Finally, the fastest dynamics observed in scenarios with symmetric division,

as well as the reduced progeny observed from a single progenitor in C1, imply

that this kind of systems can go from uncontrolled cellular growth to population

extinction for late times, by increasing the number of symmetric division events.

We explore this further in the next section looking at a particular case study.

5.2.2 Hematopoietic stem cells: self-renewal, asymmetric

and symmetric division

We consider the model proposed in (Barile et al., 2020, Figure 6A) for the gradual

differentiation of hematopoietic stem cells (HSCs) which are responsible for the
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Figure 5.6: Mean number of cells m1(j) in the genealogy of a single cell starting

in C1, belonging to compartments Cj, j ∈ {1, 2, 3, 4}, for all four scenarios.

production of all blood cells (Seita & Weissman, 2010). In order to maintain

such an heterogeneous population, HSCs are characterised by the ability to self-

renew and differentiate. Moreover, HSCs need to act continuously and rapidly to

either replace short-lived blood cells or respond to hematopoietic stress arising

from events such as bleeding and toxin spotting (Wilson et al., 2009). Recent

advances in flow cytometry and single-cell analysis have shown that HSC cells are

a small population compared to the many other cell types that they can generate

in the blood. Despite their importance, the molecular mechanisms involved in

hematopoietic stem cell maintenance remain unclear.

In order to study simultaneously HSC proliferation and differentiation, Barile

et al. (2020) propose a novel mathematical model inferred by cell-cycle dependent

labelling and HCS fate mapping data. Cells at each state can undergo five dif-
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ferent processes: self-renewal, asymmetric cell division, symmetric cell division,

direct differentiation and cell death. This leads to the following compartmen-

tal sequence, reported in (Barile et al., 2020, Figure 6A): HSC1 → HSC2 →
MPP1+2 → MPP3 → HPC1 consisting of 5 different compartments (that is

M = 4). These represent two stages of hematopoietic stem cells (HSC1 and

HSC2), two stages of multipotent progenitor cells (MPP1+2 and MPP3), and a

last stage of hematopoietic progenitor cells (HPC1).

Ki Li

HSC1 −0.0046197 0.016497

HSC2 0.0017357 0.007847

MPP1+2 0.0044844 0.032834

MPP3 0.01556 0.16113

HPC1 0.0293 0

Table 5.1: Parameter values obtained from (Barile et al., 2020, Figure 6), where

they set ai = si = 0 for all i ∈ {1, . . . , 5}. All parameters reported in this section

have time units of days−1.

The model proposed by Barile et al. (2020) corresponds to the irreversible

model (i.e., ξi = 0 for i ∈ {2, . . . , 5}) shown in Figure 5.2, when we set M = 4

and consider the parameter values in Table 5.1, directly obtained from (Barile

et al., 2020, Figure 6). Recall Ki ≡ µi + νi + si − λi; we note that the net loss

rate for HSC1 cells, K1 = −4.6197 × 10−3, is negative. Thus the growth of the

HSC1 compartment is unbounded, as can be observed in (Barile et al., 2020,

Figure S1 H). This is also shown in Figure 5.7, where we simulate the system

given by Equation (5.2) for parameters in Table 5.1. We note that the param-

eter calibration performed by Barile et al. (2020) predicted relatively negligible

symmetric and asymmetric division rates for most of the compartments. Thus,

for simplicity, they assumed si = ai = 0 for all i ∈ {1, . . . , 5}, as considered in

Table 5.1 and Figure 5.7. We now want to explore, for this system, the potential

role that symmetric and asymmetric division could play. To that end, we perform

a sensitivity analysis on the parameters (si, ai), for i ∈ {1, . . . , 5}. In particular,

we consider four different scenarios:
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Figure 5.7: Dynamics of the ODEs System (5.2) and parameters from Ta-

ble 5.1, corresponding to the only-SR scenario. We set initial conditions

(C1(0),C2(0),C3(0),C4(0),C5(0)) = (890, 1370, 1540, 2020, 1.5 × 104), taken

from (Barile et al., 2020, Figure S1 H).

• Only-SR. All parameters as in Table 5.1, where si = ai = 0 for i ∈
{1, . . . , 5} and division events correspond to self-renewal, as reported by Bar-

ile et al. (2020), and shown in Figure 5.7.

• Symm1. Symmetric division rate s1 ∈ {10−2, 10−1} for compartment

HSC1, is added to the rates in Table 5.1, with si = 0 for i ∈ {2, . . . , 5}, and

ai = 0 for i ∈ {1, . . . , 5}.

• SymmAll. Equal symmetric division rates si ∈ {10−2, 10−1} for i ∈
{1, . . . , 5} are added to the rates in Table 5.1, with ai = 0 for i ∈ {1, . . . , 5}.

• AsymmAll. Equal asymmetric division rates ai ∈ {10−4, 10−3, 10−2, 10−1},

i ∈ {1, . . . , 5} are added to the rates in Table 5.1. Symmetric division only

occurs in compartment HSC1, s1 = 5 × 10−3, chosen so that population

extinction is guaranteed.

The net loss rate for compartment i, Ki ≡ µi+νi+si−λi, does not depend on the

asymmetric division rate, ai, but it does depend on the symmetric rate, si. Thus,

just by tuning the symmetric division rate, s1, of HSC1 cells (Symm1 scenario), we

can drastically change the dynamics of the entire system: from infinite cell growth
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(Figure 5.7) to population extinction (Figure 5.8a). Furthermore, as shown in

Figure 5.8b, if all the compartments are characterised by a non-zero symmetric

division rate (SymmAll scenario), then the resulting population size is smaller

but the overall dynamics faster. The change in the asymptotic behaviour of the

system, from growth to extinction, and the smaller number of HSC cells observed

in the SymmAll scenario compared to the Symm1 one, can be explained by the

transitions across compartments generated by symmetric division events. When

a symmetric division event occurs in compartment Ci, two cells in the subsequent

compartment Ci+1 are generated, while the number of cells in compartment Ci

decreases by one. Thus, symmetric division events speed up the transition of

cells to subsequent compartments and, at the same time, deplete cells from the

compartment where the division took place.

(a) Symm1 scenario for s1 = 10−2

(left) and s1 = 10−1 (right).

(b) SymmAll scenario for si = 10−2 (left)

and si = 10−1 (right) with i ∈ {1, . . . , 4}.

Figure 5.8: Dynamics of ODEs System (5.2) with initial conditions (C1(0), C2(0),

C3(0), C4(0), C5(0)) = (1, 0, 0, 0, 0). Parameter values as in Table 5.1, except

for symmetric division rates. (a) Scenario Symm1, where the symmetric division

rate s1 is positive only in the HSC1 compartment. (b) Scenario SymmAll, where

the symmetric division rate si is positive and identical for all compartments.

In Figure 5.9 we explore the impact of increasing the asymmetric division

rates, by considering the AsymmAll scenario, where those rates are positive and

identical for all compartments. We note that, since asymmetric division rates

do not affect the asymptotic qualitative behaviour of the system (i.e., growth

versus extinction), we set s1 = 5× 10−3, so that population extinction is guaran-

teed. When comparing the AsymmAll, Symm1 and SymmAll scenarios, it is clear

that increasing the asymmetric division rates leads to a greater number of cells
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across compartments. This is due to the fact that asymmetric division events in-

crease the subsequent compartments without depleting the compartment where

the event takes place. In practice, for situations where population extinction is

guaranteed at late times (Figure 5.9), increasing the asymmetric division rates

delays the time when extinction occurs. We note Figure 5.9 differs from Fig-

ure 5.6, but they are not in contradiction. In Figure 5.6, the division rate H is

kept constant, while the probability for each kind of division event is not, but

given by (pSR, pSD, pAD). In Figure 5.9, we increase the asymmetric division rate

in each compartment instead, effectively increasing the division rate H, and thus

leading to a greater population size over time in the system.

Figure 5.9: Dynamics of the ODEs System (5.2) and parameters values as in

Table 5.1, except for s1 = 5 × 10−3 and asymmetric division rates. AsymmAll

scenario with equal asymmetric division rates ai ∈ {10−4, 10−3, 10−2, 10−1} in

all compartments, and initial conditions (C1(0),C2(0),C3(0),C4(0),C5(0)) =

(1, 0, 0, 0, 0).

Studies suggest that very low numbers of HSC cells (HSC1 and HSC2) are able

to maintain a continuous stream of differentiating cells generating a huge num-

ber of mature blood cells (Busch et al., 2015; Seita & Weissman, 2010). During

haematopoiesis, HSCs cells slowly replace short-living MPP cells; this heteroge-

neous population no longer possess self-renewal ability but still retain differentia-

tion potential (Seita & Weissman, 2010). We note here that the parameter values

estimated by Barile et al. (2020) result in an almost zero net loss rate for HSC2s

and MPP1+2 cells; that is, K2 ≈ K3 ≈ 0. This agrees with the hypothesis that

the self-renewal rate of HSC2 and MPP1+2 is sufficient to maintain, alone, the

populations of more differentiated cells (e.g MPP3, HPC1), with minimal input

from HSC1 cells. Thus, it is pertinent to study the genealogy of a single HSC
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(HSC1 or HSC2), and study how symmetric and asymmetric division events in-

fluence it. To do this, we implement Equation (5.13) for the irreversible model

for i ∈ {1, 2}, j ∈ {i, . . . , 5} and compute mi(j), the mean number of cells within

the genealogy of a single HSC (HSC1 or HSC2) in subsequent compartments Cj,

j ∈ {i, . . . , 5}. The results are shown in Figure 5.10, where we plot mi(j) for the

Symm1, SymmAll and AsymmAll scenarios for i = 1, 2. We note that the Symm1

scenario is not considered in Figure 5.10, since changes in the symmetric division

rate, s1, do not affect m2(j). First, we observe that the mean number of cells in

the genealogy of a single HSC1 progenitor across compartments, m1(j), increases

for increasing values of j (that is, for more differentiated cells) regardless of the

scenario. Indeed, most cells within the genealogy of a single HSC1 progenitor

belong to the last HPC compartment, consistent with the dynamics observed in

Figure 5.8 and Figure 5.9. However, the trend of m1(j) is drastically different

for scenario AsymmAll compared to scenarios Symm1 or SymmAll, for increas-

ing values of the corresponding rate (s1 in Symm1, sk, k ∈ {1, . . . ,M + 1} in

SymmAll, and ak, k ∈ {1, . . . ,M + 1} in AsymmAll). In the AsymmAll scenario,

m1(j) is an increasing function of the asymmetric division rate ak, whereas in the

Symm1 and SymmAll scenarios, m1(j) is a decreasing function of the symmetric

division rate. This agrees with the dynamics shown in Figure 5.8, where increas-

ing values of the symmetric division rate prevent population growth, guaranteeing

extinction at late times. An increase of the asymmetric division rate leads to sig-

nificant production of MPP and HPC cells (see m1(4) and m1(5) in Figure 5.10)

within the genealogy, and thus, it could potentially play a role in situations of

hematopoietic stress. Similar behaviour can be observed for m2(j). In agreement

with m1(j) in Figure 5.10, we observe a decrease of m2(j) for scenario SymmAll

and an increase of m2(j) in scenario AsymmAll, as a function of the corresponding

division rate.

We now compare the Symm1 and SymmAll scenarios. We observe that when

the symmetric division rate equals 10−2, the number of cells in the genealogy

of a single HSC1 progenitor differs by almost one order of magnitude between

the Symm1 and SymmAll scenarios; that is, symmetric division happening in all

compartments (SymmAll) results in smaller progeny from an initial HSC1 cell in

subsequent compartments, compared to the Symm1 scenario. When increasing
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the symmetric division rate to 10−1, the difference between the number of cells,

m1(j), within the genealogy for the Symm1 and SymmAll scenarios increases fur-

ther. As mentioned also in Chapter 3, excessive clonality may increase the risk

of cancerous mutations becoming established. In particular, clonal hematopoiesis

has been observed in older mice and humans (Bowman et al., 2018) and it is

strictly linked to the accumulation of mutations in the HPC population and an

increasing risk of leukemia. Thus, our results suggest that symmetric division

could be a possible way to control cell differentiation and limit mutation accu-

mulation in the hematopoietic system.

5.2.3 Tracking a thymocyte during its development

We consider now the model proposed in (Sawicka et al., 2014, Model 2), and

shown in Figure 5.11, of T cell thymic development. The reader can find more

details about thymic development and how double negative (DN) thymocytes

differentiate to eventually become CD4 or CD8 cells in Section 1.1. In particular,

DN cells differentiate to pre-selection DP thymocytes (pre-DP); this population

represents the first compartment in the model of Sawicka et al. (2014) and will

contain an initial number of cells (initial condition, C1(0)). Pre-DPs undergo

maturation in the thymus and progress to the double positive stage (post-DP),

where thymocytes express both CD4 and CD8 co-receptors. Post-DP cells that

are positively selected transition to the single positive (SP) stage, where they can

express either the CD4 or CD8 co-receptor. Some of these cells will then reach

the periphery as (single) CD4 or CD8 SP cells.

We exploit this particular model to illustrate the applicability of our single-cell

analysis developed in Section 5.1.3. This model also allows us to show how our

methods can be easily adapted to different network topology of compartments.

In this case, it is a compartmental bifurcation, rather than a linear sequence of

compartments.

First, it is of interest to quantify cell fate in this system; that is, to estimate

the percentage of pre-DP thymocytes that are predicted to die in each of the

compartments during development, and the percentage that successfully reach

the periphery instead (either as a CD4 or CD8 SP cell). It is clear that our
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(a) HSC1 progenitor for Scenario

Symm1

(b) HSC1 progenitor for Scenario Sym-

mAll

(c) HSC2 progenitor for Scenario Sym-

mAll

(d) HSC1 progenitor for Scenario

AsymmAll

(e) HSC2 progenitor for Scenario

AsymmAll

Figure 5.10: Mean number, mi(j), of cells in the genealogy for an (a, b, d) HSC1

(i = 1) or (b, e) HSC2 (i = 2) progenitor, in compartments j ∈ {i, . . . , 5}. In

each scenario, we vary the corresponding rate (s1 in Symm1, sk, k ∈ {1, . . . ,M}
in SymmAll, and ak, k ∈ {1, . . . ,M+1} in AsymmAll), where only values leading

to finite mi(j) are considered.

214



5.2 Results

Figure 5.11: Thymic development model proposed by Sawicka et al. (2014). Grey

cells represent cell death.

arguments in Section 5.1.3 can be easily adapted to quantify this. In particular,

one can slightly redefine the probabilities βi(j) in Section 5.1.3, with i = 1 (i.e.

a single pre-DP thymocyte being tracked), as

β1(1) = probability that the pre-DP thymocyte dies in the pre-DP compartment,

β1(2) = probability that the pre-DP thymocyte dies in the post-DP compartment,

β1(4) = probability that the pre-DP thymocyte dies in the CD4 SP compartment,

β1(8) = probability that the pre-DP thymocyte dies in the CD8 SP compartment,

β1(4P ) = probability that the pre-DP thymocyte reaches the periphery as a CD4 SP cell,

β1(8P ) = probability that the pre-DP thymocyte reaches the periphery as a CD8 SP cell.

Similar solutions to those in Section 5.1.3 can be obtained by incorporating the

215



5. STOCHASTIC JOURNEYS OF CELL PROGENIES THROUGH
COMPARTMENTS: SELF-RENEWAL, SYMMETRIC AND
ASYMMETRIC DIVISION

compartmental bifurcation in the first-step analysis, leading to

β1(1) =
µ1

µ1 + ν1
,

β1(2) =
ν1

µ1 + ν1

µ2

µ2 + ν24 + ν28
,

β1(4) =
ν1

µ1 + ν1

ν24
µ2 + ν24 + ν28

µ4

µ4 + ν4
,

β1(8) =
ν1

µ1 + ν1

ν28
µ2 + ν24 + ν28

µ8

µ8 + ν8
,

β1(4P ) =
ν1

µ1 + ν1

ν24
µ2 + ν24 + ν28

ν4
µ4 + ν4

,

β1(8P ) =
ν1

µ1 + ν1

ν28
µ2 + ν24 + ν28

ν8
µ8 + ν8

.

These analytical expressions allow us to perform a local sensitivity analysis by

computing partial derivatives with respect to model parameters. For example,

we have

∂β1(8P )

∂ν24
=

∂β1(8P )

∂µ2

= − ν1 ν28 µ8

(µ1 + ν1)(µ2 + ν24 + ν28)2(µ8 + ν8)
.

The proliferation potential of thymocytes during thymic development directly

depends on them reaching the CD4 SP or CD8 SP compartments, where they are

able to divide, before they exit to the periphery. Thus, the average number of

divisions initiated by a single pre-DP thymocyte during its thymic development

journey, η1 = η1(4) + η1(8), is given by

η1(4) =
ν1ν24

(µ1 + ν1)(µ2 + ν24 + ν28)

λ4
µ4 + ν4

,

η1(8) =
ν1ν28

(µ1 + ν1)(µ2 + ν24 + ν28)

λ8
µ8 + ν8

.

Finally, the average lifespan of a pre-DP cell during thymic development (i.e. the

mean time until it dies or it reaches the periphery) is given by

τ1 =
1

µ1 + ν1

[
ν1

µ2 + ν24 + ν28

(
ν24

µ4 + ν4
+

ν28
µ8 + ν8

+ 1

)
+ 1

]
.

We consider parameter values in Table 5.2, selected from (Sawicka et al., 2014,

Section 3.2). Our methods enable one to compute the average lifespan of a pre-

DP cell during the development process (until it dies or reaches the periphery),
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which corresponds to τ1 = 2.84 days. During its lifetime, a cell may undergo

differentiation and proliferation, before dying in one of the compartments without

ever reaching the periphery, or reaching the periphery either as a CD4 or CD8

cell. We plot the predicted cell fate probabilities in Figure 5.12. The most likely

outcome corresponds to cell death, especially during the early stages (pre-DP

and post-DP compartments). This agrees with existing knowledge that the bulk

of negative selection occurs during the DP stages of development (Yates, 2014).

Once a cell reaches the CD4 SP compartment, it is more likely for this cell to

reach the periphery than to die in that compartment, while these probabilities

are comparable in the CD8 SP case.

Rate µ1 ν1 µ2 ν24 ν28 λ4 λ8 µ4 µ8 ν4 ν8

Value 0.263 0.137 1.369 0.07 0.054 0.216 0.093 0.04 0.11 0.21 0.14

Table 5.2: Parameter values from (Sawicka et al., 2014, Section 3.2), in units

days−1.

In Table 5.3, we present the elasticities (i.e. normalised derivatives) of the

probabilities β1(j), j ∈ {1, 2, 4, 8, 4P, 8P}, with respect to model parameters.

This can be of particular relevance when parameters have been estimated exper-

imentally with some uncertainty, so that one can assess the impact of perturba-

tions in these values on model outputs. As expected, the division rates, λ4, λ8, do

not affect the probability of death of the tracked cell starting as pre-DP. More-

over, death rates µ1, µ2, µ4, µ8 positively contribute to the probability of the cell

dying in the corresponding compartment j ∈ {1, 2, 4, 8}, while negatively con-

tributing to the probability of the cell dying in other compartments. It is also

worth noting that, for j ∈ {2, 4, 8}, the probability β1(j) of the cell dying in that

compartment is mainly affected by the differentiation rate into compartment j;

that is, ν1, ν24, ν28, respectively. This can be understood since we are tracking a

cell starting in compartment i = 1 and following the journey of this pre-DP cell

developing across the sequence of compartments. Thus, the probability of dying

in a compartment j ̸= 1 is mainly driven by the differentiation rates of previous

compartments.
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Figure 5.12: Probabilities of a single pre-DP cell to die in each of the com-

partments (pre-DP, post-DP, CD4 SP, or CD8 SP) before reaching the pe-

riphery, or to reach the periphery as a CD4 or CD8 SP cell. In particular,

β1(1) = 0.6575, β1(2) = 0.3140, β1(4) = 0.0026, β1(8) = 0.0055, β1(4P ) = 0.0135

and β1(8P ) = 0.0069.

∂βi(j)
∂θ

/βi(j)
θ

µ1 ν1 µ2 ν24 ν28 λ4 λ8 µ4 µ8 ν4 ν8

β1(1) 0.34 −0.34 0 0 0 0 0 0 0 0 0

β1(2) −0.66 0.66 0.08 −0.04 −0.04 0 0 0 0 0 0

β1(4) −0.66 0.66 −0.92 0.96 −0.04 0 0 0.84 0 −0.84 0

β1(8) −0.66 0.66 −0.92 −0.04 0.96 0 0 0 0.56 0 −0.56

β1(4P ) −0.66 0.66 −0.92 0.96 −0.04 0 0 −0.16 0 0.16 0

β1(8P ) −0.66 0.66 −0.92 −0.04 0.96 0 0 0 −0.44 0 0.44

Table 5.3: Elasticities for the probabilities β1(j), j ∈ {1, 2, 3, 8, 4P, 8P}, with

respect to parameter θ ∈ {µ1, ν1, µ2, ν24, ν28, λ4, λ8, µ4, µ8, ν4, ν8}. That is, the

ratio (∂β1(j)/∂θ)/(βi(j)/θ) of the cell fate probabilities (rows) with respect to

model parameters (columns).
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The average number of division events performed by a single pre-DP cell is

η1 = η1(4) + η1(8) = 0.0139 + 0.0046 = 0.0185. This implies that out of 102

pre-DP cells entering the thymic development process only around 2 cells are

expected to be produced by cell division from the original cells, when visiting

the CD4 SP or CD8 SP compartments. These small values are directly related

to the small probabilities of reaching these compartments at all, so that the cell

can actually divide. Our results here are in agreement with the conclusions and

insights from (Sawicka et al., 2014), where the authors make use of a deterministic

model to conclude that thymic development is a stringent process characterised

by an extremely low success rate.

5.3 Discussion

In this Chapter, we have presented a general stochastic model for cell division,

death, and differentiation across a sequence of compartments. Cells can divide,

die or exit to adjacent compartments over time. We have derived analytical

expressions for the mean number of cells in each compartment over time under

different scenarios of interest (e.g irreversible model, where differentiation cannot

be reversed) and studied the genealogy of a single progenitor cell in terms of the

probability generating function and summary statistics appropriately defined.

The single-cell analysis allows one to track the journey of a cell during its lifetime

across the system of compartments. We have then calculated its lifetime, its

proliferation potential and the probability of the different cell fates. We have also

presented a number of case studies to illustrate the applicability of our techniques

and the impact that model parameters can have on the corresponding predictions.

Our results highlight the significant role that symmetric and asymmetric di-

vision events can play in these systems, when compared to self-renewal. In par-

ticular, we have shown how symmetric division events can significantly affect

the dynamics of the system, potentially moving it from unlimited growth to ex-

tinction. Increasing the asymmetric division rates cannot change the system’s

asymptotic behaviour. Still, it can delay population extinction by increasing the

number of cells arising over time across compartments. On the other hand, for

a fixed division rate H and different probabilities for each kind of division event
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(self-renewal, pSR; symmetric division, pSD; asymmetric division, pAD), compart-

mental systems where symmetric and asymmetric division is more likely lead to

smaller cell populations and faster dynamics towards extinction or steady state,

compared to systems where self-renewal is the dominant division event. Inter-

estingly, increasing the probability of symmetric or asymmetric division leads to

smaller genealogies of a single progenitor cell, while maximising the size of the

fully differentiated (or product) population.

A particular limitation of our approach, common also to Chapter 3 and 4, is

that it relies on cells behaving independently from each other, which is directly

related to the fact that the corresponding system of ODEs for the average be-

haviour of the process is linear. This allows one to implement techniques from the

theory of branching processes, and makes the single-cell analysis implementation

feasible (where one can follow a single-tracked cell, while neglecting the dynamics

of other cells). On the other hand, cellular interactions might not be negligible in

some situations (e.g under competition for resources, where logistic growth-type

models might be more appropriate). Relaxing this particular assumption is, thus,

the aim of future work.

Beyond the techniques applied in this Chapter and the future research that

mentioned above, a natural prosecution of the studies carried out for this PhD

thesis would consist in the inclusion of the different cellular events considered

here, within the probability generating function method applied in Chapters 3

and 4. For example, a study of distributions P (CM+1(t) = k) and P (G(t) = n)

could be extended to include the additional cellular events considered in this

Chapter.
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Chapter 6

A deterministic approach to

CD8+ T cell exhaustion dynamics

As described in greater detail in Chapter 1, during an acute infection, once näive

CD8+ T cells encounter their specific antigen, they initiate a program that drives

them to expand in large numbers; they differentiate into cytotoxic effector cells,

which are able to control and, eventually, clear infection. However, in the case of

a chronic infection, there are substantial alterations of the T cell activation and

differentiation process, potentially leading T cells to a dysfunctional exhausted

state described in details in Section 1.2.

In this Chapter, we present the main results of the work carried out as part

of the PhD thesis, in collaboration with the Salk Institute for Biological Studies

in La Jolla (California, USA). Professor Susan Kaech and a post-doctoral sci-

entist in her group, Dr. Thomas Mann, are addressing, from an experimental

point of view, the question of how CD8+ T cells recognise a “chronic” antigen

during early time point of a primary infection; a secondary immune response or

a longer infection window have been not considered and might be part of future

research. In particular, they focus on how the duration of antigen signalling in

the first hours of antigen presentation could affect CD8+ T cell differentiation

into the dysfunctional exhausted state. As detailed in Section 1.2, exhaustion

is a progressive and heterogeneous process involving several differentiation steps

and cell phenotypes arising very soon after antigen presentation. Thus, a cru-

cial point Professor Kaech and Dr. Mann would like to investigate is the role
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of both progenitor effector and progenitor exhausted cells in the generation of a

terminally exhausted population of cells. Note that we used, as common in the

literature and done in previous Chapters, the terminology “progenitor cells” to

indicate cells of an early phenotypes.

Professor Susan Kaech and Dr. Thomas Mann are making use of novel opto-

genetic approaches to carry out experiments in which CD8+ T cells are stimulated

for different lengths of time, over a maximum of 48 hours, to examine the ex-

haustion phenotypes that develop in this time window. The experiment has been

carried out in vitro with CD19 CAR T cells, genetically modified T cells able

to express a chimeric antigen receptor (CAR) targeted against the CD19 anti-

gen. Activated CAR T cells have been exposed to different duration of antigen

stimulation, and flow cytometry data have been collected after 48 hours to iden-

tify the different populations of CAR T cells, from “functional” to “exhausted”

phenotypes, present in the samples. Specific questions that have been addressed

include i) understanding when CD8+ T cells make the decision to change their

intra-cellular state and differentiate, ii) understanding how the presence of anti-

gen (in chronic viral infection or cancer) influences the dynamics of exhaustion,

iii) determining which exhaustion states become irreversible.

Within this PhD research project several deterministic mathematical models

for CD8+ T cell dynamics, representing different possible pathways of cell dif-

ferentiation to exhausted states, have been developed with the aim to unravel

some of these complex biological questions. Data sets from Dr. Mann and the

developed mathematical models are brought together with Bayesian inference

to quantify exhaustion process, investigate CD8+ T cell differentiation and the

mechanisms of T cells responding to the presence of antigen (viral or tumour).

Details of the optogenetic experiment carried out by Dr. Mann are given in

Section 1.2.2; Section 6.1 aims to provide the reader with an overview of the

experimental setting and the biological process that our mathematical models

should characterise. Given the novelty of the topic, a conceptualisation of the

mathematical model structures representing different hypotheses regarding the

heterogeneity of CD8+ T cell exhaustion has been carried out at the beginning

of this PhD project. In Section 6.2, different mathematical models are defined

as an example of the performed study about CD8+ T cell trajectories during the
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exhaustion-differentiation process. Section 6.3 reports the mathematical analysis

for a reduced mathematical model, where only four cell states are considered; a

study of parameter space and Bayesian inference have also been carried out.

Bayesian techniques aim to validate a model and finally make predictions

of parameter values and cell dynamics, which in this case would be related to

antigen stimulation of different duration. However, given experimental biological

measurements, it is not always possible to identify an appropriate mathemat-

ical model; this depends, among other things, on the dimension of parameter

space, on parameters dependencies with model variables and, importantly, on

the measurability of model outputs. Indeed, some populations of cells cannot be

univocally targeted and identified during measurements due to a lack of biologi-

cal details; also, their observation and measurement might not be possible given

current limitations in the analysis techniques. In this case, more biological as well

as mathematical assumptions must be made. The mathematical analysis of the

deterministic models developed in this Chapter has been affected by the novelty

of exhaustion topic: already published experimental data sets were lacking and,

hence, the need to rely on ongoing experiments. A consultation with our im-

munology collaborators was, thus, crucial. Unfortunately, due to the COVID-19

pandemic, the performed optogenetic experiments resulted only in preliminary

data sets; thus, model validation and prediction could not be performed within

the timeline of this PhD thesis.

When using deterministic mathematical models, one assumes that the cell

population size is large enough so that random fluctuations can be ignored. De-

terministic models are, thus, widely used in the limit of large population sizes,

but they tend to become inaccurate if the number of cells of a given population

becomes small. For example, when the number of functional effector cells drops

to a low value, this population might die out due to fluctuations. In such situa-

tions, stochastic models might become essential to describe the dynamics of these

cells. In Sections 6.4 and 6.5, we take the reader through some considerations and

limitations of the current mathematical model, as well as through some thoughts

for future work on mathematical modelling for CD8+ T cell exhaustion process.

223



6. A DETERMINISTIC APPROACH TO CD8+ T CELL
EXHAUSTION DYNAMICS

6.1 The optogenetic setup

A summary of the experiments performed by Prof. Kaech and Dr. Mann from

the Salk Institute of Biological Studies in La Jolla, California, is as follows. They

aim to explore how, in an in vitro system, CD8+ CAR T cells differentiate to an

exhausted phenotype over different duration of antigen stimulation. Dr. Mann

has established an optogenetic system for using blue light to perform a precise

and high-throughput investigation of how engineered T cell signalling dynamics

influence cell fate to an effector or exhausted state. The reader may refer to

Section 1.2 for further details about the exhaustion-differentiation process and in

particular to Section 1.2.2 for a more extensive description of the experiments.

Here, we only provide an overview of the experimental scenario relevant for the

mathematical modelling.

Dr. Mann has made use of an optogenetically controllable version of a chimeric

antigen receptor, named “OptoCAR”, that is sensitive to blue light and, thus,

allows to control signal dynamics in the T cell receptor pathway. The engineered

receptor can transduce antigen signal when the cell is in the dark, but signalling is

inhibited when the cell is exposed to blue light (see Figure 1.6 in Chapter 1). Each

experimental repeat is run with a 96 well plate; a fixed volume of sample is placed

in each well at the beginning of the optogenetic experiment. The abundance of

two populations of exhausted cells was quantified by flow cytometry analysis after

48 hours. The experimental data sets used in this Chapter consist of six repeats

carried out between August and December 2020.

In particular, only active cells showing the specific antigen receptor, are placed

in the wells and optogenetically stimulated; a fixed sample volume containing

25×103 cells is placed in each well at the beginning of the optogenetic experiment.

Given the structure of the optoPlate-96, reported in Figure 1.7, different wells

can receive different duration of signal within subsequent 48 hours. At the end

of the experiments, cells are collected and analysed via flow cytometry. This

method, widely used in biology, allows to identify population of cells by the cell-

surface markers they express, i.e., proteins attached to the cellular membrane. In

particular, for this study, populations characterised as TIM-3− TCF1+ and TIM-

3+ TCF1− have been quantified. Indeed, as detailed in Section 1.2, PD-1, TIM-3
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inhibitory receptors and the transcription factor TCF1 have a clear expression in

the exhausted T cell population (Mann & Kaech, 2019; Wherry et al., 2007).

The data sets used for the mathematical models, defined and analysed in this

Section, consist of the percentage of TIM-3− TCF1+ and TIM-3+ TCF1− cells

over the entire population of transduced live CD8+ OptoCAR+ T cells, i.e., cells

showing the OptoCAR at sufficient level and which express the corresponding

markers. They represent populations of reversible and terminal differentiated

cells, characterised as TIM-3− TCF1+ and TIM-3+ TCF1−, respectively. More-

over, some beads have been added after the optogenetic experiment and before

the flow cytometry analysis in order to quantify the loss of cells during the stain-

ing procedure with fluorescence markers. The collected number of beads out of

the initial amount represents a correction factor for the total number of cells

in each well. Those corrected ratios have been used as measured experimental

outputs for our mathematical models.

At the beginning of the experiment, the 25 × 103 cells present in a well are

placed in the dark; that is, antigen signalling is activated. Then, light is switched

on at different times. Each well is characterised by a different dark delay, duration

of the antigen stimulation happening in the dark before light is switched on. In

particular, we denote by ldd ∈ d, the length of the dark delay in hours, with

d =
(
0, 1.33, 2.67, 4, 5.33, 6.67, 8, 9.33, 10.67, 12, 13.33, 14.67, 16,

17.33, 18.67, 20, 21.33, 22.67, 24, 25.33, 26.67, 28, 29.33, 30.67, 32,

33.33, 34.67, 36, 37.33, 38.67, 40, 41.33, 42.67, 44, 45.33, 48
)
.

Figure 6.1 provides an example of a dark delay of 20 hours : cells have been placed

in the dark (antigen signalling is perceived) for the first 20 hours, then light has

been switched on and signal interrupted.

For every optogenetic experiment and length of dark delays the ratios, over the

total live cell population, of TIM-3− TCF1+ and TIM-3+ TCF1− exhausted cells

have been quantified at the end of 48 hours. These quantified ratios of cells can

be thought of as a function of the dark delay cells have been experiencing; that

is, the duration of the antigen signal before light has been switched on and, thus,

the LOVTRAP domain unbound (see Section 1.2.2). An example of a specific

experiment run (August 2020) is reported in Figure 6.2.
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Figure 6.1: Example of a dark delay of 20 hours within the total 48 hours of the

optogenetic experiment. Cells have been placed in wells in the dark and lit with

blue light only after 20 hours. Thus, for the first 20 hours cells are stimulated,

then from time t = 20 to t = 48 hours they are not.

6.2 Mathematical models of T cell exhaustion-

differentiation

In this Section, we aim to investigate the population dynamics of CD8+ T cells

during the exhaustion-differentiation process using experimental data provided

by Dr. Mann. In particular, the experiment performed by Dr. Mann has a

total duration of six days, during which cells are activated, transduced, selected

and, finally, optogenetically stimulated. Our mathematical analysis of T cell

dynamics focuses on the last two days of the entire process, when cells have been

placed in the opto-96 plate and optogenetically stimulated. Cell counts in each

well at the beginning of the optogenetic experiment are the initial conditions of

our mathematical models. At the beginning of the optogenetic experiment, cells

have been already exposed to the antigen-peptide (during the first 4 days) and,

thus, they cannot be considered näive cells anymore. However, an analysis of

their heterogeneity has not been performed before the start of the experiment.

Consequently, only an estimate of the population cell counts has been provided
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Figure 6.2: Percentages of TIM-3− TCF1+ (in orange) and TIM-3+ TCF1− (in

red) over the total number of transduced and live cells at time t = 48 hours.

These markers characterise a reversible and a terminally exhausted population,

respectively. On the x-axis the dark delay; that is, the duration of dark time

(antigen signal) cells have been experiencing from 0 to a maximum of 48 hours.

In green, the transduced cell count, at time t = 48 hours, normalised over the 36

different considered dark delays.

by our experimental collaborators.

For this PhD project, several mathematical models have been considered in

order to study a broad class of effector states (from a less to a more terminally

differentiated) and their possible transition to an exhausted phenotype. Each cell

state represented in the mathematical model is thought to be characterised by

flow cytometry markers; as detailed in Chapter 1, these markers define the states

of a cell according to the proteins and receptors that are expressed on its external

membrane.

Two examples of the mathematical models defined in collaboration with the

biological expertise of Dr. Mann from Salk Institute are shown in Figure 6.3. We

model the exhaustion-differentiation process within a compartmental structure

where cells with a specific phenotype belong to a compartment and they can

undergo compartment-specific events (Feliciangeli et al., 2022; Höfer et al., 2016;

Johnston et al., 2007; Thomas-Vaslin et al., 2008; Zhang et al., 2015). Here, four
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states of effector cells, from a less to a more differentiated state, namely E0, E1,

E2,E3, are considered. Two or three exhausted states are defined in Model 1 (on

the left) and Model 2 (right), respectively. In particular, Model 1 is characterised

by a reversible exhausted state, X1, and by a terminally exhausted state, X2.

Cells belonging to state X1, characterised by surface marker expression TIM-3−

TCF1−, are still able to undergo self-renewal and revert to a functional effector

state. Whereas, cells of state X2, characterised as TIM-3+ TCF1−, have a fixed

exhausted transcriptional profile. In Model 2 (on the right of Figure 6.3), two

different states of terminally exhausted cells are considered following the findings

of Hudson et al. (2019) and Beltra et al. (2020). Very little is known about these

two cell populations but recent studies agree on the existence of an intermediate

terminally exhausted population, still able to proliferate, and a second terminal

population undergoing little to no division and poorly contributing to viral con-

trol. In both models, cells of all states can die via apoptosis; death rates have

not been graphically represented in Figure 6.3 in order to not overload the figure.

In particular, we assume all effector cells die at rate µE, exhausted cells die at

rate µ1, and µ2 for reversible, terminal states of Model 1, or µ1, µ2A and µ2B for

reversible and the two terminal subsets of Model 2, respectively.

In both acute and chronic infections, differentiation into terminal states (ef-

fector or exhausted) is linked to cell division: in order to acquire new functions

and become more specialised, cells undergo rounds of division and change their

phenotype. However, despite its fundamental importance, the role of proliferation

during the differentiation process is still not completely clarified. Experimentally,

fluorescence dyes, such as green fluorescent protein (GFP) labelling dye, CFSE

(carboxyfluorescein succinimidyl ester) dye, or CellTrace Violet labelling dye, can

be used to measure the number of times cells divide (Lemieszek et al., 2022; Lyons,

2000); indeed, their fluorescence intensity is reduced by a half at each division

event. In this way, different effector states could be defined according to the

number of divisions cells underwent during the length of the experiment. In our

simplified model, these “effector-proliferative” states (determined by the number

of divisions) correspond to effector-differentiation states: the longer the antigen

signal is present, the more cells proliferate and differentiate to more terminal ef-

fector states. That is, each round of division brings a cellular maturation to an
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effector state, with a greater antigen exposure: when a cell divides it moves fur-

ther in the chain of the CD8+ T cell differentiation process. Mathematically, we

let i ∈ N+ and describe the transition of cells from a more stem-like (progenitor)

state, Ei, to a more differentiated state, Ei+1, as a conveyor belt process (Dingli

et al., 2007; Marciniak-Czochra et al., 2009; Stiehl & Marciniak-Czochra, 2011;

Weekes et al., 2014). In particular, when a cell in state Ei divides, both daughter

cells belong to state Ei+1, for i = 0, 1, 2. The division rate is denoted by α. Cells

in state E3 are thought of as terminally differentiated effector cells and, thus, not

able to divide and differentiate further.

E0 E1 E2 E3

X1

X2

ψ1

α α

ε1

α

ε2 ε3β3

γ1

(a) Model 1

E0 E1 E2 E3

X1

X2AX2B

ψ1

ψ2

α α

ε1

ε̃1
ε̃3

β0

α

γ1γ1

γ2

(b) Model 2

Figure 6.3: Representation of two mathematical models (Model 1 on the left

and Model 2 on the right) for cell proliferation, death and differentiation from a

progenitor effector state to a terminally exhausted state.

Besides the number of exhausted states, Model 1 and 2, shown in Figure 6.3,

differ in the pathway to exhaustion. In Model 1, all effector states, Ei, but the

progenitor, E0, can differentiate to the reversible exhausted state X1 at a rate εi,

for i = 1, 2, 3. Cells of the reversible exhausted state X1 can self-renew at rate ψ1,

revert back only to a terminal effector phenotype E3 at rate β3, or move to the

terminally exhausted state X2 at rate γ1. In Model 2, instead, we assume that

only early differentiated effector cells of state E1, or terminally differentiated

effector cells of state E3 can move to the reversible exhausted state X1; also,
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reversible cells in X1 can self-renew at rate ψ1 (as in Model 1), but they can

revert back only to the progenitor effector state E0. Moreover, effector cells in

state E1 and E3 can commit to the terminally exhausted state X2A at rate ε̃1

and ε̃3, respectively. Terminally exhausted cells in state X2A move to state X2B

at rate γ2, and exhausted cells in X1 move to a terminal state at rate γ1. In

order to model this transition, we introduce the probability p such that, when

differentiating to a terminal state, cells in X1 move to X2A with probability p and

to X2B with probability 1 − p.

In both Model 1 and Model 2, we consider the proliferation rates to be antigen-

dependent via a time-dependent function f(t), f : [0,+∞) → {0, 1} defined as

f(t) =

{
1, for time t ≤ ldd,

0, for time t > ldd,
(6.1)

for ldd ∈ d the dark delay; that is, when cells are in the dark, the LOVTRAP

domain is bound and the signal transduced, thus f(t) = 1. Other functions

could have been used to model the presence of the antigen signal according to

the binding/unbinding state of the LOVTRAP domain; however, since there are

not enough details to discriminate between a step-wise form of f(t) and a more

complex function, e.g., a Hill function, we decided to avoid additional parameters

and keep the model simpler by choosing a step signal function.

Given the considerations above for Model 1 (shown on the left in Figure 6.3),

we let E0(t), E1(t), E2(t), E3(t), X1(t) and X2(t) be variables representing the size

of the respective populations as a function of time. Assuming linear proliferation,

differentiation and death processes, the dynamics, for t ≥ 0, of E0(t), E1(t), E2(t),

230



6.2 Mathematical models of T cell exhaustion-differentiation

E3(t), X1(t) and X2(t) are described by the following equations

dE0(t)

dt
= −(αf(t) + µE)E0(t) ,

dE1(t)

dt
= 2αf(t)E0(t) − (αf(t) + µE + ε1)E1(t) ,

dE2(t)

dt
= 2αf(t)E1(t) − (αf(t) + µE + ε2)E2(t) ,

dE3(t)

dt
= 2αf(t)E2(t) − (ε3 + µE)E3(t) + β3X1(t) ,

dX1(t)

dt
= ψ1f(t)X1(t) + ε1E1(t) + ε2E2(t) + ε3E3(t) − (γ1 + β3 + µ1)X1(t) ,

dX2(t)

dt
= γ1X1(t) − µ2X2(t) .

Initial conditions are set to

E0(0), E1(0), E2(0), E3(0), X1(0), X2(0)

= (35%N⋆, 25%N⋆, 20%N⋆, 10%N⋆, 5%N⋆, 5%N⋆) ,

where we denoted by N⋆ = 25×103, the total number of live and transduced cells

placed in each well at the beginning of the optogenetic experiment. We remind the

reader that cells have been experienced antigen during the first four days of entire

experiment and, thus, they already show some effector functions. However, in the

absence of experimental determination of the initial cell numbers, the reported

percentages above have been agreed with the experimental collaborators based

on their intuition. Similarly, for Model 2 we let E0(t), E1(t), E2(t), E3(t), X1(t),

X2A(t) and X2B(t) be variables representing the size of the respective populations

as a function of time and we assume linear proliferation, differentiation and death
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processes. Thus, for t ≥ 0

dE0(t)

dt
= −(αf(t) + µE)E0(t) + β0X1(t) ,

dE1(t)

dt
= 2αf(t)E0(t) − (αf(t) + µE + ε1 + ε̃1)E1(t) ,

dE2(t)

dt
= 2αf(t)E1(t) − (αf(t) + µE)E2(t) ,

dE3(t)

dt
= 2αf(t)E2(t) − (ε̃3 + µE)E3(t) ,

dX1(t)

dt
= ε1E1(t) + (ψ1f(t) − γ1 − β1 − µ1)X1(t) ,

dX2A(t)

dt
= p γ1X1(t) + ε̃1E1(t) + ε̃3E3(t) + (ψ2f(t) − γ2 − µ2A)X2A(t) ,

dX2B(t)

dt
= (1 − p) γ1X1(t) + γ2X2A(t) − µ2BX2B(t) ,

with initial conditions

E0(0), E1(0), E2(0), E3(0), X1(0), X2A(0), X2B(0)

= (35%N⋆, 25%N⋆, 20%N⋆, 10%N⋆, 5%N⋆, 2.5%N⋆, 2.5%N⋆) .

Again, N⋆ = 25×103 denotes the total number of live and transduced cells placed

in each well at the beginning of the optogenetic experiment, and the percentages

represent an estimate, provided by our experimental collaborator, of the number

of cells in each state.

As mentioned in Section 6.1, the experimental data used for the mathemat-

ical models consist of the percentage, over the entire population of live CD8+

OptoCAR+ T cells, of exhausted populations identified by TIM-3− TCF1+ and

TIM-3+ TCF1− markers. The ODE systems defined for Model 1 (and Model

2) describe the dynamics of the population size for each of the six (or seven)

cell states. Thus, experimental data can be compared to model output via

their corresponding summary statistics, i.e., the percentage of reversible and

terminally exhausted cells over the total number of live and transduced cells at

the collection time, after 48h of optogenetic experiment. In particular, we de-

note, for Model 1 and Model 2, the total number of cells present in the system

at time t by Nt(t) =
∑3

j=0Ej(t) + X1(t) + X2(t), where, for Model 2, we let
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X2(t) = X2A(t) +X2B(t). Thus, we consider the following summary statistics

S1 =
X1(t = 48h)

Nt(t = 48h)
and S2 =

X2(t = 48h)

Nt(t = 48h)
.

as the percentages of exhausted cells in the system after 48h of optogenetic ex-

periment.

6.2.1 Bayesian model selection

With the purpose of investigating possible pathways of the CAR T cell differen-

tiation at early time points in a chronic infection, we define several mathematical

models with different cell states and transitions. Here, we focus on Model 1 and

Model 2 previously defined in this Section (see Figure 6.3) and apply Bayesian

model selection; this method, introduced in Section 2.3 (Algorithm 3), can inform

hypotheses relating to the different pathways provided by Model 1 and Model 2.

Given the preliminary experimental data generated by Dr. Mann, one can, thus,

determine which of the model pathway for CD8+ T cell is more likely.

The reader can find a summary of the optogenetic experiment performed by

Dr. Mann in Section 6.1 and a detailed description in Section 1.2.2. Flow cy-

tometry data from a single experiment with different simulated durations of dark

delay were used to compute summary statistics of interest, i.e. S1 = X1(t)/Nt(t)

and S2 = X2(t)/Nt(t) with t = 48h. We denote Model 1 and Model 2 with Mm

for m = 1, 2; then, for each model we can compute a distance measure to com-

pare summary statistics S1 and S2 of the two models with the experimental data,

measured at time t = 48h. In particular, for model Mm, we used a generalisation

of the Euclidean distance given by

δ(Mm) =

[ ∑
ldd∈d

(
X1(t = 48h;Mm, ldd)

Nt(t = 48h;Mm, ldd)
− dataX1(ldd)

)2

+

(
X2(t = 48h;Mm, ldd)

Nt(t = 48h;Mm, ldd)
− dataX2(ldd)

)2
]1/2

,

where ldd ∈ d is the length of the considered dark delay in hours.

Given the uncertainty in parameters values, at the first iteration of the model

selection algorithm, parameters were sampled from uniform prior distributions of
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wide interval discussed with the experimental counterpart; in particular, param-

eter p ∼ Unif(0, 1) and all the others are assumed as in Table 6.1. The model

(hypothesis) selection algorithm was run for a sample of size nsim = 105. Making

use of Bayes theorem we define, for m = 1, 2, the relative probability of Model

Mm being accepted with a distance threshold ε⋆ as follows

π(Mm | ε = ε∗) =
f(Mm | ε = ε∗)

f(M1 | ε = ε∗) + f(M2 | ε = ε∗)
,

where f(Mm) is a frequency, namely the number of accepted parameter sets for

Model Mm. The acceptance criterion of the ABC algorithm is to accept only the

results with a distance equal or less than the chosen threshold ε∗.

Parameter µE µ1 µ2 α ψ1 ε1 ε2 ε3 ε̃1 ε̃3 γ1 γ2 µ2A µ2B β0 β3 ψ2

Prior 10r 10r 10r 10a 10r 10r 10r 10r 10r 10r 10r 10r 10r 10r 10r 10r 10r

Table 6.1: Summary of the prior distribution for each of the parameters in the

two mathematical models. Here r ∼ Unif(−3, 0) and a ∼ Unif(−3, 1).

Results of the computed relative probability, for increasing values of ε⋆, are

given in Figure 6.4. From the figure, it can be seen that, as ε⋆ decreases, the

relative probability of Model 1 tends to zero and that of Model 2 tends to one.

However, for large enough values of the threshold ε⋆, the relative probability

of both hypotheses converges to 0.5. This means that, for large ε⋆, the two

hypothesis are equally likely hypothesis given the experimental data. However,

for small distance thresholds, the relative probability of Model 2 is higher; hence,

we conclude that Model 2 is more plausible than Model 1, and can better explain

the experimental data sets. Moreover, we can observe that, for small ε⋆, the

number of accepted parameters grows, for increasing values of ε⋆, in a similar

manner for both hypothesis; whereas, for greater values of the distance threshold,

Model 2 (depicted by a dashed line) is performing slightly better. A similar

Bayesian selection technique can be applied to the different mathematical models

proposed, during this PhD project, to investigate possible pathways of the CAR

T cell differentiation process at early time points of a chronic infection. For the

purpose of this thesis, we restrict to illustrate the potential of the technique for

Model 1 and Model 2 defined in this Section. Future work, dependent on final
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experimental data, will be to run the developed algorithm considering a greater

number of possible models.

Figure 6.4: On the left, the relative probability for the two different models

depending on the distance threshold ε⋆. On the right, the frequency of the two

tested models, the number of accepted parameters for Model 1 and Model 2 as

a function of the distance threshold ε⋆. Note the scientific notation on the right

plot.

6.3 A reduced mathematical model

Given that the experimental data used for the mathematical model quantify re-

versible and terminally exhausted cells only, an extensive and detailed mathe-

matical model of the exhaustion-differentiation process and the heterogeneous

population involved might not be informative. Indeed, Model 1 and Model 2

defined in Section 6.2 aim to represent the dynamics of six and seven popula-

tions of T cells, respectively. However, the experimental data used quantify two

cell populations (reversible and terminally exhausted cells only) at a unique time

point, t = 48 hours. Moreover, only the ratio (not absolute count), over the total

number of live cells after the 48 hours of optogenetic experiment, of reversible and

terminally exhausted cells has been measured. Thus, in this Section, we propose
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a reduced compartmental mathematical model, where only two states of effector

cells and two states of exhausted cells are represented. We find this restricted

set of cell populations to be the minimum number able to address our original

questions about the heterogeneity of the exhaustion-differentiation process during

antigen stimulation.

E0ψ0 E1

X1 X2ψ1

γ0

ε0β0 ε1β1

γ1

Figure 6.5: Representation of the cell states and transitions which define the

toy mathematical model with a reduced number of states; here, progenitor and

terminal effector cells (namely E0 and E1) as well as reversible and terminally

exhausted CD8+ T cells are represented. Cells in state E0 and X1 can proliferate

at rates αi+ψi, for i = 0, 1 respectively, where αi is the homeostatic contribution,

and ψi is the antigen-dependent contribution. Following the suggestion of the

experimental collaborators from Salk Institute of Biological Studies, we assume

ε0, ε1 and β0, β1 to be antigen-dependent. Cells from each state can die at rates

µE, µ1 and µ2 for effector, reversible and terminally exhausted state, respectively.

If in Section 6.2 four different effector differentiation states are modelled and

the differentiation state of an effector cell has been identified by the number

of divisions undergone; here, a toy model with only two effector states, and

where proliferation and differentiation of effector cells are represented as two

different events (happening at different rate) is defined. A representation of the

toy mathematical model is shown in Figure 6.5. We consider progenitor effector

cells, E0, that can proliferate and differentiate, giving rise to terminal effector cells

E1. Effector cells E0, E1 can differentiate to the reversible exhausted state X1.

These reversible exhausted cells can slowly proliferate or commit to the terminally

exhausted state X2, or revert back to the effector state Ei, for i = 0, 1. Here, we

assume that both progenitor effector and reversible exhausted cells can proliferate,
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as well as differentiate to terminal effector and exhausted cells (at rate γ0 and

γ1), respectively. In particular, we assume that cells can proliferate both in the

absence and in the presence of antigen: we define an homeostatic proliferation

rate (α0 and α1 for effector and exhausted cells, respectively), as well as an

antigen-dependent rate (ϕ0 and ϕ1 for effector and exhausted cells, respectively).

Moreover, we assume that differentiation rates to a terminal effector or exhausted

state (γ0 and γ1, respectively), as well as the rates at which effector cells become

exhausted (ε0 and ε1) are antigen-dependent, i.e., they do not take place in the

absence of antigen stimulation. Finally, we assume reinvigoration of exhausted

cells of state X1 (to a progenitor or terminal effector state) happens at rates β0

and β1, respectively, and in an antigen-dependent fashion, i.e., those transitions

are possible only in the absence of antigen.

As in Section 6.2, the function f(t) represents the modulation of the antigen-

dependent rates in response to antigen presence; we remember that f(t), f :

[0,+∞) → {0, 1} is defined as

f(t) =

{
1, for time t ≤ ldd,

0, for time t > ldd,

for ldd ∈ d the dark delay; that is, when cells are in the dark, the LOVTRAP

domain is bound and the signal transduced, thus, f(t) = 1.

In the following Sections, we define variables to represent the size of the four

populations shown in Figure 6.5; we derive the corresponding ODE system and

compute its solution to describe the dynamics over time of cells in states E0, E1,

X1, X2. Moreover, we perform a steady state analysis to investigate the homeo-

static state reached by the system. Furthermore, we carry out an identifiability

analysis, following the method of Castro & de Boer (2020), as well as a global

sensitivity analysis (Sobol index); this is a preliminary analysis before we per-

form parameter inference. Finally, we have considered six different experiment

repeats and we used an Approximate Bayesian Calculation (ABC) method (see

Section 2.3 for mathematical details) to infer the parameter distributions in a

likelyhood free approach.

When considering a single experiment repeat, we can observe that experimen-

tal data sets show an oscillatory trend, over dark delays, of the normalised ratio,
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measured at time 48 hours, of reversible and terminally exhausted cells. This is

shown for example in Figure 6.2. This behaviour, may suggest that the death,

division and proliferation rates of effector and exhausted cells are a function of

the dark delay; that is, they vary with the duration of the antigen signal. As

detailed in Section 6.1, cells have been stimulated for different signal durations.

In particular, they were subjected to an initial period of dark delay ldd ∈ d ∈ R36

and then light has been switched on for the remaining time of the experiment’s

duration (total of 48 hours). For the sake of simplicity and in order to investigate

the impact of the presence of antigen in the model, we consider a restricted subset

of seven different dark delays. In particular, we set

ldd ∈
(
0, 8, 16, 24, 32, 40, 48

)
hours and run Bayesian analysis with the aim of quantifying the impact of persis-

tent antigen stimulation on parameter values. For this, in Section 6.3.4 parameter

trends over dark delays have been computed.

6.3.1 Model analysis: dynamics and steady states

In the toy model shown in Figure 6.5 four different T cell populations are con-

sidered; for t ≥ 0, effector and exhausted populations are defined as,

E0(t) = “the number of progenitor effector CD8+ T cells”,

E1(t) = “the number of terminally differentiated effector CD8+ T cells”,

X1(t) = “the number of reversible exhausted CD8+ T cells”,

X2(t) = “the number of terminally exhausted CD8+ T cells”.

Assuming linear proliferation, differentiation and death processes, the time

evolution, for t ≥ 0, of E0(t), E1(t), X1(t), X2(t), is described by the following
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system of equations

dE0(t)

dt
= (α0 + (ψ0 − ε0)f(t) − γ0 − µE)E0(t) + β0(1 − f(t))X1(t) ,

dE1(t)

dt
= γ0E0(t) − (ε1f(t) + µE)E1(t) + β1(1 − f(t))X1(t) ,

dX1(t)

dt
= ε0f(t)E0(t) + ε1f(t)E1(t) + (α1 − µ1)X1(t)

+ ((ψ1 − γ1)f(t) − (β0 + β1)(1 − f(t)))X1(t) ,

dX2(t)

dt
= γ1f(t)X1(t) − µ2X2(t) .

(6.2)

A general solution of System (6.2), as a function of f(t), requires solving a linear

time-varying system of differential equations. We report the solution for two

particular cases, f(t) ≡ 0 for all t ∈ [0, 48]; that is, cells are constantly lit

(LOVTRAP domain unbound and signal never transduced); and f(t) ≡ 1 for all

t ∈ [0, 48]; that is, cells are kept in the dark for the entire optogenetic experiment

(LOVTRAP domain unbound and signal always transduced).

Let (E0(0), E1(0), X1(0), X2(0)) = (E0
0 , E

0
1 , X

0
1 , X

0
2 ) be the initial condition

of the system. When f(t) = 0 for all t ∈ [0, 48], the dynamics of exhausted cells

is described by

X1(t) = X0
1 e−(µ1+β0+β1−α1)t, X2(t) = X0

2 e−µ2t .

Moreover, for effector cells we have

E0(t) =
β0X

0
1

γ0 + µE + α1 − α0 − µ1 − β0 − β1

[
e−(µ1+β0+β1−α1)t − e−(γ0+µE−α0)t

]
+ E0

0 e−(γ0+µE−α0)t ,

E1(t) =
X0

1

µE + α1 − µ1 − β0 − β1

(
β1 +

γ0β0
γ0 + µE + α1 − α0 − µ1 − β0 − β1

)
×
(
e−(µ1+β0+β1−α1)t − e−µEt

)
.

We assume all parameters are non-negative, and that µE +α1 ̸= µ1 +β0 +β1 and

γ0 + µE + α1 ̸= α0 + µ1 + β0 + β1, to ensure the existence of a solution.

If cells are constantly stimulated, that is, f(t) ≡ 1 for all t ∈ [0, 48], the

dynamics of effector cells is described by

E0(t) = E0
0 e−(µE+γ0+ε0−α0−ψ0)t,

E1(t) =
γ0E

0
0

γ0 + ε0 + ε1 − α0 − ψ0

(
e−(µE+γ0+ε0−α0−ψ0)t − e−(µE+ε1)t

)
+ E0

1e−(µE+ε1)t ,
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and for the two populations of exhausted cells

X1(t) =
E0

0 (e−(µE+γ0+ε0−α0−ψ0)t − e−(µE+ε1)t)

µ1 + γ1 + α0 + ψ0 − α1 − ψ1 − µE − γ1

(
ε0 +

ε1γ0
γ0 + ε0 + ε1 − α0 − ψ0

)
+
ε1 (e−(µE+ε1)t − e−(µ1+γ1−α1−ψ1)t)

µ1 + γ1 − α1 − ψ1 − µE − ε1

(
E0

1 +
γ0E

0
0

γ0 + ε0 + ε1 − α0 − ψ0

)
+X0

1e−k1t ,

X2(t) =
γ1E

0
0

µ1 + γ1 + α0 + ψ0 − α1 − ψ1 − µE − γ1

(
ε0 +

ε1γ0
γ0 + ε0 + ε1 − α0 − ψ0

)
×
(

e−(µE+γ0+ε0−α0−ψ0)t − e−µ2t

µ2 + α0 + ψ0 − µE − γ0 − ε0
− e−(µ1+γ1−α1−ψ1)t − e−µ2t

µ2 + α1 + ψ1 − µ1 − γ1

)
+

ε1γ1
µ1 + γ1 − α1 − ψ1 − µE − ε1

(
E0

1 +
γ0E

0
0

γ0 + ε0 + ε1 − α0 − ψ0

)
×
(

e−(µE+ε1)t − e−µ2t

µ2 − µE − ε1
− e−(µ1+γ1−α1−ψ1)t − e−µ2t

µ2 + α1 + ψ1 − µ1 − γ1

)
+

γ1X
0
1

µ2 + α1 + ψ1 − µ1 − γ1
(e−(µ1+γ1−α1−ψ1)t − e−µ2t) +X0

2e−µ2t .

We assume all parameters are non-negative and that γ0 + ε0 + ε1 ̸= α0 + ψ0,

µ1 + γ1 + α0 + ψ0 ̸= α1 + ψ1 + µE + γ1, µ1 + γ1 ̸= α1 + ψ1 + µE + ε1 and

µ2 ̸= µE + ε1 µ2 + α0 + ψ0 ̸= µE + γ0 + ε0, µ2 + α1 + ψ1 ̸= µ1 + γ1, so that a

solution exists.

Here, the steady state solution of System (6.2) is computed. At steady state,

the number of cells in each of the four populations is no longer changing with

time. Steady states of a general system of ODEs can be found by setting the

right hand side of each of the ODEs to zero and solving the resulting equations

simultaneously. Given the in vitro experimental setting, we are modelling a close

system where cells are placed in the wells at day 4 and measured at day 6, without

any external influx of cells. Since we do not include an influx of cells, the steady

state of the System (6.2) is given by P ⋆ = (E⋆
0 , E

⋆
1 , X

⋆
1 , X

⋆
2 ) = (0, 0, 0, 0) for a

general choice of f(t). In order to study the linear stability of the steady state,

the Jacobian matrix of System (6.2) is calculated. In particular, we consider again

the two cases f(t) ≡ 0 (signal OFF) and f(t) ≡ 1 (signal ON). We denote with

JOFF the Jacobian matrix of the system where f(t) ≡ 0 for all times t ∈ [0, 48]
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hours,

JOFF =


α0 − γ0 − µE 0 β0 0

γ0 −µE β1 0
0 0 α1 − µ1 − β0 − β1 0
0 0 0 −µ2

 .

Since the system is linear, JOFF is also the Jacobian matrix of the steady state

P ⋆ = (0, 0, 0, 0), and one can study its stability. Matrix JOFF has four eigenvalues,

e1 = α0 − γ0 − µE, e2 = −µE, e3 = α1 − µ1 − β0 − β1, e4 = −µ2 .

Therefore, the steady state P ⋆ = (0, 0, 0, 0) is stable if and only if

α0 < γ0 + µE, and α1 < µ1 + β0 + β1 .

Similarly, we denote with JON the Jacobian matrix of the system where f(t) ≡ 1

for all times t ∈ [0, 48] hours,

JON =


α0 + ψ0 − ε0 − γ0 − µE 0 0 0

γ0 −(ε1 + µE) 0 0
ε0 ε1 α1 + ψ1 − µ1 − γ1 0
0 0 γ1 −µ2

 .

Since the system is linear, JON is also the Jacobian matrix of the steady state

P ⋆ = (0, 0, 0, 0), and one can study the stability. Matrix JON has four eigenvalues,

e1 = α0+ψ0−ε0−γ0−µE, e2 = −(ε1+µE), e3 = α1+ψ1−µ1−γ1, e4 = −µ2 .

Therefore, the steady state P ⋆ = (0, 0, 0, 0) is stable if and only if

α0 + ψ0 < ε0 + γ0 + µE, and α1 + ψ1 < µ1 + γ1 .

For both cases of f(t) ≡ 0 for all t ∈ [0, 48] and f(t) ≡ 1 for all t ∈ [0, 48], the

steady state P ⋆ = (0, 0, 0, 0) is stable in case of decreasing exponentials in the

solutions of E0(t), E1(t), X1(t) and X2(t). Otherwise, both effector and exhausted

population of cells would grow without limits.
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6.3.2 Structural identifiability analysis

In order to understand if it is possible to estimate all model parameters, given

the model’s structure shown in Figure 6.5, we carry out a structural identifiabil-

ity analysis, following the method proposed by Castro & de Boer (2020). This

method is a rigorous but simple way to test the identifiability of a linear (or non-

linear) model with constant parameters. For mathematical details we refer to

Section 2.4. The method involves writing each of the four ODEs in System (6.2)

as functionally independent terms. Details of the method applied to the model

shown in Figure 6.5 and defined by the differential System (6.2) are given in

Appendix D.

As detailed in Appendix D, the model defined in System (6.2) with four state

variables, E0(t), E1(t), X1(t), X2(t), and thirteen parameters, is not structurally

identifiable given that only populations X1 and X2, for reversible and termi-

nally exhausted cells, can be set as observable (experimentally measured) in the

analysis. Indeed, the preliminary experimental data sets, used for mathematical

modelling, consider reversible and terminally exhausted cells after the 48 hours of

the optogenetic experiment only.However, a recent work of Massonis et al. (2021)

shows that having a parameter changing over time can improve the observability

and, thus, the identifiability of the model. This can be explained as follows: a

symmetry between constant parameters can result in changes in one parameter

being compensated by changes in the second one; however, this is not the case if

only one of these two parameters varies over time. Moreover, identifiability can

also be improved by including populations of effector cells E0 and E1 as two more

observable outputs, i.e., experimentally measured effector cells. Indeed, if these

two populations of progenitor and terminally differentiated effector cells could

be measured at the end of the optogenetic experiment, then the defined model

would become structurally identifiable (see Appendix D for details).

Conscious of the model’s limitations, we found meaningful, for the educational

purposes of this PhD thesis, to consider the model in Figure 6.5 and carry out

sensitivity analysis and parameter inference based on the provided experimental

data, i.e., the two exhausted cell states X1(t) and X2(t) measured at t = 48 hours

from the beginning of the optogenetic experiment.
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6.3.3 Global sensitivity analysis

In this Section, we investigate which of the thirteen parameters of the mathemat-

ical model defined in System (6.2) are most influential to model output or any

derived summary statistics. We denote by θ the vector of thirteen parameters to

be estimated,

θ =
(
µE, µ1, µ2, a0, a1, ψ0, ψ1, ε0, ε1, β0, β1, γ0, γ1

)
,

and we apply the Sobol method described in Section 2.4.

The Sobol sensitivity analysis was carried out using the SALib package in

Python, to find the total-order Sobol index for each of the parameters in θ. The

algorithm takes the vector θ as input and studies how varying parameters in

ranges affect model output. The range [10−3, 1]h−1, reflecting a uniform prior

distribution, is assigned to each parameter in θ.

When considering the model output, we need to remember that the experi-

mental data quantify the percentages (over the total number of cells in the system)

of reversible and terminally exhausted cells after 48 hours of a optogenetic ex-

periment. We remind the reader that the experiment focuses on understanding

how the development of exhausted cells is influenced by different durations of

antigen stimulus. Thus, we focus on the terminally exhausted population and

investigate the parameters’ influence on the summary statistics given by the per-

centage of terminally exhausted cells at the end of the optogenetic experimental

time course, namely X2(t)
E0(t)+E1(t)+X1(t)+X2(t)

at t = 48 hours. As in Section 6.2 and

previously in this Section, we consider a step signal function f(t) defined by (6.1);

we denote with ldd ∈ d the dark delay; that is, the time cells spend in the dark

before light is switched on (and, thus, signal interrupted). In this Section, we

aim to perform a global sensitivity analysis under different conditions and, for

the sake of simplicity, we restrict ourselves to analyse the output changes un-

der three different durations of antigen stimulation. We consider the case the

signal is never transduced, the case it is transduced for half of the considered

time window, and the case that is always transduced; that is ldd ∈
(
0, 22.67, 48

)
.

The results of this analysis are plotted in Figure 6.6 for ldd = 0 hours of signals

(on the top plot), ldd = 22.67 hours of signal (the lower left plot) and ldd = 48
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hours of stimulation (in the lower right). From Figure 6.6, it can be seen that

different stimulation durations have an impact on which parameter influences the

normalised ratio of terminally exhausted cells most. In case of absence of signal

(top plot), the model output is mainly influenced by the death rate of effector

cells, µE, and the homeostatic growth rate of reversible exhausted cells, α1. If

the Sobol index of µE is decreasing over time, the growth rate of X1 if increasing;

this can be explained because effector cells are the main population at the start

of the optogenetic experiment, but, in the absence of antigen signal, they poorly

proliferate and their effect on exhausted cells is limited. Thus, the dynamics of

terminally exhausted cells with respect to the total cell population are mainly

driven, for later time points, by the homeostatic proliferation rate of reversible

cells in X1. Also, we might have expected a greater influence of the death rate of

terminally exhausted cells, µ2. Indeed, one can observe the normalised ratio of

terminally exhausted cells X2 over the total cell population greatly influenced by

µ2 only for early time points; this can be explained as follows: if not stimulated

by antigen, reversible cells X1 do not differentiate to a terminally exhausted state

and thus, this latter population dies out already at early time points.

On the contrary, if cells are stimulated for a few hours, ε1 is the most influential

parameter (see two lower plots in Figure 6.6). In particular, if LOVTRAP domain

is bound only for the first 22 hours (lower left plot), one can observe how, as soon

as light is switched on, parameters influence on the normalised ratio of terminally

exhausted cells X2 is slowly drifting to the case of ldd = 0h (top plot). Indeed,

rates α1, µE and βi, for i = 0, 1 (the homeostatic proliferation rate of reversible

exhausted cells, the effector death rate and the reinvigoration rates, respectively)

are subjected to an increase in their importance over time window of absence of

antigen stimulation, i.e., interval [22.67, 48] hours.

We may want to stress to the reader that the plots of Figure 6.6 report the

Sobol index of all model parameters; however, for the three dark delays consid-

ered, some parameters have a very low total Sobol index value. We can assume

that a parameter with mean total order Sobol index less than 0.15 is of little in-

fluence to the considered model output. These parameters include, for instance,

the death rate of reversible exhausted cells µ1, as well as the reverse transition

rates β0 and β1.
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Figure 6.6: Means and 95% confidence intervals of the total Sobol indices for the

parameters of the model shown in Figure 6.5. The ratio of terminally exhausted

cells over the total number of cells in the system at the end of the optogenetic

experiment; that is X2(t)
E0(t)+E1(t)+X1(t)+X2(t)

for t = 48 hours, has been considered as

model output. From left to right, cells have been exposed to 0, 22.67, 48 hours

of stimulation within the optogenetic experiment; a step function f(t) has been

used.

6.3.4 Bayesian parameter inference

In this Section, we consider the toy model shown in Figure 6.5 and employ an Ap-

proximate Bayesian Calculation method to predict the posterior distribution of

model parameters. Technical details of this method are discussed in Section 2.3.

Starting from uniform prior distributions for model parameters, the aim is to

narrow down parameters ranges and, thus, identify a biological timescale of ex-

haustion. Moreover, we make use of a Bayesian approach to investigate if any

of the considered cell events is influenced by the presence of antigen. Indeed,

as outlined in Section 6.1, the output of six different repeats of the optogenetic
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experiment suggests an oscillatory trend of the normalised ratio of reversible and

terminally exhausted cells. Figure 6.2 shows an example for a single repeat.

With the aim of studying a possible oscillatory behaviour of parameters val-

ues over the different dark delays, we start making use of an ABC method to

infer parameter values for any of the considered dark delays. For this we char-

acterise the experimental data sets as data(j, ldd), resulting from experiment j ∈
{1, 2, 3, 4, 5, 6} and initial dark delay ldd. For simplicity, we restrict the analysis to

a meaningful subset of d ∈ R36: we consider seven dark delays equally distributed

among the 48 hours of the experimental duration, ldd ∈
(
0, 8, 16, 24, 32, 40, 48

)
hours.

As outlined previously in this Section, given the experimental data sets and the

mathematical model structure, the model is not structurally identifiable. Thus,

in this Section, we carry out a Bayesian analysis assuming the homeostatic prolif-

eration rate of progenitor effector cells and the death rate of reversible exhausted

cells to be measurable. Such model, with parameters α0 and µ1 fixed, is struc-

turally identifiable and, thus, an informative ABC analysis might be performed.

Parameters α0 and µ1 could be experimentally estimated, and it is room for fu-

ture work to perform the proposed analysis with more refined values of the two

fixed parameters. Alternatively, additional experimental outputs for the popula-

tion of effector cells can be considered and, in this case, a distance comprising cell

states E0 and E1 could be applied. Overall, we would like to remind the reader

that the aim of this Section is to learn the technique in view of reproducing the

same analysis when further experimental data or parameter estimates could be

generated. Here, we assume α0 = 0.08 h−1 and µ1 = 0.1 h−1 and estimate the

parameters in θ̂ via the ABC algorithm,

θ̂ =
(
α1, ψ0, ψ1, µE, ε0, ε1, β0, β1, γ0, γ1, µ2

)
.

Prior distributions for the parameters in θ̂ correspond to the uniform distri-

butions in the same ranges considered for the global sensitivity analysis; that is,

[10−3, 1]h−1. In this way, the prior distributions of all parameters are defined in

the intervals tested by the Sobol algorithm. Simulated summary statistics for the

populations of exhausted cells, at time point t = 48 hours, were generated from
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the System (6.2), and compared with ratios of exhausted cells provided by exper-

imental data sets. The algorithm was run 107 times and only the top 102 results

where considered. For each dark delay considered, statistics of the six experimen-

tal repeats have been put together and a generalised Euclidean distance has been

used to compare simulated and experimental statistics for j ∈ {1, 2, 3, 4, 5, 6};

that is

δ(ldd, nsim) =

[((
X1(t = 48h; ldd)

Nt(t = 48h; ldd)
− µX1(ldd)

)
/σX1(ldd)

)2

+

((
X2(t = 48h; ldd)

Nt(t = 48h; ldd)
− µX2(ldd)

)
/σX2(ldd)

)2
]1/2

, (6.3)

where µXi
and σXi

are the mean and the standard deviation of the percentage of

exhausted cells Xi, for i = 1, 2, over the six experiment repeats. We note that we

consider ldd ∈
(
0, 8, 16, 24, 32, 40, 48

)
hours.

Initial conditions for the number of cells in each of the four states have been

fixed according to the experimental conditions, and aligned with the mathemati-

cal model reported in Section 6.2. In particular, we let N⋆ = 25×103 as the total

number of live and transduced cells, e.g., cells present in our system, and set

(E0(0), E1(0), X1(0), X2(0)) = (0.5N⋆, 0.4N⋆, 0.05N⋆, 0.05N⋆) .

Posterior distributions for each of the parameters in θ̂ and for ldd ∈
(
0, 8, 16, 24,

32, 40, 48
)
hours have been computed via the ABC algorithm. Figure 6.7 displays

an example, for ldd = 24 hours, of the probability histograms of the uniform

sample priors (in red) and of the posterior distributions (in green) for each of the

parameters in θ̂. One can notice that for some parameters the Bayesian inference

method provides very little learning: distributions of parameters α1, ψ1 and ε1

are slightly shifted to the left compared to the uniform distribution. Moreover,

the Bayesian parameterisation did not reveal any new information for parameters

ψ0, ε0 and γ0. Whereas, a significant learning occurs for parameters µE, µ2, β0,

β1, γ1, whose posterior distribution is shifted to the right around one order of

magnitude [−1, 0].

Results from the global sensitivity analysis (Sobol index) indicate that pa-

rameter γ1 is one with the strongest influence on the summary statistics X2(t=48h)
Nt(t=48h)
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model output for ldd = 24 hours (see Figure 6.6). The exhaustion rate from

reversible to terminally exhausted cells, γ1, is characterised by an order of magni-

tude between −1 and 0; that is, two times higher than other parameters relative

to X1, such as α1, ε1 and ψ1.

Similarly, posterior distributions for dark delays ldd ∈
(
0, 8, 16, 24, 32, 40, 48

)
have been computed; overall, given the high number of parameters compared to

the number of experimental measurements, the Bayesian learning is small for

many of the parameters when compared to their uniform prior distributions.

Thus, a quantification of all the individual parameter values in the model by

inferring their posterior distributions was not possible.

Figure 6.7: Posterior distribution (in green) for the parameters in θ̂ of the math-

ematical model depicted in Figure 6.5. Posterior distributions, for ldd = 24,

have been computed considering the best 102 parameter sets resulting from ABC

analysis with 107 simulations; distance (6.3) has been used. On the x-axis,

log10(param) hours−1. Prior distributions are shown in red.

Posterior distributions of parameters in θ̂ computed for ldd ∈
(
0, 8, 16, 24, 32,

40, 48
)
hours can be used to investigate their dependence on the duration of
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antigen stimulation. Figure 6.8 displays the trend of parameters in θ̂ according to

the results of the posterior distribution computed with the Approximate Bayesian

analysis for the toy model defined by System (6.2). One can observe that, as

suggested from the learning on the posterior distributions, for many of the model

parameters there is not a clear trend over the different dark delays. However,

parameters β0 and β1 clearly show a decrease in their order of magnitude as cells

are stimulated for longer time. This can be explained given that β0 and β1 are the

rates at which exhausted cells X1 can differentiate back to an effector phenotype;

however, when cells are stimulated by the antigen for longer time, exhausted cells

are less likely to revert to an effector state, either a progenitor E0 or a terminally

differentiated type E1. Overall, we should mention the wide 95% credible interval

that characterises many of the posterior distributions for parameters in θ̂. Thus,

we find that our conclusions about the existence of a trend in parameters over

the different duration of dark delay are not very strong.

Figure 6.8: Trend of parameter values over duration of stimulation (dark delay).

We report the point-wise median (in blue) and best (in light blue) values over the

best 102 parameters set resulting from the ABC analysis with 107 simulations;

the shaded area shows the 95% credible interval of model simulations. On the

y-axis order of magnitude of the parameters, with θ̂ ∈ [10−3, 1]11. On the x-axis

the considered duration of dark delay.

249



6. A DETERMINISTIC APPROACH TO CD8+ T CELL
EXHAUSTION DYNAMICS

6.4 Model justification and limitations

In this Section, we justify the structure of the defined mathematical models based

on other published studies present in the literature about CD8+ T cell exhaus-

tion and describe the many limitations of the proposed models. Understanding

the origins of exhaustion as well as devising ways of preventing it are both ar-

eas of intense focus nowadays, as they bring promise of improvement in cancer

immunotherapy (McLane et al., 2019; Tabana et al., 2021).

Current mathematical models do not focus on an antigen-driven differenti-

ation process towards terminal exhaustion (Eftimie et al., 2016). They mainly

consider effector cells (either endogenous or CARs) and their dynamics with re-

spect to tumour cells or antigen; memory or näive cells dynamics sometimes

are included as well. Exhausted cells, as a cell state, do not contribute to the

immune-induced death of cancer or chronically infected cells. Hence, exhaustion

of CD8+ T cell is modelled similarly to cell death: effector cells disappear from

the system and no pool of exhausted cells is generated. In other words, the im-

mune system is investigated mainly to show how näive, memory or effector cells

behave with respect to tumour cells (Owens & Bozic, 2021; Serre et al., 2016).

Exhaustion of CD4+ T cells has been modelled in a similar way; see, for instance,

Reference Makhlouf et al. (2020). A different approach is followed by Wodarz

et al. (1998): dynamics of näive, memory and effector T cells, as well as virus

infected cells are modelled. In order to accommodate exhaustion into the model,

they define a dummy parameter and study its regime for the infection to persist

or be eradicated. Similarly, Stromberg & Antia (2012) describe the density of

CD8+ T cell via a partial differential equation in terms of time and a dummy

variable which represents the exhaustion level as a continuous variable.

Recent developments in cell engineering methods kicked off in vitro and in vivo

studies about the persistence and efficacy of engineered T cells (chimeric antigen

receptor cells, also known as CARs) to enhance the immune system fighting

cancer. Following hand in hand the biological results are the mathematical studies

representing CARs dynamics in tumour micro-environment; in this regard, the

work of Sahoo et al. (2020) is worth a mention as pioneer. Moreover, interactions
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between CAR T cells and endogenous T cells have been recently mathematically

investigated by Kimmel et al. (2020, 2021).

From a mathematical perspective, most of the models representing the im-

mune cell response to antigen, under a chronic infection or in the presence of

cancer, are deterministic, i.e., comprised of ordinary differential equations (Ef-

timie et al., 2016). Here, the interactions between immune cells, i.e., B cells,

dendritic cells, or näive, effector, memory CD8+ T cells, and tumour cells are

investigated (Bocharov, 1998; Kuznetsov et al., 1994; León-Triana et al., 2021;

Moore & Li, 2004; Nikolopoulou et al., 2018; Owens & Bozic, 2021; Serre et al.,

2016; Valentinuzzi & Jeraj, 2020; Wodarz et al., 1998). For example, Boer &

Perelson (2013) suggest a predator-prey type model for the response of näive,

memory and activated effector cells to an exponentially growing pathogen, i.e.,

a bacteria.

Even though remarkable progress has been made in recent years in character-

ising the exhausted state from an immunological perspective (Chen et al., 2019;

Mo et al., 2021; Toettcher et al., 2013; Weber et al., 2021; Wherry et al., 2007),

a deep understanding of the molecular and genetic mechanisms, as well as the

influence that stimulus duration and antigen load have on cell differentiation and

proliferation is still lacking. As mentioned above, many models of cellular im-

mune responses to infection (acute or chronic) are structured with deterministic

system (of differential equations) as predator-prey models in ecology. Here, the

proliferation rate of immune cells is proportional to the density of antigen or

tumour cells in a linear or logistic fashion. For example, Johnson et al. (2011)

developed a virus-host interaction model to describe, during an acute or chronic

infection, the interplay between uninfected cells, virus-infected (or tumour) cells

and CD8+ T cells characterised by their level of exhaustion. Again, only dynam-

ics of functional effector cells, not of exhausted cells, are modelled: exhaustion

and death are equivalently brought together as exit from the effector functional

state.

T cell responses, upon antigen-induced activation, is promoted by a range

of different stimuli and signals: T cell receptor, the co-stimulatory signal from

antigen presenting cells and the signal coming from circulating cytokines (see
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Section 1.1 for more details). Several studies, focus on analysing, in a quantita-

tive way, how these signals are integrated and how this modulates the strength

of the T cell response. Studies of Marchingo et al. (2016, 2014) are pivotal in

modelling T cell stimuli integration and the consequent regulation of the division

process. Also, we would like to mention the importance of proliferation in the ac-

tivation and differentiation process during a chronic infection. The work of Boer

et al. (2001) focuses on the quantification of the major parameters, such as pro-

liferation, of the CD8+ cells during lymphocytic choriomeningitis virus (LCMV)

infection. Moreover, the work of Antia et al. (2003) is a pioneer in prolifera-

tion program studies; here, the question of an antigen-independent proliferation

program for CD8+ T cell is investigated in an acute framework. Their findings

suggest that a continuous exposure to antigen, in a short window after infection,

might subsequently modify the cellular program established at the first encounter.

The aforementioned mathematical models in the literature do not consider the

heterogeneous spectrum of effector CD8+ T cell during their differentiation into

more terminally differentiated effector states or an exhausted state, both progen-

itor or more terminal ones. On the contrary, as part of this PhD project, we

focus, in collaboration with the Salk Institute of Biological Studies, on the devel-

opment of deterministic mathematical models describing dynamics of progenitor

and terminally differentiated effector and exhausted cells. In particular, with the

purpose of investigating possible pathways of the T cell exhaustion process dur-

ing chronic infection or cancer, we define, in Sections 6.2 and 6.3, mathematical

models differing in the number of differentiation states; so that different biolog-

ical characterisation has been assigned to both effector and exhausted states.

As a clear biological understanding of the process is still lacking, preliminary

work to conceptualise model structures representing different hypotheses regard-

ing heterogeneity of CD8+ T cell exhaustion has been carried out. Not many

experimental studies have been published about the exhaustion-differentiation

process; several, and sometimes controversial, hypotheses have been made about

the differentiation pathway of näive CD8+ T cells to an effector and exhausted

state, as well as about the number of key differentiation states and their biological

meaning.
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During the entire length of this PhD, a collaboration with Prof. Kaech and Dr.

Mann from the Salk Institute of Biological Studies has been kept vivid, and an

extensive literature research about the state of the art of the exhaustion process

from a biological point of view has been carried out. In parallel, mathematical

methods to address model analysis and parameter inference have been learnt.

These same techniques could be applied to more refined model structures that

might be conceptualised as part of future work with the advance of experimental

results, i.e., measurement of more time points, definition of markers for other

cell populations of interest, analysis of transcription factors and RNA-seq data,

as well as estimation of proliferation rates. Conscious of the limitations of our

models, in the remaining part of this section, we go through them, suggesting

possible routes forward.

A first limitation, valid for all models defined in Sections 6.2 and 6.3, is the

low number of measured outputs, both in terms of time points and in terms of cell

populations characterised by specific biological functions. Indeed, the provided

experimental output consists of one measurement, at the end of the optogenetic

experiment, of two exhausted populations, characterised as TIM-3− TCF1+ and

TIM-3+ TCF1−. Effector and exhaustion markers have been considered during

the flow analysis, such as TIM-3, TCF1, PD-1, TOX (see Section 1.1 for more

details); however, only two types of exhausted states, and no quantification of

effector cells, have been provided as measured output. This is the case, since

a clear agreement about a characterisation of effector differentiation states via

specific flow cytometry markers has not been established (McLane et al., 2019;

Winkler & Bengsch, 2020). In addition, the heterogeneity of the initial state of

the system has not been quantified: a total number of N⋆ = 25 × 103 cells has

been placed in the system, but a quantification with respect to the presence of

different effector or exhausted states was missing. Hence, only an estimate, made

by the experimental collaborators, has been used as initial condition of the cell

states defined in the mathematical models.

The restriction on output data, is accompanied by a related important lim-

itation: the defined models have a high number of parameters representing cell

events and transitions between multiple effector states or to exhausted states.

This high dimensional parameter space comes with a few measured experimental
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data sets (measurement of two populations at one time point). The implemented

ABC algorithm is considered computationally efficient (Toni & Stumpf, 2010;

Toni et al., 2009) but, given the large number of variables and parameters in each

of the mathematical models, we observe rather little learning, in the Bayesian

inference, for some of the parameters. As stated in Section 6.3.2, model identifi-

ability (concerning uniqueness of the model parameters determined from exper-

imental observations) comes with a quantification of additional cell populations

(e.g., effector states) or with the estimation of parameter values (e.g., death or

proliferation). However, the implementation of a more efficient algorithm, such

as ABC-SMC, might help improving parameter inference results (Toni & Stumpf,

2010).

In this regard, we remind the reader that the performed analysis of parameter

space (ABC, Sobol index and identifiability) would have benefited from the avail-

ability of intermediate time points during the optogenetic experiment. At the

time of writing this thesis, intermediate time points have not been measured yet,

due to technical limitations: the staining procedure performed before the flow

cytometry analysis does not result in constant antibody staining across samples.

Thus, when planning to compare cell data sets at different time points, experi-

ments should be started at different times and then measured simultaneously. A

quantification of further populations of effector and exhausted cells, as well as the

measurement of consecutive time points, can be considered part of future work

for the experimental plan.

In addition, the experimental data that we used for the modelling quantify

TIM-3− TCF1+ and TIM-3+ TCF1− population of cells (namely progenitor re-

versible and terminally differentiated exhausted cells) in terms of their ratio nor-

malised over the total number of cells. This has implications for the mathematical

modelling. In particular, when considering the Bayesian analysis and model se-

lection, we have been computing a generalised Euclidean distance between the

output summary statistics, i.e., ratio of reversible and terminally exhausted cells

over the total population of live and stained cells present at the end of the op-

togenetic experiment (that is, time t = 48 hours). A better comparison between

experimental and simulated output would have been possible if considering ab-

solute values, i.e., number of cells in each population.
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Proliferation and cell expansion have a crucial importance in a T cell response,

and in giving rise to several cell phenotypes (Bresser et al., 2022; Wherry et al.,

2007). Differentiation to an effector or exhausted phenotype occurs at the same

time as extensive proliferation (Antia et al., 2003; Buchholz et al., 2013; Ger-

lach et al., 2013; Kaech & Ahmed, 2001; Plambeck et al., 2022). However, the

specific role of proliferation in an exhaustion framework has not been clarified

yet. In this Chapter, two different hypotheses are considered. In Model 1 and

2 of Section 6.2, cell division is linked to cell differentiation as happening with

the same antigen-dependent transition, i.e., when a cell divides both of the two

daughters belong to the more differentiated effector state; whereas in the model

defined in Section 6.3 (see Figure 6.5) less differentiated effector cells can un-

dergo both homeostatic and antigen-dependent proliferation (at rate α0 and ψ0,

respectively); moreover, they are able to differentiate to a terminal effector state

in an antigen-dependent fashion (at rate γ0). However, at the time of writing

this thesis, experiments tracking cell proliferation, i.e., number of cell divisions,

in the context of optogenetic experiments, have not been performed. Hence, we

leave for future work any further investigation about modelling techniques to

study the role of cell division in the effector population during the exhaustion-

differentiation process. For example, the use of the green fluorescence protein

enables measurement of cell divisions; if this is a simple and limited approach,

novel studies enhance the tracking possibilities: Bresser et al. (2022) develop a

genetic-tracing approach that allows for the measurement of the number division

of cells in a specific pool, even over extensive rounds of division, without the

limitation of fluorochrome decay.

In all the models defined in Sections 6.2 and 6.3, we quantify the influence of

antigen on the cells’ behaviour for a signal density function, f(t) ∈ [0, 1]. In par-

ticular, we let f(t) be a step function with value 0 if the antigen signal is absent

(cells in the light) and value 1 in its presence (cells in the dark). Smoother func-

tions such as an hyperbolic tangent function can be considered for the definition

of f(t); indeed, a sigmoid function might better represent the transient re-binding

in a short period of the two parts of the LOVTRAP domain. Moreover, one could

refine this simple way of modelling the antigen signal perceived by T cells for a

more appropriate approach, such as modelling antigen dynamics.
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One can question the choice of antigen-dependent rates. For example, in the

model with four cell states outlined in Section 6.3, we make antigen-dependent

the following events (Kaech & Cui, 2012; Wherry & Kurachi, 2015): prolifera-

tion of effector and exhausted cells; differentiation rates from effector to exhausted

states; differentiation from the reversible to the terminally exhausted state. How-

ever, experimental findings might suggest differently; the oscillatory behaviour of

ratios of exhausted populations over dark delay’s duration reported in Figure 6.2,

might imply that the death rate of exhausted cells is also varying in an antigen-

dependent fashion. This consideration could be included in the model’s structure

by letting the death rates depend on the signal function f(t).

Constraints and dependencies between parameters can be also considered.

In all the models, cell proliferation, differentiation and death processes have

been modelled in a linear fashion; however, more complex dependencies between

growth and differentiation might best apply to the exhaustion framework, i.e.,

a non-linear or logistic growth for effector and/or reversible exhausted cells. In

addition, one can include biologically meaningful constrains between parameters

in the model structure. For example, in the two models reported in Section 6.2,

exhaustion-differentiation rates, namely ε1, ε2, ε3, have been uniformly and inde-

pendently sampled. However, an interesting question, still open in the exhaustion

field, is whether early differentiated effector cells commit to an exhausted pheno-

type more or less likely than more terminally differentiated effector cells. Indeed,

as mentioned in Section 1.2, progenitor exhausted cells have large similarities,

in terms of their behaviour and expressed surface markers, with memory pre-

cursor cells arising in an acute infection. Thus, an exhausted phenotype might

arise directly from less differentiated effector cells which have experienced only an

antigen stimulus of short duration. On the other hand, differentiation of CD8+

T cells to more terminal effector states is an intrinsic characteristic of antigen

exposure; hence, terminally differentiated effector cells might play a main role

in maintaining the pool of exhausted cells. This can be investigated, for exam-

ple, by defining two different model structures with constrains, ε1 < ε2 < ε3 or

ε1 > ε2 > ε3, for increasing and decreasing rates, respectively. A model selection

analysis should then follow to determine which model structure is more likely

given the experimental data.
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Overall, the mathematical analysis performed in this Section is based on well

known and powerful techniques to analyse model structure, establish its sensi-

tivity, and infer parameter values. However, the mathematical output relies on

experimental data sets and the results reported in this Chapter leave room for fur-

ther considerations and improvements requiring additional mathematical studies,

as well as experiment refinement.

6.5 Discussion

Upon acute infection, T cell responses are generally able to lead to a large number

of effector cells, which can eliminate the infection, as well as develop immuno-

logical memory to protect against future re-encounters of the same pathogen. In

contrast to acute infections, in chronic infections and cancer, the long-term be-

haviour of most effector cells is to become exhausted, and the formation of the

memory pool is impaired (McLane et al., 2019). However, in both cases T cells

differentiate into a heterogeneous population, with each subset of cells charac-

terised by different phenotypes and functions (Gerlach et al., 2013; Kaech et al.,

2002a; Sallusto et al., 1999).

A key pursuit in CD8+ T cell immunology is to untangle the heterogeneous cell

differentiation process to exhaustion and understand how acute and chronic infec-

tions differ from very early times, and lead to an exhausted progenitor phenotype

to arise. Understanding the CD8+ T cell response to a chronic antigen stimulus

has major implications. It will help clarify the complex process of TCR response

upon activation, as well as the intra-cellular signalling mechanism. Moreover,

it might contribute to fight against chronic infections and tumours; indeed, im-

munotherapies received a lot of attention in the medical field and, recently, many

different therapeutic approaches have been developed. For more details we refer

the reader to Chapter 1 as well as to the review works of Waldman et al. (2020)

and Raskov et al. (2021). Due to the advent of novel experimental techniques sig-

nificant progress has been made in understanding the CD8+ T cell response and

the differentiation process; as advances in the field one could mention that TCR

activation signalling, transcriptomic and epigenetic landscape have been studied

at the single cell level (Chen et al., 2019; Heinzel et al., 2018; Hudson et al., 2019);
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or that the proliferation program and drug interaction in exhaustion fate have

been investigated (Boer & Perelson, 2013; Hashimoto et al., 2018; Marchingo

et al., 2014; Wherry & Kurachi, 2015). However, challenges remain still open

as these studies clarify, only partially, the rules governing the dynamics of im-

mune cells. They do not, for example, tell us how the cell response is specified

at early time points after antigen encounter, and whether it can be subsequently

modified by the persistency or load of antigen. In addition, a characterisation

of several populations emerging during the exhaustion-differentiation process is

still missing; finally, single cell chromatin observations have not been related to

the population behaviour and a comprehensive framework of the reinvigoration

process of exhausted CD8+ T cells has not been developed yet.

As part of the QuanTII, Horizon 2020 Marie Sk lodowska-Curie Action project,

the process of CD8+ T cell exhaustion has been studied, from a mathematical

perspective, during this PhD; in this Chapter, possible trajectories of the T cell

differentiation pathway to an exhausted state have been investigated. In par-

ticular, a collaboration with the Salk Institute of Biological Studies (La Jolla,

USA) has been established for this doctoral study; hence, we focus on modelling

in vitro dynamics of CD8+ CAR T cells at early time points of the performed

optogenetic experiments. We develop and analyse deterministic mathematical

models representing the differentiation process to exhaustion, as characterised

by several differentiation steps, from an early effector to a progenitor reversible

exhausted phenotype to a terminally exhausted one. Unfortunately, at the start

of the SARS-CoV-2 pandemic, the laboratory at Salk Institute was closed for

several months and, consequently, the experiments were delayed. Moreover, this

interruption to experimental plans has been accompanied by a change in the

experimental methods. Indeed, Prof. Kaech and Dr. Mann have modified the

experimental aims to investigate changes in some protein kinase enzymes arising

in a short window after the infection. These studies, that might point out the

beginning of an exhaustion pathway, are ongoing at the moment of writing this

thesis and, thus, cannot be considered for the mathematical modelling.

Moreover, as better detailed in Section 6.4, the defined deterministic models

come with some limitations. Given experimental data, it is not always possible

to identify the correct underlying model: this depends, among other things, on

258



6.5 Discussion

the dimension of parameter space, on parameter dependencies with model vari-

ables and, importantly, on the measurability of model outputs. The developed

deterministic models aim to analyse a still unknown and novel topic, hence, the

need to rely on experiments carried out by collaborators and less on biological

literature. However, the experimental data used for parameter inference were

still preliminary, as experiments were still ongoing; this brought uncertainty in

the reliability of the quantified model output and, consequently, in parameter

inference. In addition, the experimental data that have been used consist of only

one time point and only two exhausted cell populations. The consequence of lim-

ited experimental data is quite clear when looking at the modelling results. We

are aware that, given the current outputs of the modelling analysis, estimates of

parameters representing cell rates could not be considered reliable; and, equally,

could not be applied to deduce and forecast future cell behaviour. However,

upon availability of more extensive experimental data, the same mathematical

techniques, learnt during the doctoral studies and applied in this Chapter, could

be easily adapted to different model structures. In this context, upon model vali-

dation with reliable experimental data, the same mathematical methods could be

indeed used to estimate cell rates and make informative predictions about cell dy-

namics. In particular, conscious of current model limitations, we could consider,

as part of future work, the refinement of exhaustion models with the advanced

experimental results, i.e., measurement of more time points, definition of markers

for other populations of cells, analysis of transcription factors, RNA-seq data, or

estimation of proliferation rates.

Deterministic models developed in this Chapter rely on experimental data,

and a different method could be considered to model the process of CD8+ T cell

exhaustion from another mathematical perspective. Stochastic models might

become significant in describing the evolution of cell dynamics, when random

fluctuations in population sizes cannot be ignored. This can be the case when

considering only a small number of cells modelled in the system, and we are not

in the limit of large population size. Many questions regarding differentiation

fate and timelines are difficult to determine experimentally; however, it might

be possible to analyse some of their properties and the corresponding summary

statistics of a stochastic mathematical model.
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With the aim of mathematically modelling the exhaustion-differentiation pro-

cess, the same theoretical methods, outlined in Chapters 3, 4 and 5 for a compart-

mental model, could be applied to stochastic models representing näive, effector

and exhausted cells. Indeed, as pointed out in Chapter 1, the exhaustion process

can be considered a special example of differentiation, to a dysfunctional, and

not functional-specific, state.

One can consider the techniques developed in Chapter 3 for a time-independent

compartmental model and apply a probability generating function approach to

characterise the probability distribution of a stochastic process for T cell ex-

haustion. For example, one can assume to have three exhausted populations

representing precursor, progenitor and terminally exhausted cells; and set up a

model of a sequence of three compartments, C1, C2 and C3, respectively. Cellular

events in each compartment can be associated with probabilities and one can

define a random variable representing the number of cells reaching the terminally

exhausted state, descended from one precursor cell of compartment C1. We can

proceed as in Chapter 3: define the corresponding probability generating function

and find a recursive relationship to describe the probability density of the corre-

sponding random variable, R. Similarly, a time-dependent compartmental model

as outlined in Chapter 5 could be defined for the process of T cell exhaustion.

In both Chapter 3 and 5, we mention that asymmetric division (cell division

event characterised by one daughter cell remaining in the mother’s compartment,

while the other moving to the next compartment) is a subject of recent research.

We show how it can play a role in thymus development (Pham et al., 2015) and

hematopoiesis (see Sections 3.5, 5.2.3 and 5.2.2, respectively) and it might be

relevant for exhaustion development, as well. Indeed, current assumptions on

memory precursor-cell formation include bifurcation models, where effector and

memory fates segregate early following asymmetric division; this event is respon-

sible to unequally distribute Tbet and Eomes transcription factors (Dolina et al.,

2021; Pipkin et al., 2010; Rao et al., 2010; Zehn et al., 2022). Theoretical work

outlined in Sections 3.2.7 and 3.3.3 or Section 5.1.2 could be applied to a compart-

mental model for the exhaustion process. Such a model relies on compartment

definition according to the characterised and measured populations. It will be

part of future work and, hence, beyond the scope of this thesis.
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As outlined in Section 1.2, the mechanisms underlying the exhaustion pro-

cess have not been clearly defined yet. The landscape is quite complex as, on

one side, the persistency of antigen drives cells to an exhausted state (lacking

memory potential) and, on the other side, similarities in expressed molecules be-

tween exhausted and memory cells have been observed (Angelosanto et al., 2012;

Wherry & Kurachi, 2015). Thus, a mathematical study of the interplay between

näive, effector, memory T cells and the exhausted state could be important in

shedding light onto the question if exhausted cells necessarily arise from termi-

nally differentiated effector cells or may also arise from the memory pool. As in

Chapter 5, we could define a stochastic model at the population or single-cell level

as a multi-variate Markov process for the CD8+ T cell exhaustion-differentiation

process. Since the analytical treatment of such models is typically complex, we

could follow some analytical methods to study summary statistics of interest, as

an alternative to the computational approach of running Gillespie simulations,

as well as to the classic analytical study of the Kolmogorov equations. For more

mathematical details about probability theory and stochastic processes, we refer

the reader to Sections 2.1 and 2.2. Moreover, a sensitivity analysis can be carried

out to quantify how the considered stochastic descriptors are influenced by the

model’s parameters.

When analysing statistics at the population level, one needs to take into ac-

count the total number of cells over time, as well as the possible interactions

between cells states. Using a single-cell approach, we lose information about

population sizes but we lighten the calculation and we could compute different

summary statistics to outline basic model properties that are then reflected at

the population level dynamics. This approach has been applied in mathemat-

ical biology before by de la Higuera et al. (2019); Gómez-Corral et al. (2020);

López-Garćıa et al. (2018). The model depicted in Figure 6.9, for instance, rep-

resents the näive N , effector E and memory M cell state of a CD8+ T cell as

well as the exhausted state X. We propose, as part of future work, to track the

dynamics of a single cell, starting in state i, until the cell eventually reaches the

exhausted state or dies. In this framework, one can define the continuous-time

Markov chain Υ = {Y(t) : t ≥ 0} with Y(t) ≥ 0 for all t ≥ 0, over the state space

SY = {N,E,M,X} ∪ {∅}, where the state {∅} represents the death of the cell.
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Figure 6.9: State diagram for the continuous-time Markov chain Υ = {Y(t) : t ≥
0} with Y(t) ≥ 0 for all t ≥ 0, over the state space SY = {N,E,M,X} ∪ {∅},

representing näive, effector, memory and exhausted CD8+ T cells, respectively.

The state {∅} represents the death of the cell. Näive, effector and memory cells

can die, divide or differentiate. Effector and memory can differentiate to the

exhausted state X.

Summary statistics of the defined stochastic process could be then analysed

following first-step arguments. For example, we could define:

• the probability of the cell, starting in state i for i = {N,E,M,X}, to

differentiate into the exhausted state before dying;

• the “functional”-span Ti of the cell starting in state i, Ti, which, since

exhaustion is a dysfunctional state, quantifies the functional potential of

cells, before reaching the exhaustion state, in the system depending on

their initial location. Note that TX = 0; moreover, since the tracked cell

can die, given

Ti = inf{t ≥ 0 : Y(t) = X |Y(0) = i}, for i ∈ {N,E,M,X}

we could be actually interested in the restricted time Ti 1{Ti<+∞} where

1{Ti<+∞} is the indicator function defined as

1{Ti<+∞} =

{
1, if Ti < +∞,

0, if Ti = +∞,

and

• the number of divisions carried out by the cell during its “functional”-span,

which quantifies the proliferation potential of cells in the system.

262



6.5 Discussion

Overall, the results of a modelling strategy for the process of CD8+ T cell

exhaustion can be enhanced by further mathematical analysis, as well as the de-

velopment of novel experimental techniques. The cell division rate, the transcrip-

tomic and epigenetic profile, and a characterisation of the different population of

cells arising from the differentiation process are examples of still open questions

in biology. Recent works, such as the one of Bresser et al. (2022), might innovate

the biological and mathematical research in the field of exhaustion: the genetic-

tracing method they developed and applied during an acute infection could be

used to determine the replicative history of terminal effector and exhausted cells.
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Appendix A

Recurrence relation for the

probabilities Qk(M)

This Appendix is meant to extend the work outlined in Section 3.2.3 and provide

more details about the observations made in Sections 3.2.6 and 3.2.7; here, the

recurrence relations for Qk(2) for both the cases of pa(i) = 0 and pa(i) > 0, for

i = 1, 2, are derived. Moreover, we hint how to generalise the method for M > 2.

A.1 Recurrence relation in the case pa(i) = 0

We set M = 2 and consider the general case of two non-identical compartments,

that is ϕ1(z) ̸= ϕ2(z). The probability generating function of the process is

Φ2(z) = ϕ1(ϕ2(z)) =
∑+∞

k=0Qk(2)zk. More explicitly,

Φ2(z) =
1 −

√
∆2

1 − 2pb(1)pe(1)
pb(2)

+ 2pb(1)pe(1)
pb(2)

√
∆2

2 − 4pb(2)pe(2)z

2pb(1)
,

that is a rational function with a nested root of the type,

p3(z) +
r

√
p1(z) +

√
p2(z), (A.1)

where r = 2, p1(z) = ∆2
1−2pb(1)pe(1)

pb(2)
constant and p2(z) = ∆2

2−4pb(2)pe(2)z with

a constant coefficient upfront. The third addend p3(z) = 1
2pb(1)

is constant and

does not contribute to the recurrence since it does not influence the zk-dependent
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terms of the power series of Φ2(z). Given that p1(z) and p2(z) are polynomials,

we can follow the method of Mathar (2021) and derive a P-finite recurrence for

Qk(2). For simplicity of notation, we denote, similar to Sections 3.2.3 and 3.2.7,

w2
i (z) = 1−4pb(i)pd(i)−4pb(i)pe(i)z for i = 1, 2. Then, Φ2(z) and its derivatives

read

2pb(1)Φ2(z) = 1 − w1,

Φ′
2(z) =

pe(1)

w1

ϕ′
2(z) =

pe(1)pe(2)

w1w2

,

Φ′′
2(z) =

2pe(1)p2e(2)

w3
1w

3
2

(
pb(2)w2

1 + pe(1)pb(1)w2

)
,

where w1 and w2 are shorthand for w1(ϕ2(z)) and w2(z). Since the probability

generating function Φ2(z) is D-finite (see Definition (A.1) and Stanley (1980) for

more details), we can follow Mathar (2021) and assume there exist polynomials

P2(z), P1(z) and P0(z) such that

P2(z)Φ′′
2(z) + P1(z)Φ′

2(z) + P0(z)(1 − 2pbΦ2(z)) = 0 . (A.2)

We substitute the expression of Φ2(z) and its derivatives and multiply by w3
1w

3
2,

2pe(1)p2e(2)
(
pb(2)w2

1 + pb(1)pe(1)w2) P2(z)+

+ pe(1)pe(2)w2
2w

2
1 P1(z) + w3

2w
4
1 P0(z) = 0. (A.3)

We substitute w2
1 = ∆2

1 − 2pe(1)rb + 2pe(1)rbw2 where we denoted rb = pb(1)
pb(2)

and

note that all terms of Equation (A.3) are proportional to wj2 with j = 1, . . . , 5.

We note that if j is odd, then wj2 ∝ (∆2− 4pb(2)pe(2))1/2 , otherwise, if j is even,

wj2 ∝ (∆2 − 4pb(2)pe(2)). Instead of solving Equation (A.3), we follow Mathar

(2021) and ask for the components which depend on w2(z) and w2
2(z) (that are

j odd or even, respectively) to be individually zero. This results in a system of

two equations {
α1P2(z) + α2P1(z) + α3P0(z) = 0

α4P2(z) + α5P1(z) + α6P0(z) = 0
,

where we denote with αi, for i = 1, 2, 3 the coefficients of A.3 proportional to

w2(z), and for i = 4, 5, 6 the terms proportional to w2
2(z). One can think of

(P2(z), P1(z), P0(z)) as a three dimensional vector orthogonal to (α1, α2, α3) and
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(α4, α5, α6). So that we can find (P2(z), P1(z), P0(z)) as the cross product of the

two α vectors,

P2(z) = α2α6 − α3α5 ,

P1(z) = α3α4 − α1α6 ,

P0(z) = α1α5 − α2α4 .

The solution of this linear system gives P2(z), P1(z) and P0(z) as a second order,

first order and constant polynomials in terms of z, respectively. Namely, P2(z) =

P2,0 + P2,1z + P2,2z
2, P1(z) = P1,0 + P1,1z and P0(z) = P0,0 where

P0,0 = −2pb(1)p2e(1)p2e(2) ,

P1,1 = 32pb(1)p2e(1)p2e(2) ,

P1,0 =
pe(2)

rb

(
∆2

1 − 2pe(1)rb
)2 − 8pe(2)

(
p2e(1)rb − 4

p2b(2)pd(2)

rb

)
,

P2,2 = P1,1 ,

P2,1 = 2
pe(2)

rb

(
∆2

1 − 2pe(1)rb
)2 − 64pb(1)p2e(1)p2e(2) ,

P2,0 = − ∆2
2

2pb(1)

(
1 − 4pe(1)rb

+8pb(1)pd(1)

(
−1 + 2pb(1)pd(1) + 2pe(1)rb + 2

p2e(1)pd(2)rb
pd(1)

))
.

Recall that Φ2(z) is a probability generating function and thus, by definition,

Φ2(z) =
+∞∑
k=0

Qk(2)zk, Φ′
2(z) =

+∞∑
k=0

(k + 1)Qk+1(2)zk,

and Φ′′
2(z) =

+∞∑
k=0

(k + 2)(k + 1)Qk+2(2)zk .

We substitute in (A.2) and we match terms proportional to zk. We thus derive a

three-terms recurrence relation for the two compartments case

P2,0 (k + 2)(k + 1)Qk+2(2) + [P2,1k
2 + (P1,0 + P2,1)k + P1,0]Qk+1(2)

+[P2,2k
2 + (P1,1 − P2,2)k + P0,0]Qk(2) = 0 .

(A.4)
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A.1 Recurrence relation in the case pa(i) = 0

Substituting the coefficients Pj,i for j = 0, 1, 2 and i = 0, . . . , j, we get

∆2
2

(
∆2

1(4pe(1)rb − ∆2
1) − 16p2e(1)pb(1)pd(2)rb

)
(k + 1)(k + 2)Qk+2(2)

+
(
∆4

1 − 4pe(1)rb∆
2
1 + 4p2e(1)r2b (1 − 2∆2

2)
)
pb(2)pe(2)

× (2k + 1)(2k + 2)Qk+1(2) + p2e(1)p2e(2)p2b(1)
(
64k2 − 4

)
Qk(2) = 0.

If pd(1) = pd(2) = 0, then ∆1 = ∆2 = 1 and (A.4) takes the simpler form

(4pe(1)rb − 1)(k + 1)(k + 2)Qk+2(2)

− pb(2)pe(2)(4p2e(1)r2b + 4pe(1)rb − 1)(2k + 1)(2k + 2)Qk+1(2)

+ 4p2b(2)p2e(1)p2e(2)r2b (16k2 − 1)Qk(2) = 0.

That is the two-compartments recurrence relation that gives Qk(2) = P (R = k)

for the case of M = 2.

A.1.1 Recurrence for the general case of M > 2

For the general case of M > 2 compartments, we haven’t found an explicit

recurrence. However, we can hint that this method could still be implemented,

even if with long and complicated calculations. We start recalling the definitions

of D-finite and algebraic (Stanley, 1980).

Definition A.1. A formal power series f(x) ∈ C[[x]] is said to be D-finite (or

differentiably finite) if f(x) and all its derivatives f (d)(x) = dd

dxd
f(x), for d ≥ 1,

span a finite-dimensional subspace of C[[x]]. Thus, there exist finitely many

polynomials Pd(x), . . . , P0(x) non all zero, and a polynomial S(x), such that

Pd(x)f (d)(x) + Pd−1(x)f (d−1)(x) + · · · + P1(x)f (1)(x) + P0(x)f(x) + S(x) = 0 .

Definition A.2. A formal power series f(x) ∈ C[[x]] is said to be algebraic if

f(x) and its powers span a finite-dimensional subspace of C[[x]]; that is, there

exists polynomials Rn(x), . . . , R0(x) non all zero such that

Rn(x)fn(x) +Rn−1(x)fn−1(x) + · · · +R1(x)f(x) +R0(x) = 0 .
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Moreover, we recall the definitions of ΦM(z) and χM(z) in Section 3.2.6 and

observe that, since the probability generating function ϕ1(z) is D-finite and alge-

braic, the composition ϕ1(χM(z)) is D-finite (Stanley, 1980). Thus, by definition,

there exist polynomials Pi(z), for i = 0, . . . , d, and S(z) such that

Pd(z)Φ
(d)
M + Pd−1(z)Φ

(d−1)
M + · · · + P1(z)Φ′

M(z) + P0(z)ΦM(z) + S(z) = 0 ,

Note that when M = 2 this simplifies into Equation (A.2). In this case, ϕ(z) is

algebraic and Φ2(z) = ϕ1(ϕ1(z)) is D-finite and d = 2. We reserve for future work,

out of the scope of this PhD thesis, to apply the method described in Mathar

(2021) and find a general recurrence relation for Qk(M), for M > 2. Open

questions one needs to answer are the order of the differential equation of ΦM(z),

that is the value of d, as well as the degree of each polynomial Pi(z) with respect

to z.

A.2 Recurrence relation in the case of asym-

metric division

We set M = 2 and consider the general case of two non-identical compartments,

that is ϕ̃1(z) ̸= ϕ̃2(z). The probability generating function of the process is

Φ̃2(z) = ϕ̃1(ϕ̃2(z)) =
∑+∞

k=0 Q̃k(2)zk, that is,

Φ̃2(z) =
1 − pa(1)ϕ̃2(z) −

√
(1 − pa(1)ϕ̃2(z))2 − 4pb(1)pd(1) − 4pb(1)pe(1)ϕ̃2(z)

2pb(1)
.

Note that Φ̃2(z) is a nested square root function of the type in (A.1) as for the

self-renewal case of pa(i) = 0. However, the inclusion of the asymmetric division

event brings complexity into the calculations for the recurrence relation, because

p̃1(z) and p̃3(z) in (A.1) are not constant addends but functions of z. We can

rearrange the terms of Φ̃2(z) and write it as

2pb(1)Φ̃2(z) = H1(z) −H2(z) ,
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A.2 Recurrence relation in the case of asymmetric division

where

H1(z) = 1 − pa(1)

2pb(2)
+
pa(1)pa(2)

2pb(2)
z +

pa(1)

2pb(2)
w̃2(z) ,

H2
2 (z) =

p2a(1)p2a(2)

2p2b(2)
z2 +

(
pa(2)

pb(2)
(pa(1) + 2pb(1)pe(1) − p2a(1)

p2b(2)
(pa(2) + pb(2)pe(2))

)
z

+

(
pa(1) + 2pb(1)pe(1)

pb(2)
− p2a(1)(1 − pa(2)z)

2p2b(2)

)
w̃2(z)

+ ∆2
1 +

p2a(1)

2p2b(2)
(1 − 2pd(2)pb(2)) − pa(1) + 2pb(1)pe(1)

pb(2)
,

and we denoted

w̃2
i (z) = 1 − 4pb(i)pd(i) − (2pa(i) + 4pb(i)pe(i))z + p2a(i)z

2.

The different form of functions H1(z) =
∑+∞

k=0 hkz
k and H2(z) =

∑+∞
k=0 gkz

k

results in different recurrence relations. In particular, the function H1(z) satisfies

2pb(2)H1(z) = 2pb(2) − pa(1) + pa(1)pa(2)z + pa(1)w̃2(z) .

We compute its first derivative,

2pb(2)H ′
1(z) = pa(1)pa(2) +

1

2
pa(1)

w̃′
2(z)

w̃2(z)
,

and assume, following Mathar (2021), there exist polynomials P1(z), P0(z) and

S(z) such that:

P1(z)H ′
1(z) + P0(z)H1(z) + S(z) = 0 .

After some algebra we find

P1(z) = 2w̃2
2(z) ,

P0(z) = −(w̃2
2(z))′ ,

S(z) =
(2pb(2) − pa(1)(1 − pa(2))z) (w̃2

2(z))′ − 2pa(1)pa(2)w̃2
2(z)

2pb(2)
.

Given that deg(P1(z)) = 2 and deg(P0(z)) = 1, we can write

2P1,0(k + 2)hk+2 +
(
2P1,1(k + 1) − P0,0

)
hk+1 + (2P1,2k − P0,1)hk = 0 ,
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where we denoted with Pj,i the coefficients of order i of polynomial Pj(z). Finally,

we get the following three-term recurrence

∆2
2(k + 2)hk+2 +

(
pa(2) + 2pb(2)pe(2)

)
(2k + 1)hk+1 + p2a(2)(k − 1)hk = 0 . (A.5)

A recurrence relation for the function H2(z) is instead less straightforward to

obtain. Following Mathar (2021), we assume there exist polynomials P2(z), P1(z), P0(z)

and S(z) such that

P2(z)H ′′
2 (z) + P1(z)H ′

2(z) + P0(z)H2(z) + S(z) = 0 . (A.6)

We substitute in (A.6) the first and second order derivatives of H2(z) and we ask

for the components proportional to w̃2(z) and w̃2
2(z) (that are odd or even powers

of w̃2(z), respectively) to be individually zero (Mathar, 2021). This results in a

system of three equations which straightforwardly gives S(z) = 0. After some

algebra, one can find polynomials P2(z), P1(z), P0(z) such that

P2(z) =
6∑
i=0

P2,i z
i, P1(z) =

4∑
i=0

P1,i z
i, and P0(z) =

3∑
i=0

P0,i z
i

where, for j = 0, 1, 2, Pj,i are the constant coefficients of the corresponding poly-

nomial Pj(z). Recall that H2(z) is a generating function and thus H2(z) =
+∞∑
k=0

gkz
k,

H ′
2(z) =

+∞∑
k=0

(k + 1)gk+1z
k, and H ′′

2 (z) =
+∞∑
k=0

(k + 2)(k + 1)gk+2z
k .

Equating terms proportional to zk, we find the following recurrence relation

(k+6)(k + 5)gk+6 +
[
P2,1k

2 + (9P2,1 + P1,0)k + (20P2,1 + 5P1,0)
]
gk+5+

+
[
P2,2k

2 + (7P2,2 + P1,1)k + (12P2,2 + 4P1,1 + P0,0)
]
gk+4+

+
[
P2,3k

2 + (5P2,3 + P1,2)k + (6P2,3 + 3P1,2 + P0,1)
]
gk+3+

+
[
P2,4k

2 + (3P2,4 + P1,3)k + (2P2,4 + 2P1,3 + P0,2)
]
gk+2+

+
[
P2,5k

2 + (P2,5 + P1,4)k
]
gk+1 + k(k − 1)P2,6 gk = 0 .

This six-terms recurrence for H2(z), together with the recurrence for H1(z) of

Equation (A.5), give the recurrence for Q̃k(2) = P (R = k) for the general case of

two compartments with pa(i) > 0, for i = 1, 2.
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Appendix B

Asymptotic behaviour of

distribution Qk(M)

This Appendix is meant to extend the work outlined in Section 3.2.4 where the

asymptotic behaviour of Qk(M) is analysed for M = 1, pa = 0; here, we pro-

vide more details about the observations made in Sections 3.2.6 and 3.2.7, for

the case M > 1, pa = 0 and pa > 0, respectively. We follow the method of

singularity analysis developed by Flajolet & Sedgewick (2009). The idea is that

by locating the isolated singularities of a function, the long-term behaviour of

its coefficients of the series expansion can be found. The asymptotic analysis

of Qk(M) can be directly based on the general discussion of composition of sin-

gularities of ϕ1(z), ϕ2(z), . . . , ϕM(z). When considering the composition of two

functions analytic at the origin and with an isolated singularity, one can list three

different cases according to the values of their radii of convergence: supercritical

case if the singularity is driven by the external function; subcritical case if the

singularity is driven by the internal function; and the critical case in case of a

confluence of singularities (Flajolet & Sedgewick (2009)).

Two compartments, M = 2. We consider the case of two compartments and,

for simplicity of notation, we assume them to be identical, that is ϕ1(z) = ϕ2(z),

so that we can omit the compartment-index i. We aim to find the long-term
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behaviour of the coefficients of the power series of the function

Φ2(z) = ϕ(ϕ(z)) =
1 −

√
∆2 − 2pe + 2pe

√
∆2 − 4pbpez

2pb
.

The inner function ϕ(z) has singularity in σ = ∆2

4pbpe
= 1

γ1
, as outlined in Equa-

tion (3.12) in Section 3.2.4. Whereas the outer function ϕ(ϕ(z)) has a singularity

in z = σ2 such that

∆2 − 2pe + 2pe
√

∆2 − 4pbpez = 0 ,

which gives us

σ2 =
∆2

4pbpe
− 1

4pbpe

(
2pe − ∆2

2pe

)2

≈ 1 . (B.1)

Since σ2 < σ we are in the supercritical case, that is the singularity of the function

Φ2(z) is driven by the external function. In particular, Φ2(z) has a singularity in

σ2 as in Equation (B.1), but the inner function ϕ(z) is analytic in it. We can then

Taylor expand the inner function ϕ(z) in σ2 until the first order and substitute it

in the expression of Φ2(z),

Φ2(z) =
1 −

√
∆2 − 4pbpe(ϕ(σ2) + ϕ′(σ2)(z − σ2))

2pb

=
1

2pb
−
√

∆2 − 4pbpe(ϕ(σ2) + σ2ϕ′(σ2))

2pb

√
1 − 4pbpeϕ′(σ2)

∆2 − 4pbpe(ϕ(σ2) − σ2ϕ′(σ2))
z

=
1

2pb
−
√

4pbpeσ2ϕ′(σ2)

2pb

√
1 − 1

σ2
z ,

where, in the last step, we used that ϕ(σ2) = ∆2

4pbpe
. We let Qk(2) = [zk]Φ2(z)

and apply Equation (3.11) to find the asymptotic coefficients of the generating

function Φ2(z),

Qk(2) ∼
√

4pbpeσ2ϕ′(σ2)

4pb
√
π

k−3/2σ−k
2

=

√
p3eσ2

8pbπ(2pe − ∆2)

(
1

σ2

)k
k−3/2 , (B.2)

given that ϕ′(z)
∣∣
z=σ2

=
2p2e

2pe − ∆2
. The behaviour of Qk(2) for large value of

k, is depicted in red in Figure B.1. Here, we set N = 25 and consider equal

compartments, that is pd(i) = 0.1/2 for i = 1, 2.
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Three compartments, M = 3 If we add a second intermediate compartment,

so that M = 3, we need to analyse the singularities of a function with three

nested square roots. Assuming, for simplicity of notation, the compartments to

be identical, that is ϕ1(z) = ϕ2(z) = ϕ3(z) = ϕ(z),

Φ3(z) = ϕ(ϕ(ϕ(z))) =
1 −

√
∆2 − 4pbpeϕ(ϕ(z))

2pb
.

Let σ3 satisfy ∆2 − 4pbpeϕ(ϕ(σ3)) = 0, we find

σ3 =
∆2

4pbpe
− 1

16pbp3e

[(
2pe − ∆2

2pe

)2

− ∆2 + 2pe

]2
≈ 1 .

Since σ3 < σ2 < σ = ∆2

4pbpe
we fall in the supercritical case, that is the inner

function ϕ(ϕ(z)) is analytic in σ3. We denote ϕ̂2(z) = ϕ(ϕ(z)) and ϕ̂′
2(z) its

derivative with respect to z. We substitute ϕ̂2(z) first order Taylor approximation

in Φ3(z),

Φ3(z) =
1

2pb
− 1

2pb

√(
∆2 − 4pbpeϕ̂2(σ3) + 4pbpeσ3ϕ̂′

2(σ3)
)
− 4pbpeϕ̂′

2(σ3) z .

Thus,

Qk(3) ∼

√
∆2 − 4pbpeϕ̂2(σ3) + 4pbpeσ3ϕ̂′

2(σ3)

4pb
√
π

γk3 k
−3/2 (B.3)

where

γ3 =
4pbpeϕ̂

′
2(σ3)

∆2 − 4pbpeϕ̂2(σ3) + 4pbpeσ3ϕ̂′
2(σ3)

.

The behaviour of Qk(3) for large value of k, is depicted in blue in Figure B.1 where

N = 25 and consider equal compartments, that is pd(i) = 0.1/3 for i = 1, 2, 3.
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Figure B.1: Asymptotic behaviour of Qk(M) for M = 1, 2, 3 in green, red and

blue, respectively. Yellow line shows Q̃k(1) distribution. We set N = 25 and

consider equal compartments, pd(i) = 0.1/M for i = 1, . . . ,M and pa(1) = 0.2

for the asymmetric case (pa(i) = 0 otherwise). Straight lines are obtained using

Equations (3.13), (B.2) and (B.3) for M = 1, 2, 3 respectively. Yellow line for the

asymptotic case with M = 1 is given by Equation (3.31). Dots are obtained from

compositions of generating function with Mathematica.
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Appendix C

Solution of a Riccati system of

two equations

In this appendix, we focus on the mathematical steps necessary to solve Sys-

tem (4.7), defined in Section 4.3 for a sequence of two compartments, and find

the probability generating function F1(x1, x2, x3, t); this System involves a dif-

ferential equation of Riccati type and, thus, special considerations are required.

Moreover, we consider a less complex case where the function F2 is a simple

exponential; for this, a complete analytical solution can be reported.

C.1 Solution of System (4.7)

As in Section 4.3.2, since we are interested in the time dependency of the probabil-

ity generating functions, we will keep the notation short and denote F1(x1, x2, x3, t),

F2(x2, x3, t) with F1(t), F2(t), respectively. As outlined in Section 4.3.2 for M = 2,

solution of the differential equation for F2(x2, x3, t) = F2(t) can be derived by ap-

plying the integration by parts method. The corresponding differential equation,

indeed, is of the same form of the differential equation resulting from the case of

direct differentiation M = 1. Solution is given by Equation (4.11) which reads

F2(t) =
d1 + d2 e−γ2t

d3 + d4e−γ2t
.

with d1 = a2 (x2 − b2), d2 = b2 (a2 − x2), d3 = x2 − b2 and d4 = a2 − x2,

where a2 < b2 are the two roots of r(F2) = λ2F
2
2 − S2 F2 + µ2 + ν2x3; that is
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C. SOLUTION OF A RICCATI SYSTEM OF TWO EQUATIONS

a2, b2 =
(
S2 ± (S2

2 − 4λ2(µ2 + ν2x3))
1/2 )

/2λ2.

We now consider F1(t). The differential equation for F1(t) is a Riccati equa-

tion, i.e. a first order differential equation, with non-constant coefficients. In

particular, the quadratic and first order coefficients, λ1, S1 respectively, are con-

stant; whereas the inhomogeneous term, µ1 + ν1F2(t), is an exponential function

of the independent variable t. Following the usual substitution method for Riccati

equation, we transform the first order equation into a linear second order equa-

tion with non-constant coefficients for which more solving methods are available

in the literature (Pala & Ertas, 2017; Sugai, 1960). In particular, we introduce a

new function f1(t), such that F1(t) = − f ′1(t)

λ1f1(t)
. Thus, f1(0) = 1, f ′

1(0) = −λ1x1
and

f ′′
1 (t) + S1f

′
1(t) + λ1[µ1 + ν1F2(t)] f1(t) = 0 . (C.1)

where we denoted with f ′
1(t) and f ′′

1 (t) the first and second derivative of f1(t)

with respect to the independent variable t. Equation (C.1) is a second order

differential equation where the coefficient of the unknown function f1(t) has an

exponential form. Differential equation of this type are usually solved via a change

of variable and application of the Frobenius’ method (Boyce & di Prima, 2009).

In particular, we define τ = e−
γ2
2
t so that

df1(t)

dt
= −γ2

2
τ
df1(τ)

dτ
,

d2f1(t)

d t2
= −γ

2
2τ

4

(
df1(τ)

dτ
+ τ

d2f1(τ)

d τ 2

)
.

With an abuse of notation, we denote with f ′
1(τ) and f ′′

1 (τ) the first and second

derivatives of f1(τ) with respect to the independent variable τ . If d3 + d4τ
2 ̸= 0,

that is x2 ̸= b2−a2e−γ2t

1+e−γ2t
, we get

(
p2,2 + p2,4τ

2
)
τ 2f ′′

1 (τ) +
(
p1,1 + p1,3τ

2
)
τf ′

1(τ) +
(
p0,0 + p0,2τ

2
)
f1(τ) = 0 . (C.2)

Here, to keep the notation simple, we make use of the fact that the coefficient of

the ith derivative of f1(τ) is a polynomial with respect to the new independent

variable τ . Thus, we denote with pi,j the coefficient of the term τ j of the derivative
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C.1 Solution of System (4.7)

f
(i)
1 (τ). In particular,

p2,4 = d4
γ22
4
, p2,2 = d3

γ22
4
, p2,3 = p2,1 = p2,0 = 0;

p1,3 = d4
γ2
2

(γ2
2

− S1

)
, p1,1 = d3

γ2
2

(γ2
2

− S1

)
, p1,2 = p1,0 = 0;

p0,2 = ν1d2, p0,0 = ν1d4, p0,1 = 0 .

Following the Frobenius’ method, we assume f1(τ) = xr
∑+∞

n=0 anx
n, for r ∈ R.

Substituting f1(τ) and its derivatives into Equation (C.2) we get

+∞∑
n=0

an(r + n)(r + n− 1)
(
p2,2x

r+n + p2,4x
r+n+2

)
+

+∞∑
n=0

an(r + n)
(
p1,1x

r+n + p1,3x
r+n+2

)
+ p0,0

+∞∑
n=0

anx
r+n + p0,2

+∞∑
n=0

anx
r+n+2 = 0 .

Rearranging the terms, we find(
r(r − 1)p2,2 + rp1,1 + p0,0

)
a0x

r +
(
r(r + 1)p2,2 + (r + 1)p1,1 + p0,0

)
a1x

r+1

+
+∞∑
n=2

[(
(r + n− 2)(r + n− 3)p2,4 + (r + n− 2)p1,3 + p0,2

)
an−2

+
(
(r + n)(r + n− 1)p2,2 + (r + n)p1,1 + p0,0

)
an

]
xr+n = 0 . (C.3)

When setting the first coefficient of the series to zero, one obtains the so called

indicial equation,

p2,2r
2 + (p1,1 − p2,2)r + p0,0 = 0 . (C.4)

Equation (C.4) is a quadratic polynomial in r and, thus, has two real roots, r1, r2,

r1,2 =
S1 ±

√
S1 − 4λ1(µ1 + ν1d1/d3)

γ2
=
S1

γ2
± α ,

where α = (S1−4λ1(µ1 +ν1d1/d3))
1/2/γ2. Since r1−r2 is not an integer, we have

two linearly independent Frobenius-type solutions (Boyce & di Prima, 2009),

f1(τ) = c1 τ
r1

+∞∑
n=0

an(r1)τ
n + c2 τ

r2

+∞∑
n=0

an(r2)τ
n , (C.5)
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C. SOLUTION OF A RICCATI SYSTEM OF TWO EQUATIONS

where an(r1), an(r2) are given by the recurrence relation in Equation (C.3). In

particular, we set a0(r) = 1 and obtain

an(r) = −(r + n− 2)(r + n− 3)p2,4 + (r + n− 2)p1,3 + p0,2
(r + n)(r + n− 1)p2,2 + (r + n)p1,1 + p0,0

an−2(r) .

Thus, we have a1(r) = a3(r) = · · · = an(r) = 0 for all n = 2m+ 1 with m ∈ N+,

and otherwise,

a2m(r) = −(r + 2m− 2)(r + 2m− 3)p2,4 + (r + 2m− 2)p1,3 + p0,2
(r + 2m)(r + 2m− 1)p2,2 + (r + 2m)p1,1 + p0,0

a2m−2(r) .

Substituting r1 and r2 we get

a2m(r1) = − a2m−2(r1)

2p2,2m(m− α)

(
p2,4m

2 − 4p2,4αm− 4p2,4(2m− α− 1)

− d4λ1ν1

(
d1
d3

− d2
d4

))

and

a2m(r2) = − a2m−2(r2)

2p2,2m(m− α) − d3γS1α

(
p2,4m

2 + 4p2,4αm− 4p2,4(2m+ α− 1)

− d4λ1ν1

(
d1
d3

− d2
d4

))
.

We can now substitute an(r1) and an(r2) in Equation (C.5) and find the general

solution f1(τ) as the sum of two independent solutions; in particular, f1(τ) is the

sum of two linearly independent Gaussian hypergeometric function 2F1(a, b, c; τ)

that we computed with Mathematica. By substituting back τ = e−
γ2
2
t and com-

puting the first derivative of f1(t) with respect to time t, we find F1(t) = − f ′1(t)

λ1f1(t)

where constants c1, c2 of (C.5) are determined from the initial conditions f1(0) = 1

and f ′
1(0) = −λ1x1. The resulting close formula for F1(t) is a linear combination

of Gaussian hypergeometric functions with different parameters. However, due to

its long expression we do not report it in this PhD thesis. Instead, we find more

interesting to show the reader the calculations required to obtain the probability

generating function F1(t) for a simplified case.
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C.2 A simplified case

C.2 A simplified case

In this Section, instead of the actual solution of F2(t) reported in Equation (4.11),

we consider F̃2(t) = e−γt as a simple exponential of parameter γ. Moreover, we

set ourselves into the case of µ1 = 0 so that no death event is occurring in the first

compartment, and we assume S1 = λ1+ν1 = 1. The equivalent of Equation (4.13)

is now

f ′′
1 (t) + S1 f

′
1(t) + λ1ν1F̃2(t) f1(t) = 0 .

Since the coefficient of f1(t) is time-dependent, the application of the Frobenius’s

method is still required. As before, we let τ = e−
γ
2
t and obtain a differential

equation with respect to τ ,

p2,2τ
2f ′′

1 (τ) + p1,1τf
′
1(τ) + p0,2τ

2f1(τ) = 0 ,

where p2,2 = γ2

4
, p1,1 = γ

2

(
γ
2
− 1
)
, p0,2 = λ1ν1. Note that, in this simplified

assumptions, the coefficients of the function f1(τ) as well as of its first and second

order derivative are of degree two, one and two, respectively. Now, Equation (C.3)

becomes(
p2,2r(r − 1) + p1,1r

)
a0 +

(
p2,2r(r + 1) + p1,1(r + 1)

)
a1

+
+∞∑
n=2

[(
p2,2(r + n)(r + n− 1) + p1,1(r + n)

)
an + p0,2an−2

]
xr+n = 0 .

(C.6)

The roots of the indicial equation are now

r1 = 0, r2 =
2

γ
,

which are distinct and such that r1 − r2 is not an integer. Thus, we still have

two linearly independent Frobenius-type solutions such that the general solution

is given by

f1(τ) = c1

+∞∑
n=0

an(0)τn + τ 2/γ
+∞∑
n=0

an(2/γ)τn .

From (C.6), we can write the following recurrence relation for the coefficients

an(r),

an(r) =
−λ1ν1

γ
2
(r + n)

(
γ
2
(r + n) − 1

)an−2(r), a0(r) = 1 .
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Thus, a1 = a3 = · · · = an = 0 for all odd indices n = 2m + 1; otherwise,

substituting the values of r1, r2, we get

a2m(0) = Γ

(
1 − 1

γ

)
(−1)m(λ1ν1)

m

γ2mm!
(
m− 1

γ

)
!

and a2m(2/γ) = Γ

(
1 +

1

γ

)
(−1)m(λ1ν1)

m

γ2mm!
(
m+ 1

γ

)
!
.

Putting all together and substituting back τ = e−γ/2 t, we get

f1(t) = c1 Γ

(
1 − 1

γ

)
γ−

1
γ (λ1ν1)

1
2γ e−t/2J

(
−1

γ
,
2
√
λ1ν1e

−γ/2 t

γ

)
+ c2 Γ

(
1 +

1

γ

)
γ

1
γ (λ1ν1)

− 1
2γ e−t/2J

(
1

γ
,
2
√
λ1ν1e

−γ/2 t

γ

)
.

Here, J(k, x) denotes the Bessel function of first kind of order k,

J(k, x) =
+∞∑
n=0

(−1)n

n! Γ(n+ k + 1)

(
x

2

)2n+k

.

Moreover, we recall that

d

dx
J(k, x) = J(k − 1, x) − k

x
J(k, x) .

Thus, the first derivative of f1(t) results

f ′
1(t) = −1

2
f1(t) + c1 Γ

(
1 − 1

γ

)
γ−

1
γ (λ1ν1)

1
2γ e−t/2

[
J

(
−1

γ
− 1,

2
√
λ1ν1 e−γ/2 t

γ

)
+

eγ/2 t

2
√
λ1ν1

J

(
−1

γ
,
2
√
λ1ν1 e−γ/2 t

γ

)
+ c2 Γ

(
1 +

1

γ

)
γ

1
γ (λ1ν1)

− 1
2γ e−t/2

×
[
J

(
1

γ
− 1,

2
√
λ1ν1 e−γ/2 t

γ

)
− eγ/2 t

2
√
λ1ν1

J

(
1

γ
,
2
√
λ1ν1 e−γ/2 t

γ

)]
.

By imposing initial conditions f1(0) = 1 and f ′
1(0) = −λ1x1, we find constants

c1, c2 as

c1 =
1

β1
(1 − β2c2) and c2 = − λ1x1β1 + β3

β1(β2β3 + β4)
,
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where we denote

β1 = Γ

(
1 − 1

γ

)
γ−

1
γ (λ1ν1)

1
2γ J

(
−1

γ
,
2
√
λ1ν1
γ

)
,

β2 = Γ

(
1 +

1

γ

)
γ

1
γ (λ1ν1)

− 1
2γ J

(
1

γ
,
2
√
λ1ν1
γ

)
,

β3 = Γ

(
1 − 1

γ

)
γ−

1
γ (λ1ν1)

1
2γ

[
− 1

2
+

1

2
√
λ1ν1

J

(
−1

γ
,
2
√
λ1ν1
γ

)
+ J

(
−1

γ
− 1,

2
√
λ1ν1
γ

)]
,

β4 = Γ

(
1 +

1

γ

)
γ

1
γ (λ1ν1)

− 1
2γ

[
− 1

2
− 1

2
√
λ1ν1

J

(
1

γ
,
2
√
λ1ν1
γ

)
+ J

(
1

γ
− 1,

2
√
λ1ν1
γ

)]
.

All the terms of the solution F1(t) = −f ′
1(t)/(λ1f1(t)) are, hence, explicitly de-

termined.
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Appendix D

Identifiability analysis for a four

state mathematical model for the

CD8+ T cell exhaustion process

In this appendix, the structural identifiability analysis summarised in Section 6.3.2

for the toy model depicted in Figure 6.5, is extended. The analysis is based on

the method developed by Castro & de Boer (2020) and described in Section 2.4.

As detailed in Section 6.1, the provided experimental data consists of the per-

centages, over the entire population of transduced live, of TCF1− TIM3+ and

TCF1+ TIM3− cells, representing reversible and terminal exhausted cells, re-

spectively. Given the model structure reported in Figure 6.5, these correspond

to X1 and X2 populations; hence, the two exhausted populations X1 and X2 can

be considered to be observable.

In this Appendix, to keep the notation simpler, we omit the time-dependency

in system variablesE0(t), E1(t), X1(t) andX2(t) and we denote the time-dependent

transitions as εi f(t) = ε̃i, βi f(t) = β̃i, ψi f(t) = ψ̃i for i = 0, 1 as well as

γ1 f(t) = γ̃1.

We define thirteen scaling factors, namely v1, . . . , v13, one for each parameter

of the model, α0, ψ0, γ0, µE, ε0, β0, ε1, β1, α1, ψ1, γ1, µ1, γ1, µ2. Also, we

let u1, u2 be two additional scaling factors for the latent state variables E0, E1,

respectively. The functionally independent functions of model defined in (6.2)
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are

f1,1 = (α0 − γ0 − µE + ϕ̃0 − ε̃0)E0 , (D.1)

f1,2 = (β0 − β̃0)X1 , (D.2)

f2,1 = γ0E0 , (D.3)

f2,2 = −(ε̃1 + µE)E1 , (D.4)

f2,3 = (β1 − β̃1)X1 , (D.5)

f3,1 = ε̃0E0 , (D.6)

f3,2 = ε̃1E1 , (D.7)

f3,3 = (α1 − γ̃1 − µ1 + ϕ̃1 − β0 − β1 + β̃0 + β̃1)X1 , (D.8)

f4,1 = γ̃1X1 , (D.9)

f4,2 = −µ2X2 . (D.10)

One need to equate each term to its scaled form, solve the corresponding

system of identifiability equations, and finally derive the scaling constants ui, vj

for i = 1, . . . , 13 and j = 1, 2. For example, from Equation (D.2),

(β0 − β̃0)v6X1 = (β0 − β̃0)X1 ⇒ v6 = 1 ,

since the other terms cancel out. Similarly from Equation (D.5) we get v8 =

1. Moreover, given that X1 and X2 are assumed to be observable, terms in

Equations (D.9) and (D.10) lead to v11 = v13 = 1. Whereas, since effector

populations E0 and E1 are not measured at the end of the optogenetic experiment,

Equation (D.3) results into

γ0v3E0u1 = γ0E0 ⇒ v3u1 = 1 .

Similarly, from Equations (D.6) and (D.7) one obtains v5u1 = 1 and v7u2 =

1, respectively. Since parameters β0, β1 and γ̃1 are found to be measurable,

Equation (D.8) simplifies into

α1v9 + ϕ̃1v10 − µ1v12 = α1 + ϕ̃1 − µ1 .

The latter leads to an infinite number of combinations of the scaling factors

satisfing the invariance condition, as all lying in the such defined manifold. Also,
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D. IDENTIFIABILITY ANALYSIS FOR A FOUR STATE
MATHEMATICAL MODEL FOR THE CD8+ T CELL
EXHAUSTION PROCESS

given the identifiable pairs derived from Equations (D.3) and (D.6), once can

simplify Equation (D.1) and obtain the manifold

(α0v1 + ϕ̃0v2 − µEv4)u1 = α0 + ϕ̃0 − µE . (D.11)

Finally, given the identifiable pair u2v7 = 1 derived from Equation (D.7), Equa-

tion (D.4) leads to the identifiable pair v4u2 = 1.

As a result of the analysis, factors v1, v2, v3, v4, v5, v7, v9, v10, v12 as well as

u1, u2 cannot be solved individually; this means that the corresponding parame-

ters cannot be determined univocally and are thus unidentifiable.

However, following Massonis et al. (2021), we notice, for example, that the

symmetry between α0, ϕ̃0 and µE, given by Equation D.11, is broken due to the

time-dependency of parameter ϕ0. Indeed, if ϕ0f(t) is varying with time and

α0 +µE is constant, the latter sum cannot compensate the changes of ϕ̃0. Similar

considerations can be done for the manifold defined by α1, ϕ̃1 and µ1, whose

symmetry is broken given that ϕ̃1 varies with time. What is left is the symmetry

between parameters α0, µE and the one between parameters α1, µ1; thus, if one

among α0 and µE as well one among α1 and µ1 is measurable, then parameters

α0, ϕ̃0, µE, α1, ϕ̃1, µ1 are all identifiable.

Moreover, one can notice that, if cellular population E0 and E1 are both

observable (that is effector populations E0 and E1 are measured by experimental

methods), then u1 = u2 = 1 and the identifiable pairs are resolved,

v3 = v5 =
1

u1
, and v4 = v7 =

1

u2
.

In this case, parameters µE, γ0, ε0 and ε1 are identifiable. If so, given the line

defined by α0 + µE and ϕ̃0, we have that also α0 and ϕ̃0 result identifiable and

the symmetry between α0 and µE is solved as well. Similar considerations applies

for the line defined by α1 + µ1 and ϕ̃1 since we can consider parameters α1 and

ϕ̃1 as identifiable. Consequently, all the groups involving scaling variables have

been decoupled and the model could be said to be structurally identifiable.

In conclusion, the toy model (6.2) with the provided experimental data is

not totally identifiable as symmetries between parameters cannot be completely

decoupled. However, under the assumption that experimental collaborators can
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provide measurements of effector population of cells, E0 and E1, at the end of

the 48 hours of the optogenetic experiment, the model depicted in Figure 6.5

is structurally identifiable. Alternatively, the same conclusion of a structurally

identifiable model can be reached if one between the homeostatic proliferation

rate and the death rate of effector and exhausted cells (one between α0 and µE

as well one between α1 and µ1) is experimentally measured or estimated from the

literature.
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