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Relating quanta conservation 
and compartmental 
epidemiological models of airborne 
disease outbreaks in buildings
Samuel G. A. Wood *, John Craske  & Henry C. Burridge 

We investigate the underlying assumptions and limits of applicability of several documented models 
for outbreaks of airborne disease inside buildings by showing how they may each be regarded as 
special cases of a system of equations which combines quanta conservation and compartmental 
epidemiological modelling. We investigate the behaviour of this system analytically, gaining insight 
to its behaviour at large time. We then investigate the characteristic timescales of an indoor outbreak, 
showing how the dilution rate of the space, and the quanta generation rate, incubation rate and 
removal rate associated with the illness may be used to predict the evolution of an outbreak over time, 
and may also be used to predict the relative performances of other indoor airborne outbreak models. 
The model is compared to a more commonly used model, in which it is assumed the environmental 
concentration of infectious aerosols adheres to a quasi-steady-state, so that the the dimensionless 
quanta concentration is equal to the the infectious fraction. The model presented here is shown to 
approach this limit exponentially to within an interval defined by the incubation and removal rates. 
This may be used to predict the maximum extent to which a case will deviate from the quasi steady 
state condition.

Airborne transmission plays a central role in the spread of many respiratory  illnesses1, and typically occurs 
indoors. Infectious individuals produce droplets laden with infectious material by coughing, sneezing and exha-
lation; larger droplets can evaporate mid-air, losing mass until they are reduced to a nucleus small enough to be 
transported as an aerosol by the motion of the  air2. In this way, infectious material can be spread and, particularly 
in poorly ventilated spaces, airborne material may linger for long durations resulting in exposures even after 
infectious individuals have  left3.

The concentration of infectious material present in an indoor space may be used to predict the likelihood 
that a susceptible person will become  infected4. One common method of finding the concentration of infectious 
aerosol is to treat the air within each indoor space as possessing spatially uniform properties—the so called 
‘well-mixed’ assumption. This assumption can then be used in conjunction with knowledge of the number of 
infectious individuals present, and the rate at which they produce infectious aerosol, to calculate the expected 
spread of infection over  time3,5. In such models a number of assumptions are, often implicitly, made about the 
timescales over which various processes such as dilution, incubation, and the removal of the infectious occur; 
however, little work exists examining the underlying timescales of these processes and how their relative mag-
nitudes affect the performance of outbreak models.

There are a number of studies in which a conservation equation for the concentration of airborne infectious 
material is incorporated into epidemiological models to predict outbreaks of different diseases within indoor 
 spaces6,7. However, in contrast to the dynamics of population scale epidemiological  models8,9, the fundamental 
epidemiological properties of such outbreak models have not been studied extensively.

Many epidemiological models exist in which infection spreads via the environment, rather than directly 
between infectious and susceptible individuals. In such models, infectious individuals contribute to an envi-
ronmental pool of infectious material, which may linger for long periods even when no infectious material is 
present. Typically, these models consider environmental contaminants that may remain for relatively long time 
periods, for example to predict inter-seasonal transmission of avian flu from contaminated breeding grounds 
where infectious material remains in faecal matter for many  months10. In humans, such models are commonly 
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used for longer-lasting environmental contamination such as that seen in water-borne  illness11,12. There is little 
existing work that considers the air within an indoor space to be such as an environmental pool. The time over 
which airborne infectious material lingers is generally considered to be short (due to ventilation, deposition and 
decay), relative to the timescales of occupation of buildings, and to the periods of incubation and recovery or 
removal of infectious  individuals13.

In this work we incorporate a conservation equation for the concentration of airborne infectious material in 
an indoor space in to a compartmental epidemiological model following a method previously used by Noakes 
et al.7, resulting in an environmental pool model. We consider the resulting system specifically in the context of 
indoor airborne outbreaks. We study the behaviour of the system, including the timescales of dilution, exposure, 
incubation and removal. We show how several existing outbreak models may be shown as limiting cases of the 
resulting system, and how values derived from the combined system may be used to predict the performances 
of these models relative to each other under different circumstances.

Quanta-based transmission models and epidemiological modelling
In this section we detail two broad (and sometimes overlapping) classes of model used for outbreaks of infec-
tious disease and their applications to indoor spaces: ‘quanta-based infection models’ which model the spread of 
infection via airborne ‘quanta’, and ‘compartmental epidemiological models’ which model the spread of disease 
throughout a population. We discuss their current applications with emphasis on the ways in which they can 
be brought together.

Quanta conservation models
For infectious diseases, a complete representation of the infection process requires considered parametrisation 
of the processes of the production of, and exposure to, infectious aerosols (the dose), as well as the process of 
in-host infection (the response). Following this modelling approach, these so-called ‘dose-response’ models 
lead to a more complete representation of this physical process. However, this comes at the cost of the challenge 
of robust  parametrisation14. The approaches that we go on to document herein could be simply extended and 
applied to dose-response models; however, one would be required to specify a particular model for the dose, and 
for the response, and hence one would be required to focus one a more narrow class of disease. For this reason, 
we choose to focus on quanta, rather than dose-response, based models of airborne infection.

The ‘quantum’ or ‘quanta’ is a commonly used concept to classify the transmission and infection properties of 
a given  disease4, which simplifies the modelling at the expense of providing less complete representation of the 
infection process. If environmental interactions are such that the infection process follows a Poisson relation, 
then the exposure to one quantum of infectious material gives an average probability p of p = 1− e−1 ≈ 63% of 
becoming  infected4,15. The relative simplicity, and more ready ability to parameterise infections based on observed 
data, has led to quanta-based infection models being widely used for a range of different infection mechanisms, 
including  fomite16, droplet and aerosol-borne  illnesses17.

For airborne outbreaks, if the air within an indoor space is assumed to be ‘well-mixed’, i.e. of spatially uniform 
concentrations, then considerations regarding the spatial location of individuals either emitting or inhaling 
quanta are neglected. Additionally, this allows the rate at which quanta leave the space, through a variety of dilu-
tion processes, to be more simply modelled. In such indoor spaces, of volume denoted V, the quanta concentra-
tion, C (per unit volume), evolves according to a balance between source and dilution terms.

The source term is the product of the quanta generation rate, q, and the number of infectious individuals, Î . 
Appropriate values for the quanta generation rate depend on a wide range of factors, such as the specific disease 
under consideration, the vulnerability of the population, the emission rate specific to the individual and their 
activity level (which will also vary over the course of infection), hygiene habits, masking, and the environment 
conditions (e.g., humidity, temperature, etc.). However, it is common to treat the quanta generation rate as 
constant for a given outbreak.

The dilution terms of quanta (in some part representing infectious particles) are typically taken to depend on 
the current quanta concentration, C, and the rate of any number of removal mechanisms. The most ubiquitous 
of which is the rate at which incoming air, carrying no infectious aerosols, is brought within the space, i.e., the 
ventilation rate Qv . In addition, removal mechanisms can include deposition, decay, and air cleaning and filtering 
 processes13,18, with first-order removal rates denoted �d for deposition, �k for decay, and �c for cleaning/filtering 
processes. This provides a total dilution rate, Q = Qv + V(�d + �k + �c) , providing the quanta conservation 
equation.

Perhaps the most commonly used model for predicting the spread of airborne infection in indoor spaces is 
the ’Wells–Riley’ model. This assumes that the number of infectious individuals within a space remains constant 
and that they produce infectious aerosol at a constant rate, and that the concentration of infectious material 
has reached a steady state within the environment, i.e. that infectious aerosol is being removed via dilution at 
the same rate it is being generated. It is also assumed that the air within the space is well-mixed, so that spatial 
considerations may be neglected. In this case, the number of individuals exposed (infected but not actively 
producing infectious aerosols) will be given over a time interval  by19

(1)V
dC

dt
= Î q− Qv C − V C (�d + �k + �c) = Î q− QC.

(2)Ê = Ŝ

(

1− e−
Îqp
Q t

)

,
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where Ê is the size of the population exposed after time t since the onset of the outbreak, Ŝ is the size of the ini-
tially susceptible population, and p is the pulmonary respiration rate. The Wells-Riley model is valid when both 
the time frame of the outbreak under investigation is short relative to the incubation period of the disease, and 
when the quasi steady state is reached  rapidly13.

A variant of the Wells–Riley model, in which the assumption of a steady state quanta concentration is relaxed, 
is provided by the Gammaitoni-Nucci  model3. In this model, an equation for the conservation of quanta is 
necessary to model the effects of changes in infectious aerosol concentration over time. The Gammaitoni-Nucci 
model couples (1) with

and solves these coupled equations, implicitly assuming that the time frame of the outbreak is short relative to 
the incubation period of the disease.

Compartmental epidemiological models
The use of compartmental epidemiological modelling has been applied to the outbreaks of infectious diseases 
dating back to at least as far as the early twentieth  century20. Such models segregate the population into ‘compart-
ments’, defined by distinct stages of the infection process, and track the evolution of these population compart-
ments over the course of the  outbreak8.

The SEIR model is a widely used compartmental epidemiological  model1, in which a system of differential 
equations are used to describe an outbreak. The equations track the number of susceptible individuals ( ̂S ), the 
number of individuals who have been exposed to a pathogen but are not yet infectious themselves ( ̂E ), the 
number who are infectious ( ̂I ), and the number removed ( ̂R , i.e. those who may have died, developed immunity, 
or been removed from the population, e.g. via isolation). For a given population of size N, Ŝ + Ê + Î + R̂ = N , 
making it convenient to employ scaled population variables, S, E, I, R:

As is common with epidemiological models, all population variables are approximated to be continuous; an 
approximation of little consequence for sufficiently large populations.

The scaled population variables evolve according to the following ordinary differential equations (ODEs), 

 where β is the ‘contact rate’ between susceptible and infectious individuals, ω is the rate at which exposed 
individuals become infectious and γ  is the rate at which infectious individuals are removed. Note that as 
S + E + I + R = 1 is a conserved quantity, these are not independent equations.

The SEIR model assumes that the spread of disease may be represented solely through interactions between 
infectious and susceptible individuals with the parameter β , which accounts for the frequency and nature of 
these interactions, as well as for the infectiousness of the particular pathogen. As such, the SEIR model provides 
no mechanism for infection to occur via exposure to infectious material that remains within an environment in 
the absence of infectious people, as can occur in the case of both fomite and airborne transmission.

The SEIR model is a longstanding  model21 that has been extensively studied and deployed to understand and 
respond to outbreaks of numerous diseases including  influenza22,  ebola23,  tuberculosis24,  measles25,  mumps26. 
More recently, the SEIR model has been useful in the study of COVID-1927,28, playing a significant role in 
informing the response to COVID-19, and has even been used by news agencies to support the communication 
of the response to the  public29. The relative simplicity of SEIR-type models has allowed them to be effectively 
integrated with other models, such as mobility network models which track the movement of populations in an 
urban environment in order to identify the locations in which an outbreak is likely to  spread30. It is noteworthy 
that many of the diseases for which the SEIR model has been deployed are airborne, including COVID-19.

There exist some overlaps between quanta-based modelling and compartmental epidemiological models. 
For example, the Gammaitoni-Nucci model, see (3), may be regarded as a highly simplified compartmental 
model in which the population may only move from susceptible to exposed, under the governance of the quanta 
conservation equation.

(3)dÊ

dt
= −dŜ

dt
= C p Ŝ,

(4)Ŝ/N + Ê/N + Î/N + R̂/N = S + E + I + R = 1.

(5a)
dS

dt
= −β S I ,

(5b)
dE

dt
= β S I − ωE,

(5c)
dI

dt
= ωE − γ I ,

(5d)
dR

dt
= γ I ,
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The SEIR equations with airborne infectious material
For airborne pathogens, infection is spread not by direct interactions between susceptible and infectious individu-
als, but by the inhalation of infectious aerosols. Therefore, following Noakes et al.7 and Gammaitoni &  Nucci3, 
we modify the SEIR equations to be suitable for modelling the transmission of airborne diseases by writing the 
(negative) growth rate of the susceptible population as the product of the population size, S, the concentration, 
C, of infectious aerosol (in our case, represented by quanta), and the rate at which susceptible individuals breathe 
in this air, as determined by their pulmonary breathing rate, p.

Incorporating (1) into the SEIR model yields a system of five coupled first order ODEs, which account for the 
effects of environmental transients within outbreaks of airborne disease. We describe this as the ‘SEIR-C’ system. 
Here, ’C’ refers to the addition of a conservation equation for the infectious quanta within the environment, C, 
which couples with the other equations by affecting the rate of change of the susceptible population, but ‘C’ is 
not itself a population compartment.

Within the SEIR-C system, the quanta concentration and the fractions of the population at each stage of the 
infection process evolve according to 

A schematic illustration of this system is shown in Fig. 1

The dimensionless SEIR-C system
Here we identify a minimal set of dimensionless parameters which determine the response of the SEIR-C system.

We use the volume of the room environment, V, and dilution rate within it, Q, to introduce the dilution 
timescale

and define the dimensionless time

and the scaled incubation and removal rates

respectively.
Finally, we scale C such that the dimensionless quanta concentration is

(6a)V
dC

dt
= N I q− QC,

(6b)
dS

dt
= −C p S,

(6c)
dE

dt
= C p S − ω E,

(6d)
dI

dt
= ω E − γ I ,

(6e)
dR

dt
= γ I .

(7)Td = V

Q
,

(8)τ = t

Td
,

(9)� = ω Td and Ŵ = γ Td ,

Figure 1.  Summary of the SEIR-C system showing the four states an individual can take and the parameters 
that govern the transitions between them, as well as the interaction with the airborne quanta concentration C.
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to yield the system of dimensionless equations as 

 where

The dimensionless system is therefore characterised by three dimensionless parameters, {α,�,Ŵ} . The param-
eter � represents the ratio of the disease incubation period and the dilution timescale Td , similarly Ŵ the ratio 
of the average infectious period and Td.

The parameter α may be considered in terms of the timescales Tq = 1/q , which we describe as the quanta 
timescale, and Tp = V/(pN) , which we describe as the filling timescale—note the inclusion of the factor N within 
Tp in order that this timescale is the filling timescale associated with all occupants breath within the room. The 
parameter α is the product of the ratios of the dilution timescale to the filling timescale, and that of the dilution 
timescale to the quanta timescale.

To aid interpretation of this SEIR-C system, it is helpful to consider the physical relevance of the dependent vari-
able η . Firstly, consider the special case in which the environment is in a steady state, for which (11a) reduces to

This highlights that it can be useful to consider the dimensionless quanta concentration, η via the ratio η/I , 
that is the ratio of the current quanta concentration to that which would be obtained in steady state. Hence, 
all else remaining equal, as time evolves the ratio η/ηss will approach unity either from above or below. Similar 
insight is provided by considering η as the ratio of the current removal rate, C Q , to the maximum quanta genera-
tion rate if all occupants were infectious, N q.

Deterministic and stochastic models
The deterministic nature of the SEIR-C system, and the models that can be extracted from it, may limit their 
applicability, particularly when the population size is small. The difference between stochastic and deterministic 
models in epidemiology has been extensively studied, for example for susceptible-infectious  models31 and for 
SIR  models32.

Deterministic models will still give useful indications of the outbreak behaviour in such cases, particularly 
when comparing the effects of infection control measures, hence the widespread use of the Wells-Riley model and 
deterministic models like  SEIR7. Additionally, it is possible to formulate equivalent stochastic models from the 
deterministic system, if required. Although analysis of the deterministic SEIR-C system is the focus of this work, 
we present a basic approach to building an equivalent stochastic model formulated from the deterministic system.

The probability of exposure for an individual can be expressed as a function of the total dose D received, 
which in the dimensionless system is

and

This may be used to predict the per-susceptible possibility of exposure associated with a time step with a 
chosen numerical method, alongside a per-exposed possibility of incubation, and a per-infectious possibility 

(10)η = C Q

N q
,

(11a)
dη

dτ
= I − η,

(11b)
dS

dτ
= −α η S,

(11c)
dE

dτ
= α η S −�E,

(11d)
dI

dτ
= �E − Ŵ I ,

(11e)
dR

dτ
= Ŵ I ,

(12)α = VNpq

Q2
.

(13)α = Td

Tq

Td

Tp
.

(14)ηss = I .

(15)PE = 1− exp−D = 1− exp−α
∫

ηdτ ,

(16)
dD

dτ
= αη .
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of removal based on the incubation and removal rates, and from this a stochastic model may be formulated, for 
example using Eulers method. Similar approaches have been used in the past for the  SEIR33 and Wells–Riley5 
models.

The above approach is useful for considering stochastic effects that arise from small populations, namely the 
possibility of extinction in the early stages of an outbreak, but there are many different approaches to stochastic 
modelling of epidemiological models which may be applied to account for a wide range of different effects. For 
example, it is possible to randomly vary the incubation or removal rates within the population according to a 
distribution, or to vary the production-dilution parameter to account for the extreme variation in concentration 
of infectious material seen in some  environments34,35, as real outbreak data has often been shown to be signifi-
cantly overdispersed compared to deterministic models due to high variation in individual  infectiousness36, 
though such variations are beyond the scope of the current study.

Recovering quanta-based and epidemiological infection models from the SEIR-C system
Gammaitoni‑Nucci and Wells‑Riley models
The classical Wells-Riley airborne infection model, and the Gammaitoni-Nucci variant, discussed in “Quanta 
conservation models”, may be obtained from the SEIR-C system under the assumption that the exposed never 
become infectious themselves, and that the infectious are never removed, i.e. � = 0 and Ŵ = 0—or that the rate 
the incubation and removal timescales are sufficiently large relative to the outbreak duration that the effects of 
these processes are negligible. Doing so is sufficient to recover the Gammaitoni-Nucci model but to recover 
Wells-Riley one is further required to assume that the airborne quanta concentration is always at equilibrium 
such that η = ηss = I , at all times.

SEIR epidemiological model
A special case of the SEIR-C system occurs when the rate at which occupants become infectious, dI/dt , is small 
relative to the rate over which the quanta concentration becomes steady. Only in such cases is it reasonable 
to assume that the quanta concentration takes the value associated with the concentration at steady state, i.e. 
dC/dt = 0 , and the steady state quanta concentration

is adhered to at all times. Equivalently, in the dimensionless system, (11), η = ηss = I.
We describe this special case as the ‘quasi-steady-state assumption’. Applying this assumption (i.e. dC/dt = 0 ) 

and substituting (17) into (6b) highlights that the standard form of the SEIR model can be recovered from the 
SEIR-C system but only in the special case that the quasi-steady-state condition is met and one arbitrarily sets 
the product of the quanta generation rate, q, and the ratio of the pulmonary breathing rate and the dilution rate, 
p/Q, to be the contact rate, β . Note that in the SEIR-C system, exposures arise not from direct contact between 
susceptible and infectious individuals but from the exposure of susceptibles to airborne infectious material and 
so any analogy regarding the ‘contact rate’ is purely mathematical.

Analysis of the SEIR-C system
We now highlight three pertinent research questions regarding the behaviour of the SEIR-C system, which 
are answered in this section. Firstly, the SEIR-C system (as with the SEIR model), by including the concept of 
removal, does not require the whole population to become infected, irrespective of the length of the outbreak 
considered. Hence, it is important to establish the fraction of susceptibles that will remain at large time, Sf  , since 
this is the fraction of the population who will avoid the disease. We determine the analytical solution for Sf  in 
“The SEIR-C system at large time”. Secondly, the time frame over which infection spreads is pertinent when 
trying to manage outbreaks, and is also an important consideration when selecting an appropriate outbreak 
model for a given context. In “Timescales in the SEIR-C system” we identify the dominant timescales relating 
to the different stages of an outbreak. Finally, as discussed in “Recovering quanta-based and epidemiological 
infection models from the SEIR-C system”, the quasi-steady-state condition is maintained, the SEIR-C system 
is mathematically similar to the SEIR model. As such the relationship between the actual dimensionless quanta 
concentration, η , and that which would be predicted under the quasi-steady-state assumption ηss = I is inves-
tigated to highlight regimes for which the simplifying assumption of the quasi-steady state is valid in “The 
quasi-steady-state assumption”.

The SEIR-C system at large time
We seek an expression for the fraction of susceptibles ultimately remaining at large time, denoted Sf  . It has been 
 shown8, for both the SIR and SEIR model, that for a given contact rate β , an analytic solution exists for this frac-
tion, and is given by the implicit equation

A similar approach may be taken for the extended SEIR-C system. Adding (11b), (11c) and (11d), writing 
F = S + E + I , and using the chain-rule and (11b) to re-express derivatives with respect to τ in terms of S gives

(17)Css =
qN I

Q
,

(18)Sf −
γ

β
ln(Sf ) = −γ

β
ln(S0)+ 1.
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and hence

giving

To evaluate the right hand side of (21), (11a) may be used:

and η substituted from (11b) to give

Since S varies monotonically with τ , such that dln(S)dτ dτ = d ln(S) , then

and (21) becomes

Noting that ητ , Eτ and Iτ all tend to zero over large time and, without loss of generality taking R0 = 0 , the initial 
fractions of susceptibles, exposed and infectious must account for the entire population so that S0 + E0 + I0 = 1 
giving

This result provides the means to evaluate Sf  , and demonstrates two important properties of the system. 
Firstly, when η0 = 0 (i.e. when there is no infectious aerosol initially present in the environment), the final state 
of the system depends solely on the ratio of the removal rate to the production-dilution parameter, Ŵ/α . When 
η0  = 0 , the values of α and Ŵ influence the end state independently of one another. Secondly, it can be seen that 
the final state of the model is completely independent of the dimensionless incubation rate � , as is also the case 
for the SEIR  model8. Taking the initial dimensionless quanta concentration to be zero, and comparing (26) to 
the equivalent expression for the SEIR model, i.e. (18), is is clear that the fraction of remaining susceptibles over 
large time in the SEIR-C system takes a similar form as that for the SEIR model.

From (26), and again taking cases for which there is no infectious aerosol initially present ( η0 = 0 ), the 
ultimate state of the outbreak can be determined from

In such cases, if Ŵ/α is large, Sf  must approach the value of S0 , implying that the outbreak will be effectively 
shut down. Similarly, as Sf ≤ S0 (due to the monotonic nature of S), and S0 = 1− I0 where I0 is typically small, 
then if Ŵ/α is small, then too, Sf  must be small, implying that much of the population will become infected.

Timescales in the SEIR-C system
Although (26) predicts the eventual state of the system, it provides no information about the timescales over 
which outbreaks might occur. Solutions that uniquely define the duration of outbreaks for the classical SEIR 
model remain  elusive37, and this is case for the SEIR-C system too. However, we go on to present a method to 
identify a number of characteristic timescales which can each play a role in determining outbreak durations. 
These are presented as timescales in the dimensionless system, i.e. physical timescales that have been normalised 
by the timescale Td = V/Q to render them dimensionless.

The physics of the system indicate that all three parameters might influence the outbreak time; namely, the 
production-dilution parameter α influencing the rate at which new exposures occur, the incubation period � 
acting as a lag period before infectiousness, and the rate of removal Ŵ limiting the period of infectiousness. The 
role of each of these parameters may be explained by an understanding of the (dimensionless) timescales which 
emerge in the dimensionless model. Four different timescales are considered, each of them associated with a 
physical process. The first is associated with exposures due to the initially present infectious aerosol, which we 

(19)
dF

dS
= Ŵ

αS

I

η
,

(20)
dF

d ln(S)
= Ŵ

α

I

η
,

(21)Fτ − F0 =
Ŵ

α

∫ ln(Sf )

ln(S0)

I

η
dln(S).

(22)
∫ τ

0

dη

dτ
dτ =

∫ τ

0
η

(

I

η
− 1

)

dτ ,

(23)ητ − η0 = − 1

α

∫ τ

0

dln(S)

dτ

(

I

η
− 1

)

dτ .

(24)
∫ ln(Sf )

ln(S0)

I

η
dln(S) =

∫ ln(Sf )

ln(S0)
dln(S)− α(ητ − η0),

(25)Sf + Eτ + Iτ − S0 − E0 − I0 =
Ŵ

α
(ln(Sf )− ln(S0))− Ŵ(ητ − η0).

(26)Sf −
Ŵ

α
ln(Sf ) = −Ŵ

α
ln(S0)+ Ŵ η0 + 1.

(27)
Ŵ

α
=

1− Sf

ln(S0)− ln(Sf )
.
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describe as the initial-exposure timescale and denote Tη . Another is associated with the production of quanta, 
and the resultant exposures, in the infectious population, which we describe as the production-exposure time-
scale, and denoted TE . A third is associated with the incubation period, which we refer to as the incubation time-
scale, T� , and the final timescale is associated with the removal period, and is denoted the removal timescale TŴ.

The initial-exposure timescale Tη is considered first. The fraction of the population who are exposed only 
through the initially present infectious aerosol may be considered by analysis of the system when two condi-
tions are met: the incubation rate is considered to be small ( � ≈ 0 ), so that those primary exposures never 
become infectious themselves, and the fraction of infected initially present is treated as zero, i.e. I0 = 0, so that 
the susceptible fraction S will be influenced only by the primary exposures. These assumptions will provide a 
good representation of the original system, provided that this timescale is small relative to both the incubation 
timescale and the exposure timescale that results from quanta generation by the infectious population. Setting 
I0 = 0 and integrating (11a) gives

which, combined with (11b), provides

When the incubation rate is approximately zero, the fraction of the population that remains susceptible over 
large time Sη is

Considering the initial gradient of S gives

The timescale, Tη can therefore be defined by

Rearranging and using (30), we obtain

Since η0 and α are strictly positive, the timescale Tη must lie in the range 0 < Tη < 1 . Physically, this states 
that the initial-exposure timescale must always be less than the dilution timescale, and the exposures due to the 
initial infectious aerosol are limited by the rate at which dilution occurs.

Consider now the timescale describing the production of quanta and the resultant exposures, TE , firstly in 
the absence of any initially present infectious material. This timescale may be identified by use of an approxima-
tion for S based on the initial condition, and derivatives of the initial condition. It might be desirable to allow a 
linear approximation to define this timescale; however, the first derivative of S, i.e. (11b), is zero when η0 = 0 , and 
hence, a quadratic approximation is used herein (a commonly employed technique; for example, Section 6.438, 
there used to define the Taylor microscale from the spatial velocity autocorrelation in a turbulent flow field). 
Differentiating (11b) gives

and

The exposure production-timescale TE is introduced (recalling that η0 = 0 ) as satisfying

and hence

where Sf  is provided by (26).
It was shown in “The SEIR-C system at large time” that, when the production-dilution parameter is large 

relative to the removal rate, the fraction of susceptibles will ultimately approach zero ( Sf ≈ 0 ). In these cases, 
the timescale TE is given by 

√
1/(α I0).

(28)η = η0 e
−τ ,

(29)S = S0

eα η0
e(α η0 e

−τ ).

(30)Sη = S0 e
−α η0 .

(31)
dS

dτ

∣

∣

∣

τ=0
= −α η0 S0.

(32)Sη = S0 +
dS

dτ

∣

∣

∣

τ=0
Tη = S0 − α η0 S0Tη .

(33)Tη = 1− e−α η0

α η0
.

(34)d2S

dτ 2
= −α S

dη

dτ
− α η

dS

dτ
= −α S (I − η)+ α2 η2 S,

(35)d2S

dτ 2

∣

∣

∣

τ=0
= −α S0(I0 − η0)+ α2 η20 S0.

(36)S0 − Sf = − d2S

dτ 2

∣

∣

∣

τ=0
T

2
E = α S0 I0 T

2
E ,

(37)TE =
√

S0 − Sf

α S0 I0
,
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Figure 2 shows the ratio of the production-exposure timescale to the initial-exposure timescale as a func-
tion of α ; three different initial quanta concentrations are plotted, in each case the initial infectious fraction is 
taken to be I0 = 0.01 , and Ŵ ≪ α so that the entire susceptible population will become infected ( Sf ≈ 0 ). It may 
be seen from the figure that only when there is a small amount of infectious material initially present, and the 
production-dilution parameter is very large, can TE be of similar magnitude to Tη.

Finally, the incubation timescale and removal timescale arise, more naturally, from the incubation and 
removal periods, respectively. As such, they are simply defined.

and

A summary of the four timescales identified, along with their definitions, is provided in Table 1. Their role in 
describing the progress of an outbreak and the relative behaviour of different outbreak models is explored further 
in “Outbreak predictions for the SEIR-C system and existing airborne infection models”.

The quasi-steady-state assumption
The quasi-steady-state condition (i.e. that the dimensionless quanta concentration maintains an approximate 
equilibrium with the infectious fraction, leading to the assumption that η = I ) has been widely used to predict 
the evolution of outbreaks of airborne disease by removing the requirement to consider the conservation of 
 quanta39–41 as previously discussed in “Recovering quanta-based and epidemiological infection models from the 
SEIR-C system”. Here, we investigate the limits of validity of the quasi-steady-assumption.

We start by proving that the deviation from the quasi-steady-state condition, (i.e I − η) , tends to the interval 
[−Ŵ,�] exponentially. First consider the case in which I − η ≥ � , and define U = I − η −� ≥ 0 , so that from 
(11a) and (11d)

(38)T� = 1

�
,

(39)TŴ = 1

Ŵ
.

(40)
dU

dτ
= η − I +�E − ŴI ≤ −U ,

Figure 2.  The ratio of the production-exposure, TE to the initial-exposure timescale Tη as a function of α , for 
the case where I0 = 0.01 and Sf ≈ 0.

Table 1.  The timescales associated with the SEIR-C system and their definitions.

Timescale Symbol Definition

Initial-exposure Tη
1−e−α η0

α η0

Production-exposure TE

√

S0−Sf
α S0 I0

Incubation T�
1
�

Removal TŴ
1
Ŵ
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where the inequality arises from expressing the right-hand side of the equation as −U −�(1− E)− ŴI and 
utilising the facts that � ≥ 0 , Ŵ ≤ 0 , E ≤ 1 and I ≥ 0 . Gronwall’s lemma for bounding functions satisfying a 
known differential inequality, such as (40), then implies that U tends to zero  exponentially42, since

Similarly, when I − η ≤ −Ŵ , we define L = η − I − Ŵ ≥ 0 , such that

where this inequality arises from expressing the right-hand side of the equation as −L− Ŵ(1− I)−�E and 
utilising the facts that � ≥ 0 , Ŵ ≥ 0 , I ≤ 1 and E ≥ 0 ; hence

The exponential decay, to zero, of both U and L implies that all solutions of the governing equations approach 
the interval defined by I − η ∈ [−Ŵ,�] at least exponentially. Alternatively, if � > max(Ŵ,�) then |I − η| ≤ � 
defines an absorbing set. An example of this behaviour for a case where the production-dilution parameter is 
large, and the initial condition is far from the quasi steady state is seen in Fig. 3, where η may be seen to fall 
rapidly into this interval and remains there. Operationally, for a given application, if it is important that the 
quasi-steady state be satisfied to within a given tolerance � , then this result shows that � must be large relative 
to both the recovery rate and incubation rate, which are typically small for outbreaks of most known diseases.

For models which do not incorporate incubation or removal (e.g. the Wells-Riley and the Gammaitoni-Nucci 
models), if the initial condition meets the quasi-steady-state condition, the quasi-steady-state condition will 
always be met, as Ŵ = � = 0.

Basic reproduction number
The basic reproduction number is the expected number of secondary infections arising per infectious individual 
introduced into a susceptible  population43.

In the SEIR-C system the addition of infectious individuals does not lead to more infections via contact. 
Instead infectious individuals contribute to the amount of infectious material within the environment. As infec-
tions caused in this way can not be seen as directly caused by a particular individual, it is not straightforward 
to define a basic reproduction number. One method is to consider the number of exposures that will occur if a 
single infectious individual is introduced to a susceptible  population44 if no more individuals become infectious 
themselves (ie. assuming an incubation rate � of zero).

With � = 0 , (11d) may be integrated to yield

This is inserted into (11a) and integrated to give

which is then inserted into (11b) and integrated to give

(41)U(τ ) ≤ U(0) e−τ .

(42)
dL

dτ
= I − η −�E + ŴI = −L− Ŵ + ŴI −�E ≤ −L,

(43)L(τ ) ≤ L(0) e−τ .

I = I0e
−Ŵτ ,

η = I0e
−Ŵτ

1− Ŵ
+

(

η0 −
I0

1− Ŵ

)

e−τ ,

Figure 3.  An example case where α = 50 , � = 0.05 and Ŵ = 0.05 with an initial condition of I0 = 0.01 and 
η0 = 0.5 , showing η falling into and remaining in the interval defined by [I −�, I + Ŵ] , which is denoted by the 
shaded region.
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When η0 = 0 , as τ tends to infinity, the susceptible fraction of the population at large time is given by

The number of secondary infections from an initially infectious population of size I0 therefore depends upon 
the size of the susceptible population, and the ratio of the production-dilution parameter to the removal rate.

Conventionally, the basic reproduction number is defined for a single infectious individual initially present 
( I0 = 1

N  in the dimensionless system). When I0 = 1
N 1/N and S0 = 1− I0 , and recalling that for large time the 

fraction of the population removed Rf = 1− Sf

As Rf  is normalised for population, the basic reproduction number R̂0 is given by

Note that R̂0 is the convention for basic reproduction number, and does not here denote an initial condition.
It may be seen that, for a given population, R̂0 , depends solely on the ratio of the production-dilution param-

eter to the removal rate. This is consistent with the observation in “The SEIR-C system at large time” that when 
the ratio α/Ŵ is large, only a small fraction of the population will become infected, and when it is small the entire 
population is likely to be infected.

Outbreak predictions for the SEIR-C system and existing airborne infection models
We now deploy our analysis of the SEIR-C system (“4”) to provide insight as to how the system will behave for 
three example outbreak cases. We go on to compare the predicted outbreaks to those predicted by three widely 
used models of outbreaks of airborne disease, selecting the three models which we recovered as limiting cases of 
the SEIR-C system in “Recovering quanta-based and epidemiological infection models from the SEIR-C system”. 
Table 2 presents these example cases, in which values of relevant parameters and initial conditions have been 
selected; the table includes key values from, and timescales in, the SEIR-C system. By considering these time-
scales, alongside other theory presented in “Analysis of the SEIR-C system”, insight is gained into the behaviour of 
the SEIR-C system, and of the other airborne infection models. For these three cases, we present the results for the 
SEIR-C system, and compare them to: the SEIR model recovered by imposing the quasi-steady-state-condition 
(referred to here as ‘SEIR-QSS’), the Gammaitoni-Nucci model, and the classical Wells–Riley model, in Fig. 4.

Behaviour of the SEIR-C system
For the full SEIR-C system, in Case 1 (see the red solid line in Fig. 4a) initial exposures due to the initially present 
airborne infectious material occur rapidly, relative to the other processes; as expected from the relatively small 
value of Tη compared to the other timescales. However, these initial exposures will be relatively few in number 
since it follows that, from (30), the number of exposures ultimately arising due to the initially present infectious 
material is small, and hence Sη ≈ S0 . After this short period of initial exposures, exposures will then be driven 
by infectious material emitted both by those initially infected, and those who have been exposed, incubated and 
become infectious during the outbreak, since the incubation timescale T� and the exposure timescale TE are 
of the same order of magnitude. Finally, the removal timescale TŴ is large relative to the exposure timescale 
and so it is expected that the whole population will be exposed before a significant amount of removal has taken 
place, i.e. the entire population will ultimately have become infected.

In Case 2 (see the red solid line in Fig. 4b), a significant number of exposures occur rapidly since the concen-
tration of infectious material is large compared with the quasi-steady state, i.e. η0 ≫ I0 . This is to be expected 
based on (30), which indicates many exposures due to the initially present infectious material, combined with 
the fact that the timescale Tη is small relative to all other timescales. In this case, the incubation timescale T� 
and the removal timescale TŴ are both large relative to the initial-exposure, Tη , and production-exposure, TE , 
timescales, so that a large proportion of the population is expected to become exposed as a result of the initially 
present infectious material, or infectious material emitted by the initially present infectious population.

In Case 3, for the full SEIR-C system (see the red solid line in Fig. 4c), there appears a short period of initial 
exposures, before the initially infectious are rapidly removed, followed by a more prolonged period of outbreak as 
those exposed incubate slowly, are infectious for a limited amount of time, before then being rapidly removed. The 
result is a long-duration outbreak in which a significant fraction of the population remain ultimately uninfected.

Comparison to existing models for outbreaks of airborne disease
In both Case 1 and Case 2, the SEIR-C system shows the number of susceptibles ultimately reaches zero, due 
to the large ratio of production-dilution parameter to the removal rate, as expected from the analysis in “The 
SEIR-C system at large time”)—this behaviour is accurately reflected in all three of the other airborne infection 
models. In Case 3, the ratio of production-dilution parameter to the removal rate is smaller, with α/Ŵ = 2 , and 
within the SEIR-C system there remains a significant fraction of the population that are ultimately not infected; 
of the other three models, only the SEIR-QSS model correctly captures this important behaviour.

Both the Gammaitoni-Nucci and Wells-Riley models give a poor estimate of the expected outbreak behaviour 
in Case 1, as seen from the significant divergence between the full SEIR-C system and the blue lines in Fig. 4a. 

S = S0e
−α(

I0
Ŵ(1−Ŵ)

+η0− I0
1−Ŵ

)
e
α(

I0
Ŵ(1−Ŵ)

e−Ŵτ+(η0− I0
1−Ŵ

)e−τ ) .

Sf = S0e
−α(

I0
Ŵ(1−Ŵ)

− I0
1−Ŵ

) = S0e
− αI0

Ŵ
.

Rf = 1− S0e
− αI0

Ŵ = 1− (1− 1

N
)e−

α
ŴN .

(44)R̂0 = N − (N − 1)e−
α
ŴN .
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This is because the incubation timescale T� and the exposure timescale TE are of a similar order of magni-
tude, so that some of the initially exposed population will incubate and become infectious while a significant 
number of susceptibles still remain; this drives a phase in which the outbreak spread is more rapid than either of 
the Gammaitoni-Nucci or Wells-Riley models can capture, leading to their significant underestimate exposure 
rate. Further comparison of the full system with the SEIR-QSS model also shows a difference in the predicted 
number of susceptibles, but the difference remains small (and is only visible during 6 � τ � 20 ); this difference 
never exceeds 0.04 consistent with the analysis in “The quasi-steady-state assumption” since max(Ŵ,�) = 0.04.

(a) Case 1

(b) Case 2

(c) Case 3

Figure 4.  The value of S as a function of dimensionless time for the three example outbreak cases described in 
Table 2.
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In Case 2, the SEIR-QSS model provides a poor prediction of the outbreak because the initial conditions are 
far from the quasi-steady state. Although it has been shown that the full SEIR-C system will approach a quasi-
steady-state condition at an exponential rate, in this case to within a small margin ( 0.004 = max (�,Ŵ) ), the 
initially present infectious material results in a significant deviation in the number of susceptibles predicted in 
the SEIR-C system from that predicted in the SEIR-QSS model. A similar observation may be made between 
between the Gammaitoni-Nucci model and the Wells-Riley model in this case, with the Gammaitoni-Nucci 
model following SEIR-C and Wells-Riley following SEIR-QSS.

In Case 3, the Wells-Riley, Gammaitoni-Nucci and SEIR-QSS models all deviate significantly from the SEIR-C 
system. For the Wells-Riley and Gammaitoni-Nucci models, this is due to the relatively low value of the removal 
timescale, i.e. rapid removals influence the system significantly throughout the outbreak. The deviation between 
the SEIR-QSS model and SEIR-C system in this case is similarly due to large removal rate. Mathematically, S 
between the two systems may diverge within the margin max (�,Ŵ) = 1 , which is significant.

Considering the SEIR-C system using parameters from a real outbreak
We now apply our analysis of the SEIR-C system to a known outbreak, in order to predict the timescales over 
which the stages of such an outbreak occur, and to demonstrate how the selection of an appropriate outbreak 
model may be assisted by our understanding of the SEIR-C system. It has been noted (in the case of the COVID-
19 pandemic) that a small number of ’superspreader’-type environments account for the majority of infections 
and so we apply our analysis to parameters associated with such a superspreader  event30,34.

For this purpose, the Skagit Valley choir COVID-19 outbreak was chosen, as the parameters of the outbreak 
used in the SEIR-C system were well-documented45, with the exception of the incubation and removal rates as 
the outbreak occurred over only a 2.5 hour period. The typical incubation and recovery periods for COVID-19 
have been extensively documented elsewhere,  however46,47.

A best case for a similar outbreak is considered, in which the lower values of pulmonary breathing, incu-
bation and quanta generation rates are used, along with the upper values of air change, decay, deposition and 
recovery rates, alongside the opposite as a worst case. The dimensional values of these are shown in Table 3, and 
the timescales and other properties that can be derived from theory in Table 4. The initial condition is based on 
a single infectious individual and 60 susceptibles, and an assumption of no infectious material initially present, 
as is believed to be the case in the Skagit choir outbreak.

In both the best case and worst case scenarios, α/Ŵ >> 1 , leading to a prediction that all susceptibles present 
will become infected over a sufficiently long time period. This may also be demonstrated by the solution of the 
implicit equation (26).

In both the best case and worst case scenarios for such an outbreak, the production-exposure timescale is far 
smaller than either the incubation or removal timescales. This, along with the large α/Ŵ ratio suggests that the 
entire susceptible population is likely to be infected by the initial infector before any of the susceptible population 

Table 2.  The parameters and initial conditions defining three outbreak cases, key values that can be derived 
from these, and the timescales that result from these in the SEIR-C system.

Case Parameters Initial condition Derived values Timescales

1
α = 2.5

� = 0.04

Ŵ = 0.008

η0 = 0.01

S0 = 0.99

E0 = 0

I0 = 0.01

α/Ŵ = 25

Sf = 0

Sη = 0.98

Tη = 0.988

TE = 6.325
T� = 25

TŴ = 125

2
α = 10

� = 0.0004

Ŵ = 0.004

η0 = 0.1

S0 = 0.99

E0 = 0

I0 = 0.01

α/Ŵ = 2500

Sf = 0

Sη = 0.36

Tη = 0.632

TE = 3.16
T� = 3333

TŴ = 250

3
α = 2

� = 0.01

Ŵ = 1

η0 = 0.01

S0 = 0.99

E0 = 0

I0 = 0.01

α/Ŵ = 2

Sf = 0.193

Sη = 0.97

Tη = 0.99

TE = 6.34
T� = 100

TŴ = 1

Table 3.  Ranges of properties relevant to the SEIR-C model from the Skagit choir COVID-19  outbreak45.

Parameter Symbol Range Units

Pulmonary breathing rate p 0.65–1.38 m3/h

Quanta generation rate q 580–1360 h−1

Deposition rate �k 0.3–1.5 h−1

Decay rate �d 0–0.63 h−1

Room volume V 810 m3

Ventilation rate Q/V 243–810 m3h−1

Incubation rate ω 0.0028–0.042 h−1

Removal rate γ 0.0021–0.0083 h−1
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become infectious themselves. This can be used to justify neglecting incubation or removal when modelling such 
an outbreak, regardless of the duration of the outbreak investigated. This may be seen in Fig. 5, where in either 
case those models which incorporate incubation and removal do not significantly differ from those that do not.

In the best case scenario, although the initial condition does not meet the quasi-steady-state condition, the 
models under which the quasi-steady-state condition is maintained do not significantly deviate from those where 
it is not – recall that in the SEIR-C system, η approaches the quasi steady state condition in exponential time to 
within an interval defined by the dimensionless incubation and removal rates.

In the worst case scenario, there is a significant difference between the results for the SEIR-C and SEIR-QSS 
models (and between the Gammaitoni-Nucci and Wells-Riley models). This may be understood by considera-
tion of the production-exposure timescale TE , and recalling that within the dimensionless system the dilution 
timescale is defined as unity. In this case, the exposure timescale is short relative to the dilution timescale, so 

Table 4.  The parameters and initial conditions defining two outbreak cases derived from data relating to the 
best- and worst-cases for the Skagit choir COVID-19 outbreak, along with key values that can be derived from 
these, and the timescales that result from these in the SEIR-C system.

Case Parameters Initial condition Derived values Timescales

Skagit choir equivalent – best case
α = 4.85

� = 0.00067

Ŵ = 0.00265

η0 = 0.0

S0 = 0.984

E0 = 0

I0 = 0.016

α/Ŵ = 1827

Sf = 0

TE = 3.55
T� = 1490

TŴ = 377

Skagit choir equivalent—worst case
α = 124

� = 0.0134

Ŵ = 0.00067

η0 = 0.0

S0 = 0.984

E0 = 0

I0 = 0.016

α/Ŵ = 185469

Sf = 0

TE = 0.7
T� = 74.5

TŴ = 1490

(a) Skagit choir parameters - best case

(b) Skagit choir parameters - worst case

Figure 5.  The value of S as a function of dimensionless time for the two example outbreak cases relating to the 
Skagit choir COVID-19 outbreak described in Table 3.
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much of the exposure stage takes place before the quasi-steady-state condition is approached. A model which 
enforces the quasi-steady-state condition will therefore be inaccurate.

It has been previously noted that overdispersion is common in epidemiological modelling, due to the large 
variability in the infectiousness of  individuals30. This may also be studied using the SEIR-C system by model-
ling the quanta emission rate according to a known distribution and performing Monte Carlo simulations and 
considering the ensemble result.

Figure 6 shows the evolution of S across 100,000 realisations for the quanta emission distribution associated 
with the Skagit choir outbreak, that is q normally distributed with a mean of 970 quanta/h and a standard devia-
tion of 390 quanta/h. In this case, all other parameters correspond to the best base as seen in Table 3 so that 
the effect of variations in quanta emission rate may be seen in isolation, though they may of course similarly be 
varied. In Fig. 6a, the relative frequencies of S with respect to dimensionless time are shown, normalised against 
the total number of realisations. The 25th, 50th and 75th percentiles are also shown, showing that the majority 
of outbreaks inhabit a relatively narrow region about the mean result. Figure 6b shows the probability density 
function of S at different values of τ for the same case. It may be seen that the variance in distribution increases 
with respect to time before falling again at large time. Notably, for higher values of τ a significant positive skew 
emerges in the distribution, so that it may be seen that many outbreaks progress at a significantly slower rate than 
the mean, but few at a significantly faster rate. These slower outbreaks occur as a result of the inverse-square-
root nature of the dominant production-exposure timescale with respect to the production-dilution parameter.

(a)

(b)

Figure 6.  (a) The relative frequency distribution for S across 100,000 realisations of the SEIR-C system using 
the parameter set associated with the best case Skagit choir outbreak data seen in Table 3, with the quanta 
emission rate normally distributed about a mean of 970 quanta/h with a standard deviation of 390 quanta/h, and 
(b) the probability density functions of S at selected values of τ for the same case.
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Conclusions
Commonly used models for the spread of airborne infectious disease in (well-mixed) indoor spaces have been 
shown to be limiting cases of a combined quanta conservation and compartmental epidemiological system, 
herein described as the ‘SEIR-C system’. This system is analysed to provide insight into existing models and indoor 
airborne outbreaks more generally. By extending methods used previously for the SEIR  model8, an implicit solu-
tion provides the final fraction of the population that will ultimately remain unaffected (susceptible) within the 
SEIR-C system. Four key timescales within the SEIR-C system were identified which combine to significantly 
influence the evolution of an outbreak, and their impact was discussed and illustrated.

The tendency for the quasi-steady-state assumption to give a good approximation to the full the SEIR-C 
system has been investigated. The quasi steady state is approached exponentially, to within an interval defined 
by the dimensionless removal rate and the dimensionless incubation rate. This highlights that if both of the 
dimensionless removal and incubation rates are small relative an operationally-defined tolerance, the quasi-
steady-state approximation will be satisfied to within that tolerance in exponential time.

Comparison of the predicted outbreak behaviour under the SEIR-C system was compared to the widely 
used Wells-Riley, Gammaitoni-Nucci, and SEIR models for three distinct cases of parameter sets and initial 
conditions. It was shown that appreciation of analysis presented for the SEIR-C system, including the relevant 
timescales, enabled understanding and prediction of why, and when, each of these simpler outbreak models will 
provide a reasonable approximation to the full SEIR-C system, and when they will not. This approach was then 
applied to a parameter set associated with a well-documented COVID-19 airborne outbreak, and it was shown 
how variations in individual infectiousness may affect the progress of an outbreak and how this may be better 
understood via the SEIR-C system.

The selection of an appropriate outbreak model often requires a number of assumptions about the population 
and environment that may not be entirely realistic — for example, that the whole population remains present 
for the whole duration of an outbreak. By giving deeper insight into the stages of an airborne outbreak and the 
timescales associated with them, the methods presented here can be used as to when these assumptions will be 
reasonable. It is hoped that with further extension, the SEIR-C system may be used to develop models which 
encompass a wider range of indoor spaces in contexts which reflect their current usage. Obvious candidates 
include extensions to consider spaces such as open-plan offices and school classrooms which are typically regu-
larly attended by the same population, who periodically leave and returns to the space, over long periods. It is 
also hoped that the methods presented here may be applied in more depth to stochastic models, for example to 
better account for the extreme variations in concentration of infectious material that can lead to overdispersion 
when modelling outbreaks.

Data availability
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