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With the rapid development of robotic and AI technology in recent years, human–robot

interaction has made great advancement, making practical social impact. Verbal

commands are one of the most direct and frequently used means for human–robot

interaction. Currently, such technology can enable robots to execute pre-defined tasks

based on simple and direct and explicit language instructions, e.g., certain keywords

must be used and detected. However, that is not the natural way for human to

communicate. In this paper, we propose a novel task-based framework to enable the

robot to comprehend human intentions using visual semantics information, such that

the robot is able to satisfy human intentions based on natural language instructions (total

three types, namely clear, vague, and feeling, are defined and tested). The proposed

framework includes a language semantics module to extract the keywords despite the

explicitly of the command instruction, a visual object recognition module to identify the

objects in front of the robot, and a similarity computation algorithm to infer the intention

based on the given task. The task is then translated into the commands for the robot

accordingly. Experiments are performed and validated on a humanoid robot with a

defined task: to pick the desired item out of multiple objects on the table, and hand over to

one desired user out of multiple human participants. The results show that our algorithm

can interact with different types of instructions, even with unseen sentence structures.

Keywords: human–robot interaction, intention estimation, scene understanding, visual-NLP, semantics

1. INTRODUCTION

In recent years, significant progress has been achieved in robotics in which human–computer
interaction technology plays a pivotal role in providing optimal user experience, reduces tedious
operations, and increases the degree of acceptance of the robot. Novel human–computer
interaction techniques are required to further advance the development in robotics, with notably
the most significant one being a more natural and flexible interaction method (Fang et al., 2018,
2019; Hatori et al., 2018). It requires robots to process external information as a human in many
application scenarios. For home service robots, visual and auditory information is the most direct
way for people to interact and communicate with them. With continual advancement in statistical
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modeling, speech recognition has been widely adopted in robots
and smart devices (Reddy and Raj, 1976) to realize natural
language-based human–computer interaction. Furthermore,
substantial development in the field of image perception has been
carried out, even achieving human-level performance in some
tasks (Hou et al., 2020; Uzkent et al., 2020; Xie et al., 2020).
By fusing visual and auditory information, robots are able to
understand human natural language instructions and carry out
required tasks.

There are several existing home service robots that assist
humans in picking up specific objects based on natural language
instructions. (Kollar et al., 2010) proposed to solve this problem
by matching nouns and the target objects. Eppe et al. (2016)
focuses on parsing natural language instructions by Embodied
Construction Grammar (ECG) analyzer. Paul et al. (2018) utilizes
probabilistic graph models for natural language comprehension,
but objects are required to be described in advance through
natural language. With the development of neural networks,
some researchers tried to tackle the problem of natural language
comprehension as a classification problem and connect the
natural language representations of objects with objects in images
(Matuszek et al., 2014; Alonso-Martín et al., 2015), although it
turned out that classification plays an important role, and they
rely on human intervention heavily, leading to less autonomous
level. Shridhar et al. (2020) proposes an end-to-end INGRESS
algorithm to generate textual descriptions of the objects in the
image, and then relevancy clustering is performed with the
object descriptions of human instructions for extracting the
object with the highest matching score. Additionally, for multiple
ambiguous objects, the robot can remove the ambiguity by
identifying the objects. Hatori et al. (2018) uses the Convolutional
Neural Network (CNN) and Long short-term memory (LSTM)
to extract the features of the image and the text, respectively,
and subsequently fuses visual and auditory information by a
multi-layer perceptron. Magassouba et al. (2019) employed the
Multimodal Target-source Classifier Model (MTCM) to predict
region-wise likelihood of the target for selecting the object
mentioned by instructions. Some works learn models for color,
shape, object, haptics, and sound with predefined unique feature
channels have resulted in successful groundings (Mooney, 2008;
Dzifcak et al., 2009; Richards and Matuszek, 2019) explores using
a set of general features to learn groundings outside of predefined
feature channels. Despite these methods being relatively
flexible to determine the target object described by natural
language instructions, they cannot enable robots to understand
the connections between different concepts. The capacity of
understanding these connections determines the adaptability
and flexibility of processing unstructured natural language
instructions. If robots are able to flexibly parse and infer natural
language sentences, users may have better experiences. For
example, we expect robots to understand that “I am thirsty after
running that far in such a hot day” means “Grasp a bottle to me,”
and “I need to feed the little rabbit” means “Grasp a carrot to me.”

In order to achieve this goal, we propose a task-based
framework combining both visual and auditory information
to enable robots understand human intention from natural
language dialogues. We first utilize the conditional random field

(CRF) to extract task-related information from instructions,
and complement a number of new sentences based on the
matching rule. Then we apply Mask R-CNN (He et al.,
2017) for instance segmentation and classification, and use
sense2vec (Trask et al., 2015) to generate structured robot
control language (RCL) (Matuszek et al., 2013); RCL is a
robot-executable command for instruction. It represents the
high-level execution intended by the person. It enables robots
to perform actions in the specified tasks satisfying human
requirements. To evaluate the efficacy of our approach, we
classify human instructions into the following three types: Clear
Natural Language Instructions, saying object names or synonyms
clearly; Vague Natural Language Instructions, only providing
object characteristics (hypernyms, related nouns, related verbs,
etc.) without saying their names or synonyms; Feeling Natural
Language Instructions, describing feelings of users in the scene
without saying object names or synonyms. In such a manner,
by transforming unstructured natural language instructions into
robot-comprehensible structured language (RCL), robots can
understand human intentions without the restriction of explicit
expressions, and can comprehend connections between demand
concepts and objects.

2. METHODS

2.1. Image Recognition
In this work, we mainly use the Mask R-CNN for image
recognition. TheMask R-CNN is improved on the basis of Fast R-
CNN (Girshick, 2015) and Faster R-CNN (Ren et al., 2015). The
architecture of Faster R-CNN integrates feature extraction, region
proposal selection, bounding box regression, and classification,
resulting in a significantly enhanced speed of object detection.
The Mask R-CNN is inspired by Faster R-CNN with outputting
both bounding boxes and binary masks, so object detection and
instance segmentation are carried out simultaneously. In our
work, we employ Resnet101-FPN as a backbone and use the result
of instance segmentation as the image region to be matched,
including the target object and the delivery place.

2.2. Information Extraction From Natural
Language Instructions
We first use a rule matching method for preliminarily
extracting natural language information. Furthermore, this
method provides labels for the conditional random fields process
to reduce labor intensity.

2.2.1. Rule Matching
Rule matching uses linguistics as a fundamental principle
to segment statements and label sentence components with
predefined semantic information. The reason why rule matching
is effective in parsing languages is that the languages are regular
when they are restricted to a specific domain. Specifically,
according to grammatical features, the sentence type is
straightforward to identify, and the local feature of specific
sentence types can be further utilized to extract key information.
In this paper, two variables, i.e., lexical and dependency
analysis, are selected. Compared to many existing studies
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TABLE 1 | Skills and details of the skills.

Instruction type Sentence structure Target object Delivery place

Feeling type Subject (user) + tether verb + epithet

+ other components

Words that are adjective and begin with a tethered verb in

dependency analysis, words that are adjective and begin with an

adverb in dependency analysis, etc.

Words that are personal pronouns

and end in a nominal subject in

dependency analysis, etc.

Vague type Subject + modal verb + intransitive

verb + other components

Words that are verbs and are the end of an open subordinate

complement in dependency analysis, etc.

Words that are personal pronouns

and end in a nominal subject in

dependency analysis, etc.

Clear/Vague type Subject + modal verb + transitive verb

+ noun + other components

Words that are common nouns and plural nouns, and are at the

end of the direct object in dependency analysis.

Words that are personal pronouns

and end in a nominal subject in

dependency analysis, etc.

Vague type Predicate + direct object (something)

+ indirect object + definite article

(adjective or verb infinitive) + other

constituents

Words that are verbs and end in a modifier in dependency

analysis, words that are adjectives and end in an adjective modifier

in dependency analysis, etc.

Words that are personal pronouns

and end in a noun subject in

dependency analysis, words that are

personal pronouns and end in an

indirect object in dependency

analysis, etc.

Feeling type It (for weather) + verb past tense or

verb present progressive + other

components

Words that are in the past tense of the verb and begin with the

noun subject in dependency analysis, words that are in the

present tense of the verb and begin with a non-primary verb in

dependency analysis, etc.

System default users, etc.

with grasping robots, ours not only contain the single verb
phrase-centered imperative sentence structure but also add
many common sentence types for expressing intentions through
natural language in the training set. These common sentences are
selected from the three types described in section 1. The details
of rule matching connecting sentence structure and instruction
types are displayed in Table 1.

2.2.2. Conditional Random Fields
Although the rule matching method extracts key information
from natural language with sufficient accuracy, it is inadequate
because it still requires grammatical features to identify sentence
types before parsing natural language. However, when the length
and complexity of the instructions increase, the fixed rule
may classify sentence types of the instructions incorrectly or
extract unexpected information because of the interference by
redundant information. Besides, high-frequency word features
are not contained in the grammatical rule due to the limited
and time-consuming enumeration work. Therefore, for further
extraction of natural language information, a statistical model is
necessary to integrate grammar and high-frequency words for
mining specific local features.

We use the CRF model for information extraction, whose
training data are labeled by the rule matching described
previously. The process of extracting information from a
sentence can be considered as sequence labeling. The model
analyzes input natural language sequences, i.e., sentences, and
outputs the label corresponding to each word. In this paper,
the tag set is item, target, none, where “item” represents the
keyword of the target object, “target” corresponds to the keyword
of the delivery place, and “none” is the other components of
the sentence.

The CRF is a common and efficient method for addressing
the sequence labeling problem, and its principle is based
on a probabilistic vectorless graph. In this paper, any

sentence x(x1, x2, ......, xn) has 3n possible label sequences
y(y1, y2, ......., yn), where (xi, yi) represents (word, word label).
The probability of labeled sequence y is written as:

p(y|x) =
escore(y|x)

∑
y′ e

score(y′|x)
(1)

score(y|x) =
m∑

j=1

n∑

i=1

λjfj(x, i, j) (2)

where fj(x, i, j) is jth feature function at position i and usually
is a binary function, generated by a feature template, which is
broader in this study according to the variety of the instructions.
At position i, (y|x) takes 1 when it satisfies the jth feature function,
otherwise takes 0. Parameter λ is the parameter to be learned.
The objective of training model is to maximize the probability
of the correctly labeled sequence. The size of m depends on
the variety of training corpus, the number of variables, and the
maximum offset.

2.3. RCL Generating
In order to enable the robot to understand the highly arbitrary
instructions provided by users and to grasp the target object
to the delivery place, unstructured natural language instructions
should be transformed into structured RCL. The RCL format
utilized in this paper is “Grasp A to B,” where A and B represent
the target object and the delivery place, respectively. In this work,
the RCL format is generated from natural language instructions
by extracting the keyword of the target object and place based on
the information extraction module of CRF. Simultaneously, the
image recognitionmodule ofMask R-CNN is utilized for instance
segmentation and classification. We map the extracted features
of natural language instructions and images in the same feature
space, and compare the degree of match between each object and
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FIGURE 1 | The overall framework: Once natural language information extraction and image recognition are completed, the features of natural language and the

image are transformed into the same space for finding the object with the highest matching score. We transform both the object recognized from the image and the

task-related information into word vectors to obtain the word vectors with maximum similarity. The vectors are then put into RCL (grasp object to place) to generate

the structured language comprehended by robots.

two keywords. The two objects with the highest scores are A and
B for generating the structured RCL language, “Grasp A to B.”
The overall framework is shown in Figure 1.

We use the sense2vec model, which is an improved version
of word2vec model, to transform the key information of
images and natural language instructions to the same feature
space. When words are fed into this model, the corresponding
sense information is also required. Compared to the word
vectors computed without context, those generated by sense2vec
model contain contextual information and single vectors of
corresponding compound words. Hence, the sense2vec model
has more flexibility than the word2vec model. The sense2vec
model employs CBOW, SG and structure-SG of word2vec,
and uses token rather than a word as a semantic unit.
Moreover, the same tokens with different tags are considered
as different semantic units. The training process of the model
is twofold. First, every token is labeled by a sense tag in
the corresponding context. Second, the common models of
word2vec, e.g., CBOW and SG, are fitted to the labeled data of the
first step.

After the sense2vec model is used to obtain the objects
according to the similarity between the information of target
objects and object names in the scene, the degree of match is
calculated. The object with the highest matching score is the
target to grasp. We utilize cosine similarity, which is commonly
used in word vector models, as an indicator of the degree of
match between the objects and the keywords in instructions. The
similarity is calculated as Equation (3), where ITEM denotes the
item in the image and A denotes the word that is extracted by
CRF, and V(w) is the sense vector of w.

sim (ITEM,A) =
V(ITEM) · V(A)

||V(ITEM)|| × ||V(A)||
(3)

2.4. Feedback Mechanisms
To make the robot grasp the item that humans want and be more
robust, our system uses a feedbackmechanism.When a user gives
an instruction, the robot determines the target object and delivery
place according to the instruction, and it asks the user whether
the result is right.
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TABLE 2 | Examples of the collected instructions.

Clear natural language instructions Vague natural language instructions Feeling natural language instructions

Can I have a cup of tea? I’m going to feed my monkey. I am thirsty.

I want to play sports ball. I need to control TV. I am hungry.

I’m so thirsty that I need a large cup of cola. The dark clouds shows that it will rain soon. I’m tired.

FIGURE 2 | Experimental setup for robot experiments. Our system uses

Cobot CAssemblyC2 for experiment.

We divide user feedback into three types. The first type is
positive feedback, the user thinks robot’s judgment is right. In
this situation, the robot grasps the target object to the delivery
place. The second type is negative feedback without any other
valid information. In this situation, the robot chooses the object
with the second largest matching score as the target object. The
last type is negative feedback with other valid information. The
algorithm uses CRF to extract the information related to the
target object and uses sense2vec to calculate a newmatching score
between the information of target objects and object names in the
scene, and then it chooses a new target object according to the
updated matching score. The new target object is chosen by the
following formula:

object = argmin
i

(
n∑

j=0

sim(itemi,Aj)) (4)

where object denotes the target object, and itemi denotes the ith

item in the image, and Aj and n denote the word extracted by

CRF in the jth time and number of feedback, respectively, and
sim denotes the similarity calculated by Equation (3).

For example, there is a scene with an apple, an orange, a
banana, a bottle, and a book. The instruction is “I want to eat
fruit.” Then the robot asks the user “Do you mean grasp the
apple to host?” The feedback is “No, I want to eat something
sour.” Algorithm can choose “sour” as valid information and use
sense2vec to calculate a new matching score. Then it can grasp
the orange to host.

2.5. Grasp Object
Current data-driven methods have significantly increased
the accuracy of grasping objects (Mahler et al., 2016,
2019; Kalashnikov et al., 2018; Quillen et al., 2018) and
they provide the technical basis for human–computer
interaction.

We are inspired by a state-of-the-art method Dexnet4.0
(Mahler et al., 2019) and use end-effectors based on parallel
gripper in the implementation of this study. We first generate a
series of candidate grasps by pre-computation and utilize Grasp
Quality Convolutional Neural Network (GQ-CNN) to score
these grasps. The grasp with the highest score is implemented
by robots. Since we only employ the parallel gripper, only pre-
trained parallel gripper policy is utilized.

The full process of grasping is as follows. After the
RCL is generated, the robot can use it to grasp the object.
The RCL format in this paper is “Grasp A to B.” The
system matches A and the results of image recognition. The
matching result is a mask image. B is one of the predefined
users. The mask image is the input of Dex-net2.0 that is
used to determine the object to be grasped. Dex-net2.0 can
generate a grasp position of the object. Then the robot
arm will move to the position and grasp the object to the
predefined user.

3. RESULTS

We design experiments as follows. Microsoft COCO is a dataset
for image recognition, and it provides many items that often
appear in the home environment. We exclude items that are
inappropriate to application scenarios from theMicrosoft COCO
(Lin et al., 2014). A total of 41 items remain and are categorized
into 7 classes (animal, accessory, kitchen, sports, electronic,
indoor, and food). Each experiment contains 3 categories of
items and each category has some corresponding items, and we
call it a scenario. Thus, there are altogether 35 scenarios, and
each scenario includes more than 20 items. In each scenario, 8
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FIGURE 3 | Type-specific reciprocal rank. Red, green, and blue represent clear natural language instruction, feeling natural language instruction and vague natural

language instruction.

subjects provide random instructions to the robots. Each subject
provides 3 instructions containing the objects in the scene and
lists of expected items for each instruction. There are 21 natural
language instructions in each scenario, and 735 instructions in
total. We show some examples of the collected instructions in
Table 2.

3.1. Accuracy of Information Extraction
To enable robots to accurately parse complicated sentence
structures, we apply the CRF model to extract information. The
rule matching method is only for generating and evaluating the
data of the CRF model. Therefore, quantitative evaluation of this
method is not involved in this study.

We use 735 sentences collected before to test the accuracy
of our CRF model’s ability to extract the target object and the
delivery place. We evaluate our CRF model in clear natural
language instructions, vague natural language instructions, and
feeling natural language instructions, respectively. The formula
is as follows:

accuracy =

∑n
i=0 Is_true(objecti) ∗ Is_true(placei)

n
(5)

where accuracy denotes the accuracy of the algorithm, and Is_true
denotes whether the objecti is true. n denotes the number of
instructions, and objecti and placei denote the target object and
place that are output by the algorithm.

The accuracy of the CRF model for clear natural language
instructions, vague natural language instructions, and feeling
natural language instructions are 0.710, 0.656, and 0.711,
respectively. This result indicates that our method has consistent
performance over all three types of instructions. By analyzing
the failure cases, we found that the wrong inferred item and the
wrong inferred target are most likely due to the deficiency in
training data that reflect their local features. The local features
are referred to words, positions, and dependency.

3.2. Evaluation of Human–Robot
Interaction
To obtain meaningful results, we evaluate our system’s human–
robot interaction ability in the scenarios. There are 21
instructions that are provided by 8 subjects in each scenario. The
experimental setup is shown in Figure 2.

Our system uses a feedback mechanism. The robot has a
ranking list according to matching score. If a user gives negative
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FIGURE 4 | Scene-specific mean reciprocal rank. This figure shows the relevance between scene-specific reciprocal rank and the categories in each scene.

feedback without any other valid information, the robot is able
to choose the object with the second largest matching score as
the target object, and so on. Therefore, we use reciprocal rank
(RR) as the evaluation of our system. RR is a measure to evaluate
systems that return a ranked list of answers to queries, and
mean reciprocal rank (MRR) is the mean of the sum of RR. The
formulas are given by:

RRi =
1

Position(item)
(6)

MRR =

∑N
i=1 RRi

N
(7)

where Position(ITEMi) represents the position of the real target
object in the matching score list, and N is the number of
instructions in each scenario, and RRi is the reciprocal rank of
ith instruction within each scenario.

The distributions of type-specific RR are demonstrated in
Figure 3. The mean reciprocal ranks of clear natural language
instruction, feeling natural language, and vague natural language
is 0.776, 0.567, and 0.572, respectively. The medians is 1 for
clear natural language instruction, which shows that the robot
can grasp the correct object at the first attempt according to
clear natural language instruction in most cases. The mean
reciprocal rank of all instructions is 0.617, which means the
robot need about 1–2 attempts to grasp the correct object
according to the three types of instruction at the average level.
Thus, we draw a conclusion that the robots infer the expected
item effectively, and especially, the robots make inference most
effectively and most steadily according to clear natural language
instructions among the three types of instructions defined as
before. The result also shows our framework’s ability to interact
with people.

We group the MRR by categories in their corresponding
scene, with intersections existing among groups. The result of our
experiment is shown in Figure 4, which indicates that the robots
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FIGURE 5 | Some examples of human–robot interaction. There are two user in these scenarios. The one on the right is host, and the other one is Furong. Red boxes

indicate the target objects chosen by our method. Red arrows indicate the delivery directions.

perform best and relatively steadily when items in “animal”
category appear in the scene, and perform worst and relatively
unsteadily when items in “indoor” and “food” categories appear
in the scene. It is because that the items in these categories
always appear in a similar context. It is also related to the word
embedding model.

The human–robot interaction ability of our system is shown
in Figure 5. Figures 5a–c illustrate the interaction for feeling
natural language instruction, vague natural language instruction,
and clear natural language instruction, respectively. Figure 5d
illustrates that our method can grasp objects to a different user.
Figure 5e illustrates our method’s ability to adapt to instructions
that have untrained sentence structures, which is an interrogative
question in this case. Figure 5f shows the feedback mechanism
of our method. The robot can grasp the orange because of the
feedback information that says he wants to eat something sour.

3.3. The Ability to Deal With Unseen
Sentence
We also note that this algorithm has a generalization capability to
some extent. It can analyze a question like “Which item can help
me use computers more efficiently?,” even though this sentence
type is not involved in the training set. Therefore, we choose
104 instructions that have unseen sentence structures to test the
generalization capability of our approach, such as interrogative
sentences and complex sentences.

The mean reciprocal rank for instructions that have untrained
sentence structures is 0.483, which means the site of the target
object is in the second position in the recommended list on
average, and the robot can grasp the correct object with about
2–3 attempts at the average level.

This also shows that our model has a generalization
capability to interact with complex instructions that have unseen
sentence structures.

4. CONCLUSION

Our proposed algorithm transforms unstructured natural
language information and environmental information into
structured robot control language, which enables robots
to grasp objects following the actual intentions of vague,
feeling, and clear type instructions. We evaluate the algorithm
performance using a human–robot interaction task. The
experimental results demonstrate the ability of our algorithm
interacting with different types’ instructions and a generalization
ability of unseen sentence structures. Although some sentence
types are not involved in the training set, the carried
information still can be effectively extracted, leading to
reasonable intention understanding.

In our future work, we would construct the databases based
on multiple tasks to extend its skill coverage, and explore its
potential in understanding more complex tasks.
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