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Abstract In clinical diagnosis, karyotyping is carried out to detect genetic dis-
orders due to chromosomal aberrations. Accurate segmentation is crucial in this
process that is mostly operated by experts. However, it is time-consuming and
labor-intense to segment chromosomes and their overlapping regions. In this re-
search, we look into the automatic segmentation of overlapping pairs of chromo-
somes. Different from standard semantic segmentation applications that mostly
detect object regions or boundaries, this study attempts to predict not only non-
overlapping regions but also the order of superposition and opaque regions of the
underlying chromosomes. We propose a novel convolutional neural network called
Compact Seg-UNet with enhanced deep feature learning capability and training
efficacy. To address the issue of unrealistic images in use characterized by over-
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lapping regions of higher color intensities, we propose a novel method to generate
more realistic images with opaque overlapping regions. On the segmentation per-
formance of overlapping chromosomes for this new dataset, our Compact Seg-UNet
model achieves an average IOU score of 93.44%±0.26 which is significantly higher
than the result of a simplified U-Net reported by literature by around 6.08%. The
corresponding F1 score also increases from 0.9262±0.1188 to 0.9596±0.0814.

Keywords Convolutional neural networks · Deep learning · Automatic segmen-
tation · Overlapping chromosomes · Compact Seg-UNet

1 Introduction

In eucaryotes, the genetic information is encoded and packaged into a set of chro-
mosomes. For example, the genome of human beings has been divided into 23 pairs
of chromosomes. The first 22 pairs are homologous chromosomes which means they
are common to both females and males. The last pair is called sex chromosomes
and it is the only nonhomologous pair (two X in females, one X and one Y in
males) (Alberts et al. 2014). Chromosomes are typically colored by fluorescent
dyes at the metaphase of mitosis. At this stage, cells undergo nuclear division and
their chromosomes are highly organized and compacted. To unambiguously dis-
play the 46 chromosomes in a human cell, researchers artificially rearrange them
in numerical order (King 1974). Cytogeneticists can detect abnormalities associ-
ated with inherited defects. An original microphotograph and its corresponding
karyotype are shown as Figure 1-a and b respectively.

In the medical profession, chromosome abnormalities (Munné et al. 1995; Lee
et al. 2007; Marshall et al. 2008) are significant evidence in the diagnosis of genetic
disorder such as Down syndrome (Roizen and Patterson 2003), Williams syndrome
(Tassabehji et al. 1999), and cancer (MacLeod et al. 2011; Wan 2014). Some chro-
mosome abnormalities, including atypical number and structural abnormalities,
are distinct and visible in metaphase cells. Therefore, analyzing karyotypes seg-
mented from metaphase cell images occupies a key role in cytogenetics and cancer
studies (MacLeod et al. 2011; Wan 2014). Accurate segmentation is crucial to
karyotyping which involves organizing and ordering pairs of homologous chromo-
somes in terms of their entire bands and features. Nonrigid shapes, overlapping
chromosomes, stain debris and other noises increase the difficulty for chromosome
segmentation (Minaee et al. 2014). As professional discretion is generally required
in karyotyping, it is inevitably time-consuming and expensive (Srisang et al. 2011).

Convolutional neural networks (CNNs) refer to a class of feed-forward artificial
networks, which have been proved to be efficient in image analysis. The success of
CNNs advances the development in computer vision area, significantly improving
the performance on many computer vision tasks, such as label prediction (Ab-
dulnabi et al. 2015), neural style transfer (Gatys et al. 2016), object detection
(Girshick et al. 2014; Ren et al. 2017), and image semantic segmentation (Gir-
shick et al. 2014). In the field of semantic segmentation, specifically in scene un-
derstanding, U-Net (Ronneberger et al. 2015) and SegNet (Badrinarayanan et al.
2017) are two efficient and practical CNN architectures that have achieved many
breakthrough results and showed advantages in end-to-end applications.

In this research, we focus on the automatic segmentation of overlapping chro-
mosomes. Most semantic segmentation applications emphasize detecting object
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Fig. 1 (a) An example of the real microphotographs; (b) An example of the karyotypes.

regions or boundaries, e.g. Fast/Faster/Mask R-CNN (Girshick 2015; Ren et al.
2017; He et al. 2017) and pyramid CNN (Morris 2018). In recent years, several
works concentrate more on the occlusion detection problem in many application
scenarios (Kowal et al. 2020; Chen et al. 2020; Lazarow et al. 2020). In the medical
segmentation field, Kowal et al. (2020) combine a CNN model and seeded water-
shed algorithm for addressing the problem of aggregated cell nuclei segmentation.
BANet (Chen et al. 2020) focuses on handling occlusion by assigning occluded
pixels to the correct object in panoptic segmentation tasks. OCFusion (Lazarow
et al. 2020) resolves the occlusion problem by adding an additional “head”, named
as the “occlusion head”, to the Mask R-CNN architecture for classifying pixels.
However, these current works still focus on separating the boundaries rather than
predicting the underlying regions between overlapped objects. This study attempts
to predict not only non-overlapping regions but also the order of superposition and
opaque regions of underlying chromosomes.

There are two key contributions in this study. First, a new neural network
architecture called Compact Seg-UNet, a hybrid of U-Net (Ronneberger et al.
2015) and SegNet (Badrinarayanan et al. 2017), is proposed in this study to pre-
dict non-overlapping and overlapping segments separately. Second, to evaluate the
segmentation performance of overlapping chromosomes, we modified the dataset
construction method used in (Hu et al. 2017) to generate more realistic images
with opaque overlapping regions.

The rest of this paper is organized as follows. In Section 2, we review several
chromosome segmentation methods available in literature. Section 3 first provides
details of dataset preparation, then the proposed approaches and the architecture
of Seg-UNet & Compact Seg-UNet are introduced. Subsequently, we provide de-
tailed results of the experiments in Section 4. Finally, conclusions and future work
are given in Section 5.
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2 Related work

2.1 Architecture of U-Net and SegNet

Before deep CNNs gain popularity in its application in computer vision, researchers
regularly work on object recognition and edge detection. The deep learning meth-
ods can achieve significant improvements not only in edge detection but also in
pixel-wise semantic segmentation. Different from Fully Convolutional Networks
(Long et al. 2015), U-Net and SegNet (Ronneberger et al. (2015), Badrinarayanan
et al. (2017)) are both designed as encoder-decoder architectures. The encoder
path extracts and integrates the interior features of images, while the decoder
ensures that the output details and sizes are identical to the input images.

Fig. 2 Architecture of U-Net (Ronneberger et al. 2015)

The U-Net is initially applied to biomedical image segmentation (Ronneberger
et al. 2015). It has a unique U-shaped architecture, comprising of a contracting
path and an expansive path (Figure 2). The contracting path contains 4 blocks,
each consisting of two convolutional layers with respective rectified linear units
(ReLU) as activation functions, and one max-pooling layer for downsampling.
In the expansive path, upsampling is achieved through transposed convolution
operators. Each upsampling output is concatenated with a corresponding high-
resolution feature map of the contracting path. Thus, high-resolution features are
maintained and inherited across layers. (Ronneberger et al. 2015) utilizes the U-
Net for cell tracking and segmentation in biomedical images. The U-Net achieves
the best performance of 77.5% intersection over union (IOU) score which is 46%
higher than its nearest competitor in ISBI challenge.

As a semantic segmentation architecture, SegNet is initially applied to road
and indoor scene understanding scenarios which also require the neural networks
to detect different objects, e.g., pedestrians, vehicles, doors and office chairs (Badri-
narayanan et al. 2017). The SegNet consists of an encoder network (contracting
path), a decoder network (expansive path), and a pixel-wise classifier in its final
layer (Figure 3). The encoder network is identical to the first 13 convolutional lay-
ers of the VGG16 network (Simonyan and Zisserman 2014), in which each convo-
lutional layer is supplemented by batch normalization and ReLU. The upsampling
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Fig. 3 Architecture of SegNet (Badrinarayanan et al. 2017)

step of SegNet is computed by corresponding pooling indices of the encoder path,
and it differs from the transposed convolution method in U-Net.

2.2 Previous Work on Chromosome Overlapping Segmentation

Several methods and algorithms have been proposed for the automatic segmen-
tation of overlapping chromosomes in metaphase images. (Karvelis et al. 2010)
utilizes the watershed transform which decomposes images into watershed regions
and gradient paths, and then merges adjacent regions to generate chromosome ar-
eas. Furthermore, a hybrid of fuzzy C-means and the watershed algorithm has been
proposed to detect overlapping region (Manohar and Gawande 2017). Methods fo-
cusing to detect cut-points have also been studied. (Ranjan et al. 2012) proposes
a novel method to detect pale path for chromosome images, which obtains an op-
timum number of cut-points and minimized grayscale intensity by self-adaptive
searching windows. Delaunay triangulation is utilized to identify the number of
overlapping chromosomes by detecting the optimal cut-points (Munot et al. 2013).
Most of these geometric analyses can detect and segment overlapping chromo-
somes, but have weak performances when chromosomes are merely touching or
partially overlapping. In practice, these methods may require a lot of human in-
terventions which are time-consuming.

Although CNNs have been developed for over 20 years, they are seldom ap-
plied to the field of chromosome related image analysis. In 2017, (Sharma et al.
2017) and (Gupta et al. 2017) design pipelines for the automation of chromo-
some segmentation and classification. However, their chromosome segmentation
is implemented by crowdsourcing method which is carried out manually. This is
different from our purpose which is the automatic segmentation of overlapping
chromosomes. A simplified U-Net (abbreviated as Sim U-Net) for automatic seg-
mentation of overlapping chromosome pairs is proposed by (Hu et al. 2017), by
retaining the first two downsampling and the corresponding upsampling blocks of
the regular U-Net (Figure 2). The maximum channel size of Sim U-Net is 256.
By training on randomly overlapped chromosome pairs, it quantitatively evalu-
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ates the segmentation accuracies of overlapping and non-overlapping regions at
pixel level. For improving the performance, a method is proposed by (Saleh et al.
2019) which combines a medium-size U-Net (abbreviated as Med U-Net) and test
time augmentation (TTA). By retaining the first three downsampling and corre-
sponding upsampling blocks, the maximum channel size of Med U-Net is 512. The
depth of bottleneck layers of Med U-Net is 512 which is deeper than that of Sim
U-Net (256) and shallower than that of the original U-Net (1024). It achieves IOU
accuracies between 90.63%-99.94% which is significantly better than the range of
78.93%-99.93% (Hu et al. 2017) in its reproduced experiments. TTA is a method
generally used after the training stage to improve the performance of test sets.
It is not employed in this study because our focus is to compare the efficacies of
different architectures.

3 Proposed Method

In this section, we provide a detailed description of our approach, organized as
follows: a) The construction of datasets, b) pre-processing of data, c) architecture
of Compact Seg-UNet and d) evaluation metrics.

3.1 Datasets

In this research, two datasets are used. Dataset 1 comprises 13434 pairs of overlap-
ping chromosomes. The dataset is obtained by extracting 46 individual chromo-
somes from two microphotographs, one containing DAPI stained human metaphase
chromosomes and the other including Cy3 labeled telomeres. The areas of chro-
mosomes are calculated and ordered. After that, 12 chromosomes are picked by
selecting every fourth chromosome from a sequence of chromosomes ordered by
sizes (Lines 1 to 2 of Algorithm 1). They are combined to produce (122 ) = 66
chromosome pairs (Line 3 of Algorithm 1). With random rotation, 13434 over-
lapping chromosome images are generated (Dataset 1) (Line 4 of Algorithm 1).
Dataset 1 is also used in (Hu et al. 2017). Figure 4-a gives four examples of the
remained 13434 chromosome pairs. Their corresponding ground truth information
is illustrated in Figure 4-b whose orange and green regions correspond to the non-
overlapping regions of underlying and top chromosomes respectively, while blue
regions correspond to the overlapping region.

A shortcoming of Dataset 1 is that, during image generation, the pixel-wise
summation of greyscale values occurs when chromosomes are superimposed, re-
sulting in lighter luminance (Figure 5-a). In this case, the non-overlapped re-
gions of top and underlying chromosomes are indistinguishable and the lighter
overlapping regions are distinct for recognition. This phenomenon will not hap-
pen to physical objects including chromosomes (Figure 5-c). For generating more
realistic overlapping chromosomes, we modify the image generation method. In
overlapping regions, only the pixel values of top chromosomes remained. A new
dataset (Dataset 2) is then constructed in which the top chromosomes are opaque
with respect to the underlying ones (Figure 5-b) (Lines 5 of Algorithm 1). The
overlapping images and their order of the two datasets are identical except for
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(a)

(b)

Fig. 4 (a) Four examples of generated overlapping chromosomes; (b) their corresponding
ground truth (orange and green colors are used to distinguish between two chromosomes; blue
color is used to represent the overlapping region)

the pixel values of overlapping regions. Dataset 1 and 2 are available at https:

//github.com/SifanSong/Chr_overlapping_datasets.

(a) (b) (c)

Fig. 5 (a) The overlapping region in Dataset 1 is lighter than non-overlapping areas; (b) We
modify the overlapping method, making Dataset 2 appears more similar to real images; (c) In
real microphotographs, opaque overlaps are more common than translucent ones

3.2 Pre-processing

The ground truth (Figure 6-GT) of Datasets 1 and 2 is initially transformed to four
one-hot images for assessing the accuracies of different target regions. It is then
denoised using a label correction method (Hu et al. 2017) to eliminate mislabeled
pixels (Figure 6-i to iv). After denoising, Figure 6-v shows the label of background.
Figure 6-vi and vii illustrate smoothed non-overlapping regions of the underlying
and the top chromosomes respectively. Figure 6-viii shows the overlapping region.
Pixel values of target regions are labeled as 1 (the black regions) and those of
the rest are labeled as 0 (the white regions in Figure 6). Before being fed into
CNNs, the background of all overlapping chromosome images and one-hot images
are extended to 96 × 96 pixels (Lines 6 to 10 of Algorithm 1). It is notable that
the pre-processing steps are identical in all experiments in this study.

https://github.com/SifanSong/Chr_overlapping_datasets
https://github.com/SifanSong/Chr_overlapping_datasets
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Fig. 6 (GT) An example of ground truth labels; (i) to (iv) four one-hot images without
denoising; (v) to (viii) four one-hot images after denoising

Algorithm 1 Dataset preparation and pre-processing

Input: Extracted 46 chromosome digital images. The background of the image is black (0
pixel values).
Output: Two datasets for experiments.

1: The areas (non-zero pixel number) of chromosome images are counted and sorted in in-
creasing order.

2: An image set including 12 chromosomes are collected by choosing every fourth chromosome.
3: Then

(12
2

)
= 66 chromosome pairs are combined.

4: By using different degrees of rotating, these 66 pairs generate 14850 images of which 1416
images that do not exist overlapping regions then are removed (13434 images remaining).

5: In order to eliminate the deficiency of the pixel-wise summation of greyscale values in
Dataset 1, we generate a more realistic dataset (Dataset 2). Compared to Dataset 1,
Dataset 2 contains 13434 exactly identical chromosome overlaps but their overlapping
regions are opaque.

6: for each image i ∈ {1, 2, ..., 13434} of Dataset 1 and 2 respectively do
7: Four-layer one-hot labeling (Figure 6 (i) to (iv)))
8: Denoising (Figure 6 (v) to (viii)))
9: Extending the image size to 96 × 96

10: end for
11: For fair comparison, all experiments implemented to Dataset 1 and 2 are with identical

hyperparameters in this research. These are further described in Section 4.

3.3 Architecture of Compact Seg-UNet

Seg-UNet is a hybrid convolutional neural network combining the main charac-
teristics of U-Net (Ronneberger et al. 2015) and SegNet (Badrinarayanan et al.
2017). It consists of an encoder path and a decoder path (Figure 7). The SegNet
architecture is used as a framework, that is, each convolutional block contains a
convolutional layer, a batch normalization and an activation function ReLU. In
encoder path, 2 x 2 max-poolings with stride 2 are conducted to filter deep fea-
tures when downsampling, and their pooling indices are saved. The architecture of
the decoder path is almost symmetrical to that of the encoder. The pooling indices

are utilized to perform upsampling (Figure 8). The upsampling guided by pool-

ing indices restores double feature sizes by keeping positions with the best logits
recorded in max-pooling (Badrinarayanan et al. 2017). In order to deliver low-level
features, we concatenate the results of upsampling to corresponding layers with
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the same feature sizes from the encoder path (Figure 8). These skip connections
decrease the loss of features during upsampling in different scales and preserve
more contour details (Ronneberger et al. 2015), (Chung et al. 2020).

Fig. 7 The architecture of Seg-UNet and its compact version

Fig. 8 upsampling of Compact Seg-UNet

The narrow and thick bottleneck layers introduce excessive trainable param-
eters in the Seg-UNet, leading to overfitting when applied to small datasets (Wu
et al. 2017). To avoid this pitfall, we customize the depth of Seg-UNet by removing
these layers (the grey box in Figure 7). We denote this architecture with a smaller
network size as the Compact Seg-UNet.
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3.4 Evaluation metrics

To evaluate the performance of segmentation in pixel-level, we first apply three
measurement metrics, IOU, precision and recall:

IOU =
Intersection

Union
× 100% =

TP

TP + FP + FN
× 100% (1)

Precision =
TP

TP + FP
× 100% (2)

Recall =
TP

TP + FN
× 100% (3)

where Intersection is equal to TP (True Positive) representing existing segments
and being predicted correctly; FP (False Positive) is non-existing and wrongly
predicted segments; FN (False Negative) represents segments that exist but not
predicted; and Union is a summation of TP , FP and FN . For every one-hot im-
age, we use IOU, precision and recall to assess the performance of segmentation.
We overlay two corresponding one-hot images of ground truth and predicted seg-
mentation to demonstrate them (Figure 9). In Figure 9, the colors black, blue
and yellow represent TP , FP and FN respectively. We further use F1 score to
combine the precision and recall and to provide a balanced measurement of these
two metrics:

F1 = 2 × Precision×Recall

Precision + Recall
(4)

where Precision and Recall are previously defined in (2) and (3) respectively.

Fig. 9 An illustration of True Positives (black color), False Positives (blue color), and False
Negatives (yellow color).

4 Experiments and Results

4.1 Implementation Details

Due to the fact that the one-hot images are composed of 0 and 1 pixel values,
we apply sigmoid and binary cross-entropy as the last activation function and
the loss function respectively. Our experiments are coded by PyTorch 3.7.5, and
run on a NVIDIA RTX 2080Ti GPU and an Intel(R) Core(TM) i9-9900K CPU.
We list all detailed hyperparameters in Table 1. For fair comparison, we apply
the configuration described in Table 1 to every experiment and each dataset. We
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Table 1 The Detailed Hyperparameters of All Experiments.

Hyperparameters Details

Training:Validation Sets 9548:2386 (5-fold cross-validation)

Testing Set 1500 images

Optimizer Adam

Fixed Random Seed 152

Batch Size 8

Learning Rate 0.00002

Decay Rate 0.5

Patience for Learning Rate Decay 3

Patience for Stop Training 9

randomly choose 1500 images as a testing set. The order of remained images is
randomized by a fixed random seed = 152. These remained images are split in
the ratio of 4:1 (9548:2386 images) for training and validation (batch size = 8).
We then perform 5-fold cross-validation to prevent overfitting issues. The training
process is optimized using Adam optimizer. We utilize the early stopping training
strategy in this study, and the initial learning rate lr is 0.00002. The validation
performance is checked once per epoch, and model weights with the best validation
performance (the lowest loss of validation sets) are saved. If the best validation
performance is not updated after 3 consecutive epochs, the lr is decreased by 0.5
decay rate. If the best validation performance is not updated after 9 consecutive
epochs, the training process is terminated for avoiding overfitting.

Table 2 The IOU scores (mean ± 2 standard deviation) of one-hot images (5-fold cross-
validation)

Exp. a Architectures DS b IOU 0 c IOU 1d IOU 2e IOU 3f

A Sim U-Net 1 99.88%±0.02 72.94%±1.48 85.07%±0.92 78.31%±0.72

B Med U-Net 1 99.82%±0.02 82.74%±1.76 91.80%±0.78 75.91%±1.52

C Seg-UNet 1 99.97%±0.00 93.63%±0.42 98.11%±0.24 88.21%±0.58

D Compact Seg-UNet 1 99.97%±0.00 93.82%±0.32 98.20%±0.22 88.51%±0.56

E Sim U-Net 2 99.86%±0.02 87.58%±1.36 89.68%±1.08 72.30%±2.36

F Med U-Net 2 99.84%±0.02 90.23%±1.10 92.03%±0.72 74.34%±2.30

G Seg-UNet 2 99.97%±0.00 95.35%±0.30 95.70%±0.52 81.99%±2.60

H Compact Seg-UNet 2 99.97%±0.00 95.48%±0.06 95.81%±0.26 82.49%±0.74
a Experiments

b Datasets
c IOU scores of the background region

d IOU scores of the non-overlapping region of the underlying chromosome
e IOU scores of the non-overlapping region of the top chromosome

f IOU scores of the overlapping region
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4.2 Results

To better assess the segmentation performance of overlapping chromosomes, we
employ four CNN architectures (Sim U-Net, Med U-Net, Seg-UNet and Compact
Seg-UNet) on the two datasets. Since Sim U-Net has the shallowest architecture
among the four CNNs, we use its results as baselines. As shown in Table 2 and
Table 3, Experiments A to D are conducted using Dataset 1 and Experiments E to
H are carried out using Dataset 2. Specifically, Experiment A and E utilize Sim U-
Net; both Experiments B and F use Med U-Net; both Experiments C and G utilize
Seg-UNet; and both Experiment D and H use Compact Seg-UNet. Table 2 lists the
architectures, datasets, and four IOU scores whose meanings are consistent with
Figure 6-b-v to viii respectively. To further evaluate the segmentation performance
of these architectures, we calculate sizes of GPU memory usage (GMU), average
IOU, precision, recall and F1 scores (Table 3). We note that all the results of
Table 2 and Table 3 are average scores ± 2 standard deviation (2std.) of test sets
of 5-fold cross-validation.

Table 3 The average scores (± 2 standard deviation) of the experiments (5-fold cross-
validation)

Exp.a GMUb (MiB) Avg.c IOU Avg. Precision Avg. Recall Avg. F1

A 1443 84.05%±0.78 89.51%±0.64 90.80%±0.48 0.9015±0.1286

B 1609 87.57%±1.02 91.68%±1.08 92.72%±0.72 0.9220±0.1180

C 2455 94.98%±0.32 96.58%±0.28 96.88%±0.24 0.9673±0.0608

D 2251 95.12%±0.28 96.70%±0.36 96.93%±0.24 0.9681±0.0596

E 1443 87.36%±1.20 92.57%±0.74 92.68%±0.74 0.9262±0.1188

F 1609 89.11%±1.04 93.50%±1.20 93.58%±0.76 0.9354±0.1124

G 2455 93.25%±0.86 95.93%±1.26 95.80%±0.68 0.9586±0.0832

H 2251 93.44%±0.26 96.08%±0.44 95.84%±0.54 0.9596±0.0814
a Experiments

b GPU Memory Usage
c average scores

For the Experiments (A to D) conducted on Dataset 1 and the Experiments (E
to H) conducted on Dataset 2, Table 2 indicates that all IOU scores of Seg-UNet
and Compact Seg-UNet have a significantly better performance than those of Sim
U-Net and Med U-Net, since their confidence intervals (average scores ±2std.) do
not have overlap with those of Sim U-Net and Med U-Net. At the same time, their
2std. scores are much lower than those of Sim U-Net and Med U-Net. The segmen-
tation performance of Med U-Net is generally better than that of Sim U-Net. It
indicates that Sim U-Net is too shallow to achieve a good performance in this study,
so a deeper architecture (Med U-Net) improves the capacity to learn deep features.
In Table 2, the comparisons of Seg-UNet and Compact Seg-UNet (Experiments C
to D and G to H) show that results of IOU 0 to IOU 3 are almost similar, but the
results of Seg-UNet may be affected by overfitting due to this excessively complex
architecture. In contrast, the results of Compact Seg-UNet are slightly better than
those of Seg-UNet. Compact Seg-UNet achieves the best IOU scores in the range of
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(a) (b)

(c) (d)

Fig. 10 (a) (b) (c) Examples of average losses of training, validation and test sets versus
epochs respectively, where D1 and D2 represent Dataset 1 and Dataset 2; (d) the zoom-in plot
of Seg-UNet and Compact Seg-UNet experiments of test sets.

88.51%(±0.56)-99.97%(±0.00) on Dataset 1 and 82.49%(±0.74)-99.97%(±0.00) on
Dataset 2. Especially, Experiments D and H show that the robustness of Compact
Seg-UNet model is superior to that of Seg-UNet with respect to lower 2std. scores.
Although IOU 3 scores of Dataset 2 are lower than those of Dataset 1, these IOU
scores demonstrate the flaws of Dataset 1. The directly summed pixel values cause
unrealistic lighter overlapping regions as we described above, and this phenomenon
cannot be observed in the real-world. Therefore, these lighter regions not only are
distinct to neural networks, but also do not appear which chromosomes are under-
lying. Comparing Experiments (A-D) to (G-H), these flaws have been reflected by
higher scores of the IOU 3 and poorer ability to distinguish the non-overlapping
regions of underlying chromosomes (IOU 1). Although Experiments (C and D)
on Dataset 1 show higher average scores in both Table 2 and Table 3, we still
recommend setting the results on Dataset 2 as benchmarks in future research and
evaluations, since the underlying regions are not transparent under microscopes
and CNNs should learn to predict the extend of overlapping.

In Table 3, the average IOU is the mean of IOU 0 to IOU 3 of Table 2. We ob-
serve that relationships of other average ± 2std. results (precision, recall and F1)
of four CNN architectures are consistent with IOU scores. Although Sim U-Net
and Med U-Net only have 1443 and 1609 MiB GMU respectively, their segmen-
tation results have been significantly improved by altering architectures and may
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(a) (b)

(c) (d)

Fig. 11 (a) (b) (c) Examples of average IOU scores of training, validation and test sets versus
epochs respectively, where D1 and D2 represent Dataset 1 and Dataset 2; (d) the zoom-in plot
of Seg-UNet and Compact Seg-UNet experiments of test sets.

not satisfy the requirement of further research on automatic segmentation of over-
lapping chromosomes. Compact Seg-UNet (Experiments D and H) also achieves
the best performance in overlapping chromosome segmentation (an average IOU
of 93.44% ± 0.26 and a F1 score of 0.9596 ± 0.0814 on Dataset 2) and its GMU
has been reduced from 2455 (Seg-UNet) to 2251 MiB. These results highlight the
fact that the removal of bottleneck layers of Seg-UNet not only reduces the load
of training but also exhibits superiority in this study.

To further explore the segmentation performance in training processes, we
present average losses of test sets versus epochs (Figure 10) and average IOU
accuracies of test sets versus epochs (Figure 11). The results of the first fold of
cross-validation are recorded and illustrated as examples. The curves of Sim U-
Net and Med U-Net are distinctly separated from those of Seg-UNet and Compact
Seg-UNet. Figure 10-a and Figure 11-a demonstrate the continuous overfitting of
models is terminated by our early stopping strategy when validation performances
are not updated for a while (Figure 10-b and Figure 11-b). Figure 10-c and Figure
11-c are average scores of test sets, and they also show that both Seg-UNet and
Compact Seg-UNet significantly improve average results and decrease total epochs
before early stopping. Figure 10-d and Figure 11-d are zoomed-in plots of the
curves of Seg-UNet and Compact Seg-UNet. We observe that the experiments
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conducted using each dataset show similar trends and are highly consistent. They
highlight the superiority of the Compact Seg-UNet and Seg-UNet over Sim U-Net
and Med U-Net in this task with high efficacies.

5 Conclusions and Future Work

In this work, a novel deep learning neural network architecture, Compact Seg-
UNet, is proposed to segment images with overlapping chromosomes. With the
removal of several low-resolution layers, Compact Seg-UNet requires relatively
less GPU memory usage. The scarcity of real-world overlapping chromosome pairs
motivates the construction of a dataset with generated overlapping chromosomes.
To evaluate the performance of the proposed method, we also compare Compact
UNet with Sim U-Net, Med U-Net and Seg-UNet. With the measurement metrics
of IOU, precision, recall and F1 scores, the proposed Compact Seg-UNet is superior
to other architectures in terms of segmentation performance.

For the public dataset (Dataset 1), there are lighter overlapping regions due to
pixel-wise summation of the respective greyscale values. Such feature is not only
unrealistic but can be directly recognized by neural networks. In view of this, we
propose a modified approach to generate images with opaque overlapping regions
that are more commonly seen in the real-world (Dataset 2). On Dataset 2, our
proposed Compact Seg-UNet achieves the best average IOU score (93.44%±0.26)
and the highest average F1 score (0.9596±0.0814). Those significantly outperform
the previous work by large margins.

When CNNs have identified and learned interior textures from chromosomes,
the trained models can predict the shape, size and obstructed overlapping region
of chromosomes in this study. This differs from most semantic segmentation ap-
plications whose emphases are merely detecting object regions or boundaries, e.g.
Fast/Faster/ Mask R-CNN and pyramid CNN.

The achievement in this research is the first step towards the segmentation of
chromosomes with higher degrees of overlapping. The research shows that Compact
Seg-UNet can be used to segment overlapping chromosomes and predict nonrigid
shapes. Compact Seg-UNet is designed for alleviating the overfitting problem. It
not only improves the segmentation performance but also reduces computational
costs. In future research, apart from customizing the size of CNN architectures,
methods such as, dropout (Srivastava et al. 2014), weight initialization (He et al.
2015) and stochastic weight averaging (Izmailov et al. 2018) may be integrated
into our architecture to further improve the generalization and robustness.

Despite the encouraging results obtained with Compact Seg-UNet in this study,
Datasets 1 and 2 are artificially generated from merely 12 individual chromosomes.
This is the main weakness impeding the practicability of models to segment over-
lapping chromosomes in more complicated scenarios. To achieve robust segmen-
tation performance on more realistic images with overlapping chromosomes, we
would augment training sets with real-world data and various chromosome shapes
for constructing a great variety of overlapping conditions and chromosome individ-
uals. In the next step of the research, we would also label and use real overlapping
chromosome images to train our proposed neural network for improving model
robustness, as well as to test fine-tuned models on real chromosome images for an
assessment of its efficacy.
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Munné, Santiago, Mina Alikani, Giles Tomkin, Jamie Grifo, and Jacques Cohen. 1995. Embryo
Morphology, Developmental Rates, and Maternal Age are Correlated with Chromosome
Abnormalities. Fertility and sterility 64 (2): 382–391.

Munot, Mousami V, Jayanta Mukherjee, and Madhuri Joshi. 2013. A Novel Approach for
Efficient Extrication of Overlapping Chromosomes in Automated Karyotyping. Medical &
Biological Engineering & Computing 51 (12): 1325–1338.

Ranjan, Rajeev, Akila Subasinghe Arachchige, Jagath Samarabandu, Peter K Rogan, and Joan
Knoll. 2012. Automatic Detection of Pale Path and Overlaps in Chromosome Images using
Adaptive Search Technique and Re-thresholding. In VISAPP (1), 462–466.

Ren, Shaoqing, Kaiming He, Ross Girshick, and Jian Sun. 2017. Faster R-CNN: towards Real-
time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern
Analysis & Machine Intelligence.

Roizen, Nancy J, and David Patterson. 2003. Down’s Syndrome. The Lancet 361 (9365): 1281–
1289.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional Networks
for Biomedical Image Segmentation. In International Conference on Medical Image Com-
puting and Computer-assisted Intervention, 234–241.

Saleh, Hariyanti Mohd, Nor Hidayah Saad, and Nor Ashidi Mat Isa. 2019. Overlapping Chro-
mosome Segmentation using U-Net: Convolutional Networks with Test Time Augmenta-
tion. Procedia Computer Science 159: 524–533.

Sharma, Monika, Oindrila Saha, Anand Sriraman, Ramya Hebbalaguppe, Lovekesh Vig, and
Shirish Karande. 2017. Crowdsourcing for Chromosome Segmentation and Deep Classifica-
tion. In 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), 786–793.

Simonyan, Karen, and Andrew Zisserman. 2014. Very Deep Convolutional Networks for Large-
Scale Image Recognition. CoRR abs/1409.1556.

Srisang, Wacharapong, Krisanadej Jaroensutasinee, and Mullica Jaroensutasinee. 2011. Seg-
mentation of Overlapping Chromosome Images using Computational Geometry. Walailak
Journal of Science and Technology (WJST) 3 (2): 181–194.

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. The
Journal of Machine Learning Research 15 (1): 1929–1958.

Tassabehji, Mayada, Kay Metcalfe, Annette Karmiloff-Smith, Martin J Carette, Julia Grant,
Nick Dennis, W Reardon, Miranda Splitt, Andrew P Read, and Dian Donnai. 1999.
Williams Syndrome: Use of Chromosomal Microdeletions as a Tool to Dissect Cognitive
and Physical Phenotypes. The American Journal of Human Genetics 64 (1): 118–125.

Wan, Thomas SK. 2014. Cancer Cytogenetics: Methodology Revisited. Annals of Laboratory
Medicine 34 (6): 413–425.

Wu, Bingzhe, Zhichao Liu, Zhihang Yuan, Guangyu Sun, and Charles Wu. 2017. Reducing
Overfitting in Deep Convolutional Neural Networks using Redundancy Regularizer. In
International Conference on Artificial Neural Networks, 49–55. Springer. Springer.


	Introduction
	Related work
	Proposed Method
	Experiments and Results
	Conclusions and Future Work

