
Performance Analysis of Apache OpenWhisk across
the Edge-Cloud Continuum

Areej Alabbas∗§, Ashish Kaushal†, Osama Almurshed∗, Omer Rana∗, Nitin Auluck†, Charith Perera∗
∗Cardiff University, United Kingdom

{alabbasam, almurshedo, ranaof, pererac}@cardiff.ac.uk
†Indian Institute of Technology Ropar, India

{ashish.19csz0003, nitin}@iitrpr.ac.in
§Imam Abdulrahman Bin Faisal University, Saudi Arabia

Abstract—Serverless computing offers opportunities for auto-
scaling, a pay-for-use cost model, quicker deployment and faster
updates to support computing services. Apache OpenWhisk is
one such open-source, distributed serverless platform that can
be used to execute user functions in a stateless manner. We
conduct a performance analysis of OpenWhisk on an edge-cloud
continuum, using a function chain of video analysis applications.
We consider a combination of Raspberry Pi and cloud nodes to
deploy OpenWhisk, modifying a number of parameters, such as
maximum memory limit and runtime, to investigate application
behaviours. The five main factors considered are: cold and warm
activation, memory and input size, CPU architecture, runtime
packages used, and concurrent invocations. The results have
been evaluated using initialization, and execution time, minimum
memory requirement, inference time and accuracy.

Index Terms—edge-cloud computing, serverless, function as a
service, OpenWhisk, performance evaluation.

I. INTRODUCTION

Serverless computing utilises containers and virtualization
to deploy applications, to offer users with isolated environ-
ments that can be used to execute functions as code [1].
Users only pay for the computational resources (CPU time,
memory utilisation etc) that are used for function execution.
As a consequence, the use of serverless platforms leads to an
increase in resource elasticity, seamless scalability and reduced
operational expenses. Serverless computing platforms offered
by cloud providers include AWS Lambda [2], Microsoft Azure
Functions [3] and Google Cloud Functions [4]. However,
these platforms can lead to vendor lock-in [5] and users
are required to modify their functions due to limits on the
size of function code, the time of execution, and the number
of concurrent executions that can be performed using these
commercial platforms [6]. Open source frameworks enable
serverless computing to be executed on private infrastructure
while avoiding vendor lock-in, such platforms include: Apache
OpenWhisk [7], OpenFaaS [8], Fission [9] and Kubeless [10].

The number of contributors on the source-code reposi-
tory identifies Apache OpenWhisk as the most widely used
platform. Moreover, OpenWhisk also offers a lite version
called Lean OpenWhisk [11], which can be deployed on
resource-constrained edge devices. Therefore, we have chosen
OpenWhisk in this study. Recent research on the performance
of commercial and open-source serverless platforms mainly

focuses on cloud-hosted platforms [12]–[19]. There are a very
limited number of studies on edge serverless platforms [20]–
[22]. Moreover, we also observe that the performance of
OpenWhisk on edge and cloud resources using a real-life video
analysis use-case has not been considered. We investigate
the performance of OpenWhisk across different factors that
contribute to the overall latency, including initialization time
and execution time. We also investigate the impact of cold
and warm activation, function input size, memory used, CPU
architecture, runtime package and rate of concurrent invoca-
tions. The following are the key contributions of this paper:
(i) deployment of OpenWhisk and Lean OpenWhisk over
edge-cloud infrastructure. (ii) a distributed, Lean OpenWhisk
framework that can be deployed on a cluster of RPi running
ARM architecture. A custom Python based runtime for Lean
OpenWhisk; (iii) performance analysis using a real-time video
analytics application; (iv) analysis of latency, initialization
time, memory requirement, inference time and accuracy of two
models for object detection (TensorFlow and TensorFlow Lite)
to improve model selection utilising edge-cloud serverless
computing.

The rest of this paper is structured as follows: Section II
reviews related works. Section III presents an overview of
Apache OpenWhisk serverless platform. Section IV describes
our video analysis application use case, and Section V eval-
uates OpenWhisk performance on edge-cloud infrastructure.
Finally, Section VI summarizes our contributions.

II. RELATED WORK

We divide related work into an evaluation of serverless
platforms not including OpenWhisk and a more detailed
discussion of studies that consider OpenWhisk specifically.

1) “Non-OpenWhisk serverless”: Studies in this category
have evaluated different serverless platforms, excluding Open-
Whisk. Mohanty et al. [12] evaluate the auto-scaling and con-
current user capabilities of Fission, Kubeless, and OpenFaaS.
Using Python applications, another study [13] analyzes latency
across AWS, Google, and Microsoft serverless platforms.
Lloyd et al. [14] identify five factors that affect AWS Lambda
and Microsoft Azure latency.

2) “Cloud-based OpenWhisk”: This category focuses on the
performance of OpenWhisk on cloud platforms. Maissen et



al. [15] studied the influence of request rate, cloud location,
memory size, and programming language on latency across
different serverless providers. Djemame et al. [16] assessed
OpenWhisk's effectiveness and efficiency on the cloud, com-
paring it to Docker and native function execution solutions.
Back et al. [17] and Lee et al. [18] performed comparative
analyses of OpenWhisk, AWS Lambda, Google Cloud, and
Microsoft Azure, considering aspects like execution time,
cost, and resource utilization. Kuntsevich et al. [19] evaluated
OpenWhisk's limitations and bottlenecks on a private cloud.

3) “Hybrid edge-cloud and edge-based OpenWhisk”: This
category investigates OpenWhisk's performance on edge de-
vices and hybrid edge-cloud setups. Javed et al. [20] compared
OpenWhisk, OpenFaaS, and AWS Greengrass on edge re-
sources, and AWS Lambda and Azure Functions on the cloud,
measuring response time and success rate. Palade et al. [21]
evaluated four open-source serverless platforms on edge in-
cluding OpenWhisk, but not on resource-constrained devices
like RPi. Tzenetopoulos et al. [22] evaluate OpenWhisk and
OpenFaaS on a hybrid edge-cloud cluster with an emphasis
on applications for optical character recognition. They deploy
OpenWhisk on a single edge node and evaluate it in five steps.

Our study examines the performance of the OpenWhisk
platform in edge-cloud environments. To do this, we explore
the unexplored application of evaluating the function chain of
video processing in an edge-cloud environment. We deploy
OpenWhisk on multiple edge devices with multiple invokers,
resulting in a complex and realistic configuration.

Fig. 1: Apache OpenWhisk architecture

III. OVERVIEW OF APACHE OPENWHISK

OpenWhisk is an open-source serverless cloud platform that
allows users to execute functions in response to a trigger event.
OpenWhisk utilises Function as a Service model (FaaS), where
functions are referred to as actions and their invocations as
activations. OpenWhisk assumes a direct relationship between
memory and CPU limits of containers, so developers are only
allowed to specify RAM (memory) size for executing their
actions. Developers can create a chain of actions where one
action calls another sequentially.The OpenWhisk architecture
is shown in Figure 1 and has two key components: Controller

and Invoker, both use Nginx [23], Kafka [24], Docker [25] and
CouchDB [26]. Kafka connects and buffers messages between
Controllers and Invokers. Lean OpenWhisk is designed for
edge devices and is less resource-intensive than the full
version. Kafka is replaced by an in-memory queue and the
Invoker is co-located with the Controller.

IV. USE CASE – VIDEO ANALYSIS APPLICATION

For our experimentation, we have considered a video anal-
ysis application as a realistic use-case scenario to investigate
and analyze various crucial factors that affect the performance
of OpenWhisk serverless platforms deployed on both edge and
cloud resources. Most of the video analysis applications re-
quire processing of video streams in real-time. Moreover, these
applications are sensitive to delay and require low latency
response. To evaluate the application, we have fragmented our
video analysis process into four interconnected and dependent
functions. These functions are executed sequentially, with the
output of each function serving as an input for the subsequent
function in our chain. Partitioning the video analysis applica-
tion allows us to efficiently deploy each function on a resource-
constrained device in the edge layer. Moreover, because of the
resource limitations imposed by platform providers (default
memory limit for OpenWhisk is 256MB), these platforms
are more suitable for executing smaller functions and tasks.
A depiction of functions considered in the video analysis
application is given in Figure 2.

Our video analysis application is composed of three stages:
(i) Pre-process, (ii) Analysis, and (iii) Result. In the Pre-
process stage, the video streams are loaded from the data
source (camera) and decoded to extract individual video
frames using the first function F1. These extracted frames are
then resized using F2 function and sent to the next stage. In
the Analysis stage, a real-time TensorFlow [27] based object-
detection algorithm is applied on each frame to detect the
desired objects using function F3. The last stage, Result,
extracts the detected objects by drawing boxes around them
and adding labels on each object. The output frames are then
uploaded to the database (final destination) using function F4.
Functions F1 and F2 are considered light functions while func-
tions F3 and F4 have computational resource requirements.
The computational level of our benchmarking functions, out-
lined in Table I, is tied to the resources used for function
execution. Low level involves minimal arithmetic operations,
such as resizing an image matrix. High level requires extensive
operations and memory usage for storing intermediate results,
such as large matrix manipulations. Medium level requires
moderate operations like image slicing, cropping, and data
storage via an input-output streaming channel.

Function ID Function Name Computational level
F1 Decod&Extract Frame Low
F2 Resize Frame Low
F3 Object Detect High
F4 Object Extract & Save Medium

TABLE I: List of functions and their computational levels



Fig. 2: Video Analysis Application

In stage (ii) of our video analysis application, we have
implemented functions F3 and F3 PRIME. F3 utilizes Ten-
sorFlow and F3 PRIME uses TensorFlow Lite. MobileNetV2
SSD [28] and MobileNetV1 SSD [29] models, both trained on
the Common Objects in Context (COCO) dataset [30], were
used for inference in F3 and F3 PRIME, respectively. Tensor-
Flow Lite is a compact and lightweight variant of TensorFlow,
with lower accuracy but higher execution performance.

V. IMPLEMENTATION AND EVALUATION

The integration of our edge-cloud distributed framework
with the designed testbed is shown in given Figure 3. The
setup includes VMs deployed on OpenStack cloud platform,
resource-constrained RPi as edge devices, and video capture
via cameras as a data source. The detailed hardware and
software specifications of edge and cloud nodes are shown
in Table II and Table III respectively.

Location No. of Nodes Processor Architecture Cores RAM
Cloud (VMs) 3 Intel Xeon x86 64 GNU 2(vCPUs) 4GB
Edge (RPis) 6 Cortex-A72 armv7l GNU 4(vCPUs) 4GB

TABLE II: Hardware specifications of cloud and edge nodes

Software Edge Cloud
OS Raspbian GNU/Linux 11 (bullseye) Ubuntu 20.04.3 LTS (Focal Fossa)
OpenWhisk incubator-openwhisk(Lean version) 1.0.0 (full version)
WSK CLI 0.10.0-incubating v1.2.0
Ansible 2.7.9 -
Helm - v3.9.0
Kubernetes - 1.20.15
Docker 20.10.16 20.10.12
Python 3.7 &3.9 3.7 &3.9
OpenCV 4.6.0-dev (Lite version) 4.6.0
TensorFlow Lite & full(2.2.0) Lite & full(2.9.1)

TABLE III: Software specifications for cloud and edge nodes

On cloud, we have deployed OpenWhisk as a Kubernetes
cluster on three VMs. All VMs run Ubuntu Server 20.04 OS,
and have 2 cores of CPUs and 4GB RAM; two of them are
used to host Invokers, while the third one is utilised to host
the remaining OpenWhisk components.

On edge, we have used six Raspberry Pi's 4 computer
- model B, running Raspberry Pi OS Lite (32-bit) Debian
Bullseye. Each RPi has a 1.5GHz 64-bit quad-core CPU (ARM
processor) and 4GB RAM. We have deployed Lean Apache
Open Whisk on edge devices that do not require Kafka and
Invokers as separate entities. However, Lean OpenWhisk is not
natively compatible with ARM architecture; only the x64 and
x86 architectures are supported by the OpenWhisk platform,
so in order for it to be compatible, we have customized Docker
images of the platform for setting up Lean OpenWhisk on RPi

Fig. 3: Overview of cloud-edge infrastructure

devices with the ARM architecture. A Python runtime for Lean
OpenWhisk running on ARM architecture devices has also
been implemented; currently Lean OpenWhisk has runtime
support in only one language i.e.NodeJS-6, for ARM devices.
Different docker images have been created as runtime for our
function invocations using Python programming language with
OpenCV, TensorFlow Full, and TensorFlow Lite versions. We
use 4 RPi devices as Invokers and the rest are utilised for
deploying the Nginx and CouchDB modules. To ensure that no
other components are using the system resource, each Invoker
is deployed separately on a different machine.

Moreover,We have installed the WSK CLI tool. This allows
users to easily create, update, and invoke functions within
our system. In addition, as users of OpenWhisk can specify
only a single dimension (memory requirement), we have
made modifications to the default settings of OpenWhisk by
increasing the maximum memory limit for function execution
on all Invoker machines to 3072MB. We have increased the
timeout limit for function execution to 300000ms (5 mins).
The motivation behind increasing timeout limit is driven by
high computational requirements of designed function F3.

A. Proposed Methodology

Our proposed approach is designed to analyze the per-
formance of edge-cloud framework in terms of latency. We
executed the designed functions in both synchronous and
asynchronous invocations mode on both edge, cloud resources
and compared their performance with each other. The implica-
tions of various critical factors that directly influence function
execution is also considered in this work. The five main factors
investigated here are:

Cold and Warm Activation: In serverless platform, the
delays incurred during the cold activation include the time to
initialize the docker container runtime and time to execute
function's code. However, in warm activation, there is no
initialization time. The duration of a cold activation can



vary depending on several factors, such as the programming
language used, size of the function's code and package depen-
dencies, and the resources required to run the function. Thus,
this step compares the latency of cold and warm activation for
functions with different package dependencies (e.g OpenCV,
TensorFlow). In addition, we created a metric called Activation
Ratio which calculates the ratio between the Warm and Cold
activation. This ratio is utilised to decide whether to keep the
warm containers operational or not.

Resolution Type Common Name Frame Size(Pixel)
LD (Low Definition) 240p 320 x 240

SD (Standard Definition) 480p 640 x 480
HD (High Definition) 720p 1280 x 720

FHD (Full High Definition) 1080p 1920 x 1080

TABLE IV: List of Video Frame Resolutions

Memory Setting and Input Size: The execution time
of a function on serverless platforms is influenced by two
crucial factors, namely, the amount of memory allocated and
the size of the input provided. Therefore, we run our video
analysis functions using different frame resolutions (frame
sizes) as shown in Table IV and using different memory
settings ranging from 128MB to 3072MB. Furthermore, we
measure the minimum memory capacity necessary to run each
function without failure.

CPU Architecture: The performance of distinct functions
tends to vary based on the resources utilised, such as RPi or
cloud. However, resource-constrained devices like RPi devices
can result in a higher latency or delay when executing these
functions. As the next step of our proposed method, we
measure the total latency and docker initialization time of our
functions using different resources RPis and cloud servers.

Runtime Package: In OpenWhisk, different runtimes (e.g
Python, Java etc) and runtime's packages (e.g OpenCV and
TensorFlow) can impact the total latency of a running func-
tion. As mentioned earlier in section IV, we implemented
two versions of the third function, F3 and F3 PRIME. The
difference between them is the runtime package used for the
object detection process. The two packages used for evaluation
are: TensorFlow and TensorFlow Lite. We have measured the
inference time, and compared accuracy of these two modules.
To measure the accuracy in our experiment, we considered
four metrics: (1) Object Location: whether the object in image
is properly (x and y axis aligned) detected or not; (2) Class
Labels: whether the detected object is labeled correctly or not;
(3) Detection Confidence: the percentage of confidence with
which the object has been detected; and (4) Detection Count:
number of objects that have been totally detected in the image.

Concurrent Invocations: A serverless function in a video
analysis application may be invoked concurrently several
times, depending on the frame rate (e.g., 15 or 25 frames
per second). Consequently, any bottlenecks in the various
components of the serverless platform may increase the overall
latency of function execution. To address this issue, we con-
ducted performance evaluations of our serverless platform us-
ing different concurrent invocation rates(e.g., 1, 5, 10, and 15)
to assess the impact of concurrency on its overall performance.

Contrary to all previous factors that utilized synchronous
invocations, in this factor, we conducted invocations in an
asynchronous manner.

The Total Latency (TL) for running the function in Open-
Whisk consists of (i) Initialization Time (Tinit), the time
to initialize docker container runtime (for warm activation:-
Tinit = 0) and (ii) Execution Time (Texec), the time to execute
function. Therefore, the Total Latency can be mathematically
represented as: TL = Tinit+Texec. We have benchmarked the
Initialization Time, Execution Time, Total Latency, activation
ratio, minimum amount of resource required (memory), and
inference time and accuracy of TensorFlow and Tensorflow
Lite on both edge and cloud resources.

B. Results

1) Impact of Cold and Warm Activations: Figure 4 shows
the total latency in cold and warm activations on RPi. In cold
activation, the average latency increased by 3x, 4x and 2x for
F1, F2, and F4 respectively compared to warm start. Figure 5
illustrates the initialization time for executing each function
on RPi. F1 and F2 have similar average initialization time
(approx. 1500ms), using the same Docker image consisting
of Python, OpenCV Lite packages for execution. F3 and
F4 however require installing TensorFlow packages in the
Docker runtime, therefore the average initialization time is
much higher (around 10000ms) compared to F1, F2.

Fig. 4: Total latency in Cold and Warm activation on RPi.

Fig. 5: Initialization time on RPi

From Figures 4 and 5, docker initialization exceeds execu-
tion time (Texec = TL−Tinit) for F1, F2, F4 whereas for F3
the execution time exceeds initialization time. It is realised that
functions with an activation ratio higher than 1 perform better
with warm containers, whereas functions with an activation
ratio below or equal to 1 perform similarly in both cold and
warm activation.



Fig. 6: Execution Time for the different frame sizes on RPi

Fig. 7: Execution Time for different memory settings on RPi

2) Impact of Input Size and Memory Setting: Figure 6 and
7 show the execution time of four functions running on RPi
nodes with different frame sizes and different memory settings
respectively. The overall average execution time for F1, F2,
and F4 increases when the input size for each function is
increased. For function F3, the execution time did not increase
with the increase in frame size because a resized frame from
the previous function (F2) was utilised as input in this function.

Secondly, an increase in memory setting does not signifi-
cantly impact the average execution time of functions as seen
in Figure 7. This is due to the fact that Docker's interaction
with OpenWhisk permits partially dynamic memory allocation
that restricts utilisation of total memory space during function
execution. Similar results has been mentioned in works [17],

[31]. In order to determine the minimum amount of memory
required for running each function without failure, we have
tested each function using six different memory settings start-
ing from 128MB to 3072MB using the same input size. The
result shows that F1 and F2 are lighter functions and can be
run with a small amount of memory (from 128MB) while F3
and F4 are heavier functions and need more intensive resources
with a minimum of 2048MB and 512MB respectively.

3) Impact of CPU Architecture: Figures 8a and 8b illus-
trate the latency of the four functions executed on RPi and
cloud, using both cold and warm activations respectively. By
running functions on cloud node, the total latency of F1 and F2
decreased by 2.7x and 2.6x for cold activation and by 3.9x and
3.2x for warm activation. For F3 and F4, the latency decreased
by up to 5.6x and 3.3x in the cold invocations whereas it
decreased up to 9.3x and 6.5x in the warm invocations, when
executed on cloud. As shown in Figure 8c, the time to initialise
a docker container on RPi devices is higher than on the cloud.
The initialization time of the first two functions increased by
2.8x, and for F3 and F4 it increased by 1.5x and 2.7x on RPi.

4) Impact of Runtime Packages: Figures 9a and 9b
show the total latency and the initialization time of F3 and
F3 PRIME on both RPi and Cloud. It is observed that total
latency for F3 PRIME (in comparison to F3) is reduced by
almost 118x and 37x times on RPi and Cloud respectively.
F3 PRIME has a lower initialization time than F3 on both
Cloud and RPi. The performance of full and lite versions are
bound to the CPU resource architecture and the type, size of
data which affect data locality during arithmetic operations,
i.e., data in registers, cache, or main memory. Although
the RPi has more CPU cores, it requires additional CPU
instructions that shift data across memory tiers, e.g. cache
to registers, to overcome the limitation of the fast memory
– float-32 (8bytes) is used in the full version, whereas integer
data type (int-8, 1 byte), is used in the lite version. Converting
float-32 to int-8 is known as quantization, as used in the lite
version.

One of the significant results observed is that: running
F3 PRIME on RPi has a lower delay (with over 100ms) than
on the Cloud in warm activation (Figure 10). This is due to
the fact that lite version requires less memory space near the
CPU (solving the RAM limitation issue for 32-bit) and that
the RPi has four cores that run more operations in parallel.

(a) Cold activation latency (b) Warm activation latency (c) Initialization time

Fig. 8: Comparison: RPi and Cloud



(a) Total latency (b) Init. time (c) Inference time

Fig. 9: Comparison: F3 and F3 PRIME

Fig. 10: Average latency: F3 PRIME in cold/warm activation

F3 PRIME can run with a minimum of 128MB, while
F3 requires 2048+MB for function execution. Quantization
reduces memory footprint of TensorFlow Lite. The inference
time of both functions is illustrated on Figure 9c, showing the
inference time for the lite version on Cloud is double compated
to the RPi. The 32-bit system of RPis requires additional CPU
instructions for floating-point computations and data transfers
via the memory hierarchy. In the cloud, quantization reduces
loading times and float operations, but has a minimal effect on
data transfers. Further performance optimization on a 64-bit
cloud produces less significant results compared to RPis. Ar-
chitectural variations such as processor type and data locality
can cause bottlenecks in shared-memory parallel computing,
leading to performance disparities [32]. Although both models
predicted the right object classes, in the right position, as seen
in Figure 11, the confidence score for detecting an object is
higher in Figure 11a compared to Figure 11b. This is because
lite models use a quantization technique on model parameters,
trading-off generalization of model with inference time and
memory. Moreover, in Figure 11c and 11d, having a higher
confidence score, we can see that the full version was able to
detect a greater number of objects. In general, we can say that
the full version performs better than lite version but requires
more time and resources for execution.

5) Impact of Concurrent Invocations: Figure 12 shows
that with increase in the number of concurrent invocations, the
overall delay on both edge and cloud nodes also increases. We
concurrently execute 1, 5, 10 and 15 functions on both cloud
and edge layers asynchronously. Concurrent executions was
performed with function F1 only, as it has minimum memory
(128MB) requirement for execution. However, for function F3
the minimum memory requirements are 2048MB. This does

(a) Full version (b) Lite version

(c) Full version (d) Lite version

Fig. 11: Accuracy comparison of TensorFlow Full and
TensorFlow Lite

(a) RPi (b) Cloud

Fig. 12: Average latency: concurrent invocations

not allow us to run multiple invocations due to maximum
memory limitation of the Invoker machines (3072MB).

VI. CONCLUSIONS

A video processing application is used to benchmark an
open source serverless platform using TensorFlow and Ten-
sorFlow Lite. We consider both cold and warm activation,
function input size and memory, CPU architecture, runtime
package and rate of concurrent invocations. We observe that
OpenWhisk has a high cold activation latency during function
execution. Memory allocated and input size are two crucial
factors that affect function execution time. Increase in memory
does not significantly impact average function execution time,
however increasing the input size has an impact. We observe
that executing functions on cloud nodes (compared to RPi
nodes) reduces total latency in both cold and warm activation.
However, executing these functions on cloud could increase
network delay, subsequently impacting total latency. The total
latency, execution time, initialization time and inference time
for the functions using TensorFlow Lite is low compared to
the full TensorFlow package. Concurrent executions improve
resource utilisation on both cloud and RPi nodes; however, this
increases average latency significantly. Concurrent execution
on cloud node is recommended as RPi takes almost 2x more
time to execute a similar number of functions.



REFERENCES

[1] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The rise of
serverless computing,” Communications of the ACM, vol. 62, no. 12, pp.
44–54, 2019.

[2] Aws lambda. [Online]. Available: https://aws.amazon.com/lambda/
[3] Microsoft azure functions. [Online]. Available:

https://azure.microsoft.com/en-us/products/functions/
[4] Google cloud functions. [Online]. Available:

https://cloud.google.com/functions
[5] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,

N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski et al., “Serverless
computing: Current trends and open problems,” in Research advances
in cloud computing. Springer, 2017, pp. 1–20.

[6] T. Lynn, P. Rosati, A. Lejeune, and V. Emeakaroha, “A preliminary
review of enterprise serverless cloud computing (function-as-a-service)
platforms,” in 2017 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom). IEEE, 2017, pp. 162–169.

[7] Apache openwhisk. open source serverless cloud platform. [Online].
Available: https://openwhisk.apache.org

[8] Openfaas. [Online]. Available: https://docs.openfaas.com
[9] Fission open source kubernetes-native serverless framework. [Online].

Available: https://fission.io
[10] Kubeless. [Online]. Available: https://github.com/vmware-

archive/kubeless
[11] D. Breitgand. Lean openwhisk: Open source faas for edge computing.
[12] S. K. Mohanty, G. Premsankar, M. Di Francesco et al., “An evaluation of

open source serverless computing frameworks.” CloudCom, vol. 2018,
pp. 115–120, 2018.

[13] J. Kim and K. Lee, “Functionbench: A suite of workloads for serverless
cloud function service,” in 2019 IEEE 12th International Conference on
Cloud Computing (CLOUD). IEEE, 2019, pp. 502–504.

[14] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara,
“Serverless computing: An investigation of factors influencing microser-
vice performance,” in 2018 IEEE international conference on cloud
engineering (IC2E). IEEE, 2018, pp. 159–169.

[15] P. Maissen, P. Felber, P. Kropf, and V. Schiavoni, “Faasdom: A bench-
mark suite for serverless computing,” in Proceedings of the 14th ACM
International Conference on Distributed and Event-based Systems, 2020,
pp. 73–84.

[16] K. Djemame, M. Parker, and D. Datsev, “Open-source serverless ar-
chitectures: an evaluation of apache openwhisk in: 2020 ieee/acm 13th
international conference on utility and cloud computing (ucc), 329–335,”
DOI: https://doi. org/10.1109/UCC48980, 2020.

[17] T. Back and V. Andrikopoulos, “Using a microbenchmark to compare
function as a service solutions,” in European Conference on Service-
Oriented and Cloud Computing. Springer, 2018, pp. 146–160.

[18] H. Lee, K. Satyam, and G. Fox, “Evaluation of production serverless
computing environments,” in 2018 IEEE 11th International Conference
on Cloud Computing (CLOUD). IEEE, 2018, pp. 442–450.

[19] A. Kuntsevich, P. Nasirifard, and H.-A. Jacobsen, “A distributed analysis
and benchmarking framework for apache openwhisk serverless plat-
form,” in Proceedings of the 19th International Middleware Conference
(Posters), 2018, pp. 3–4.

[20] H. Javed, A. N. Toosi, and M. S. Aslanpour, “Serverless platforms on
the edge: a performance analysis,” in New Frontiers in Cloud Computing
and Internet of Things. Springer, 2022, pp. 165–184.

[21] A. Palade, A. Kazmi, and S. Clarke, “An evaluation of open source
serverless computing frameworks support at the edge,” in 2019 IEEE
World Congress on Services (SERVICES), vol. 2642. IEEE, 2019, pp.
206–211.

[22] A. Tzenetopoulos, E. Apostolakis, A. Tzomaka, C. Papakostopoulos,
K. Stavrakakis, M. Katsaragakis, I. Oroutzoglou, D. Masouros, S. Xy-
dis, and D. Soudris, “Faas and curious: Performance implications of
serverless functions on edge computing platforms,” in International
Conference on High Performance Computing. Springer, 2021, pp. 428–
438.

[23] Nginx. [Online]. Available: https://www.nginx.com
[24] Kafka. [Online]. Available: https://kafka.apache.org
[25] Docker. [Online]. Available: https://www.docker.com
[26] Couchdb. [Online]. Available: https://couchdb.apache.org
[27] Tensorflow. [Online]. Available: https://www.tensorflow.org

[28] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510–4520.

[29] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[30] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13.
Springer, 2014, pp. 740–755.

[31] M. Malawski, K. Figiela, A. Gajek, and A. Zima, “Benchmarking
heterogeneous cloud functions,” in Euro-Par 2017: Parallel Process-
ing Workshops: Euro-Par 2017 International Workshops, Santiago de
Compostela, Spain, August 28-29, 2017, Revised Selected Papers 23.
Springer, 2018, pp. 415–426.

[32] O. Almurshed, P. Patros, V. Huang, M. Mayo, M. Ooi, R. Chard,
K. Chard, O. Rana, H. Nagra, M. Baughman et al., “Adaptive edge-
cloud environments for rural ai,” in 2022 IEEE International Conference
on Services Computing (SCC). IEEE, 2022, pp. 74–83.


