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Abstract: Gaze-following is an effective way for intention understanding in human-robot interaction,
which aims to follow the gaze of humans to estimate what object is being observed. Most of the
existing methods require people and objects to appear in the same image. Due to the limitation in
the view of the camera, these methods are not applicable in practice. To address this problem, we
propose a method of gaze following that utilizes a geometric map for better estimation. With the
help of the map, this method is competitive for cross-frame estimation. On the basis of this method,
we propose a novel gaze-based image caption system, which has been studied for the first time.
Our experiments demonstrate that the system follows the gaze and describes objects accurately. We
believe that this system is competent for autistic children’s rehabilitation training, pension service
robots, and other applications.

Keywords: human-robot interaction; image caption; simultaneous localization and mapping; vi-
sual attention

1. Introduction

Humans are very good at understanding the intentions of others by following the
gaze. We can infer that the child is interested in a ball if they keep staring at it. We also
can find crucial clues through the suspect’s attention at the scene of the crime. This ability
leads us to obtain obscure but essential information. If robots also have the capability
of gaze-following, they would be competent for many human-robot interaction tasks,
including helping doctors with rehabilitation training for autism [1,2]. This is the goal
that we set to achieve. For autistic children, they are usually interested in some abnormal
objects, such as bottle caps or door handles, instead of toys that non-autistic children like.

Autistic children may pay attention to the object they are interested in for a long time
and ignore the doctor’s instructions in rehabilitation training. In order to understand what
the children are interested in, the robot also needs to talk to gain the children’s attention
and guide them to participate in the doctor’s task. This is challenging for a robot. As
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shown in Figure 1, the general image caption focuses on describing what the robot sees,
while the gaze-based image caption focuses on describing what the child is looking at.
Obviously, the latter is more suitable for interaction scenarios. In this paper, we propose
a gaze-based image caption system. We equipped a depth camera on the robot’s chest to
collect images; the type of camera we used is RealSense D435. This camera can obtain a
color image and the corresponding depth image. The depth map measures the distance
of every pixel, which is used to reconstruct geometric relations of the gaze and the map.
Given a video sequence of depth images and the corresponding color images, the camera
builds a point cloud map for locating what the children are interested in and generates a
caption to interact with them.

| General Image Caption

Figure 1. The difference between general image caption and gaze-based image caption.

1.1. Gaze-Following

Gaze-following is a problem of predicting where people are looking at in a given
image or video. Many previous works have used wearable devices such as glasses with
a camera to track the gaze direction and locate the target from a 3D map [3,4]. However,
the wearable devices are usually unavailable in practical applications. A more promising
way is to predict the gaze from images directly. Fathi et al. [5] and Marin-Jimenez et al. [6]
address this problem by assuming that people are only looking at each other. They used
the posture and position of the head as clues to locate subjects. Inspired by the study
of electric fields, Park et al. [7] used “social charges” to represent latent quantities that
drive the primary gaze behavior of members of a social group. Recasens et al. [8] make
a great contribution on first publishing a gaze-following dataset and proposing a two-
pathway model (a gaze pathway and a saliency pathway). However, Lian et al. [9] and
Parks et al. [10] consider an internal connection between gaze and saliency, rather than
complete independence. For example, the gaze point is always located at a salient place
along the gaze direction. Drawing on this idea, they proposed new models with better
performance. Chong et al. [11,12] propose a new deep structure that models the gaze over
time. It directly learns the gaze-relevant scene regions by face feature instead of giving
head posture. Unfortunately, the above methods require that the people and the objects
appear in the same image. For example, a child is watching TV, but the TV is not in the view
of camera. These methods cannot keep following the gaze when the camera turns to the
side of the TV. Recasens et al. [13] name this problem as cross-frame gaze-following. They
proposed a model adding to a transformation pathway based on their previous work [8].
Given two images from different views, this model keeps following the gaze by estimating
the transformation between these two frames. However, the deep learning method for
geometric estimation is inaccurate and increases the uncertainty of the result. Therefore,
we propose a different gaze-following method. We select a sequence of depth and color
images as the input and built a three-dimensional (3D) map for predicting the gaze point.
Our method provides a new solution for cross-frame gaze-following. The main differences
between the above methods and ours are that (a) we build and use 3D maps online for
cross-frame gaze-following, and (b) compared with other geometric methods, we propose
an occlusion detection mechanism that minimizes error prediction.



Appl. Sci. 2021, 11, 7426

30f12

1.2. Attention-Based Image Caption

Computers are expected to describe the world from a human perspective. An image
contains a great quantity of information. How do computers choose valuable information?
The answer is the attention mechanism. Most of the existing works focus on describing
the whole image as human as possible. Xu et al. [14] and Lu et al. [15] generated the
contextual attention by a recurrent neural network (RNN) [16] and adjusted the weight
of the context vector to generate a sentence. Cornia et al. [17,18] considered attention as
visual salient information that is prominent and simple to be noticed, such as high-contrast
objects. Moreover, Liu et al. [19] and Sugano et al. [20] modeled the attention as gaze
data of the subjects’ eye movements while watching the video. Some extended methods
of image caption were studied to describe the details of the image. Johnson et al. [21]
used the region proposal network (RPN) [22] to generate multiple local bounding boxes to
extract features. Each region feature is used to generate a sentence. Subsequently, Yang
et al. [23] improved the model using joint inference and context fusion. Wang et al. [24]
proposed a multilayer dense attention model to minimize the interference due to non-salient
information. However, all these attention measurement methods are quite subjective, and
the results vary with people’s personalities, age, and emotions. These methods may not be
suitable for some people, such as autistic children. To obtain a more objective result, we
ensured that the attention is reflected only by the gaze rather than other factors. We propose
a novel method that attaches weights to the regions where people are looking at. We note
that our gaze data are measured in the video, while the gaze data of methods [19,20] are
collected by the people who are watching the video. In this paper, a gaze-based image
caption system is proposed on the basis of the work of [21]. We utilized the result of gaze-
following to select the description candidates and to describe the attention area. Similar
to [25], our system was mainly designed for autistic children, but it can also be applied to
general people. We have three main contributions in this paper: (1) A novel gaze-following
method is proposed on the basis of spatial geometry. It predicts attention regions by the
spatial relationship between the map and the sightline. (2) An image caption method
guided by the gaze is proposed. It describes the region concentrated by users according to
attention heatmaps. (3) For the first time, we studied the problem of describing the region
where people are looking at and combine image caption with gaze-following.

2. Methods

We propose an object description system on the basis of third-person visual attention.
The system predicts the interested area of a person and describes this area through an
object description algorithm. Figure 2 shows the framework of the whole system. It
consists of visual attention prediction and object description. With the support of SLAM
(simultaneous localization and mapping) and gaze tracking techniques, we constructed a
3D map of the environment online and track the gaze of the person in real time. We utilized
the geometric relationship between the map and the sightline to assign weights in the map
for indicating the degree of interest. Finally, the object description algorithm was used
to preferentially describe objects with high attention. There are four main challenges in
this system: (1) object occlusion detection: some occluded objects in the map are invisible,
and the algorithm has to determine the obscured point clouds in the sparse map; (2) map
update: since moving objects are significantly destructive to the structure of the map, the
point clouds of these objects should be updated in real time to avoid residual traces of
previous ones; (3) sightline error: the results of gaze tracking are often affected by a number
of factors, resulting in violent shaking, and it is therefore essential to improve the stability
of gaze tracking; (4) describing specific areas according to the actual attention of the human
eye. We describe our algorithm in detail along with the solution to these challenges in
Sections 2.1 and 2.2, respectively.
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Figure 2. The system takes a video as input. It builds a map and estimates the gaze simultaneously.
Then, an attention heat map is predicted. Finally, the system selects the attention region to generate a
sentence from the image.

2.1. Visual Attention Prediction

Before carrying out visual attention prediction, we need to process the results of gaze
tracking. Since gaze estimation is greatly affected by the noise, we adopt head posture
estimation that adjusts weights and generates more stable and accurate results according to
the confidence level. We can see how to calculate the sightline from Equations (1) and (2).

_pitpr
-t 0
d=ua, d ;dr + apdy, (2)

Parameters p; and p, represent the left and right eye positions, respectively. The gaze
direction of the left and right eyes are d; and d, respectively. The parameter dj, represents
the head direction, and «,, «j, are standardizing confidence levels. Equation (1) determines
the equation of the sightline in 3D space, where p is the starting point of the sightline and 4
is the gaze direction. We then transform the linear equation from the camera coordinate to
the world coordinate and represent the sight line with Equation (3). Notably, the sightline
has a direction, and therefore the value of parameter t is greater than 0.

p=p+td ®3)

We then obtain the visible point cloud within the map, which is marked as S, as shown
in Figure 3. First, we construct a mathematical cone whose main axis has an inclination
angle of e. We specify that the points within this round table to be the visible point cloud S
that reflects potential regions focused by people. For a point in the map, we first obtain the
perpendicular foot to the sightline. After that, we calculate the distance from this point to
the perpendicular foot and the distance from the perpendicular foot to the eye. By Equation
(4), we determine whether this point is in the visible point cloud S.

max (dist(p,-, pf) -7, 0)
dist(p, pf)

where p; is a point in the map, py is the perpendicular foot of p; to the sightline, € is the
inclination angle, r is the radius of the circle above the frustum, and dist(x, *) is the distance
between two points. The visible point cloud S determines the area where a person focuses
on. However, some of the points in S are occluded. These points are not visible. Imprecise
assignment of weights may distract the attention, and therefore in this paper, we propose a
method to address this problem. For each visible point, we construct a cone. The direction

pi €S, if tan(e) > 4)
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of the central axis of the cone is identical to the direction of the sightline. We specify that
the point cloud within the cone is the occluded point cloud R, as shown in Equation (5).

dist (pi, pf)
dist (pf, p]-)

where p; is a point in visible point cloud S, py is the perpendicular foot of p;, p; is a point
that needs to be checked, and 6 is the inclination angle. We eliminated all the points in
R so that the remaining point cloud reflects the actual attention region of the person. We
assigned weights to the visible point cloud by constructing a Gaussian model, which is
guided by the distance from points to sightline. The weight of each point cloud is inversely
correlated with the distance, which implies that closer points allocated bigger weights.
For convenience, we specify that the weight is in an interval from 0 to 1. On the basis
of the 3D map with weight, we use a camera model to project this map onto an image
plane. Subsequently, the discrete points with weight can be transformed into a continuous
probability map using image processing techniques, such as dilation and filtering. We
combine the results of the saliency detection and multiplied the two probability maps
to obtain the final attention predictions. Algorithm 1 shows the detailed algorithm flow.
When the person and the target do not appear in the same field of vision, we first observe
the face and estimate the sightline of that person, then move the camera along the sightline
until it reaches the map and finds out the visible point cloud. When the face moves out of
view, its gaze direction is assumed to be unchanged, which corresponds to human behavior.
The whole process is the same as that which we discuss above, except changing the field of
vision and tracking the sightline.

pj € R, if tan(6) > (5)

Algorithm 1 Finding Visible Point Cloud

Input:

1: (a) Point cloud map M;

2: (b) Eye position p;

3: (c) Direction d;

4: (d) Cone angle ¢, 6;

5: (e) radius r.

Output:

6: (a) Visible point cloud S;

7: (b) Hidden point cloud R.

8: for each p; € M do

9: Find the foot point p; of p; alone the sightline
10: Calculate the distance between p and p;
11: Calculate the distance between p and p
12: if p; is satisfied with Equation (4) then

13: Let p; belongs to S
14: end if
15: end for

16: for each p; € S do
17: Generate a line | with a slope of d starting at p;
18: foreach p; € Sdo

19: Find the foot point pf of p; alone the line
20: Calculate the distance between p and p;
21: Calculate the distance between p and p;
22: if p; is satisfied with Equation (5) then
23: Remove the p; from S

24: Let p; belongs to R

25: end if

26: end for

27: end for
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Figure 3. Occlusion detection and visual region estimation.

Since the scene often contains moving objects, e.g., people and animals whose motion
traces are recorded by SLAM in the map, they often disrupt the original structure of the
map and result in a large error of visual attention prediction. Therefore, real-time map
updating is required. We employed a simple and effective strategy to ensure the real-time
capabilities of the system. Before loading a new frame of the point cloud, we erase the
camera-observable point cloud to ensure that the map stores the latest frame.

The camera-observable point cloud is defined as

u fx 0 u x/z
v | =0 f; v y/z (6)
1 0 0 1 1

where 0 <u <W, 0 <v <H,x,y, zis the position in the world of each point; u, v is the
position in image; fy, fy, ug, v is the intrinsic parameters from camera; W is image width;
and H is image height. We specify that a point can be updated when its projection is within
the image range.

2.2. Object Description

A dense captioning task first proposed by Johnson et al. [21] and Yang et al. [23] intro-
duces a method by adding joint inference and visual context based on [21] for performance
improvement, and [25] also proposes to apply this task to rehabilitation robots. We trained
the model using Visual Genome [26]. Figure 4 shows the overall network architecture.
Given an image and its probability map created by gaze prediction, we first utilize CNN
(convolutional neural network) [27] and region proposal network to generate a series of
region features, then select the one with the highest weight density to output a sentence by
the captioning model. Specifically, the captioning model consists of a recognition network
and LSTM (long short-term memory) [28]. The recognition network is a fully connected
network that takes the selected region feature as input and produces a string of visual text
code. The RNN (recurrent neural network) utilizes LSTM to propagate the hidden state
and recurrently sample the most likely next words. The framework of the whole network
is similar to DenseCap [21], except that we add a box selecting module to focus on the
attention region. The optimization objective of the dense captioning model is to minimize
its loss function L(I, S), which is given in Equation (7).

N
L(I,S) = — Z{logpt(S) )
=

where I is the input image, and S = (s1, . . ., sy ) is a true sentence describing this image.
We initialize the weights of the CNN with a pre-trained model on ImageNet [29] and add a
regular term when the gradient is updated to avoid overfitting, as shown in Equation (8).
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Figure 4. The framework of attention-based object description method.

3. Experimental Evaluation

In this section, we describe the attention prediction dataset for a rehabilitation training
scenario for children with autism and evaluate our algorithm in this scenario, both in terms
of visual attention prediction and object description. As advanced attention prediction
algorithms, refs. [9] and [12] achieve accurate results in predicting the attention of people
in the picture. They use the head posture as a clue to track people’s attention by a neural
network, while we focus on the geometric information brought by the 3D point cloud
map and predict attention through the geometric relationship between sightline and the
map. This also helps to achieve cross-frame prediction. We compare our method with [9]
and [12] in visual attention prediction. Additionally, in object description, we compare
with advanced general image caption methods [21,30,31] to show that our gazed-based
method is more suitable for human-robot interaction.

3.1. Dataset

We used the Visual Genome dataset [26] for object description model training. It
provides region proposals for each image, which may contain important information. Before
training, we remove repetitive descriptions and use YoloV3 object detector [32] to crop
images, because we focus on the specific objects that attract people. There is no need to
involve all objects in the scene. Finally, we used 103,521 images including 688,143 regions
for training and 4556 images with more than 70 descriptions including 40,989 regions for
testing. For evaluation, we simulated rehabilitation scenes and capture 24 RGB-D videos
from the perspective of the rehabilitation robot. Five of them were use to evaluate the
performance of the cross-frame gaze estimation method. In actual scenes, the autistic child
sits in front of a table and is instructed by a trainer to identify objects on the table, including
daily-life tools, fruits, and animals. We require subjects to imitate the autistic child gazing
at objects or playing with them and then provide a few sentences based on the objects as
evaluation templates. We run our system on TianXP. During the test, the frame rate of visual
attention prediction reach about 15 fps, and that of the object description is about 1 fps.
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3.2. Visual Attention Evaluation

The mapping, gaze-following, and saliency detection in our system are implemented
by OpenFace [33], ORB-SLAM2 [34], and OpenCV module [35], respectively. We used our
dataset to evaluate visual attention prediction and compare it with [9] and [12]. In order to
keep the input of each algorithm the same, we were provided with both the face bounding
box input of [9] and [12] methods by OpenFace. Moreover, we divided our visual attention
prediction into three schemes: Gaze, Gaze + Hiddendetect, and Gaze + Hiddendetect +
Salience for showing the effect of occlusion detection and salience detection. To measure
visual attention prediction, we employed the widely used matrices, ROC (receiver operator
characteristics), PR (precision recall), and AUC (area under the curve). The ROC curve
effectively reflects the relationship between the true-positive rate and the false-positive
rate. The PR curve is to visualize the accuracy of the model. Therefore, the large AUC of
the two curves demonstrates the superiority of the model.

The test results are provided in Figure 5 and Table 1. The PR plot shows that the
accuracy of this algorithm is higher than the others. The ROC curve of our algorithm is
below that of [9]. However, the accuracy of our method is better than any of them. The
prediction of [9] contains the best coverage area, but it also contains a relatively high level
of false-positive cases. As for [12], it is highly accurate in some cases but is susceptible to
the complex background. The prediction of [12] is more biased towards the region near the
hand, and thus the overall performance is poor. Moreover, in the three experiments of our
method, gaze had larger errors and more false positives. The reason is that the algorithm
incorrectly assigns more weights to occluded objects. Gaze + HiddenDetect shows that
occlusion detection significantly improves the accuracy of our system. On this basis, Gaze
+ HiddenDetect + Saliency further optimizes the details of attention regions, and Figure 6
shows its predictions. When the participant is looking at the green pepper on the left, only
Gaze + HiddenDetect + Saliency accurately locate it. Figure 7 illustrates the effect of our
attention prediction algorithm on cross-frame gaze estimation experiments. The target is not
in the camera field at first. On the basis of the 3D point cloud map, the algorithm estimates
the person’s sightline and follows its direction until the point cloud falls into the cone of sight.
Finally, we assign weight to these points and projected them into the image. This procedure
shows that 3D point cloud map plays an important role in cross-frame estimation.

0.6

0.4 4

Gaze
—— Gaze+Detection
—— Gaze+Detection+Saliency
—— Eunji Chong(2020)
— Dongze Lian{2019)

0.6 4

0.5 1

0.4+

0.3+

True Positive Rate

0.2 1

Gaze
—— Gaze+Detection
—— Gaze+Detection+Saliency 0.1+
— Eunji Chong(2020)
— Dongze Lian(2019)

T
0.0

T
0.2

T T T T 0.0 T T T T T T
0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10

False Positive Rate Recall Rate
Figure 5. ROC curves (left), PR curves (right).
Table 1. PR and ROC values between different methods.
Method ROCAUC PRAUC

Gaze 0.889 0.230
Gaze+HiddenDetect 0.917 0.395
Gaze+HiddenDetect+Saliency 0.920 0.408
Eunji Chong [12] 0.824 0.335
Dongze Lian [9] 0.949 0.378
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Figure 6. Application of the robot in autism rehabilitation training.

Figure 7. Illustration of cross-frame gaze estimation.

3.3. Object Description Evaluation

To assess the performance of our proposed method, we compared it with that of other
state-of-the-art methods. Reference [30] proposes an adaptive attention algorithm, [21]
combines object detection with image caption to achieve improved performance, and [31]
combines object detection with an adaptive attention algorithm to obtain more specific
descriptions. The dataset is collected from the perspective of a robot.

Figure 8 shows the comparison between the performance of our method and that
of [31]. Our method generates the description of the area focused by human eyes rather
than all objects in the scene. It is an advantage that our method takes the perspective of the
person, and the descriptions are more specific and are currently not possible with other
image caption algorithms. We apply widely used evaluation metrics, BLEU (bilingual
evaluation understudy), CIDER (consensus-based image description evaluation), METEOR
(metric for evaluation of translation with explicit ordering), ROUGE (recall-oriented under-
study for gisting evaluation), and SPICE (semantic propositional image caption evaluation).
Furthermore, due to matching problems of these matrices, we also include BERT (bidirec-
tional encoder representations from transformers) [36] for a better assessment of sentence
semantics. Meanwhile, refs. [21,30] generate object descriptions and utilize the mentioned
evaluation matrices. By comparing the sentence evaluation scores of the description results
in Table 2, we find that our method outperformed other algorithms, with the highest
evaluation scores and the best descriptions.
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[our] The apple is red. A laptop on the table. A black and white stuffed animal. A white hat.
[31] A boy sitting at a table with A boy sitting at a table witha A young young baseball is A young young blonde toddler is
a spoon. train. sitting on a desk. sitting at a table with a spoon.

e ——— g —_— e e s s s e e . E—
[our] A small plant in a vase. A green ball. An orange carrot. An orange on the table.
[31] A young Asian young A little toilet sitting in a A young toilet is sitting A little boy sitting at a
blonde haired. kitchen. in a room. table with a red bike.

Figure 8. Comparison between our method and [31].

Table 2. Evaluation scores between our method and [21,30].

Method Ours DenseCap [21] NIC [30]
BLEU1 0.251 0.176 0.154
BLEU2 0.133 0.07 0.075
BLEU3 0.08 0.035 0.043
BLEU4 0.053 0.019 0.027
CIDER 0.558 0.257 0.373

METEOR 0.132 0.088 0.043

ROUGE 0.239 0.155 0.163

SPICE 0.182 0.096 0.068
BERT 0.885 0.863 0.803

4. Conclusions and Future Work

This paper creatively integrates third-person visual attention into object description
and proposes a human-robot interaction system applied to the rehabilitation of children
with autism. This system is composed of two main parts, attention prediction and object
description. The first part utilizes the spatial relationship between the sightline and the map to
predict the interested area. The second part utilizes the attention probability map to describe
objects. The experiments demonstrate that our method predicts the objects interested by
children with high efficacy. However, there are some limitations in our paper. The existing
image description accuracy is insufficient. Moreover, the efficiency of gaze tracking and SLAM
algorithm needs further optimization. Apart from this, we have several desirable extensions.
For example, robots use real-time tracking of areas of interest to the human eye to conduct
conversations with people, helping empty-nest elderly, white-collar workers, and other people
to relieve their worries, prevent depression, and so on. In terms of robot applications, our
system provides new ideas for human-robot interaction. In the future, we will focus on the
work of improving recognition accuracy and enriching the forms of sentences.
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