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In safety-critical systems a smooth degradation of services is a way to deal with resource shortages. Criticality arithmetic 

is a technique to implement services of higher criticality by several tasks of lower criticality. In this paper, we present 

LBP-CA, a mixed-criticality scheduling protocol with smooth degradation based on criticality arithmetic. In the 

experiments we show that LPB-CA can schedule more tasks than related scheduling protocols (BP and LBP) in case of 

resource shortage, minimising the negative effect on low-criticality services. This is achieved by considering information 

about criticality arithmetic of services. 
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Introduction 

Criticality Arithmetic (CA) or SIL-arithmetic as termed in [1], is a Mixed-criticality (MC) model that assembles a 

number of replicated tasks with low criticality levels, to implement a service of higher criticality level. The 

Adaptive Tolerance-based Mixed-criticality Protocol - Criticality Arithmetic (ATMP-CA) [4] is CA-aware mid-term 

scheduler that optimises the utility of individual tasks when permanent fault occurs e.g., core-failure, to 

maximise the overall system utility, here we present a novel CA-aware short-term scheduler (LBP-CA) which 

assures return to Normal-mode from Critical-mode, much earlier than reference schedulers that do not take the 

use of criticality arithmetic into account. MC systems enter the Critical-mode whenever a transient fault e.g., 

task overrun occurs, which results in abandoning release of Low-criticality tasks to avoid their interference on 

High-criticality tasks during the Critical-mode [5]. 

Reference schedulers are Bailout Protocol (BP) [3] and Lazy Bailout Protocol (LBP) [2]. BP and LBP define three 

criticality modes to schedule the execution of tasks with different criticality levels: Normal-mode, Bailout-mode 

and Recovery-mode. Bailout-mode represents the Critical-mode explained above, and Recovery-mode is used 

to ensure that the last High-criticality task with Low-priority is executed before returning to Normal-mode. LBP 

differs from BP in that instead of dropping Low-criticality tasks during Bailout and Recovery modes, they are 

added to a Low-priority queue for possible execution when the system returns to Normal-mode. Though LBP 

may drop less tasks than classic BP, it doesn’t improve the BP functionality that operates the process of returning 

to Normal mode. 

System Model: We assume a single processor mixed-criticality system, which consists of multiple services that 

could have different levels of criticality. A service can be implemented by one task or multiple tasks using 

criticality arithmetic [1]. Each service is identified by the tuple: 𝒔 = ⟨𝒊𝒅, 𝒍, 𝑻⟩, where 𝒊𝒅 is the service identifier, 

𝒍 is the service criticality and 𝑻 is the set of tasks implementing the service. Each individual task () is defined by 

the tuple 𝝉 = ⟨𝒊𝒅, 𝒑, 𝒅, 𝒄𝟏, 𝒄𝟐, 𝑳, 𝒔⟩, where 𝒊𝒅 is the task identifier, 𝒑 is the task period, 𝒅 the task deadline, 𝒄𝟏 

optimistic worst-case execution time estimate (WCET1), 𝒄𝟐 pessimistic worst-case execution time estimate 

(WCET2), task criticality is defined by 𝑳 and 𝒔 is the service that is implemented by the task. 

Experimental Setup 

We have implemented a short-term scheduling simulator which is configured to simulate mixed-criticality 

services on a single processor system. The simulator has also implemented the underlying scheduling algorithm 

(deadline-monotonic) and the references mixed-criticality protocols (BP and LBP) and the novel mixed-criticality 

protocol (LBP-CA). 

We have generated a task-set with random parameters for task periods and worst-case execution time and mix 

of implicit and constrained deadlines. The criticality of a task or service is either High or Low, which corresponds 

to the criticality level of the task. We have constrained the task generation such that it includes a single High 

criticality CA-aware service (S2). The complete structure of tasks and services is implemented in the following 

task-set in Table 1. 
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(a) BP protocol (3 dropped jobs, 10 completed jobs) 

 
 

 
(a) LBP protocol (2 dropped jobs, 11 completed jobs) 

  
 

 
(a) LBP-CA protocol (1 dropped job, 12 completed jobs) 

 
Figure 1. Comparison of scheduling mixed-criticality tasks between BP, LBP and LBP-CA 

 

 

 

 

 

 



 

 

 

 

t.id t.p t.d t.c1 t.c2 t.L s.id s.l 

A 24 12 8 8 Low S1 Low 

B 26 12 4 4 Low S2 High 

C 48 24 4 10 High S3 High 

D 32 32 8 8 High S2 High 
Table 1. Set of Services and Tasks (only S2 use Criticality Arithmetic) 

 

Results and discussion (Section heading, Calibri 12 pt) 

The purpose of our experiment was to show that the LBP-CA returns to Normal-mode with the least number of 

abandoned Low-critical tasks compared to reference protocols. Figure 3 shows the schedule for the task-set 

presented in Table 1. In Figures 3 (a), (b) and (c), we can observe that job 𝑪𝟎 overruns its 𝒄𝟏 estimates, which 

results in entering Critical-mode. As per Figures 3 (a), (b) and (c), in BP and LBP protocols we can observe that 

the overrun caused the system to enter the Bailout-mode and abandon the Low-Criticality jobs (𝑨𝟏 and 𝑩𝟏), to 

avoid possible interference with High-Criticality jobs. However, the LBP protocol (Figure 3 (b)) shows the 

successful allocation for the job 𝑩𝟏 using its lazy execution mechanism. In contrast, our LBP-CA protocol (as 

shown in Figure 3 (c)) scheduled all jobs successfully except job 𝑫𝟏. This is because the first instance of its replica 

B has been executed successfully. Hence entering Recovery-Mode has been mitigated. Overall, the collected 

simulation results indicate that the LBP-CA drops a smaller number of Low-Criticality jobs and efficient 

management for the system run-time modes in comparison to reference schedulers (BP and LBP protocols). 

 
 

Conclusion  

Integrating CA to Mixed-criticality schedulers as in (LBP-CA), allows efficient mode-change management 

between Normal-mode and Critical-mode/s due to transient faults. LBP-CA can access information about 

criticality arithmetic (CA) via task redundancy compared to referenced scheduling protocols (BP and LBP) which 

are CA-agnostic. Our simulation data shows that even at/after resource shortage, LBP-CA returned to the normal 

state prior to BP and LBP, providing a smoother service degradation. 
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