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Abstract

In this thesis, a number of data-driven techniques are proposed for the analysis and ex-
traction of reduced-order models of fluid flows. Throughout the thesis, there has been an
emphasis on the practicality and interpretability of data-driven feature-extraction tech-
niques to aid practitioners in flow-control and estimation.

The first contribution uses a graph theoretic approach to analyse the similarity of modes
extracted using data-driven modal decomposition algorithms to give a more intuitive un-
derstanding of the degrees of freedom in the underlying system. The method extracts
clusters of spatially and spectrally similar modes by post-processing the modes extracted
using DMD and its variants.

The second contribution proposes a method for extracting coherent structures, using
snapshots of high dimensional measurements, that can be mapped to a low dimensional
output of the system. The importance of finding such coherent structures is that in the
context of active flow control and estimation, the practitioner often has to rely on a lim-
ited number of measurable outputs to estimate the state of the flow. Therefore, ensuring
that the extracted flow features can be mapped to the measured outputs of the system
can be beneficial for estimating the state of the flow.

The third contribution concentrates on using neural networks for exploiting the non-
linear relationships amongst linearly extracted modal time series to find a reduced order
state, which can then be used for modelling the dynamics of the flow. The method utilises
recurrent neural networks to find an encoding of a high dimensional set of modal time
series, and fully connected neural networks to find a mapping between the encoded state
and the physically interpretable modal coefficients. As a result of this architecture, the
significantly reduced-order representation maintains an automatically extracted relation-
ship to a higher-dimensional, interpretable state.
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Chapter 1
Introduction

1.1 Coherent structures and reduced order modelling

1.1.1 A brief historical account

It is often the case that to understand a complex and intricate system, humans need to

break its behaviour into simpler constituent parts. Studying the interactions between

various simpler subsystems can then lead to a better understanding of the underlying

system’s behaviour. A fundamental class of highly complex systems for which extraction

of human-interpretable information is desirable are fluid flows.

Although fluid flows are well characterised by the Navier-Stokes equations, the inherent

non-linearity and mathematical complexity of the governing equations leads to difficulties

in extracting a holistic view of a flow’s behaviour. As a result, practitioners often char-

acterise a flow with spatially consistent, and temporally persistent, events that can be

extracted from the flow. Furthermore, for these events to be of physical relevance, they

should make a significant contribution to, some or all, appropriately-averaged statistics of

the flow. Such events are often referred to as coherent structures of a fluid flow [2, 105].

This approach is especially important in the case of turbulent flows, where the broad-

band and chaotic nature of the underlying dynamics creates difficulties in understanding

the behaviour of the fluid flow. While in laminar flows, structures such as the Kármán
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vortex street were observed in early 1900s [5], the structural view of turbulent flows was

only popularised in the 1970s, particularly after Brown and Roshko’s study of turbulent

mixing layers showed that the behaviour of such layers is dominated by large coherent

structures, which entrain fluid from the non-turbulent background flow into the turbulent

flow region [28]. A brief historical overview of these structures in the literature can paint

a picture of the opportunities and challenges of using coherent structures to understand

fluids.

What makes the structural view of fluid flows an attractive proposition is that in most

cases, such structures persist, in a statistical sense, for a wide range of flow conditions.

This implies that coherent structures with interpretable features (e.g., large spatial length

scales) which are observed in lower Reynolds number flows may retain their dynamic im-

portance even at higher Reynolds numbers, providing a compelling argument for studying

such structures. For example, early studies of mixing layers at lower Reynolds numbers

[55, 120], had already shown similar structures to those observed in the turbulent regime

[28]. Importantly, it is also the case that structures extracted from empirical data show

a degree of consistency with theoretical results. For example, the structures observed in

mixing layers in [28] and [55] were shown to be consistent with the theoretical results from

Kelvin-Helmholtz stability theory, at least in a local sense [58, 79].

The studies of many other canonical flows have benefited from this structural view.

Among many others, coherent structures have been used to further our understanding

of flows over cavities [143, 155, 70], in the modelling and control of the behaviour of

jets [141, 36, 131], have enhanced our understating of the scale interactions in turbulent

boundary layers [114, 83, 177], and have been used to analyse, model and control flows

past bluff bodies [128, 153, 142].

It is worth emphasising that the appeal to coherent structures for flow modelling and

control in each of the above examples is not merely convenient, but is often necessary. In

fluid dynamics, the computational cost of solving the governing equations implies that,

for most estimation and control purposes, practitioners must rely on simplified models of
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a flow since real-time decisions require rapid model evaluation. With a view towards flow

modelling, it is interesting to note that insights from the process of extracting coherent

structures from data can often hint at an appropriate structure for creating reduced-order

flow models. We next introduce a general class of coherent structures, which we refer to as

dynamical features, which are particularly suitable for constructing interpretable models

for fluid flows and then discuss, in §2, the statistical methods for computing them.

1.1.2 Dynamical features and Reduced Order Modelling

Reduced order models (ROMs) are simplified models that only attempt to describe,

loosely-speaking, a subset of a system’s dynamical behaviour. As discussed above, ROMs

are particularly attractive for flow control and estimation purposes, since they provide a

low dimensional state of the flow which can be used to drive estimation and control de-

sign. However, ROMs should not only be viewed as a stepping stone towards application

of control-theoretic techniques. At their best, ROMs should provide practitioners with an

intuitive understanding of the underlying physics of a system.

The natural question that arises from the above definition of reduced order models is:

which dynamical behaviours should a ROM capture? Heuristically, a ROM would seek to

capture the dynamics of a flow’s dominant coherent structures. However, the definition

of coherent structures in §1.1.1 is very broad and can cover a wide range of dynamical

features. As a result, the quality or applicability of a ROM is strongly dependent on the

chosen coherent structures that it captures.

More precise definitions of coherent structures can be provided by giving a more spe-

cific definition of coherence. For example, a coherent structure may be defined as a local

region of spatial coherence in one or more fundamental components of the flow (e.g. ve-

locity components or vorticity). Such a definition corresponds well with, for example, the

long spatially-meandering features of alternating velocity fluctuations in the log-layer of

a wall bound flow [83], and with the distinct regions of correlated vorticity which com-

prise the Kármán vortex street [144]. In addition, and in the latter case most distinctly,
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such coherent structures may also be associated with a distinct and coherent temporal

frequency.

In this work, we will primarily focus on a specific type of coherent structure which

possesses both spatial and temporal coherence, and which we refer to as a dynamical

feature. Dynamical features are spatio-temporal structures that act as a constituent part

of the fluid flow. Each dynamical feature has a spatial component, describing its spatial

characteristics at different points in the domain, and a temporal component, describing

its evolution in time. The flow field can then be approximated by superposition of dy-

namical features, for example, by using Galerkin projection as will be explained shortly.

The advantage of using dynamical features as the building blocks of ROMs is that they

provide a natural link between the process of extraction of coherent features and the con-

struction of models for a flow’s dynamics. That is, by demanding temporal coherence of

the extracted features we expect to gain some regularity when building ROMs from them.

Finding dynamical features of a flow from either data or direct mathematical analysis,

relies on a variety of mathematical and statistical tools. Tools from linear algebra such as

subspace projection and matrix decomposition techniques (discussed in detail in §2) are

vital and can often be expressed as constrained optimisation problems formulated so as to

ensure that the extracted coherent structures do in fact replicate aspects of the behaviour

of the original system.

There are two broad approaches for obtaining dynamical features in fluid mechanics

literature. In the first approach, one appeals directly to the governing equations—for

example via eigendecomposition of linearised operators—and finds features and models

by applying restrictions on the scale interactions within the flow and numerically charac-

terising the results of the simplified system [15, 157, 10].

A second approach is instead to start from numerical or experimental data and, through

the application of statistical and data-driven methods, find dynamical features that make

a significant contribution to the system’s behaviour. The extracted features can then be

used to derive ROMs for the flow.



1.1. COHERENT STRUCTURES AND REDUCED ORDER MODELLING 26

The general framework for linking spatial features with temporal information, and hence

the framework for creating reduced order models is typically inspired by Galerkin projec-

tion. Since in this study, and in almost all data-driven settings, data is only available in

discrete form (both spatially and temporally), we will now discuss Galerkin projection in

the context of a discretised model.

Suppose that the velocity field is given by u(x, t) at spatial locations x and at times t.

Given a finite and fixed set of spatial features (ϕi(x))r
i=1 (computed, for example, using

one of the techniques described in §2) one can then form an approximate representation

of the flow’s velocity field using the expansion

u(x, t) =
r∑

i=1
ai(t)ϕi(x) + νi, (1.1)

where the coefficients ai(t) describe the temporal relevance of each spatial feature ϕi at

time t > 0, and νi denotes the residual of the approximation. In theory, the expansion

(1.1) can be substituted into the Navier-Stokes equations then, after taking successive in-

ner products taken with each spatial feature ϕi, ordinary differential equations governing

the temporal terms ai(t) can be obtained.

The importance of this method is that for any chosen (or constructed) set of spatial

mode shapes, there exists a systematic method of extracting a ROM for their dynamics

which is derivable directly from the underlying equations of fluid motion. Unfortunately,

when the underlying features ϕi are computed from data (i.e. the second approach men-

tioned above) then the application of Galerkin projection may often present severe difficul-

ties. These arise because computation of the necessary inner products requires access to

all components of the underlying flow, including full spatial information across the whole

domain and knowledge of the pressure field p(x, t). As will be detailed in §2 below, spatial

features ϕi(x) extracted from an ensemble of flow data can only contain information of

the type contained in the data ensemble from which they are computed. For experimental

data in particular, such information is incomplete, for example only including a restricted
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spatial domain and may not include information about all velocity components or pres-

sure. A lack of such information in the features ϕi(x) implies that the inner product

calculations required to obtain dynamic models from the Galerkin procedure may either

be impossible to compute, or may only be crude approximations to their true values. It

is well-known that such limitations can restrict the validity of the resulting ROMs [139],

with [127] showing further that, for shear flows, it is crucial that pressure information is

included in the underlying data ensemble if an effective ROM is to be computed via the

Galerkin approach.

So far, we have seen that given an ensemble of spatial structures (ϕi(x))r
i=1, one can,

theoretically at least, create a reduced-order model of the underlying flow. However, in

cases where the collected data is partial, sparse or corrupted by measurement noise, it may

not be possible to derive analytical models for the evolution of the associated time series

coefficients ai(t). Consequently, for such cases, the model extraction process must rely on

empirical or statistical methods. This suggests a challenging general question of how to

optimally create spatial features ϕi(x), which represent interpretable coherent structures,

whose combination gives a good representation of the underlying flow, while also ensuring

that their associated temporal coefficients ai(t) are easy to model dynamically.

As will be discussed in Chapter 2, these two aims are typically in competition for

well-established algorithmic methods for data-driven dynamical feature extraction. As a

result, the question of how to optimally obtain a set of coherent dynamical features of a

fluid flow remains an active and important open question in fluid mechanics, and the aim

of this thesis is to make progress towards answering it.
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1.2 Challenges for data-driven dynamical feature

extraction in fluid mechanics

In this thesis we will consider three open questions related to the optimal creation of

dynamical features from data-ensembles of fluid flow data. These three questions all re-

late to extending feature extraction algorithms in order to prioritise additional beneficial

characteristics in the feature extraction process. Specifically, we ask if it is possible to:

1. Identify small sets of dominant dynamical features from a large initial set of features;

2. Create dynamical features which can facilitate estimation of a flow field from limited

sensor information; and 3. Utilise interpretable dynamical features to promote interoper-

ability of nonlinear reduced-order dynamical models for fluid flows. These open questions

are now explained in more detail.

Question 1: Given an ensemble of fluid flow data, is there a systematic way

of extracting a small number of dynamical features which represent

physically important flow features?

Standard methods of obtaining dynamical features, which will be detailed in Chapter 2,

typically create a large number of modes to provide an accurate representation of the

underlying flow. Specifically, the dimension r in (1.1) can be large (often of order 103 or

more) in order to give a small fitting residual νi. From such a large initial set of features,

it is clearly desirable to select a much smaller subset of features to enable physical flow

analysis or to use as a basis for reduced-order modelling.

For well-established feature extraction algorithms, there exist methods of ranking the

obtained dynamical features via energetic content or spectral information. However, as

will be discussed in Chapter 3, it is often found that a large number of spatial features

ϕ(x) are extracted which relate to the same underlying physical dynamical feature in a

flow and, in such cases, standard methods of energetic or spectral ranking are not effective
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for selecting a small number of features for analysis. This behaviour is particularly prob-

lematic for flows at high Reynolds numbers which contain flow features across significant

ranges of length and time scales.

To address this problem, Chapter 3 of this thesis introduces an algorithm that can

post processes non-orthogonal modes, such as those produced by the widely used Dy-

namic Mode Decomposition algorithm (see §2.3 for a definition), to find clusters of sim-

ilar modes. The clusters provide an interpretable view of the degrees of freedom of the

underlying flow, and a systematic method of combining possibly large numbers of similar

features to enable dimension reduction. The developed algorithm is demonstrated via

application to flows with a wide range of Reynolds numbers. The work in this Chapter

has been published in [18].

Question 2: Can the extraction of dynamic features be adapted to take into

account a known measurement process?

Most leading feature extraction algorithms work by solving an optimisation problem whose

cost is designed to optimally (in some sense) reconstruct the full, high-dimensional, under-

lying snapshots contained in a data ensemble of a flow field. The dynamical features ϕi(x)

extracted using such methods, and hence their time-varying mode coefficients ai(t), are

consequently not computed with reference to other dynamical processes that may occur

simultaneously. One example of practical importance is if real-time sensor information is

to be used, for example, as a signal to estimate the full flow field, or for use in a feedback

control strategy.

A problem that may occur is that if a measurement process is not considered during

data-driven extraction of dynamical features, then these features (and any reduced order

model computed from them) may not perform well when used in conjunction with the

specific real-time measurement process available. While some progress has been made in

the literature concerning dynamical feature extraction with reference to the structure of
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an actuator input (which is discussed in §2.6), there has to date been little research on

the problem of feature extraction with reference to a measurement process.

To address this problem, in Chapter 4 of this thesis, we develop the Output-regulated

Optimal Mode Decomposition algorithm. This extracts dynamical features from a data

ensemble by solving an optimisation problem which balances the cost of capturing the

flow dynamics with that of obtaining features which are well correlated with a known

measurement process. This provides a new feature extraction methodology which creates

“sensor-aware” or “observable” coherent structures.

Question 3: Can efficient reduced order states, extracted using nonlinear

data compression techniques, maintain a connection to interpretable, linearly

extracted coherent structures?

Many established techniques for feature extraction in fluid mechanics, including those

which underpin the two questions above, rely on linear theory to motivate their methods

of feature selection. A natural question, in light of the recent and rapid development

of nonlinear black-box modelling approaches such as neural networks, is whether such

nonlinear approaches can be exploited to improve the performance of feature extraction

algorithms in fluid mechanics. While existing linear modal decomposition techniques are

not as efficient as neural networks in reconstructing snapshots of a flow-field, they do ex-

tract human-interpretable features at a low computational cost. An important question

is therefore to ask whether the reduced interpretability of black-box methods poses any

barrier to their robust use in fluid flow modelling, estimation, and control.

Chapter 5 of this thesis investigates this question by seeking to combine neural net-

work modelling techniques with traditional linear coherent structure extraction methods

to generate reduced order models for fluid flows. The objective to is to find the correct

balance, in the context of flow modelling, between model interpretability and the increased

modelling capability of recent nonlinear machine learning-based modelling.
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1.3 Outline of Thesis

The remaining chapters of the thesis are organised as follows.

Chapter 2 gives an in-depth literature review of the various dynamical feature extraction

algorithms widely used in the fluid mechanics community. The purpose of this chapter is

to give sufficient mathematical and algorithmic detail of these methods to both motivate

and explain the extensions of them that will be developed subsequently in the thesis with

a view to answering the three questions highlighted in §1.2. The three fundamental lin-

ear algorithms discussed are Proper Orthogonal Decomposition (POD), Dynamic Mode

Decomposition (DMD) and Optimal Mode Decomposition (OMD), each of which can be

viewed as adding complexity to the former methodology. The methodology chapter con-

cludes with a brief review of neural network methods for data-driven modelling, which

will be used in the final chapter to enable nonlinear data-driven modelling of fluid flows.

Chapter 3 develops a new algorithmic method for reducing the dimension of the models,

or equivalently the projection basis provided by common modal decomposition method-

ologies. The motivation for this work is that common methods, such as Dynamic Mode

Decomposition, typically output a large number of dynamical features which are non-

orthogonal. Due to this non-orthogonality, the data subspace spanned by these features

can potentially be described by significantly fewer modes than those outputted by such

algorithms. By appealing to the graph-theoretic technique of maximal cliques, this chap-

ter presents a new method of clustering dynamic modes which are likely to describe the

same underlying feature present in a data ensemble. A method of ranking the importance

of the obtained clusters is then proposed to enable clear criteria for dimension reduction.

Detailed analysis of the algorithm’s performance on three bluff body flows, of increasing

complexity, is presented and it is observed that the clustering algorithm is able to identify

a small number of dynamical features which correspond to known modes of all considered

flows. This chapter seeks to answer research Question 1, described in the previous section.
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Chapter 4 develops a new extension to the Optimal Mode Decomposition (OMD) al-

gorithm, with the intention to prioritise dynamical features which are in the observable

subspace of a known measurement process. The proposed method takes advantage of the

fact, described in the methods Chapter 2, that OMD is a two-stage optimisation algo-

rithm which seeks to identify both a projection subspace and linear dynamics as part of

the modelling process. Due to the freedom implied by the subspace modelling component

of OMD, it is possible to propose a natural extension of the algorithm which prioritises

the creation of dynamical features which are better correlated (i.e., more observable) than

those nominally produced by the algorithm. The developed algorithm’s performance is

analysed on a number of synthetic test-cases in which observability is well defined, before

being applied to a challenging high Reynolds number bluff body test case. The method de-

veloped in this chapter seeks to answer Research Question 2, as described in the previous

section.

Chapter 5 investigates the use of neural networks for nonlinear data-driven modelling of

fluid flows. Modelling is performed using autoencoder neural networks applied to the

low-dimensional subspace of amplitude coefficients obtained by a nominal feature extrac-

tion methodology, such as DMD. The use of neural network methods is shown to enable

more efficient dimension reduction than modal truncation, due to the nonlinear decoder

and autoencoder mappings employed. It is shown for the canonical cylinder wake flow

that shedding mode harmonics may be modelled effectively using only minimal degrees

of freedom associated with a dominant global mode, with harmonic dynamics captured

via nonlinear mappings. The performance of nonlinear autoencoders for both dimension

reduction and dynamic modelling is compared with that produced by existing modal de-

composition approaches. This chapter addresses the final research Question 3, introduced

in the previous section.

Chapter 6 summarises the work presented in the thesis, as well as detailing some possible

extensions of the approaches presented in an outlook for future research.



Chapter 2
Modal Decomposition Methods for Fluids

Analysis

We have seen that to understand, analyse, and model fluid flows, one can concentrate on

the coherent structures of the flow. We have also defined dynamical features of the flow

as spatiotemporal patterns that, at least in the aggregate, approximate the behaviour

of the original flow. Here we will review ways in which such features can be extracted

from data and then subsequently be used for Reduced Order Model (ROM) construction

and flow-control purposes. In this context, coherent structures are often referred to as

modes, and modal decomposition methodologies are the class algorithms typically used

to identify them. In the following, we will cover some of the most relevant modal decom-

position techniques to the current study. For a thorough review of modal decomposition

techniques in fluid mechanics, the reader is also referred to [159].

2.1 Proper Orthogonal Decomposition

For completeness, we first consider the Proper Orthogonal Decomposition (POD) algo-

rithm since its use underpins many more modern modal decomposition methodologies.

POD was introduced in the context of fluid mechanics by Lumley [109], and is equiva-

lent to the Karhunen–Loeve decomposition and Principle Component Analysis, PCA, in

33
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statistics. The method decomposes fluid flow data into energetically optimal, spatially

orthogonal features. Due to its algorithmic simplicity (as explained below) and clear jus-

tification in terms of energetic optimality, POD has been used in a wide range of studies

in fluid mechanics. For example, POD has been used to study bluff body wakes including

two dimensional cylinders [128], finite-length cylinders [169] and axisymmetric bluff bod-

ies [142]. Other examples include the study of flat plate boundary layers [9, 140], pipe

flows [74], jets in cross-flow [36, 117] and swirling jets [131].

The POD approach addresses the scenario in which we wish to linearly decompose a

flow field u(x, t), in terms of a set of pairwise orthogonal modes (ϕi(x))r
i=1, as in (1.1),

with the property that such a reduced-order representation with r ∈ N degrees of freedom

captures the maximum energy (in the sense of the Euclidean norm) possible out of all

such linear decompositions with r spatial mode shapes.

To describe the POD algorithm, we assume that at N sample points in time

t1, t2, . . . , tN , velocity field data is available at p̃ ∈ N spatial locations in the flow, and

that at each location d̃ ∈ N scalar-valued components of flow data are known (e.g.

velocity components, pressure). Letting p = d̃p̃ ∈ N, it follows that at sample time tj the

available data—typically referred to as a snapshot—can be arranged as a vector xj ∈ Rp.

For the purposes of analysis, it is convenient to arrange the N snapshots into a data

matrix

X =


↑ ↑ ↑

x1 x2 · · · xN

↓ ↓ ↓

 ∈ Rp×N .

The aim is to extract a set of orthogonal coherent structures, the POD modes ϕi ∈ Rp,

which satisfy

ϕ⊤
i ϕj = δij,

where δij is the Kronecker delta function, with the additional property that each sub-

set (ϕi)r
i=1 of the first r ≤ N modes captures the maximum energy of the underlying
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data X possible with r mode shapes. This aim can be rigorously posed via the following

optimisation problem

minimise
Φ

∥∥∥∥∥X − ΦΦ⊤X

∥∥∥∥∥
2

F

,

subject to Φ⊤Φ = I,

Φ ∈ Rp×r, 1 ≤ r ≤ N,

(2.1)

where ∥ · ∥F denotes the Frobenius matrix norm∗. The resulting POD modes ϕi are

extracted as columns of the optimal matrix Φ, i.e.,

Φ =


↑ ↑ ↑

ϕ1 ϕ2 · · · ϕr

↓ ↓ ↓

 .

The optimisation problem 2.1 formulates the POD algorithm by minimising the error of

the projection operator (I − ΦΦ⊤) when applied to the data ensemble X.

Solving the POD optimisation problem

To solve (2.1), one can use the identity ∥A∥2
F = tr(AA⊤), where tr(·) is the trace operator,

and the orthonormality of the matrix Φ to rewrite the cost function as

∥∥∥X − ΦΦ⊤X∥F = tr(
(
X − ΦΦ⊤X)(X − ΦΦ⊤X)⊤

)
= tr(XX⊤)− tr(XX⊤ΦΦ⊤)

=
∥∥∥X∥∥∥2

F
−
∥∥∥Φ⊤X

∥∥∥2

F
.

It is therefore clear that minimisation in (2.1) is equivalent to maximisation of the cost∥∥∥Φ⊤X
∥∥∥2

F
= tr(Φ⊤XX⊤Φ) subject to the same orthogonality constraints as in (2.1). It is

well known that this cost function is maximised if the columns of Φ are taken as a sub-

set of the necessarily orthogonal eigenvectors of the positive semi-definite matrix XX⊤,

∗ In particular for a matrix A = (aij) ∈ Rn×m we have ∥A∥2
F =

∑n
i=1
∑m

j=1 |aij |2.
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specifically the r eigenvectors corresponding to the r largest (real) eigenvalues of XX⊤.

The importance of the above observation is that the eigenvectors of the matrix XX⊤ are

inherently linked to the notion of the Singular Value Decomposition (SVD) of the matrix

X.

The SVD of the matrix X ∈ Rp×N is its decomposition in the form

X = ΦΣV ⊤, (2.2)

where the columns of Φ ∈ Rp×N are eigenvectors of XX⊤, the matrix Σ ∈ RN×N is a

diagonal and contains the singular values σi ≥ 0 (the square roots of the eigenvalues of

XX⊤), which quantifies the energetic contribution of each mode ϕi to the underlying

data ensemble X. Finally, the rows of the matrix V ⊤ can be used to compute temporal

coefficients ai(tj) describing the relative importance of each mode at each sample time tj.

In the above discussion, it is important to note that we choose to calculate r ≤ N

modes from the POD analysis. That is, we can extract less modes than the number of

available snapshots for data analysis. This is desirable, since our underlying aim is to

form reduced-order models. The key assumption for POD-based order reduction is that

a given flow field can be expressed as a superposition of spatially coherent, more highly

energetic, dynamically relevant modes and spatially incoherent, low-energy modes. By

discarding the low-energy modes, POD-based order reduction aims to keep the most ener-

getically dominant subspace of the observed flow. The equivalence of POD and SVD has

the fortunate implication that, due to the Eckart-Young theorem [47], the first r POD

modes are known to be the optimal r-dimensional bases for minimising the reconstruction

error ∥X − ΦrΦ⊤
r X∥2

F . However, this does not address the fact that finding a sensible

dimension for the reduced order model—i.e., a sensible choice for the cut-off dimension

r—typically requires prior knowledge of the underlying data ensemble and how it was

obtained.
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Methods of Truncation

Typically, a user will aim to retain as many modes as necessary to reconstruct a certain

percentage of the flow’s energy [26], for example, selecting the smallest possible 1 ≤ r ≤

N for which
∥X − ΦrΦ⊤

r X∥F

∥X∥F

≤ 0.1

if one wants the smallest dimensional model which can capture 90% of the ensemble energy.

However, more recent developments use statistical insights for choosing an appropriate

subset of POD modes [52, 59]. Here we will briefly explain two such approaches.

For a dataset X ∈ Rp×N assume that X = X̂ + αZ, where X̂ contains the noise-free

measurements, α is the noise amplitude and the columns of matrix Z are identically and

independently distributed Gaussian noise with zero mean and unit variance. If the noise

amplitude α is known, the method presented in [59] finds the optimal threshold for the sin-

gular values as a function of the dimensions p and N . For example, if the snapshot matrix

is a square matrix X ∈ RN×N , the optimal cut-off for the singular values is determined

by

λ = 4√
3
√
Nα.

This implies that any mode with a singular value smaller than λ should be truncated out

of the POD set. Importantly, this method allows the practitioner to reduce the problem

of finding a sensible dimension for a ROM, to one of quantifying the amplitude of noise

in the underlying data ensemble.

The Entropy Line Fit (ELF) method [26] provides an alternative method of selecting a

subset of POD modes, which is applicable when the nature and amplitude of noise is un-

known. EFL uses an information theoretic approach to determine the level of randomness

of each POD mode. The ELF method computes the Shannon entropy of the discrete co-

sine transform of each POD mode ϕi and its corresponding time series (ai(tj))N
j=1. Modes

are then retained or discarded according to a predetermined entropy threshold.
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2.2 Extensions of POD

Recent extensions of the POD algorithm have concentrated on promoting sparsity in the

spatial modes Φ or in the temporal information contained in the matrix V ⊤ of the associ-

ated SVD decomposition (2.2). This is achieved through adding either ℓ1 and ℓ2 penalties

to the cost function of the POD optimisation problem (2.1) in order to regularise the

mode selection process [179, 43, 167].

In the context of reduced-order modelling, relevant extensions of the POD algorithm

focus on extracting coherent structures that are more suitable for model discovery and

control purposes. We will now briefly discuss some of the more widely used extensions of

this type.

Balanced POD

Balanced Proper Orthogonal Decomposition, BPOD, [145] is an extension of the POD

algorithm that allows for tractable data-driven extraction of so-called balanced ROMs,

explained below, of the underlying data. BPOD is based on an classical control theoretic

concept of balanced truncation [123], which we now briefly introduce.

Consider the case of a real-valued, discrete-time linear dynamical system

xi+1 = Axi +Bui

yi = Cxi,

where xi ∈ Rp is the state of the system, A ∈ Rp×p is the state matrix, ui ∈ Rnu contains

the control input to the system, B ∈ Rp×nu is the input matrix, yi ∈ Rny is the measurable

output of system and matrix C ∈ Rny×p maps the state xi and the system output yi.

The controllability of a state xi ∈ Rp, loosely defined as how easily the system is able

to be driven to the state xi using a control input sequence (ui)i≥0, is quantified by the

quadratic form x⊤
i WCxi, where
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WC =
∞∑

m=0
AmBB⊤(A⊤)m (2.3)

is the controllability Gramian, a positive definite matrix. Analogously, the observability

of a state xi ∈ Rp is defined as how well the state xi can be inferred using a measurable

output sequence (yi)i≥0. This is quantified by the product x⊤
i WOxi where

WO =
∞∑

m=0
(AT )mCTCAm (2.4)

is known as the observability Gramian, also a positive definite matrix. The idea behind

balancing is to find a linear coordinate transformation z = Tx of the system for which,

after transformation via

WO 7→ T⊤WOT, WC 7→ T−1WC(T−1)⊤,

observability and controllability Grammians are diagonal and equal. That is, one hopes

to find a transformation T and a diagonal matrix Σ such that

T⊤WOT = T−1WC(T−1)⊤ = Σ.

The interpretation of this is that states z of the transformed system are as observable

as they are controllable, which then provides a compelling criterion for model reduction.

Indeed, balanced ROMs are constructed by eliminating states that are both hard to reach

(i.e. require large control effort) and hard to observe (i.e. they are difficult to infer based

on the measurable outputs). If the Grammians WC and WO are available, then it is easy

to compute the matrix T by finding and truncating the set of eigenvectors of the prod-

uct WCWO. The difficulty in a data-driven setting or for high-dimensional systems with

p≫ 1 is that the matrices WC and WO may be difficult or impossible to calculate, since

they require the solution of large-scale Lyapunov equations.
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Balanced POD is a data-driven method that addresses this problem, by approximating

the Grammians directly from snapshots drawn from simulations of the underlying system’s

impulse response. In particular, if it is possible to create snapshots of both the impulse

response of the system (arranged in a matrix X) and the impulse response of the adjoint

system (arranged in a matrix Y ), then the transformation matrix T can be computed in

terms of the singular value decomposition of the (smaller) matrix Y ⊤X = UΣV ⊤. Indeed,

T = XV1Σ−1/2
1 ,

where V1 and Σ1 are appropriately truncated forms of arising from the SVD. From this,

the columns of the transformation matrix T are viewed as the extracted modes of the

flow and represent features which take into account not just their energetic contribution

to the underlying data, as in POD, but also the relation of these features to the input

and measurement processes of the system.

It is important to note that BPOD requires impulse response data from the adjoint

system, which renders this method unsuitable for use with experimental data. As a re-

sult the application of this method [84, 3] and its modifications [46] have been limited to

studies in which numerical simulation of the underlying flows is possible.

Finally, we note that in §4 we introduce a method that is inspired by, though not di-

rectly connected to, the BPOD algorithm in its attempt to balance energetic and dynami-

cal considerations when extracting coherent structures and reduced-order representations

of a fluid flow from data.

Spectral POD

As POD modes are derived irrespective of temporal or spectral considerations, the tempo-

ral coefficients of spatial POD modes—that is the time series ai(tj) defined corresponding

to a decomposition (1.1)—generally contain a mix of frequencies. The spectral POD
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(SPOD) algorithm [109, 165] addresses this issue using ideas from the problem of es-

timating the power spectral density of a signal. SPOD first divides the time-resolved

snapshot ensemble X ∈ Rp×N into M overlapping blocks xℓ
i

Xℓ =


↑ ↑ ↑

xℓ
1 xℓ

2 · · · xℓ
M

↓ ↓ ↓

 ,

each containing n of the original snapshots. The Discrete Fourier Transform (DFT) is

then applied to each snapshot block. The Fourier coefficients x̂ℓ
f corresponding to each

block ℓ and frequency f , are then collected rearranged according into matrices

X̂f =


↑ ↑ ↑

x̂1
f x̂2

f · · · x̂M
f

↓ ↓ ↓

 .

Once the DFT is known at each frequency f , one can then find the modes at each fre-

quency f by performing POD on the matrix

X̂f = ΦfΣfV
⊤

f

after which the columns of Φf are defined to be the SPOD modes at frequency f . For

simplicity, here we have assumed that the snapshots are appropriately scaled after the

DFT procedure. For a more detailed explanation of scaling and windowing steps, see

[165].

The advantage of SPOD over the original POD method is that, by definition, its modes

are associated with a single frequency, providing a natural way of interpreting physical

events. However, the disadvantage of this method is that it requires, in some cases signif-

icantly, more data (in terms of the number of snapshots) than the original POD method

for numerical convergence. Moreover, due to the use of the underlying DFT method,
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the temporal frequencies captured are on a uniform grid. As a result, much like spectral

density estimation problems, the results obtained by SPOD require the chosen grid to be

sufficiently fine for resolving the scales present in the data.

Alternative methods, such as Dynamic Mode Decomposition (DMD), which we will

discuss subsequently in §2.3, address these issues. Instead of multiple discrete Fourier de-

compositions, DMD relies on a single eigendecomposition to extract spectral information

from a flow. This eliminates the need to split a data ensemble into multiple segments,

each of which must be capable of capturing various time-scales, and therefore DMD can

potentially be suitable for application to smaller data ensembles. Moreover, the eigende-

composition in DMD does not require predefined frequency bins. The reader is referred

further to [165] for a more detailed comparison of SPOD with Dynamic Mode Decompo-

sition. Finally, we note that while we do not use SPOD in the current thesis, in Chapter 3

we introduce a method that can combine the versatility of DMD with the natural ordering

of features in SPOD.

2.3 Dynamic Mode Decomposition and Related

Algorithms

Dynamic Mode Decomposition (DMD) [152] and its many variants form a now widely

employed class of modal decomposition algorithms, which concentrate on extracting co-

herent structures which are, in a sense, more dynamically interpretable than POD modes.

The original motivation for DMD [146], as a possible improvement to POD, was that

in many flows, large-scale coherent structures exist which oscillate at known dominant

frequencies. In some situations, such as a jet in crossflow originally studied in [146], no

single POD mode can be found whose time-dependent projection coefficients have spectral

content which cleanly matches the known dominant frequencies of the underlying flow.

Indeed, for this flow, the time series ai(t) of a given POD mode is observed to contain
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frequencies associated with multiple flow features. In this sense, POD modes are often

found to be spectrally polluted. With such behaviour in mind, the development of Dy-

namic Mode Decomposition arose as an attempt to extract individual coherent structures,

each of which is associated with a single frequency. In cases where dominant frequencies

exist in a flow, there is then hope that the DMD modes represent spatial structures which

efficiently describe the underlying physics of the oscillatory structures. In this section, we

will detail how the DMD algorithm achieves this extension of POD.

As expected, a strong theoretical relationship exists between DMD methods and the

POD-based approaches of §2.1. At the same time DMD is also motivated by links with

dynamical systems theory, and in particular the theory of Koopman operators [93, 146].

Unlike POD, where the goal is to find a projection that ensures energetic optimality, DMD

concentrates on finding both modes and an optimal linear model for the dynamics of the

flow observed in a given data ensemble. To explain DMD, which also underpins much of

the novel algorithms proposed in this thesis, we begin by introducing the Arnoldi inter-

pretation of the DMD algorithm as presented in [152], before discussing more numerically

stable and noise-robust variants.

For clarity, we note that the Arnoldi DMD has not been explicitly used in this thesis,

for reasons related to numerical stability discussed in §2.3.1. Instead, the Arnoldi inter-

pretation of DMD is included in this thesis since it will allow a theoretical connection to

be drawn between DMD and Koopman operator theory [146].

2.3.1 Arnoldi DMD

As in §2.1, we begin with an ensemble of N + 1 snapshots of the velocity field of a fluid

flow, where at each sample time tj, the snapshot data is arranged as a column vector xj ∈

Rp. With a view to mode calculation which takes into account dynamical considerations,

it is now assumed that the sample times are separated by a common timestep ∆t. That

is, tj+1 = tj + ∆t for j = 1, . . . , N . Data is then arranged into two snapshot matrices
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X =


↑ ↑ ↑

x1 x2 · · · xN

↓ ↓ ↓

 ∈ Rp×N , X ′ =


↑ ↑ ↑

x2 x3 · · · xN+1

↓ ↓ ↓

 ∈ Rp×N .

It is important to note that the snapshots in matrix X ′ are shifted forward in time by

one time-step ∆t compared to the snapshots in X.

The modelling assumption underpinning DMD is that of a linear mapping between the

current snapshot of the flow field, xi ∈ Rp, and its future value, xi+1 ∈ Rp after one

time-step ∆t. In other words, DMD hopes to approximate the evolution of the flow over

a single (small) time-step by a model of the form

xi+1 = Axi + νi+1, (2.5)

where A ∈ Rp×p is a linear dynamics matrix and νi+1 is the residual between the model

and the true data. For cases where the number of collected snapshots of data N is such

that p > N + 1, which is typically the case in fluid dynamics, the fact that the unknown

model contains p2 degrees of freedom is a challenge for modelling: there are only p(N +1)

known data values, which may be significantly less than the number of free parameters

in the model, and this will necessary lead to over-fitting if no action is taken to mitigate

this problem. The approach that DMD takes to resolve this issue is to instead search for

a lower-rank matrix in place of A. We now explain how this can be achieved.

Since one does not have a priori knowledge of matrix A, DMD’s approach is based on

a variant of the Arnoldi algorithm where explicit knowledge of A is not required [147].

Suppose first that sufficient snapshots of a flow field have been collected such that the sub-

space described by the image space of the snapshot matrix X is not expanded by adding

any further snapshots. If this assumption is approximately correct then the (N+1)th snap-

shot, xN+1, will be expressible, after a residual, as a linear combination of the previous

snapshots
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xN+1 = a1x1 + a2x2 + · · ·+ aNxN + νi+1

where ai are real-valued constants and νi+1 is a (hopefully small) residual. Based on this

assumption, defining a matrix

S =



0 0 · · · a1

1 0 · · · a2

. . . . . . ...

1 0 aN−1

1 aN


∈ RN×N , (2.6)

with ones below the leading diagonal acting to exactly shift the first N − 1 snapshots, it

follows that

X ′ = XS + ν, (2.7)

where ν is a matrix containing the residuals

ν =


↑ ↑ ↑ ↑

0 0 · · · 0 νN+1

↓ ↓ ↓ ↓

 . (2.8)

Due to the fact that S relates snapshots in X to those measured one time-step later in X ′,

it is hoped that analysis of the N ×N matrix S, which is significantly lower dimensional

that the p × p matrix A proposed above, can extract dynamical information about the

underlying data.

It is appropriate to choose the coefficients {ai}N
i=1 = {a1, a2, · · · , aN}, and hence also

the matrix S, by optimising these constants such that the residual ν is minimised. This

can be achieved by performing a QR-decomposition of X so that X = QR, where Q is an

orthonormal matrix and R is an upper triangular matrix, and solving the least squares

fit mina ∥xN+1 −Xa∥2
F to obtain



2.3. DYNAMIC MODE DECOMPOSITION AND RELATED ALGORITHMS 46

a = R−1Q⊤xN+1. (2.9)

Now, appealing to the belief that A ∈ Rp×p exists for which X ′ ≈ AX and using (2.7),

AQR = AX ≈ X ′ = XS + ν = QRS + ν,

and one would expect that if the residual ν can be made to be small through the choice

of S, then

S ≈ (R−1Q⊤)A(QR).

Consequently, S and A are approximately similar and it then follows that the eigenvalues

of S would approximate a subset of the eigenvalues of A.

Performing an eigendecomposition S = PΛP−1, the DMD modes are defined to be the

columns of Φ = XP . What makes this method attractive is the fact that each mode is

associated with a single eigenvalue of S, and therefore each mode has a corresponding

and single temporal frequency and growth rate. The frequency of each mode is extracted

using the phase of the eigenvalue and the growth rate is determined by its magnitude.

Throughout the current document, we will refer to modes with these characteristics as

single-frequency modes. In contrast, POD modes are not single-frequency modes, since

their temporal coefficients typically contain more than one temporal frequency.

Linking DMD and Dynamical Systems Theory via Koopman Analysis. The

studies in [146] and [119], provide a theoretical connection between the DMD modes

and eigenvalues and the Koopman theory of nonlinear dynamical systems [93]. Koop-

man theory concerns representing nonlinear dynamical systems, which evolve on a finite-

dimensional manifold Y , using a linear but infinite-dimensional operator. Consider the

autonomous nonlinear dynamical system
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yj+1 = f(yj)

xj = g(yj),

where f(·) and g(·) are possibly nonlinear functions, (yj)j≥0 ⊂ Y is the system state and

(xj)j≥0 is an output of the system measured though the observable function g. In the con-

text of fluid mechanics, the states of the above system should be viewed in the following

way: yj represents the underlying true state of the flow, for example, the solution of an

appropriate PDE (or a high-dimensional approximation to it); while xj is a measurement

that may be taken from the flow, given knowledge of its true underlying state yj; the

observable g then represents the process of taking such a measurement, for example, the

process of recording a number of velocity components in a given domain of the fluid.

Koopman analysis seeks to represent dynamical systems of this form in terms of a par-

ticular representation of the observable process g. To do this, we define a linear infinite-

dimensional operator K, known as the Koopman operator. This acts on any scalar-valued

one-dimensional observable γ : Y → R to produce a new observable process Kγ defined

by

(Kγ)(y) = γ(f(y)) = (γ ◦ f)(y). (2.10)

That is, Kγ provides the same measurement as γ, but only after one time-step of the

underlying system dynamics (described by f).

Koopman theory seeks to represent dynamical systems in terms of eigenfunctions αi(·)

of the Koopman operator, which are well-defined since K is linear. Furthermore, since K

is defined entirely in terms of f , these eigenfunctions are expected to convey dynamical

information relating to the true underlying system. Now, given the Koopman eigenfunc-

tions αi(·) and their associated eigenvalues λK
i , a vector-valued observable g : Y → Rp

which provides a p-dimensional measurement (as in our fluids examples) can be expressed

as an infinite sum

g(y) =
∞∑

i=1
ϕK

i αi(y)
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where ϕK
i ∈ Rp are referred to as the Koopman modes of the system.

In terms of a sequence of data (xj)j≥0 ⊂ Rp arising from such an observable, we can

then write

xj = g(yj) =
∞∑

i=1
ϕK

i αi(yj)

=
∞∑

i=1
ϕK

i αi(f(yj−1))

(by (2.10)) =
∞∑

i=1
ϕK

i (Kαi) (yj−1)

(since αi are eigenfunctions) =
∞∑

i=1
ϕK

i · λK
i αi(yj−1)

...

(repeating the above) =
∞∑

i=1
ϕK

i

(
λK

i

)j−1
αi(y1). (2.11)

The underlying hope is that if the underlying system is sparse enough dynamically, i.e.

if a small number of Koopman modes/eigenfunctions are dominant dynamically, then the

infinite dimensional sum may be well-approximated by a finite dimensional expansion. If

this is the case, then one may hope to extract the Koopman modes and eigenvalues, which

are intrinsic to the system’s dynamics, using only the available measured data ensemble

(xj)j≥0. This opens the door to a link with DMD. For a discussion about the conditions

under which the Koopman operator is finite dimensional the reader is referred to [1].

To explain the link with Arnoldi DMD and the above analysis, note first that the eigen-

decomposition of the matrix S yields S = PΛP−1, and the particular companion form

(2.6) of the matrix S implies that if the eigenvalues in Λ are distinct, then the matrix

P−1 has the Vandermonde form

P−1 = V̂ =



1 λ1 λ2
1 λN−1

1

1 λ2 λ2
2 · · · λN−1

2
... ... ... · · · ...

1 λN λ2
N λN−1

N


.
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Since the DMD modes were defined as Φ = XP , it follows trivially that

X = ΦV̂ ,

which can be rewritten in the form

xj =
N∑

i=1
ϕiλ

j−1
i , for j = 1, 2, . . . , N.

Note that the first N snapshots are captured exactly. For the last snapshot, xN+1, we use

the approximation in (2.7) to obtain

X ′ = X(PΛP−1) + ν = ΦΛV̂ + ν (2.12)

where ν has the form as in (2.8). Therefore the final snapshot can be expressed as

xN+1 =
N∑

i=1
ϕiλ

N
i + νi+1, (2.13)

where νi+1 is the residual between the DMD’s approximation and the true snapshot.

From the similarity of the expansions in (2.12) and (2.13), and (2.11), it is often argued

[146] that DMD modes can be considered as a finite set of finite-dimensional modes that

approximate the theoretically infinite set of infinite dimensional Koopman modes.

An insightful comparison between the Koopman operator and DMD is provided in

[10] via the application of Koopman decomposition to a weakly nonlinear model of the

super-critical wake of two-dimensional flow past a circular cylinder, specifically the model

developed in [157]. The results of the theoretical Koopman analysis are then compared

with those arising from the application of Arnoldi DMD to the same dataset. For this

noise-free test-case, it was found that the Koopman eigenvalues belong to harmonically

arranged equidistant frequency bins. At each frequency, there are a number of Koopman

modes with various damping ratios, in this case, all with negative growth rates. Very
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similar results are also obtained when Arnoldi DMD is applied to a set of snapshots of

data evolving towards, or fully on, the flow’s limit cycle corresponding to the Kármán

vortex street. However, if DMD is applied to a larger data set containing snapshots from

both limit cycle and transition regimes, the DMD eigenvalues arrange into clusters with

slightly varying frequencies around the theoretical Koopman frequencies, and also possess

a range of decay rates. This phenomenon was explained by the fact that the full dataset

includes a segment where flow is in non-modal algebraic growth, as explained by [151] and

observed in other flows [180], that cannot be explained by individual linear oscillators.

Since DMD uses such terms as an expansion basis for the underlying data ensemble, more

than one mode will be necessary to explain this phenomenon.

Despite strong theoretical backing provided by the link with Koopman theory, the

Arnoldi DMD algorithm is known to be numerically unstable as a result of concentrating

the residual minimisation process on only the last snapshot xN+1 in the data [152]. We

now discuss a more stable version of the algorithm, which also motivates further extensions

of DMD which will be used later in the thesis.

2.3.2 SVD-based DMD

The assumption that S has the companion form (2.6) allows for the exact reconstruction

of snapshots x2 to xN [146]. However, as mentioned, this technique leads to numerical

instability. As explained in [33], this instability arises since, in a fully developed flow, the

modes with the highest growth rates will eventually dominate. As a result, the snapshots

may become nearly linearly dependent. In such a case the inverse matrix R−1 in (2.9)

will not be well defined.

A solution to this problem is given in [152] which employs an alternative formulation

in which the reconstruction residual is spread over all the snapshots. Instead of a QR

decomposition, we start with applying POD to X such that X = UΣV ⊤. In this formu-

lation, the problem of obtaining a linear approximation A ∈ Rp×p for the flow’s evolution

over one time-step is instead expressed as
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xi+1 = Axi + νi+1 = UÂU⊤xi + νi+1,

where Â ∈ RN×N is a lower-dimensional matrix which is similar to A, and νi+1 is the

residual of the fit. Solving the unconstrained least squares optimisation problem

minimize
Â

J := ∥X ′ − UÂU⊤X∥2
F , (2.14)

the optimal matrix Â can be computed in terms of the SVD matrices and the matrix of

latter snapshots X ′ via

Â = U⊤X ′V Σ−1. (2.15)

As before, since the matrix Â satisfies A = UÂU⊤, the hope is that its eigenvalues ap-

proximate some of the eigenvalues of the “true” matrix A.

To summarise, this SVD-based implementation of DMD avoids overfitting by first using

the projection U⊤X of the snapshots X onto the N dimensional subspace of Rp spanned

by the POD modes. It then applies the linear dynamics matrix Â to the projected snap-

shots. The operation U : ÂU⊤X 7→ UÂU⊤X then lifts the mapping back to the original

p dimensional space of the underlying data ensemble.

Crucially, the same mapping can be used for the mapping of the eigenvectors of Â to

those of A. Using the eigendecomposition Â = PΛP−1, where P contains the eigenvectors

of Â and Λ contains its discrete-time eigenvalues, the DMD modes in this context, i.e.

approximate eigenvectors of A, are defined to be

Φ = UP. (2.16)

The eigenvalues in the diagonal matrix Λ are by design discrete-time and can be converted

to the continuous-time DMD eigenvalues using

µi = log(λi)
∆t . (2.17)
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In practice, it is well-known that SVD-based DMD does not suffer from numerical stabil-

ity issues. This has led to SVD-based DMD being widely adopted in place of the Arnoldi

implementation. However, the Arnoldi method was shown to have a strong connection to

Koopman theory, with implications for its applicability in control and estimation prob-

lems (see [1] for example). For completeness, therefore, it is desirable to briefly highlight

the connection between the SVD-based DMD and Arnoldi-based DMD, and as a result

with Koopman operator theory. Considering the decomposition X = UΣV ⊤, Wynn et al.

[174] showed that if both approaches yield the same approximation, i.e. if

UÂU⊤X = XS

then one can see that

Â = (ΣV ⊤)S(V Σ−1),

and that the two matrices A and S which underpin model fitting in each DMD imple-

mentation are similar. An analogous expression to the expansion in (2.12) can therefore

be derived for SVD-based DMD. However, in this case, the residual matrix ν is full and

has the general form

ν =


↑ ↑ ↑

ν1 ν2 · · · νN+1

↓ ↓ ↓

 . (2.18)

Another difference between the SVD based and the Arnoldi-based DMD is that the

SVD-based DMD modes are normalised and therefore the amplitude of the modes must

be extracted through a post-processing step such as the one presented in [86]. In §3 we

will discuss alternative ways to find appropriate mode amplitudes.

Another useful observation which can be inferred from the presentation of SVD-based

DMD is that the DMD modes, given by (2.16), are by definition (complex) linear combi-

nations of the POD modes. This somewhat arbitrary choice, made primarily for simplicity

of computation, has been relaxed in a number of extensions of the DMD algorithm, some
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of which we discuss in §2.4. Further, DMD arbitrarily chooses the dimension of Â and

the number of DMD modes to be the same as the number of the snapshots in each of

the data matrices X and X ′, i.e. it extracts N coherent structures. We have already

mentioned the difficult and at times arbitrary nature of selecting truncation dimensions

in POD. More detailed discussions of the effects of choosing an arbitrary number of modes

are presented in §2.4 and §3.1.

DMD and SPOD both extract modes associated with a single frequency. While DMD

does not specify the frequency at which the modes should be extracted, SPOD finds a

hierarchy of modes at a single predefined frequency. The advantage of DMD over SPOD

is the automatic manner in which it detects the coherent structures and that it requires

fewer snapshots of data to converge [165]. Both of these On the other hand, as discussed,

DMD can produce clusters of similar modes, with similar spectral and spatial information.

The relation between DMD and SPOD is analysed in more detail in [165], where SPOD

modes are described as optimally-averaged DMD modes. In §3 we consider this idea from

a different perspective and introduce a method that identifies clusters of DMD modes and

finds a hierarchy of coherent structures within each cluster.

Due to its simplicity and effectiveness, DMD has been adopted in a variety of fields in

which extracting linear dynamics can be beneficial. Applications of DMD in fluid me-

chanics have been wide and varied. These include finding dynamic modes of a helium

jet [154], analysing the effects of forcing on jets [154, 168], identifying single-frequency

modes of a jet in a cross-flow [146], identifying structures in cavity flows [155], the study

of stall in airfoils [113], identifying dynamics of streak line instability in wall turbulence

[35], structures of pulsatile blood flow [71] and the flow structures around a high-speed

train [125]. We note that a recent study in [78] has used DMD for devising a data-driven

method for resolvent analysis, which is beyond the scope of the current thesis.

DMD has also enjoyed widespread adoption in other disciplines, such as computer vi-

sion [69, 53, 98], finance [112], epidemiology [138], civil engineering [48], neuroscience

[29], electricity demand forecasting [122] and robotics [19]. Finally, for an engineering
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perspective on the effects of parameters such as sampling rate ∆t on the results of DMD,

the reader is referred to the recent contribution in [101].

Variants of the DMD Algorithm

DMD, especially the robust SVD-based DMD implementation, is capable of extracting

useful dynamical information. Specifically, the single-frequency nature of the modes pro-

vides a natural relationship between a coherent structure, captured by the spatial shape

of the DMD mode, and physical phenomena with similar temporal frequencies to that of

the associated DMD eigenvalue. However, there are many scenarios in which the perfor-

mance of the DMD algorithm can be improved by applying modifications. The wide range

of DMD’s applicability in fluid mechanics has led to an increasing interest in developing

such variants. Many contributions have concentrated on analysing and improving various

aspects of DMD’s performance, by first raising and subsequently adapting the algorithm

to address its shortcomings.

Some studies have sought to establish best practices for making DMD robust to data

collection challenges, e.g. non-sequential data [166], noise-corrupted data [75, 45], and

large or streaming datasets [76, 4]. Alternatively, research has focused on generalising the

DMD framework for a wide variety of underlying dynamic systems, for example, flows

with quasi-periodic behaviour [99], transient characteristics [99, 129], or systems with

time-varying dynamics [178]. Methods of extracting a small set of coherent structures

from DMD (recalling that in its original form, DMD extract as many structures N as

there were snapshots in the original ensemble) have also been advanced in two important

ways. Firstly, by allowing the extraction of low-rank models of the flow [39, 174], and

secondly by re-scaling the dynamic modes [86]. There has also been a renewed effort in

improving DMD’s ability to approximate the Koopman operator [171, 6, 94].

In the following, we will discuss some notable examples of each category of DMD vari-

ants, before we have a detailed look at the variants most relevant to the methodologies

developed in this thesis.
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Robust implementations Here we will have a look at modifications that make DMD

more robust to practical issues such as noise, memory constraints or irregular sampling

frequency.

In the discussion about DMD in §2.3, it was assumed that the data was sampled at

regular time-steps ∆t. The Exact DMD algorithm, proposed in [166], relaxes this as-

sumption. Here, it is shown that for a non-sequential dataset, so long as the snapshots

are collected in pairs such that each column of X ′ is sampled one time-step ahead of the

corresponding column in X, an optimal set of DMD modes can be found using the same Â

as in (2.15). However, it is shown in [166] that for such cases a different relation between

the eigenvectors P of Â and the DMD modes must be used, resulting in the definition of

exact-DMD modes via

ϕi = λ−1
i X ′V Σ−1pi, (2.19)

where λi and pi are the ith eigenvalue and eigenvector of Â. It is also proven that the

exact-DMD modes and eigenvalues are a proper subset of the eigenvalues and eigenvec-

tors of the matrix A in (2.5), specifically one which minimises the residuals νi. This is

true regardless of the validity of the assumption that a high dimensional operator A can

accurately approximate the underlying dynamics.

Importantly, [166] also shows a connection between DMD and older model discovery

algorithms such as Eigen-Realisation Algorithm (ERA), and Linear Inverse Modelling.

Another important connection was made in [39] where a strong connection between DMD

and the Discrete Fourier Transform is shown. The analysis shows that subtracting the

mean of the data reduces Arnoldi DMD to the temporal DFT which is restrictive and, as

argued previously, generally undesirable. This is in contrast to POD analysis where, to

satisfy boundary conditions, the mean flow field must be subtracted as the background

flow [128, 127]. On the other hand, it is known that subtracting an equilibrium point gen-

erally preserves the DMD spectrum and modes. An optimised version of DMD was also
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proposed in [39] that seeks to extract a reduced number of DMD modes and eigenvalues.

This optimised DMD algorithm will be further discussed in §2.4.

A significant limitation of the standard DMD algorithm is in its ability to handle noisy

datasets. The effects of process and measurement noise on the extracted DMD eigenvalues

have been studied in [11, 45]. In particular, [11] use weak noise theory to show that for

flow evolving on a limit cycle, such as the 2D cylinder wake at a low Reynolds number,

the presence of process noise results in artificial damping of the DMD eigenvalues. This

noise-induced damping increases quadratically with the eigenvalue frequency, and linearly

with the noise amplitude. Another observation of the effect of noise on DMD results is

presented in [45], where an expression for the deterministic effect of noise on the DMD

dynamics matrix Â in (2.15) is derived. This shows that measurement noise has a similar

effect on the DMD eigenvalues as that of process noise, studied in [11].

Based on this analysis, [45] presents extensions of DMD that can correct for measure-

ment noise, based on the assumption that the noise-to-signal ratio is small. For a dataset

where the noise is normally distributed with mean 0 and variance σ2, they proposed the

noise-corrected DMD algorithm, in which the matrix Â is first calculated based on the

snapshot data contained in X as in (2.15), and the deterministic effect of noise is corrected

using the equation

ÂNC = Â(I −Nσ2(XX⊤)−1). (2.20)

where ÂNC is the noise-corrected dynamics, N is the number of snapshots and I is the

identity matrix of appropriate dimensions. Note that the high dimensional nature of XX⊤

makes this method computationally prohibitive. They produce a similar, less computa-

tionally prohibitive, formula for the cases where the POD modes are truncated before

applying DMD, and also propose two methods for cases where the nature of the noise is

not known: Forwards-Backwards DMD and Total-Least-Squares DMD.

We discuss here a version of Total-Least-Squares DMD presented in [75] which is ag-

nostic to the version of DMD which underpins it. The idea behind the algorithm is the
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observation that by separating a noisy dataset into matrices X and X ′ and finding X as a

function of X ′, DMD essentially treats the snapshots in X as noise-free, and assumes all

noise is concentrated in X ′ which is clearly not the case in general. The proposed solution

is to find a projection matrix that can de-noise both matrices X and X ′ simultaneously.

To achieve this, it is proposed in [75] that one should stack the matrices X and X ′ to

form the matrix

Z =

X
X ′

 (2.21)

and then perform an SVD on Z instead to obtain Z = ŨΣ̃Ṽ ⊤. By truncating the temporal

POD modes Ṽ , a projection matrix for unbiased elimination of noise is found. The next

step is to use this projection to find the de-noised matrices X̃ = XṼ and X̃ ′ = X ′Ṽ . The

practitioner can then perform the DMD variant of their choosing on the filtered matrices

X̃, X̃ ′ to calculate the DMD modes and eigenvalues.

The above algorithms allow for the extraction of previously collected data. A modifi-

cation presented in [76], allows DMD to be applied to streaming data, and continuously

updates the DMD modes and eigenvalues as new snapshots of data become available.

Another such method utilises the Full Orthogonalisation Arnoldi method to develop a

similar streaming DMD method [4].

Modifications of DMD Motivated by Dynamical Considerations. As mentioned

previously, much literature has concentrated on modifying the original assumptions of

DMD to make them more suitable for different ranges of dynamical systems. It is known

that the single-frequency nature of DMD lends itself well to systems which exhibit peri-

odic behaviour, but that it does not perform as well in capturing transient non-oscillatory

modes [129]. In such scenarios, the non-oscillatory mode is captured using a cluster of

oscillatory modes, as we exemplify later in §3.

For flows with transient and quasi-periodic behaviour, or when the underlying system is

temporally broadband, higher-order-DMD [99] provides a vector-auto-regressive extension
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of DMD, where each snapshot xi+d, is approximated using a linear model of the form

xi+d = A1xi + A2xi+1 + · · ·+ Adxi+d−1 + νi+d, for i = 1, 2, . . . , (N − d),

where Aj are matrices and d is the number of past snapshots used in the prediction of the

current time-step. Using the POD modes of the snapshot matrix X, the snapshots are

first projected onto a lower dimensional space (as in DMD), where a similar equation to

the one above is then expressed in matrix form. The resulting matrix is then treated in

an analogous manner to the companion DMD matrix (2.6) and decomposed into modes

and eigenvalues. The contribution in [129], which allows for more complex models, is also

known to improve the performance of DMD for flows during transition. The method has

been successfully applied on a laminar supercritical cylinder wake.

The variants above assume that the dynamics of the underlying system are time-

invariant. Online DMD [178] modifies the cost function in (2.14) to get

Ji :=
i∑

j=1
ρi−j∥x′

j − Aixj∥2
2,

where Ai can now capture a slowly-time-varying dynamics matrix at time step i and 0 <

ρ ≤ 1 is a constant that determines the level of emphasis on reconstructing the recent

states.

Importantly, the above variants concentrate on modelling the natural evolution of an

unforced dynamical system. DMD with control (DMDc) [137] is an algorithm designed

for data collected in the presence of control inputs. The algorithm allows for simultaneous

approximations of a dynamics matrix A and an input matrix B describing the influence

of an actuator on the extracted low-order model. We will discuss this algorithm in more

detail in §4.1.

Improved Approximation of the Koopman Operator. As discussed in §2.3.1, the

accuracy of the Koopman approximation, where the finite-dimensional nonlinear dynam-
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ics of the system are approximated using a linear operator, is subject to the observable

measurements x being rich enough to form an invariant subspace. In theory, the required

vector of observables for satisfying this condition can be infinite-dimensional. However,

DMD is based on the assumption that a rich, finite-dimensional state can lead to an ap-

proximation of the Koopman operator. There have been a number of approaches to finding

improved approximations of the Koopman operator (over and above standard DMD) in

cases where the measured data is low-dimensional or insufficiently rich to produce such a

good approximation.

An example of this approach is the Extended DMD algorithm [171] where, instead of

applying DMD to measured snapshots X and X ′, first a predefined dictionary of func-

tions Ψ(·) is applied to the measured states in X and DMD is applied to model the time

progression of the transformed matrix of snapshots from Ψ(X) to Ψ(X ′). For example,

for two-dimensional snapshots xi ∈ R2 a quadratic polynomial dictionary could be used

to yield the extended snapshot ψ(xi) as follows:

xi =

a
b

 7−→ ψ(xi) =



a

b

ab

a2

b2


.

DMD can then solve the optimisation problem

minimize
A

∥Ψ(X ′)− AΨ(X)∥2
F , (2.22)

where A is a matrix of appropriate dimensions. In this way, higher-order spatio-temporal

relations may be searched for within the given data ensemble. It has been shown that for

a large enough functional dictionary Ψ(·), the resulting matrix A does indeed converges to

the Koopman operator [94], and there have also been efforts to simultaneously extract the
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optimal dictionary functions Ψ(·) [103]. A practical limitation of this method, however,

is that increasing the order of the underlying functional dictionary rapidly leads to the

dimension of Ψ(X) becoming much larger than the dimension of the underlying snapshot

data ensemble. Consequently, robust model fitting cannot be achieved in this context,

limiting the polynomial order of the dictionary used. This is not so problematic if the

dimension of the underlying snapshots is small, a situation which arises if the snapshots

are the states of a low-order nonlinear model, such as the Lorenz attractor, which is of-

ten used to motivate development of such methods. However, when the underlying data

is drawn from a realistic fluid mechanics problem the underlying size of each snapshot

xi ∈ Rp is typically large with p ≥ 105. Here, even moving from linear to quadratic

dictionaries immediately runs in overfitting problems.

While alternative methods have been proposed recently to address this issue, such as

Kernel DMD [172] or Hankel DMD [6], it is still unclear to what extent this so-called curse

of data-dimensionality can be adequately resolved in the application of extended-DMD

methods. In this thesis, we will be using high dimensional and often noisy experimental

data, where the applicability of existing methods is limited. We will explore in §5 the

use of higher-order methods for structure extraction and dynamic modelling which both

exploit DMD and can be applied to noisy high-dimensional data.

2.4 Optimal Mode Decomposition and Low-rank

DMD Variants

To-date there have been several attempts to modify the DMD algorithm in order to ex-

tract low-rank approximations of any chosen order directly from high dimensional data.

In §3.1 we will give a brief, yet critical, overview of these techniques and their weaknesses.

Here we present a more detailed review of the existing variants.
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The first attempt at a low-rank DMD model was presented in [152], where it is shown

that a further advantage of SVD-based DMD over the Arnoldi formulation is that it im-

plies a natural truncation that can be used to discard low-energy modes. In particular,

the fact that SVD-based DMD explicitly uses the POD matrix U in its optimisation

problem formulation (2.14) implies that further, and natural, dimensional reduction can

be achieved simply by truncating the POD matrix to retain only higher-energy modes,

before solving a reduced version of (2.14). Such an approach assumes that lower-energy

modes are associated with measurement noise and incoherent events. This remains the

most widely used method for low-rank DMD modelling.

An alternative approach, Optimised DMD introduced in [39], is based on the Arnoldi

form of DMD where the eigendecomposition of the companion DMD matrix S = PΛP−1

form yields the Vandermonde matrix

P−1 = V̂ =



1 λ1 λ2
1 λN−1

1

1 λ2 λ2
2 · · · λN−1

2
... ... ... · · · ...

1 λN λ2
N λN−1

N


.

The Koopman approximation of the snapshots X can then be expressed using the DMD

modes Φ and matrix V̂ expressed as X = ΦV̂ + ν, where ν is a matrix of residuals. An

optimal r-dimensional DMD, would lead to the new Vandermonde matrix

V̂r =



1 λ1 λ2
1 λN−1

1

1 λ2 λ2
2 · · · λN−1

2
... ... ... · · · ...

1 λr λ2
r λN−1

r


,

which can in turn be used in the approximation

X = ΦrV̂r + ν,
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where Φr is the reduced-order matrix of DMD modes. Since the matrix V̂r is not invertible,

the Moore-Penrose pseudoinverse V̂ +
r can be used to find the optimal modes Φr = XV̂ +

r

as a function of the optimal matrix V̂r and the snapshot matrix X. Using this expres-

sion, the question of finding the optimal low-order DMD, is reduced to that of finding

the optimal Vandermonde matrix that minimises the cost function J := ∥X −XV̂ +
r V̂r∥2

F .

Unfortunately, at present, there are no computationally efficient algorithms to solve this

optimisation problem due to the nonlinearities introduced by the structure of the Van-

dermonde matrix in the optimal cost.

In particular, the difficulty is that one must work with the Vandermonde form of a

matrix, and as a result the problem should be formulated as one of finding r eigenvalues

{λi}r
i=1 = {λ1, λ2, · · · , λr} that minimise the cost function J . Nonetheless, in cases where

a solution is available, the results of Optimised DMD have been shown to outperform the

original DMD method [163]. An improved version of the algorithm has been proposed

recently that calculates a range of optimised-DMD models and averages them to find more

robust models [148].

Throughout this thesis, we will make extensive use of the Optimal Mode Decomposi-

tion (OMD) algorithm [174]. We will use this algorithm both for the decomposition of

challenging datasets, and also extend it to present a new decomposition technique in §4

which seeks to prioritise measurement processes in the computation of coherent structures

and reduced-order models. Here, we will first present OMD as an algorithm for extracting

a low-order DMD-like dynamic model. Once we have presented the algorithm in detail,

we will comment on its potential as a general method for finding dynamically relevant

projections of high-dimensional data.

OMD does not assume, as in DMD, that the POD modes of the snapshots provide the

optimal projection matrix for finding a low-order linear model. Instead, OMD finds the

optimal projection matrix and the reduced order dynamics matrix simultaneously, in the

sense that it solves the optimisation problem
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minimize
L,M

∥X ′ − LML⊤X∥2
F

s.t. L⊤L = I,

M ∈ Rr×r, L ∈ Rp×r

(2.23)

where r ∈ N is the rank of the matrix LML⊤ fitting the evolution of the flow over one

time-step and is a parameter prescribed by the user. The matrix L ∈ Rp×r is an optimi-

sation variable representing the projection between the high dimensional snapshots and

their r dimensional representation L⊤X.

To solve the optimisation problem 2.23, the cost function is first differentiated, as is

shown in [174], with respect to the matrix M to give

∂∥X ′ − LML⊤X∥2
F

∂L
= 2(LXX⊤LM − L⊤XX ′⊤L).

By equating the value of the derivative to zero, an expression for the optimal low-order

dynamics matrix M can be obtained given any fixed projection matrix L. In particular,

that M(L) is given by

M(L) = L⊤X ′X⊤L(L⊤XX⊤L)−1. (2.24)

Note that for L = U , where U is the matrix of POD modes of the snapshot matrix X,

the optimal matrix M is equal to the DMD dynamics matrix in (2.15). In other words,

DMD is a special case of OMD where L = U .

With this expression in hand, the OMD optimisation problem (2.23) is transformed

into a single-variable optimisation over L, by substituting (2.24) in (2.23). Applying

the identity ∥A∥2
F = tr(AA⊤) to the resulting cost function one can further simplify the

optimisation problem to
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maximize
L

g(L) := ∥L⊤X ′Q(L)∥2
F .

s.t. L⊤L = I, L ∈ Rp×r,

Q(L) = X⊤L(L⊤XX⊤L)−1L⊤X.

(2.25)

Here we must introduce the Grasman manifold Gr,p, which is defined as the manifold

of all r-dimensional subspaces of the p-dimensional space. An involved, yet trivial, cal-

culation implies that for any orthogonal transformation matrix R, the pairs (L,M) and

(LR,R⊤MR) satisfy

g(L) = g(LR).

In view of the fact that Im(L) = Im(LR) for any orthogonal matrix R, this implies that

the OMD cost function is equivalent for any matrix L whose columns span the same r-

dimensional subspace of Rp. Thus, OMD effectively searches over the Grassman manifold

Gr,p to find an optimal r-dimensional subspace of Rp upon which to model the dynamics

observed in the underlying, high dimensional, data ensemble.

The optimisation problem (2.25) can be solved using an iterative conjugate-gradient

method [65] which takes advantage of the fact that each element of the manifold can be

represented by infinitely many orthonormal matrices L. This algorithm is presented in

more detail in §4, where a new variant of the algorithm is developed.

It should be noted that the function −g(L) is in general nonconvex and therefore the

conjugate gradient-based algorithm is not guaranteed to converge to a globally optimal

solution. However, in a sense, the OMD algorithm necessarily improves on DMD. The

reason is that OMD initialises the matrix L with an appropriately truncated set of POD

modes and, as explained above, DMD is a special case of OMD where the projection

matrix L is fixed to be the matrix of POD modes. Hence, if the conjugate gradient im-

plementation of OMD makes a step to decrease −g(L), then this cost will be lower than

that of DMD, meaning that even if a local minimum is found, this can be viewed as an

improvement on DMD.
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Once the optimisation problem (2.25) has been solved, the OMD modes and eigenvalues

are defined in a similar fashion to DMD. The eigendecomposition of matrix M gives

M = PΛP−1

and the modes (columns of Φ) and eigenvalues are defined by

Φ = LP, µi = log(λi)
∆t , i = 1, . . . , r. (2.26)

As this discussion shows, OMD does not rely on POD modes for projecting the dataset

onto a low-dimensional space. By finding the optimal dynamics matrix M as a function of

the projection matrix L, the algorithm defines the problem of finding a low-order dynamics

model to one of finding a suitable linear projection. The true potential of this algorithm

is its versatility in taking dynamical considerations into account while simultaneously

finding low-order projections.

A situation in which the extra flexibility is beneficial is considered in §4. While extract-

ing DMD modes from high-dimensional snapshots of a flow field can help the practitioner

model the flow’s dynamics, it is often the case that one would like to estimate the current

state of the flow using only a very limited number of measurements (e.g. those which

could realistically be sampled in real-time such as hotwire probes). In §4, a new algo-

rithm is developed which builds upon the fact that the projection matrix L can be viewed

as an optimisation parameter in order to balance (i) the ability of the extracted model to

reconstruct the dynamics of the underlying flow with (ii) its ability to capture structures

which are observable from the given measurable output.

Since the development of the original OMD method, there have been many extensions,

often inspired by Koopman theory, which also seek to replace the POD projection opera-

tor U with more advanced projection techniques [160]. The majority of these methods use

nonlinear mapping techniques, and often neural networks in particular, to find a reduced-
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order state that follows a linear temporal progression. In the next section, we will review

some of these methods as well as the necessary mathematical tools used in the design of

neural network models before proposing a new application of this approach in §5.

2.5 Neural Networks for Data-Driven Model

Discovery

In this section, we review the use of neural networks (NNs) in dimensionality reduction

and reduced-order modelling of fluid flows. To understand why NNs are finding increasing

application in data-driven fluid mechanics, in §2.5.1 we will review some of the mathe-

matical tools and techniques that are fundamental to NN models. We will also introduce

the necessary terminology to develop the modelling approach proposed later in §5, but

refer the reader to [100, 64, 23], and [31] for an in-depth discussion of Neural Networks.

2.5.1 An Overview of Neural Networks

Neural networks are simply a class of, generally nonlinear, mapping functions. Despite

the wide variety of techniques and architectures that fall under the broad category of a

neural network, one must always keep in mind that, in essence, a neural network is simply

a mathematical function, like any other, with an input and an output.

Depending on the specifics of a problem, the input x of the neural network may be a

scalar, a vector or a tensor of any dimensions. In the following discussion, we assume that

the inputs and outputs are vectors.

The building blocks of a neural network are called layers. Each layer is a function

whose input is the output of the previous layer. The output of the final layer is then the

output of the network. In mathematical terms, a neural network maps its input x to an

output y through the composition of several layers of functions fi(·) such that
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y = f(x) = (fm ◦ fm−1 ◦ fm−2 ◦ · · · f1) (x). (2.27)

The parameter m quantifies the number of function compositions and is referred to as the

depth of the network. For 1 ≤ i < m, the outputs of the functions fi(·) are referred to as

the hidden layers. The functions fi(·) are, in general, vector-valued and the dimension of

the output vector at each layer is referred to as the dimension of the ith hidden layer.

What motivates the recent surge of interest in the use of neural networks, particularly

in the context of data-driven model discovery, is the so so called universal approximation

theorem [82], which states that any function may be approximated by a sufficiently large

and deep neural network. To explain this theorem in more precise terms we must first

introduce the notion of fully connected layers, which are the simplest type of NN.

Fully connected layers. A fully-connected layer has two simple building blocks: ma-

trix multiplication and element-wise, typically nonlinear, functions referred to as activa-

tion functions. An illustrative example is of a one-layer fully connected network given,

for an input x ∈ Rp, by

f1(x) = σ(W1x+ b1) =



σ(z1)

σ(z2)
...

σ(zn)


, z = W1x+ b1 = (zi)n

i=1 (2.28)

where σ : Rp → Rn is a nonlinear activation function, which acts equivalently on each of

its n elements via a scalar-valued function σ : R → R. Here, n is the dimension of the

layer, b1 ∈ Rn is a vector of constants referred to as the bias vector, and z is the output

of the linear function z = W1x + b1 where W ∈ Rn×p is a matrix of constant weights.

Activation functions can take many forms, with a common choice being the rectified linear

function
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σ(ξ) =


0 ξ < 0,

ξ ξ ≥ 0,

which introduces structured nonlinearity into the network.

A fully connected NN with only one hidden layer is referred to as a shallow network.

A deeper, fully connected, network is made of many fully connected layers of the form

(2.28) arranged in composition as in (2.27), where the output of the previous layer is used

as the input of the current layer.

The universal approximation theorem states that for an arbitrary function g : Rp → Rr,

there exists a one-layer neural network of the form (2.28), possibly with a large internal

dimension n, such that the neural network can approximate g to an arbitrary level of

accuracy. Specifically, there exists n ∈ N, weights W1 ∈ Rn×p and biases b1 ∈ Rn and a

further linear operation W2 ∈ Rr×n such that

g(x) = W2f1(x) + ν(x).

and for which the fitting residual ν(x) can be made arbitrarily small on any compact

subsets of the input parameter x ∈ Rp [82]. This, however, does not imply that finding

the matrices W1 and W2 and the activation function σ(·) for an arbitrarily small fitting

error is trivial.

In practice, in most cases increasing the depth of the model, by repeating the com-

posing the same building blocks often leads to better approximations than increasing the

complexity (i.e., increasing n) of a single layer. A more recent contribution has proven the

universal approximation theorem for NNs with arbitrary depth [107]. For completeness,

here, we expand a typical deep fully connected network in terms of its weights and biases

such that

f(x) = h(Wm(· · ·σ(W2(σ(W1x+ b1)) + b2) · · · ) + bm)
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where Wi and bi denote the weights and biases of each layer and σ is a nonlinear activation

function. Note that the function h(·) at the last layer can be specifically designed for a

certain task. For regression models, which are of interest to us, function h(·) is often a

linear matrix multiplication.

It is important to note that the number of optimisation parameters in the model in-

creases with the depth of the NN and also with the dimension of the hidden layers. Fully

connected networks are therefore not typically suitable for processing high-dimensional

data such as images or fluid flow fields, due to the high number of optimisation parameters

that such an aim would require.

Convolutional Neural Layers. Convolutional neural layers are often used in conjunc-

tion with pooling layers, explained below, as means of reducing the dimensions of a high

dimensional input before a specific task, such as regression or classification, is carried out

using the output of the convolutional layers. Convolutional layers can achieve dimension-

ality reduction with significantly fewer parameters than fully connected networks.

The main building block of a convolutional layer is a cross-correlation operation, es-

sentially a discrete convolution operation. For a vector x ∈ Rp, the ith element of the

cross-correlation vector with a filter W = (wi)n
i=1 is defined by

(x ⋆ W )i =
n∑

m=0
xi+mwm,

where ⋆ is the notation used for cross-correlation. In a similar way to a fully connected

network, an element-wise nonlinear activation function is then applied to the outputs of

the cross-correlation operation such that

σ(x ⋆ W + b) =



σ((x ⋆ W )1 + b1)

σ((x ⋆ W )2 + b2)
...

σ((x ⋆ W )p−n+1 + bp−n+1)


,
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where b is a vector of constant biases.

The cross-correlation operation is often accompanied by a so-called pooling operation.

An example of a pooling operation is the max-pooling operation where the input vector

is divided into blocks of length ℓ and the element with the highest values in each block i

is defined to be the ith element of the output vector. In each element of the output of a

max-pooling operation, can be expressed as

(h(σ(x ⋆ W + b)))i = max(xj, xj+1, · · · , xj+ℓ−1) for j = (i− 1)ℓ+ 1.

Note that other pooling operations can be applied in a similar way, e.g. averaging of the

elements within each block. An illustrative example of the operations above is presented

in §A.2

The combination of the cross-correlation operation and the pooling operation is es-

pecially useful in cases where the neighbouring elements of the input vector are highly

correlated and it is reasonable to assume that a smaller number of elements can represent

the information within each local block of the input vector. An example of an input that

would satisfy this criterion is an image with spatially coherent structures, where pixels

in a local region can be highly correlated [23]. We note that to maintain an intuitive

understanding of the local regions in an image, it is often represented as a tensor. In

a similar way to the case of fully connected networks, the depth of the network can be

increased by using the output of one layer as the input to another convolutional layer.

Typically, convolutional layers achieve dimensionality reduction with fewer optimisable

parameters than fully connected networks, making them an appealing technique to work

with high dimensional data, such as images [96, 73].

The main application of neural networks in this thesis, is in analysing modal time series.

We now discuss a class of neural networks specifically designed to process temporal data.
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2.5.2 Recurrent neural networks

If one needs to model the relationship between an output and a sequence of time depen-

dent inputs, fully connected or convolutional networks require the input sequence to be

processed simultaneously. That is, there will be a unique weight and bias corresponding

to the same quantity at each time step. As a result, finding a mapping between a long

input sequence and an output using fully connected or convolutional NNs will require

a large number of optimisation parameters. An alternative approach is to exploit the

sequential nature of the input to reduce the number of parameters needed [64].

Recurrent neural networks, RNNs, are a class of neural networks designed for process-

ing time series. In a similar fashion to a discrete-time dynamical system, RNNs apply the

same optimisable weights to each snapshot of the sequence. We will give a detailed review

of RNNs in §5.2.1, where we employ them for order-reduction of modal time series. Here,

we give an overview of RNNs’ and argue their benefit over more traditional time-series

analysis tools, and over other NN frameworks.

RNN’s have close connections to discrete time dynamical systems. We first describe

the concept of an Elman Neural Network [50], defined analytically by the expression

h(tj) = tanh(Whia(tj) +Whhh(tj−1) + dh),

b(tj) = Woh(tj) + do,

(2.29)

that maps the input a(t) to the output b(t). The optimisable weights Whi, Whh, and Wo

are matrices of appropriate dimensions and are identified through training the network on

a training data ensemble. Note that if the activation function tanh(·) is replaced by the

linear activation function σ(x) = x, the equations become equivalent to those of a linear

discrete-time system with the state h, input a and the measurable output b. Similar to

the use of a rectified linear function described above, the use of the hyperbolic tangent as

an acquisition function, subtly, introduces nonlinearity into the model fit.
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Note that the introduction of the nonlinear activation functions allows the model to

appeal to the universal approximation theorem and thus be able to replicate any given

optimal mapping. At the same time, the sequential nature of the model, applying the

same mapping functions to repeat at each time-step, potentially lowers the number of

optimisable parameters. However, as will be further explained in §5.2.1, the recursive

multiplication Whhh(tj−1) in the Elman model presented here causes difficulties in train-

ing the neural network since the underlying optimisation parameters enter the problem

in a highly nonlinear manner rendering the underlying problem non-convex. Alternative

RNN models have been developed to address this issue [80].

Having explained three of the most notable variants of neural networks, we can now

look at a modelling architecture that is typically used in nonlinear order reduction, which

will be of fundamental interest to our study of low-order modelling of fluid flows.

2.5.3 Autoencoders and nonlinear dimensionality reduction

Autoencoders are models designed to find a low-order representation of a higher-

dimensional input. This can then be used as a simpler surrogate approximation to

the input vector, in an analogous manner to how the POD mode amplitudes enable a

lower-dimensional encoding of a high-dimensional fluid flow field.

In mathematical terms, for an input ensemble (xi)N
i=1 ⊂ Rp, an autoencoder seeks to

minimise the cost
N∑

i=1

∥∥∥xi − (g ◦ f)(xi)
∥∥∥2

F
,

by search over an appropriate space of, generally nonlinear, functions f : Rp 7→ Rr and g :

Rr 7→ Rp. The function f(·) is known as the encoder function and maps the (large) size of

the input variables x to a user defined reduced-order dimension 1 ≤ r < p. The function

g(·) is referred to as the decoder function, which is used to recreate a high-dimensional

vector, given input values in the low-order space Rr. In typical applications, both f and
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g are chosen to themselves be of one of the Neural Network classes introduced in previous

sections.

An interesting link to the linear dimensionality reduction techniques introduced in §2 is

the equivalence of shallow linear neural networks with POD [14]. If functions f and g are

assumed to be shallow fully connected neural networks, with a linear activation function

σ(x) = x, the optimal linear autoencoder is equivalent to projecting the input onto its

POD modes. The introduction of nonlinear activation functions can then allow the model

to capture more complex relations by appealing to the universal approximation theorem.

2.5.4 Neural networks for order reduction in fluids

There are currently two popular approaches in ROM of fluids that utilise NNs. The first

approach involves the use of NNs to find a coordinate transformation that maps each

snapshot of collected data to a vector that evolves linearly in time [160, 176, 110]. This

approach is inspired by the connections between the Extended-DMD algorithm [171] and

the Koopman operator. However, in extended-DMD a large set of functional dictionaries

are predefined or learnt [172, 103]. Using an autoencoder NN, the resulting coordinate

transformations in these methods amount to automatically constructing a finite set of dic-

tionary functions used in Extended-DMD [134]. There have also been implementations

that make use of the DMD with control [137] algorithm to devise linear models with con-

trol inputs [124]. However, the constraint that the temporal evolution is linear makes these

models difficult to train and in most cases unsuitable for noisy and high dimensional data.

The approach has been more successfully applied in linearising low dimensional PDEs,

such as a nonlinear pendulum with a continuous spectrum, a low dimensional model [110],

Burgers’ equation, the heat equation and the Kuramoto–Sivashinsky equation [61].

A second approach is that of reducing the order of the snapshots by treating each

snapshot as an image and using well-established techniques to find patterns in pictures.

We have mentioned that convolutional networks are suitable for processing inputs that

are arranged as images. An example of such data can be snapshots of a flow field. In
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recent years, there have been many studies that have used convolutional autoencoders to

find low-order representations of flows. The difficulty in using convolutional networks for

dimensionality reduction in fluids is, as explained in §2, that the snapshots of a fluid flow

often consist of spatially overlapping physically significant events.

It has been shown that, given a large enough training-set and a large enough set of con-

volutional filters, a convolutional NN can be used to reconstruct and forecast snapshots of

a flow over an airfoil [133] or a circular cylinder [57, 126], with higher precision than that

found using linear compression techniques such as POD. The extracted patterns, however,

do not correspond well with the well-known and physically intuitive flow structures that

linear techniques extract. In many cases, further analysis of the extracted features shows

that they include elements of multiple linear modes. Nevertheless, when used in conjunc-

tion with RNNs, the extracted low-order models perform very well in reconstruction and

forecasting tasks. Datasets analysed by a combination of a convolutional autoencoder

and an RNN-based evolution method were obtained using the supercritical laminar flow

over a cylinder, flow over an oscillating airfoil [49], shallow water equations [116], Burgers’

equations [116, 62], and the supercritical cylinder wake [49]. A study has also shown that

a generalisable model can be developed that encodes and predicts the wake of a range of

arbitrarily shaped cylinders [72].

2.5.5 Optimisation Algorithms for Training Neural Networks

So far, we have considered the theoretical ability of NNs to model complex mappings and

some of the building blocks used to create NN models. However, a significant practical

limitation to the use of NNs is the fact that their cost functions are highly non-convex

and thus have multiple local minima [64]. While this is not the case for shallow autoen-

coders with linear activation functions [14], once the move to nonlinear modelling is made

(the entire point of NNs is their potential as universal approximators) this necessarily

introduces local minima.
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The existence of local minimum is only a problem when the local minima have a signif-

icantly higher cost than the global minimum. However, more recent studies indicate that

for a large enough neural network, all local minima of a typical cost function have values

close to the global minimum [149, 44, 63].

Other challenges in optimising a neural network are saddle points and plateaus. The

study in [44] points out that saddle points are increasingly likely as the dimensions of pa-

rameter space increase since in high dimensions, the chance that all the directions around

a critical point lead upward (positive curvature) is exponentially small. The contribution

in [63] shows that, for canonical benchmark examples, there exists a large region of param-

eter space where the cost function is flat with a small (or zero) gradient. Consequently,

this creates difficulties for the use of classical gradient-based optimisation algorithms. On

the other hand algorithms such as Stochastic Gradient Descent, are known to be capa-

ble of escaping these regions [63]. This is the reason behind the widespread adoption

of gradient-based optimisation algorithms in training neural networks. Since we use a

gradient-descent-based algorithm in §5, we now introduce some of the necessary termi-

nology related to gradient descent optimisation in the training of NNs.

In gradient descent optimisation, the optimisable parameters W are iteratively updated

by finding the gradient ∂J
∂W

, of the cost function J with respect to the NN parameters W ,

and then subsequently updating the parameter values according to

W (i+1) = W (i) − α ∂J
∂W

(Wi),

where α > 0 is a constant known as the learning rate.

There are three major difficulties faced when applying gradient-descent algorithms to

NN optimisation problems. The first is that of excessive gradients, arising from high

sensitivity of the cost function J to some optimisation parameters. If this is the case

then, unless the learning rate α is sufficiently small, the optimisation strategy may miss

a minimum. The second challenge is presented by regions of parameter space for which
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the cost function is flat or has small gradients. Here, the update term α ∂J
∂W

(Wi) will be

small and therefore lead to a sluggish process for an iterative optimiser.

There are variants of the gradient descent algorithm that, to an extent, are able to

address these issues. The approach employed in this thesis is the ADAM variant [91].

ADAM stands for Adaptive Moments, and addresses the issue of slow convergence by

rescaling the learning rate for directions with a low absolute value of gradient, while also

correcting for any errors associated with initialisation.

The final major challenge associated with gradient descent for NN optimisation is that

of vanishing gradients, this is particularly true in models with deep computational graphs,

such as RNNs with a long sequence of inputs or outputs. Although the name vanishing

gradients may cause a confusion with the problem of flat regions in the cost function, this

problem refers to the difficulty of accounting for earlier layers of a computational graph in

updating the model parameters. The problem arises in RNNs where the same parameters

are used to process a long sequence of inputs to find the output of the model. It can

be shown that gradient descent will de-emphasise the information from earlier inputs in

updating the optimisable parameters. This issue is discussed in more detail in §5.2.1.

2.6 Modal decomposition techniques for flow control

Having discussed many methods of finding reduced order modelling of the flow, we will

now review notable cases where reduced order models have been used for the control and

estimation of fluid flows.

Before reviewing the contributions in the literature, we need to point out that methods

introduced so far have, for the most part, concentrated on extracting coherent features

that can be used in finding ROMs for a flow’s temporal evolution. In the context of a

discrete-time dynamic system of the form (2.30), the extracted modes and time series

from POD or DMD can help the practitioner find a dynamics matrix A. The challenge

of active control of a flow’s behaviour is more challenging in that it also requires a model
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for how a control input ui would affect the behaviour of the flow. In the context of the

dynamical system shown in 2.30, one would need a model for the input matrix B and, if a

measurement signal yi is to be modelled one also requires a model for the output matrix

C.

xi+1 = Axi +Bui

yi = Cxi

(2.30)

We will now mention some notable cases where ROM techniques have been used to

identify such models and underpin control and estimation methods in fluid mechanics. In

doing so, we try to mention how a control strategy was devised based on the ROM. We

note that this is by no means an exhaustive list of the applications of modal decomposi-

tion in flow control, but rather is indicative of approaches to the use of modal ROM for

flow control.

POD modes have been successfully used to guide control strategies for cylinder wakes

in the laminar regime in conjunction with neural networks. This approach avoids the need

to derive an explicit calculation of the effect of the control on the flow field [60]. A similar

approach was used in [156]. Explicit optimal control strategies have also been derived,

where one wishes to suppress POD mode amplitudes [67] with minimal actuation. The

inclusion of both velocity and pressure POD modes, as well as shift modes, have also

enabled robust explicit control strategies [22, 21]. Numerical results show the potential of

using POD models for the stabilisation of a cylinder wake in the turbulent regime [181].

Another application of POD-based models is the open-loop determination of the relative

importance of each control parameter. An example of such analysis is given in [54] where

the dominant control parameters for the wake of a cylinder controlled by a synthetic jet

were determined. POD has also been successfully used to estimate a flow-field based on

pressure readings [161]. We note that variants of POD have also been used for active flow

control. For example, the study in [12] gives a thorough account of the use of BPOD in

active control.
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DMD, for the most part, remains a tool for analysis and identification of coherent struc-

tures. However, there are variants of DMD specifically designed to extract models of the

form (2.30), notably the DMD-with-control algorithm [137]. This technique has been used

to extract models of the effects of vaccination in infectious disease control and, recently,

a modification of the DMD-with-control algorithm was used to analyse blood flow with

the pulsatile flow-rate as a control input [71].

DMD has also been used to analyse the effect of control inputs on the output of a dy-

namical system. Examples include the effects of forcing on jets [154, 168] and detonation

waves [115].



Chapter 3
Data-driven feature identification and sparse

representation of turbulent flows

Identifying coherent structures in fluid flows is of great importance for reduced order

modelling and flow control. However, extracting such structures from experimental or

numerical data obtained from a turbulent flow can be challenging. A number of modal

decomposition algorithms have been proposed in recent years which decompose time-

resolved snapshots of data into spatial modes, each associated with a single frequency

and growth-rate. Most prominently among them is dynamic mode decomposition (DMD).

However, DMD-like algorithms create an arbitrary number of modes. It is common prac-

tice to then choose a smaller subset of these modes, for the purpose of model reduction

and analysis, based on some measure of significance. In this work, we present a method

of post-processing DMD modes for extracting a small number of dynamically relevant

modes. We achieve this through an iterative approach based on the graph-theoretic no-

tion of maximal cliques to identify clusters of modes, before representing each cluster with

a single representative mode.

79
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3.1 Introduction

We have discussed the role of coherent structures in our understanding of fluid flows. As

presented in §2, modal decomposition is often used in data-driven fluid dynamics to ob-

tain coherent structures. At the heart of most modal decomposition methodologies is the

assumption that the flow field u(x, t), where t ≥ 0 is time and x is the spatial variable,

can be approximated by an expansion of the form

u(x, t) =
∑

i

ai(t)ϕi(x),

where ai(t) is the time series associated with the ith spatial mode ϕi(x). These modes are

candidates for the flow’s coherent structures.

A number of modal decomposition algorithms have been developed in the past decade

where the time series associated with each mode is assumed to have the form ai(tj) =

αiλ
j−1
i , where (tj)j≥0 is a discrete-time series and αi, λi ∈ C. An important benefit of

this assumption is that each spatial mode ϕi(x) is associated with a single frequency and

growth rate and, subsequently, we refer to this class of algorithms as single-frequency

methods. We have reviewed these methods in detail in §2.3.

For completeness, we will briefly revisit the SVD-based dynamic mode decomposition

(DMD), proposed in [152], and which uses an ensemble of time-resolved snapshots to find

spatial modes.

In particular, given an ensemble X = {xi}N+1
i=1 ⊂ Rp of N + 1 snapshots sampled at a

common time-step ∆t, one can construct matrices

X =


↑ ↑ ↑

x1 x2 · · · xN

↓ ↓ ↓

 , X ′ =


↑ ↑ ↑

x2 x3 · · · xN+1

↓ ↓ ↓

 ,

where each column of the matrix X ′ is one time-step ahead of the same column in matrix

X. DMD approximates the dynamics of the observed data by constructing a model of
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the form

xi+1 ≈ UÃU⊤xi (3.1)

over the sampling time-step ∆t. Here, U ∈ Rp×N is taken from the singular value decom-

position X = UΣV ⊤, while Ã ∈ RN×N is the solution of the optimization problem

Ã = argminA

∥∥∥X ′ − UAU⊤X
∥∥∥2

F
= U⊤X ′V Σ−1, (3.2)

and ∥ · ∥F denotes the Frobenius norm.

To extract the DMD modes from this model, let Ã = PΛP−1 be an eigendecomposi-

tion of Ã with eigenvectors pi and eigenvalues contained in Λ = diag(λi). Since UÃU⊤

approximates the observed evolution over a time-step ∆t, the DMD modes ϕi are defined

by ϕi = Upi, each of which is associated with a DMD eigenvalue µi = log (λi)/∆t.

It is worth reiterating that, as was explained in §2.3, in many cases the assumptions

upon which the standard DMD algorithm is based must be adjusted. Many variants of

DMD seek to improve on specific aspects of the standard implementation addressing, for

example, noisy data, irregular sampling, streaming snapshots, and online implementation

[166, 75, 76, 178].

In its standard implementation DMD obtains as many modes as the number of snap-

shots N and, for typical applications this is large: N ∼ O(102−3). There are, however,

systematic ways of calculating a smaller number of single-frequency modes. The simplest,

and perhaps most natural, is to replace U in (3.2) with the truncated matrix Ur ∈ Rp×r

whose columns are the first r singular vectors of X, and to replace Σ and V by analogously

truncated matrices to form Ãr = U⊤
r X

′VrΣ−1
r . In this case, only r modes

{ϕi}r
i=1 =: DMD(X , r)
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are obtained, using the eigendecomposition of Ãr. Many variants of DMD, including ex-

act DMD, DMDtls and streaming DMD, also use rank reduction as a way to reduce the

number of resulting DMD modes.

In a similar spirit, optimal mode decomposition, OMD, achieves the goal of finding a

small set of modes by solving a rank-constrained optimization problem corresponding to

(3.2) [174]. In particular, OMD minimizes ∥X ′−LML⊤X∥2
F over both a rank-r projection

matrix L (playing an analogous, but generalised, role to the POD modes) and a low-order

dynamics matrix M ∈ Rr×r. Modes are then extracted in an analogous manner to DMD.

In practice, for any method which reduces the number of modes, one must choose an

arbitrary value for the mode-reduction parameter r. One approach is to extract modes

for a range of values of r and analyse the sensitivity of the resulting decomposition. This

was followed, using OMD, in [13] for flow past a multi-scale array. However, if the prac-

titioner does not have any prior knowledge of the number of dominant features present

in the flow, such analysis may be challenging. Furthermore, dramatically reducing the

truncation dimension can have the effect of modifying the spectral information associ-

ated with each mode. Figure 3.1(a-b) show the discrete-time eigenvalues λi for a typical

DMD implementation (specifically for flow past an axisymmetric bluff body studied in

§3.3). Although, as [45] explains, some of the mode damping ratio is due to measurement

noise, Figure 3.1(a-b) indicates that the mode damping ratio increases as r decreases.

Such spurious damping is less pronounced when OMD is applied in Figure 3.1(c-d), but

is nonetheless clearly present in the output of both algorithms.
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(a) (b) (c) (d)

Figure 3.1: Discrete-time eigenvalues of DMD and OMD when applied to data for flow
past an axisymmetric bluff body (described in §3.3) at different choices of the
mode reduction parameter r. a) r = 2500, b) r = 500, and OMD eigenvalues
at b) r = 2500 and d) r = 500.

In other words, the benefit of constructing only a small number of modes comes at the

cost of potentially corrupted spectral information. An alternative approach that has been

widely adopted, for example in [86] and [66], which we also follow in the Thesis, is to

first compute a large number of modes and then post-process the results to either pick or

generate a smaller number of representative modes.

To achieve this aim, we require a method to determine which DMD modes have the

most significant contribution to the underlying dynamics. One way is to appeal to the

modal expansion

xj ≈
N∑

i=1
αiϕiλ

j−1
i , (3.3)

as explained in [146], where ϕi ∈ Cp are the DMD modes, normalised so that ∥ϕi∥2 = 1,

and αi ∈ C are complex constants. For sequential data, these are typically obtained by

substituting j = 1 in (3.3) and solving the linear least-squares problem

min
(αi)n

i=1

∥x1 − Φα∥2
F , (3.4)

where α is a column vector containing the constants αi and Φ is a matrix whose columns

are the DMD modes. This and a similar ranking method, which is more suitable for

non-sequential data, were explained in [166] as methods of scaling DMD modes according

to the significance of their contribution to the data. The ranking of the modes is formed
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by assigning a measure of significance, σi, to each DMD mode ϕi. In this case, the value

of σi = |αi| is referred to as the amplitude of the mode ϕi (see [153] and [68] for example).

Note that in this method all DMD modes are used to recreate the snapshots of data.

Conversely, a sparse representation of the system would reconstruct much of the original

data using as few modes as possible.

Sparsity promoting DMD, DMDsp, proposed in [86], achieves this by solving the opti-

misation problem

minimize
α

∥X − ΦDαV̂ ∥2
F + γ∥α∥1, (3.5)

where X is the matrix of the snapshots, Φ is a matrix whose columns are the normalised

DMD modes, Dα := diag(α) and V̂ := (λj−1
i )n

i,j=1 is the Vandermonde matrix formed

from the DMD eigenvalues. Finally, γ ≥ 0 is a parameter which encourages a sparse

solution to the optimization problem. The first term in (3.5) amounts to fixing λi and Φi

and finding the optimal coefficients αi in (3.3), while the second seeks to penalise a large

number of non-zero αi coefficients. Importantly, DMDsp does not calculate new modes or

eigenvalues. Instead, it retains a sparse subset of the original DMD modes. The ℓ1-norm

regularisation allows the user to specify the emphasis on the sparsity of the model, and

thus models of various orders can be constructed. It is still, therefore, the case that further

sensitivity analysis is required in order to determine a sensible number of modes to use

for reduced order modelling. Ideally, one would hope that there is an obvious choice of

cardinality, where using more modes only marginally reduces the discrepancy between the

original data and the reconstructed data. However, as shown in §3.3, this is not always

the case for DMDsp and further analysis may be required if the quality of reconstruction

does not plateau as the cardinality of the sparse set increases, or if such a plateau occurs

at a high cardinality.

In the Thesis, we propose an alternative method which seeks to reduce the model or-

der by analysing the spatial similarity and the spectral similarity of DMD modes. The

presented algorithm identifies clusters of spatially similar modes, represents the modes in
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each cluster with a single mode and, by comparing those representative modes, iteratively

regroups the modes into larger clusters. In §3.2.1 we first define a measure of similarity

between two modes, and then construct a graph which contains the similarity measure

between each pair of modes. We then review the necessary concepts from graph theory

and formulate the clustering problem in §3.2.2. In §3.2.3 we explain how our method

consolidates the (possibly large number of) dynamic modes into a smaller number of clus-

ters of similar modes. In §3.2.4 we explain how to rank each cluster, by appealing to

the original ranking measure for the modes in each cluster. §3.2.5 introduces a spectral

similarity measure which can also be applied to avoid spectrally dissimilar, but spatially

alike, modes being clustered. §3.2.6 explains how the practitioner can employ a range

of modal decomposition algorithms and mode-ranking methods in conjunction with the

presented clustering algorithm. In §3.3 we apply the clustering approach to a hierarchy

of test-cases: DNS snapshots of flow past a circular cylinder at Re = 60, PIV snapshots

of flow past a rectangular cylinder at Re = 104 and PIV snapshots from the flow past an

axisymmetric bluff body at Re = 1.88× 105.
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3.2 Methodology
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Figure 3.2: A schematic representation of the proposed mode clustering Algorithm 1. The
displayed arrows point in the direction of higher algorithm iterations and in-
dicate clusters formed either as an amalgamation of original modes (first it-
eration, middle pane), or via the amalgamation of clusters (second iteration,
right-hand plane).

Before presenting the details of our mode-clustering methodology, we first discuss a

schematic overview of the algorithm represented in Figure 3.2. In the left-most panel,

each of the possibly large numbers of original dynamic modes is represented by a circle

and modes which possess a high metric of similarity (as defined in §3.2.1) are connected

by an edge. In this way, the original set of DMD modes can be viewed as forming a graph.

The graph theoretic notion of maximal cliques, described in §3.2.2, is then employed to

identify initial groups of similar modes, which are shown circled in the left-most panel of

Figure 3.2. At the next stage, shown in the middle panel, we refer to each set of modes as

a cluster C(1)
j , and dimensional reduction is achieved by representing the (possibly large)

number of modes in each cluster with a single representative mode, denoted by larger

circles. The algorithm then proceeds iteratively, by finding maximal cliques of sufficiently

similar representative modes and regrouping the underlying modes into larger clusters
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(the right-most panel of Figure 3.2). The algorithm terminates when the clusters are

sufficiently distinct and the representative modes do not form maximal cliques. We now

explain the technical detail underpinning the clustering algorithm.

3.2.1 A measure for mode similarity

Assuming that the underlying data ensemble is real-valued, DMD modes and eigenvalues

are either real-valued or come in complex-conjugate pairs. As a consequence, the modal

expansion (3.3) of the underlying data ensemble implies that the proportion of the data

described by the model (3.1), that is UU⊤X , satisfies

UU⊤X ⊆
n⋃

i=1
spanR (Re(ϕi), Im(ϕi)) .

In other words, regardless of the modelling technique used to find a mode ϕi, the contri-

bution of this mode to the projected dataset UU⊤X is contained in the subspace spanned

by its real and imaginary parts. Importantly, since DMD modes are not spatially orthog-

onal, the respective subspaces spanned by any given pair of modes ϕi and ϕj may have a

non-empty intersection (i.e. they may overlap), a property which is captured by the angle

between the subspaces as defined in (3.6) below. By definition, pairs of modes which are

spatially similar will span similar subspaces. Consequently, if a large cluster of modes

spanning similar subspaces is found, the degree of multicollinearity amongst those modes

implies that the cluster could in theory be represented, more efficiently, by a smaller

number of modes. Since such clusters are known to exist as a result of approximating

nonlinear phenomena with a linear model [10], this motivates using spatial similarity as

a plausible means of dimensionality reduction in modal flow analysis.

A possible limitation for a clustering approach based solely upon spatial similarity is

in the case in which the underlying system possesses significantly different dynamical fea-

tures (i.e., modes with different spectral characteristics) which are, nonetheless, spatially

similar. Since, typically, a single mode is related to a single eigenvalue, it would not be
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desirable to seek to cluster such spectrally distinct modes. For fluid mechanical systems,

however, there is often a strong correspondence between the length-scales and time-scales

associated with dynamic phenomena. For example, eddies with larger length scales typi-

cally evolve at lower temporal frequencies than eddies with smaller spatial length scales.

Consequently, for fluid mechanical systems at least, a clustering methodology based upon

spatial similarity alone may be effective. In this chapter, such an approach is presented

first. However, in §3.2.5, an extension is presented which can systematically prevent the

clustering of modes which are spectrally distinct. This can be applied to systems which

are expected to possess spatially similar dynamical features but with distinct spectral

content.

Given a DMD mode ϕi ∈ Cp, let Ai := [Re(ϕi), Im(ϕi)] ∈ Rp×2. For modes ϕi and ϕj,

the statistic

θij = sin−1
(
∥Ai − Aj(A⊤

i Aj)∥2
)
, (3.6)

where ∥·∥2 denotes the largest singular value of a matrix, θij is the smallest angle between

the subspaces spanned by their respective real and imaginary parts [24]. For simplicity,

we consider (ϵ = cos(θij)) ∈ [0, 1] as the measure of mode similarity, with 0 denoting the

least similar modes, and 1 for modes which span the same subspace of Rp. Note that

we have not used the spectral information given by DMD, in our definition of similarity,

although this possibility is discussed in §3.2.5.

Our aim is to find clusters of spatially similar modes. To achieve this, we will draw upon

techniques from graph theory. In the following, it will be useful to express the similarity

pattern of a set of modes in a binary matrix. In particular, given a set {ϕi}n
i=1 of modes

and a tolerance level 0 ≤ ϵ ≤ 1, define coefficients dij ∈ {0, 1} by

dij =


1, if cos (θij)− δij ≥ ϵ,

0, if cos (θij)− δij < ϵ.
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We write d({ϕi}n
i=1) := (dij)n

i,j=1 ∈ Sn as the symmetric matrix created by these coef-

ficients, with the interpretation that a pair of modes are spatially similar if dij = 1 and

dissimilar otherwise if dij = 0. Note that dii = 0, meaning that we discount a mode’s

inherent self-similarity.

3.2.2 A graph-theoretical approach

In order to describe our clustering algorithm precisely, it is necessary to introduce some

elementary concepts from graph theory.

A graph G = (V , E) consists of a set of vertices V ⊂ N and a set of edges E ⊆ V×V , where

(i, j) ∈ E implies that there is an edge connecting vertex i to vertex j. More commonly,

the connections between the nodes are presented in an adjacency matrix A = (aij) ∈ Sn

where aij ̸= 0 if (i, j) ∈ E and aij = 0 otherwise. In this case, we write (V , E) = (V , A).

The values aij are known as the edge weights and signify the strength of the connections

between nodes i and j. An unweighted graph, is one where the edge weights are binary,

with aij = 1 if (i, j) ∈ E and aij = 0 otherwise. A graph is undirected when (i, j) ∈ E

if and only if (j, i) ∈ E . In this case, A is symmetric. It is also possible for an edge to

connect a node to itself. Such an edge would be called a loop.

Using the above definitions, a simple graph, is an unweighted, undirected graph where

there are no loops and each pair of nodes are connected with at most one edge.

Now, given a set {ϕi}n
i=1 of DMD modes, we may associate with them a simple graph

({1, 2, . . . , n}, d({ϕi}n
i=1)) using the measure of mode similarity from §3.2.1. The problem

of identifying clusters of modes is now re-expressed as one of finding sub-graphs with a

high connection density. In this context, a useful graph-theoretic notion is that of a clique

which, by definition, is a complete subgraph (i.e., one where each pair of vertices are

connected by a direct edge). A maximal clique is a clique which is not strictly contained

in any other clique.

All maximal cliques of a simple graph can be obtained using the recursive algorithm

developed in [27], variants of which have been used in a variety of applications [8, 92, 81].
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A brief explanation of the Bron-Kerbosch algorithm is included in §A.1. Using the notion

of maximal cliques to group modes, we ensure that as many similar modes as possible are

contained within each cluster. Maximal cliques are not partitions of modes, and therefore

a mode can be in two different maximal cliques. This allows for the mode to contribute

to more than one dynamical feature and prevents arbitrary classification of a mode. How-

ever, this gives rise to another issue that many maximal cliques may contain many of the

same modes. In other words, the problem of having many similar modes could just be

replaced by that of having many similar clusters. To minimise the chances of this occur-

ring, one can apply this idea iteratively by finding similar clusters and allowing them to

coalesce into larger ones.

In the following section, we describe such an iterative algorithm. The ultimate aim is

to identify a small number of dynamical features of interest from a larger initial ensemble

of modes. Note that in the following, given a graph G = (V , A), we let c(G) ⊆ 2V ∗ denote

the set of maximal cliques (whose members are subsets of V).

3.2.3 Creating Dynamic Mode Clusters Using Maximal Cliques

Consider a set of DMD modes {ϕi}n
i=1 and define, initially, the coarsest-possible set of clus-

ters C(0)
j := {ϕj}, for each j = 1, . . . , n. Next, consider the graph G0 := ({1, 2, . . . , n}, D0)

with adjacency matrix D0 = d({ϕi}n
i=1) and let {H(1)

j }n1
j=1 = c(G0) be its maximal cliques.

For each j = 1, . . . , n1, we call

C
(1)
j := {ϕi : i ∈ H(1)

j } =
⋃

i∈H
(1)
j

C
(0)
i

the cluster formed of the underlying modes associated with the clique H(1)
j .

We now seek to construct a representative mode for each cluster. To do this, we first

rescale the modes in each cluster C(1)
j using a given mode-ranking method. Examples of

suitable rescaling factors σ are the statistics presented in §3.1 or discussed subsequently
∗ the notation 2V means "the set of subsets of V"
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in §3.2.4, but may include any method of assigning to each mode a positive real number

representing its importance to the underlying data ensemble. We form the matrices

M(1)
j :=


↑

· · · ϕiσi · · ·

↓

 , for i such that ϕi ∈ C(1)
j ,

perform a singular value decomposition

SVD(M(1)
j ) = U (1)

j S
(1)
j V

(1)
j , (3.7)

and let the first left-singular-vector, the first column of U (1)
j , be the representative mode

ϕ
(1)
j of the cluster C(1)

j .

The subsequent iteration is to form cliques of the representative modes. To do this,

we create the adjacency matrix D1 := d({ϕ(1)
j }n1

j=1), from graph G1 = ({1, . . . , n1}, D1)

and find maximal cliques {H(2)
j }n2

j=1 = c(G1). The second-generation clusters of modes are

then defined by

C
(2)
j :=

⋃
i∈H

(2)
j

C
(1)
i , j = 1, . . . , n2.

This process can be repeated iteratively, as detailed in Algorithm 1, by forming repre-

sentative modes for each new cluster, forming the associated undirected graph and then

obtaining its maximal cliques. Since we are not considering the self-similarity of the

modes, the algorithm terminates at an iteration where none of the remaining clusters are

sufficiently similar for additional maximal cliques to form.
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Algorithm 1 An iterative algorithm for sparse feature identification
1: σ(ϕ) ∈ R+ ▷ chosen measure of mode significance

2: C(0)
j ← {ϕj}, for j = 1, . . . , n. ▷ 0th-generation clusters (DMD modes)

3: G0 = ({1, . . . , n}, d({ϕj}n
j=1). ▷ initial graph

4: {H(1)
j }n1

j=1 = c(G0). ▷ initial maximal cliques

5: k = 1.

6: while {H(k)
j }

nk
j=1 ̸= ∅ do

7: C
(k)
j := ⋃

i∈H
(k)
j
C

(k−1)
i , j = 1, . . . , nk. ▷ create clusters

8: M(k)
j := (ϕiσi, . . . ), i : ϕi ∈ C(k)

j ▷ matrix M(k)
j of rescaled DMD modes in C

(k)
j

9: {ϕ(k)
j }

nk
j=1 ← SVD(M(k)

j ) ▷ representative modes

10: Gk = ({1, . . . , nk}, d({ϕ(k)
j }

nk
j=1)) ▷ create graph, based on tolerance ϵ

11: {H(k+1)
j }nk+1

j=1 ← c(Gk) ▷ maximal cliques of the graph Gk

12: k ← k + 1

13: end while

It is important to note that not all clusters converge (in the sense that their underlying

DMD modes do not change) in the final iteration of the algorithm. In particular, at a

given iteration k, Algorithm 1 regroups the original DMD modes into different clusters,

using the similarity of the representative modes ϕ(k)
j . Now, at a given iteration, one or

more representative modes may not be similar to any others. Consequently, the clusters

represented by these modes will no longer coalesce with another cluster. This does not

imply that ϕ(k)
s should now be disregarded, but merely that the flow features represented

by it are judged distinct from those described by the remaining representative modes.

We, therefore, refer to these clusters as converged. Formally, C(k)
j is converged if and only

if C(k)
j ̸⊂ C

(k+1)
ℓ for all ℓ. Conversely, if C(k)

j ⊂ C
(k+1)
ℓ for some ℓ, then all the modes con-

tained in C(k)
j are also contained in C(k+1)

ℓ and therefore C(k)
j is referred to as a redundant

cluster.
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Since converged clusters may be obtained at any iteration, it is useful to define a mea-

sure of cluster significance with which the identified clusters can be ranked.

3.2.4 Ranking clusters

We first describe existing measures of individual mode significance, then extend these to

apply to clusters C(k)
j . Appealing to the expansion (3.3), measures of mode significance

typically take into account both the amplitude αi and growth rate |λi| of each mode ϕi.

Given that the spectral information λi is directly available, e.g. from DMD, the constants

αi can be found by solving the optimisation problem

min
(αi)n

i=1

∥X − ΦDαV̂ ∥2
F

where Φ is the matrix whose columns are the normalised DMD modes, Dα := diag(αi)

and V̂ := (λj−1
i )n

i,j=1 is the Vandemonde matrix formed using the DMD eigenvalues. This

is equivalent to solving (3.5) with γ = 0 and an analytical solution to it was proposed in

[86].

Since we are not utilising the ℓ1 norm regularisation, these values may give an inaccu-

rate representation of the significant features in the flow, since a mode may have a large

constant αi yet a small associated eigenvalue |λi| ≪ 1. For this reason, in this chapter,

we use a measure introduced in [95] in which each mode ϕi’s significance σ(ϕi) is defined

by

σ(ϕi) := |αi|

N+1∑
j=1
|λi|2(j−1)

 1
2

. (3.8)

Note that this metric is the ℓ2 norm of the time series multiplying each mode ϕi in

(3.3). Subsequently, we define the significance of a cluster as

σ(Cj) :=
∑

{i:ϕi∈Cj}
σ(ϕi). (3.9)
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If two clusters join to form a larger cluster in the next generation, i.e. if C(k)
i , C

(k)
j ⊂

C
(k+1)
ℓ , then the contributions of all the modes which make up the smaller cluster are

accounted for in σ(C(k+1)
ℓ ). This will make C(k)

i and C
(k)
j redundant. However, if C(k)

i

converges at iteration k, then σ(C(k)
i ) can be used for comparison with other clusters,

including the ones created during the later iterations.

3.2.5 Spectral similarity

So far, Algorithm 1 has been designed to only employ the spatial similarity of DMD

modes. A natural and simple modification is to use both spectral and spatial similarity

in the underlying definition of similarity between two modes. In particular, we define the

spectral similarity of two modes ϕi and ϕj by

sij = 1
1 + |Sti − Stj|p

, (3.10)

where Sti is the Strouhal number of mode ϕi, and p ∈ R is a user-defined parameter.

Figure 3.3 shows this family of curves at various values of p.

Figure 3.3: Families of spectral similarity curves given by (3.10) for p = 1, . . . , 4.

We can now augment the notion of spatial similarity by applying an analogous cut-off

parameter, s0, for spectral similarity and define a new adjacency matrix
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dij =


1 if cos (θij)− δij ≥ ϵ and sij ≥ s0,

0, if cos (θij)− δij < ϵ or sij ≤ s0.

If spectral similarity is employed, in subsequent iterations of Algorithm 1 the mean

Strouhal number of the modes in each cluster is used to measure the spectral similar-

ity of clusters.

The spectral similarity statistic sij considered in this thesis is defined in terms of the

absolute difference |Sti − Stj| of the non-dimensional Strouhal numbers of two modes. A

possible generalisation of this approach, which could be investigated in future research,

is to normalise this statistic to take into account the relative magnitude of each consid-

ered pair of Strouhal numbers. For example, a distance defined by replacing |Sti − Stj|

with a normalised term of the form |Sti − Stj|/|Sti + Stj| would emphasise differences

in Strouhal number in the low-frequency range St≪ 1 in comparison to the statistic sij

considered in this thesis. However, as will be observed in the subsequent analysis of bluff

body flows across a range of Reynolds numbers, the un-normalised statistic (3.10) proves

to be effective due to the fact that the underlying spatial similarity statistic is typically

found to be small for modes with even moderately distinct Strouhal numbers (see Figures

3.27 and 3.29, for example).

3.2.6 Modularity of the clustering algorithm

It is important to note that the mode ranking defined by (3.8) is only one of many pos-

sible methods to use within Algorithm 1. Indeed, the algorithm can employ any other

measure of mode significance, σ̃(ϕi) which assigns a positive real value to each mode.

The only required criterion is that the significance measures of all the modes in a cluster

can reasonably be aggregated to represent the significance of the cluster. For example,

one could use σ̃(ϕi) = |αi|, where αi is found using DMDsp or by solving (3.4). It is

important to note that for the chosen underlying significance measure, the distribution

of modal significance rankings σ(ϕi) is likely to be highly flow-dependent. Consequently,
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this flow-dependency will be inherited by the cluster ranking statistic (3.9). Therefore,

if a user requires an automatic method of classifying converged clusters into ones which

are “significant” and “insignificant”, a reasonable method would be to prescribe a cluster

rank threshold in terms of proportion of the total absolute sum of significance statistics∑
i σ(ϕi) of the underlying modes.

Finally, we note that Algorithm 1 does not depend on how the original dynamic modes

were obtained, that is, via DMD, exact DMD, OMD or any other standard modal algo-

rithm. If the obtained modes are not spatially orthogonal, Algorithm 1 can be used to

attempt to group them into clusters.

3.3 Results

In this section, we discuss the performance of Algorithm 1 when applied to modes obtained

from flows of increasing dynamic complexity. In particular, we analyse modes obtained

from DNS data of flow past a circular cylinder at low Reynolds number Re = 60; modes

extracted from experimental PIV data of flow past a square cylinder at Re ≈ 104; and,

finally, modes obtained from a more dynamically complex, and three-dimensional, flow

past an axisymmetric bluff body at Re ≈ 105. In each case, we determine an appropriate

value of the spatial similarity threshold ϵ and study the robustness of Algorithm 1. Algo-

rithmic performance is compared with the existing technique DMDsp, and the benefits of

employing the spectral similarity measure described in §3.2.5 are demonstrated for modes

obtained from flows of greater dynamic complexity.

3.3.1 Flow past a circular cylinder at Re = 60

The much-studied two-dimensional flow past a circular cylinder at a low Reynolds number

is dominated by the von Kármán street of periodically shed and advected vortical struc-

tures. Well-established reduced-order representations of this flow exist and are extracted,
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for example, using POD in [128], through weakly-nonlinear analysis as developed in [157],

or using OMD as in [97].

The known coherent structures of this flow, which one would expect to extract from

a modal analysis, are: the mean flow field; the oscillatory global modes associated with

the dominant vortex-shedding frequency; a non-oscillatory transient mode which adjusts

the mean flow from the steady state to the limit cycle, commonly referred to as the shift

mode; and a series of harmonics of the global mode.

To generate a data ensemble, flow past a circular at Re = 60 is simulated using the

in-house solver Pantheri, which was previously used and validated for the simulation of

cylinder flow in [106]. The code employs a finite volume method on an unstructured grid,

with spatial derivatives in the Navier-Stokes equations discretised using a second-order

central difference scheme, and time-stepping implemented using a second-order, three-

point backward scheme. The spatial domain for the full simulations is 48D in length and

32D in width, where D is the cylinder diameter. Uniform inflow U∞ = 1 is assumed, with

convective outflow, periodic boundary conditions on the lateral domain boundaries, and

no-slip conditions imposed on the cylinder boundary. The density and viscosity of the

flow were modified to achieve the Reynolds number Re = 60.

The described simulation was used to obtain an underlying data ensemble of 900 snap-

shots of the velocity-field (the same ensemble was also used for analysis in [97]). This

ensemble includes transition of the the flow from close to its unstable steady state, through

transition to its stable limit cycle. The 900 snapshots are sequential and separated by

a constant time step ∆t = 0.25s, meaning that the ensemble contains approximately 30

snapshots per shedding period. Figure 3.4 (a) shows one snapshot of the streamwise flow

field.
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(a)

4

(b)

Figure 3.4: (a) A selected snapshot of the non-dimensionalised streamwise velocity of flow
past a circular cylinder at Re=60. (b) Spectrogram of the streamwise velocity
signal at (x/D, y/D) = (6.47,−1.68).

To verify the significant frequencies, Figure 3.4 (b) provides the spectrogram of the

streamwise velocity at (x/D, y/D) = (6.47,−1.68) for snapshots 100 to 800. At each

snapshot t, the spectrogram shows the short-time Fourier transform of the signal in the

interval between t − 100∆t and t + 100∆t, utilising a Hamming taper function. The

Strouhal number associated with the global mode is clearly identified as St = 0.14, grow-

ing in amplitude through the transition to the limit cycle at approximately snapshot 500.

Amplitudes of the global-mode harmonics grow correspondingly throughout the date en-

semble.

DMD is applied to the snapshot ensemble and (3.8) is used to rank the significance

of each mode, with results shown in Figure 3.5 (a). To improve legibility, the mode

associated with the mean flow field is not included.

Peaks in significance associated with the shift mode at St ≈ 0, the global mode at St ≈

0.14 and its less-energetic harmonics are clearly observable.
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(a) (b)

Figure 3.5: The significance measure σ of DMD modes and clusters for flow past a circular
cylinder at Re=60. (a) Individual DMD mode significance, against Strouhal
number; (b) mode clusters significance against mean cluster Strouhal number.

We now apply Algorithm 1 to cluster the DMD modes, with ϵ = 0.98 with no con-

sideration of spectral similarity (s0 = 0). Figure 3.5 (b) shows the variation of cluster

significance with the average Strouhal number of the modes inside each cluster. Solid red

markers indicate clusters which contain more than one mode; hollow markers are single-

ton clusters. To improve legibility, only clusters with mean Strouhal number in the range

0 ≤ ⟨St⟩ ≤ 1 are shown, and the singleton cluster associated with the mean flow is not

plotted. Comparing Figure 3.5s (a) and (b), it can be seen that clusters of modes close

to the dominant flow frequencies (with mean cluster Strouhal numbers ⟨St⟩ ≈ 0.12, 0.25

and 0.38) are obtained. In addition, the second-highest ranked cluster with ⟨St⟩ ≈ 0,

corresponding to the shift mode is also identified. The representative modes for the three

highest-ranked clusters are shown in Figure 3.6.
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(a) (b)

(c)

(d) (e)

Figure 3.6: The streamwise velocity of representative modes: (a), (b) real and imaginary
parts of the global mode at ⟨St⟩ = 0.12; (c) the real shift mode at ⟨St⟩ = 0.008;
(d),(e) real and imaginary parts of the first harmonic of the global mode at
⟨St⟩ = 0.25.

3.3.1.1 Sensitivity to the mode similarity cut-off parameter ϵ

To study the robustness of the identified clusters to ϵ, Algorithm 1 was applied for 16

values in the range 0.5 ≤ ϵ ≤ 0.992. Intuitively, a low value of ϵ promotes cluster for-

mation and coalescence while a value ϵ ≈ 1 inhibits clusters. To investigate this effect in

more detail, Figure 3.7(a) shows, at each value of ϵ, the standard deviation of Strouhal

numbers of modes in non-singleton clusters, averaged across all clusters. It is clear that

increasing ϵ corresponds to less spectral variation within clusters. Two noticeable drops

occur at ϵ ≈ 0.8 and ϵ ≈ 0.95. In the former, for low spatial similarity cut-off parame-

ters, within-cluster variation is increased due to the global mode’s cluster also absorbing
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high-frequency, low significance, modes. Importantly, the low significance of these modes

implies that the representative global mode is not perceptibly modified. In the latter

case, increasing ϵ beyond 0.95 leads to multiple clusters forming at the primary and first-

harmonic shedding frequencies, decreasing within-cluster variation.

(a) (b)

Figure 3.7: Effect of the cut-off parameter ϵ on the clustering of Re=60 cylinder wake
modes: (a) average within-cluster variation; (b) the number of significant
clusters.

Finally, Figure 3.7 (b) denotes how the total number of significantly ranked clusters

varies with ϵ, in particular the number of clusters Sc whose significance metric satisfies

σ(Ci) > 20, corresponding to a cut-off at approximately the level of the second-harmonic.

Interestingly, decreasing ϵ (which promotes cluster formation) does not correspond to an

increase in the number of significant clusters demonstrating a level of algorithmic robust-

ness.

We now consider the performance of Algorithm 1 when applied to more challenging

data sets, and compare its ability to extract a sparse flow representation to the existing

DMDsp methodology.

3.3.2 Flow past a square cylinder at Re ≈ 104:

Flow past a square cylinder, with side-length D = 25.4 mm, at Reynolds number Re

≈ 104 is considered. The underlying flow dynamics are similar to those discussed in

§3.3.1, although this flow is in the turbulent regime. In the case of flow past a circular

cylinder, a Reynolds number Re ≈ 104 corresponds to the so-called shear-layer transition
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regime [173] in which the wake is three-dimensional, with higher Reynolds stresses than at

lower Reynolds numbers, and an associated reduction in length of the mean recirculation

region. Kelvin-Helmholtz shear layer instabilities and von Kármán vortices are present

at this Reynolds number. Similar behaviour for flow past a square cylinder has been

observed in experiments and simulations in [175].

On the other hand, unlike a circular cylinder, the separation points for a square cylin-

der are fixed at the leading edge corners. Moreover, while in other rectangular cylinders

with higher aspect ratios in which the flow may reattach to the cylinder, for the square

cylinder considered here the flow does not undergo reattachment [40]. The flow past a

square cylinder in this regime has been experimentally and numerically studied, with

[175] providing visualisations of the flow and comparisons to flows past other cylindrical

bluff bodies at the same Reynolds number. Studies have also detailed the variation of the

Strouhal number as a function of the Reynolds number for the square cylinder [132].

We analyse an ensemble of 1984 PIV snapshots, sampled at a constant frequency of

50 Hz, of a two-dimensional window of the velocity field with dimensions 1D ≤ x ≤ 6D

and −2.4D ≤ y ≤ 2.1D. As mentioned above, the cylinder has a side-length D = 25.4

mm and the snapshots are collected from an in-house water flume at Imperial College

with cross-sectional dimensions 600mm × 600mm resulting in a blockage of 4.2%. The

free-stream velocity was set to U = 0.313 ms−1, and the free-stream turbulence intensity

was measured to be 1.4%. Further details about the experimental set-up are available

in [90]. The streamwise and transverse components of the time-averaged flow field are

shown respectively in Figure 3.8 (a) and (b). Snapshots of the streamwise and transverse

velocity fields are shown in Figure 3.8 (c) and (d).
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(a) (b)

(c) (d)

Figure 3.8: Mean streamwise, (a), and transverse, (b), velocity field for flow past a square
cylinder at Re = 104; (c) a selected snapshot of the streamwise velocity; (d) a
selected snapshot of the transverse velocity field. Red markers in (a) are the
positions of the virtual probes. Colorbars indicate the appropriate velocity
component in ms−1.

Each snapshot contains streamwise and transverse velocity components at 49862 spa-

tial points, corresponding to a uniform grid of 233 and 214 streamwise and transverse

locations, respectively. Data is assembled into data matrices X and X ′, as discussed in

§3.1, to facilitate computation of DMD modes ϕi and significance statistic σ(ϕi) using

(3.8).

Figure 3.9 (a) shows mode significance against Strouhal number, hereafter referred to

as a mode’s decomposition frequency. To improve legibility, we only present modes in the

range 0 ≤ St ≤ 0.5. A number of highly energetic modes are observed for 0.13 ≤ St ≤

0.14, consistent with the findings in [132]. To further investigate whether the results in

Figure 3.9(a) are consistent with the spectral information from the flow, the time series

of the transverse velocity component is considered at six locations in the flow field. The

virtual probe locations (x/D,y/D), shown with red squares in Figure 3.8(a), are
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{(1.35, 1.46), (1.35,−1.46), (3.5, 1.46), (3.5,−1.46), (5, 0.9), (5,−0.9)} .

Power Spectral Densities (PSDs) of each time series, estimated using the Welch method,

are plotted in Figure 3.9(b) and show a consistent peak in a frequency band similar to

that extracted by DMD. However, Figure 3.9(b) also shows that, especially for probes

further downstream, there is also a less pronounced peak at St ≈ 0.27. This corresponds

to the first harmonic of the vortex-shedding, a feature which is not obviously captured by

considering σ alone.

(a) (b)

Figure 3.9: (a) Significance statistic σ for each DMD mode against decomposition Strouhal
number. (b) Power spectral density of the velocity time series against Strouhal
number at virtual probe locations indicated in Figure 3.8 (a)

It is interesting to note that another standard significance measure, the mode amplitude

σ = |αi| (equivalently found by applying DMDsp with γ = 0), does not produce results

consistent with the expected system frequencies of Figure 3.9(b). This is shown in Figure

Figure 3.10 (a). While it is the case that modes at the primary shedding frequency are still

highly-ranked, the highest-ranked modes have frequencies close to St ≈ 1.5, significantly

above the known dominant frequencies. In this case, taking the growth rate into account

via (3.8) nullifies the effect of this high amplitude behaviour.
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(a) (b)

Figure 3.10: Variation of the mode significance |αi| from DMDsp with Strouhal number
for parameter choice (a) γ = 0 and (b) γ = 9× 103.

We note, however, that by increasing the sparsity-promoting parameter γ, as shown in

Figure 3.10 (b), DMDsp can be applied successfully, which we now discuss.

3.3.2.1 Sparsity promotion using DMDsp.

DMDsp is applied, as in (3.5), for a range of sparsity-promoting parameter values γ. The

cardinality of a sparse representation is the number of modes with non-zero amplitudes,

and the performance loss (due to dimension reduction) is defined by

Πloss := 100× ∥X − ΦDαV̂ ∥F

∥X∥F

, (3.11)

where X is the snapshot ensemble, Φ is the matrix whose columns are the DMD modes,

Dα := diag(αi) is the diagonal matrix containing the mode amplitudes for a particular γ,

and V̂ := (λj−1
i )n

i,j=1 is the Vandermonde matrix defined in terms of the DMD eigenvalues.

Figure 3.11: Cardinality of the retained set of modes by DMDsp, against performance
loss.



3.3. RESULTS 106

The relation between performance loss and cardinality, as γ varies, is shown in Fig-

ure 3.11. From the inset, it can be seen that an initial increase in the cardinality of the

sparse flow representation leads to a steep decrease in Πloss. However, once cardinality has

reached 11 the rate of decrease in Πloss flattens but is still clearly decreasing. Indeed, the

performance loss does not fall below 30% until more than 400 modes are included in the

sparse set. This suggests that it may be challenging to definitively select an appropriate

value of the sparsity-promoting parameter γ.

Nonetheless, it is the case that for a wide range of values of γ, DMDsp correctly iden-

tifies a pair of modes corresponding to the dominant vortex shedding frequency observed

in Figure 3.9, and a mode corresponding to the mean flow. Furthermore, these features

are consistently the highest-ranked.

However, a closer analysis of the modes retained by DMDsp shows that many modes

contain similar spatial features and decomposition frequencies. We consider, for example,

DMDsp applied at γ = 9×103, which corresponds to the inflexion point at the cardinality

of 11 in Figure 3.11. The DMDsp mode amplitudes are plotted shown in Figure 3.10 (b)

where, to improve legibility, points corresponding to the mean mode and the complex

conjugate modes are not shown.
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(a) (b)

(c) (d)

Figure 3.12: An illustrative example of the similarity in the spatial features of the modes
retained by DMDsp at γ = 9 × 103. The real (a,c) and imaginary (b,d)
parts of the v component of two of the modes with non-zero amplitude αi in
Figure 3.10 (b).

It can be seen that only modes in the known dominant frequency band 0.13 ≤ St ≤ 0.14

have non-zero amplitudes. Furthermore, all modes with non-zero DMDsp amplitudes (in

this case 10 out of the 11 identified by DMDsp) have very similar spatial and spectral

features. An example of this is shown in Figure 3.12, where it should be noted that the

phase-shift from one mode (shown in (a), (b)) to the other (shown in (c) and (d)) is

irrelevant: both approximately represent the same advective feature.

The importance of this observation is that our chosen measure of cluster similarity,

defined in terms of the subspace angle (3.6), was specifically chosen to view such pairs of

modes as approximately equivalent. Indeed, if one is searching for a sparse flow model,

it may be desirable to only include a single mode to represent such a coherent struc-

ture. In DMDsp, it may be possible to obtain distinct flow features by reducing the

sparsity-promoting parameter γ, however, it is unclear how many modes resembling the

already-identified features must be added (and for which value of γ) before this is achieved.
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The purpose of Algorithm 1 is to seek sparse system representations that capture a range

of dynamical features more efficiently and systematically.

3.3.2.2 Sparse feature identification using mode clustering.

Algorithm 1 is also applied, using the same DMD modes as in §3.3.2.1 and the ranking

statistic σ defined in (3.8). The spatial similarity cut-off is ϵ = 0.94 and no spectral cut-

off is applied (s0 = 0). Figure 3.13 shows the ranking of identified clusters, highlighting

those which contain more than one underlying DMD mode.

Figure 3.13: Cluster significance σ(Ci) for cut-off parameter ϵ = 0.94. Clusters with the
cardinality of 1 are displayed with black circles, and those with |Cj| > 1 are
indicated with red markers.

In agreement with DMDsp and the PSD of the velocity signal, Figure 3.13 shows that

the most energetic cluster is associated with the vortex shedding feature at ⟨St⟩ ≈ 0.135

where, again, ⟨·⟩ denotes the mean of the Strouhal numbers of the modes in a cluster.

The representative mode of this cluster is shown in Figure 3.14 (a-b). Although less

highly-ranked, clusters of modes are obtained with ⟨St⟩ ≈ 0 and ⟨St⟩ ≈ 0.28. The lat-

ter frequency is also observed in the PSD of the transverse component of the velocity in

Figure 3.9 (b) and corresponds to the first harmonic of vortex shedding. The mode is

shown in Figure 3.14 (c-d). The representative mode of the cluster at ⟨St⟩ ≈ 0, shown in

Figure 3.14 (e), has features which resemble both the so-called “bubble-pumping” mode

observed for axisymmetric three-dimensional bluff body wakes in [142], and also super-

ficially resembles the shift mode observed for significantly cleaner DNS cylinder data in
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§3.3.1. It is interesting that Algorithm 1 is able to extract the footprint of such a low-

frequency mode, even from this more dynamically complex data ensemble.

(a) (b)

(c) (d)

(e)

Figure 3.14: Representative modes for flow past a square cylinder: (a-b) real/imaginary
parts of the v-velocity component of the shedding mode representative; (c-d)
real and imaginary parts of the v-velocity component of the first harmonic
representative; (e) u-velocity component of the shift mode representative.

Finally, we note that there are also two non-singleton clusters with ⟨St⟩ ≈ 1 and

⟨St⟩ ≈ 1.7. However, the representative modes of these clusters are dominated by length-

scales smaller than D/4 and their significance statistic is lower than that of the clusters
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described above. This highlights the fact that cluster formation does not necessarily im-

ply dynamical significance. In this case, such spurious clusters can be explained by the

underlying sampling frequency of 50Hz which, due to the Nyquist criterion, implies that

features with St > 1.6 cannot be accurately extracted.

3.3.2.3 Sensitivity to the mode similarity cut-off parameter ϵ.

Similar to the analysis in §3.3.1.1, Algorithm 1 is applied for similarity parameters in the

range 0.5 ≤ ϵ ≤ 0.97.

As before, we let ⟨std(Sti)⟩ denote the standard deviation of Strohal numbers within

clusters, averaged over all non-singleton clusters at a particular value of ϵ. Figure 3.15 (a)

indicates that this metric is stable for 0.77 < ϵ < 1, motivating our choice of ϵ in the

above analysis. Below this range, a step-change in within-cluster variation occurs.

(a)

(b)

Figure 3.15: (a) average within cluster standard deviation of spectral content, against cut-
off parameter ϵ; (b) cluster significance σ(Ci) at ϵ = 0.77 with non-singleton
clusters indicated by red markers.
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Figure 3.15 (b) shows the cluster rankings for ϵ = 0.77, corresponding to a value just

prior to the jump. Compared to Figure 3.13 which denotes cluster rankings for ϵ = 0.94,

it is first clear that a lower value of ϵ promotes the formation of high-frequency clus-

ters. Furthermore, at ϵ = 0.77 a cluster is formed with ⟨St⟩ ≈ 0.74, which contains the

mean-field mode and a mode with St = 1.48. This cluster is ranked highly due to the

highly-ranked mean mode but, clearly, these two modes do not represent similar dynamic

flow features. This behaviour can be explained, however, since the imaginary part of the

mean mode is zero at all points in the flow field and the spatial features of the mode at

St = 1.48 are very close to zero throughout the flow domain. However, the small value

of σi of the second mode means that it has minimal effect on the representative mode of

the cluster. We note that (i) the stability of the within-cluster variation for 0.77 ≤ ϵ ≤ 1

indicates a sensible range from which to select ϵ; and (ii) that spectral information, as

discussed in §3.2.5, can be included to remove this behaviour even at low values of ϵ.

We next determine how the choice of ϵ influences the extent to which extracted flow

features can be used to reconstruct the original data. Noting that non-singleton clusters

typically have high cluster ranking, we consider projecting snapshots X onto the represen-

tative modes of clusters with |Cj| > 1 and whose mean within-cluster frequencies satisfy

⟨Stj⟩ < 0.5. Note that Figure 3.9 (b) indicates the main coherent structures lie within

this frequency range.

Let Q be a matrix whose columns are the chosen representative modes, and let W =

X − X̄, where X̄ is the time-averaged flow field. We study the error between the fluc-

tuating part of the flow field with its projection onto the representative modes, defined

by

E = ∥(I −QQ
†)W∥F

∥W∥F

, (3.12)

where Q† is the pseudoinverse of Q. Figure 3.16(a) shows that increasing ϵ inhibits clus-

ter formation, reduces the projection basis Q and moderately increases E. However, as

shown in Figure 3.16(b-c), this comes with the advantage of a significant reduction in both
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the number of modes required for the sparse representation, and the frequency-variation

of the underlying DMD modes within each cluster. Again, for this data ensemble, this

motivates selecting the mode similarity parameter in the range 0.77 < ϵ < 1.

(a) (b) (c)

Figure 3.16: The error E between the estimated and true snapshots, plotted against (a)
cut-off parameter ϵ; and (b) averaged within-cluster standard deviation; (c)
the total number of formed clusters.

Finally, Figure 3.17 indicates the underlying DMD modes belonging to the vortex shed-

ding cluster (with ⟨St⟩ ≈ 0.135) for ϵ = 0.5 and ϵ = 0.85. Again, decreasing ϵ promotes

clustering. However, we note that this is not necessarily detrimental, since many newly

clustered modes may have very low significance and this is considered in Algorithm 1—in

(3.7)—during that calculation of representative modes.

(a) ϵ = 0.85 (b) ϵ = 0.50

Figure 3.17: The effect of cut-off parameter ϵ on cluster cardinality. Red markers indicate
modes which belong to cluster C1 for the two choices (a) ϵ = 0.85 and (b)
ϵ = 0.50.
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3.3.2.4 Using the spectral similarity cut-off parameter s0.

Although it has been shown that lowering ϵ can lead to the formation of dynamically

mixed clusters, employing the spectral cut-off, s0, can mitigate this problem while retain-

ing the benefit of reduced conservativeness in cluster formation. To see this, Figure 3.18

indicates cluster rankings for a very low spatial cut-off ϵ = 0.5, both without and with

spectral cut-off (s0 = 0.75, p = 2). Using the spectral cut-off has two clear advantages for

this data. First, the spurious cluster containing the mean mode identified at ⟨St⟩ ≈ 0.74

does not form. Second, in comparison with Figure 3.13, due to the decrease in ϵ the clus-

ter containing the first harmonic of the shedding mode with ⟨St⟩ ≈ 0.27, is significantly

increased in ranking. We note again that this feature was not identified as of obvious

importance using classical mode ranking algorithms or DMDsp.

(a) (ϵ, s0, p) = (0.5, 0, 0) (b) (ϵ, s0, p) = (0.5, 0.75, 2)

Figure 3.18: The influence of of spectral similarity cut-off at ϵ = 0.5. (a) shows clusters
formed without spectral similarity cut-off applied; (b) shows clusters with
spectral cut-off parameters s0 = 0.75 and p = 2.

3.3.3 Possible advantages of the graph-theoretic approach

Both the application of Algorithm 1 with ϵ = 0.94 studied in §3.3.2.2, and the application

of DMDsp with γ = 9×103 in §3.3.2.1 lead to the same number, 11, of features extracted in

a sparse representation (see Figure 3.11 and Figure 3.16). Furthermore, the reconstruction

error E is similar, at approximately 39%, in each case. In contrast, clustering extracts

modes with a range of dynamical features (shedding, harmonic, shift mode), whereas

modes extracted by DMDsp all lie in the narrow frequency range 0.13 ≤ St ≤ 0.14.
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3.3.4 Flow past an axisymmetric bluff body at Re = 1.88× 105:

We analyse a final test-case with significant dynamical complexity, flow past a three-

dimensional bluff body at moderately high Reynolds number considered in [135]. The

mean flow field and a particular wake snapshot are shown in Figure 3.19. The motivation

for studying such a data set is highlighting the advantage of iterative cluster formation.

(a) (b)

Figure 3.19: Flow past an axisymmetric bluff body at Re= 1.88× 105. (a) streamwise ve-
locity component of the mean flow; (b) an indicative snapshot of streamwise
velocity. The average position of the separation region is shown by a dashed
red line in (a). Colourbars indicate streamwise velocity in ms−1.

A sequential ensemble of 2732 time-resolved PIV snapshots of the velocity-field are

considered, sampled at the 720 Hz, from a flow with free-stream velocity U∞ = 15

ms−1, past an axisymmetric bluff body with base diameter D = 0.1965 m and length-

to-diameter ratio L/D = 6.8. The PIV field of view is a 2D diametric cross-section of

the wake, perpendicular to the horizontal plane, with dimensions 0.05 ≤ x/D ≤ 1.72

and −0.7 ≤ y/D ≤ 0.7. Full details of the experimental setup are given in [135]. An

underlying mode ensemble is extracted using the Optimal Mode Decomposition algorithm

of [174] and post-processed using the method outlined in §3.2.

To provide a benchmark with which to interpret mode clusters, after the application of

Algorithm 1, we briefly review the known spatio-temporal features of axisymmetric bluff-

body flows.
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3.3.4.1 Dynamical features of axisymmetric bluff body flows

Direct numerical simulations in [34] for flow past a similar axisymmetric body at Re ≤ 900

indicate that, at lower Reynolds numbers, there is a reflectionally asymmetric vortex shed-

ding structure. However, at Re = 900, after undergoing a transient “wake twisting” phase,

the plane of asymmetry exhibits dramatic, intermittent changes in azimuthal orientation.

(see Figures 4 and 6 in [34]). Flows past other axisymmetric objects are also of interest.

For example, using hot-wire data in the wake of a circular disk for 1.5×104 ≤ Re ≤ 3×105,

[20] observed that, apart from vortex shedding at St ≈ 0.135, the farthest point of the

recirculation bubble from the base of the disc oscillates at St ≈ 0.05 about its mean

streamwise location. This extension and contraction of the recirculation region, was re-

ferred to as the bubble-pumping mode. A high-frequency peak in the power spectrum at

St ≈ 1.62 was also observed in the velocity time-series sampled in the vicinity of the

separated shear layer.

We now briefly discuss the known dynamical features for the axisymmetric bluff body

flow studied in this chapter. This flow was studied in [142], which collected 2000 base-

pressure snapshots at a sampling frequency of 225 Hz, each containing data from 64

pressure tappings placed at regular azimuthal and radial distances. Specifically, the pres-

sure tappings are located at eight radially equidistant, concentric circles on the base of

the bullet-shaped bluff body. In [142], Fourier analysis was applied to decompose this en-

semble of this flow’s fluctuating base pressure into azimuthal mode-shapes. For example,

the azimuthal mode m = 0 corresponds to all axisymmetric variations, and the modes

m = ±1 capture all sinusoidally asymmetric azimuthal variations of the base pressure.

Such a decomposition allows one to consider the energetic contribution of each temporal

frequency to the overall energy of each azimuthal mode using the pre-multiplied power

spectra of the azimuthal modes. From this information, one can speculate about the

dominant dynamical features present in the flow.
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Figure 3.20: Pre-multiplied power spectra of the azimuthal modes of base pressure for
flow past an axisymmetric bluff body, reproduced from [142, Figure 3], for
m = 0,±1,±2,±3.

For completeness, Figure 3.20 reproduces [142, Figure 3] which shows the pre-multiplied

power spectral densities of the azimuthal Fourier coefficients for modes m = 0,±1,±2 and

m = ±3. Here, the spectrum of the axisymmetric m = 0 mode has a clear peak (labelled

b) at St ≈ 0.06, which can be viewed as the base-pressure structure associated with the

imprint of the wake’s bubble-pumping mode. The spectral peak (labelled d) of the az-

imuthal mode m = 1 corresponds to an asymmetric flow structure, likely to be the global

vortex shedding mode at St ≈ 0.2. Finally, the azimuthal m = 1 mode also has spec-

tral peaks (labelled c and a, respectively) associated with the sub-harmonic of the vortex

shedding mode at St ≈ 0.1, and the random rotational changes in the orientation of the

flow at St ≈ 0.002. Note that the energetic content, i.e. the area under the curve, of

the very low frequency (VLF) rotations is much higher than that of the vortex shedding

events.

It is argued in both [20] and [142] that this flow is not instantaneously axisymmet-

ric, with axisymmetry holding only in a time-averaged sense. Both studies show that

the boundary of the recirculation region oscillates about its mean position at St ≈ 0.05,
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confirming that this frequency is associated with the bubble-pumping feature. However,

we note that localised high-frequency features associated with the shear-layer instability

were not observed in the base-pressure data used in [142], and the sub-harmonic of the

vortex shedding was not detected in [20].

3.3.4.2 Modal decomposition of velocity snapshots

The data ensemble analysed in this section consists of flow snapshots where, on average,

the azimuthal orientation of the wake’s plane of asymmetry is approximately constant,

and parallel to the plane of view, with variance of π/5 rad. However, most variation

is concentrated at two short intervals, each lasting about 0.1 s, corresponding to only

approximately 5% of the data.

Underlying dynamic modes are computed using OMD with a relatively large reduction

dimension r = 2000. Figure 3.21 indicates the OMD mode rankings, calculated using

different methodologies. Appealing to mode amplitudes via the classical approach (3.4)

performs poorly, with highly-damped, high-frequency features (e.g. at St ≈ 2.9) ranked

as significant. Figure 3.21 (b-c) instead show that rankings obtained either by modifying

the analytical solution to (3.5) at γ = 0 in [86] to be suitable for OMD, or by using (3.8)

perform better. As expected, both indicate significant flow features with frequencies in

the range 0.02 ≤ St ≤ 0.25.

While comparing Figure 3.21(b-c) shows that the (expected vortex shedding) mode at

St ≈ 0.2 is more clearly identified using the ranking (3.8), there are still many OMD

modes in this frequency range. Our intention is now to determine whether mode clus-

tering can be used to further distinguish dynamical features in the wake and provider a

cleaner, sparse representation of the flow.
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(a) (b) (c)

Figure 3.21: OMD mode ranking statistic |αi| computed using (a) Equation (3.4); (b)
Equation (3.5) with γ = 0; (c) Equation (3.8).

3.3.4.3 Sparse feature identification using mode clustering.

Algorithm 1 is applied to the extracted modes, with ϵ = 0.5 and using weights σi com-

puted from (3.8). No spectral cut-off is employed (s0 = 0). Figure 3.22 (a) illustrates

the evolution of the clusters after successive algorithm iterations, with Algorithm 1 termi-

nating after six iterations. It is clear that the significant dynamic features emerge more

distinctly after successive iterations. In particular, clusters which are expected to corre-

spond to dominant coherent structures with ⟨St⟩ ≈ 0.05 and ⟨St⟩ ≈ 0.2 have converged

by the fourth iteration of Algorithm 1.

(a) (b)

Figure 3.22: (a) Cluster ranking against mean Strouhal number for six iterations of Algo-
rithm 1. (b) Ranking of the converged clusters at ϵ = 0.5.

Once all converged clusters, including the OMD modes which remain as singletons,

are found and all redundant clusters are cleared, Figure 3.22 (b) shows retained cluster

rankings, highlighting again the significance of clusters with ⟨St⟩ = 0.23 and ⟨St⟩ = 0.08,

consistent with the findings of [142].
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(a) (b)

(c) (d)

Figure 3.23: Real and imaginary components of representative modes obtained from Al-
gorithm 1. (a-b) bubble-pumping mode at ⟨St⟩ ≈ 0.08; (c-d) vortex shedding
mode at ⟨St⟩ = 0.23.

The streamwise velocity component of the representative modes of these two clusters

are shown Figure 3.23. The mode corresponding to ⟨St⟩ ≈ 0.08 in Figure 3.23 (a-b)

can be associated with bubble-pumping. In particular, a large coherent region of stream-

wise velocity perturbation is located predominantly downstream of x/D > 1, indicating

that this mode can describe the elongation or contraction of the recirculation region in

the immediate vicinity of the base. The long timescale ⟨St⟩ = 0.08 supports this claim.

Vortex-shedding is associated with the shorter time-scale ⟨St⟩ = 0.23 exhibited by the

representative mode in Figure 3.23 (c-d). The region of positive perturbation at approxi-

mately (1.25,0.4) and the region of negative perturbation at (1.25,−0.4) in Figure 3.23 (c),

clearly represent advected vortical structures whose counterparts can be observed in Fig-

ure 3.23 (d) at approximately (1.7, 0.4) and (1.7,−0.4).

Finally, we briefly discuss algorithm sensitivity. Figure 3.24 (a) shows, in comparison

to analysis of the square cylinder wake in §3.3.2, a more gradual decrease in the within-
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cluster variability statistic ⟨std(Sti)⟩ as ϵ increases. This reflects the inherent increase in

complexity of the underlying flow. Figure 3.24 (b) presents the ranking of converged clus-

ters for three different choices of ϵ. While the numerical values of the rankings vary, the

significant features identified by Algorithm 1 are consistent. We note that interrogation

of the representative modes for the main flow features also shows little variability in their

spatial form.

(a) (b)

Figure 3.24: Cluster statistics for flow past an axisymmetric bluff body: (a) Within-cluster
Strouhal number standard deviation, averaged across clusters; (b) ranking
statistics of converged clusters for cut-off parameter values ϵ = 0.5, 0.64 and
0.77.

Of course, as expected in a complex flow such as the one presented here, the modes in

each cluster show a higher degree of variation. As a result, the representative modes will

span a smaller portion of the subspace spanned by all of the modes in the subspace. In

§5 we will discuss a generalisation of representative modes where more than one mode

can represent each cluster. We will also have a more detailed look at the contents of the

clusters for the flow past the axisymmetric wake.

Finally, we comment that the application of Algorithm 1 using OMD modes and under-

lying ranking provided by (3.8), could be adapted to use alternative ranking methods or

other modal decomposition techniques. For example, one could use the ℓ1 regularisation

in DMDsp with a modest value of γ, and use the resulting amplitudes along with this

clustering method. Determining the most appropriate choice of underlying modal analysis

with which to promote robust clustering analysis will form the basis of future research.
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3.3.5 Flow complexity and performance of the clustering

algorithm

The data ensembles in §3.3.1, §3.3.2 and §3.3.4 are taken from flows whose dynamics are

dominated by advective features. This dynamic similarity, and the significant Reynolds

number variation between the datasets, allow us to compare the performance of the mode

clustering Algorithm 1 as the dynamic complexity of the underlying flow increases.

Increasing the Reynolds number of a flow typically corresponds to the emergence of

a broader spectrum of observed spatial and temporal scales. For low Reynolds num-

ber flows, such as the cylinder wake considered in §3.3.1, a small number of dynamical

features can often describe, in terms of energetic contribution, a large percentage of a

flow’s behaviour. At a higher Reynolds number, the percentage energetic contribution of

any individual structure, i.e. that described by a single mode, typically decreases. Con-

sequently, it should be expected that automatic algorithmic identification of important

dynamic features, e.g., shedding modes for the advective flows considered here, should

become more challenging with increasing Reynolds number.

This expectation is confirmed by comparing the initial mode rankings for the cylinder

wake at Re = 60 in Figure 3.5 (a) with the analogous plot in Figure 3.9 (a) for flow past

the square cylinder at higher Reynolds number Re ≈ 104. In both cases, the dominant

shedding mode is identified by a clear peak in the significance statistic σ observed between

0.12 ≤ St ≤ 0.14 for each flow. However, with respect to the identification of harmonics

of this mode, while peaks in σ are clearly observable in Figure 3.5 (a) for both the first and

second harmonics of the flow at Re = 60, even the first harmonic of the shedding mode

cannot be clearly distinguished by an analysis of σ alone in Figure 3.9 (a) for the square

cylinder flow at Re ≈ 104. Indeed, in this case there are many modes with non-negligible

significance statistics in the range 0.2 ≤ St ≤ 0.4.

Despite this difference, there are some notable similarities in the behaviour of the clus-

tering Algorithm 1. First, as indicated in Figure 3.7 for Re = 60, and Figure 3.15 at
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Re = 104, non-trivial clusters are formed when ϵ ≤ 0.95 in each case. Further, for both

flows, if a high value of ϵ is employed, then non-trivial clusters are found which corre-

spond to higher harmonics of the shedding mode, which can be observed in Figure 3.5

(b) at Re = 60, and Figure 3.13 for the flow at Re ≈ 104. In both cases, significant

clusters are found corresponding to harmonics which may not have been apparent from

an initial observation of the underlying mode significant measure σ alone. Importantly,

the number of non-trivial clusters identified in each case, and the mean Strouhal number

of each cluster, corresponds to the observed maxima in power spectral density plots of

Figures 3.4 (b) and 3.9 (b).

A first contrast between the two cases is that, at Re = 60, clusters are found corre-

sponding to six harmonics of the dominant shedding mode, while at Re ≈ 104 only the

first shedding harmonic is identified with a non-trivial cluster. This performance reflects

the increasing dynamic complexity of the underlying flow with the Reynolds number.

Still, it may also be explained by the different data-collection methods (DNS at Re = 60,

PIV for Re ≈ 104) since it is known that the presence of measurement noise can lead to

a higher number of damped modes [45] and this may increase the difficulty of extracting

coherent dynamical features. Furthermore, comparing the representative modes in Fig-

ure 3.6 and Figure 3.14, one can see that the representative modes in Figure 3.14 are

noisier and contain a larger range of length scales.

A second difference in the performance of Algorithm 1 is observed as the similarity

parameter ϵ is decreased. Recall that decreasing ϵ corresponds to relaxing the spatial

condition for cluster formation, which can increase the number of modes belonging to

each individual cluster. At Re = 60, Figure 3.7 (b) shows that the number of significant

clusters is stable as ϵ decreases, a fact that can be explained by the relative dynamic and

spatial simplicity of this flow. However, at Re ≈ 104, decreasing ϵ can have the adverse

effect of clustering dynamically dissimilar modes: specifically, the mean mode is clustered

with an oscillatory mode at significantly higher St as labelled in Figure 3.15 (b). While at

face value this behaviour is not desirable, modifying the clustering algorithm to account
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for spectral similarity (see §3.2.5) can mitigate this effect, while at the same time retain-

ing the beneficial effects of using a smaller value of ϵ in terms of more relaxed spatial

similarity criterion for cluster formation. As shown in Figure 3.18, a sufficiently low value

of ϵ coupled with the use of a spectral similarity cut-off enables clear identification, in

terms of cluster ranking, of the first shedding harmonic (labelled at ⟨St⟩ = 0.25). This

implementation outperforms the behaviour of the clustering algorithm applied with a high

value of ϵ with no spectral similarity cut-off.

Finally, we note that the beneficial effect of decreasing ϵ to promote clustering is also

observed when Algorithm 1 is applied to data from the three-dimensional bluff body flow

of §3.3.4 at Re = 1.88 × 105. At this higher Reynolds number, the spectrum of this

flow is more broadband, and chaotic variations in the azimuthal position of the plane

of symmetry significantly increase the level of experimental noise in this data ensemble

in comparison with the flows studied in §3.3.1 and §3.3.2. The combination of these

two factors prevents easy identification of dominant modes using standard importance

statistics, as shown in Figure 3.21. In any given frequency range, a significant number of

modes with nontrivial importance statistics can be observed. Interestingly, when using a

spatial similarity of ϵ ≥ 0.77, Algorithm 1 does not extract the two expected dominant

clusters, associated with bubble pumping and vortex shedding, due to the higher spatial

variation between similar modes than in the lower Reynolds number cases of §3.3.1 and

3.3.2. However, as shown in Figure 3.22 (a), lowering the similarity threshold to ϵ = 0.5

allows modes to form the two expected clusters. Finally, due to the increased complexity

of this data ensemble, it is interesting to note that many iterations of Algorithm 1, six in

this case, are required for convergence.

In conclusion, the algorithm’s performance, in terms of forming clusters, worsens as

Reynolds number increases. However, such performance degradation may be mitigated

by lowering the spatial similarity parameter ϵ to promote mode clustering. In cases where

a lower value of spatial similarity parameter ϵ is necessary, the algorithm’s performance
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may be improved by using more complex clustering criteria, such as hybrid considerations

of spectral and spatial similarity.

3.4 Intermediate results and adjacency matrices

Algorithm 1 extracts clusters by iteratively forming graphs of mode similarities and ex-

tracting the maximal cliques of the resulting graph. This section aims to give a more

in-depth analysis of the algorithm’s cluster-forming behaviour at intermediate (i.e. non-

converged) iterations. To do this, we will present the adjacency matrices extracted after

each iteration of the algorithm in addition to showing how the clusters coalesce at each

sub-iterate of Algorithm 1. Throughout this section, whenever an adjacency matrix is pre-

sented, the underlying representative modes will always be sorted according to ascending

temporal frequency. In addition, to provide full detail, all adjacency matrices presented

here will show the subspace similarity angle statistic cos (θij), as defined in (3.6), rather

than simply the binary coefficients dij. With a small abuse of notation, we shall still refer

to these matrices as adjacency matrices.

Flow past a circular cylinder at Re = 60.

In §3.3.1, Algorithm 1 was applied to low-Reynolds number, supercritical, flow past a

circular cylinder. We presented the converged clusters in Figure 3.5(b) and their repre-

sentative modes in Figure 3.6. Figure 3.25(a) shows the adjacency matrix for the graph

of the standard DMD modes of the data ensemble, with modes ordered by the Strouhal

number of their DMD eigenvalue. In this example, r = 899 underlying DMD modes are

initially computed. As discussed, we use the fact that oscillatory DMD mode shapes are

extracted in complex conjugate pairs and show adjacency matrices for the DMD modes

with non-zero Strouhal numbers. The spectral similarity criterion was not used in the

cluster extraction process, and the spatial similarity cut-off was set to ϵ = 0.98. Similarly,
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Figures 3.25(b–d) show the adjacency matrices for the representative modes after the first,

second and fifth iterations of Algorithm 1.

(a) DMD modes (b) 1st iteration representative modes

(c) 2nd iteration representative modes (d) 5th iteration representative modes

Figure 3.25: Adjacency matrices for Algorithm 1 applied to r = 899 DMD modes with cut-
off parameter ϵ = 0.98, for flow past a circular cylinder at Re= 60. Colour
bars indicate the subspace angle statistic cos (θij). Modes are ordered ac-
cording to ascending temporal frequency.

The cylinder wake at a low Reynolds number has a well-defined global mode, and a

typical DMD analysis will also give mode shapes corresponding to a number of harmonics

of the global mode. In line with this expectation, the adjacency matrix for the original

DMD modes, Figure 3.25(a), exhibits a clear block-diagonal structure with the Strouhal

number of each successive block approximately constant and increasing (block by block)
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by the shedding Strouhal number St = 0.14. Each block is observed to contain a sig-

nificant number (∼ 25) of modes, each with similar temporal frequency and high spatial

similarity.

Figure 3.25(b) shows the adjacency matrix after one iteration of Algorithm 1. Note

that in this and subsequent subfigures, only the adjacency matrix of spatial similarities

between representative modes of the current iteration’s clusters are shown. Consequently,

the dimension of the presented adjacency matrix decreases with each algorithm iteration

and, for example, even the first iteration partitions the original DMD modes into 234

clusters.

It is notable that the block diagonal structure can still be observed in the spatial

similarity of cluster representative modes in Figure 3.25(b). However, the number of

representative modes in each block (i.e. those with similar Strouhal numbers) is smaller

than for the original DMD adjacency matrix of Figure 3.25(a), where each block contains

approximately 25 modes. For example, as indicated in Figure 3.25(b), there are only 8

clusters representing structures at the global mode frequency St ≈ 0.14, there are 17

clusters representing its first harmonic at St ≈ 0.28, and only two representative modes

at low-frequency corresponding to the shift mode. Interestingly, at least for the clusters

associated with the global mode and its first three harmonics, the size of each diagonal

block (i.e. the number of clusters with very similar temporal frequencies) increases with

the Strouhal number.

A possible explanation for this behaviour is that successively higher harmonics of the

global mode result in higher spatial variability between the modes representing them, due

to the energetic content of these features being dispersed amongst a higher number of

modes. Consequently, these modes may initially form a larger number of overlapping,

smaller clusters. This observation is supported by the structure of each diagonal block

in Figure 3.25(b). It can be seen that the 8 clusters related to the global mode (i.e.,

the block labelled St ≈ 0.14) all have representative modes with high spatial similarity

(the block is almost uniformly yellow). However, for each subsequent ‘harmonic block’,
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while the modes contained within each block have high spatial similarity, a clear banded

structure in similarity statistic is present within each block, suggesting a weaker overall

relation between its representative modes.

To explain the higher degree of variability within the blocks associated with the higher

harmonics, one must note the root cause of cluster formation amongst DMD modes. The

assumption of exponential temporal trajectories leads to many linear modes being needed

to describe non-exponential behaviour [10]. Here, the data ensemble contains snapshots

of the flow before, during and after reaching its limit cycle. Each mode associated with

vortex shedding can best describe only a part of the dataset: certain modes are better

suited to describe the initial vortex shedding structure, while others describe the transi-

tion onto the limit cycle. It is likely that this need for multiple modes causes increased

variability of higher harmonics of the global mode, explaining why higher harmonic blocks

contain modes which are more spatially dissimilar.

It should be noted that in Figures 3.25(a)-(c), only one individual cluster with ⟨St⟩ =

0.14 is labelled, while in (d) all clusters at that frequency band have merged into a single

cluster, resulting in a small change in average cluster frequency to ⟨St⟩ = 0.12. Before

further discussing the adjacency matrices of the later iterates of Figures 3.25(c)-(d), it

is useful to consider the alternative view given by Figure 3.26 of the cluster formation

process across the iterations of Algorithm 1.
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Figure 3.26: Cluster ranking against average cluster Strouhal number for successive iter-
ations of Algorithm 1 applied with cut-off parameter ϵ = 0.98 to a DMD
mode ensemble with r = 899 for flow past a circular cylinder at Re = 60.

Figure 3.26 shows the 17 iterations required for convergence, presented from the top

left (the original DMD modes) to the bottom right in Figure 3.26. At each iteration,

for clarity, only two sets of modes are shown: the representative modes at the (n − 1)th

iterate in grey; and the clusters formed from these modes at the nth iterate in blue. From

the 1st to the 5th generations, there are a number of highly-ranked clusters in a narrow

frequency band near the global mode frequency St ≈ 0.14. By the 5th iteration, these
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have converged into a single cluster. Note that converged clusters (i.e. those whose rep-

resentative mode does not meet the spatial similarity threshold with any other cluster

representative) are not plotted in any higher generation subfigure of Figure 3.26, meaning

that the dominant global mode cluster is not shown from the 6th generation plot onwards.

In subtle contrast to the global mode clusters, while clear groups of clusters can be

observed forming close to the harmonic frequencies St ≈ n × 0.14, n ∈ N, for higher

harmonics, the frequency range of each cluster group is initially wider. For example, for

representative modes whose frequency range is close to that of the first global harmonic

⟨St⟩ ∼ 0.28 = 2 × 0.14, a fully distinct grouping only occurs at the 3rd generation and

persists until finally coalescing at the 13th generation. That more iterates are required to

converge this underlying flow feature confirms the previous observation of increased spa-

tial mode variability. Nonetheless, it is interesting to note that based on the original DMD

rankings (top-left panel of Figure 3.26), the first harmonic is only weakly distinguishable,

yet, clear clusters related to this harmonic are formed with subsequent generations of

Algorithm 1. Furthermore, the second (and higher) harmonics are barely distinguishable

from the original DMD rankings but, again, clear clusters of modes are formed in distinct

frequency bands as can be seen in Figure 3.26 from the 7th generation and above.

Returning finally to consider the adjacency matrices at higher iterations of Algorithm

1, Figures 3.25 (c) and (d) show the spatial cluster similarity for the iterates at which

the shift mode cluster is fully converged (the 2nd generation) and after the global mode

cluster is fully converged (the 5th generation). The converged representative modes of

these features are shown in Figure 3.6. Between these generations, the size of the block

corresponding to the global modes reduces from 6 modes in the 2nd generation to a single

mode in the 5th generation. The size of the first harmonic block decreases from 14 to 6

across the same number of iterations, reflecting the slower convergence observed in Figure

3.26.

While this data ensemble has the advantage of clearly illustrating the cluster formation

and coalescence process, studying more complex examples for which the underlying DMD
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modes cannot themselves be clearly partitioned into well-defined clusters, can provide a

more compelling motive for the use of Algorithm 1.

Flow past a square cylinder at Re ≈ 104.

In §3.3.2, the representative modes obtained using Algorithm 1 applied to a data ensemble

of flow past a square cylinder at Re = 104 were presented in Figure 3.14. The original

2000 modes were extracted using DMD, and Algorithm 1 was applied at ϵ = 0.94, without

the spectral similarity filter. Figure 3.27 (a) shows the adjacency matrix of the original

103 conjugate pairs of DMD modes of this ensemble, while Figure 3.27 (b) shows the

adjacency matrix for the representative modes of clusters obtained by the first iteration

of Algorithm 1.
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(a) Original modes ϕ

(b) First iteration representative modes

Figure 3.27: Adjacency matrices for the flow behind a rectangular cylinder at Re= 104 cor-
responding to an application of Algorithm 1 with cut-off parameter ϵ = 0.94
to a DMD mode ensemble with r = 2000 modes. Colour bars indicate the
subspace angle statistic cos (θij). Modes are ordered according to ascending
temporal frequency. (a) adjacency matrices for the underlying DMD modes
(b) adjacency matrix after one iteration of Algorithm 1.

In Figure 3.27 (a), one can notice a significant reduction in the regularity of the spa-

tial similarity structure compared to that observed in Figure 3.25 (a) for a low Reynolds

number bluff body flow. Consequently, it is to be expected that extracting clusters of

similar modes, or even identifying dominant modes, should be more challenging for this

data ensemble. Nonetheless, as indicated on the right-hand panel of Figure 3.27 (a), there

are noticeable groups of modes with increased spatial similarity with Strouhal numbers
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close to the expected global mode frequency at St ≈ 0.135, and that of its harmonic at

St ≈ 0.27.

Moreover, Figure 3.27 (b) shows that after only one iteration, Algorithm 1 identi-

fies three clusters of similar modes (listed as modes 3, 4 and 5 in Figure 3.27 (b)) with

⟨St⟩ ≈ 0.135, in addition to one cluster at ⟨St⟩ ≈ 0.27 (listed as mode 6 in the same

figure) and another at ⟨St⟩ ≈ 0, which may correspond with a low-frequency bubble-

pumping mode. Algorithm 1 terminates after the second iteration, with only the three

representative modes related to the global mode (listed as 3, 4 and 5) being combined into

a new cluster. All other clusters are viewed as distinct by Algorithm 1 and are converged

at the first iteration of the algorithm.

The behaviour of Algorithm 1 is, therefore, somewhat counter-intuitive in that, at least

for this example, a more dynamically complex data ensemble has led to fewer clusters

forming in comparison to a less complex flow at a lower Reynolds number. However, this

behaviour can be explained by the fact that at a higher Reynolds number, there is in-

creased flow intermittency. Furthermore, the data sampling rate of 50Hz limits the range

of time-scales for which coherent features can be accurately extracted. Consequently,

lower energy flow structures, such as higher global-mode harmonics, may no longer be

statistically identifiable from a given finite-length data ensemble. This observation cor-

responds to the smaller bandwidth of the adjacency matrix of Figure 3.27 (a) compared

to the persistent block-diagonal structure of Figure 3.25. Hence, while fewer non-trivial

clusters are formed for the case of the square cylinder, Algorithm 1 does efficiently form

clusters of dynamically important modes. These observations are confirmed in Figure 3.28,

which shows the change in cluster ranking over the two iterations of Algorithm 1. It can

be seen that the ranking statistic of the converged global mode cluster (the blue marker

in the right-hand panel, formed from the three global mode clusters at the first iteration)

is over double that of the dominant DMD mode.
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Figure 3.28: Cluster rank against average Strouhal numbers of clusters over the first and
second iterations of Algorithm 1 applied to r = 2000 DMD modes with ϵ =
0.94, for flow past a rectangular cylinder at Re= 104.

The effect of using a spectral similarity cut-off

A further interesting property evident in Figure 3.27 (a) is that while the adjacency ma-

trix is sparse, it contains many entries with negligible but non-zero values. This leads to

numerical inefficiencies in the Bron-Kerbosch algorithm used for extracting the maximal

cliques. Moreover, in §3.3.2.4 it was shown that depending on the choice of the spatial

similarity cut-off ϵ > 0, the mean mode can be clustered with a spurious high-frequency

mode. This is a statistical anomaly arising from the fact that both modes are real-valued,

meaning that their (zero) imaginary parts are highly correlated. To avoid this, we intro-

duced a spectral similarity cut-off.

To demonstrate the effect of applying such a spectral similarity filter, Figure 3.29 shows

the adjacency matrices with the spectral filter applied at s = 0.75 and p = 2 (see §3.2.5

for a detailed explanation of the parameters), leading to a clearly noticeable removal of

non-zero mode similarities away from the leading diagonal. This implies that any connec-

tions with modes of much higher or lower temporal frequency is ignored. The fact that

Figure 3.27 shows that the most significant connections are close to the main diagonal of

the adjacency matrix, i.e. the modes with similar frequencies, suggests that apart from

reducing the possibility of spurious cluster groupings, the effect of this filter on the final

extracted clusters is not significant. Indeed, comparing the adjacency matrix of the 1st
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generation’s converged clusters without the spectral similarity filter in Figure 3.29 (b) to

those in Figure 3.27 (b) with such a filter, one can see that for this flow, at ϵ = 0.94, this

effect is indeed negligible.

(a) Original DMD modes ϕ (b) First iteration representative modes

Figure 3.29: Adjacency matrices for the flow behind a rectangular cylinder, after applying
the spectral filter with parameters s = 0.75 and p = 2. Colour bars indi-
cate the subspace angle statistic cos (θij). Modes are ordered according to
ascending temporal frequency.

Flow past an axisymmetric bluff body at Re = 1.88× 105.

We now consider the case of turbulent flow past a bullet-shaped bluff body at Re =

1.88 × 105, considered earlier in §3.3.4. There, OMD was applied to 2732 velocity field

snapshots to extract r = 2000 modes. Subsequently, Algorithm 1 was applied with spatial

similarity cut-off ϵ = 0.5 to extract clusters of similar modes. Figure 3.32 shows the adja-

cency matrices for this application of Algorithm 1. Importantly, the lower signal-to-noise

ratio for this data ensemble (in comparison to the lower Reynolds number examples con-

sidered previously) leads to lower absolute values of mode similarity, while the broadband

nature of the flow leads to significantly less well-defined frequency bins. However, over

successive iterates of Algorithm 1, it can be observed in Figure 3.30 that the adjacency

matrices become more regular.
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(a) Original OMD modes ϕ

(b) First iteration modes (c) Second iteration (d) Third iteration

(e) Fourth iteration (f) Fifth iteration

Figure 3.30: Adjacency matrices for the flow behind an axisymmetric bluff body corre-
sponding to: (a) the underlying OMD modes; (b-f) the five successive itera-
tions of Algorithm 1 applied to r = 2000 OMD modes with cut-off parameter
ϵ = 0.5. Colour bars indicate the subspace angle statistic cos (θij). Modes
are ordered according to ascending temporal frequency.
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To aid the interpretation of the adjacency matrices, Figure 3.31 also shows how clusters

coalesce and form at each iteration of Algorithm 1, by plotting the mean cluster Strouhal

number against the cluster ranking statistic.

Figure 3.31: Cluster ranking against average Strouhal numbers. Shown for (a) the un-
derlying r = 2000 OMD modes; and (b-g) the six iterations of Algorithm 1
applied with cut-off parameter ϵ = 0.5.

As an indicative example, we now track the formation of the vortex-shedding cluster

in detail. For the initial set of OMD modes, it can be seen in Figure 3.31 (a) that there

are many significant modes with frequencies close to the global mode frequency St ≈ 0.2.

This corresponds to the incoherent block of higher subspace angle similarity, formed ap-

proximately from mode numbers 40 to 100, which can be observed in Figure 3.30 (a).

Next, after the first iteration, Algorithm 1 extracts ten clusters with ⟨St⟩ ≈ 0.2, which

can be seen in Figure 3.31 (b). The representative modes of these clusters form the small

block of high mode-similarity around the mode number 20 in Figure 3.30 (b). In the

second iteration, these clusters coalesce to form a block of seven highly similar clusters
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around mode number 15 in Figure 3.30 (c). In a similar way, the following two itera-

tions see the algorithm further consolidate the underlying modes into one representative

mode at ⟨St⟩ = 0.23. The representative mode for this cluster is seen as mode number

5 in Figure 3.30 (e). As expected, this representative mode does not meet the similar-

ity threshold (ϵ = 0.5) with any other representative mode, and as a result, the cluster

converges at the fourth iteration. The converged cluster contains 22 modes, all of which

belong to the original sparse block of higher similarity between mode numbers 40 to 100

in Figure 3.30 (a).

For completeness, Figure 3.32 shows the same adjacency matrices, after applying the

spectral filter at s = 0.75, p = 2. Notice that the filter eliminates many negligible sim-

ilarities and leads to better-defined clusters, although, as in the example of flow past a

square cylinder, it is found that using the spectral similarity filter does not significantly

alter the resultant modes in each cluster. Indeed, for the third and fourth iterations at

least, there are very clear similarities in the structure of the adjacency matrices without

spectral cut-off in Figure 3.30 (d-e), and those in Figure 3.32 (d-e) with the spectral cut-off

applied. We note that since the vortex shedding and bubble-pumping clusters converge at

the fourth iteration, regardless of whether or not the spectral similarity cut-off is applied,

we choose to show in Figure 3.32 only the first four iterations of the algorithm.
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(a) Original modes ϕ

(b) First iteration modes (c) Second iteration

(d) Third iteration (e) Fourth iteration

Figure 3.32: Adjacency matrices for the flow behind an axisymmetric bluff body. Shown
for (a) the underlying r = 2000 DMD modes and (b-e) the first four iterations
of Algorithm 1 applied with cut-off parameter ϵ = 0.5 and with a spectral
filter with parameters s = 0.75 and p = 2. Colour bars indicate the subspace
angle statistic cos (θij). Modes are ordered according to ascending temporal
frequency.
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3.4.1 The effect of the decomposition dimension r

One of the foremost motivating factors in developing the post-processing algorithm pre-

sented in this chapter was that the outputs of modal decomposition techniques, partic-

ularly DMD variants, can vary significantly based on arbitrary parameters such as the

decomposition dimension r. Indeed, the observation from Figure 3.1 that the spectral

content of the entire mode ensemble obtained using DMD is directly influenced by r pro-

vided initial motivation for developing Algorithm 1. The idea is that instead of reducing r

to select a small number of dynamically important modes, one should seek to post-process

(or cluster) the hopefully more accurate modes obtained with a large value of r. From

this viewpoint, it can be argued that Algorithm 1 is designed to be applied with as high

a value of r as possible.

Despite this, it is of interest to determine whether Algorithm 1 behaves robustly when

applied to initial mode ensembles formed by selecting different values of the DMD mode

reduction parameter r. To do this, we consider the example of flow past a circular cylinder

at Re = 60 studied in §3.3.1. Previously, Algorithm 1 was applied to r = 899 snapshots

of this flow. Here we apply DMD at different truncation values and then post-process the

resultant modes using Algorithm 1. In all cases, the spatial similarity cut-off was kept at

ϵ = 0.98, and the spectral similarity cut-off was not used. Lower numbers of underlying

DMD modes of r = 450 and r = 220 were chosen to be roughly around half and a quarter

of the original DMD truncation dimension.

Figure 3.33 shows the mean Strouhal number against cluster rank for clusters formed

by Algorithm 1 for the three considered values of r. It can be seen that the most signifi-

cant clusters remain similar for the wide range of underlying decomposition dimensions r

considered. Interestingly, the Strouhal numbers and the significance levels remain similar

regardless of the cut-off parameter r. This indicates that the converged clusters contain

similar modes.
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Figure 3.33: Cluster ranking against average Strouhal number of the converged clusters
obtained from the application of Algorithm 1 to an underlying DMD mode
ensemble with r = 220, 450 and r = 899 modes.

3.5 Conclusion

A method of post-processing dynamic modes to extract a sparse set of dynamically rel-

evant clusters of modes was presented. The method groups modes into clusters, using

the graph-theoretic notion of maximal cliques, and iteratively combines similar clusters

to form clusters of higher cardinality. Through this iterative process, a sparse represen-

tation of the flow can be found until the remaining clusters are distinct. Each cluster

can then be represented by a single mode, facilitating analysis of the coherent flow struc-

ture it represents. Algorithm 1 has been benchmarked on the much-studied wake of a

two-dimensional circular cylinder before being applied to more challenging experimental

data sets of turbulent bluff-body flows. In each case, features are shown to be extractable

corresponding to accepted coherent wake structures. For the more dynamically complex

flows, clustering was shown to (i) promote sparse flow representations with a greater dy-

namic variety than existing methods and (ii) extract coherent flow structures which were

not clearly present when using classical mode ranking methodologies.



Chapter 4
Output-Regulated Optimal Mode

Decomposition

Recent advances in modal decomposition techniques, such as Dynamic Mode Decomposi-

tion (DMD), facilitate the extraction of coherent structures and reduced order models of

an underlying dynamical system from high-dimensional data ensembles. However, the re-

duced order models that DMD and other similar techniques extract are typically focused

on approximating an underlying dynamical system without consideration of possible in-

puts and outputs to it. In this chapter, we consider the problem of reduced-order system

identification for systems where only a limited number of system outputs can be used in

real-time.

We present an algorithm that simultaneously extracts a linear reduced order model for

the underlying dynamics and an output matrix which maps a high-dimensional state to

a low-dimensional vector of measurements. The method identifies an appropriate low di-

mensional subspace, which is appropriate for approximating the dynamics of the system,

and suitable for being mapped to the measured output signal. As a result, the subspace

of data spanned by the modes extracted by the presented algorithm corresponds better to

the measurement signal than those computed via a standard methodology (e.g. DMD or

OMD). This feature is of importance for applications to high-dimensional systems and, in

141
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particular, those for which sensor information may be localised spatially. In this setting,

typically encountered in fluid mechanics, it may be the case that less energetic features

of the underlying dynamics may be better correlated with a given sensor as a result of

spatial proximity. From the perspective of generating observable ROMs, it is therefore

important to consider this issue in the extraction of dynamic modes. This motivates the

study presented in this Chapter.

4.1 Introduction

Consider state (xi)i≥1 ⊂ Rm and output (yi)i≥1 ⊂ Rℓ sequences arising from a system

xi+1 = f(xi)

yi = h(xi)
(4.1)

where f : Rm → Rm, and h : Rm → Rℓ are continuous functions. We consider the problem

of estimating the system dynamics, f and h, from ensembles of state and measurement

data, in systems where there are no control inputs. In particular, assume that N + 1 ∈ N

snapshots X = {xi}N+1
i=1 ⊂ Rm of the system’s state are available for analysis and denote

the corresponding output sequence P = {yi}N
i=1 ⊂ Rℓ.

As in §3, we concentrate on the cases where the underlying state dimension is high in

comparison to the number of snapshots available for analysis and the dimension of the

output signal (yi)i≥0. That is, we assume that p ≫ N ≫ ℓ. This is valid in fluids exam-

ples where, typically, the state snapshot xi ∈ Rp is an instantaneous discretised velocity

field. For example, xi may contain the fluid’s velocity components at a large number

p ≫ 1 (typically p ≥ 104) of spatial locations in the flow domain. This is the case both

for direct numerical simulations of the Navier-Stokes equations, and for data ensembles

obtained from particle image velocimetry. Due to computational cost and experimental

complexity, the number of spatial data points required to accurately describe the flow is

significantly greater than the number of snapshots that can practicably be collected. As
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a result, the dimensions of the collected snapshots dictate that p ≫ N . Measurement

signals typically arise from a small number of velocity, shear-stress (velocity derivative)

or pressure sensors placed at particular locations in or on the boundaries of a flow. As

a result, it is also the case that p ≫ ℓ. Furthermore, one may reasonably expect that

the available measurements may only correlate well with a, possibly low-dimensional,

subspace of state-space.

The approach taken towards reduced-order modelling in this Chapter will follow the

philosophy of extracting coherent structures as motivated in Chapter 3. As was argued

there, many techniques have been developed for data-driven identification of coherent

spatio-temporal structures, whose use can enable low-order approximations of high-order

dynamics (i.e. to identify approximations to the mapping xi+1 = f(xi)). However, none

of the methods described so far enables the identification of structures (and models) at

the same time as taking into account information about an output sequence (yi)i≥0. In

this chapter, we will extend the DMD and OMD algorithms to address this deficiency.

To do this, we begin with the simplest approach of linear modelling which underpins

DMD and the majority of techniques described in §3. In particular, we will seek to find

matrices M∈ Rp×p, C ∈ Rℓ×m for which

xi+1 ≈Mxi, and yi ≈ Cxi,

thus extending the approach underpinning Dynamical Mode Decomposition described in

§2.3.

To approximate M and C from the available data ensembles, X and P , we follow the

philosophy of DMD and construct the state matrices

X =


↑ ↑ ↑

x1 x2 · · · xN

↓ ↓ ↓

 ∈ Rp×N , X ′ =


↑ ↑ ↑

x2 x3 · · · xN+1

↓ ↓ ↓

 ,∈ Rp×N
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whose columns are shifted by one discrete time-step which, as before, we assume is a

constant ∆t > 0. In addition, we also assemble the measurable output sequence into

P =


↑ ↑ ↑

y1 y2 · · · yN

↓ ↓ ↓

 ∈ Rℓ×N .

Again, we are met with the same challenge faced when extracting DMD modes: for

a high-dimensional state p ≫ N ≫ 1, even fitting for M alone by solving the naive

least-squares optimisation problem minM ∥X ′−MX∥2 is over-determined. It is therefore

necessary to reduce the dimension of the fitted model and this is performed by introducing

an encoding step that projects the high-dimensional state to a lower-dimensional state.

We now follow the philosophy of OMD from §2.4 and employ a linear projection matrix

L ∈ Rr×p for which L⊤L = I and r ≪ p. Subsequently, model fitting for both the state

evolution and the output equation can be achieved by constructing matrices M ∈ Rr×r

and C ∈ Rℓ×r such that

X ′ ≈ LML⊤X, and P ≈ CL⊤X, (4.2)

with reduced order models f(x) ≈ Mx = LML⊤x and h ≈ Cx = CL⊤x corresponding

to the underlying dynamics (4.1). Identification of such a model, shown schematically in

Figure 4.1, implies a reduced-order state vi = L⊤xi whose evolution is contained in the

r-dimensional subspace Im(L) ⊂ Rp. Consequently, at a schematic level, the aim of this

Chapter is to identify a projection-matrix, state-matrix, output-matrix triple {L,M,C}

which approximates the available data according to (4.2).

Identifying the triplet {L,M,C} simultaneously is a challenging task, and existing

methodologies are usually focused on the identification of only one decision variable in

isolation. For example, if one applies the Dynamic Mode Decomposition (DMD) algo-

rithm from §2.3, the M is constructed by first computing the rank-reduced singular-value
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xi
C pi

L⊤
vi

M

vi+1xi+1
L

Figure 4.1: Transformation matrices corresponding to the output system (4.1) with full-
order state xi, reduced-order state vi, and measurement data pi. The aim is
to identify {L,M,C}.

decomposition UΣV ⊤ = X to obtain U ∈ Rp×r,Σ ∈ Rr×r, V ∈ Rp×r, then fixing the

projection matrix as L = U and subsequently obtaining M ∈ Rr×r by solving

M = argminA

∥∥∥X ′ − UAU⊤X
∥∥∥2

F
= U⊤X ′V Σ−1. (4.3)

It is important to note that while an output mapping C can be fitted as a post-

processing step, there is no guarantee that the implied subspace Im(U) over which the

DMD model vi = L⊤xi evolves is appropriately correlated with the observation process

yi = h(xi). Many variants of DMD focus on modifying the model UMU⊤ : xi 7→ xi+1 to

improve the approximation of the state for more challenging modelling scenarios (e.g. in

the presence of additive noise or system nonlinearity) —see [75, 45, 166, 130]— and do

not explicitly consider the inclusion of an output process.

Before introducing our new approach in §4.2, we now briefly discuss some related data

modelling approaches which solve similar, yet different, problems and explain the chal-

lenges of extending them to the problem we consider in this chapter.

4.1.1 Related approaches for control system identification

There do exist classical methods of reduced-order-modelling which base their approach

to order-reduction on broader dynamical considerations, such as the observability and
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controllability. We have reviewed a number of these techniques in §2.2 and here recall

that for a discrete system, stable, and linear control system

xi+1 = Axi +Bui

yi = Cxi

(4.4)

where A, B and C are all known, balanced truncation can be used to calculate a reduced-

order model that ignores the parts of the state space that are both difficult to reach and

difficult to observe [123]. Balanced truncation finds a transformed state zi = Txi using

the transformation matrix T which leads to the transformed dynamics system

zi+1 = T−1ATzi + T−1Bui,

for which the observability and controllability Gramians are identical. Truncating the

matrices T and T−1 will then lead to the balanced ROM. To find the transformation ma-

trix T , [123] relies on calculating the Gramians, WO and WC , of the system as defined by

(2.3) and (2.4). However, when only snapshot and output data are available, the matrices

A,B,C are not known and the respective Gramians are not possible to compute, making

balanced truncation impossible to apply directly in a data-driven setting.

Data-driven methods do exist which seek to approximate the benefits of balanced trun-

cation, such as balanced POD [145] described in §2.1, but these require snapshot informa-

tion relating to the impulse response of both the system itself and its adjoint. The need

for the adjoint simulations means that they cannot be applied to experimental data in

which no a priori information about f or h is available. Similar issues exist if one attempts

to apply classical methods such as ERA [87], which rely on knowledge of the underlying

system’s impulse response and so will also be available for analysis of output-only systems

of the form (4.1).

DMD with control (DMDc) [137] is a more recent extension of DMD that concentrates

on systems with known input signal u and allows for simultaneous modelling of a dynam-
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ics matrix A and an input matrix B, based on snapshots data drawn from states xi and

inputs ui only. This modification of DMD seeks to satisfy an equation of the form

X ′ ≈ AX +BU (4.5)

where U contains snapshots of input u. By computing two Singular Value Decompositions

X
U

 =

Ũ1

Ũ2

 Σ̃Ṽ ⊤, X ′ = ÛΣ̂V̂ ⊤

DMDc finds the low dimensional matrices

M = Û⊤X ′Ṽ Σ̃−1Ũ⊤
1 Û and B̃ = Û⊤X ′Ṽ Σ̃−1Ũ⊤

2

for which the dynamics of the high-dimensional data can be approximated by a reduced-

order system of the form zi+1 = Mzi + B̃ui. While this is the control-input-only analogue

of the problem we will address in this chapter, it is far from obvious how one can convert

the DMDc approach to solve the mode identification problem for output-only systems of

the form (4.1)

4.2 Methodology

As evident from the above discussion, a common feature of DMD-inspired methods is

their use of POD (or SVD) as the means to project high-dimensional snapshot data onto

a lower-dimensional subspace. In the context of Figure 4.1, these algorithms assume that

the optimal matrix L is the matrix of POD modes of the state. As explained in §2.1, POD

modes, U , of the state snapshots, accurately replicate those snapshots through minimis-

ing
∥∥∥(I − UU⊤)X

∥∥∥2

F
. If we use the POD modes of the state for a mapping between the

output and the low-dimensional state, P = CU⊤X presupposes that the measurements P

must be mapped to the subspace where most of the energy of X is contained. However,
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this subspace may not be optimal for estimating P . On the other hand, concentrating

on replicating the measurement snapshots will lead to a projection matrix L that may

not lead to an optimal LMLT : xi → xi+1. To create a ROM where the accuracy of

the reconstructed snapshots and the mapping of the state x to the measurement y are

balanced, there is a need for a better projection method.

For this reason we appeal here to the OMD methodology, described in §2.4. Since the

philosophy underpinning OMD is to allow the projection matrix L to be a free optimi-

sation parameter, this opens the door to adapting the OMD algorithm for the purposes

of output-regulated coherent structure identification. In the following, we will detail this

approach, illustrating how we modify the OMD formulation to simultaneously find the

optimal projection matrix L, dynamics matrix M and output matrix C. In §4.2.1 and

§4.2.2, we discuss the algorithm for finding the optimal projection matrix L. We will then

apply the algorithm on synthetic and experimental datasets in §4.3.

As mentioned above, a reduced-order DMD model concentrates on replicating the most

energetic features of the system through a linear model. As a result, one can not rely on

the standard implementation of DMD to find features that may be less energetic, but more

observable to the measurement y. We start, therefore, from OMD, which finds the optimal

projection matrix and the optimal reduced-order dynamics matrix simultaneously.

Given the measurable output y, we want to find the r ranked subspace of the collected

data that balances how well the snapshots are recreated by the ROM, with how well the

output y is reconstructed through a linear output matrix C. We start from the OMD

formulation as described in [174], and explained in §2.4. For completeness, recall that

OMD solves the optimisation problem

minimize
L,M

J1 := ∥X ′ − LML⊤X∥2
F

s.t. L⊤L = I,

M ∈ Rr×r, L ∈ Rp×r

(4.6)
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where r = rank(M) is prescribed by the user as a parameter, L is the optimal orthogonal

projection matrix of rank r and M is the low-dimensional dynamics matrix. Solving (4.6)

enables the user to simultaneously find the optimal projection matrix L and the dynamics

matrix M . In practice, this optimisation problem is solved by finding a relationship be-

tween a matrix L and its corresponding optimal M matrix, and reducing the optimisation

problem to one of finding the optimal L. The OMD modes Φ and eigenvalues (µi)r
i=1 are

then found diagonalising M = QΓQ−1 and letting

Φ = LQ and µi = log(λi)
∆t . (4.7)

Our aim is to adjust the OMD formulation with respect to a certain output. We will,

therefore, refer to our method as output-regulated optimal mode decomposition, OMDor

for the remainder of this thesis. OMDor creates a similar model for the state’s progres-

sion while we penalise the error in mapping the state to the observable. We augment the

cost function in (4.6) with the least squares fit between the true measured values of the

outputs contained in P and the estimated outputs P̃ = CL⊤X to get

minimize
L,M,C

J := ∥X ′ − LML⊤X∥2
F + α∥P − CL⊤X∥2

F

s.t. L⊤L = I,

M ∈ Rr×r, L ∈ Rp×r, C ∈ Rℓ×r

(4.8)

where α and r are user-defined parameters.

The intention is that for α > 0 the choice of spatial projection L will be able to balance

dynamic modelling considerations, with the extraction of a subspace Im(L) and an output

mapping C for which the output of a reduced-order state evolving on Im(L) has a high

correlation with the observed measurements in P .
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4.2.1 Transforming the optimisation problem (4.8)

We apply techniques from matrix differentiation used to solve the original OMD optimi-

sation problem in [65] in order to transform the optimisation problem (4.8) into a form

that can be solved by standard gradient-based algorithms.

We seek to express the minimisation problem as a function of L alone by first finding,

for a fixed L ∈ Rp×r, matrices M and C for which

∂J

∂M
= 0 and ∂J

∂C
= 0.

For completeness, we note that for a matrix B = (bij) ∈ Rn×m and a scalar-valued function

J : Rn×m → R, the definition of the derivative of J with respect to B is

∂J

∂B
=
(
∂J

∂bij

)n,m

i=1,j=1
.

That is, ∂J/∂B is itself an n×m matrix which contains the element-wise partial deriva-

tives of J .

To address (4.8), we must first differentiate J with respect to matrix C. To do so, we

aim to expand the cost function using the definition tr(AA⊤) = ∥A∥2
F , noting first that

∥P − CL⊤X∥2
F = tr

(
(P − CL⊤X)(P − CL⊤X)⊤

)
= tr

(
PP⊤

)
− 2tr

(
P (CL⊤X)⊤

)
+ tr

(
(CL⊤X)(CL⊤X)⊤

)
= tr

(
PP⊤

)
− 2tr

(
PX⊤LC⊤

)
+ tr

(
CL⊤XX⊤LC⊤

)
(since tr(A⊤) = tr(A)) = tr

(
PP⊤

)
− 2tr

(
CL⊤XP⊤

)
+ tr

(
CL⊤XX⊤LC⊤

)
= tr

(
PP⊤

)
− 2tr

(
PX⊤LC⊤

)
+ tr

(
C⊤CL⊤XX⊤L

)
,

where in the last line the cyclic property of the trace operation tr(ABC) = tr(CAB) is

used. Now, using the facts that
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∂

∂B
tr(BX) = X⊤ ∂

∂B
tr(B⊤BX) = B(X +X⊤)

for any fixed matrix X of appropriate dimensions, it follows that

∂J

∂C
= α

∂

∂C

∥∥∥P − CL⊤X
∥∥∥2

F
= 2(PX⊤L− CL⊤XX⊤L),

By setting this derivative to 0, we find that for a given projection matrix L, the optimal

matrix C can be found using

C⋆(L) = PX⊤L(L⊤XX⊤L)−1. (4.9)

Similarly, as
∂J

∂M
= ∂

∂M
∥X ′ − LML⊤X∥2

F ,

we can use the same formula as that used in [174] for the optimal matrix M as a function

of matrix L:

M⋆(L) = L⊤X ′XL(L⊤XX⊤L)−1. (4.10)

Finally, by substituting (4.9) and (4.10) into (4.8), we will reduce the problem from that

of finding the optimal matrices L, M and C, to one of finding the optimal projection

matrix L. In particular,

J(L) := J(L,M∗(L), C∗(L))

= ∥X ′∥2
F − 2tr(X ′X⊤L(M∗)⊤L⊤) + tr(LM∗L⊤XX⊤L(M∗)⊤L⊤)

+ α∥P∥2
F − 2α tr(PX⊤LX(C∗)⊤) + α tr(C∗L⊤XX⊤L(C∗)⊤)

(by [174]) = ∥X ′∥2
F − ∥L⊤X ′Q(L)∥2

F

+ α
(
∥P∥2

F − 2tr(PX⊤LX(C∗)⊤) + tr(C∗L⊤XX⊤L(C∗)⊤)
)
,



4.2. METHODOLOGY 152

where Q(L) := X⊤L(L⊤XX⊤L)−1L⊤X. The final terms in the above equation involving

C can be similarly written in terms of Q(L) by noting that

−2tr(PX⊤LX(C∗)⊤) + tr(C∗L⊤XX⊤L(C∗)⊤) = −tr(PX⊤LX(L⊤XX⊤L)−1L⊤XP⊤)

= −tr(PQ(L)P⊤)

(as Q(L)Q(L)⊤ = Q(L)) = −tr(PQ(L)Q(L)⊤P⊤)

= −∥PQ(L)∥2
F .

Consequently, we arrive at

J(L) = ∥X ′∥2
F + α∥P∥2

F − ∥L⊤X ′Q(L)∥2
F − α∥PQ(L)∥2

F .

Since P and X ′ are both independent of L, the optimisation problem (4.8) is equivalent

to
maximize

L
∥L⊤X ′Q(L)∥2

F + α∥PQ(L)∥2
F

s.t. L⊤L = I, L ∈ Rp×r.

(4.11)

4.2.2 Solving the optimisation problem (4.11)

Below, in Algorithm 2, we propose a gradient-based iterative algorithm to solve the max-

imisation problem (4.11). To do this, it is necessary to compute the gradient of

g(L) := ∥L⊤X ′Q(L)∥2
F + α∥PQ(L)∥2

F .

To differentiate g(L), we first use the result from [174] that

d

dL
∥L⊤X ′Q(L)∥2

F = −2BL(L⊤BL)−1(L⊤A⊤L)(L⊤AL)(L⊤BL)−1

+ 2[AL(L⊤BL)−1(L⊤A⊤L) +A⊤L(L⊤AL)(L⊤BL)−1], (4.12)

where B = XX⊤ and A = X ′X⊤.
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To differentiate the component of the cost which includes the output data P we can

apply similar methods. First, we expand the norm

∥PQ(L)∥2
F = tr(PQ(L)P⊤)

= tr(PX⊤L(L⊤BL)−1L⊤XP⊤)

= tr(ΓL(L⊤BL)−1L⊤Γ⊤)

= tr(L(L⊤BL)−1L⊤Γ⊤Γ)

where Γ := PX⊤. Differentiating the above quartic expression in L requires the use of

the chain rule which, for matrix-valued differentiation, gives

d

dL
∥PQ(L)∥2

F = d

dL
tr(LX1) + d

dL
tr(X2(L⊤BL)−1X3) + d

dL
tr(X4L

⊤X5) (4.13)

where the matrices

X1 = (L⊤BL)−1L⊤Γ⊤Γ, X2 = L, X3 = L⊤Γ⊤Γ, X4 = L(L⊤BL)−1, X5 = Γ⊤Γ

are all viewed as fixed matrices for the purposes of differentiation in (4.13). The simpler

calculations are the first and last expressions in (4.13) which give

d

dL
tr(LX1) = X⊤

1 = Γ⊤ΓL(L⊤BL)−1L⊤, (4.14)

and
d

dL
tr(X4L

⊤X5) = d

dL
tr(LX⊤

4 X
⊤
5 ) = X5X4 = Γ⊤ΓL(L⊤BL)−1L⊤. (4.15)

For the middle term, the identity

d

dX
tr((X⊤CX)−1A) = −CX(X⊤CX)−1(A+ A⊤)(X⊤CX)−1

can be used to give
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d

dL
tr(X2(LB⊤L)−1X3) = d

dL
tr((LB⊤L)−1X3X2)

= −BL(LB⊤L)−1(X3X2 +X⊤
2 X

⊤
3 )(LB⊤L)−1

= −2BL(LB⊤L)−1(L⊤Γ⊤ΓL)(LB⊤L)−1. (4.16)

Combining the calculations from (4.12), (4.14), (4.15) and (4.16) gives the analytical

expression for the derivative of the optimal cost g(L),

dg

dL
= −2BL(L⊤BL)−1(L⊤A⊤L)(L⊤AL)(L⊤BL)−1

+ 2[AL(L⊤BL)−1(L⊤A⊤L) +A⊤L(L⊤AL)(L⊤BL)−1]

+ 2α
[
Γ⊤ΓL(L⊤BL)−1 − BL(L⊤BL)−1(L⊤Γ⊤ΓL)(L⊤BL)−1

]
, (4.17)

where, to recall from the above, Γ = PX⊤, B = XX⊤ and A = X ′X⊤.

With this expression in hand, it is possible to adapt the original OMD algorithm from

[174] (which is just the case when α = 0) to apply to this output-regulated (α > 0) form

of OMD as well. Algorithm 2, which we refer to as Output-Regulated OMD (OMDor),

presents this generalisation of the OMD algorithm. For the most part, the algorithm

remains unchanged, apart from the alternative expression for dg/gL derived above. How-

ever, there are two other areas where the algorithm differs from that used in OMD.

First, in OMD, by default, the matrix of POD modes of the snapshot matrix X is

set as the initialisation for L0. However, the nature of the problem OMDor allows for

more educated initial guesses. We introduce in §4.2.3 several strategies for choosing an

appropriate initialisation L0. Second, in line 8 of Algorithm 2, the function g(Lk−1(θ))

is non-convex and expensive to evaluate. In §4.2.5, we propose a Bayesian optimisation

routine to ensure global minimality while keeping the function evaluations to a minimum.
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Algorithm 2 An iterative algorithm for finding the optimal matrix L
1: Let α = 0, fix an update length δα.

2: while α ≤ αmax do

3: Initialise L0 ∈ Rp×r ▷ See §4.2.3.

4: Compute initial gradient G0 = (I − LL⊤) dg
dL

(L0)

5: Set search direction H0 = G0

6: Let k = 1

7: while g(Lk)− g(Lk−1) > tolerance do

8: compute θmin ∈ [0, 1] for which −g(Lk−1(θ)) is minimal, over the geodesic curve

Lk−1(θ) = Lk−1V cos(Σθ)V ⊤ + Usin(Σθ)V ⊤

where Hk−1 = UΣV ⊤

9: update the subspace basis Lk = Lk−1(θmin)

10: update the gradient Gk = (I − LkL
⊤
k ) dg

dL
(Lk)

11: update the search direction Hk = Gk + ∆k

12: k = k + 1

13: end while

return L(α) = Lk

14: α = α + δα

15: end while

4.2.3 Choosing the initialisation L0.

In OMD, by default, the initial guess for the projection matrix, L0, is the truncated POD

mode matrix calculated using the state snapshots X. In OMDor, since we will have to

apply the method at various values of α, we may have better strategies at our disposal.

We discuss three such strategies and their respective advantages and disadvantages.
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1: Using L0 = Ut: The first strategy is to set L0 to a truncated set of POD modes,

Ut, for all values of α. The major disadvantage of this method is that, considering the

non-convex nature of the objective function, the algorithm is not guaranteed to increase

its emphasis on fitting the measurement (yj)N
j=1 as α increases. By substituting L0 = Ut

in (4.17), we find that

dg(Ut)
dL

=2
[
X ′VtΣ−1

t U⊤
t XX

′⊤Ut + (I − UtU
⊤
t )XX ′⊤UtU

⊤
t X

′VtΣ−1
t

]
+ 2α(I − UtU

⊤
t )XP⊤PVtΣ−1

t

(4.18)

where Vt and Σt are the truncated matrices in the decomposition UtU
⊤
t X = UtΣtV

⊤
t .

The second term in (4.18) is solely responsible for adjusting the direction of the search to

account for the measurements P and the weight parameter α.

Using the orthogonalisation

P⊤P = VpΣ2V ⊤
p

where Vp are the temporal POD vectors of matrix P , one can see that if V ⊤
p Vt = 0, i.e.

if the measurements are temporally orthogonal to the retained POD time series of the

collected snapshots X, the initial search direction will be independent of the measured

output and the value of α.

The matrix Vt is associated with the r most energetic POD modes. Therefore, this can

limit the algorithm’s ability to enhance the mapping to the measurable output, if the out-

put only correlates with low-energy events that are truncated out of matrix Vt. Although

in later iterations this direction of search can change, if the relative improvement of the

overall cost function is lower than the prescribed cut-off, the algorithm will terminate and

will output a result similar to that of OMD, even if α > 0. This is undesirable.

The advantage of initialising the algorithm with L0 = Ut and disregarding the results

of the optimisation at previous values of α, however, is that it can allow the algorithm

to escape local minima, as the search at each iteration is independent of the previous

results. This independence also allows the algorithm to be parallelised easily (in the sense
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of running the algorithm on multiple computational cores), making it the fastest of the

presented initialisation methods.

2: Using L0(α) = L(α − δα) By definition, Algorithm 2 systematically increases the

value of α via the update α 7→ α+ δα. This successively prioritises finding reduced order

states which can correlate well with the measured outputs. Therefore, a second approach

is to initialise the matrix L0 in step 3 of the algorithm, at each iteration, with the solu-

tion to the optimisation at the previous value of α. That is, L0(α) = L(α − δα). This

approach has the advantage of guaranteeing that ∥P − P̃∥F will either remain constant

or decrease as α increases. As a result, this approach is suitable for finding the trends in

the optimisation results of the algorithm as we vary different parameters.

However, starting the search from the optimal solution at α− δα has the adverse effect

of making the algorithm less likely to escape a local optimum.

3: Combining both approaches A third method is to first run the Algorithm 2 by

initialising L0 to be the POD modes at each value of α to find the value of αmin at which

the algorithm finds the best mapping between the outputs (yi)i≥0 and x and hence the

minimum residual ∥P − P̃∥F . We can then rerun the algorithm for values of α > αmin,

but this time set L0(α) = L(α− δα) to guarantee that the algorithm can only improve on

its previous performance. This method allows us to search for L over a wider region while

enabling us to detect a trend in what features of original snapshots the model chooses as

α varies.

4.2.4 Selecting an appropriate value of α.

A key feature of Algorithm 2 is that the weight parameter α is gradually increased from

α = 0 (i.e. the original OMD algorithm) to successively larger values of α which promotes

mode shapes correlated with a given observable. While a nominal stopping criteria αmax

is included in Algorithm 2, in practice, one must choose a particular value of α at which
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to extract (and then use) the obtained matrices L,M and C. Such a choice is naturally

a balancing act, since low values of α prioritise dynamic fitting to snapshot data (i.e.

lower costs ∥X ′ − LML⊤X∥), while a large α prioritises modes which correlate well to

the chosen observable (i.e. low costs ∥P − CL⊤X∥). Hence, prioritising one aspect of

the fit necessarily reduces the accuracy of the other, and it is therefore not possible to

recommend a single “correct” value of α for a given application. However, as will be seen

in the subsequent examples, it is typically observed that abrupt changes to the dynamic

and observation cost components (∥X ′ − LML⊤X∥ and ∥P − CL⊤X∥, respectively) oc-

cur as α passes certain threshold values. Further, after each threshold is reached the

value of each cost component then plateaus. This behaviour may be viewed as exploring

the Pareto front associated with the two competing components of the cost function. A

simple rule for selecting an appropriate value of α is, therefore, to consider the output

matrices immediately after each abrupt change in the cost components, and a user may

subsequently select the outputs most closely associated with their desired use (i.e., either

prioritising dynamic or output modelling, or balancing the two).

4.2.5 Finding θmin using Bayesian optimisation

In line 8 of Algorithm 2, we minimise the objective function (4.11) over the geodesic curve.

However, the equation −g(Lk−1(θ)) is computationally expensive to evaluate, making

gradient-based optimisation algorithms unsuitable for this sub-component of the OMDor

algorithm. The original OMD algorithm [174] relies on a line-search algorithm that finds

the first local minimum in the cost function using a combination of a forward-backwards

search and a quadratic fit in a trust region close to θ = 0.

However, depending on the state and output signals, the addition of the output reg-

ularisation term to the optimisation problem in (4.8) is typically observed to introduce

additional local maxima to the cost function, which increases the non-convexity of the

function −g(Lk−1(θ)). As a result, it is vital to include a more robust line-search algorithm

to ensure there is a better estimate of the global minimiser of the function −g(Lk−1(θ)).
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Bayesian optimisation is a leading example of a global optimisation algorithm which

relies on adaptive sampling to efficiently solve non-convex optimisation problems. For

example, in machine learning, Bayesian optimisation is often used to find optimal hyper-

parameters of the model [158, 89], including finding optimal neural network architectures

[88]. In the context of flow control, a recent study used Bayesian optimisation for finding

the optimal wall normal blowing for drag reduction in turbulent boundary layers [111].

For our application, the objective function is parameterised as a scalar-valued function

g of a scalar parameter θ. As a result, although the evaluation of the objective function

remains expensive, the dimensions and the complexity of the minimisation in line 8 of

Algorithm 2 remain low. Therefore a generic implementation of Bayesian optimisation

will suffice for our application. We use MATLAB’s Bayesian optimisation package which

uses Gaussian kernels for approximating the objective function, to find a low-cost estimate

of that global minimum.

The use of Bayesian optimisation to find θmin will make the OMDor algorithm more

robust against the introduction of new scales to the objective function. However, careful

consideration of the optimisation parameters is needed to ensure the results converge in

time. For example, the sampling must be limited to a sensible range of θ values and the

initial sampled points most be arranged in accordance with the expected behaviour of

function g.

To illustrate how OMDor allows the practitioner to find the subspace of data that is

most relevant to output y, in §4.3 we apply OMDor on a synthetic dataset where the sub-

space of the data that y best correlates to is known. We would like to see if the OMDor

model can capture this subspace of data even when more energetic features are present

in the dataset.
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4.3 Results

As discussed in §2, each coherent physical feature in the flow is represented by a mode

shape and a corresponding time series associated with the feature. There are features

whose influence covers the entire spatial domain of a flow are global modes, e.g. the

vortex-shedding mode in the flow past a circular cylinder at Re > 46 [157]. However, cer-

tain temporal features may only be locally observable. For example, in flows past axisym-

metric bluff-bodies, the portion of the flow-field immediately past the bluff-body, i.e. the

recirculation region, is dominated by low-frequency events, while higher frequency events

associated with vortex shedding dominate the flow-field further downstream[20, 34, 142].

Assuming that a feature is spatially localised (or only coherent locally) it is not unrea-

sonable to assume that the spatial feature is only observable using measurements taken

from the corresponding subset of the flow domain. Moreover, in data-driven modelling

of such flows, the varying energy content of the features may lead to a varying degree of

detectability in the collected data.

An advantage of using OMDor for modelling a flow-feature associated with the output

(yi)i≥1, is that the model should automatically detect the region of the flow-field where

the feature can be observed, even if the flow-feature is not energetically dominant in the

collected data. To illustrate the potential of OMDor in modelling such localised flow-

features, we apply the algorithm on a synthetic dataset where there are two sinusoidal

flow-features, with differing energy levels, length scales and temporal frequencies, in two

separate regions of the flow-field. The goal is for OMDor to be able to correctly iden-

tify the spatio-temporal feature associated with the measured output (yi)i≥1 even if that

feature is low energy in the collected data.

4.3.1 Application of OMDor on a synthetic sinusoidal flow

To create the synthetic dataset, we first form a discrete, uniform, spatio-temporal mesh

with 0 ≤ s ≤ 1 and 0 ≤ t ≤ 2, where ∆s = 0.001 is the spatial increment and ∆t = 0.01
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is the time-step between each two consecutive snapshots. Suppose now that the value of

the state x at the spatial location s and at time t is defined by

x(s, t) =


A1 sin (ω1πs− f1t), 0 ≤ s ≤ 0.5,

A2 sin (ω2πs− f2t), 0.5 < s ≤ 1.
(4.19)

For the following, initial, discussion of the performance of Algorithm 2, the chosen pa-

rameters will be A1 = 1, A2 = 1.5, ω1 = 2, ω2 = 11, f1 = 7 and f2 = 19. The spatial

and temporal frequencies ωi and fi parameters are chosen to be different prime numbers

to avoid non-trivial and unintended spatio-temporal relations to exist between the two

distinct sections of data s ∈ [0, 0.5] and s ∈ [0.5, 1]. A discussion about the effects of

varying these parameters will be presented in §4.3.2.

Substituting the above parameters in (4.19) we define a dataset with the governing

equations

x(s, t) =


sin(2πs− 7t), 0 ≤ s ≤ 0.5,

1.5sin(11πs− 19t), 0.5 < s ≤ 1.
(4.20)

Figure 4.2 (a) shows a snapshot of state x at t = 2 and (b) shows the value of x as a

function of space and time.

(a) A snapshot x(s, t). (b) x(s, t)

Figure 4.2: An overview of the synthetic data ensemble. (a) presents an illustrative snap-
shot; (b) presents the evolution of the data over the time window t ∈ [0, 2].
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The periodic nature of the dataset implies that there exist two pairs of complex conju-

gate modes that can describe the entire data set. These modes are spatially orthogonal

due to the chosen decomposition of the data (one conjugate pair in each half of the spatial

domain). Consequently, applying OMD with r = 4, i.e. a set of 4 OMD modes, has the

potential (if the algorithm converges to this solution value of L) to find these modes and

describe the full dataset [174].

It is, therefore, intuitive that lowering the parameter r below 4 will adversely affect the

ability of the OMD modes to describe the full dataset. As discussed in §3, the correct

choice of parameter r is not always obvious. Furthermore, there may, in a complex data

sets, be many spatially-localised features of interest. In this minimal example, we have

created the simplest possible situation in which only a subset of the available features

may be observed using measurements from a local segment of the spatial domain. The

question we want to address with this example is, in a decomposition where only a subset

of the flow features can be captured, does the OMDor formulation lead to capturing the

subspace of the flow field that is relevant to the measurable output?

To that end, we first extract an OMD model of rank r = 2. Note that the feature

with higher spatial and temporal frequency has a higher amplitude and as a result, we

expect OMD at r = 2 to prioritise the more energetic flow feature. In line with this

expectation, applying OMD with r = 2 to the snapshots of the state x in (4.20), we find

a pair of eigenvalues µ = 0 ± 18.9i, where the temporal frequency fr = 18.9 is close to

the expected temporal frequency f2 = 19. The amplitude difference between the two seg-

ments of the OMD mode ϕi in Figure 4.3 confirms that the OMD model is biased towards

reconstructing the more energetic subspace of the data. While there is an imprint of the

lower frequency mode, this is clearly of insignificant amplitude in comparison with the

higher frequency feature located in the subdomain 0.5 < s < 1.
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Figure 4.3: The single mode obtained by applying OMD with r = 2. Note that this also
corresponds to the setting α = 0.

Suppose now that we have a measurable system-output that corresponds to the low-

energy segment of the data. For example, suppose we are able to measure the state x at

5 equispaced spatial locations in the domain 0 ≤ s ≤ 0.5, where temporal oscillations at

frequency f1 = 7 are dominant.

A discussion on varying the number of measurements will be presented in §4.3.2. How-

ever, we note that for real flows the number of measurements is often limited by the

physical restrictions of the experimental setup (e.g. using boundary sensors to avoid in-

fluencing the flow unexpectedly, or practical restrictions on the number of sensors which

can be reasonably installed).

Using these measurements as the output y of the system, we can now apply OMDor

at various values of α. To evaluate the performance of our method, we separate the two

terms in the cost function J of (4.8) and define the state error

Ex = ∥X
′ − LML⊤X∥F

∥X ′∥F

× 100% (4.21)

to be the percentage error between the predicted and real snapshots of the state, while

the output error

Ep = ∥P − CL
⊤X∥F

∥P∥F

× 100% (4.22)
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is the percentage error between the measured and predicted snapshots of output y. Fig-

ure 4.4 shows how the values of Ex and Ep evolve as we change the value of α. For

α < 160, the ROM replicates the state with the error of Ex ≈ 55%. We expect an initial

state error of around 50%, as the parameter r = 2 and the ratio of amplitudes mean that

a ROM only covering the more energetic section of the data can at best replicate 60%

of the state ensemble’s energy. Figure 4.4 also shows that for α < 160 the output error

is almost 100% as the lower-energy feature, which occupies the subset of the domain in

which the measurement “sensors” are located, is not described by the ROM. For values

of α above 160, there is a marked decrease in Ep as well as a sharp, but smaller, rise in

Ex. The model detects the low-energy, low-frequency feature which corresponds to the

measurement y.

Figure 4.4: The variation of error statistics Ep and Ex with α > 0.

Comparing the OMDor mode at r = 2 and α = 250 in Figure 4.5, with the OMD mode

at r = 2 and α = 0 in Figure 4.3, we can see that at higher α the ROM emphasises the

reconstruction of the region of the flow which is better mapped to the output y. This

can explain the decrease in Ep for α > 160. The eigenvalue of the mode in Figure 4.5

is µ = 0.0 + 7.0i, which confirms that at α = 250 the ROM prioritises replicating the

lower energy features at f1 = 7. Note also that while there is, again, an imprint of the

high-energy feature in the subdomain 0.5 < s < 1, their amplitude is negligible compared

to the low-frequency feature. This implies that OMDor modes prioritise capturing the

dynamics of the subdomain 0 < s < 0.5. This observation is confirmed by considering



4.3. RESULTS 165

Figure 4.6 which shows the projected data LL⊤X, where X is the matrix of snapshots of

the state x, for the three cases considered.

Figure 4.5: The single OMDor mode obtained with parameters r = 2 and α = 250.

Figure 4.6 compares the subspace of the data that the projected data LL⊤X covers in

three cases. The first, (a) case is when L is assumed to be the first 2 POD modes, as in

truncated DMD. The second case is when L is found using OMD and the third case is

when L was found using OMDor at α = 250.

(a) DMD (b) OMD (OMDor at α = 0)

(c) OMDor at α = 250

Figure 4.6: Projection of the underlying data ensembles LL⊤X: (a) DMD, with L given
by the POD modes of the ensemble; (b) OMD, with L obtained with α = 0;
(c) OMDor, with L obtained with α = 250.
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The example above demonstrates that OMDor is capable of selecting a feature that is

significantly better correlated with the available measurements y, even if that feature is

less energetic. However, the specific amplitudes and frequencies in (4.20) were arbitrarily

chosen. Moreover, for this example we could select a different number of velocity readings

as our output signal y. In §4.3.2 we illustrate how varying each of these parameters affects

the performance of OMDor.

4.3.2 A parametric study of OMDor

For this analysis, we set the number of features that OMDor can extract at r = 2. This

ensures that the model can only choose one of the two periodic features present in the

data. We start by analysing the effects of increasing the number of measured outputs.

Applying OMDor to the same dataset as in (4.20), we vary the number of virtual probes in

the lower half of the spatial domain, i.e. s ≤ 0.5. Since there is only one temporal feature

in the subdomain where the probes are positioned, we expect to see a similar performance

for OMDor regardless of the number of probes. However, it is reasonable to expect that

the desirable OMDor performance may occur at different values of α, depending on the

number of probes available. Figure 4.7(a) shows that output error drops to comparable

levels for all values of cardinality |y| > 50. However, as the number of probes decreases,

the value of α at which the drop in Ep happens increases. For example, the results in

Figure 4.5 used 5 probes and were obtained at α = 250.

In Figure 4.7(b) it can be seen that the state error, Ex, increases as the output error

Ep decreases. Note, however, that the model is always forced to choose between one of

the two existing features and therefore the state error at α = 0 is around 55%.



4.3. RESULTS 167

|y
|

(a) Ep
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(b) Ex

Figure 4.7: The influence of the cardinality of the measured output |y| and of the param-
eter α: (a) on the output error Ep; (b) on the state error Ex.

At |y| = 500, when the entire lower half of the flow field is considered as the measure-

ment signal y, the model switches features at α ≈ 2. Interestingly, the ratio between the

energy of the entire flow field and the energy of the lower half of the flow field is 1.8. This

is also consistent with the trend that the number of probes and the value of α at which

the drop in Ep happens are inversely related.

To further analyse the effects of changing the energy ratio on the performance of OM-

Dor, we fix the number of virtual probes to the maximum number possible, |y| = 500,

i.e. y = x(s, t) for 0 ≤ s ≤ 0.5. We also fix the amplitude of the lower half of the flow

field to A1 = 1, and vary the amplitude of the upper half of the flow field, A2, between 1

and 5. In Figure 4.8, the line corresponding to A2 = 1, i.e. equal energy in the lower-half

and upper-half, is drawn in blue, and as A2 increases, the lines are shaded in gradations

between black (low A2) and red (high A2). Figure 4.8 (a) shows that as the amplitude

A2 increases, the value of α at which the model switches to the low-frequency feature in-

creases. Figure 4.8 (a) shows that as A2 increases, at first the final output error decreases,

with the A2 = 1.4 line reaching a steady minimum at 3.8%, compared to 6% at A2 = 1.

However, as A2 further increases, the minimum output error that OMDor can achieve in-

creases. Figure 4.8 (b) shows that as the amplitude of the upper half increases, the initial

value of Ex at α = 0 decreases, as the model can replicate more of the underlying data by

choosing the more energetic mode. At amplitudes A2 > 1.5 both Ex and Ep remain high,

once α is large enough for the model to switch features. However, for moderate amplitude



4.3. RESULTS 168

ratios, OMDor seems to be capable of extracting features more relevant to the measured

output y.

(a) Ep

(b) Ex

Figure 4.8: The effect of the amplitude A2/A1 ratio (a) the output error Ep; and (b) on
the state error Ex. The data amplitude ratio varies from A2/A1 = 1 (black)
to A2/A1 = 5 (red).

Finally, we will analyse the effects that the frequency difference between the two fea-

tures will have on the performance of OMDor. We fix the temporal frequency of the lower

half, f1 = 7, and increase the frequency difference between the two sections ∆f = f2−f1.

As expected, Figure 4.9(a) shows that for low ∆f , OMDor can detect both features at all

values of α, as they are temporally similar. However, as the frequency difference increases,

the initial value of Ep at α = 0 increases, with the model preferring to fit to the more

energetic feature. Increasing, α beyond 2 improves the mapping between the state and

output.

However, an interesting pattern emerges where the steady minimum error that OMDor

can achieve, changes in a periodic fashion with increasing ∆f . For the current analysis,

the second initialisation technique in §4.2.3 was used and we conjecture that this has led
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to the optimisation problem returning local minimums. For example, while Figure 4.9(a)

shows that at ∆f = 9.75 the best performance of the algorithm is at Ep = 75%, using

the third initialisation technique in §4.2.3 at ∆f = 9.75 we find that the model finds the

desired feature, with the output error dropping to 4% for all values of α > 2.3. However,

the third initialisation technique is more computationally expensive and therefore was not

suitable for the full parametric analysis.

(a) Ep

(b) Ex

Figure 4.9: The influence of frequency difference ∆f and of the parameter α: (a) on the
output error Ep; (b) on the state error Ex

Sinusoidal flows such as the one analysed here are good examples of a noise-free dataset

from a periodic system. However, in most real-life non-linear systems which exhibit

quasiperiodic behaviour, energy is distributed throughout a range of time-scales despite

the existence of a few dominant frequencies. Moreover, the dominant oscillations in such

datasets often show temporal intermittence and phase shifts. An example of an oscillatory

mode’s time series in a turbulent flow, is presented in Figure 4.10, which corresponds to
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the real part of the representative vortex shedding mode found in §3, of the flow past an

axisymmetric bluff body.
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Figure 4.10: Indicative time series of a vortex shedding mode for flow past an axisymmet-
ric bluff body.

We now therefore apply OMDor on a synthetic dataset where such phase drifts and

frequency variations are present.

4.3.3 Application on a synthetic dataset with phase-drift and

frequency-noise.

To create a more realistic test case, we introduce a random phase-drift and temporal-

frequency variation to each segment of the data. To generate the random phase drift, we

set the initial values of phase drift in both segments to θ1(0) = 0 and θ2(0) = 0. The

phase drifts, θ1 and θ2, for each segment of the data are randomly generated by using a

discrete random walk

θ1(i) = θ1(i− 1) + 0.03a

θ2(i) = θ2(i− 1) + 0.03b,
(4.23)

where a ∼ N (0, 1), and b ∼ N (0, 1) are independent normally distributed random vari-

ables.

Similarly, the frequency disturbances, ξ1 and ξ2, are randomly generated using
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ξ1(i) = 0.05ϵ

ξ2(i) = 0.05γ,
(4.24)

where ϵ ∼ N (0, 1) and γ ∼ N (0, 1). The resultant state is defined by

x1(s, t) =


sin(2πs− ((7 + ξ1(t))t+ θ1(t))) 0 ≤ s ≤ 0.5

1.5sin(11πs− ((19 + ξ2(t))t+ θ2(t))) 0.5 < s ≤ 1.
(4.25)

Figure 4.11 shows an instance of x1(s, t) in the presence of these uncertainties. For

these snapshots, the noise-to-signal ratio is

∥x(s, t)− x1(s, t)∥2
F

∥x(s, t)∥2
F

× 100 = 153%,

where x(s, t) is found using (4.20).

Figure 4.11: Indicative time series of x(s, t) in the presence of frequency noise and phase
shift

Applying OMDor at various values of α to the snapshots shown in Figure 4.11, while

setting y to be the signal, x1, at the same 5 equispaced locations in 0 ≤ s ≤ 0.5, which

we used in §4.3.1, we find the values of Ep and Ex in Figure 4.12 (a). Despite the value of

the noise-to-signal ratio being higher than unity, Figure 4.12 (a) illustrates that OMDor

improves the mapping between the output and the state. In particular, if a standard ap-

pliation of OMD is used (i.e. α = 0) the best linear fit between OMD weight coefficients

and measurement signals has an error of almost 90%. However for α ≥ 200, OMDor is
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able to find modes whose temporal coefficients are significantly more correlated with the

available measurements, with the best linear mapping between OMD temporal coefficients

and measurements, in this case, having an error of less than 20%.

The randomised nature of the disturbance signals implies that snapshots will vary ev-

ery time we generate them. To analyse the efficacy of OMDor, we generate 100 series

of randomised snapshots using (4.25) and apply OMDor at 0 ≤ α ≤ 300 using the x1

readings at the same 5 equispaced locations for the output signal y. Figure 4.12 (b) shows

the mean value of ⟨Ep⟩ and ⟨Ex⟩ at each value of α. Highlighted, are the 90% confidence

interval of each error plot. The decreasing trend seen in ⟨Ep⟩ in Figure 4.12 (b), confirms

that applying OMDor to this noisy dataset results in better mapping between the state

and the output signals. The wide confidence interval at α > 110 is due to the wide range

of phase and frequency noises that (4.23) and (4.24) can produce. Moreover, the probe

positions remained unchanged for all 100 runs, even though it was observed that in the

presence of uncertainties, there were probe arrangements that performed better than the

considered equidistant arrangement.
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(a)

(b)

Figure 4.12: (a) Variation of error statistics Ep and Ex with α for a data ensemble with
phase drift and frequency noise. (b) average mean values ⟨Ex⟩ and ⟨Ep⟩ and
90% confidence intervals, averaged over 100 runs.

It is worth noting that both the phase-drift signals and the frequency noise signals

contain arbitrary constants which determine the energetic content of those signals and

will affect the noise-to-signal ratio.

We have now shown that OMDor is able to improve the detection of low-energy local

features in a synthetic dataset, with or without noise. However, for both cases, the limited

number of features in the underlying data meant that the optimisation problem had a

clear choice of switching between the modes it chooses to model. To consider a system

with a large number of degrees-of-freedom, we will now concentrate on the dynamically

complex flow past an axisymmetric bluff body considered previously in §3.
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4.3.4 Application of OMDor to flow past an axisymmetric bluff

body

We will apply OMDor on snapshots of the velocity field from the turbulent wake of an

axisymmetric bluff body at Re = 1.88×105, which was previously studied in §3.3.4. Each

snapshot contains the streamwise and the spanwise components of the velocity at a mesh

of (186×163) spatial location in the flow field. In addition to the snapshots of the velocity

field, we have access to the corresponding snapshots of 64 pressure tappings at the base of

the bluff-body. The captured flow field contains a recirculation region where low-frequency

features are dominant, namely the bubble pumping feature at St ≈ 0.05. Here, St refers

to the Strouhal number found using the free-stream velocity and the diameter of the bluff

body’s base. The analysis in §3 shows that at a high value of r, OMD extracts a range of

similar modes in this region with St = O(10−2). Outside the recirculation region, there

is a dominant vortex-shedding feature. The flow also exhibits sudden and randomly (in

time) distributed, out-of-plane azimuthal rotations. It has been shown that the azimuthal

reorientation of the flow happens at a very low frequency [142], St ≈ 0.002, and we have

isolated 2732 sequential snapshots of the velocity field over which the orientation remains

nearly unchanged, with the centre of pressure showing a variance of π/5 rad.

Due to the highly unsteady nature of the flow, which possesses energetic structures

across a wide range of length and time scales, and the noisy nature of the experimental

data, the features obtained through OMD or DMD are highly dependent on the prescribed

dimension of the reduced-order-model, r. OMD extracts modes in pairs of complex conju-

gate oscillatory modes or real-valued non-oscillatory modes, e.g. a mode associated with

the mean flow. Since there are two dominant oscillatory features present in the velocity

dataset, we know that to capture the dominant features of the flow, we will need to set

the parameter r ≥ 5. Applying OMD at r = 5 can therefore correspond to searching for

the ROM of the lowest possible dimension that is able to extract the dynamical features

with an established physical interpretation in the literature. However, applying OMD at
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r = 5 we find that the extracted modes’ eigenvalues do not match the expected dominant

features. Table 4.1 shows that the original OMD algorithm, i.e. OMDor with α = 0,

extracts a feature at St ≈ ±0.006, which is not close to one of the expected frequencies.

α 0 200

St1 0 0

St2 ±0.20 ±0.19

St3 ±0.006 ±0.03

Table 4.1: Strouhal numbers of the identified features at r = 5, with different values of α

Now, we apply OMDor to the same dataset at the same value of r = 5, but this time the

balancing parameter α = 200. For measured output y, we use a set of pressure readings

recorded by 64 pressure tappings at the base of the bluff body, arranged in a radially

and circumferentially equidistant pattern, as explained in [135]. As we have access to

many more snapshots of the pressure readings, we first subtract the long-term average

pressure field from the pressure snapshots. The frequencies stated in the second column

of Table 4.1 show that OMDor now detects the correct low-frequency feature, which is

known to be observable from base pressure measurements [142]. Note also that detecting

the bubble-pumping mode does not come at the cost of corrupting the frequency content

of the vortex-shedding mode that is identified at α = 0 as well.

The above comparison shows the merit of using the OMDor algorithm on experimental

flows. To give a more thorough account of the effect of varying the balance parameter α,

we applied the OMDor algorithm with 0 ≤ α ≤ 1000, using the same pressure fluctuations

as the measured output y. Furthermore, the algorithm was applied at three different val-

ues of the decomposition dimension r, to assess the effects of the decomposition dimension

on OMDor’s performance. The resulting loss functions are depicted in Figure 4.13. At

r = 5, this figure shows that for α > 80 the measurement error, Ep, is reduced from the

steady value of 75% to values fluctuating around 61%, with no significant increase in Ex.

This implies that at a very limited dimension, OMDor modes are able to better model
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the measured output y, without a discernible decrease in their ability to represent the

underlying flow features.

Changing the decomposition dimension r to 50, we see that when α > 210 there is still

an improvement to measurement error Ep, which decreases from approximately 50% to

45%. Similar to the previous case, there is no significant change to the state error Ex. It

is also interesting to note that r = 50 the onset of the decrease in Ep occurs at a higher

value of α than the corresponding decrease observed when r = 5.

Repeating the same output regularisation at r = 500, one can see from Figure 4.13

that the initial values of Ex and Ep for α = 0 are much lower than the previous two

cases. Here, in the range 0 ≤ α ≤ 1000, increasing the balance parameter α does not

lead to an improvement in the output mapping. This behaviour can be attributed to the

fact that in the case that the underlying mode ensemble is large, it is possible to obtain

modes which enable an optimal linear relation between mode weights and observables

without degrading the ability of the obtained model to capture the flow dynamics. This

observation suggests that OMDor is primarily beneficial if a user is seeking a flow model

of low or moderate dimension.

Figure 4.13: Error statistics Ep and Ex for OMDor at parameter values r = 5, 50 and r =
500 and for 0 ≤ α ≤ 1000.
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Finally, we comment on the generally high value of Ep in Figure 4.13. Although, pre-

dictably, the linear mapping between the base pressure and velocity field remains imper-

fect, OMDor clearly improves this mapping as well as the extracted dynamical features.

Such an improvement may be beneficial if this output mapping is used as part of a dy-

namic estimation algorithm, for example. We note here that in theory OMDor can be

extended to cases where the assumed mapping function C is non-linear. In this case, based

on the relationship between velocity and pressure, a quadratic mapping function may be

of particular interest.

OMDor, with velocity measurements

We now apply OMDor to this dataset with another measurable output. From the anal-

ysis in §3 it is known that there is a vortex-shedding feature that exists downstream of

the recirculation bubble, at x/D > 1.25. There is also a lower energy structure that

corresponds with the first harmonic of the shedding mode. Although this feature is dy-

namically relevant and can be extracted at higher values of r, i.e. when the reduced order

model has more degrees of freedom, applying OMD at r = 5 we will not be able to extract

this feature.

We set the measured output y to the velocity readings from the potion of the time-

varying flow field where 0.2 ≤ y/D ≤ 0.5 and 0.85 ≤ x/D ≤ 1.25. This is the portion of

the velocity field that is slightly upstream of the peak of the vortex shedding mode, see

Figure 3.6(c), although there is some spatial overlap between the vortex shedding feature

and this region. Applying OMDor at r = 5 and α = 350. The analysis was carried out

at a range of α values and the value of α = 350 was chosen to correspond with the best

performance of the algorithm for these measurements. Table 4.2 lists the retained modes

at the two different values of α. Note that this region also includes part of the vortex

shedding mode, and as a result, the retained mode’s Strouhal number is lower than the

expected St ≈ 0.4.
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α 0 350

St1 0 0

St2 ±0.20 ±0.34

St3 ±0.006 ±0.02

Table 4.2: Strouhal numbers of the identified features at r = 5, with different values of α

The extracted OMDor modes include a mode at St = 0.34 whose spatial features can

be seen in Figure 4.14. Note that this mode has a length-scale of 0.25, which is consistent

with the fact that the vortex-shedding structures in Figure 3.6 have a length-scale of 0.5

(a) Re (b) Im

Figure 4.14: The harmonic of the vortex shedding mode retained by OMDor in applica-
tion to an axisymmetric bluff body flow.

We note that the choice of measured output in this case, i.e. the velocity readings at a

spatial subdomain containing 1215 grid points, is not realistic in terms of real-time use.

In future work, a parametric study can clarify the role of the number, and the spatial

distribution, of the velocity "sensors" for this flow.

4.4 Conclusion

A method for extraction of dynamical features from high-dimensional snapshots of the

state of the system was proposed. In this method, the ability of the extracted modes in

reconstructing the flow field is balanced with the ability of the resulting reduced order

state to map the low dimensional state to a small set of model outputs. The model was

applied to both synthetic and experimental data where localised coherent structures are
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present. The results show that in both cases the application of OMDor enhances the

ability of the extracted model to capture the subspace of the dataset most related to the

measured outputs. This is true even in the case where more energetic dynamical features

are present in the dataset. A parametric study was also carried out using the synthetic

data, analysing the effect of practical limitations such as the dimension of the measured

output, and the spectral and energetic contents of the flow field.



Chapter 5
Preserving interpretability in data-driven

order reduction

5.1 Order reduction and interpretable models

One of the primary challenges of reduced order modelling is to find a compromise be-

tween the interpretability of the reduced order state and the accuracy of the predictions

afforded by the reduced order model (ROM). To expand upon this point of view, it is

useful to draw a distinction between techniques which are motivated by linear theory—

both in terms of feature extraction and dynamic modelling—and those which aim to move

beyond these approaches and utilise nonlinear data-compression, feature extraction and

dynamic modelling.

Classical approaches to data-driven model reduction in fluid mechanics typically ap-

peal to linear operator theory in order to motivate their decomposition of the underlying

flow into identifiable features. Examples discussed in §2.1, §2.3 and §2.4 include Proper

Orthogonal Decomposition (POD), Dynamic Mode Decomposition (DMD) and Optimal

Mode Decomposition (OMD). In particular, POD modes are simply the eigenvectors of a

data ensemble’s covariance matrix and provide an energy-optimal linear decomposition of

a given data ensemble. DMD extracts features defined in terms of the eigenvectors of the

180
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system matrix of a discrete-time linear system, fitted to optimally capture the evolution

of the data’s temporal POD coefficients over a single time-step. Finally, OMD generalises

DMD in the sense that a linear POD-like projection operator is identified simultaneously

with the discrete-time model fit.

By appealing to linear theory, each of these techniques has the advantage of a strong

theoretical underpinning but, more importantly, there is transparency behind the selection

procedure of the features (i.e., the POD, DMD or OMD modes) in each case. For example,

if we apply POD to extract features from a data ensemble, we know that such features

are an energy-optimal decomposition of the data. Consequently, given prior knowledge of

the dynamic features of a given data-ensemble, a user can decide with confidence whether

POD is an appropriate technique for feature extraction. However, a drawback of classical,

linear, techniques such as POD, DMD or OMD, is that when the true dynamics of the un-

derlying process are complex and nonlinear, ROMs built using the associated modes may

not give the most efficient reduced-order representation of the true underlying dynamics.

For example, while Koopman theory [93, 118, 146] (see also §2.3.1) implies that nonlinear

dynamics can be approximated with models built using DMD modes, an arbitrarily large

number of modes may be required for accuracy [10]. Consequently, a ROM built from

modes or features identified by linear methods may require a larger number of states than

necessary to capture dynamics arising from nonlinear phenomena.

The attempt to move beyond linearly-motivated feature extraction techniques can be

viewed from two different perspectives, which can be made clear by revisiting the form of

the ROM arising from the Optimal Mode Decomposition algorithm. In OMD, as detailed

in §2.4, the model approximating the underlying high-dimensional dynamics has the form

LML⊤ : {data at time ti} 7−→ {data at time ti+1},

where L ∈ Rp×r is a linear projection operator mapping from the (high) data dimension

p to a low-order subspace of dimension r ≪ p. The matrix M ∈ Rr×r describes the time-
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evolution dynamics of this ROM arising from OMD. Clearly, being defined by matrices,

both the action of the projection L (data-compression) and dynamics matrix M are linear

processes. Either or both of these two components can potentially be replaced by nonlin-

ear mappings or processes, thus generalising the classical approach to data compression

and dynamical modelling. We now discuss these two generalisations.

Nonlinear techniques for data compression.

Techniques for nonlinear data compression are well-established in data science. The adop-

tion of nonlinear data compression in fluid mechanics has only truly accelerated in the

past decade, but it is now the case that powerful techniques from deep learning and

computer-vision-inspired methods such as convolutional neural networks have now been

brought to bear on the problem of feature identification in fluids [126, 56, 57, 133].

While the techniques for nonlinear compression are complex and varied, the funda-

mental modelling concepts are simple to explain. In particular, given a data ensemble

comprising vectors {yi}N
i=1 ⊂ Rp of (high) dimension p, a user first defines a (small) reduc-

tion dimension r, then seeks to identify nonlinear functions f : Rp 7→ Rr and g : Rr 7→ Rp

known, respectively, as the encoder and decoder mappings. To identify these mappings,

at a given fixed reduction dimension r, nonlinear data-compression techniques seek to

minimise residuals of the form

N∑
i=1
∥yi − (g ◦ f)(yi)∥

2
2 . (5.1)

A clear advantage of this approach over linear techniques (e.g., over OMD in which f = L⊤

and g = L) is that the use of nonlinear encoder/decoder mappings can reduce the fitting

residual for any chosen reduction dimension r. Thus, there is the beneficial potential to

describe (i.e. compress) the data at a given accuracy level with fewer dimensions than are

required by linear methods. As explained in §2.5.1, if functions f and g are both linear,

the optimal results are equivalent to projection onto the POD modes.
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A significant drawback of nonlinear data compression techniques, especially important

in the context of fluids analysis, is that there is no longer a clear definition of a physically

meaningful “feature”. While in POD, DMD and OMD, the underlying appeal to linear

theory provides natural features or modes arising directly from eigenvector analysis of

the underlying matrices, the use of nonlinear (and typically highly complex) encoder and

decoder functions prevents simple identification of distinct coherent features. Recent stud-

ies have attempted to rectify this issue, for example, by constructing a decoder function

g : Rr 7→ Rp that generates r vectors of length p whose linear combination can reconstruct

the input snapshot [126, 57]. The temporal evolution of these vectors forms a nonlinear

analogue of “modes” from linear theory. Other approaches include analysis of the tem-

poral evolution of the compressed vector f(yi) [133]. However, while these autoencoders

achieve lower reconstruction errors for a given value of r, each of their extracted “modes”

contains elements of multiple linear modes and further analysis is necessary to interpret

the state of the flow.

Nonlinear techniques for data-driven system identification.

The second way in which nonlinear modelling can extend classical data-driven approaches

is to provide improved fits to the temporal evolution observed in a typical time-resolved

data ensemble. Typical ensembles in fluid mechanics are high-dimensional, meaning that

a data-compression technique (either linear or nonlinear) must first be applied before

model fitting can be attempted (c.f. the discussion in Section 2.3).

The simplest approach towards nonlinear data-driven modelling, given a time-resolved

data ensemble is as follows. First reduce dimensions using a given, and fixed, data

compression technique. Next, extract the corresponding r-dimensional time series of

reduced-order coefficients. Finally, fit an ordinary differential equation to these time se-

ries of any chosen complexity. Such an approach includes the recently-proposed Sparse

Identification of Nonlinear Dynamics (SINDy) algorithm [32] in which POD is used for

data-compression, and nonlinear fitting to the reduced-order time series is performed by
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fitting multivariate polynomials of arbitrary degree (although it should be noted that the

fit itself is performed using a standard regularised least-squares optimisation algorithm).

The nontrivial, but still classical, component of the SINDy algorithm is to impose an

ℓ1-regularisation term to promote sparsity and to prevent overfitting.

The final generalisation to fully nonlinear feature identification is to attempt to imple-

ment both nonlinear data compression (i.e. identification of encoder and decoder func-

tions) and nonlinear system identification (i.e. identification of a time-stepping model)

simultaneously. In a sense, this approach can be viewed as a nonlinear counterpart to

OMD’s generalisation of DMD in which the POD projection used by DMD is replaced by

an arbitrary projection matrix L, which is identified simultaneously with the dynamics

matrix M . Such a nonlinear compression/identification approach has been recently pro-

posed by in [37], where a feedforward neural network simultaneously finds the nonlinear

mapping to a lower dimensional state and ensures that the evolution of the extracted

state can be expressed by a sparse dynamical model.

As a summary of the above discussion, a schematic overview of the different choices

of linear and nonlinear data compression and system identification methods is given in

Figure 5.1.
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Figure 5.1: Categories of order reduction and model discovery methods
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What is the ‘most appropriate’ choice of compression or dynamic model?

Given the ever-expanding range of model reduction and dynamics modelling tools avail-

able, it is obvious to ask which technique is best to apply in a given application. Naively,

given that the underlying systems that we would like to model in typical fluid mechanics

applications are nonlinear, it should be expected that nonlinear compression and nonlin-

ear system identification will always provide better ROMs than classical, linear, methods.

However, this may not always be the case.

Moving to nonlinear identification necessitates an increase, often dramatic, in the num-

ber of optimization variables which, in turn, leads to the possibility of overfitting and

poor model performance off training data. Many successful implementations of nonlin-

ear machine learning avoid overfitting due to the availability of arbitrarily large sets of

training data. In fluid mechanics, however, there is typically a large cost associated with

data collection, either in terms of computational cost or experimental limitations. Con-

sequently, data is often incomplete (e.g. only certain velocity components or fields of

view are available) and is only available at a small number of operating conditions (e.g.,

Reynolds numbers, actuator inputs or flow geometries). Importantly, the use of the word

‘small’ should be viewed in the context of all the possible dynamic behaviours that could

be observed in a particular flow and, in many practical applications, it would not be

unreasonable to replace ‘small’ with ‘vanishingly small’.

In light of this typical lack of data in a fluid mechanics context, it should not automat-

ically be expected that appealing to the most general nonlinear model fitting techniques

will succeed. Indeed, while some promising progress has been made in cases where the

sparse coordinates are known—such as handling noise [150] and partially captured states

[30]—simultaneous order reduction and model discovery remains limited to fully captured,

noise-free datasets [37].

It is therefore arguable that a middle ground must be found if the benefits of nonlinear

system identification are to be enjoyed in a wide range of fluids applications. Recent
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studies have concentrated on using deep learning to the Koopman invariant subspace of

nonlinear models [160, 134, 110](see §2.5.4 for an in-depth review of these methods.) How-

ever, generally, these methods do not scale well with high dimensional and noisy data, due

to prohibitively computationally expensive optimisation problems associated with them.

A recent study has considered the possibility of improving the performance of linearly

motivated DMD analysis by replacing the initial POD-based compression with nonlinear

compression techniques. However, in this approach, the extracted spatial features seem

to suffer from a lack of interpretability [49].

In this chapter, motivated by the challenge of maintaining the interpretability of ex-

tracted features from data compression, we explore the possibility of extracting a sparse

state to represent a fluid flow which maintains a connection to an existing interpretable

encoding of the flow. To this end, rather than discarding the first, linearly-motivated,

class of flow feature extraction techniques entirely, we aim to bootstrap from them.

Our approach is to first find an interpretable decomposition of the given data, using

a linearly-motivated modal decomposition algorithm. Subsequently, we post-process the

expansion of the underlying data-ensemble in the chosen modal basis to attempt to find

a lower dimensional state that can be mapped to a, hopefully lower-dimensional, decom-

posed state. Enforcing a relationship between the lower dimensional state and the original

interpretable modes ensures that the low dimensional state is by definition interpretable.

Finally, we investigate whether the features identified by our new approach can enable

more accurate dynamic ROMs to be created for the underlying data ensembles.

Since the first step in our method is to apply a linear modal decomposition technique,

we first revisit these classical methods and discuss them in terms of both the interpretabil-

ity of their features and the efficiency with which these enable the decomposition of the

underlying data ensemble.
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5.1.1 The efficiency of linearly motivated modal decomposition

techniques in the context of extracting interpretable states

In previous chapters, we saw that the process of finding patterns of dynamical behaviour

from ensembles of flow field snapshots typically involves identifying spatially coherent

structures that exhibit interpretable temporal behaviour. To motivate the new nonlinear

methodology considered in this chapter, we very briefly discuss the efficiency of the most

common linearly-motivated decomposition methodologies, POD and DMD.

As explained in Chapter 2.1, given a data ensemble X ∈ Rp×n whose columns are flow

snapshots xi sampled at times ti, POD solves the optimisation problem

minimize
Φ

∥X − ΦΦ⊤X∥2
F

s.t. Φ⊤Φ = I, Φ ∈ Rp×r.

(5.2)

The POD modes ϕi are the columns of Φ, and an approximation of the original data set

is then given by

xj =
r∑

i=1
ai(tj)ϕi + νi, j = 1, . . . , n (5.3)

where νi are fitting residuals and ai(tj) are the POD time series coefficients defined at

each of the sample times tj. These are computed by the method described in Section 2.1.

Now, POD is optimally efficient in the sense that for a given reduction dimension r,

the POD modes {ϕi}r
i=1 are the unique vectors (flow fields) for which the fitting residual

error ∑r
i=1 ∥νi∥2

2 is minimised. However, such energetic fitting efficiency may not be the

only criteria of interest for modelling.

Indeed, the primary motivation for the introduction of DMD is the fact that optimal

energy efficiency (i.e. POD) may not be desirable if one would like to model flow struc-

tures which are purely oscillatory in time. This was first observed in one of the earliest

papers employing DMD [146], where two dominant global modes of a jet in crossflow are

analysed: one corresponding to a high-frequency shear layer mode of the jet; and the
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other relating to low-frequency wall vortex oscillations. While a POD analysis extracts

modes which can be argued to reasonably represent each feature, an analysis of their

associated temporal information (via the coefficients ai(tj)) shows that both POD modes

contain multiple frequencies, including ones which are clearly distinct from those known,

via spectral analysis of DNS data, to be associated with the features of interest.

A consequence of the above observation is that if it is expected that flow features exist

which are purely oscillatory, then POD may not necessarily provide the most efficient

representation of such features. Indeed, the fact that the POD modes corresponding to

the oscillatory structures of a jet in crossflow contain multiple frequencies indicates that

multiple POD modes may be required to capture a single globally oscillatory structure

in any resulting reduced-order model. Clearly, such models would not be of the smallest

possible dimension and, in this sense, can be viewed as inefficient.

Dynamic Mode Decomposition was introduced to address this inefficiency specifically.

If the user believes that an important structure in the flow can be represented by a linear

process (a pure oscillator, or an oscillator with exponential growth or decay) then it makes

sense to attempt to extract modal structures whose associated temporal coefficients (i.e.

the analogues of POD’s ai coefficients) exhibit exactly this linear behaviour. As explained

in Section 2.3, DMD provides a decomposition of a data ensemble X via

xj =
r∑

i=1
αiϕ

DMD
i λj−1

i + νDMD
i , (5.4)

where the DMD modes ϕDMD
i are (complex) linear combinations of POD modes, and the

eigenvalues λi are chosen to optimally reduce the fitting residual ∑n
i=1 ∥νDMD

i ∥2
2. This

decomposition implies that temporal coefficients of each DMD mode are, by (5.4), the

terms αiλ
j−1
i , which endows each structure with a single frequency and growth rate. It

follows that DMD is an optimally efficient method of decomposing a data-ensemble into

structures with linear dynamics∗: if a purely oscillatory feature of interest is present in the

∗ Given that such structures lie in the span of the POD modes
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data, then DMD has the ability to represent it with only a single mode in a reduced-order

model. Furthermore, such a feature can be argued to be clearly interpretable since, by

definition, it represents the flow structure that was assumed to exist at (or near) a given

frequency.

It should now be clear that the two classical methods of DMD and POD are both

optimally efficient in an appropriately defined sense, and that DMD’s version of ‘optimal

efficiency’ can be of benefit to reduced-order modelling if the underlying flow structures

are believed to be purely oscillatory. In this chapter, we attempt to address the following

natural question. In scenarios where linear decomposition techniques are not optimally ef-

ficient and lead to a larger number of states than necessary, can nonlinear post-processing

of their resulting states lead to improved efficiency? In other words, can the information

captured by a large set of linear modes be represented using a smaller state?

In §3, it was seen that when applied to dynamically complex data ensembles, DMD

can give a large number of distinct modes with both similar characteristic temporal fre-

quencies and with similar spatial structures. Such behaviour may arise from noise in the

underlying data set or, more interestingly, from the flow’s non-exponential transient be-

haviour away from (and back to) its global attractor [10]. In §3 we considered an arguably

extreme solution to ROM efficiency in this context, by post-processing the DMD modes

to form clusters of dynamically similar modes. Subsequently, once the clusters of modes

are found, each cluster was represented by one, or a small number of, spatial modes.

Representing each cluster with a single, or a few, modes reduces the complexity of the

decomposition and promotes a more intuitive picture of the degrees of freedom available

in the underlying system.

Nonetheless, a cluster’s representative mode spans a more limited subspace of the

dataset than all of the modes in that cluster. In cases where dimensionality reduction is

a priority, this may be a worthwhile sacrifice. Ideally, however, one would want to model

the evolution of a larger set of, e.g. all of, DMD modes in the cluster, but with an efficient

low-order model which contains a low number of degrees of freedom. Such a goal may
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be possible if there is coherent nonlinearity in the underlying data ensemble. For exam-

ple, excursions away from and relaxations to a global attractor are nonlinear processes.

While it is known that this behaviour can be captured by a large (theoretically infinite)

number of linear processes [10], nonlinear data compression has the potential to enable a

more efficient representation of this phenomenon. Furthermore, a standard application of

DMD (or the cluster analysis of §3) does not explicitly seek to exploit nonlinear temporal

dependencies between modes, such as those exhibited by harmonics of oscillatory global

modes. This provides further potential for nonlinear dimensional reduction of complex

data ensembles.

We now present our methodology for nonlinearly-enabled dimensional reduction, based

on interpretable data decomposition.

5.2 Methodology

As is standard, we assume that a matrix X ∈ Rp×m of m ∈ N snapshots is available whose

columns xi ∈ Rp contain flow field information at sample times t1 < t2 < · · · < tm−1 < tm.

We first apply a classical, linearly-motivated, modal decomposition methodology and ex-

tract a set of n ≤ m spatial mode shapes {ϕi}n
i=1. These modes may be created by a

standard application of a linear modal decomposition methodology, such as POD, DMD

or OMD. Alternatively, we also allow the possibility that these modes have been created

by post-processing a standard modal ensemble using a method such as the cluster analysis

of Chapter 3.

Our only prerequisite is that for the computed set of modes {ϕi}n
i=1, it is possible to

create time series (ai(tj))m
j=1 for each mode i = 1, . . . , n. Again, such time series can be

calculated using one of the methods described in §3. To begin, we use the time series

(ai(·))n
i=1 of the original modes to give an initial, and physically interpretable, projection

of the the flow field. Noting that while n < p, where p is the number of data points

per snapshot, it is still the case that n may be chosen to be relatively large—typically
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n = O(102). Our aim, indicated schematically in Figure 5.2, is to attempt to find a lower-

dimensional set of time series (bi(·))r
i=1, with r < n, which can accurately approximate

the time series (ai(·))n
i=1 arising from the underlying projection of the flow field.

To achieve this, we will use the nonlinear methodology of autoencoder neural networks.

An autoencoder neural network consists of two fundamental components. The first is a

non-linear encoder function that maps the inputs (in this case the original time series

(ai(·))n
i=1) to produce a lower-dimensional state (bi(·))r

i=1 applied to the input. These

lower-dimensional states are typically referred to as the latent states or as the encoded

state. Finally, the encoded states are then fed into a second nonlinear decoder function

which, via the solution to an optimisation problem of the general form (5.1), in turn

attempts to reconstruct the original higher dimensional state ai(·).

Figure 5.2 shows a schematic view of this methodology. Our aim now is to define ap-

propriate encoder and decoder architectures in which to search for the required nonlinear

mappings. Since we are attempting to model time-series, we need to use encoder and

decoder functions that consider the temporal nature of the input vector (ai(·))n
i=1. Recur-

rent Neural Networks (RNNs) are explicitly designed to handle temporal signals, and we

briefly recap (from §3.1), and then expand upon, some of their key properties.

Linear
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DMD

etc.)

Linear
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Nonlinear
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Figure 5.2: A schematic view of the proposed approach to interpretable dimensionality
reduction.
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5.2.1 A brief review of Recurrent Neural Networks

Recurrent neural networks (RNNs) are a class of neural networks widely used for process-

ing time series data, due to their ability to contextualise the input vector (ai(·))n
i=1 with

information from previous time steps [85, 50, 80, 41]. The advantage of using recurrent

neural networks, over other temporal modelling approaches such as Markov chains, is

the automatic manner in which patterns and dependencies are found, and their capabil-

ity to extract complex nonlinear dependencies and patterns [104]. The disadvantage of

using RNNs, compared to other time series modelling techniques, is the difficulty associ-

ated with solving their corresponding optimisation problem [136](see §2.5.5 for a detailed

discussion).

Elman recurrent neural networks are the simplest type of RNNs [50] and have been

widely used for time series analysis [170, 102, 7, 38], especially in the context of natural

language modelling and computational linguistics [121, 51]. To begin our introduction to

RNNs, we first describe the simplest type of Elman RNN, which includes only one hidden

layer. In the context of the current analysis, we will explain the network as an encoder

function that maps a higher dimensional sequence (ai(·))n
i=1 to a lower dimensional state

(bi(·))r
i=1.

This provides a relation between inputs (ai(tj)) sampled at times t1 < t2 < · · · <

tm−1 < tm and the latent states (bi(tj))r
i=1. For each j, we let a(tj) = (ai(tj))n

i=1 ∈ Rn be

the vector of input weights at time tj. The output b(tj) = (bi(tj))r
i=1 ∈ Rr, or latent state

vector, at time tj is then given by

h(tj) = tanh(Whia(tj) +Whhh(tj−1) + dh)

b(tj) = Woh(tj) + do.

(5.5)

Here, h(·) ∈ Rℓ is known as the hidden state, Wo ∈ Rr×ℓ, Whi ∈ Rℓ×n and Whh ∈ Rℓ×ℓ

are weight matrices, do and dh are constant vectors. The dimension ℓ is a modelling

parameter and the tanh(·) is applied to each component of its argument vector.
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To explain the form of this model, first consider (5.5) but with the tanh(·) term removed

from the update equation for the hidden state h(tj). In this case, the mapping between

a(tj) and b(tj) is simply that of a discrete-time linear system, forced by the input a(tj)

and with output b(tj). As a consequence, information from previous time-steps can have

a delayed influence on the input-output relation.

Furthermore, recalling the series expansion tanh (x) = x − 1
3x

3 + · · · about x = 0, it

follows that the Elman RNN (5.5) both retains the ability to capture linear input-output

relations (i.e. when the input parameters to the hyperbolic tangent are in the vicinity

of zero) and extends to the possibility of capturing nonlinear input-output behaviour.

Importantly, the fact that tanh saturates for inputs of large absolute values (at a first ap-

proximation via the effect of the −1
3x

3 term) implies that structure is imposed on the form

of the nonlinear relation, which attempts to prevent the fitting of temporally unreasonable

relations. The inclusion of temporal dynamics via the term h(tj−1) in (5.5) implies that

the Elman RNN has the ability to exploit any temporal coherence in the underlying data.

Since we expect some level of temporal correlation to be present in the high-dimensional

state a(tj), including time-dependency in the RNN model may be beneficial in terms of

obtaining an efficient low-order representation of the data ensemble.

To capture complex nonlinear relations, it may be necessary to increase the number of

hidden layers in an RNN. In a similar fashion to fully connected neural networks, increas-

ing the number of hidden layers, with each hidden state being used as the input of the

next hidden layer, increases the complexity of the nonlinear fitting function (see §2.5.1 for

fully-connected NNs). Note that, depending on the specifics of the problem, alternative

non-linearities can be used instead of the tanh (·) function. Such non-linearities must have

similar saturation characteristics.

The potential shortcoming of using an Elman network is that it is not not suitable to

model long term dependencies. Suppose that in the example above we have a desired

value of the latent state (bi(tj))r
i=1, and we want to train the network so that the cost

function J = ∥b(tj) − (tanh(Woh(tm) + do))∥2
F is minimised. Suppose also that the in-
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put sequence (ai(tk)m
k=1)n

i=1 includes a large number of samples, i.e. m ≫ 1. Defining

yj = tanh(Woh(tm) + do), to update the weights Whh using a gradient-based algorithm,

we use the chain rule to find the gradient

∂J

∂Whh

=
j∑

k=1

∂J

∂yj

∂yj

∂h(tj)

( j∏
i=k+1

∂h(ti)
∂h(ti−1)

)
∂hk

∂Whh

, (5.6)

where ∏ signifies the product of the Jacobian terms

∂h(ti)
∂h(ti−1)

= Whh diag(tanh′[Whia(ti) +Whhh(ti−1) + dh]), (5.7)

where tanh′(·) = 1 − tanh2(·). In a gradient-based solver, the gradient in (5.6) is used

to update the weights Whh in the next iteration of the gradient descent optimisation.

The overall update vector is determined as the sum of all time steps k’s contribution.

However, the gradient of the tanh(·) function has an upper bound of 1 and a lower band

of 0 and if the largest eigenvalue of the matrix W t
hh is also stable, for a long sequence, the

contribution from the initial time steps to the direction of movement of the solver will be

negligible. As a result, the choice of weights prioritises to only model short-term depen-

dencies. On the other hand, if the norm ∥W t
hh∥2 > 1, or the gradient of the nonlinearity

is not smaller than 1, the gradient terms will grow unstably, preventing the convergence

of the optimisation algorithm. This problem is referred to as the vanishing and exploding

gradients [80, 136].

Note that in cases where the input sequence does not have to be long, i.e. you can

reasonably expect to have a good estimate of the output based on a few inputs, given

good initialisation practice, see [64], and setting an upper bound for the gradients, an

Elman RNN can still be used effectively.

For more complex datasets, where the use of longer input sequences may be necessary,

often alternative mapping techniques, such as Long Short-Term Memory, LSTM, networks

[80] or Gated Recurrent Unit, GRU, networks [41]. LSTMs utilise a more sophisticated

mechanism of assigning priority to information from previous time steps. LSTMs utilise
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a cell state, c(t), and various gate functions that allow the network to store and forget

about past states. An LSTM network with one hidden layer can be written as

i(tj) = σ(Wiia(tj) +Whih(tj−1) + di)

f(tj) = σ(Wifa(tj) +Whfh(tj−1) + df )

o(tj) = σ(Wioa(tj) +Whoh(tj−1) + do)

g(tj) = tanh(Wiga(tj) +Whgh(tj−1) + dg)

c(tj) = f(tj)⊙ c(tj−1) + i(tj)⊙ g(tj)

h(tj) = o(tj)⊙ tanh(c(tj))

b(tj) = Woh(tj) + do,

(5.8)

where W denotes weight matrices, d denotes constant vectors, σ denotes the sigmoid func-

tion with the range σ 7→ [0, 1], and ⊙ denotes the elementwise multiplication operation.

The functions i(t), f(t), o(t) are known as gate functions, that allow or limit the passage

of information from previous time steps to the current output and from the current time

step to the future time steps. The function g(t) contains the candidate state, which if the

input gate i(t) > 0, can contribute to the cell state c(t). The output gate o(t) controls

whether information from the cell state can pass to the current output.

As with the Elman neural networks, differentiating the recursive state will determine

the flow of gradients from the output error to the weight matrices. However, here we have

two recursive states h(t) and c(t). The flow of gradients to h(t) is determined in a similar

fashion to the Elman model. However, by differentiating the cell state c(ti) with respect

to its previous value c(ti−1) we will get the

∂c(ti)
∂c(ti−1)

= f(ti),

which can be used to obtain
∂c(tm)
∂c(t1)

=
m∏

i=2
f(ti).
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While this gradient can also diminish for longer sequences, there is no inherent reason

for it to do so [17, 104]. In other words, unlike the Elman RNN where the convergence of

the gradient-based algorithm dictates that long-term dependencies are ignored, the above

gradient can in theory allow the passage of long-term dependencies, while the optimisation

routine also converges to a solution.

An illustrative example is that of initiating the constant biases df at a high value and

only allowing small variations to it during the training process, through arbitrary clipping

of its gradients. In such a case, the forget gate value, f(t), will remain constant at f(t) = 1

and the derivative ∂c(tm)
∂c(t1) = 1. Indeed the original LSTM algorithm was designed with the

function f(ti) = 1, and the forget gate was later designed as a way to allow the model

to reset the cell state’s value and ignore previous inputs. In deeper LSTM networks, the

cell state c(t) and the hidden state h(t) are both passed on to another LSTM cell, with

its own gate.

Another approach to addressing the problem of exploding/vanishing gradients in RNNs

is that of Gated Recurrent Units, in (5.9). GRU models are more compact than LSTM

networks, with only two gate functions. A reset gate, r(t), that controls the flow of infor-

mation from the previous time step to the current time step, and an update gate, z(t),

that controls the passage of information from the current time step to the future time

steps. GRUs achieve the same goal of allowing information to pass through long recursive

chains, with fewer parameters than LSTM networks.

z(tj) = σ(Wzia(tj) +Wzhh(tj−1) + dz)

r(tj) = σ(Wria(tj) +Wrhh(tj−1) + dr)

n(tj) = tanh(Wnia(tj) +Wnh(r(tj)⊙ h(tj−1)) + dh)

h(tj) = (1− z(tj))⊙ n(tj) + z(tj)⊙ h(tj−1)

(5.9)
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Armed with the knowledge of RNNs as a class of sequence-to-sequence regression mod-

els, we now explain their use in the context of our order reduction approach for fluid

mechanics data ensembles.

5.2.2 Our time-lagged autoencoder

Here we give a more detailed explanation of the method illustrated in Figure 5.2. Sup-

pose we have applied a linearly-motivated modal decomposition method to a snapshot

ensemble X ∈ Rp×m and extracted a set of n ∈ N mode shapes Φ = {ϕi}n
i=1. Depending

on the decomposition technique used, the mode shapes may have different characteris-

tics. Modes extracted using POD are by definition real-values and pairwise orthonormal,

whereas modes extracted using DMD-like algorithms are complex-valued and are not in

general spatially orthogonal.

For an approach based on DMD-like methodologies, after selecting an initial subset of

the available modes and applying any predefined post-processing steps (e.g. mode clus-

tering and representative modes), we obtain a set of complex modes ΦDMD ∈ Cp×n. For

further analysis, we then consider the underlying mode ensemble as being formed of the

real and imaginary parts of each mode, i.e. Φ = {Re((ϕi)DMD), Im((ϕi)DMD)}n
i=1 ⊂ Rp×2n,

allowing the real and imaginary parts of the mode to represent independent spatial mode

shapes. As a result, the time series a(t) associated with each mode will be real-valued.

Once the mode shapes have been computed, we find the mode shape time series a(t)

through the least square fit that minimises ∥X − Φa(t)∥2
F . The solution has the form


↑ ↑ ↑

a(t1) a(t2) · · · a(tm)

↓ ↓ ↓

 =
(
Φ⊤Φ

)−1
Φ⊤X. (5.10)

Note that for the case of orthonormal Φ, the right-hand side of (5.10) can be simplified

to Φ⊤X.
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Once the mode time series are found, we need to train an RNN autoencoder to find

an efficient approximation â(t) ≈ a(t) which depends upon a reduced number of latent

states. The appropriate architecture for the autoencoder network depends on the number

of data points and the quality of the data available. Here we explain the two architectures

that we have used in the results section that follows.

Firstly, for practicality, we design the encoder function such that at each time tj it will

only have access to a shorter sequence of snapshots than the full set of snapshots. This

significantly reduces the computational cost of training the network as well as enabling

the encoder to be used in for practical estimation purposes. We refer to the subset of

the time series that the encoder function has access to as the input sequence and it can

be expressed as (ai(tj−kd(∆t))L
k=0)n

i=1, where d(∆t) is the constant time difference between

the snapshots in the input sequence, and L + 1 is the number of snapshots in the input

sequence. Note that d is an integer and d(∆t) is a multiple of the sampling time step ∆t.

For data sets that are highly periodic and contain a low magnitude of noise, a shorter

input sequence can be sufficient, while more complex datasets may require a longer input

sequence to contextualise the true dynamics at time tj. For the first case, we use an

Elman neural network with two hidden layers as the encoder function. The encoded state

b(t) is defined by

h1(tj) = tanh (A1h1(tj−1) +B1a(tj) + d1)

h2(tj) = tanh (A2h2(tj−1) +B2h1(tj) + d2)

b(tj) = Ch2(tj) + d,

(5.11)

where Ai, Bi and Cb are weighting matrices describing the underlying linear processes,

and di, db are constant bias vectors. As mentioned above, the state a(tj) is sampled such

that, a(tj) ∈ (ai(tj−kd∆t)Li
k=0)n

i=1, and consequently the hidden state h(tj) and the encoded

state b(tj), are evaluated at the same time steps as a(tj).
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For most practical cases, the decoder function should be able to produce an approxima-

tion of the flow field at time tj, given the value of the encoded state b(tj). We, therefore,

design the model such that it has no temporal dependency. We use a fully-connected

architecture with two hidden layers for the decoder function letting

h3(tj) = tanh(B3b(tj) + d3)

h4(tj) = tanh(B4h3(tj) + d4)

â(tj) = Ĉh4(tj) + d̂.

(5.12)

Note that the decoder in (5.12) has the same structure as an Elman network, without the

temporal recursion.

The optimal weight matrices and bias vectors are found by solving the optimisation

problem

minimise
W

J :=
n∑

j=1

∥∥∥∥∥a(tj)− â(tj|W)
∥∥∥∥∥

2

F

, (5.13)

where

W =
{

(Ai)2
i=1, (Bi)4

i=1 , (di)4
i=1 , C, Ĉ, d, d̂

}

is the set of all weight matrices and bias vectors involved in the definitions of the encoder

and decoder functions. It should be noted that â(tj|W ) implicitly depends on the original

time series data a(·) via the input-output relations

a(·) (5.11)−−−→ b(·) (5.12)−−−→ â(·).

We note that similar architectures have been used extensively in natural language pro-

cessing and sentiment analysis, fields that rely heavily on time-series analysis (see [42]

and [16] for example). We also note that previous attempts at using RNNs in conjunction

with the POD time series have been successfully used in creating a full dynamical system

for forecasting and feedback control [156].
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However, the distinct advantage of the above architecture is its suitability for model

order reduction. Unlike the sequence-to-sequence autoencoder in [42], where the decoder

reconstructs all of the input sequence, and the dimensions of a(t) and b(t) are the same,

we prioritise the extraction of a low dimensional state corresponding to the current time

step. The simultaneous training of a decoder function that requires no memory of the

past allows us to more easily use the low-dimensional state b(t) for control and estimation

purposes. The reason for this is that in typical estimation algorithms, at each time-step,

a correction to the state estimate is obtained as a function of the difference between the

expected output of the estimated state and the true measured output. Using a decoder

which requires no memory, implies that the expected output (as required by an estimation

algorithm) can be easily computed via a static map involving the decoder function. Thus,

implementing such an estimation algorithm (and any controller which depends upon it)

is simpler with a memoryless decoder.

At the same time, the choice of the RNN structures here allows for a sequential encod-

ing step that compresses multiple instances of the high-dimensional state a(t) into one

instance of a low-dimensional state b(t), uses the recursive hidden states h to enrich the

encoded state. In contrast, multiple time-steps of the full state a(t) are simultaneously

used as the input to the forecasting model in [156], leading to a larger and more difficult

model to train as the dimension of the state a(t) increases.

As mentioned, the limitations of Elman RNNs prevent their application on more com-

plex quasi-periodic time series. For such cases, LSTMs or GRU neural networks can

be used as the encoder function. Similarly, the number of hidden layers in the decoder

function can change to reduce the model’s complexity. Fundamentally, however, the cost

function of the autoencoder remains, as expressed in (5.13), the squared Frobenius norm

of the residual between the reconstructed â(·) and the input time series a(·).

In some cases, it is beneficial to apply a pre-processing step to normalise the original

time series a(·). While this is not strictly necessary, if not performed the least-squares

nature of the optimisation problem (5.13) implies that the autoencoder approach may
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prioritise the reconstruction of only higher amplitude time series at the expense of less

energetic time series. Whether this behaviour is desirable will depend upon a prior assess-

ment of the dynamic significance of (and the desirability to model) the various time series

extracted from the underlying ensemble of spatial modes. If it is desirable, normalising

the underlying time series data can fully de-emphasise the priority of the high-energy

modes.

For each time series ai(·), we apply the transformation

αi(t) = ai(t)
|ai|

, (5.14)

where

|ai| = max(a(t))−min(a(t)).

For cases where min(a(t)) < 0 and max(a(t)) > 0, which is usually the case for DMD and

POD time series, this normalisation enforces −1 ≤ αi(t) ≤ 1.

The normalised time series α(·) can then be used in place of a(·) as the input to the

neural network. An additional term can then augment the cost function to ensure a

good fit between the resulting reconstructed velocity field. The resulting optimisation,

for Elman encoder and decoder functions, is

minimise
W

J :=
m∑

j=1

∥∥∥∥α(tj)− α̂(tj|W )
∥∥∥∥2

F
+ η

∥∥∥∥Xtrain −
m∑

j=1

n∑
i=1

[|ai|α̂i (tj|W ))] · ϕi

∥∥∥∥2

F
,

(5.15)

where W is the set of weights matrices and constant bias vectors, α̂ is the reconstructed

normalised time series, η is a constant which determines the balance between how well

all the scales are replicated regardless of their energetic contribution, and how well the

velocity field is replicated.

We now present two illustrative examples which examine the potential of, and the

challenges faced by, the aforementioned approach for ROM.
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5.3 Results

We will now apply the above approach to two bluff body flows, one at a low Reynolds

number and dynamically simple and one at a high Reynolds number and more dynam-

ically complex. As motivated above, our aim, given an initial and moderately large set

of dynamic modes, is to robustly replicate the observed flow dynamics that lie in the

span of these modes with fewer degrees of freedom than are required by the original

decomposition.

To use the terminology of RNNs, this will involve identifying a latent state b ∈ Rr, a

nonlinear encoder f : Rn 7→ R and a nonlinear decoder function g : Rr 7→ Rn such that

the norm of the residuals

∥a− â∥F = ∥a− (g ◦ f)(a)∥F = ∥a− g(b)∥F

is small, when evaluated on the time series of temporal mode weights a ∈ Rn. If a small

residual can be achieved with r ≪ n, this suggests that efficient data-compression is

achievable. Furthermore, there may be potential to use the reduced state b as the basis

of a reduced order model. This will be explored subsequently, in §5.3.5.

5.3.1 Encoding POD coefficients for flow past a cylinder at low

Reynolds number

5.3.1.1 Existing dynamical models

The supercritical laminar wake of a circular cylinder has been extensively used as a bench-

mark flow in existing literature [126, 56, 49, 110]. Noack et al. [128] applied POD to

snapshots of a fully developed oscillatory wake, at Re = 100, and found the oscillatory

POD modes that describe the dynamics of this flow field. They subsequently argue that

a further, albeit less intuitive, mode of importance to the flow dynamics is the so-called

shift mode which captures the difference between the time-averaged flow field evolving on
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its global attractor (a stable limit cycle) and the unstable steady-state solution to the

Navier-Stokes equations. For completeness, we have decomposed snapshots of a similar

flow at Re= 60 using POD, and the three spatial mode shapes corresponding to these

three features (one flow field for the shift mode, and a pair representing the dominant

vortex shedding feature) are shown in Figure 5.3 and their corresponding time series are

shown in Figure 5.4.

(a) Vortex shedding ϕ1 (b) Vortex shedding ϕ2

(c) Shift mode ϕ3

Figure 5.3: The three fundamental modes for cylinder wake at Re= 60: (a-b) vortex shed-
ding modes; (c) the shift mode.

Interestingly, a simple canonical model for the evolution of these three modes is pro-

posed in [128]. In particular, letting a1(t), a2(t) be the time series corresponding to the two

vortex shedding modes ϕ1, ϕ2, and a3(t) be the time series corresponding to the shift mode

ϕ3—so that an approximation to the time-varying flow field is given by ∑3
i=1 ai(t)ϕi—the

dynamic model has quadratic nonlinear form
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(a) (b)

Figure 5.4: Vortex shedding time series, a1 and a2, and the shift mode time series a3.

da

dt
=


µ −1 0

1 µ 0

0 0 −1

 a+


0 0 −a1

0 0 −a2

a1 a2 0

 a, a =


a1

a2

a3


:= Aa+N(a)a. (5.16)

This minimal three-state model captures the unstable (about the equilibrium point a = 0)

oscillatory structure of the vortex shedding mode pair (a1, a2) and the transient transition

of the flow onto its asymptotically stable limit cycle. The role of the shift mode is made

clear by considering its evolution in the context of the oscillation amplitude

A =
√
a2

1 + a2
2.

Indeed, a simple calculation shows that

dA

dt
= (µ− a3)A,

da3

dt
= −a3 + A2,
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suggesting that a limit cycle exits for a3 = A2 = µ, and that close to this limit cycle (under

the assumption that the shift mode is slaved via a3 = A2) the well-known Stuart-Landau

equation for the oscillation amplitude is recovered:

dA

dt
= µA− A3.

It is shown in [128] that such simple nonlinear 3-state models, with coefficients obtained

from fitting to DNS data, can capture well the general dynamics of the flow, including

the nature (i.e. reaching a fixed amplitude and frequency over the limit cycle) of the

limit cycle. However, due to unrealistic modelling of scale interactions, the position of

the plane of oscillations in the three-dimensional phase space and the final amplitude of

the oscillations, are not precisely captured by such a model.

Importantly, given our interest is in identifying a minimal basis with which to capture

a flow’s behaviour, it is further shown in [128] that it is possible to derive a low-order

model with only two degrees of freedom that approximates not only the global mode

oscillation, but also the shift mode and higher harmonics of the global mode. This is

achieved by identifying an ODE for the evolution of the global mode coefficients (a1, a2),

via Galerkin projection of the Navier-Stokes equations, then subsequently quadratically

slaving the behaviour of the shift mode and higher harmonics to the flow’s evolution on

this 2-dimensional invariant manifold. It is illustrated that this model performs better

than a 3-mode model of the form (5.16) in predicting the amplitude and the plane of the

oscillations.

Given the simple, albeit nonlinear, dynamics (5.16), it is perhaps not entirely unsur-

prising that the flow field of the cylinder wake at a low Reynolds number can be well

approximated by a ROM with only two free states. However, to achieve this in [128]

required an approach that appealed to both analytical insight and to detailed numerical

analysis of the governing Navier-Stokes equations to extract resolved linear eigenfunction

from which to extract the necessary Galerkin coefficients to underpin the model.



5.3. RESULTS 206

Figure 5.5: An indicative snapshot of the streamwise velocity for flow past a circular cylin-
der at Re=60.

Motivated by the fact that such a two-state model is achievable, in this section we in-

vestigate the question of whether similarly efficient models with equivalent accuracy can

be identified automatically using snapshots of flow data and a RNN data-compression

approach.

Data Ensemble

Based on the aforementioned scale interactions the importance of the overall modelling of

the flow, we set out to analyse 900 snapshots of the velocity field past a circular cylinder

at Re = 60, one snapshot of which is shown in Figure 5.5. Data were obtained by direct

numerical simulation of the NS equations using an in-house solver, as detailed in [97]

Since we are interested in modelling the effect of the shift mode on the wake dynamics,

data snapshots are chosen to be a time interval that includes the flow’s transition from

close to its unstable steady state to its saturation on a stable oscillatory limit cycle. The

time step ∆t = 0.25s is constant for each consecutive pair of snapshots. For analysis, the

time-averaged mean flow field was subtracted from each snapshot, to create an ensemble

of velocity time-varying perturbations from the ensemble mean. For the remainder of this

discussion, we will concentrate on this time-varying component of the velocity field.

For model training purposes, the first m = 700 of the available 900 snapshots were

arranged in the data ensemble matrix X ∈ Rp×700, where p = 74094. Each snapshot

comprises the streamwise and the spanwise components of the velocity field, collected

at 37864 spatial locations and interpolated onto a regular grid comprising of p = 74094
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points in the flow domain. This segment of data used for training includes the transition

to the limit cycle and two periods of steady oscillations of near-constant amplitude on

the limit cycle. Singular value decomposition is then applied to X to obtain a matrix of

POD modes Φ ∈ Rp×m, and these resulting modes are then used as the projection basis Φ

with which to obtain time series coefficients using (5.10). The normalised time series can

be seen in Figure 5.8 (in black), while the original time series can be seen in Figure 5.4.

Figure 5.6 (a) shows the singular values, si, of the 20 most dominant POD modes, and

Figure 5.6 (b) shows the cumulative proportion of energy captured by a truncated set of

POD modes against the number of the retained POD modes. Figure 5.6 (b) shows that

the first 20 POD modes contain more than 99.9% of time-varying flow field’s energy. For

the remainder of this subsection, we use this truncated set of 20 POD modes and their

associated time series as the projection bases and the high dimensional time-series vector

a(t). We note that if the same decomposition was performed using data drawn from the

stable limit cycle only, then the cumulative energy captured by the global modes (i.e. the

first two POD modes) would be significantly more dominant.

(a) (b)

Figure 5.6: (a) Individual and (b) cumulative energy of POD modes for flow past a circu-
lar cylinder at Re=60.

Having obtained a(t), and applying the normalisation (5.14), we are now ready to ap-

ply the autoencoder to the normalised time series α(t). However, our choices of model

parameters and hyperparameters should be further discussed.
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Construction of an autoencoder

The optimisation problem (5.15) was solved using the ADAM variant of the gradient de-

scent algorithm [91], and the learning rate was set at 0.025 (see §2.5.5 for the definition

of learning rate).

Based on the results of the two-dimensional invariant manifold modelling approaches of

[128] discussed in §5.3.1.1, we expect a two-dimensional encoded state b(t) to be suitable

for replicating the time series of POD modes. To minimise the number of parameters in

the encoder function, the hidden layers h1 and h2 in (5.11) are chosen to have a dimension

ℓ = 2 as well. Since our aim is to reconstruct the POD time series of the first 20 modes,

it follows that α̂(t) ∈ R20 and hence that the dimension of the hidden layers h3 and h4 in

(5.12) are taken to be ℓ = 20. The Lagrange multiplier η was set to 0.004, the effects of

varying η will be presented later on in this section.

At any given time t, the encoder function requires the value of a(t) at time steps {t, t−

(25∆t), t − (50∆t), t − (75∆t), t − (100∆t)}. The choice of the separation between the

input time-steps, comes from the period of the global modes’ oscillations T ≈ 29∆t and

the look-back time of t − 100∆t was chosen to be of the same time scale as that of the

dominant variations for the shift mode.

To illustrate how these parameters allow the input sequence to contain information

about both long-term and short-term variations in the flow, Figure 5.7 shows the tempo-

ral coefficient α1(t) and the input sequence corresponding to snapshots 673 (blue) and 525

(red). Choosing a slightly smaller separation than the period of oscillations, allows the

the input sequence to span phase and amplitude values covering one period of oscillations

over the limit cycle. Comparing the input sequence at t = 673∆t with that at t = 525∆t,

we notice a shift in the phase of the points (e.g. compare the phase at 425∆t and 573∆t),

and changes in amplitude ratios both due to low-frequency changes in the underlying data.

This indicates that the look-back parameter is suitable for capturing information about

the low-frequency events as well. Considering that the Elman model is not suitable for



5.3. RESULTS 209

Figure 5.7: Two examples of input sequences (red crosses, blue markers) which can be
passed to the constructed autoencoder.

longer input sequences, these parameters convey both low and high-frequency information

through a short input sequence of length 5.

The decoder function, however, is required to find the immediate relationship between

the encoded vector b(t) and the normalised POD time series α(t). Therefore, the input

to the decoder function is only b(t) and does not include any previous time steps.

5.3.1.2 Autoencoder Performance (Cylinder Wake)

Optimising the model with the above parameters, and then applying the optimal model

to the POD time series α(t) we find the approximated time series α̂(t). Figure 5.8 shows

α̂(t) (in red) for the first ten POD time series in alphabetical order. The time series start

at the 100th snapshot as the encoder function was initialised with five equidistant snap-

shots in the interval 0 ≤ t ≤ 100∆t. The first two time series, (a) and (b), are associated

with the vortex shedding modes and the third, (c), is the mean-flow’s shift mode. The

subsequent figures show the time series for the modes representing the first harmonic of

the global mode, (d) and (e), the vortex shedding shift mode [156], (f) and (g), and the

second harmonic of the global mode, (i) and (j). We consider the mode in (h) to be

related to the dynamics of the flow’s transition to its stable limit cycle.
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(a) error = 4.4% (b) error = 5.6%

(c) error = 4.2%

(d) error = 12.1% (e) error = 14.2%

(f) error = 20.6% (g) error = 12.9%

(h) error = 78%

(i) error = 20.1% (j) error = 18.6%

Figure 5.8: Exact (black) and approximated (red) normalised POD time series.
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For legibility, Figure 5.9 shows a closer look at a few snapshots of the two time series

α1 and α10.

(a) Vortex shedding mode α1

(b) Second harmonic of the vortex shedding mode α10

Figure 5.9: The reconstructed time series closely follow the input time series

In order to provide a comparison with a more standard model reduction approach, we

simply make the trivial observation that truncation of the POD basis can also be ex-

pressed as an autoencoder. In particular, if the flow field is simply projected onto the first

two POD modes, this corresponds to an encoder mapping
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b(tj) =

I2 0

0 0

 a(tj), j = 1, . . . ,m,

where I2 ∈ R2×2 is the identity matrix mapping the full vector of POD weights onto only

its first two components. The decoding step is then simply

â(tj) = I20b(tj), j = 1, . . . ,m,

where I20 ∈ R20×20 is also an identity matrix. By construction, such an encoding is the

energy-optimal representation of the underlying data in terms of the linear span of two

spatial mode shapes.

Figure 5.10 shows the percentage error

E(αi) :=
∑m

j=1 ∥αi(tj)− α̂i(tj)∥2
2∑m

j=1 ∥αi(tj)∥2
2

× 100%

for all n = 20 time series αi(t) (in blue). Also included are the error bars for the trivial

two degree of freedom truncation autoencoder, which captures the exact solution for the

first two time series but has error E(α̂) = 100% for the remaining 18 POD weights.

Figure 5.10: Reconstruction error of normalised POD time series using truncation (grey),
and using encoding (blue)

We now discuss the performance of the nonlinear autoencoder. Similar to the trunca-

tion case, the nonlinear autoencoder also prioritises representing the two global modes
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(ϕ1 and ϕ2), perhaps unsurprisingly since these modes have the largest energetic contri-

bution to the underlying ensemble of velocity fluctuations. However, recalling that (5.15)

balances prioritising the reconstruction error of the velocity fluctuations with the error

associated to reconstructing the normalised time series, it is interesting to note a clear

deviation in performance from the trivial truncation autoencoder.

In particular, the nonlinear autoencoder (with two underlying degrees of freedom) is

also able to capture both the shift mode ϕ3 and the first harmonic of the global mode

ϕ4, ϕ5 with reasonably low reconstruction error (of 4.2%, 12.1% and 14.2%, respectively).

Although these errors are non-trivial, an inspection of the three time series shown in

Figure 5.8 (c), (d) and (e) indicates that the time series are in fact very well captured,

with the error accumulating merely due to small phase and amplitude variations over the

chosen simulation interval.

In addition, the nonlinear autoencoder is also able to capture the second harmonic of

the global modes ϕ9 and ϕ10 with less than 21% reconstruction error. Interestingly, this is

achieved at a lower reconstruction error than the more energetic mode ϕ8 which we con-

sider to be related to the dynamics of the transition of the flow from an unstable steady

solution to its stable limit cycle (again, such a mode would not be expected to have such a

high singular value if data were sampled from the limit cycle regime only). The fact that

modes ϕ9, ϕ10 are captured at lower reconstruction error than ϕ8 suggests that a more

coherent, even if nonlinear, mapping can be found between them and the identified latent

states b, which are shown in Figure 5.11 and discussed below. As discussed further in

§5.3.2, this is not entirely surprising: due to energetic significance the nonlinear autoen-

coder still prioritises capturing the global modes ϕ1, ϕ2, suggesting that the latent state

will be transparently related to their time series a1, a2. As a consequence, modes which

have a direct dynamic relation to these time series—in particular, their harmonics—have a

greater chance of being reconstructed, with smaller errors, by the nonlinear autoencoder.

Finally, we note that the mode shape and time series of the modes ϕ6 and ϕ7, whose

time series are captured with an error of E(α̂) = 21%, strongly resemble those of the
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modes extracted in [156] using the DPOD algorithm, that model a spatial shape change

in the vortex shedding feature. In particular, the modes model the movement of higher

vortex-shedding amplitudes downstream of the flow after transitioning to the limit cycle.

In the discussion at the start of this subsection we noted that in the existing literature,

the temporal evolution of the shift mode and global mode are known to be related by a

simple nonlinear ODE. Here, we find that the encoded time series b1(tj) and b2(tj) strongly

resemble the evolution of the first two POD modes, allowing for phase shifts and scaling.

Figure 5.11 shows b1 and b2. Similar to the vortex shedding time series, the encoded

signals exhibit an oscillatory behaviour with a dominant frequency of St = 0.14 over the

limit cycle, and include two full periods of oscillations on the limit cycle for the training

set. Unlike the more traditional modelling approaches however, such as truncation, the

nonlinear dependencies among different physical features, as well as the corresponding

mapping functions were obtained automatically through the process of model discovery.

(a) (b)

Figure 5.11: Time series of the encoded states b1, b2, indicating similarity vortex shedding
mode amplitude times series.

To ensure that the good performance of the autoencoder is not due to overfitting to the

training dataset, we apply the autoencoder on a test dataset. The test dataset includes

100 snapshots of the velocity field, snapshots 801 ≤ tj ≤ 900, with snapshots 701 ≤ tj ≤

801 used to initialise the encoder. Table 5.1 shows the error

E(X) = ∥X −
∑20

i=1 ϕiâi(t)∥F

∥X∥F
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in reconstructing the time-varying velocity snapshots, X, over both training and test-

ing subsets. The autoencoder method allows for a considerably higher percentage of the

flow to be replicated, through a decoding process, than a truncated state of the same

dimension.

We note again that the underlying dataset mostly contains snapshots where the data

is transitioning to its oscillatory limit cycle and transient features are significantly more

energetic than they are over the limit cycle. In particular, the shift mode contains 20.6%

of the flow’s energy.

Truncation r = 2 Autoencoder (train) Autoencoder (test)

E(X) 25% 8.0% 8.5%

Table 5.1: Reconstruction error of time varying velocity.

5.3.1.3 The effects of varying the parameter η in (5.15)

By choosing an appropriate value of η, we encourage the autoencoder to replicate as many

time series as possible while also considering the energetic contribution. As a result, we

allow the optimiser to note the strong dynamical relationship between the second har-

monic modes and the most energetic modes, by noting that a common encoded state b(t)

can be mapped well to both dynamical features. A low value of η results in assigning

the same importance to the reconstruction of each time series. To illustrate this point,

Figure 5.12 shows the values of E(αi) for an autoencoder optimised at η = 0 (in blue). In

comparison to the case when η = 0.004, not only do the highly energetic vortex shedding

modes have a high E(αi), but also fewer modes have a reconstruction error E(αi) < 25%.

This is due to fewer dynamical relationships between the low energy modes leading to an

encoded state that can not map well to many states at the same time.

Figure 5.12 also shows the values of E(αi) for a model optimised at η = 100 (in red).

In this case the modes with the highest energetic contribution are even slightly bet-

ter captured than the model at η = 0.004 (see Figure 5.10), with E(α1) = 3.9% and
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E(α2) = 2.4%. However, the high emphasis on capturing the more energetic features,

leads to ignoring many low-energy features that the model at η = 0.004 captures.

Figure 5.12: Reconstruction error E(αi) against POD mode coefficient αi of the nor-
malised POD time series at η = 0 and η = 100.

In comparison to the existing machine learning based feature identification methods in

the literature, while the weights and constants inside the encoder and decoder functions

remain uninterpreted, the encoded state is by design interpreted through a known pro-

jection step. As a result, the autoencoder does not solely concentrate on replicating the

dataset, but also on replicating interpretable features of the dataset. These interpretable

features, were themselves obtained directly from the dataset and although they are in

agreement with the known significant features of this flow [157], they were not designed

through expert knowledge.

5.3.2 Autoencoder performance and observability

We now briefly discuss a possible explanation for why nonlinearity of the underlying map-

pings in the autoencoder leads to success in capturing the behaviour of multiple modal

time series using only two underlying degrees of freedom. To aid the discussion, we recall

the classical notion of observability of linear systems. Consider a linear system

ȧ(t) = Aa(t), y(t) = Ca(t)
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with state a(t) ∈ Rn, system matrix A ∈ Rn×n and measured output y ∈ Rr where 1 ≤

r ≤ n is the dimension of the measurement signal. The system is said to be (linearly)

observable if the observability matrix O has full rank, that is if

rank(O) = rank



C

CA
...

CAn−1


= n.

Observable systems have the desirable property that given knowledge of only the output

y(t), the full state can be asymptotically recovered using a linear observer [108].

For nonlinear systems, there is a natural extension of the concept of observability. In

this case, consider a system of the form

ȧ(t) = f(a(t)), y(t) = g(a(t)) (5.17)

where the state and measurement processes are now given by arbitrary nonlinear mappings

f : Rn 7→ Rn and g : Rn 7→ Rr. Extending the definition of observability to the nonlinear

setting requires the Lie derivative notation, specifically for multivariable functions f, g as

above the Lie derivative of g with respect to f is defined by Lfg := (∇g)f . We discuss

the case with output dimension r = 1 only for simplicity. The nonlinear system (5.17)

is said to be locally observable at a point x ∈ Rn if the following rank condition on the

nonlinear observability matrix ONL(x) holds

rank (ONL(x)) := rank



(∇g(x))⊤

(∇Lfg(x))⊤

...(
∇Ln−1

f g(x)
)⊤


= n
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It is not difficult to show that ONL(x) = O for any x ∈ Rn when f = A, g = C, meaning

that the two definitions coincide in the case of linear systems. In the nonlinear setting,

local observability implies that the full state a(t) can be asymptotically identified by an

appropriate dynamic observer [77]

We now discuss the performance of the nonlinear autoencoder for the cylinder wake

modes in the context of observability. Although it is not clear that autoencoders and ob-

servers are directly equivalent, they do have some notable similarities. First, the fact that

the encoded state can depend, through recursion of the multiple layers in an RNN (see

(5.5)), on past history of the latent states endows the encoder function with a structure

reminiscent of the dynamical system underpinning a linear or nonlinear observer. Second,

the dimension r of the latent states b ∈ Rr can be viewed as analogous to the dimension

of the output mapping y(t) ∈ Rr in so far as it reflects the degree of information available

with which to reconstruct the full state of the system.

Returning to the cylinder wake specifically, recall from §5.3.1.1 the simple 3-state model

proposed by [128] for the dynamic interaction of the shift mode and the global modes,

ȧ(t) = Aa+N(a)a where

A =


µ −1 0

1 µ 0

0 0 −1

 , N(a) =


0 0 −a1

0 0 −a2

a1 a2 0

 .

Consider first the case of the linearised dynamics ȧ = Aa, in which N(a) ≡ 0. Suppose

that we attempt to recreate the state of the system from a measurement of the form

y(t) = Ca =
(
c1 c2 0

)
a,

reflecting the situation of an autoencoder with two latent states b1, b2 which are given as

a linear combination of the global mode’s POD time series coefficients a1 and a2. It is

easy to compute the linear observability matrix
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O =


c1 c2 0

µc1 + c2 µc2 − c1 0

c1(µ2 − 1) + 2µc2 c2(µ2 − 1)− 2µc1 0

 .

It is clear that rank(O) = 2 < 3 = n meaning that the system is not linearly observable

from any measurement which is a linear combination of the two global mode amplitudes.

Conversely, and for ease of computation, we now calculate the nonlinear observability ma-

trix in the case when only one of the global mode amplitudes can be measured. Suppose

that g(a(t)) = a1(t) =
(

1 0 0
)
a(t). Then letting

f(a) = Aa+N(a)a =


f1(a)

f2(a)

f3(a)

 =


µa1 − a2 − a1a3

a1 + µa2 − a2a3

−a3 + a2
1 + a2

2



it follows that Lfg(a) = µa1 − a2 − a1a3 and L2
fg(a) = (µ− a3)f1 − f2 − a1f3. Hence,

∇Lfg(a) =


µ− a3

−1

−a1



and

∇L2
fg(a) =


(µ− a3) ∂f1

∂a3
− ∂f2

∂a1
− f3 − a1

∂f3
∂a1

(µ− a3) ∂f1
∂a2
− ∂f2

∂a2
− a1

∂f3
∂a2

(µ− a3) ∂f1
∂a3
− f1 − ∂f2

∂a3
− a1

∂f3
∂a3

 =


(µ− a3)2 − (1 + 2a2

1)− (a2
1 + a2

2 − a3)

−2(µ− a3)− 2a1a2

2a1(µ− a3) + a1 + 2a2

 .

and, consequently,
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ONL(a)

=


1 0 0

µ− a3 −1 −a1

(µ− a3)2 − (1 + 2a2
1)− (a2

1 + a2
2 − a3) −2(µ− a3)− 2a1a2 2a1(µ− a3) + a1 + 2a2

 .

Note that ONL(0) coincides with the rank-deficient observability matrix computed in

the linear case. However, for a ̸= 0, the extra terms introduced by the nonlinear couplings

in N(a)a may imply that the nonlinear observability condition rank(O)NL = 3 holds. We

do not verify this for the general case, but note that on the limit cycle when a3 = µ and,

up to phase shifts, a1 = √µ sin t, a2 = √µ cos t, the nonlinear observability matrix reduces

to

ONL(a(t)) =


(∇g(a))⊤

(∇Lfg(a))⊤

(∇L2
fg(a))⊤

 =


1 0 0

0 −1 −a1

−(1 + 2a2
1) −2a1a2 a1 + 2a2



=


1 0 0

0 −1 −√µ sin t

−(1 + µ− µ cos (2t)) −µ sin (2t) √µ(sin(t) + 2 cos(t))



It follows that for any point on the limit cycle trajectory, the nonlinear observability con-

dition rank(ONL) = 3 holds. Therefore, somewhat surprisingly given that the shift mode

does not vary on the limit cycle, it is theoretically possible to asymptotically identify the

full state of the nonlinear 3-mode system, given only knowledge of the first state a1.

A consequence of this small observation from the theory of nonlinear observers hints at

why the nonlinear autoencoder constructed in §5.3.1.2 may succeed: if the internal struc-

ture of the autoencoder can reflect that of the theoretically possible nonlinear observer,

then information about the shift mode ϕ3 should be reconstructible from global mode

information only.



5.3. RESULTS 221

A similar argument may be made with respect to the reconstruction of higher harmonics

of the global mode. In a linear framework, the sequence of harmonics of the global mode

can be represented as an infinite superposition of independent 2-dimensional oscillators.

A similar analysis to that conducted above using linear observability theory would then

imply that higher harmonics should not be observable, given measurements which contain

only amplitude information of lower harmonics. Translating this to a hypothesis about

autoencoder performance, would imply that a linear autoencoder whose latent states re-

semble those of the global mode amplitudes should not be able to accurately reconstruct

the amplitude time series of higher harmonics. However, due to nonlinear interactions

between the global mode, its harmonics and the shift mode, we expect that nonlinear ob-

servation theory implies (by a similar argument to that presented above) the identification

of higher harmonic amplitudes should be possible within a nonlinear observer framework.

The fact that the nonlinear autoenoder of §5.3.1.2 is able to accurately represent some

higher harmonic information partially supports this arguement. That the reconstruction

error is not zero, however, suggests that the 2-layer RNN framework chosen cannot match

the theoretical optimal performance of potential nonlinear observers. This may either be

due to the lack of complexity available by the given architecture of the relatively simple

RNNs chosen, or due to the fact that there is no guarantee that globally optimal parame-

ter values have been identified due to the local, gradient-based, nature of the autoencoder

training.

The application of autoencoders to the cylinder wake highlights the potential of the

presented approach for finding interpretable encodings of a fluid flow, as well as the sense

in which the encoding can be interpreted through a mode-shape layer. As in §3 and §4,

we test the applicability of this method on the more challenging dataset from a highly

turbulent wake, where due to the problem of frequency mixing, the POD modes are not

interpretable as being associated with a single physical phenomenon. Furthermore, due

to the broadband and non-linear nature of the underlying flow, representing a physical

phenomenon with a single mode is challenging.
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5.3.3 Dimensionality reduction for the wake of an axisymmetric

bluff body

In §3 we studied a diametric cross-section of the 3-dimensional ‘bullet shaped’ bluff body

at Re = 1.88 × 105. For this flow, there are three coherent structures which have been

observed experimentally. The bubble pumping mode, associated with the low-frequency

elongation of the recirculation region at St ≈ 0.05 [20], the vortex shedding mode at St ≈

0.2, and a chaotic change to the angle of rotation at a much lower frequency St ≈ 0.002

[142].

In §3 we applied OMD to an ensemble of 2732 PIV flow field snapshots and the result-

ing OMD modes were post-processed using Algorithm 1, as shown in Figure 3.22. The

sequential snapshots were chosen in a way that the azimuthal orientation of the plane of

symmetry, as estimated using the method in [25], is parallel to the plane of view with a

variance of π/5 rad.

For the current discussion, we assume the direction of the flow field is constant, and as

a result, the effects of the azimuthal rotations on the current dataset are considered neg-

ligible. However, the out-of-plane movement of the wake introduces a degree of epistemic

uncertainty to this dataset.

The clusters of similar modes aid our understanding of the coherent structures available

in the system. However, by construction, the modes in each cluster also exhibit high mul-

ticollinearity. That is, by definition the spatial modes in a cluster span a similar subspace,

as defined in (3.6). After applying the clustering method in §3, with spatial similarity

cut-off ϵ = 0.5, and spectral similarity parameters s0 = 0.75 and p = 2, we obtain two

significant clusters of modes with cluster-averaged Strouhal numbers ⟨St⟩ = 0.06 and

⟨St⟩ = 0.23, respectively.

Suppose now that we want to find a reduced order state to model the dynamical be-

haviour of a mode. For reconstruction purposes, the existence of collinear features in the

basis matrix Φ is not important. However, the time series of individual modes will not
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be interpretable, as a linear least square fit does not consider the evolution of individual

mode-shapes and only minimises the overall reconstruction error. To address this, in §3

we obtained a representative mode for each cluster by applying Singular Value Decom-

position to the rescaled modes in the cluster, and using the first singular vector (POD

mode) as the representative mode. Such representative modes are therefore appropriately

weighted averages of the modes inside a given cluster. While these modes are useful for

flow analysis and visualisation, for a broadband and nonlinear system, a small number of

representative modes may span only a ‘small’ proportion of the underlying data. That

can be the case even if the modes represent dominant clusters of modes.

Figure 5.13 shows the representative modes for the two significant clusters of this flow.

Using these two modes as the projection bases we find the projection error

∥∥∥(X − X̄)− Φ
(
Φ⊤Φ

)−1
Φ⊤(X − X̄)

∥∥∥2

F∥∥∥(X − X̄)
∥∥∥2

F

= 0.09027,

where X̄ is the time-averaged velocity field. In other words, we find that the four repre-

sentative mode-shapes only span 9.7% of the time-varying snapshots.

The two clusters contain a total of 32 complex modes, whose real and imaginary parts

provide 64 real-valued velocity fields. Using this full set of mode shapes, we can recre-

ate 29.3% of the time-varying velocity field. Although still small, this should be viewed

in the context of an original decomposition comprised of 2000 complex-valued modes.

Figure 5.14 shows a snapshot of the streamwise time-varying flow field in panel (a), its

projection on the full set of mode shapes in the two dominant clusters in panel (b), and

the same snapshot projected onto only the two representative modes in (c). The preva-

lence of high amplitude, incoherent small-scale features in the full snapshot (a), explains

why the projection of the snapshot on these relatively large-scale coherent structures does

not capture a majority of the flow field’s energy.

Comparing the projected snapshots in (b) and (c) with the full snapshot (a), note

that a convective structure of negative streamwise fluctuations centred at approximately
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(a) (b)

(c) (d)

Figure 5.13: Real and imaginary components of representative modes: (a-b) bubble-
pumping mode at ⟨St⟩ ≈ 0.06; (c-d) shedding mode at ⟨St⟩ = 0.23.

(x/D, y/D) = (0.75,−0.4) is captured in both projections (b) and (c). We find the

same feature in snapshot (a), albeit masked significantly by smaller-scale features that

are present in the vicinity of this location. Similarly, both projections in (b) and (c)

show convective features for x/D > 1.5. The existence of multiple convective features in

projection (b) allows it to accurately capture two convective features of opposite signs in

the region x/D > 1, y/D > 0 (i.e. both positive and negative velocity perturbations are

present in this region). However, if only two vortex-shedding mode-shapes are used in the

projection bases, only a single large-scale structure with negative fluctuations (i.e. the one

centred at (x/D = 1.75, y/D = 0.25) in (c)) is present in that region, meaning that this

nuance of the wake’s behaviour cannot be captured. Overall, projection (b) resembles the

near-wake’s shape much more closely, with a correlation of 0.61, compared to projection

(c), with a correlation of 0.16.

We would like to reiterate that this does not discredit the importance of the repre-

sentative modes in illustrating the spatial and spectral features included in the cluster.
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(a) (b) (c)

Figure 5.14: (a) a snapshot of the time varying velocity field; (b) its projection using all
the modes in the clusters; and (c) its projection using only the representative
modes.

However, the example above shows that we can not expect one mode shape to fully capture

a quasi-periodic physical phenomenon in a turbulent flow.

The discrepancy between the two projections can be better explained by the relatively

broad range of spatial features present in each cluster. To illustrate this point we need

to revisit how representative modes were obtained. Recall that in §3.2.3, the modes in a

cluster were rescaled using the significance statistic σ, and the representative mode was

found by applying an SVD to the weighted mode ensemble

Mshedding :=


↑

· · · ϕiσi · · ·

↓

 , for i such that ϕi ∈ Cshedding.

In §3 the first SVD mode of M was chosen as the representative mode of the cluster.

Figure 5.15 shows the singular values of the matrix Mshedding associated with the vortex

shedding feature. While the representative mode is clearly dominant and spans 30% of

the subspace covered by all the features in this cluster, to span 90% of the mode ensemble

Mshedding, 15 representative POD modes would have to be used. A similar analysis shows

that to represent 90% of the bubble pumping mode ensemble, requires 3 representative

modes. The 90% threshold is within the range of values used as arbitrary cut-offs for
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POD-based dimensionality reduction although alternative methods have been developed

in recent years (see [26] and the references therein). This is a generalisation of the analysis

in §3, and for the remainder of this chapter, the set of SVD modes that is retained from

each cluster is referred to as the representative modes or the representative set.

(a) (b)

Figure 5.15: Singular values corresponding to an SVD of all modes associated with the
vortex shedding cluster.

Using the 15 vortex shedding and 3 bubble-pumping representative modes, we find the

projection in Figure 5.16 (b), which shows a significant correlation with the time-varying

snapshot in Figure 5.16 (a), at 0.53. Note that due to the orthonormality of the POD

modes, using them as the projection bases prevents multicollinearity. However, an ensem-

ble of 18 representative modes implies there will be 36 real-valued time series ai(t). For

practical use in control and estimation applications, further dimensionality reduction will

be necessary. We will use the method introduced in §5.2.2 to further reduce the dimension

of the full projected state a(t).

(a) Snapshot (b) Projection

Figure 5.16: (a) Snapshot of the time varying velocity field; (b) its projection using 18
representative modes.
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First, we must present some of the representative modes and interpret the spatial fea-

tures in each mode. We have already shown the first representative modes of each cluster

in Figure 5.13. Expectedly, the first representative mode of the vortex shedding cluster

includes large-scale, antisymmetric, advective structures in the region outside of the av-

erage position of the recirculation bubble at x/D > 1.5, see Figure 5.13 (c) and (d). In

contrast, in the second representative shedding mode, Figure 5.17 (b), the flow field is

approximately symmetric about the centreline y = 0 for x/D > 1.5.

To illustrate the effect of the inclusion of the second POD mode from the vortex shed-

ding cluster, we superimpose the real parts of the first and second representative modes

and find the resulting flow field, shown in Figure 5.17 (c). Comparing Figure 5.17 (c)

and Figure 5.17 (a), the location of the peak of the positive fluctuations has shifted

upstream to x/D ≈ 1.25, creating a spatial ‘lag’ effect between the asymmetric fluctu-

ation features. Moreover, the negative structural perturbation at (0.75, 0.4) has shifted

to (0.5, 0.5), closer to the separation point (0, 0.5). Furthermore, the outline of the nega-

tive fluctuations structure in the region x/D > 1.25 is also shifted towards the centreline

y/D = 0. In contrast, Figure 5.17 (d) shows that subtracting the two mode shapes results

in a downstream shift of the peak, compared to (a), as well as moving the outline of the

negative structure further away from the centreline.

The example above illustrates that linear combinations of the representative mode-

shapes allow the model to create advective structures of different shapes, at varying

spanwise locations and with varying levels of asymmetry. The average length scale and

shape of the feature are, however, captured by the first representative mode. We note

that while such variations are observed in this high Reynolds number wake, they are not

observed for the low Reynolds number cylinder wake.

The mean bubble pumping mode seen in Figure 5.13 (a) and (b) captures the large-scale

elongation and contraction of the recirculation region at St ≈ 0.06. Figure 5.18 shows the

real and imaginary part of the second representative mode of the bubble pumping clus-

ter. The evolution of the large-scale diagonal structure of negative fluctuations centred
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(a) Re(ϕ1) (b) Re(ϕ2)

(c) Adding mode shapes (d) Subtracting mode shapes

Figure 5.17: The effect of combining mode shapes from a cluster: (a-b) real parts of the
first and second representative modes from the vortex shedding cluster; (c)
the sum of the mode shapes; (d) the difference of the mode shapes.

at (0.75,−0.25) in Figure 5.18 (a), to that in (b) at (0.75, 0.25), captures the movement

of the recirculation region in the y direction. This is consistent with the findings of [34]

at lower Reynolds numbers that the shape of the wake pulsates in alternating spanwise

directions.

(a) Re(ϕ2) (b) Im(ϕ2)

Figure 5.18: The pulsation mode: (a) its real component; (b) its imaginary component.

Having interpreted the spatial mode shapes in each representative set, we can form the

projection bases Φ ∈ Rp×64 using the real and imaginary parts of the modes. We then
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(a) Bubble pumping (b) Vortex shedding

Figure 5.19: Power spectral densities of amplitudes αi(t) for the real and imaginary parts
of the top three ranked modes in each cluster: (a) bubble pumping cluster;
(b) vortex shedding cluster.

obtain the time series ai(t), and normalise each time series using (5.14) to obtain the

time series αi(t). The power spectral density of the time series, αi(t), associated with

the real and imaginary parts of each cluster’s top three representative modes are pre-

sented in Figure 5.19. Despite the variation in the spatial features of each representative

mode, the spectral characteristics of the representative modes are largely consistent with

the original OMD modes in each cluster. The vortex shedding modes have a dominant

frequency at St ≈ 0.2, and the modes in the bubble pumping cluster show a peak at

St ≈ 0.06. However, in both clusters, the higher frequencies are more energetic in the

higher mode numbers (i.e. for the lower-ranked POD modes of each individual cluster).

The power spectral densities were found using a multi-taper estimate, with five Slepian

taper functions [162].

To find a lower dimension encoding of these features, we can now train an autoencoder,

as presented in §5.2, to map the normalised time series vector α(t) to a lower dimensional

state b(t). Unlike the dataset in §5.3.1, the time series show aperiodic and quasi-periodic

behaviour, and therefore it is expected that a larger set of training data would be required

to extract coherent patterns from the signal. LSTM neural networks are suitable for noisy

datasets and can model more complex and long-term temporal patterns. However, the

number of trained parameters in an LSTM network requires stringent verification through

the use of a large training set and a large test-set, to ensure overfitting is avoided. How-
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ever, our dataset is not large enough to avoid overfitting using a deep encoder-decoder

model. Based on this limitation, and the fact that for our application the decoder func-

tion only requires the current snapshot of the encoded state, we use one hidden layer for

the fully connected decoder function. Meanwhile, the encoder function will be an LSTM

network. Both networks are chosen to have only one hidden state, in order to minimise

the number of optimisation parameters.

Note that the design of our autoencoder is such that the last step of projecting from

the time series â(t) ∈ Rn to the velocity snapshot x(t) ∈ Rp, where p > n, is performed

through a linear projection. As a result, an optimal autoencoder can, at best, fully recon-

struct the linear projection of the time-varying snapshot onto the projection bases. As a

result, we can replace the time-varying snapshots X with the projected snapshots

X =
∑

i

ϕiai(t)

where Φ = {ϕi} is the matrix of representative mode-shapes. Note that due to the broad-

band nature of this flow, X spans only 25% of the turbulent fluctuations, it is nonetheless

the case that, as seen in Figure 5.16, two of the recognised and dominant dynamical

features of the wake (vortex shedding, recirculation) are captured by the modes in these

clusters. The omission of smaller scales in the projected snapshots curbs the problem of

excessive gradients (of the neural network parameters), which, as discussed in §5.2, can

lead to poor convergence results for optimisation-based model training.

We set the first 2000 snapshots of X as the training set Xtrain and the last 731 snapshots

as the test set Xtest. As mentioned, the presence of noise and the size of the network,

call for ensuring that the training process is robust to overfitting. We, therefore, add

an ℓ2-norm penalty of all optimisation parameters as a regularisation term to the cost

function (5.15), a method also known as Tikhonov or ridge regularization. The resulting

optimisation problem is
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min
W

m∑
t=1

n∑
i=1
∥αi(tj)− α̂i(tj|W )∥2

2 + η

∥∥∥∥∥∥Xtrain −
m∑

j=1

n∑
i=1

ϕi · |ai|α̂i(tj|W ))
∥∥∥∥∥∥

2

F

+ ω ∥W ∥2
F ,

(5.18)

where W is the generalised set of parameters, weights and constants, of the network,

η is the parameter that determines the emphasis on the accuracy of the reconstructed

snapshots, and ω determines the emphasis on avoiding overfitting (see §5.2 for a detailed

definition of the learnable weights).

At a given time step t, the encoder function requires the vector α(t) at {t, t−(10∆t), t−

(20∆t), · · · , t−(200∆t)}. The decoder function, on the other hand, only requires the cur-

rent value of b(t) to find the estimated vector α̂(t). To solve (5.18), with η = 4 × 10−5

and ω = 0.9, we use the ADAM variant of the gradient descent algorithm and update the

weights at each iteration with the learning rate of 0.005.

We choose the dimension of the vector b(t) to be r = 15. Bear in mind that the original

clusters included 64 OMD time series, meaning that we are attempting to reduce the

underlying degrees of freedom in the time-series by over 75%.

The reconstructed training set time series αi(t) corresponding to two representative

modes from each cluster are presented in 5.20. (a) and (b) show the estimated temporal

evolution of the real and imaginary part of the bubble pumping mode in Figure 5.13, while

(c) and (d) show the time series corresponding to the pulsation mode in Figure 5.18. The

time series αi(t) for the first and second representative modes from the vortex shedding

cluster are shown in (e)-(h). The autoencoder captures the dominant time scales of each

time series well and the majority of the error

E(α) =

∥∥∥αi(t)− α̂i(t)
∥∥∥

F∥∥∥αi(t)
∥∥∥

F

× 100%

comes from the smaller scales in each sequence. The Pearson’s correlation C between each

time series αi and its reconstructed counterpart α̂i is also shown to indicate the degree of

directional similarity between the estimated and the exact time series. Mode ϕ1j refers
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to the jth mode of the bubble pumping cluster, and mode ϕ2j refers to the jth mode of

the vortex shedding cluster.

(a) Bubble pumping, E(α) = 33%, C =
0.95

(b) Bubble pumping, E(α) = 39%, C =
0.92

(c) Pulsation mode, E(α) = 28%, C = 0.96 (d) Pulsation mode, E(α) = 36%, C = 0.93

(e) Vortex shedding 1, E(α) = 16%, C =
0.99

(f) Vortex shedding 1, E(α) = 20%, C =
0.98

(g) Vortex shedding 2, E(α) = 46%, C =
0.93

(h) Vortex shedding 2, E(α) = 36%, C =
0.88

Figure 5.20: Exact normalised time series α(t) (in black) and the reconstructed time series
α̂(t) (in red). Relative error E(α) and correlation statistics C are reported
in subfigure labels.

For legibility, Figure 5.21 provides a smaller temporal window of the first time series

from each cluster, corresponding to figures (a) and (e) in Figure 5.20.
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(a) Bubble pumping (b) Vortex shedding

Figure 5.21: A restricted time window of exact normalised time series α(t) (in black) and
the reconstructed time series α̂(t) (in red).

The errors associated with the normalised time series αi(t), for the real and imaginary

parts of the modes, are shown in Figure 5.22. The first column at each mode number

refers to the real part of the representative mode and the second column refers to the

imaginary part.

(a) Bubble pumping (b) Vortex shedding

Figure 5.22: The relative reconstruction error E for time series α in bubble pumping and
vortex shedding clusters.

The overall mismatch between the normalised vectors α and α̂ is 53.2%. Note that,

as Figure 5.22 shows, the autoencoder performs better at lower mode numbers, i.e. the

most energetic features. Rescaling the time series using their respective amplitudes and

multiplying each time series with its respective mode we find the reconstruction error

E(X) =

∥∥∥Xtrain − X̂train
∥∥∥

F∥∥∥Xtrain
∥∥∥

F

× 100%

between the estimated snapshots X̂ and the projected snapshots X to be 37.3%. In other

words, the autoencoder finds a reduced order state of size 15 that captures 62.7% of the

energy of the flow features captured by the modes belonging to the two dominant clusters.
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For comparison with the nonlinear approach discussed above, we now consider rep-

resenting the flow field using only a truncated set of representative modes that retains

the highest ranked modes across both clusters, one from the bubble pumping cluster and

seven from the vortex shedding cluster, to form a reduced order state had a size of 16.

The reconstruction error was 54%, meaning that 46% of the energy was captured. In

other words, the autoencoder captures a significantly higher proportion of the flow field,

62.7% compared to 46%, using a slightly smaller state dimension, 15 as opposed to 16.

To determine whether the autoencoder can capture appropriate spatial features, we will

analyse the reconstructed snapshots of the flow field, comparing them with the exact time-

varying snapshots. The reconstructed snapshots X̂train and the original time-varying snap-

shots Xtrain have a Pearson’s correlation of 0.60. In comparison, the projected snapshots

Xtrain, using 36 representative mode shapes, and the snapshots Xtrain have a Pearson’s

correlation of 0.64. The significant correlation shows that the reconstructed snapshots do

indeed capture the general shape of the original snapshots. Figure 5.23 shows two snap-

shots of the time-varying flow, the projected snapshot, and the reconstructed snapshot.

To ensure the performance of the autoencoder is not affected by overfitting, after initial-

ising the encoder function we apply the autoencoder to a set of 531 projected snapshots

Xtest to find the reconstruction error E(X) = 42.1%. There is also significant spatial cor-

relation between the estimated snapshots X̂test and the original snapshots Xtest at 0.59.

Table 5.2 presents a summary of the autoencoder’s performance, as compared to the

best-truncated set of representative modes. The results show that the autoencoder per-

forms better than truncating the representative modes, in reconstructing the projected

snapshots and capturing the overall shape of the near wake.
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(a) Snapshot (b) Projected snapshot (c) Reconstructed snap-
shot

(d) Snapshot (e) Projected snapshot (f) Reconstructed snap-
shot

Figure 5.23: A comparison between: (a),(d) the original snapshots; (b),(e) the projected
snapshots; and (c), (f) the reconstructed snapshot, at t = 1100∆t (top row)
and t = 1700∆t (bottom row).

Truncation Autoencoder (train) Autoencoder (test)

State dimension 16 15 15

E(X) 54% 37.3% 42.1%

Correlation ⟨X, X̂⟩ 0.55 0.60 0.59

Table 5.2: Summary of the autoencoder’s performance

5.3.4 The effect of the encoded state dimension

Given the performance improvement, over a projection-based approach, achieved using

an autoencoder with latent space dimension r = 15 in §5.3.3, we now investigate the

influence of r on autoencoder performance. Table 5.3 reports the relative error E(X) and

correlation ⟨X, X̂⟩ for three different values r = 5, 10 and 15 of the latent space dimen-
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sion r, which describe the autoencoder’s performance when reconstructing the velocity

snapshots. The same training and testing data ensembles as in §5.3.3 are used here.

Train Test Train Test Train Test

State dimension r 15 15 10 10 5 5

E(X) 37.3% 42.1% 47.7% 51.5% 62.5% 64.6%

Correlation ⟨X, X̂⟩ 0.6 0.59 0.53 0.51 0.45 0.45

Table 5.3: Relative error and correlation statistics for varying encoded state dimension r,
both for training and testing data ensembles.

As expected, it can be observed from Table 5.3 that decreasing r corresponds to a

decrease in the accuracy of the reconstructed state. For example, at r = 5, the recon-

struction error increases to nearly 65%, indicating a significantly worst performance than

a projection-based approach detailed in §5.3.3. Furthermore, a change from r = 15 to

r = 5 causes the correlation between the original and reconstructed snapshots to decrease

by 25% to a value of 0.45.

To give more detail about the influence of r on autoencoder performance, we now look

at a selection of indicative reconstructed state time series for the three considered values

of r. Figure 5.24 shows the reconstructed time-series α corresponding to the real part of

the bubble pumping mode, in (a), and the real part of the third representative mode of

the bubble pumping cluster, in (b).
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(a) Bubble-pumping mode

(b) Low-energy pulsation mode

Figure 5.24: Comparing the reconstructed DMD time series, for three different dimen-
sions, |b| = 5, 10 and |b| = 15, of the encoded state.

Overall, using a lower value of the encoded state dimension r causes a decrease, for

both highlighted cases, in the accuracy of the reconstructed time series α(ti). However,

this effect is less pronounced for the more energetic bubble-pumping mode, αRe(ϕ11) in (a),

than it is for the lower energy mode, αRe(ϕ13), in (b). An explanation for this behaviour is

that the loss function for the autoencoder model includes a term that directly penalises

the discrepancy between reconstructed snapshots and the original snapshots. This re-

sults in the model prioritising the reconstruction of higher energy modes. Furthermore,

it can be seen in Figure 5.24 (b) that, for the lower energy mode, using an encoded state

dimension r = |b| = 5 gives a state approximation with only low-amplitude oscillations

which do not capture the large excursions from the mean present in the original data

(the black “exact” series). In other words, the autoencoder model learns that since the



5.3. RESULTS 238

dimension |b| = r is not sufficiently large to capture all aspects of the data, then it must

concentrate on reconstructing the high-energy features. Further, it avoids accumulating

errors associated with the prediction of low energy features by approximating them by

time series with amplitudes close to zero.

Finally, it is interesting to note that the prioritisation of capturing high-energy features

observed when reducing r reflects the behaviour observed previously when increasing the

value of the balance parameter η in (5.18): a higher value of η results in a higher empha-

sis on capturing of high-energy features, while lowering η results in de-emphasising the

influence of mode energy.

5.3.5 Modelling the dynamics using RNNs

The above discussion indicates that the use of an autoencoder in conjunction with the

appropriate interpretable modal decomposition method allows us to significantly reduce

the dimension of the state, whilst still capturing a significant portion of the energy of

the desired coherent structures as well as the overall shape of the wake. In other words,

we have shown that knowing the value of the reduced order state b at time t, we can

reconstruct the two dominant structures of the velocity field to a satisfactory extent.

The next step in designing a ROM for the flow is to model the evolution of the encoded

time series. In particular, we are interested in forecasting how the flow field behaves,

through forecasting the encoded state b(t).

We formulate the discrete-time forecasting problem as

b̃(t) = f(b(t− j1∆t), b(t− j2∆t), · · · , b(t− jk∆t)), (5.19)

where b̃(t) is the predicted state, ji ∈ N are constant positive integers and function f(.)

is a function of a chosen form. Recent studies have used RNNs as forecasting models, in

conjunction with nonlinear order reduction. In particular, order-reduction using convolu-
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tional autoencoders has been used in conjunction with LSTMs for modelling the dynamics

of a variety of unsteady wakes [72, 49].

To avoid overfitting to the training snapshots, we minimise the number of optimisable

parameters by using a GRU neural network with one hidden layer as function f(.), due

to its ability to extract complex temporal patterns with a smaller number of parameters

than an LSTM network.

In formulating (5.15) and (5.18), we noted that the parameter η allows us to specify the

desired balance between capturing as many features as possible and concentrating on the

more energetic features in the dataset. Here, we would like to use the same idea to ensure

that the predicted state b̃(t) prioritises the reconstruction of the dynamically significant

features.

Unlike the time series ai(t), where the amplitude of the time series determines its ener-

getic contribution to the dataset, the time series bi(t) do not follow an intuitive order of

significance. This is also true for the features extracted using convolutional autoencoders

in the literature [126, 57, 49]. However, an advantage of the current approach is that the

pre-trained decoder function can provide a mapping between the encoded state and the

physically intuitive state a(t). We can therefore use an augmented cost function, where

the prediction error in forecasting the state b(t) is balanced with the ability of the pre-

dicted state to replicate the temporal coefficients âi(t) = |ai|α̂(t). The weights and biases

of the GRU forecasting model are then found by solving the optimisation problem

minimise
W

J :=
∑

t

∥∥∥∥b(t)− b̃(t,W)
∥∥∥∥2

F

+ ξ
∑

t

∥∥∥∥â(t)− ã(t,W)
∥∥∥∥2

F

+ ζ

∥∥∥∥W∥∥∥∥2

F
,

(5.20)

where b̃(t) is the predicted value of the encoded state, ξ is a user-defined parameter signify-

ing the balance between minimising the reconstruction error and the energetic significance

of the predicted features in replicating the velocity field, ξ determines the emphasis on

avoiding overfitting to the training set. The predicted time series ã(t) is found by decod-
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ing the predicted state b̃(t) using the pre-trained decoder function, and rescaling using

the normalisation factors |ai| defined in (5.14).

For the discrete-time forecasting problem in (5.19), the quality of the predicted values

can vary significantly as a function of the input time steps b(t − ji∆t). We, therefore,

train a range of forecasting models with varying input time steps and compare their per-

formance. We define the visible window as the set of time steps used as the input to the

forecasting model. For each model, the visible window is parameterised, as in Figure 5.25,

using the "look-back" parameter, L, the distance between each two input snapshot, d, and

the "look-forward" parameter q. The sequential nature of the GRU model implies that the

look forward parameter, q, is of paramount importance since it determines the difference

between the temporal information provided by the hidden state (i.e. what the signal in

the visible window looks like) and the predicted time step. Therefore, we will analyse

the effects of varying q by training and verifying the performance of neural networks at

various values of q.

bi

Figure 5.25: A schematic overview of the visible window in auto-regressive forecasting

We illustrate the potential of this approach by training a forecasting model for the

unsteady wake of a cylinder at Re = 60. We will then use the same structure to model

the dynamics of the turbulent flow past an axisymmetric bluff body at Re = 5.8× 105.
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Cylinder wake

We solve the optimisation problem (5.20) and train a GRU forecasting model, as function

f(·) in (5.19), to predict the value of the encoded state b(t), given a finite set of values of

b from the previous time steps, b(t− j∆t).

The GRU model has one hidden layer, and the dimension of the hidden layer is the

same as that of the hidden state b, in this case 2. To train the NN we use the sequence

of 600 encoded states that were obtained by encoding the training velocity snapshots.

Similarly, the model is validated using the 100 snapshots of b(t) found by encoding the

test set.

We first train a model that predicts b one step forward in time, i.e. q = ∆t. The visible

window is defined using the parameters d = ∆t and L = 10∆t, and we set the coefficients

ξ and ζ from (5.20) to 1 and 0, respectively. We use the ADAM variant of the gradient-

descent algorithm with a learning rate of 0.01 to solve the optimisation problem. Note

the ℓ2 regularisation factor ζ was set to 0 since this dataset is numerical and noise free.

Defining the reconstruction error as

E(b) =

√∑
t

(
∥b̃(t)− b(t)∥2

2

)
√∑

t ∥b(t)∥2
2

× 100%,

the resulting model predicts the encoded states with E(b) = 3.1% for the training set,

and E(b) = 3.8% for the test set. The plots in Figure 5.26 (a) and (b) show the reference

sequences bi(t) (in blue) and predicted time series b̃i(t) (in red). The decoded mode coef-

ficients α̃4(t) and α̃5(t) are shown in (c) and (d), along with the original normalised POD

time series α4(t) and α5(t), corresponding with the first harmonic mode. The predicted

mode coefficients α̃i(t) are in good agreement with the original mode coefficients αi(t),

with the residual errors being within ±3% of the residual errors of the autoencoder, in

Figure 5.10.
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(a) b̃1(t) (b) b̃2(t)

(c) α̃4(t) (d) α̃5(t)

Figure 5.26: Actual and predicted time series of the encoded states and selected POD
amplitudes.

Importantly we can evaluate the performance of the forecasting model in predicting

the velocity field, by decoding the time series b̃(t). The resulting ensemble of predicted

snapshots, X̃, can be compared to the reference snapshots Xtrain and Xtest using the

reconstruction error

E(X̃) = ∥X̃ −X∥F

∥X∥F

× 100%.

For the case of the model with q = ∆t, the predicted snapshots show good agreement

with the reference snapshots with E(X̃) = 8.7% for the training set and E(X̃) = 9.7

for the test set. For context, the forecasting method cannot theoretically achieve smaller

residuals than those achieved by the autoencoder. Comparing the prediction residuals and

the reconstruction errors of the autoencoder, in Table 5.1, the forecasting model performs

within 2% of the best results it can theoretically achieve.

Finally, carrying out the above analysis for five values of the look-forward parameter,

q = i∆t for i = 1, . . . , 5
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we find that, as expected, the overall effect of increasing the parameter q is a gradual

increase in the residual error of the predicted flow field. However, the periodicity of the

signals, with a dominant shedding period of Tsh ≈ 28.6∆t, leads to a dip in residual errors

when the furthest point in the visible window, i.e. L+ q = (10 + q)∆t, is approximately

half a shedding cycle out of phase with the snapshot being predicted. That is, when

q = 4∆t, so that L+ q = 14∆t ≈ Tsh/2.

/  t

Figure 5.27: The effect of look-forward parameter q on the reconstruction error E. Here,
∆t ≈ 1

28.6Tsh.

Axisymmetric bluff body

Solving the optimisation problem in (5.20) in a similar analysis to the above, we train a

GRU with one hidden layer to forecast the encoded state b(t) of the velocity snapshots

from the turbulent wake. The GRU’s hidden layer has the same dimension as the encoded

state b, in this case 15. We use the 1800 snapshots of the encoded state, b(t), correspond-

ing to the snapshots 200 to 2000 of the velocity field, as the training set. For the test-set,

we use the state b(t), for the snapshots 2200 to 2731. These correspond to the same

training and testing datasets as the ones used for training the autoencoder. Parameters

ξ and ζ in (5.20) were set to 1 and 10, respectively. The optimisation is carried out using

the ADAM algorithm with the learning rate 0.01.

We then train five models, corresponding to five values of the look-forward parameter

q = i∆t for i = 1, . . . , 5
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where ∆t is the sampling time-step of the PIV snapshots. The parameters d = ∆t and

L = 10 remain unchanged for all trained models.

To provide some context, based on the frequency of the vortex shedding feature, the

duration 5∆t corresponds to the time taken for a vortex shedding structure with the spa-

tial length scale of 0.5D, where D is the diameter of the base of the bluff body, to move

a distance of 0.3D downstream of the flow. In other words, this is enough time for the

overall shape of the wake to vary significantly, with the average correlation between each

two snapshots of the flow field that are five time-steps apart being 0.35.

The first model predicts the encoded state one time step forward in time, i.e. q = ∆t.

Figure 5.28 shows the first five predicted time series b̃i(t) and the corresponding bi(t).

The full set of time series is available in §A.3.

The error associated with the forecasting of each encoded time series is presented in

Figure 5.29.

Figure 5.29: Errors associated with the encoded time series

For legibility, a closer look at a few snapshots of the time series b̃3 and b̃5 are also

provided in Figure 5.30. The overall error in forecasting the state b(t) was E(b) = 23.6%.
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(a) b̃1(t), E(b) = 26%, C = 0.97 (b) b̃2(t), E(b) = 21%, C = 0.98

(c) b̃3(t),E(b) = 30%, C = 0.95 (d) b̃4(t),E(b) = 25%, C = 0.97

(e) b̃5(t),E(b) = 21%, C = 0.98

Figure 5.28: Extracted time series bi(t) (in black) and forecast b̃i(t) (in red)

(a) b̃3(t) (b) b̃5(t)

Figure 5.30: A few snapshots of bi(t) (in blue) and forecast b̃i(t) (in red)

By decoding the predicted state b̃ we can quantify the resulting mode coefficients and

predicted velocity fields, leading to a more intuitive understanding of the model’s perfor-

mance. Examples of the forecast mode coefficients α̃i(t) can be seen in figure Figure 5.31.
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The time series in Figure 5.31 (a) is the predicted mode coefficient of the first bubble

pumping mode, and the sequence in (b) corresponds with the first vortex shedding mode.

The original time series αi are also shown (in black). Comparing the original mode coeffi-

cients with the predicted sequence, we note that the predicted time series in (a) captures

the large-scale variations in α1, and the residual is mostly due to the prevalence of shorter

time scales in α1.

(a) α̃1(t), E(α) = 35% (b) α̃7(t),E(α) = 22%

Figure 5.31: The exact time series αi and forecast α̃i(t) (in red)

The predicted velocity snapshots, X̃, resemble the overall shape of the original veloc-

ity snapshots X, with the Pearson’s correlation ⟨X, X̃⟩ = 0.59 for the training set and

⟨X, X̃⟩ = 0.57 for the test set. Table 5.4 summarises the results of the forecasting method

for the turbulent wake of the axisymmetric bluff body.

Train Test

E(b) 23.6% 27.8%

E(X̃) 41.2% 45.8%

Correlation ⟨X, X̃⟩ 0.59 0.57

Table 5.4: Summary of forecasting performance

An example of the predicted snapshots can be seen in Figure 5.32, alongside the original

snapshot of the time-varying velocity field. As one can see, the overall shape of the veloc-

ity field is predicted well. The residual between the two snapshots is mostly due to the

presence of highly energetic small-scale structures in the original snapshots. These small



5.3. RESULTS 247

structures are of two types; the first group are not temporally coherent and often spatially

coincide with the large-scale vortex shedding and bubble pumping modes. An example

of such structures can be seen at (x/D, y/D) = (1.2, 0.25) in (a). The second group cor-

respond with the dynamics of the flow near the separation points (0, 0.5) and (0,−0.5);

although these structures are not as energetically significant as the two significant features

studied here, they are indeed coherent in time (see, the snapshots in Figure 5.23 (a) and

(d), for example). This suggests that the present model would benefit from the inclusion

of higher order modes, or perhaps the use of the OMDor method, developed in §4, for

extracting features that emphasise this region of the flow field.

(a) Snapshot 1840 (b) Predicted snapshot 1840

Figure 5.32: A snapshots of the stream-wise flow field and its predicted counterpart

Repeating the same analysis for five visible windows, characterised by the look-forward

parameter q in Figure 5.25, we find that the prediction error increases as the parameter

q increases. Figure 5.33 shows the variation of the prediction error with the look-forward

parameter q. Considering the nature of the flow, it is not entirely surprising that the

rate of this increase is steeper than that of the cylinder flow. However, it is important

to note that the method remains capable of finding the overall shape of the flow field, as

the correlation ⟨X, X̃⟩ remains above 0.5 even for the case where q = 5∆t. Recall that

the shape of the wake varies significantly in five time steps. The fact that the predictions

capture the overall shape of the wake, even in cases where the velocity snapshots are not
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predicted with high accuracy, indicates that the model is effective at predicting useful

statistics about the flow field.

Figure 5.33: Variation of the prediction error with the look-forward parameter q. Here
∆t ≈ Tsh/40.9, where Tsh is the time period of the flow’s global vortex shed-
ding mode.

A comparison between the predictions for the two flows

Finally, we will briefly compare the performance of the dynamics models in predicting the

above flows. This will also provide a more intuitive view of the quality of the predictions

made for each flow, by contextualising the look-forward parameter q in terms of each

flow’s shedding frequency. For the flow past a cylinder at Re= 60, using the shedding

Strouhal number of St ≈ 0.14 and the sampling frequency of 4 Hz, we find that there are

28.6 samples collected for each vortex shedding cycle, i.e. Tsh = 28.6∆t. Similarly, given

the sampling rate of 720 Hz and the vortex shedding Strouhal number of St ≈ 0.23, there

are 40.9 samples collected for each vortex shedding cycle of the turbulent flow past the

axisymmetric bluff body, i.e. Tsh = 40.9∆t. Figure 5.34 shows the reconstruction error

as a function of the look-forward parameter, normalised by half the respective shedding

period (i.e., in units of q/(Tsh/2)).

The reason for normalising by the half-shedding period Tsh/2 is as follows. Suppose

that a flow’s global vortex shedding mode has a spatial length scale L0, defined to be

the streamwise distance between the centres of two adjacent coherent regions of velocity

fluctuations of opposite signs. The time unit Tsh/2 then corresponds to the time taken

for the velocity fluctuations due to vortex shedding at a given point (x, y) in space to go
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0.2440.1950.1430.0980.049

(a) Axisymmetric bluff body

0.3500.2800.2100.070 0.140

(b) Circular cylinder

Figure 5.34: Comparison between the predictions made for the turbulent flow past an ax-
isymmetric bluff body, (a), and the laminar flow past a circular cylinder, (b).
The x-axis shows the look-forward parameter q as a fraction of the shedding
half-period.

from their maximum positive value to their minimum negative values. In other words,

this is the time needed for a contiguous region of positive velocity fluctuations to move

one length scale L0 downstream.

Comparing the two flows in Figure 5.34, the RNN-based model manages to reconstruct

the laminar cylinder wake in (b) with significantly lower reconstruction errors than the

model for the turbulent flow past the axisymmetric bluff body. This is despite the fact

that, compared to the turbulent flow in (a), predictions are made about temporal points

further ahead in the shedding cycle. For example, the reconstruction error approximately

at q/(Tsh/2) ≈ 0.25 (i.e., corresponding to the global mode moving a distance of ap-

proximately L0/4) is approximately 11% for the cylinder wake compared with 65% for

turbulent flow past the axisymmetric bluff body.

Furthermore, the increasing trend observed in Figure 5.34 (a) shows that, as expected,

prediction accuracy decreases if one attempts to predict further ahead in time. However,

as mentioned previously, for q = 5∆t (which corresponds to q/(Tsh/2) ≈ 0.25) the pre-

dicted snapshots X̃ and exact snapshots X still have a correlation satisfying ⟨X, X̃⟩ > 0.5.

In view of the fact that the average correlation between pairs of snapshots sampled 5∆t

apart is 0.35, it is arguable that the trained model is able to make non-trivial predictions

of the flow’s future behaviour.
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5.4 Conclusion

A method was developed for nonlinear extraction of low dimensional states, based on time

series that correspond to interpretable and linearly extracted coherent structures. The

method ensures that the extracted features are inherently interpretable by means of a

decoder function that can relate the extracted state to linearly extracted time-series. The

method was applied on modes and time series extracted by POD, from high dimensional

numerical snapshots of a flow past a cylinder. In line with the theoretical findings of [128],

the method automatically extracted a two-dimensional state that corresponds well with

the first two POD time series of the flow, and found a nonlinear mapping between the

encoded state and other, orthonormal, mode time series. The resulting decoded flow field

captures a higher percentage of the transitioning flow, 92%, than a truncated set of POD

modes with the same dimension, 75%.

The method was then applied to clusters of modes from the turbulent wake of an

axisymmetric bluff body, which were found using the method described in §3. A low-

dimensional temporal state was extracted to encode the subset of the dynamics of the

flow captured by the modes in the clusters. The encoded state, of dimension 15, performs

better than selecting 16 mode time-series in capturing the snapshot ensemble. The en-

coded state captures 62.7% of the underlying data and the 16 mode time-series capture

46% of the flow field.

The suitability of the encoded time series for forecasting the shape of the flow field was

then analysed using a GRU network. The results show that using the encoded state, the

cylinder flow can be predicted with high accuracy, with a residual error of less than 10%,

and the overall shape of the turbulent flow is predicted well, with a residual error of 41%

and Pearson’s correlation of 0.59.



Chapter 6
Conclusions

The increase in the quality and quantity of experimental studies using particle image

velocimetry, PIV, and the decreasing cost of numerical simulations, have led to a prolifer-

ation of data relating to fluid flows. Simultaneously, there has been a steep increase in the

use of data-driven techniques for the analysis and modelling of fluid flows. The methods

proposed in this thesis are particularly focused on helping the practitioner extract useful

information from ensembles of, usually high-dimensional, snapshots of the velocity field.

In this thesis, a number of data-driven techniques were proposed for the analysis and

extraction of reduced-order models of fluid flows. Throughout the thesis, there has been

an emphasis on the practicality and interpretability of the final results, for the use of a

practitioner in flow-control and estimation. All techniques have been tested on a range

of relevant datasets, including those which are synthetic, numerical and experimental.

In particular, we have developed methods that address the following challenges in data-

driven feature extraction and modelling of fluid flows:

1. In Chapter 3 we developed a method for finding clusters of spatially, and tempo-

rally, similar modes. A number of factors, such as non-exponential behaviour and

the presence of noise, can lead DMD-like algorithms to extract clusters of modes

with similar mode-shapes and eigenvalues. Defining and extracting these clusters is

not a trivial task, especially in broadband turbulent flows. Our method allows the

251
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practitioner to have an intuitive view of the degrees of freedom in the underlying

system. The method analyses the similarity of the extracted modes and can narrow

down a large set of extracted modes, to a small set of significant clusters.

2. In Chapter 4 we developed a method of modal decomposition that can balance

the ability of the extracted modes to model the dynamics of a high dimensional

dataset, with their ability to map to a small number of measurable outputs of the

system. In most data-driven techniques, features are extracted that can be used

for the reconstruction of an ensemble of high-dimensional snapshots. However, for

control and estimation purposes, the practitioner will often have access to a limited

set of measurements. However, there is no guarantee that the features necessary

for the reconstruction of the high-dimensional dataset can also be mapped to the

low-dimensional outputs. The coherent structures extracted using our method are

by definition suitable for mapping to a low dimensional measurement of choice.

3. In Chapter 5 we used neural networks to extract an efficient low-order represen-

tation of the flow field. By construction, these reduced order states map to phys-

ically interpretable flow features extracted using linear methods. There have been

a number of developments in data-driven fluid mechanics that use the potential of

machine learning to find reduced order models of the flow. These methods have been

successfully employed to model the temporal evolution of benchmark velocity fields.

However, a drawback of using these methods is that the emphasis on the reconstruc-

tion of snapshots can lead to reduced order states that are not human-interpretable.

Our method exploits the nonlinear relationships amongst a large set of linearly ex-

tracted time series to find compact representations of the flow. The suitability of

the reduced order state for modelling the flow-dynamics was also investigated.
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Future Developments

There are a number of ways to expand upon the presented work. Here we briefly mention

a few possible directions that could help with the adoption of the presented methods for

flow control and estimation.

1. The method presented in Chapter 3 casts the problem of finding clusters of similar

modes as one of finding communities within a graph. Our method finds these com-

munities based on the notion of maximal cliques since it ensures a more stringent

definition. However, there are a number of more computationally efficient methods

for detecting such communities. The main advantage of the current method is that

it does not impose arbitrary limits such as the number of modes in each cluster or

strict boundaries partitioning the modes into separate graphs. Based on our ex-

perimental results, after the elimination of weak connections, the resulting graph

from a typical DMD-like decomposition is sparse, and the algorithm converges in

reasonable time even for challenging datasets.

However, for a generic graph, the problem of finding all of the maximal cliques is

NP-complete, and therefore future work can concentrate on ensuring that the re-

sulting graph from a decomposition is of suitable form for the detection of maximal

cliques. In particular, since finding the maximal cliques of chordal graphs is much

more computationally efficient, one can ensure that the resulting graph at each

iteration is chordal by imposing a suitable similarity criterion.

2. The method proposed in Chapter 4 concentrates on ensuring that an imprint of

the extracted dynamical features can be found using the sparse set of measurements

that can be utilised for estimating the state of the system in real-time. There are

three directions for expanding upon this work, that can be beneficial for real-life

application in state estimation and control.



254

Firstly, the existing algorithm can be applied to a wider set of datasets that in-

clude snapshots of high-dimensional flow-fields, as well as corresponding snapshots

of low-dimensional measured output. Future experimental studies that collect such

datasets can be of great benefit to the current application. Also, the theoretical work

can find the effect of output regulation, as in (4.8), on the observability Gramian of

the resulting ROM.

Secondly, the problem that we concentrated on in Chapter 4 relates to state esti-

mation of autonomous systems. Another practical constraint on the application of

modal decomposition in flow control is that the dynamics of the flow under control

can be significantly different than that of the unforced flow. A natural extension of

the existing method is to find a subspace of the high-dimensional flow field that is

responsive to a given control input.

We note that existing methods such as DMD with control have attempted to con-

sider the effect of control input on the dynamics. However, DMD with control

assumes that the full state is available in real-time. For application in practical

flow control and estimation problems, a balance between observability and control-

lability should also be considered. A preliminary optimisation problem that could

potentially be used for extracting such features is

minimize
L,M,C

J := ∥X ′ − LML⊤X − LB1U∥2
F + α∥P − CL⊤X∥2

F

s.t. L⊤L = I,

M ∈ Rr×r, L ∈ Rp×r, C ∈ Rℓ×r, B1 ∈ Rr×m

(6.1)

where B1 ∈ Rr×m maps the effect of the control input on the projected state L⊤X,

and U ∈ Rm×N contains collected snapshots of control input.

Thirdly, the proposed OMDor algorithm assumes a linear relationship between the

state and the output, as well as a set of linear projection bases L. However, the al-

gorithm can be adjusted to include nonlinear relations, e.g. quadratic, between the
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state and the output. Moreover, the projection method used can also be replaced

by nonlinear projection methods such as neural networks.

3. In Chapter 5 we looked at feature extraction methods that maintain a connection

with modal decomposition. There are two directions that the current study can be

expanded in. Firstly, in the current study, the reconstruction of velocity snapshots

is limited by the ability of the extracted modes to reconstruct the velocity field.

The motivation for this is that in most applications, a large enough set of linearly

extracted modes can be used for accurate reconstruction of the velocity field. How-

ever, an improvement to the current method is to allow the model to both maintain

a connection to the modal decomposition and also not be limited to the subspace

spanned by the modal decomposition. To that end, a new architecture can be im-

plemented, where convolutional layers can map the original snapshots to the portion

of the velocity field not spanned by the modes.

Finally, the connection between the encoded state and external measurements can

also be used, in a similar fashion to OMDor, to ensure that the encoded state can be

used for estimation of the velocity field using a limited number of measured outputs.

Here we give an example of how this approach can be explored in future work.

In the case of the flow past axisymmetric bluff bodies, there are established links

between the velocity field and the pressure at the base of the flow. The length of the

re-circulation region has been shown to be correlated to the area-averaged pressure

disturbance at the base of the bluff body [25]. In a similar preliminary analysis,

we have observed, as shown in Figure 6.1, that the time series of the representa-

tive bubble pumping mode and the length of the recirculation region are strongly

correlated. It is therefore reasonable to expect that the reduced order state of the

flow field, which can be mapped to this modal time series, can also be mapped to

the area-averaged pressure disturbance. In a similar spirit to the analysis in Chap-
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ter 5, one can find a mapping between the encoded velocity state and a series of

interpretable features that can describe the shape of the pressure field.

Figure 6.1: Cross correlation between the temporal coefficient of the bubble pummping
mode and the length of the recirculation region.
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Appendices

A.1 Bron-Kerbosch algorithm

Here, we give a short and general overview of the classic Bron-Kerbosch algorithm. There

are three sets that will be refined at each call of the algorithm:

1. The set R of the nodes that are shown to form a clique, initialised as the empty set.

At each call of the algorithm a node is added to it.

2. The set P of the nodes that are candidates for being in a clique, i.e. all the nodes

that could become members of R. This set is initialised as all nodes in the graph

and in subsequent calls of the function contains the set of nodes that are connected

to all the nodes in set R.

3. The set X of nodes that the algorithm has already considered in a previously termi-

nated call of the function. The idea of this set is that once all the candidate nodes

have been exhausted and the clique in R cannot admit more nodes, the clique will

only be returned if the set X is empty. This means that there is no other node that

is connected to all nodes in R which is not already a member of R.

After each call of the algorithm, the prospect set P and the excluded X sets are updated

as in lines 10 and 11 of Algorithm 3. For completeness, Algorithm 3 presents a detailed

psuedocode of the classic Bron-Kerbosch algorithm.
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Algorithm 3 Bron-Kerbosch Algorithm
1: P ← V ▷ Initialise the prospect set as the set of all vertices

2: R← ∅ ▷ Initialise the connected set as the empty set

3: X ← ∅ ▷ Initialise the excluded set as the empty set

4: function BronKerbosch(P,R,X)

5: if P = ∅ & X = ∅ then

6: Return R

7: else

8: for v ∈ P do

9: BronKerbosch(R ∪ v,P ∩N(v),X ∩N(v)) ▷ N(v) is the set of nodes

that are connected to v

10: P ← P\{v} ▷ v is eliminated from P

11: X ← X ∪ {v} ▷ v is added to X

12: end for

13: end if

14: end function

Other variants of the Bron-Kerbosch algorithm employ more sophisticated heuristics

for choosing which node to consider at each iteration, instead of simply looping through

all the modes connected to a specific mode. This limits the number of calls that do not

return a maximal clique. In this paper we employ a more computationally-efficient variant

of [164], which bounds the number of calculations by O(3n/3), where n is the number of

graph vertices. However, in many practical applications where the adjacency matrix is

sparse, the algorithm converges faster than the theoretical upper bound.
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A.2 An example of a convolutional layer

Here we present an illustrative example that can be useful in giving an intuitive under-

standing of the operations involved in a convolutional layer. For the input vector

x =



x1

x2

...

xp


, and a cross correlation filter W =


w1

w2

w3

 ,

an activation function σ(·) is applied to the output of the cross correlation to get

f1(x) = σ



w1x1 + w2x2 + w3x3

w2x2 + w3x3 + w4x4

...

w1xp−2 + w2xp−1 + w3xp


+ b1 = y.

The cross correlation operation is often accompanied by a so called pooling operation. An

example of a pooling operation is

h1(f1(x)) =



max(y1, y2)

max(y3, y4)
...

max(yp−n, yp−n+1)



where the output vector reduces the input’s dimension by a factor of 2.

A.3 Encoded states

The encoded time series for the flow past an axisymmetric bluff body can be seen in

Figure 6.3.
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(a) b̃1(t) (b) b̃2(t)

(c) b̃3(t) (d) b̃4(t)

(e) b̃5(t) (f) b̃6(t)
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(a) b̃7(t) (b) b̃8(t)

(c) b̃9(t) (d) b̃10(t)

(e) b̃11(t) (f) b̃12(t)

(g) b̃13(t) (h) b̃14(t)

(i) b̃15(t)

Figure 6.3: extracted time series bi(t) and forecast b̃i(t)
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