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Precise segmentation of chromosome in the real image achieved by a microscope is
significant for karyotype analysis. The segmentation of image is usually achieved by a pixel-
level classification task, which considers different instances as different classes. Many
instance segmentation methods predict the Intersection over Union (IoU) through the head
branch to correct the classification confidence. Their effectiveness is based on the
correlation between branch tasks. However, none of these methods consider the
correlation between input and output in branch tasks. Herein, we propose a
chromosome instance segmentation network based on regression correction. First, we
adopt two head branches to predict two confidences that are more related to localization
accuracy and segmentation accuracy to correct the classification confidence, which
reduce the omission of predicted boxes in NMS. Furthermore, a NMS algorithm is
further designed to screen the target segmentation mask with the IoU of the
overlapping instance, which reduces the omission of predicted masks in NMS.
Moreover, given the fact that the original IoU loss function is not sensitive to the wrong
segmentation, K-IoU loss function is defined to strengthen the penalty of the wrong
segmentation, which rationalizes the loss of mis-segmentation and effectively prevents
wrong segmentation. Finally, an ablation experiment is designed to evaluate the
effectiveness of the chromosome instance segmentation network based on regression
correction, which shows that our proposed method can effectively enhance the
performance in automatic chromosome segmentation tasks and provide a guarantee
for end-to-end karyotype analysis.
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INTRODUCTION

Motivation
Chromosomes are essential carriers for genetic information, and their abnormalities may result in
congenital genetic diseases (Schrock et al., 1997). Healthy human cells contain 46 chromosomes,
including 22 pairs of autosomes and 1 pair of sex chromosomes (two X sex chromosomes for
women and one X and one Y chromosome for men) (Tjio, 1956; T. Arora and Dhir, 2016).
Chromosome karyotype analysis, as shown in Supplementary Figure S1, can be achieved mainly
by cell culture, shooting and imaging, image segmentation followed by chromosome identification
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(Altinordu et al., 2016). Thus, the karyotype analysis has
become a common and significant method for prenatal
diagnosis, genetic disease diagnosis, and screening
(Garimberti and Tosi, 2010; Jahani et al., 2011; Abid and
Hamami, 2018). Furthermore, the accuracy of chromosome
image segmentation directly determines the accuracy of
subsequent chromosome classification and abnormality
identification, which makes segmentation the primary task of
the karyotype analysis (Wang, et al., 2021). However, as a
flexible substance (Almagro, et al., 2003), even chromosomes
with the same number will show different curved shapes in
different photos, and clustering will occur due to the contact and
overlap of chromosomes (Somasundaram, 2019). At present,
the segmentation of overlapping chromosomes is mainly done
manually by cytologists, which relies heavily on the operator’s
experience. Thus, it is time-consuming, labor-intensive, and
error-prone. Thus, how to automatically and effectively segment
a single chromosome and improve segmentation accuracy has
become a critical topic in karyotype analysis (Sharma et al.,
2017).

Related Work
Traditional automatic chromosome segmentation methods are
mainly based on geometric morphology (Somasundaram and
Nirmala, 2010; Balaji, 2012; Sreejini et al., 2012; Balaji and
Vidhya, 2015; Nair et al., 2015; Pravina, 2015; Vijayan et al.,
2015; Li et al., 2016) and threshold (Ji, 1994; M.F.S. Andrade,
et al., 2018; Ji, 1989). The segmentation of overlapping
chromosomes is achieved by extracting features such as pits,
tangent points, and refined skeletons of overlapping
chromosomes. Somasundaram et al. (2014) first used the
multi-object geodesic contour method to separate individual
chromosome. For overlapping chromosomes, the curvature
function was first used to identify the cutting points on the
image. Then, the obtained cutting points were used to draw
hypothetical lines on the overlapping areas. Finally, the non-
overlapping chromosomes were segmented. Yilmaz et al.
proposed a method of thresholding and watershed
segmentation to separate chromosome clusters, calculate the
tangent points of the chromosome clusters through the
curvature function, and segment the overlapping
chromosomes through the optimal geodesic path between the
tangent points (Yang and Kruggel, 2008). Minaee et al. (2014)
first extracted the outlines of overlapping chromosomes. They
then applied VAMD (Variations in the Angle of Motion
Direction) and SDTP (Sum of Distances among Total Points)
to extract the tangent points. The segmentation effect for
completely overlapping chromosome clusters is poor. This
type of method determines the intersection and concave point
of the overlapping part of the chromosome by calculating the
curvature and then performs segmentation. Therefore, the
misjudgment and omission of the effective intersection point
will seriously affect the performance of the segmentation.

Recently, more researches have constructed deep learning
methods to accomplish medical image processing tasks, which
can effectively avoid the occurrence of the aforementioned issues.
Similar to natural image segmentation, chromosome

segmentation methods based on deep learning are mainly
divided into semantic segmentation (Shelhamer, et al., 2017)
and instance segmentation (Fathi et al., 2017). As for
chromosome semantic segmentation tasks, Hu et al.
constructed the U-Net with two-layer pooling to segment
overlapping chromosomes with less computation and storage
costs (Hu, et al., 2017). The segmentation accuracy and
Intersection over Union (IoU) score (McGuinness and
O’Connor, 2010) for overlapping regions are 99.22 and 94.70,
respectively, where the segmentation accuracy is high, but the IoU
score still needs to be improved. Saleh et al. believed that the
increase of pooling and convolution operation in the network was
conducive to the extraction of more input feature information
(Saleh, et al., 2019). Thus, they built three-layer pooling in U-Net
(Ronneberger et al., 2015) to segment overlapping chromosomes,
and the segmentation accuracy and IoU were slightly improved.
However, the aforementioned two methods are only applicable to
scenarios where chromosomes overlap in pairs. However, real
chromosome overlapping is much more complicate than that.
Thus, it is not that sufficient to apply the aforementioned two
methods to real chromosome data sets. As for the chromosome
instance segmentation tasks, Bai et al. first used U-Net to segment
the foreground in the chromosome image, and then YOLO v3
(Joseph Redmon, 2018) was constructed to obtain the target
detection box of each chromosome, which is followed byU-Net to
segment single chromosomes from the detection boxes in the
final (Bai, et al., 2020). The YOLO v3 backbone network used in
this method is weak in detecting small targets and overlapping
targets, so it does not work well in the scenarios that
chromosomes overlap with each other severely. In addition, it
disassembles the instance segmentation task into three networks,
which makes the procedure cumbersome and inefficient.

It can be seen that the accuracy of the target detection box is
extremely important in the chromosome instance segmentation
tasks. Generally, when detecting clustered targets, the
classification confidence of the target box is often high, but the
actual detection result is poor, which leads to a decrease in the AP
score with high IoU threshold. To address this issue, Jiang et al.
constructed IoUNet, which predicts the IoU of the regression box
and the ground truth box to replace original classification
confidence, which eliminated the screening error caused by the
misleading classification confidence, thus improved the target
detection performance (Jiang et al., 2018). Wu et al. constructed
the IoU-aware single-stage object detector. It also predicts the
IoU of the regression box and the ground truth box and then uses
it as a multiplicative operator to correct the classification
confidence (Wu et al., 2020). The corrected confidence is
better correlated with the positioning accuracy, which
effectively improves the positioning accuracy. Chen et al.
constructed the supervised edge attention network (SEA Net)
(Chen et al., 2020). The IoU of the regression box and the ground
truth box are achieved and multiplied with the classification
confidence to improve the detection accuracy of the clustered
target. Moreover, they designed an extra head branch to help
predict the edge of mask to improve the segmentation effect when
the IoU threshold is high. For instance, segmentation tasks where
the classification confidence is high while the actual segmentation
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result is not that satisfactory, Huang et al. multiplies the IoU of
the predicted mask and the ground truth mask with the
classification confidence to construct the Mask Scoring RCNN
(MS RCNN) (Huang, et al., 2019). It considers the classification
score and the quality score of the predicted mask, and the
segmentation result is further improved compared with Mask
RCNN. The methods mentioned before adopted either the IoU of
the predicted box or the IoU of the predicted mask, and the
ground truth box to modify the classification confidence.
However, it does not consider whether the prediction process
is interpretable. If an interpretable method is adopted, the
performance will be better.

Contribution
This study proposes a chromosome instance segmentation
network based on regression correction to achieve precise
segmentation in the Giemsa-banding chromosome images.
The main contributions of this study are summarized as follows.

1) Considering high classification confidence but poor detection
and segmentation performance in reality, more relevant
confidence of PBox and IoUMask with positioning accuracy
and segmentation accuracy are achieved without extra head
branches to achieve better correction of the classification
confidence. PBox is the predicted probability based on the
regression box, and IoUMask is the predicted IoU based on
the mask.

2) Considering that the traditional non-maximum suppression
algorithms based on the overlap screening of prediction boxes,
which may result in missing or wrong target boxes, a non-
maximum suppression algorithm based on instance mask
screening is proposed to improve the segmentation of
instances.

3) Since the traditional IoU loss function is not sensitive to the
wrong segmentation area, K-IoU loss function is designed. It
divides the area to be segmented into K parts and calculate the
weight of each part to the overall segmentation loss according
to the proportion of the area to be segment in each part to the
total area, which improves the sensitivity of the network to
error segmentation and makes the penalty reasonable.

METHODS

Instance Segmentation Model Based on
Regression Correction
The multitask supervised learning method is known to make
good use of valuable information to obtain more accurate results
for each task. Its effectiveness lies in the correlation between all
tasks. However, the predicted result of the regression branch is
the offset of the regression box rather than the actual coordinates.
There is no direct correlation between the offset and the IoU
score, which makes it not reasonable enough. In addition, the use
of IoU score to modify the classification confidence will cause the
drop of classification confidence, thus worsen the subsequent
non-maximum suppression operations. Therefore, Wu et al. and
Chen et al. proposed regression branches to predict IoU scores

under a multitask supervised learning framework, but the results
showed low correlation with the real IoU scores. To address this
issue, we propose here a regression correction-based instance
segmentation network for chromosome segmentation, as shown
in Figure 1.

First, a regression confidence PBox is introduced, as shown in
Eq. 1. Taking the prediction result of the regression branch as
input, PBox is predicted through a fully connected layer with 1,024
output nodes. It helps make the prediction process of PBox more
reasonable, which shows stronger correlation with positioning
accuracy.

PBox � 1 − (T(LReg)) (1)
where T(·) is tanh function, and LReg is the regression loss, which
is calculated by the Smooth L1 loss function.

Due to the direct correlation between the output of the Mask
branch and IoUMask, the output of the mask branch acts as input,
and the IoUMask is predicted by the fully connected layer with
1,024 output nodes, instead of multitask supervised learning,
which helps make the prediction process more interpretable, as
shown in Figure 1.

Finally, the regression confidence PBox, as well as IoUMask,
which is more relevant with the segmentation accuracy, are used
to correct the classification confidence. Thus, both the detection
score and the segmentation score are considered simultaneously
to achieve better instance segmentation performance.

Mask-Based Non-Maximum Suppression
Algorithm
For overlapping target detection, the non-maximum suppression
algorithm should be further improved due to its poor effect on
severe overlapping (Neubeck and Van Gool, 2006). Therefore,
Bodla et al. proposed a Soft-NMS algorithm, which weakens the
lower confidence of the overlapping detection box by multiplying
it by a weight, instead of directly discarding it (Bodla, et al., 2017).
The detection performance of overlapping targets is slightly
improved, while the time complexity significantly increased. A
Box-based non-maximum suppression algorithm is beneficial to
target detection tasks. However, the effect is general in the
instance segmentation task. As shown in Supplementary
Figure S2, both boxes are the prediction boxes of the two
chromosomes, respectively, and the IoU of the two boxes is
0.8. Thus, the overlapping is severe. Following conventional
processing, boxes with higher classification confidence will be
remained, while boxes with lower classification confidence will be
discarded, resulting in missing detection of target boxes in this
case. However, the analysis found that the IoU of the mask was
only 0.2 at this time, which was much lower than the IoU of the
detection boxes.

Therefore, a mask-based non-maximum suppression
algorithm is proposed here for overlapping chromosome
segmentation tasks. The algorithm aims to remain as many
prediction boxes as possible before the prediction box fed into
the mask branch and then calculates the IoU of each prediction
mask and other prediction masks. Finally, traverse the
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classification confidence from high to low and remove prediction
masks that have an IoU score greater than that of the threshold
with the current prediction mask. It makes use of the IoU of the
mask as a threshold to help select overlapping targets, which can
effectively prevent missing and misjudged overlapping targets,
thus improve segmentation performance.

K-IoU Loss Function
There are multiple metrics for segmentation performance
evaluation. Among them, IoU is the most widely used one,
and better segmentation performance expects higher IoU
score. Thus, the IoU loss function (Yu, et al., 2016) is often
used for model parameter optimization, as shown in Eq. 2.

LIoU � −ln IoUMask, (2)
where IoUMask represents the IoU score between the predicted
mask and its ground truth.

However, IoU can only represent the overall segmentation
quality of the prediction results. It cannot adequately represent
the segmentation quality of some key regions. Under
chromosome segmentation scenarios that chromosomes
exhibit variable shapes, fuzzy edges, and severe overlaps, the
difficult-to-segment regions are the key regions that call for more
attention. The segmentation quality of key regions may better
help karyotypists to diagnose, thus provides more reliable
information for physicians’ choice of medical regime. Thus, a
more effective and reasonable loss function, LK-IoU, is proposed
for the incorrectly segmented region, as shown in Eq. 3. By
minimizing the K-IoU loss function, the network has better
segmentation performance for difficult-to-segment regions.

LK−IoU � −∑
K

i�1
δi ln IoUi, (3)

δi � Maski
Mask

, (4)

where K indicates the number of different parts that the ground
truth mask is divided into. As shown in Figure 2, K is 4 and the
shape is 2 × 2, the ground truth mask is equally divided by two
vertical center lines to obtain four parts. As shown in Eq. 4, δi
indicates the proportion of the ground truth in the i-part over the
entire ground truth, and IoUi indicates the IoU of the predicted
mask and the ground truth in the i-part.

As shown in Figure 2, the chromosome is divided into four
parts, which are indicated as①,②,③, and④. The IoU scores
and δi scores of the four parts are demonstrated, with the
striped area being the predicted mask. In Figure 2A, except
for the lower IoU score in part ①, the IoU scores of all the
other parts are 1. Suppose the conventional IoU loss function
is used, the high IoU scores of the other three parts will
weaken the negative impact caused by the incorrect
segmentation in the first part and reduce the sensitivity of
the network to the incorrect segmentation. Finally, the loss of
0.084 can be achieved. In contrast, a loss of 0.51 can be
obtained if the LK-IoU (δi = 1) is used. Compared with the
IoU loss function, better segmentation performance can be
obtained when the loss converges to the same value, and the
sensitivity of the network to incorrect segmentation is
dramatically improved.

However, it is not necessary to blindly increase the sensitivity
of the network to incorrect segmentation. When the proportion
of the ground truth mask in a certain part to the entire ground
truth mask becomes lower, the influence of this part on the whole
is smaller. Comparing Figure 2A with Figure 2B, the
segmentation result in (a) is significantly better than that in
(b), but their LK-IoU (δi = 1) are the same. It may thank LK-IoU that
corrects the loss of each part through the weight δi, as shown in
Figure 2B. It is more sensitive to incorrect segmentation and can
better highlight the contribution of critical areas to loss.

Then, we define the multitask loss on each proposal as the sum
of the losses from Box head and Seg head, as shown in Eq. 5.

L � LBox + LSeg, (5)
where LBox is composed of three parts, which are defined in Eq. 6.

LBox � LCls + LReg + LPBox, (6)
where LCls is calculated by the cross-entropy loss function, and
LPBox is calculated by the cross-entropy loss function based on
PBox obtained by Eq. 1.

LSeg is also composed of three parts:

LSeg � LMask + LK−IoU + LIoUMask
, (7)

where LMask is the binarized cross-entropy loss function, and
LK-IoU, calculated by Eq. 3, is also the binarized cross-entropy loss.

FIGURE 1 | Structure of the regression correction network.
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EXPERIMENTAL RESULTS

Wein the next conducted five-fold cross-validation experiments
on 985 real chromosome Giemsa-banding chromosome images
of 1,600 × 1,200 pixels. A total of 60% of the data was allocated for
training, while the remaining 40% images were equally
partitioned and referred to as validation and test sets. These
images were first scaled and padded to 512 × 512 and data
augmentation was also involved to better train the models.

Mask RCNN (He, et al., 2017), PANet (Liu, et al., 2018), IoUNet,
and MS RCNNwith different backbone network were compared on
the same dataset. The hyperparameters of themodel proposed in this
study follow Mask RCNN. The initial learning rate is 1e-5, the
learning momentum is 0.9, and the weight decay is 0.0001. Due to
the hardware limitations and image size, the batch size is set to 1, and
stochastic gradient descent (SGD) is used for training for 100 epochs.

Evaluation Metrics
For the evaluation of target detection, APM (Lin et al., 2014) is adopted
in this study. APM represents the average accuracy value of mask’s
IoU threshold from 0.5 to 0.95 with an interval of 0.05. APM50 refers to
theAPM scorewithmask IoU threshold being 0.5, while APM75 refers to
the score with mask IoU threshold being 0.75.

Main Result
As shown in Table 1, our proposed method achieves stable
improvements on different models and backbone networks.
With ResNet 101 + FPN, the APM of Mask RCNN+RC
reaches 83.35%, with an increase of 3.76%. Since PANet
follows the hyperparameters of Mask RCNN, the segmentation
results of PANet are not as good as Mask RCNN, but when the
backbone network is ResNet101 + FPN, the APM is still
significantly improved with an increase of 2.64%.

DISCUSSION

Performance of regression correction network: compared with the
baseline Mask RCNN, the chromosome instance segmentation

network based on regression correction in this study can
significantly improve the accuracy of instance segmentation and
enhance the APM score by 3.76%, as shown in Table 2.
Experimental results show that introducing a mask-based non-
maximum suppression algorithm is effective for improving the
performance of instance segmentation. As shown in
Supplementary Figure S3, the left image presents the
segmentation result of the baseline model Mask RCNN, the right
one displays the segmentation result of the mask-based non-
maximum suppression algorithm assembled on the baseline model,
and the weights of the twomodels are the same. It can be seen that the
mask-based non-maximum suppression algorithm effectively
prevents the omission of segmentation masks without training.

In the meanwhile, the introduction of the K-IoU loss function
helps improve the sensitivity to incorrect segmentation. It not only
strengthens the penalty for incorrect segmentation but also
considers the proportion of segmentation errors, on the whole,
making the penalty more reasonable. Therefore, APM is further
improved. In this study, the grid search method is used to
determine the value of K. As shown in Supplementary Table
S1, when K is 4, the APM score is the highest, and when the K is
further increased, the APM score decreases. Therefore, this study
sets the value of K to 4. Analyzing the reason, when the shape is
refined, the IoU of the prediction mask and the ground truth mask
in some grids will be 0, resulting in the back-propagation gradient
being 0, and optimization training cannot be performed.

By comparing themethod of directly using the output of theMask
branch to predict IoUMask (the seventh row) and the method of MS
RCNN, both use the predicted IoUMask to correct the classification
confidence. The segmentation performance of the former is better
than that ofMS RCNN. This verifies from the side that themethod in
this studymakes the predicted correlation between IoUMask andMask
stronger and is more helpful to correct classification confidence.

The IoU Net–based method, which uses IoUBox instead of
classification confidence, is ineffective and even leads to a decrease
in APM. It is due to the fact that the correlation between the output of
the regression branch and IoUBox is not strong enough. Therefore,
this article uses a more relevant head branch to predict the regression
confidence PBox to correct the classification confidence (the eighth

FIGURE 2 | Comparison diagram of LIoU and LK-IoU. (A) Calculation of LIoU. (B) Calculation of LK-IoU.
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row). Compared with IoU Net, APM has a more significant
improvement, which means that the regression confidence PBox
can modify the positioning accuracy of the prediction box more
than IoUBox. Finally, this study considers both the positioning
accuracy of the prediction box and the segmentation accuracy of
the instance (the ninth row). The APM has been further improved to
83.11 with an increase of 2.73%.

The design of confidence weight: This study considers the
positioning accuracy PBox of the prediction box and segmentation
accuracy IoUMask of the instance at the same time to improve the
segmentation performance of the network. However, multiplying
the two directly with the classification confidence may not be the
best choice. Therefore, PBox and IoUMask are exponentiated, and
the APM scores obtained are shown in Supplementary Table S2.
When IoUMask is “√2” and PBox is “√,” the specific calculation
method is shown in Eq. 8.

PCls � PCls · IoU2
Mask · PBox, (8)

We can see that when PBox is calculated to the sixth power,
APM reaches the highest score of 83.35%. Moreover, the
improvement is more significant than the effect brought by
the exponentiation of IoUMask. It can be seen that APM is
more sensitive to PBox, further verifying the effectiveness of PBox.

CONCLUSION

This article focuses on improving the segmentation accuracy of
chromosome instances in real chromosome datasets,
significantly overlapping chromosomes. We respectively use
the output of the regression branch and the mask branch to
predict two confidences, PBox and IoUMask, which are more
relevant to the positioning accuracy and segmentation

accuracy and achieve a better correction of the classification
confidence. A non-maximum suppression algorithm based on
mask is proposed, which uses the overlap of the instance as the
basis for judgment, which effectively prevents the missing and
incorrect segmentation of the chromosomes. Moreover, a
K-IoU loss function is proposed, which improves the
network’s sensitivity to incorrect segmentation while fully
considering the impact of the incorrect segmentation on the
whole so that the penalty is reasonable. The experimental
results show that the method in this study greatly improves
the accuracy of instance segmentation on the baseline Mask
RCNN, and it also has a good effect on PANet. Since the
implementation of PBox and IoUMask does not require
additional head branches and the structure is relatively
simple, it is expected to be extended to other models which
aim at instance segmentation.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

HL and GW built the architecture for RC-Net, designed and
implemented the experiments, analyzed the result, and wrote the
manuscript. GW conducted the experiments, analyzed the result,
and revised the manuscript. LZ and HL supervised the project,
analyzed the result, and revised the manuscript. SS and DH
manage the data. All authors read, critically revised, and
approved the final manuscript.

TABLE 1 | Performance comparison of different network models.

Baseline Backbone APM APM
50 APM

75

— +RCa
— +RC — +RC

Mask RCNN ResNet 101 + FPN 79.59 83.35 97.94 99.13 96.75 98.06
ResNet 50 + FPN 72.22 74.72 96.87 97.61 90.86 93.38

PANet ResNet 101 + FPN 76.56 79.2 98.47 98.57 95.34 96.09
ResNet 50 + FPN 70.82 73.2 96.17 97.43 90.17 91.55

a+RC represents adding the methods proposed in this article on the basis of the baseline. Best results are indicated in Bold.

TABLE 2 | Ablation experiment results.

Baseline M-NMS K-IoU IoUMask PBox IoUBox APM APM
50 APM

75

Mask RCNNa 79.59 97.94 96.75
MS RCNN √ √ 80.58 99.07 97.66
IoU Net √ √ 80.31 99.16 97.57
RC-Net (ResNet101 + FPN) √ 80.38 98.16 97.64

√ √ 80.85 99.08 97.87
√ √ 81.56 99.27 97.94
√ √ 81.97 99.09 97.90
√ √ √ √ 83.11 99.09 98.05

aThe second row is the baseline Mask RCNN framework. The component with √ is added to the baseline. Best results are indicated in Bold.
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