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Abstract—A café, the metro, a supermarket, a book store —
many locations of everyday life have a specific smell. Recognising
such olfactory scenes could inform personal activity tracking,
environmental monitoring, and assist robotic navigation. Yet
it is unclear if current Metal-oxide (MOx) sensor technology
is sensitive and specific enough to achieve this. Factors like
sensor drift, and sensitivity to ambient humidity and temperature
further complicate the recognition of olfactory scenes. Hotplate
temperature modulation has been suggested as a method to
counter these drawbacks. We present an electronic nose based
on MEMS-MOx sensors that support rapid hotplate temperature
modulation with a 150 ms period. We recorded different natural
olfactory scenes in an urban context. A linear SVM was able to
recognise four olfactory scenes in single hotplate cycles with near-
perfect performance when trained and tested on the same day,
and 73% accuracy when tested in the same locations on the next
day. Gas sensor responses yielded higher recognition accuracy
than humidity, temperature, and pressure that were also partly-
location specific. Our results indicate that hotplate modulation
enables recognition of natural odor scenes across extended
timespans. These findings encourage the use of MOx-sensors as
rapid sensing devices in natural, uncontrolled environments.

Index Terms—Natural odor scene recognition, Metal oxide
sensors, Hotplate modulation

I. INTRODUCTION

The use of electronic noses (eNoses) has become popular in
many areas, such as industrial and environmental monitoring
[1], hazard control [2], mobile olfactory robotics [3], and med-
ical screening [4]. Despite shortcomings like drift and cross-
sensitivity to humidity, MOx sensors are an attractive choice
for electronic noses due to their low cost and availability.
The current generation of sensors are made using MEMS
techniques which enable faster modification of the sensing site
temperature, and these fast modulation cycles have been shown
to decrease the integration time and improve the specificity of
the responses to different analytes [5].

The recognition of olfactory scenes is an interesting but
challenging problem, as it requires a portable eNose [6] that
can operate in uncontrolled natural environments susceptible
to changes in temperature, humidity and pressure.

Fig. 1. Overview of the electronic nose system, showing the sensor board,
microcontroller board and power source.

II. ENOSE DESIGN

We designed an electronic nose with three goals in mind:
(1) to investigate heater modulation techniques, (2) to take ad-
vantage of MEMS gas sensors and their faster response times,
and (3) to enable field recordings untethered to a computer.
Our design uses off-the-shelf components and consists of two
main parts: a microcontroller board based on a Teensy 4.1
microcontroller (PJRC.com) for data processing and storage,
and a sensor board hosting the sensors, associated analog
circuitry, and data converters, in a portable unit (fig. 1).

We use four metal-oxide sensors grouped in three MEMS
packages: MiCS 4514 and MiCS 5914 (SGX Sensortech) and
CCS801 (AMS/ScioScience). These can sense various kinds
of reducing and oxidising gases including various volatile
odor compounds (VOCs), hydrocarbons, carbon monoxide,
hydrogen, nitrogen oxides and ammonia.

Heater modulation requires a way to measure the hot
plate temperature, and a way to regulate the power delivered
to the resistive heating element. In metal-oxide gas sensors
with resistive hotplates, the heater resistance increases quasi-
linearly with temperature. Absolute hotplate temperature can
be estimated by continuously measuring the heater resistance,
combined with calibration information obtained from the
manufacturer’s datasheet. We use a DAC (DAC7554, Texas



Instruments) and an amplifier (TS924, STMicroelectronics) to
set the voltage, and a sense resistor of known fixed value to
measure the resulting current (fig. 2). This enables control of
the heater resistance, temperature, and power.

The gas sensor response fluctuates rapidly with the hot plate
temperature, independently from the speed at which chemical
reactions occur on the sensor surface (fig. 3b). We there-
fore sample the hotplates and sensors synchronously, using
two simultaneously-sampling, 8-channel ADCs (ADS131M08,
Texas Instruments). These form a closed control loop with the
DAC, running at 1 kHz. The high sampling rate is is required
to support accurate control of the heating elements, which have
thermal time constants on the order of 20 ms.

A GPS module provided position and time. One environ-
mental sensor measured the temperature and humidity in close
thermal proximity to the sensors (MS8607 from TE Con-
nectivity, also providing barometric pressure). Another sensor
measured the temperature and humidity of the surrounding
air, uninfluenced by the heaters (SHT31 from Sensirion). The
microcontroller recorded the data on-the-fly to an SD card at
a data rate of 150 kB/s, enabling multiple-hour recordings.
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Fig. 2. Simplified schematic of the sensor board showing one out of four
sensor channels. Each channel contains its own heater circuit (in red) and gas
sensor circuit (in blue). The heater amplifier tracks the DAC voltage (gain=1)
and supplies the required heater current (up to 35 mA).

III. DATA COLLECTION

We acquired a dataset of natural olfactory scenes recorded in
different urban indoor locations: ’Café’, ’Metro’, ’Bookstore’
and ’Supermarket’. Each location was visited once per day,
on two consecutive days. We recorded the four gas channels,
ambient temperature, relative humidity, and pressure. Heater
power was modulated with a period of 150 ms as described
in fig. 3.

The data was divided into training and testing sets with
a four-fold cross-validation procedure. For each day and
location, we selected a contiguous block containing 25% of the
data and randomly picked 400 heater cycles from this block for
testing. We then drew 1200 training cycles from the remaining
75% of the data. The whole procedure was repeated four times

with non-overlapping test blocks, to allow the models to be
validated on the entire dataset. This yielded a total of 12800
cycles divided in four sets: training (day 1), testing (day 1),
training (day 2) and testing (day 2).

a)

b)

Fig. 3. Overview of the gas sensor data. a) Gas sensor response at the hottest
part of each heater cycle, across four locations visited on two different days.
b) Schematic of the heater modulation cycle. Each cycle steps between two
fixed power levels (different for each channel) with a 150ms period. Hot plate
temperature is inferred from heater resistance. Volatiles and environmental
factors affects the shape of the temperature-induced response of the gas
sensors.

IV. INFERENCE OF OLFACTORY SCENES FROM
BASELINE-NORMALISED SENSOR CYCLES

We then investigated whether one can recover the label of
the olfactory scene from the time course of a single 150 ms
heater cycle, either from the gas sensor conductance or from
the environmental sensors.

First, the gas signal was normalised to the same minimum
and maximum values over each heater cycle (fig. 4a). This
mitigates the baseline drift often seen in gas sensor datasets
[7], which is problematic for classification tasks [8]. While
this normalisation step yields curves that, at first sight, look
very similar across locations, they differ substantially and
reproducibly if one compares them closely (see insets in fig.
4a). Observing the 2D projections in the space of principal
components (fig. 4b), separable and class-aligning clusters



emerge not only for for single day recordings, but also for
the entire data spanning two days.

If one considers the environmental sensor responses (fig.
4c), it is evident that at each location there is a drift in
temperature and humidity, causing a strong overlap of the
responses across the classes, making a separation challenging.
While pressure is more stable for each class at a given day,
there appears to be an offset when comparing different days.

Those qualitative observations are confirmed by evaluating a
linear classifier trained on a subset of the data. For the different
sensors (temperature, humidity, pressure, gas), all possible
combinations are formed and the respective day-1 training set
is used to train a soft-margin, linear-kernel Support-Vector-
Machine (SVM) [9]. Each model is then validated via the
classification accuracy achieved on the day-1 testing set and
on the day-2 testing set (fig. 4d). When training and testing
on data from the same day (day 1), the model trained on the
gas sensor responses achieves the highest accuracy scores by a
large margin (97.2% validation accuracy vs. 49.6%, 31.2% and
85.6% for temperature, humidity and pressure respectively).
When training on day 1, and testing on day 2, again the
gas sensor results surpass the ones achieved by having the
environmental sensors only (72.8% validation accuracy vs.
52.3%, 31.3% and 25.0%). In both cases, there seems to be
no obvious advantage in combining the gas sensors with any
of the environmental sensors.

V. CONCLUSION

In this work, we presented a novel design for a portable
eNose, which takes advantage of the properties of state-of-
the-art MEMS gas sensors, allowing high-frequency heater
control and sensor readout. We demonstrate that the phase-
locked sensor response relative to heater cycles constitutes a
promising feature for classifying natural olfactory scenes from
sub-second samples. Further, we showed that the information
present in the gas sensor signal does not appear to be fully
explained by cross-sensitivities to the ambient air temperature,
humidity and pressure: each location’s unique olfactory signa-
ture seems to play a role as well. Future work should focus
on evaluating the reproducibility of olfactory scene recognition
across a wider range of conditions, and over longer intervals
of time.
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