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Abstract—RF imaging that leverages existing wireless com-
munication infrastructure, such as radio tomographic imaging
(RTI) and joint communication and sensing (JCAS) is becoming
increasingly important. A challenge of RF imaging is that it
requires large measurement datasets containing independent
measurements. In this paper we investigate a method to reduce
the number of measurement nodes in RF imaging so that it is
more suitable for integration with wireless communication. The
approach is to exploit antenna pattern diversity so that each
node can collect multiple independent measurements from the
same measurement location, thereby decreasing the number of
measurement nodes required. Furthermore, we formulate pattern
diversity for RF imaging using the recently developed extended
Rytov Approximation (xRA) which has been demonstrated to
provide remarkable RF reconstruction accuracy. The advantage
of utilizing xRA is that it allows us to utilize the metric
of sensing capacity to straightforwardly quantify the potential
of various pattern diversity configurations. Using the sensing
capacity metric we are able to identify configurations where the
number of measurement nodes can be reduced by at least a factor
of two. Simulation results are provided to verify the RF imaging
approach with reduced measurement nodes, which demonstrates
the potential of using pattern diversity.

Index Terms—Inverse scattering, RF imaging, Pattern diver-
sity, Radio Tomographic Imaging (RTI), Rytov approximation,
extended Rytov approximation.

I. INTRODUCTION

R adio frequency (RF) and microwave imaging [1], [2] have
a wide range of applications including indoor RF imag-

ing [3], [4], [5], [6], non-destructive testing [7], biomedical
diagnosis [8], [9], [10], [11], through-the-wall imaging, rescue
operations, security-screening and more generally inverse scat-
tering [12], [13], [14], [15]. Of these applications, those that
can utilize existing wireless communication infrastructure have
attracted significant recent attention and include techniques
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such as radio tomographic imaging (RTI) [16], [17], [18],
[19], [20] and joint communication and sensing (JCAS). These
RF imaging techniques can leverage existing wireless commu-
nication platforms such as WiFi for convenient deployment.
However RF imaging typically requires large measurement
data sets containing independent measurements and these are
obtained in a variety of ways. For indoor RF imaging using
RTI, 20-40 WiFi nodes are usually utilized around the imaging
region [5], [6]. This implies that a conventional WiFi network
must be supplemented with additional WiFi nodes specifically
dedicated to the imaging application. If the requirement for
the number of measurement nodes in RF imaging could be
reduced then the deployment difficulties of these imaging
systems could also be reduced.

Frequency diversity has been exploited as one way to
increase the number of independent measurements that can
be obtained from a measurement node [21], [22], [23].
These techniques typically use dispersive antenna structures
to achieve frequency diversity [21], [22], [23], [24], [25]. As
the frequency sweeps through its given frequency range, the
antenna pattern scans through an angular range or changes
significantly providing the necessary diversity. A disadvantage
of this approach is the wide frequency bandwidth that is
required making it unsuitable for existing wireless commu-
nication applications.

A more straightforward approach to achieve the required
measurement diversity is to utilize antenna pattern diversity
directly. In recent years, a large number of antenna designs that
can provide digitally controlled patterns have been proposed.
In [26], pattern diversity is achieved by switching parasitic
elements. Other ways to achieve controlled patterns is to
use pixel antennas [27]. The antenna can generate different
radiation patterns by controlling switches or PIN diodes con-
nected between pixels and a variety of designs have been
proposed [27], [28], [29]. In applying these antennas to RF
imaging, the exact type of pattern is not critical as long as it is
sufficiently different to provide independent measurements. If
enough spatial information can be captured through the various
radiation patterns then the number of measurement nodes can
be reduced.

There have also been developments in reconstruction tech-
niques for RF imaging. Over the last decade, RTI has been
developed and now provides a straightforward imaging ap-
proach to estimate shape, size and location of the target
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objects. More formal inverse scattering approaches have also
been investigated for use with RF imaging. Non-linear state-
of-the-art techniques have been developed to overcome the
limits on reconstruction quality including subspace optimiza-
tion (SOM) and contrast source inversion (CSI) [13], [30].
However they require higher computational loads and are
sensitive to the experimental errors and noise due to their non-
linear formulation while only moderately extending the range
of permittivity and size that can be handled. This prevents
their application to a large domain of interest (DOI) such as
indoor imaging [31]. While linear techniques are robust to
such noise and errors, the common linearized methods of the
Born approximation (BA) and Rytov approximation (RA) are
limited to reconstructing relative permittivity close to unity
[4], [31]. Iterative linear methods have also been proposed
for strong scattering conditions including the distorted wave
Born iterative method (DBIM) and the distorted wave Rytov
iterative method (DRIM) [32], [33], [34], [35]. Recent results
based on a linear formulation denoted as the extended Rytov
approximation (xRA) [3], [14], [36], [37] has shown that
significant further improvements are possible in the validity
range of RA including accurate reconstruction of objects up to
relative permittivities of ε = 15 + j1.5 for object sizes greater
than 30 wavelengths. Even at higher relative permittivities
of up to ε = 77 + j7 object shape reconstruction remains
accurate in xRA, however the reconstruction amplitude is less
accurate [3], [36]. In short, xRA provides a straightforward
linear reconstruction technique that performs at least as well
as state-of-the-art non-linear techniques and can be applied to
RF imaging conveniently.

In this paper, we develop and investigate the use of pattern
diversity for reducing the number of required measurement
nodes in utilizing xRA for RF imaging. Specific contributions
of this work include formulating pattern diversity for use with
xRA. More importantly we apply sensing capacity to xRA in
order to provide guidelines for the pattern configurations to
reduce the number of measurement nodes by at least a factor
of two. Neither pattern diversity or the use of sensing capacity
have been investigated in our previous work [3], [6]. The
novelty of our work lies in investigating the antenna pattern
diversity technique and its evaluation using sensing capacity
to reduce the number of measurement nodes in xRA based
RF imaging applications. This can potentially make xRA more
suitable for practical settings and also allow its integration into
wireless communications. Simulation results of RF imaging
utilizing pattern diversity based on full three-dimensional
(3D) electromagnetic simulations are also provided to verify
the proposed techniques. The results obtained show that the
number of measurement nodes can be at least halved to greatly
reduce the number of required transceivers in the imaging
system.

The remainder of this paper is organized as follows. In
section II, we provide the forward scattering model for the pro-
posed antenna pattern diversity RF imaging configuration. The
formulation of the corresponding inverse scattering problem
using xRA with pattern diversity is described in section III.
In section IV, the concept of sensing capacity is introduced to
provide straightforward estimates of the reconstruction quality

that can be obtained with reduced numbers of measurement
nodes and pattern diversity. In section V, simulation results
are obtained using a full 3D electromagnetic simulator and
these demonstrate the potential of using pattern diversity.
Discussions are provided in section VI, and finally conclusions
are provided in section VII.

Notation: Lower case boldface letters x refer to position
vectors. Single overline upper and lower case letters

(
X
)

or (x) denote vectors and double overline upper and lower
case letters

(
X
)

or
(
x
)

denote matrices. Italic letters rep-

resent scalar parameters. (·)T and (·)−1 represent transpose
and inverse operation, respectively. C denotes complex set.
ω = 2πf is the angular frequency and wavenumber is defined
as k0 = 2π/λ = ω0

√
ε0µ0, where λ is wavelength and ε0 and

µ0 are free space permittivity and permeability respectively.

II. PROBLEM FORMULATION

A. Configuration

To provide a practical context for RF imaging, we consider
a typical indoor environment as shown in Fig. 1. However any
suitable RF imaging application such as non-destructive testing
is equally viable. The DOI considered is a two-dimensional
(2D) planar cross-section through the floor at height Lh. The
2D cross-section is also drawn in abstract form in Fig. 1 where
the scatterers refer to the 2D cross-section of objects in the
DOI. The scatterers are assumed non-magnetic with complex
permittivity ε (r) = εR (r) + jεI (r) that are taken as low-
loss where εI (r) � εR (r). Most objects around us exhibit
low loss behavior at radio and microwave frequencies [3].
The background medium is homogeneous with ε0 (r) = 1,
and consists of air for the indoor environment. In our RF
imaging system the DOI is restricted to the area Lx × Ly ,
and is discretized into Nx ×Ny pixels where Nx = Lx/∆x,
Ny = Ly/∆y are the number of spatial pixels in the x − y
plane and have area ∆Ω = ∆x∆y. The total number of spatial
pixels is denoted as N = Nx × Ny within the DOI and a
particular pixel is identified by the integer n with n ∈ (1, N).

In Fig. 1, M = 20 transceiver measurement nodes (such
as WiFi access points) are shown evenly distributed on the
rectangular measurement boundary B around the DOI. The
location of the mth transmitting antenna is denoted by rm
and the location of the m′ receiving antenna is denoted by
rm′ where rm, rm′ ∈ B. Note that, the subscripts m and
m′ refer to the mth transmitting and m′th receiving antenna
respectively in the remainder of this manuscript. In general
the m = m′ transmit and receiver pair will be co-located
and therefore a constraint will be that they cannot receive and
transmit simultaneously. rn ∈ D refers to an arbitrary point
in the DOI and distances rm,n and rn,m′ are the distances
between the point rn and the transmitting antenna m and
receiving antenna m′ respectively. Angle φm,n denotes the
angles at the mth transmitting antenna to the DOI point rn,
angle φm′,n refers to the angle between the m′th receiving
antenna and rn.

In the RF imaging system, vertically polarized antennas
in a transverse-magnetic (TM) formulation are used for the
nodes, where the vertical direction is defined as being along
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the z-axis as shown. To constrain the imaging problem to 2D
cross-sections the antennas have directive patterns that radiate
primarily into the x − y plane and this follows the approach
in previous work [5], [6], [16], [17], [18], [19], [20].

In conventional indoor RF imaging approaches such as
RTI [16], [17], [18], [19], [20] and recent Rytov [5], [6]
based approaches the patterns of all the antennas are fixed.
In addition, the transmitter and receiver at each node are
often collocated and share the same antenna such as in WiFi.
Therefore for transmission at the mth node, measurements
are collected from the other M − 1 nodes (m′ 6= m with
m ∈ (1,M)). In total we can therefore obtain measurements
from M(M − 1) possible links. However, because all the
nodes typically have identical antennas, and the transmitter
and receiver share the same antenna, the node links will be
reciprocal and the independent measurements L are half and
given by [6]

L = M (M − 1) /2. (1)

To gather sufficient measurement data, the number of trans-
mitter and receiver nodes therefore needs to be large and for
areas approximately 5× 5m2, the number of nodes should be
large and at least M > 20 [5], [6], [17].

For RF imaging to be more widely applicable and leverage
existing wireless architecture it is necessary to try and reduce
the number of measurement nodes. Inspired by recent results
on pattern diverse microwave imaging systems, in this work we
incorporate pattern diversity at the nodes [23]. That is when a
node is transmitting it may select one of P antenna patterns at
the transmitter and one of Q patterns at the receiver. If the P
patterns are all different from the Q receive patterns, the total
number of unique measurement links is L = M (M − 1)PQ.
A special case is when the transmitter and receiver share the
antennas so that P = Q and the transmit and receive patterns
are all identical. For this special case the number of unique
links will be L = M (M − 1)PQ/2 since the links will again
be reciprocal.

The general expression for the number of independent links
when P ≥ Q in which Q receive patterns out of the P transmit
patterns are identical can be written as

L = M(M − 1)Q(P −Q/2). (2)

This is because M(M − 1)QQ/2 links exhibit reciprocity
since they share the same receive and transmit antennas.
The remaining M(M − 1)(P − Q)Q links will not exhibit
reciprocity providing L = M(M − 1)Q(P − Q/2) unique
links (2). This expression can be easily modified for Q > P
by interchanging P with Q. In this general configuration, by
comparing (2) with (1), utilizing pattern diversity provides
2Q(P −Q/2) more links than without pattern diversity.

B. Formulation

To formulate the RF imaging system consider the incident
field, Ei

m,p (rn), from the mth transmitting antenna at position
rn using its pth pattern. The scattered and total electric fields
resulting from this incident field are defined as

Et
m,p (rn) = Ei

m,p (rn) + Es
m,p (rn) , (3)
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Fig. 1. RF imaging in the context of an indoor environment. The DOI
considered is a 2D planar cross-section through the floor at height Lh. The 2D
cross-section is also illustrated in abstract form where the scatterers refer to the
2D cross-section of objects in the DOI. The DOI has M = 20 measurement
nodes at its boundary B and dimensions Lx × Ly at cross-sectional height
Lh. Further details for the notation is provided in the associated text.

in which Et
m,p (rn) and Es

m,p (rn) refer to the total and scat-
tered electric fields produced by the mth transmitting antenna
under pth pattern at position rn respectively. In discretized
form, the forward problem for obtaining the scattered electric
field on the boundary of the DOI can be written utilizing the
Lippman–Schwinger integral equation as [13], [38]

Es
m,p (rm′) = −jωµ0

∑
∀n|rn∈D

g (rm′ , rn)Et
m,p (rn) (4)

· χc (rn) ∆Ω ,

where χc (rn) = ε (rn) − ε0 and g (rm′ , rn) denotes Green’s
function

g (rm′ , rn) =
−ηπa

2
J1 (k0a)H

(1)
0 (k0 | rm′ − rn |) , (5)

where a =
√

∆Ω/π is the radius of the circle of the same
area of the square cell, k0 = 2π/λ is the wavenumber and
∆Ω is the area of each square cell [6], [31]. J1 (·) is the
Bessel function of the first kind, order 1 and H

(1)
0 (·) is the

Hankel function of the first kind, order 0. η = 377 ohm is the
impedance of free space.

In practice, the scattered field Es
m,p (rm′) is sensed by a

receiving antenna and converted to a received voltage. To
incorporate this into (4) we follow previous approaches [1],
[6], [39] where the Green’s function in (4) is replaced by the
electric field radiated by the receiving antenna in free-space
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when it is configured in transmitting mode with unit excitation.
Using this approach we rewrite (4) as

V m
′,q

m,p =
−jωµ0

a

∑
Ei
m′,q (rn)Et

m,p (rn)χc (rn) ∆Ω , (6)

where Ei
m′,q (rn) is the field radiated from the receiver when

it is configured as a transmitter with a unit excitation and
positioned at m′ with pattern q, [1], [39]. The voltage V m

′,q
m,p

is the received voltage at node m′ with pattern q due to a
scattered field arising from the incident field at the mth node
using pattern p. The constant a is for normalization and can
be found from [1], [6], [39].

The goal of the direct or forward problem can then be stated
as estimating the voltage V m

′,q
m,p at the receivers given the

permittivity profile ε (rn) and known incident fields. The goal
of the inverse problem or RF imaging, on the other hand, is
to estimate χc (rn) given only voltage measurements V m

′,q
m,p at

the receivers. The inverse problem is considered more difficult
than the direct problem because there are usually fewer
measurements than unknowns and both χc (rn), Et

m,p (rn)
are unknown inside the DOI. For these reasons the inverse
problem is ill-posed and non-linear.

III. INVERSE SCATTERING PROBLEM

A. Extended Rytov approximation

Recent new results for an enhanced linear approximation,
xRA, [3], [36] have shown that excellent reconstruction ac-
curacy is possible without intricate non-linear processing.
Compared with RA, xRA enhances the validity range by
utilizing a high-frequency approximation for waves passing
through lossy scatterers.

To obtain the xRA formulation with pattern diversity we
follow RA, and write the total field Et

m,p (rn) as [40], [41]

Et
m,p (rn) = Ei

m,p (rn) eφ
s
m,p(rn), (7)

where φsm,p (rn) can be thought of as complex scattered
wavefronts. Then, utilizing the Rytov transform

Ẽm,p (rn) = Ei
m,p (rn) ln

(
Et
m,p (rn)

Ei
m,p (rn)

)
, (8)

we find that Ẽm,p (rn) satisfies

∇2Ẽm,p (rn)+k2Ẽm,p (rn) = −k20χRT (rn)Ei
m,p (rn) , (9)

where

χRT (rn) = ν2 (rn)− 1−∇φsm,p (rn) · ∇φsm,p (rn) , (10)

where ν (r) refers to the refractive index and is related to ε (r)
by ν2 (r) = ε (r). Using (4) we can write (9) in discrete form
as

Ẽm,p (rm′) = −jωµ0

∑
∀n|rn∈D

g (rm′ , rn)Ei
m,p (rn) (11)

· χRT (rn) ∆Ω .

We refer to χRT (rn) as the contrast function when using the
Rytov transform. Finding the term ∇φsm,p (rn) · ∇φsm,p (rn)
in χRT (rn) (10) is difficult because the wavefronts φsm,p (rn)
depend on the total field which remains unknown. To handle

Fig. 2. Free space to lossy media interface. The homogeneous plane wave
in free space becomes an inhomogeneous plane wave in the lossy media on
the right hand side (with constant refractive index ν = νR + jνI ) [3], [36].

this issue conventional RA ignores the term ∇φsm,p (rn) ·
∇φsm,p (rn) under the assumption of weak scattering, which
results in the contrast function

χRA (rn) = ν2 (rn)− 1 = ε (rn)− 1. (12)

This makes the solution for the object permittivity straightfor-
ward as there are then no other unknowns on the right hand
side of (9) and a linear equation can be formed. However the
range of validity on permittivity to achieve accurate recon-
structions is limited since ignoring ∇φsm,p (rn) · ∇φsm,p (rn)
is only valid under weak scattering conditions. For large scat-
terers with high permittivity variations, the term ∇φsm,p (rn) ·
∇φsm,p (rn) may be significant and cannot be neglected. To
enhance RA, an approximation to ∇φsm,p (r) ·∇φsm,p (r) by a
high-frequency approximation for waves passing through lossy
scatterers has been proposed and this has led to xRA [3], [36].

In xRA the transmitted field resulting from an incident plane
wave Ei

m,p (rn) = Ai
m,p (rn) exp (jk0 k̂i · rn), passing into a

lossy media ε half-space (see Fig. 2) is written as

Et
m,p (rn) = Atm,p (rn) exp (jk0 (VRk̂t · rn + jVI k̂a · rn)),

(13)
where unit vectors k̂i, k̂t and k̂a refer to the directions of the
incident field, transmitted field and the normal to the planar
interface of the half space respectively also as illustrated in
Fig. 2 [3], [36]. Ai

m,p (rn) and Atm,p (rn) are the magnitude of
the incident and transmitted fields at position rn respectively
and VR and VI are termed as real and imaginary part of the
refractive index respectively [3], [36]. Based on (13), the term
∇φsm,p (rn) ·∇φsm,p (rn) in χRT (rn) (10) can be derived and
substituted into (10) so that the contrast function for xRA
becomes (see detailed derivation of xRA in [3], [36])

χxRA (rn) = 2
(√

εR (rn) cos θs (rn)− 1
)

(14)

+
jεI (rn) cos θi (rn)√
εR (rn)− sin2 θi (rn)

.

where θi = cos−1
(
k̂i · k̂a

)
and θs = cos−1

(
k̂t · k̂i

)
refer to

the incident and scattering angles respectively. As explained in
[3], [36] the dependence of the imaginary part of the contrast
Im(χRI) on θi instead of θs is the most important aspect of
(14). The incident angle θi is only a function of the shape
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of the object. It does not change with the permittivity of
the object. This implies that any distortion in the imaginary
component, Im(χRI), of the reconstruction due to the presence
of the θi terms is independent of the objects permittivity.
Therefore, if the imaginary component of the reconstruction
is accurate at low permittivity, it is likely to be accurate for
all permittivity levels. This is the reason the imaginary part of
the contrast function χxRA (rn) is the focus and in [3], [36]
it is demonstrated that it can be reconstructed very accurately.
The real part of χxRA (rn) is reconstructed less accurately and
therefore discarded.

By performing averaging over θi in (14), the final expression
for the imaginary part of the xRA contrast function is written
as [3]

Im (χxRA (rn)) =
2εI(rn)

π
sin−1

(
1√

εR(rn)

)
. (15)

In xRA the same reconstruction procedure as RA is
utilized except an additional step is required in the fi-
nal processing. That is only the imaginary part of the
reconstruction is utilized and equated to Im (χxRA) =

2/πεI (rn) sin−1
(

1/
√
εR (rn)

)
. This is very different from

conventional RA where the real part is taken as a reconstruc-
tion of ε (rn)− 1. Accurate reconstructions of (15) for a wide
range of materials found in the everyday environment can
be obtained [3], [36]. Since the reconstruction of (15) is a
function of both real and imaginary parts of the permittivity,
it is shown to provide not only shape reconstruction, but it
also helps to distinguish between a wide range of objects in the
indoor environment based on their permittivity. For example it
has been shown that xRA provides accurate reconstruction of
scatterers up to relative permittivities of 15+j1.5 for scatterer
sizes greater than 30 wavelengths [3], [36] and continues to
provide accurate shape reconstruction up to 70 + j7 [3], [14].

As a final step in the formulation of xRA we need to relate
it to the received voltages at the receivers. To perform this in
xRA the source term in (11) is replaced with χxRA (rn) to
obtain

Ṽ m
′,q

m,p =
−jωµ0

a

∑
Ei
m′,q (rn)Ei

m,p (rn)χxRA (rn) ∆Ω ,

(16)
where

Ṽ m
′,q

m,p = V̊ m
′,q

m,p ln
V̇ m

′,q
m,p

V̊ m
′,q

m,p

. (17)

In (17), V̊ m
′,q

m,p refers to the background measurement with no
scatterers (received voltage due to the incident field alone) and
V̇ m

′,q
m,p refers to the total received voltage due to the scattered

and incident fields.
Writing (16) as a set of linear equations for all M(M −

1)Q(P −Q/2) measurements we obtain

V = H χxRA, (18)

where V ∈ CM(M−1)Q(P−Q/2)×1 refers to the received
response vector consisting of Ṽ m

′,q
m,p for all M transceivers,

P transmitting patterns and Q receiving patterns

and it is arranged as V =
[
V 1; . . . V m; . . . V M

]
,

with V m =
[
V 1,m; . . . V m′,m; . . . V (M−1),m;

]
,

V m′,m =
[
V m′,m,1; . . . V m′,m,q; . . . V m′,m,Q;

]
and

V m′,m,q =
[
Ṽ m

′,q
m,1 ; . . . Ṽ m

′,q
m,p ; . . . Ṽ m

′,q
m,P

]
. The contrast

vector χRA ∈ CN×1 contains elements χRA (rn)
for n = 1, 2 . . . N and χRA (rn) is defined in (10).
H ∈ CM(M−1)Q(P−Q/2)×N refers to the measurement
matrix and it is arranged by H =

[
H1; . . . Hm; . . . HM

]
,

with Hm =
[
H1,m; . . . Hm′,m; . . . H(M−1),m;

]
, Hm′,m =[

Hm′,m,1; . . . Hm′,m,q; . . . Hm′,m,Q;
]

and Hm′,m,q =

−jωµ0

a

[
E

i

m′,qE
i

m,1 . . . E
i

m′,qE
i

m,p . . . E
i

m′,qE
i

m,P

]T
. The

vector E
i

m′,q ∈ CN×1 contains elements Ei
m,q (rn) for

n = 1, 2 . . . N and is the incident electrical field vector within
DOI produced by the receiving node m′ at the qth pattern.

B. Reconstruction and Regularization

In order to retrieve the object from the acquired measure-
ments in (18), we need to handle the issue that the number of
independent observations M(M −1)Q(P −Q/2) is generally
much less than the unknowns N . Using the condition of
sparsity, it is possible to utilize compressive sensing (CS)
algorithms to solve this under-determined problem (18). This
can be written as

min
χxRA

‖χxRA‖l1 s.t. V = H χxRA, (19)

where ‖·‖l1 denotes the l1 norm. Here we employ the
two-step iterative shrinkage thresholding (TwIST) algo-
rithm [42]. Once this is performed we take the imaginary
part of the contrast function to reconstruct Im (χxRA) =

2/πεI (rn) sin−1
(

1/
√
εR (rn)

)
.

IV. SENSING CAPACITY WITH PATTERN DIVERSITY

A unique aspect of xRA is its wide validity range while still
having a linear formulation (18). Its linear formulation allows
us to directly apply the concept of sensing capacity [43], [44]
to determine whether a particular antenna configuration and
their patterns will perform better than other configurations. In
this section we introduce sensing capacity and provide a model
for the antenna patterns so that it can be applied to determine
the most appropriate pattern configurations for reducing the
number of measurement nodes.

A. Sensing Capacity

One method to quantitatively evaluate the imaging perfor-
mance of a system (18) is by using sensing capacity [43].
Applying singular value decomposition (SVD) to measurement
matrix H we can obtain its eigenvalue distribution [45]. Using
these eigenvalues sensing capacity [43] is defined as

C =

K∑
k=1

log

(
1 +

Pkλk
N0

)
, (20)

where λk for k = 1, 2, ...,K represent the nonzero normalized
eigenvalues (normalized by the maximum eigenvalue) of the
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Fig. 3. Radiation pattern for the 5-element Yagi antenna. It has 10.4 dBi
gain and an approximately 60 degree 3 dB beamwidth.

measurement matrix H and Pk/N0 is signal-to-noise ratio
(SNR) [44]. Sensing capacity is also related to the concept
of channel capacity in communications. K is known as the
rank of H and according to (20), sensing capacity increases
with the number of non-zero eigenvalues of the measurement
matrix. Higher sensing capacity is associated with character-
izing greater information about the object gathered by the
measurement system and also higher reconstruction quality.
We use sensing capacity to characterize our pattern diversity
configurations and determine which configurations would be
best [43].

B. Pattern Diversity

To find sensing capacity for different antenna configura-
tions we first need to obtain expressions for all the transmit
Ei
m,p (rn) and receive Ei

m′,q (rn) radiation fields so that the
matrix H can be evaluated using (16) and (18). To perform this
straightforwardly we model the antenna patterns at all nodes
by a single antenna pattern F (φ) and rotate it to obtain the
P and Q different patterns.

We define F (φ) with its main beam pointing towards φ =
0◦ (along the positive x−axis in Fig. 1) and write it as

F (φ) =
√
eD0E

n (φ) , (21)

where En (φ) = |E(φ)|
|E(φ)|max

denotes the normalized electric
far-field antenna pattern, e is the radiation efficiency of the
antenna. D0 refers to the antenna’s directivity and is defined
as

D0 =
4π∫

θ
(En (φ))

2
dφ
. (22)

To make the radiation pattern (21) realistic we utilize the
pattern in the x − y plane of a vertically polarized standard
5-element Yagi antenna with 10.4 dBi gain (two other patterns
are also considered later). The pattern was obtained using full
electromagnetic simulation using CST Studio Suite [46] and
is shown in Fig. 3.

To form the P patterns at each transmission node we
straightforwardly rotate the pattern by angle θp (to be deter-
mined later). The resulting antenna patterns are denoted as

Fp (φ) = F (φ− θp) . (23)

To handle antennas on different parts of the boundary we
additionally include another angle θm to rotate the main beam
so that it is pointing inwards toward the DOI to arrive at

Fm,p (φ) = F (φ− θm − θp) . (24)

To be specific, θm = 0◦ for the transceivers on the left
vertical boundary, θm = 180◦ for the transceivers on the right
vertical boundary, θm = 270◦ for the transceivers on the upper
horizontal boundary and θm = 90◦ for the transceivers on
the bottom horizontal boundary. Nodes at the corners of the
DOI are orientated along the diagonal of boundary so that
θm = 45◦, 135◦, 225◦, 315◦, for each corner respectively.

Using (24) the electric field radiated by transmitter m,
pattern p is written as

Ei
m,p (rn) = A0 · g (rm, rn) · F (φm,n − θm − θp) , (25)

where φm,n is the angle from the mth node to the nth pixel
as shown in Fig. 1 and A0 = 1 is the electric field amplitude.

Since the receivers and transmitters are the same we can
use the same result (25) to also define the electric fields
corresponding to the receiver patterns and this is achieved by
interchanging m with m′ and p with q.

C. Pattern Diversity Sensing Capacity

Using (25) we can find H in (18) and therefore simulate
sensing capacity through (20). The sensing capacity results
of a 4, 5, 10 and 20-node system using the 5-element Yagi
antenna pattern are shown in Fig. 4(a)-(d) respectively for
when SNR= 10 dB. In the simulations we use a single rotation
parameter θ to specify the pattern rotation. Specifically for
P = 3 there are three patterns with rotations θ1 = −θ, θ2 = 0,
θ3 = θ. For P = 2 two pattern rotations are used and defined
as θ1 = −θ, θ2 = 0 and while for P = 1 there is no pattern
diversity and θ1 = 0. The same rotation configurations are
also applied to the Q receiver patterns. As θ increases from 0
the patterns become more independent and we observe sensing
capacity increases until approximately θ = 55−65◦ where the
patterns are most different from each other. After that sensing
capacity trails off slowly because the pattern has sidelobes
and as long as the patterns remain reasonably uncorrelated
the sensing capacity will remain good.

The number of unique independent links that can be ob-
tained is given by L = M(M − 1)Q(P − Q/2) from (2).
It should also be noted that since the transmit and receive
patterns are the same and the different transmitters and re-
ceivers are co-located the sensing capacity results are identical
for pattern configurations P,Q and Q,P and therefore results
are only provided for unique P,Q pairs. In Fig. 4 we expect
sensing capacity to increase with the total number of unique
measurements given by L = M(M − 1)Q(P − Q/2) if
all the patterns are completely independent. In the sensing
capacity simulations L ranges from 6 (M = 4, P = Q = 1)
to 1710 (M = 20, P = Q = 3) and we can therefore
expect a 285 (1710/6) times increase in capacity from the
lowest to highest link configurations. By checking Fig. 4(a)-
(d), at θ = 60◦ it can be seen however the ratio between the
lowest sensing capacity configuration compared to the highest
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Fig. 4. Sensing capacity of H with SNR=10 dB and where θ refers to the pattern rotation angle for different P and Q as defined in the associated text. The
sub-figures refer to (a) 4-node imaging system, (b) 5-node imaging system, (c) 10-node imaging system and (d) 20-node imaging system.

is only around 40 when SNR= 10 dB. The relative increase
in sensing capacity among different M,P,Q configurations
becomes smaller as L increases. For example the increase in
capacity from M = 20, P = Q = 1 to M = 20, P = 3, Q = 3
is only a factor of 3 (should be 9 by (2)) while that from
M = 20, P = Q = 1 to M = 20, P = 3, Q = 1 is only 2
times (should be 5 by (2)). For M = 4 this relative increase
is closer to that predicted by (2). This indicates that after
a certain point the relative increase in diversity that can be
created by the patterns starts to reduce. This is due to the large
number of nodes and patterns covering the DOI and therefore
the potential for further diversity decreases as the number of
nodes increases.

The main objective of our sensing capacity investigation is
to find a pattern configuration that can cut the number of nodes
while maintaining a similar sensing capacity. From Fig. 4(c),
we can see that the configuration of M = 10 with P = 3,
Q = 1 for pattern rotation angles around θ = 60◦ has sensing
capacity nearly 2 times that for M = 10 with P = Q = 1
configuration. In addition in comparison with M = 20 with
P = Q = 1 (Fig. 4(d)) it is providing similar sensing capacity.
Using configurations M = 10 with P = 3, Q = 1 and
M = 20 with P = Q = 1 we therefore expect reconstruction
results to be similar to each other. In the next section we
demonstrate the reconstructions achieved when using these
configurations to confirm the conclusions from our sensing
capacity simulations.

More generally we can use (2) as a rough rule of thumb
for designing the imaging system patterns. For example to
halve the number of nodes M required in a system with no
pattern diversity (L = M(M − 1)/2 links), then the system

with pattern diversity (L = M/2(M/2−1)Q(P −Q/2) links)
should have the same number of links. That is 2Q(P −Q/2)
should be greater than 4(M − 1)/(M − 2) or for large M ,
greater than 4. For small numbers of patterns this can be
achieved when P = Q = 2 where 2Q(P − Q/2) = 4 or
when P = 3 with Q = 1 where 2Q(P − Q/2) = 5 as we
have found in the simulations provided above.

We have also investigated the effect of the shape of the
antenna patterns on sensing capacity. In general, the key
requirement for the patterns is that they provide acquisition
of independent measurements so that inversion can proceed
with less measurement nodes. That is any antenna pattern can
be used as long as they can provide sufficient diversity within
the DOI. To help support this proposition, sensing capacity
results are also included for two additional radiation patterns
as illustrated in Fig. 5. These radiation patterns are different
from that in Fig. 3 and have narrower beamwidths with gain
15 dBi (Fig. 5(a)) and 17.3 dBi (Fig. 5(b)). The patterns
are for sensing capacity analysis only and for reference were
constructed by forming a 3- and 5-element linear array (with
element separations of λ/2) in which the individual antenna
element was the Yagi antenna with pattern in Fig. 3. Fig.
5(c)-(d) provide the corresponding sensing capacity for each
of these patterns in a 4-node configuration. By studying
Fig. 5, it can be observed that the sensing capacity with
narrower beams can provide higher sensing capacity (at the
maximum) as compared to the sensing capacity results using
the radiation pattern of the Yagi antenna presented in Fig.
4(a). For example, at the maximum sensing capacity at around
60 degrees the sensing capacity is higher in Fig. 5 for the
narrower patterns. This is due to the narrower main beam
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Fig. 5. The use of different patterns and corresponding sensing capacity of H with SNR=10 dB of a 4-node system. Radiation patterns with a beamwidth of
approximately (a) 40 degrees, 15 dBi gain and (b) 20 degrees and 17.3 dBi gain. The corresponding sensing capacity of the radiation patterns for (c) pattern
in Fig. 5(a) and (d) pattern in Fig. 5(b). Here, θ refers to the pattern rotation angle for different P and Q as defined in the associated text.

being more focused. As the beam rotates, the narrow beam
has relatively few overlapping sections and therefore provides
more independence among the measurement results. This leads
to an increase in sensing capacity. On the other hand, for
the P = Q = 1 configuration (no beam steering or pattern
diversity) the narrower beam has smaller sensing capacity.
This is because the narrower beam without beam steering
provides less coverage of the DOI. The narrower beams focus
the radiation more and therefore parts of the DOI are not
covered providing less sensing capacity.

The radiation patterns may also change shape and have
different gain and shape with the rotation angle if electronic
beam steering is utilized. To assess the effect of this we
also consider patterns with different shape and gain in the
measurement configuration. Specifically, considering a 4-node
system again, the pattern for the θp = 0 rotation is taken
as the original 5-element Yagi antenna in Fig. 3 while for
all other rotations the patterns are taken as that in Fig. 5(a).
The corresponding results of the sensing capacity analysis are
presented in Fig. 6. By studying Fig. 6, it can be observed that
the sensing capacity of each configuration under the same P
and Q as in Fig. 6 is slightly larger than the results obtained
from rotating the single 5-element Yagi pattern shown in Fig.
4(a). This is again due to the narrower beam utilized for
the rotated patterns in these simulations. The narrower beam
has less overlap with the original Yagi pattern and therefore
provides higher sensing capacity. This finding is consistent
with the results presented in Fig. 5. It also shows that the
shape of the rotated patterns does not need to be the same
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Fig. 6. Sensing capacity of H when different patterns are used at different
antenna rotations with SNR=10 dB of a 4-node system. The pattern for the
rotation angles, θp = −θ and θp = θ is the radiation pattern shown in Fig.
5(a) and the pattern with rotation angle θp = 0 remains the Yagi antenna
pattern in Fig. 3. Again θ refers to the pattern rotation angle for different P
and Q as defined in the associated text.

at different rotations. The patterns can be different as long
as pattern diversity is achieved. Additionally note that since
different radiation patterns are utilized at different rotation
angles some links are also not reciprocal increasing diversity
slightly too. For the P = Q = 1 note that sensing capacity
is the same as the original results since there is no pattern
diversity in this configuration.
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V. RECONSTRUCTION RESULTS

In this Section we detail simulated reconstruction results for
the proposed antenna pattern diversity imaging system using
full electromagnetic simulation software CST studio suite [46].
The operating frequency considered is f = 2.4 GHz and the
corresponding wavelength is λ = 125 mm. The DOI size is
2×2 m2 and the transceiver nodes are placed on its boundary
as shown in Fig. 1. The boundary area is equivalent to 16λ×
16λ and it is discretized into N = 200 × 200 pixels with
a 0.08λ × 0.08λ pixel size so that there are in total N =
40000 unknowns. The rotation angle for the antenna patterns
is taken as θ = 60◦ which corresponds approximately to the
maximum in sensing capacity found in the previous section.
When θ = 0◦ and P = Q = 1 there is no pattern diversity and
we refer to this as conventional imaging [6]. The two sensing
configurations we focus on are M = 20, P = 3, Q = 1 and
M = 10, P = 3, Q = 1. We also use the conventional imaging
configurations M = 20, P = Q = 1 and M = 10, P = Q = 1
as benchmarks.

Direct problem data is obtained by using full electromag-
netic simulation software CST studio suite [46]. CST is widely
accepted as an accurate 3D electromagnetic simulation tool
and in our work the full antenna structure and 3D effects
are incorporated. In particular in the CST simulations we
take the cylinders as having a finite height of 2 m (±1 m
either side of the measurement x-y plane) and where all M
nodes are configured with the 5-element Yagi with the pattern
shown in Fig. 3. The simulations therefore provide realistic
modeling of the 3D environment and antenna structure. The
computations are performed on a CPU configured with a 2.4-
GHz Intel Xeon Processor and 64-GB RAM. One simulation
in which one node is configured as a transmit antenna with
the remaining 19 nodes set as receivers takes approximately
2 hours. Therefore, if M = 20 nodes and P = 3 and Q = 1
patterns are considered, it takes about 120 hours to complete
one simulation. Compared to direct problem simulations in 2D
[3] the disadvantage of utilizing CST for the direct problem
is the significantly increased simulation time (however the
advantage is that the 3D CST results will be more realistic).
For this reason we restrict the number of nodes to a maximum
of M = 20 with P = 3 transmit patterns and Q = 1 receive
patterns.

For better visualization, all the reconstructions are zoomed
in on a 0.6 × 0.6 m2 central area of the DOI to highlight the
area around the scatterer (rather than showing reconstruction of
the whole 2 × 2 m2 area) and the pixel size is still 0.01×0.01
m2 or equivalently 0.08λ × 0.08λ. The peak signal-to-noise
ratio (PSNR) and structural similarity index (SSIM) results
are provided for quantitative evaluation. Generally, the higher
PSNR value or the closer SSIM is to unity, the better the
reconstruction.

Three object configurations are considered in our recon-
struction simulations. The first object configuration involves
a single circular cylinder with 0.1 m radius (0.8λ) and ho-
mogeneous permittivity ε = 5 + 0.5j and ε = 15 + 1.5j,
respectively and the ground truth is provided in Fig. 7(a)-
8(a). The second object configuration consists of two identical

circular cylinders with radii 0.05 m (0.4λ) with homogeneous
permittivity ε = 1.5 + 0.15j separated by 0.05 m (0.4λ) and
ε = 5 + 0.5j separated by 0.2 m (1.6λ), respectively. The
ground truth is provided in Fig. 9(a)-10(a) respectively. The
third object configuration consists of two scatterers with dif-
ferent shapes and permittivities, including a rectangular object
(0.1 × 0.2 m2 (0.8λ × 1.6λ)) with homogeneous permittivity
ε = 2 + 0.2j and a circular object (radius 0.05 m (0.4λ))
with homogeneous permittivity ε = 5 + 0.5j. The ground
truth is provided in Fig. 11(a). Given the dimensions and the
permittivity range of 1.5-15, the objects are beyond what BA
and RA could accurately reconstruct [3]. Conventional BA and
RA techniques would fail for these object permittivities and
sizes considered and therefore xRA must be used and is a
feature of this work.

Reconstruction results using pattern diversity with M =
20, P = 3, Q = 1 and M = 10, P = 3, Q = 1 are
shown in Fig. 7(b)-11(b) and Fig. 7(c)-11(c) respectively. All
reconstruction results are shown as the xRA contrast function
Im (χxRA) =

(
2
π εI
)

sin−1
(
1/
√
εR
)
. For comparison and

benchmarking, reconstructions with conventional imaging for
M = 20, P = 1, Q = 1 and M = 10, P = 1, Q = 1 are
provided in Fig. 7(d)-11(d) and Fig. 7(e)-11(e) respectively.
In all figures the white dashed curve represents the boundary
of the ground truth and the values of the color bar denote
the reconstructed amplitude values of Im (∆εxRA) and the
PSNR and SSIM reconstruction results are listed in the figure
captions.

Reconstruction results for the single circular cylinder with
0.1 m radius (0.8λ), ε = 5 + 0.5j (Im (∆εxRA) =(
2
π εI
)

sin−1
(
1/
√
εR
)

= 0.15) are shown in Fig. 7. The
reconstructions in Fig. 7(b)-(d) all provide good estimates of
the object amplitude while that for M = 10, P = 1, Q = 1 in
Fig. 7(e) is poor. The key result is in Fig. 7(c) confirms the
sensing capacity results that a reduction to M = 10 nodes can
be achieved without significant loss of reconstruction quality
if pattern diversity is used (PSNR and SSIM is only slightly
reduced). However if only 10 measurement nodes is used
without pattern diversity reconstruction results are poor as
shown in Fig. 7(e). Next, in Fig. 8, we increase the permittivity
to ε = 15+1.5j and Im (∆εxRA) =

(
2
π εI
)

sin−1
(
1/
√
εR
)

=
0.25). Similar conclusions can be drawn to the previous
results. That is the proposed antenna pattern diversity imaging
system can achieve accurate reconstructions despite reducing
the number of measurement nodes by half. Essentially the xRA
validity range is not significantly affected by the use of pattern
diversity and is similar to that of the original xRA results [3].
That is we can reduce the number of measurement nodes by
approximately half without a reduction in validity range.

In order to investigate the resolution capabilities of the
imaging system, simulation examples with two adjacent
circular cylinders with low contrast (ε = 1.5 + 0.15j
and Im (∆εxRA) =

(
2
π εI
)

sin−1
(
1/
√
εR
)

= 0.09) and
higher contrast (ε = 5 + 0.5j and Im (∆εxRA) =(
2
π εI
)

sin−1
(
1/
√
εR
)

= 0.15) are used to analyze the resolu-
tion capabilities. The radius of the circular scatterers are 0.05
m (0.4λ). We have found that for the lower contrast case we
can distinguish the separation between the scatters until the
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Fig. 7. Reconstruction results of a single circular cylinder with radius 0.1 m
(0.8λ) and ε = 5+0.5j

(
Im (∆εxRA) =

(
2
π
εI

)
sin−1

(
1/
√
εR

)
= 0.15

)
.

(a) Ground truth scatter profile, (b)-(c) antenna-pattern diverse imaging system
with 20 transceivers and 10 transceivers when P = 3 and Q = 1, (d)-(e)
conventional imaging system with 20 transceivers and 10 transceivers and
P = 1 and Q = 1. The respective PSNR and SSIM values of χxRA
reconstructions are (b) (PSNR=24.93 dB, SSIM=0.99), (c) (PSNR=22.89 dB,
SSIM=0.96), (d) (PSNR=24.52 dB, SSIM=0.99), and (e) (PSNR=12.89 dB,
SSIM=0.87).
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Fig. 8. Reconstruction results of a single circular
cylinder with radius 0.1 m (0.8λ) and ε = 15 + 1.5j(
Im (∆εxRA) =

(
2
π
εI

)
sin−1

(
1/
√
εR

)
= 0.25

)
. (a) Ground truth

scatter profile, (b)-(c) antenna-pattern diverse imaging system with 20
transceivers and 10 transceivers when P = 3 and Q = 1, (d)-(e)
conventional imaging system with 20 transceivers and 10 transceivers and
P = 1 and Q = 1. The respective PSNR and SSIM values of χxRA
reconstructions are (b) (PSNR=21.73 dB, SSIM=0.92), (c) (PSNR=19.15 dB,
SSIM=0.91), (d) (PSNR=21.64 dB, SSIM=0.91), and (e) (PSNR=15.31 dB,
SSIM=0.86).

edge-to-edge separation is around 0.05 m (0.4λ). However,
the system cannot distinguish the separation for the higher
contrast object until their separation is 0.2 m (1.6λ). The
results for these separations and contrast are provided in Fig.
9-10. They indicate that the resolution of the imaging system
is affected by the dielectric properties of the scatterers. This is
most likely due to the stronger scattering by the high contrast
object making the xRA formulation less accurate. However,
it can be seen in Fig. 9-10 that the proposed antenna pattern
diversity imaging system still performs well in comparison
to the conventional approach and performs similarly to the
conventional single node configuration.

We have also extended our investigation to encompass
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Fig. 9. Reconstruction results for two circular objects
with radius 0.05 m (0.4λ), permittivity ε = 1.5 + 0.15j(
Im (∆εxRA) =

(
2
π
εI

)
sin−1

(
1/
√
εR

)
= 0.09

)
and edge-to-edge

separation 0.05 m (0.4λ). (a) Ground truth scatter profile, (b)-(c) antenna-
pattern diverse imaging system with 20 transceivers and 10 transceivers when
P = 3 and Q = 1, (d)-(e) conventional imaging system with 20 transceivers
and 10 transceivers and P = 1 and Q = 1. The respective PSNR and SSIM
values of χxRA reconstructions are (b) (PSNR=22.49 dB, SSIM=0.96), (c)
(PSNR=20.28 dB, SSIM=0.95), (d) (PSNR=20.65 dB, SSIM=0.96), and (e)
(PSNR=13.34 dB, SSIM=0.91).
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Fig. 10. Reconstruction results for two circular objects
with radius 0.05 m (0.4λ), permittivity ε = 5 + 0.5j(
Im (∆εxRA) =

(
2
π
εI

)
sin−1

(
1/
√
εR

)
= 0.15

)
and edge-to-edge

separation 0.2 m (1.6λ). (a) Ground truth scatter profile, (b)-(c) antenna-
pattern diverse imaging system with 20 transceivers and 10 transceivers when
P = 3 and Q = 1, (d)-(e) conventional imaging system with 20 transceivers
and 10 transceivers and P = 1 and Q = 1. The respective PSNR and SSIM
values of χxRA reconstructions are (b) (PSNR=21.12 dB, SSIM=0.92), (c)
(PSNR=18.45 dB, SSIM=0.89), (d) (PSNR=19.62 dB, SSIM=0.91), and (e)
(PSNR=14.48 dB, SSIM=0.87).

scatterers consisting of rectangular (0.1×0.2 m2 (0.8λ×1.6λ))
and circular (radius 0.05 m (0.4λ)) cylinders with permittivity
values ranging from ε = 2+0.2j to ε = 5+0.5j and edge-to-
edge separation 0.2 m (1.6 λ). The reconstruction results are
provided in Fig. 11. Both objects can be well reconstructed
along with their permittivity values with using only half of
the measurement nodes.

The technique can also be extended to 3D. The most
straightforward method to perform this is to acquire mea-
surements across multiple cross-sections by scanning the mea-
surement nodes along the z-axis. The cross-sections at each
z-axis scan position can be reconstructed and put together
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TABLE I
RELATIVE PERFORMANCE OF DIFFERENT WORK.

Reported
Antenna

Diversity
Bandwidth

f0 Imaging Imaging Region Number of Recons. Maximum Recons.

work Scheme (GHz) Dimension (Width × Length) Antennas Approach Object Permittivity

In [3] Yagi antenna N/A 0 Hz 2.4 2D 24 λ × 24 λ 20-40 xRA Dielectric, ε ≈ 15

In [47]
Metamaterial frequency

Frequency diversity 9 GHz 21.75 2D 142.9 λ × 214.3 λ 6 BA Dielectric, ε ≈ 2.25
diverse antennas

In [48]
Frequency-diverse Mill-Cross

Frequency diversity 8.5 GHz 22.5 3D 76.9 λ × 76.9 λ 12 BA Metal
cavity aperture antennas

In [49]
Programmable metasurface

Pattern diversity 0 Hz 5.65 2D 3.8 λ × 3.8 λ 64 BA Metal
phase shifter antenna

In [50]
Two-layer programmable

Pattern diversity 0 Hz 9.2 2D 15.6 λ × 15.6 λ 25 N/A Metal
metasurface antenna

Our Work
Yagi antenna (arbitrary directional

Pattern diversity 0 Hz 2.4 2D (&3D) 16 λ × 16 λ 10 xRA Dielectric, ε ≈ 15
or reconfigurable antennas)
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Fig. 11. Reconstruction results for rectangular (0.1×0.2 m2 (0.8λ×1.6λ))
and circular (radius 0.05 m (0.4λ)) cylinder objects that have permittivity’s
ε = 2 + 0.2j

(
Im (∆εxRA) =

(
2
π
εI

)
sin−1

(
1/
√
εR

)
= 0.1

)
and ε =

5 + 0.5j
(
Im (∆εxRA) =

(
2
π
εI

)
sin−1

(
1/
√
εR

)
= 0.15

)
respectively.

The edge-to-edge separation is 0.2 m (1.6λ). (a) Ground truth scatter profile,
(b)-(c) antenna-pattern diverse imaging system with 20 transceivers and 10
transceivers when P = 3 and Q = 1, (d)-(e) conventional imaging system
with 20 transceivers and 10 transceivers and P = 1 andQ = 1. The respective
PSNR and SSIM values of χxRA reconstructions are (b) (PSNR=24.72
dB, SSIM=0.92), (c) (PSNR=20.39 dB, SSIM=0.89), (d) (PSNR=21.75 dB,
SSIM=0.91), and (e) (PSNR=15.95 dB, SSIM=0.77).

to obtain a full 3D reconstruction by using half the number
of sensing nodes if our pattern diversity system is utilized.
Preliminary simulation results we have obtained show that for
such a 3D imaging approach, for a circular cylinder with radius
0.05 m, height 0.04 m and permittivity ε = 3 + 0.3j and
z-axis scanning intervals of 0.02 m, has provided promising
results. In summary, our reconstruction results support and
verify the findings from sensing capacity simulations. Our
proposed imaging system with antenna pattern diversity can
provide similar reconstruction performance compared to that
of a conventional imaging system but with half the number of
measurement nodes.

VI. DISCUSSION

It is shown that the proposed pattern diversity imaging
system provides good reconstruction results with half the

number of measurement nodes required compared to the
conventional imaging system without pattern diversity. This is
because the pattern diversity imaging system can provide more
independent measurements by incorporating pattern diversity
without adding more nodes.

Comparisons with other relevant imaging systems are shown
in Table I, where f0 is central frequency. The comparisons in-
clude systems featuring conventional, programmable metasur-
face and frequency-diverse antenna approaches. Metasurface
and frequency-diverse antennas have been previously proposed
to also circumvent the large number of transceivers required
and reduce the system cost of the conventional imaging
configuration. In Table I the column with ‘Bandwidth’ where
some entries are listed as 0 Hz refers to single carrier or single
tone systems. The column with ‘Imaging Region’ refers to the
size of the DOI where λ refers to the corresponding wave-
length in the respective system. The column with ‘Number
of Antennas’ provides the number of the antennas used. The
column with ‘Maximum Recons. Object Permittivity’ provides
the maximum accurately reconstructed permittivity example in
their work.

The proposed frequency-diverse imaging systems in [47],
[48] require wideband operation due to their highly dispersive
structures providing frequency diversity and this leads to
higher imaging performance. However, due to the fundamental
tradeoff between high scanning rate and low efficiency in
dispersive structures, i.e., leaky-wave antennas (LWAs), the
antennas used in this system inevitably suffer from low radia-
tion efficiency [22], [23], [24], [25]. In addition, for imaging
systems based on programmable metasurface components,
varactor diodes are integrated into the unit cells to achieve con-
tinuous control and full coverage of the transmission phase in
designing the programmable metasurface [49], [50]. In our ap-
proach a single frequency is only required and straightforward
pattern diversity is utilized to overcome hardware complexity
issues. Although we utilize the Yagi antenna as an example
to demonstrate the antenna pattern diversity scheme, it can be
conveniently implemented using reconfigurable antennas [27].
Overall, the comparisons show that the proposed antenna pat-
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tern diversity imaging system reduces the number of required
measurement nodes without intricate antenna structures while
providing high reconstruction accuracy for 2D and 3D imaging
scenarios, and utilizes a single frequency.

VII. CONCLUSIONS

In this paper we have proposed an antenna pattern diversity
imaging system utilizing xRA that can reduce the required
number of measurement nodes by up to half compared to
conventional RF and microwave imaging systems. We have
analyzed the proposed imaging system using the concept
of sensing capacity, to conveniently find suitable antenna
pattern diversity configurations for halving the number of sens-
ing nodes while maintaining reconstruction quality. Results
demonstrating the reconstruction of objects consisting of sin-
gle and multiple scatterers with different shapes and different
permittivity have been provided. These results demonstrate
that the proposed antenna pattern diversity imaging system can
provide accurate image reconstruction even though the number
of measurement nodes has been reduced by half. To further
validate this technique, experimental verification should be
considered in the future.
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