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Abstract 

Precision medicine depends on high-accuracy individual-level genotype data. Ho w e v er, the whole-genome sequencing (WGS) is still not suitable 
for gigantic studies due to budget constraints. It is particularly important to construct highly accurate haplotype reference panel for genotype 
imputation. In this study, we used 10 0 0 0 samples with medium-depth WGS to construct a reference panel that we named the CKB reference 
panel. By imputing microarray datasets, it showed that the CKB panel outperformed compared panels in terms of both the number of well- 
imputed variants and imputation accuracy. In addition, we have completed the imputation of 100 706 microarra y s with the CKB panel, and the 
after-imputed data is the hitherto largest whole genome data of the Chinese population. Furthermore, in the GWAS analysis of real phenotype 
height, the number of tested SNPs tripled and the number of significant SNPs doubled after imputation. Finally, we developed an online server for 
offering free genotype imputation service based on the CKB reference panel ( https:// db.cngb.org/ imputation/ ). We belie v e that the CKB panel is 
of great value for imputing microarray or low-coverage genotype data of Chinese population, and potentially mixed populations. The imputation- 
completed 100 706 microarray data are enormous and precious resources of population genetic studies for complex traits and diseases. 
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n recent years, precision medicine has made remarkable
chievements in complex diseases retreatment and develop-
ent of target drugs by using molecular biological informa-

ion (e.g. individual genome) and clinical symptoms ( 1 ,2 ).
recision medicine relies on high-throughput whole-genome
ata to implement individual-based clinical diagnosis and
reatment for patients. However, although the cost of whole-
enome sequencing (WGS) technology has been greatly re-
uced, there is still a budget problem for large-scale pop-
lation research. Most researchers still prefer the low-cost
icroarray-based genotyping technology, which sequences
nown loci to obtain genotype data for follow-up analysis.
ut microarray cannot mine novel mutation sites related to

he disease, so there are limitations in the interpretation of
he genetic mechanism of the disease. At present, the common
ethod is to impute the microarray data at the whole-genome

evel based on the appropriate reference panel thus to obtain
he whole-genome data for a population. The selection of ref-
rence genome plays an important role in the imputation ac-
uracy of genome data and subsequent analysis results. 

Internationally, the haplotype map (HapMap) ( 3 ,4 ), 1000
enomes Project (1KGP) ( 5 ,6 ), the Haplotype reference con-

ortium (HRC) ( 7 ) and trans-omics for precision medicine
TOPMed) ( 8 ) have been launched. The HapMap project is
he next major human genomic program after the Interna-
ional Human Genome Project. In 2007, the HapMap (phase
) sequenced 1184 individuals from 11 populations. In 2015,
merican, British and Chinses scientists jointly announced the
ompletion of the Thousand Human Genome Project (phase
), which sequenced the whole genomes of 2504 individuals
rom 26 global populations and created the most comprehen-
ive genetic polymorphism map of the human genome. The
KGP panel is the most-commonly used genome data to date.
ecently, the expanded 1KGP cohort including 602 trios were
ublished, in which all 3202 samples were sequenced to a high
epth of 30 times ( 6 ). In 2016, the HRC project integrated
0 studies, such as UK10K and 1KGP, and created a reference
anel with 32 470 individuals mostly with low-coverage WGS
ata ( 7 ). The latest TOPMed reference panel collected 97 256
ndividuals, including 47 159 Europeans, 24 267 Africans, 17
085 admixed Americans, 1184 East Asians, 644 South Asians
and other populations ( 8 ). 

In recent years, in addition to the international haplotype
reference projects, national haploid genome sequence consor-
tiums have also been initiated in various countries, includ-
ing Netherlands, Denmark, Iceland and Singapore. The Dutch
Human Genome Project sequenced 250 pedigrees at mod-
erate depth (12 ×) to construct haploid reference sequences,
substantially improving the accuracy of genotype inference
for low-frequency variants ( 9 ). The Danish Genome Project
sequenced 50 Danish families at high-depth (80 ×) WGS to
construct the first Danish genome-wide high-precision hap-
lotype reference panel ( 10 ). The Icelandic Genome performed
high-depth (20 ×) WGS on ∼2000 individuals to create haplo-
type reference sequences, significantly improving the efficacy
of association analysis and complex disease studies ( 11 ). The
SG10K reference panel sequenced 4810 individuals, including
2780 Chinese, 903 Malays and 1127 Indians, with an average
sequencing depth of 13.7 × ( 12 ). This database is a valuable
resource to advance the genetic study of complex traits and
diseases in Asians. 

China has the largest population in the world, producing
enormous genetic resources, and should make a greater contri-
bution to human genetics and complex disease research. How-
ever, the lack of high-quality haplotype reference sequences
has become a bottleneck in the fields of population genet-
ics and molecular biology . Fortunately , in the past 2 years,
researchers have constructed reference panels based on Chi-
nese population: the ChinaMAP (China Metabolic Analytics
Project) and the Nyuwa reference panels. The ChinaMAP con-
sortium performed 40 × deep WGS on 10588 individuals col-
lected from different regions and ethnicities in China ( 13 ,14 ).
The library construction and WGS were performed on the
BGISEQ-500 platform at BGI-Genomics. The ChinaMAP ref-
erence panel is a high-quality genetic variation database of
Chinese population and plays an essential role in the anal-
ysis of Chinese population structure, genetic variation spec-
trum and pathogenic variants. The NyuWa reference panel
includes 2902 independent samples with high-depth (26.2 ×)
WGS collected from 23 administrative regions of China ( 15 ).
It is important to expand the diversity of genetic resources and
 aphical abstr act 
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improve the accuracy of medical research in Chinese popula- 
tion. 

The China Kadoorie Biobank (CKB), previously known as 
the Kadoorie Study of Chronic Disease in China (KSCDC), 
is an international collaborative research project on chronic 
diseases jointly conducted by Peking University, Chinese 
Academy of Medical Sciences and University of Oxford, UK 

( 16 ). It is a gargantuan prospective study and the largest Chi- 
nese population cohort to date. During 2004–2008, > 510 

000 adults were recruited from 10 geographically defined re- 
gions in China. The study aims to establish a database of 
blood samples and clinical information and to investigate the 
main genetic and environmental causes of common chronic 
diseases. To date, the CKB cohort has achieved numerous 
influential findings in clinical studies, such as the relation- 
ship between smoking, physical activity, fresh fruit intake, 
egg consumption and the risk of cardiovascular disease ( 17–
20 ), the association between diabetes and the risk of death 

( 21 ) and the relationship between smoking, alcohol and tea 
consumption and esophageal cancer ( 22 ). However, unfortu- 
nately, there are no large-scale population genetics and ge- 
netic background studies of complex traits and diseases based 

on the CKB cohort ( 23 ). A major reason is the lack of high- 
density genetic data. Although microarray testing (Affymetrix 

Axiom myDesign) of > 100 000 samples has been completed, 
the data are still not comparable to WGS data in terms of 
the number of genetic variants and the detection of novel 
loci. 

In this work, we constructed a high-resolution haplotype- 
resolved reference panel based on 9950 individuals from the 
CKB cohort and 50 Chinese samples from the 1KGP study, 
with an average sequencing depth of 15.41 ×. We evaluated 

the imputation performance of the CKB reference panel from 

the perspective of number of imputed variants and imputa- 
tion accuracy. The compared reference panels include the ex- 
tended high coverage 1KGP, the newly developed TOPMed, 
the ChinaMAP and the NyuWa panels built from the Chinese 
population. In addition, based on the constructed CKB panel, 
we completed the genotype imputation for 100 706 microar- 
ray samples and obtained the largest whole genome data in 

the Chinese population. We further performed the genome- 
wide association study (GWAS) of human height based on the 
100 706 microarray data before and after imputation. The 
total number of SNPs used in GWAS tripled after imputation 

and the number of significant loci increased from 119 to 147, 
while 26 out of the additional 28 identified loci were previ- 
ously reported to be associated with height. We also created 

an online imputation server to offer free genotype imputation 

service ( https:// db.cngb.org/ imputation/ ). 

Materials and methods 

Subjects 

In this project, we constructed a haplotype reference panel 
based on 10 000 Chinese individuals, including 9950 from 

the CKB cohort and 50 from the 1KGP Han Chinese. The 
CKB project recruited > 510 000 adults aged from 30 to 79 in 

10 (five urban, five rural) geographic regions of China. These 
9950 individuals were stroke cases from the cohort. The 50 

1KGP samples included 20 northern and 30 southern Han 

Chinese. We also used 100 706 CKB microarray samples (in- 
dependent of the 9950 samples) in subsequent analyses. Writ- 

ten informed consent was obtained from all participants from 

the CKB cohort. 

DNA samples and library construction 

The WGS was performed for the 10 000 samples. Specifically, 
DNA concentration was measured by ExKubit dsDNA HS As- 
say Kits (Shanghai ExCell Biology, Inc) and Fluostar Omega 
Microplate Reader (BMG Labtech GmbH). The DNA qual- 
ity was evaluated by agarose gel electrophoresis at a constant 
voltage (180 V) for 35 min. The DNA shearing was done by 
the Covaris E220 ultrasonics DNA shearing instruments. The 
DNA purification and fragment size selection were applied by 
VAHTS DNA Clean Beads (Vazyme, #N411). The libraries 
were constructed on BGI’s DNBseq-T1 × 4RS platform and 

the loading DNA concentration was > 12 ng / μl. The paired- 
end 100-bp (PE100) WGS with 350-bp insert sizes was per- 
formed on the MGI DNBSEQ sequencing platform. 

Variant calling and sample quality control 

To perform variant calling on each sample (also known as in- 
dividual variant calling), we first applied SOAPnuke (v.2.1.1; 
-n 0.1 -l 12 -M 2) ( 24 ) to filter low quality reads and re- 
move adapter sequences. Then, we obtained aligned Binary 
Alignment / Map (BAM) files by aligning sequence reads to 

the GRCh38 human reference genome assembly with Sentieon 

(v.202010.04) bwa-mem algorithm ( https://www.biorxiv.org/ 
content/ 10.1101/ 115717v2 ). On the sorted and aligned BAM 

files, we used Sentieon drivers LocusCollector to collect infor- 
mation on duplicates and Dedup to remove the duplicates. For 
regions that contain insertions or deletions (INDELs), we fur- 
ther performed local realignment around INDELs to correct 
for mapping errors and increase the quality of INDEL detec- 
tion by using the Sentieon Realigner algorithm. To increase 
the accuracy of variant calling, we carried out base quality 
score recalibration (BQSR) to BAM files based on the Sen- 
tieon QualCal algorithm, which created a recalibration table. 
This table file was then applied as an input to Sentieon Hap- 
lotyper for single-nucleotide polymorphisms (SNPs) and IN- 
DELs detection. After all these steps, we obtained the called 

variant sites for each sample in gVCF format. Note that, for 
this variant calling workflow, we used the Sentieon DNASeq 

toolkit instead of the GATK best practice ( 25 ) for the follow- 
ing reasons: ( 1 ) the DNASeq and GATK have near-identical 
variant detection accuracy, ( 2 ) the DNASeq is > 30 times faster 
than GATK and ( 3 ) the DNASeq may be more suitable for less 
deeply sequenced samples ( https://www .biorxiv .org/content/ 
10.1101/115717v2 ). 

Before performing joint variant calling, we first selected 

samples with ( 1 ) no evidence of contamination (VerifyBamID 

FREEMIX < 0.03) ( 26 ), ( 2 ) high library quality measured 

by reads duplication rate < 0.05, ( 3 ) mean sequencing depth 

≥10 × and ( 4 ) GC content between 40 and 44. The joint vari- 
ant calling was then performed by GVCFtyper algorithm im- 
plemented in Sentieon, followed by variant quality score re- 
calibration (VQSR) for SNPs and INDEls separately using 
GATK ( 27 ). In this way, we first built the models with Vari- 
antRecalibrator and then applied it in ApplyVQSR. After that, 
ExcessHet > 54.69 and low-quality sites that did not pass 
VQSR were filtered out by SelectVariants. Finally, we calcu- 
lated genotype posterior probabilities by CalculateGenotype- 
Posteriors. 
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Reference panel construction 

After calculated genotype posterior probabilities, we further 
set low quality genotypes (GQ < 20) as missing and then re- 
moved low-complexity sites with minimum count of less than 

one or with missing alternate (ALT) allele. We also split a 
multiallelic SNP with more than one ALT allele to biallelic 
SNPs, with each ALT allele in a separate row. Next, we per- 
formed genotype phasing (also known as phasing / haplotype 
estimation), which is the process of statistical estimation of 
haplotypes from genotype data. This step was done by Beagle 
v.5.2 ( 28 ). Note that, during these steps, we did not remove 
related samples since the genetic relatedness can be modeled 

and improve haplotype phase accuracy. This concept was bor- 
rowed from the generation of the latest version of the 1000 

Genome Project reference panel, in which the phasing accu- 
racy was evaluated between inclusion and exclusion of trios; 
and the evaluation result showed that phasing with pedigree 
data achieved higher accuracy compared to unrelated samples 
alone ( 6 ). Finally, we removed close relatives up to the second 

degree generated by KING v.2.2.7 ( 29 ) as the related sam- 
ples can distort the population allele frequency estimation in 

the subsequent analysis. After then, we obtained the reference 
panel, which we named as CKB reference panel. The construc- 
tion workflow is provided in Figure 1 . 

We performed annotation analysis with the Ensembl Vari- 
ant Effect Predictor (VEP) ( 30 ) by using plug-ins SIFT ( 31 ) and 

PolyPhen ( 32 ) algorithms. Additionally, we used ClinVar ( 33 ), 
( 34 ) to label pathogenic variants and their related diseases in 

the ClinVar database. We kept variants only when its reference 
allele and alternate allele were consistent with that of CLIN- 
HGVS, which is a new INFO tag that reports the top-level 
genomic HGVS (Human Genome Variation Society) expres- 
sion for the variant. We further calculated the alternate allele 
frequency (AF) as AF = AC / AN, where AC is the alternate 
allele count and AN is the total number of alleles. 

Evaluation of the imputation performance 

We conducted extensive scenarios to evaluate the imputation 

performance of the CKB panel and others, including the ex- 
tended 1KGP, TOPMed, ChinaMAP and NyuWa reference 
panels. There were two datasets to be imputed: the CKB mi- 
croarray data and the 1KGP microarray data. From the CKB 

cohort, 50 randomly selected samples independent of that in 

the CKB reference panel were genotyped in both SNP array 
and high coverage WGS (44.14 ×). The 50 1KGP microar- 
ray samples were all Chinese and also independent of those 
in the CKB reference panel. To evaluate the imputation per- 
formance, we compared number of imputed variants and im- 
putation accuracy. For the imputed variants, we defined high- 
quality variants with an imputed information score > 0.8 and 

medium-quality variants with an imputed information score 
between 0.4 and 0.8. For the imputation accuracy, we calcu- 
lated Pearson correlation coefficient ( R 

2 ), precision and sen- 
sitivity. The high coverage WGS data were treated as ground 

truth when computing imputation accuracy between the im- 
puted and true genotypes. For the CKB and extended 1KGP 

panels, we performed imputation procedures locally; while for 
TOPMed, ChinaMAP and NyuWa, we submitted jobs to their 
online imputation servers and downloaded the after-imputed 

files. 
To assess the precision and sensitivity, we first calculated the 

true positive (TP), false positive (FP), false negative (FN) and 

true negative (TN). The TP indicates that the imputed geno- 
type correctly predicts the true WGS genotype. The FP is an 

error classification where the imputed genotype incorrectly 
indicates the presence of a WGS variant. The FN is also an 

error classification where the imputed genotype incorrectly 
indicates the absence of a WGS variant. The TN is an out- 
come where the predicted genotype correctly predicts the case 
of homozygous reference calls. The details of 3 × 3 confu- 
sion matrix of defining TP , FP , FN and TN were provided 

in Supplementary Table S1. To eliminate the bias caused by 
the number of imputed variants, we compared the ratios of 
TP , FP , and FN instead of their counts directly. The TN value 
for all panels was zero. The ratio of TP was calculated by 
TP / (TP + FP + FN + TN), same for FP and FN. The preci- 
sion was computed by TP / (TP + FP) and the sensitivity was 
computed by TP / (TP + FN). 

Imputation for 100 706 microarray data 

We imputed 100 706 CKB microarray data based on the CKB 

reference panel in Beagle v.5.2 ( 28 ). Note that, the 50 sam- 
ples with both microarray and high-coverage WGS data were 
included in the 100 706 individuals. To carry out imputation 

efficiently, we randomly divided the 100 706 samples into 21 

chunks, in which 20 chunks contained 4800 samples and one 
chunk contained 4706 samples. Then, we parallelly executed 

genotype imputation for these chunks. To assess the perfor- 
mance for imputing such a large volume of data using the 
developed CKB panel, we extracted the 50 after-imputed mi- 
croarray samples and calculated the Pearson correlation coef- 
ficients with their high coverage WGS set. We also compared 

this imputation accuracy with that of imputing the 50 mi- 
croarray samples alone. 

PCA of the CKB reference panel and 100706 

microarray data 

To detect population stratification, we carried out principal 
component analysis (PCA) ( 35 ,36 ) of genotype data in the 
CKB reference panel. The PCA was carried out in Plink v.1.9 

( 37 ) with autosomal biallelic SNPs satisfying the following 
conditions ( 1 ) MAF ≥1%, ( 2 ) genotyping rate ≥90%, ( 3 ) 
Hardy–Weinberg equilibrium (HWE) P -value > 1E-06 and ( 4 ) 
low linkage disequilibrium (LD, r 2 < 0.5) with other vari- 
ants in windows of 50 SNPs with steps of five SNPs. In ad- 
dition, we performed PCA for 100 706 microarray data be- 
fore imputation. The Plink arguments were the same as used 

previously. 

GWAS analysis of simulated data 

In this section, we aimed to perform GWAS of simulated phe- 
notypic values, whereas the genotype data were a combination 

of the CKB reference panel and after-imputed 100 706 mi- 
croarray data. First, we performed PCA of genotype data by 
using PCAone ( https:// github.com/ Zilong-Li/ PCAone ), which 

was applicable for large samples. Then, we simulated pheno- 
type data under null and alternative hypotheses, separately. 
Under the null hypothesis that none of the SNPs were as- 
sociated with the phenotype, we generated a vector of phe- 
notypic values from a standard normal distribution. Under 
the alternative hypothesis that the phenotype data was gen- 
erated from a linear regression model by using five SNPs as 
independent variables with randomly assigned effects size β. 
The causal SNPs included rs3003378 ( β = 0.02), rs6764623 
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Figure 1. The workflow of panel construction. 

( β = 0.01), rs10905649 ( β = 0.02), rs13254191 ( β = 

0.03) and rs10915307 ( β = 0.01). We used PC1 to PC5 and 

sex of the participants as the covariates to carry out GWAS 
analysis in Plink v.2.0 ( 38 ). We reported Manhattan plots, QQ 

plots, histograms and regional plot for the GWAS results. 

GWAS analysis of real phenotype data 

In this section, we performed GWAS analysis of real pheno- 
type height, while the genotype data was 100 706 microar- 
ray data before and after imputation, separately. The covari- 
ates included age, sex, sampling site and the first 10 prin- 
cipal components of the microarray data before imputa- 
tion. We used Plink v.2.0 for GWAS analysis by testing 
SNPs with MAF > 0.01, HWE P -value > 1E-06 and geno- 
type missing rate < 0.01. For the GWAS results, we de- 
fined a SNP as significant if its P -value > 5E-08. We further 
grouped these significant SNPs into different loci by sliding 
a fixed-width (1 MB) window. For two loci identified be- 
fore and after imputation, if the distance between their cen- 
ters is within 500 KB, we defined that they were a shared 

locus. 

Online imputation service 

We developed an online imputation server to offer genotype 
imputation service, which allows users to run imputation tasks 
free and safely in an easy way. For the online server, we 
provided the CKB and 1KGP as available reference panels, 
GRCh37 (hg19) and GRCh38 (hg38) as human genome as- 
sembly , Minimac v .4 ( 39 ,40 ) and Beagle v.5.2 ( 41 ) as impu- 
tation tools, and different population options. Specifically, for 
the CKB panel, Chinese is the sole population, and for the 
1KGP panel, the available populations include East Asian, 
South Asian, African, European, Admixed American and all 
populations. Users can access the server via https://db.cngb. 
org/ imputation/ . 

Results 

Data quality 

After sample-level quality control, the haplotype reference 
panel included 9964 individuals, where 9914 were from the 
CKB cohort and 50 were 1KGP Chinese. The sequencing 
depth, sex distribution, and age distribution are provided in 

Figure 2 a–c. In detail, the mean sequencing depth was 15.41 

(15.41 for CKB samples and 15.78 for 1KGP samples). There 
were 4416 males (44.32%) and 5548 females (55.68%) in the 
panel; while specifically in the CKB and 1KGP cohort, the 
percentages of males were 44.29 and 50.00%, respectively. 
The sex distribution of the CKB individuals was highly con- 
sistent with that in the entire CKB cohort (i.e. male: 41%, 
female: 59%). We also provide the number of samples re- 
cruited from each sampling site in Figure 2 d. Specifically, Hei- 
longjiang, Henan and Guangxi were the top three provinces 
with the largest recruitments. The other provinces had rela- 
tively similar sample sizes. The sex and age distributions of 
samples in each sampling site are provided in Figure 2 e. 

We provided a comprehensive comparison in terms of sam- 
ple size, averaged sequencing depth, number of variants and 

ancestries between the CKB reference panel and other four 
panels (Table 1 ). In detail, the TOPMed is the largest one with 

sample size 97 256, followed by the ChinaMAP and CKB with 

∼10 000; the extended 1KGP and NyuWa included ∼3000 

individuals. The sequencing depth is either medium coverage 
(10–30 ×) or high coverage ( > 30 ×). The TOPMed panel has 
308.11 million variants, including 286.07 million SNPs and 

22.04 million INDELs. The CKB panel had 129.74 million 

variants, including 113.73 million SNPs and 16.01 INDELs. 
The ChinaMAP, extended 1KGP, and NyuWa performed vari- 
ant filtering from database to reference panel. Specifically, the 
ChinaMAP panel involved SNPs only (59.01 million). The 
extended 1KGP panel included 70.77 million variants, while 
SNPs counted 87.21%. The NyuWa panel had 19 million 

variants. By contrast, the CKB reference panel had relatively 
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Figure 2. The sample information in the CKB reference panel. ( A ) The sequencing depth distribution of 50 1KGP samples (red) and 9914 CKB samples 
(blue). The mean sequencing depth of all 9964 samples was 15.41 ×. ( B ) The sex distribution of 50 1KGP samples (red) and 9914 CKB samples (blue). ( C ) 
The age distribution of 9914 CKB samples. ( D ) The China map colored for 10 sampling sites with number of samples. The total number of samples from 

all sampling sites was 9914. ( E ) The sex and age distributions of samples in each sampling site. 

large sample sizes and detected variants compared with other 
panels. 

In addition, we calculated three quality indicators for SNPs: 
the heterozygous:homozygous (het:hom) ratio, the transi- 
tion:transversion (Ti:Tv) ratio and the non-reference genotype 
concordance rate (NRC). The het:hom ratio is highly depen- 
dent on ancestry and the median value for Asians is ∼1.4 ( 42 ). 
The Ti:Tv ratio reflected the quality of SNP calling and the ex- 

pected ratio would be close to 2.0 for human WGS data ( 27 ). 
For the CKB reference panel, we obtained a het:hom ratio of 
1.31 and a Ti:Tv ratio of 1.97, indicating the high quality of 
genotypic data in the constructed panel. The NRC is genotype- 
aware recall (also known as sensitivity = TP / (TP + FN)). 
We used the genotype data of 50 1KGP samples with high- 
depth sequencing as actual status and their SNP calls in 

the CKB panel as the predicted data. The NRC for these 
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Table 1. The information of CKB and other reference panels 

Reference panel Sample size 
Sequencing 

depth Variants SNP INDEL Ancestries 

CKB 9964 15.41 × 129 743 542 113 731 044 16 012 498 Chinese 
ChinaMAP 10 155 40.8 × 590 10 860 59 010 860 0 Chinese 
Extended 1KGP 3202 34 × 707 68 225 61 715 567 9 052 658 Multiple ancestries 
TOPMed 97 256 > 30 × 308 107 085 286 068 980 22 038 105 Multiple ancestries 
NyuWa 2902 26.2 × 19 256 267 - - Chinese 

50 samples were calculated before and after genotype phasing 
implemented by Beagle v.5.2 ( 41 ). The average NRC increased 

from 0.9811 to 0.9927 and the improvement is more signifi- 
cant for samples with lower sequencing depth (Supplementary 
Figure S1a). 

The PCA of individuals’ genotype data in the CKB reference 
panel is provided in Supplementary Figure S1b. The first PC 

represents a latitudinal gradient, from north to south China. 
As expected, individuals in the CKB reference panel were sam- 
pled from 10 different regions. 

Novel variants and variant annotation 

We defined novel variants that were not assigned a unique 
variant accession identifier (RS number) in dbSNP (Single Nu- 
cleotide Polymorphism Database, build 154) ( 43 ). Thereby, 
the number of novel SNPs and INDELs are 50.16 million 

(44.1%) and 5.42 million (33.8%), respectively (Supplemen- 
tary Figure S2a and b). Note that, a site with different mu- 
tation variety compared to that in dbSNP (e.g. in panel: 
REF:ALT is A:-, while in dbSNP REF:ALT is CA:C) was also 

considered as a novel variant, which partially explained the 
relatively high proportion of novel sites ( 44 ,45 ). As expected, 
most novel SNPs (99.99%) and INDELs (99.15%) were rare 
variants (MAF < 0.5%). 

Based on the results of VEP annotation analysis, 55% were 
intronic variants and 26% variants located in the intergenic 
region. The subsequent categories were non-coding variants 
(15%), upstream / downstream transcript variants (12%), 
regulatory variants (4%), variants in mRNA untranslated 

regions (1%), functional variants (0.8%), transcription 

factor binding sites (0.3%) and splice-site variants (0.1%) 
(Supplementary Figure S2c). Among the functional variants, 
the most abundant class is missense mutation. Based on 

the ClinVar annotation results, there were 1604, 411, 516, 
83, 12 and nine pathogenic variants for AC = 1, AC = 2, 
AF ⇐ 0.1, AF ⇐ 1, AF ⇐ 5 and AF > 5%, respectively (Supple- 
mentary Figure S2d). Specifically, there were nine common 

pathogenic variants (i.e. alternate allele AF > 5%), includ- 
ing seven single nucleotide variation (SNV), one insertion 

(INS) and one deletion (DEL) (Table S2). The seven SNVs 
included rs7417106 (A > G, AF = 0.9468, gnomAD.EAS 
AF = 0.9429), rs5082 (G > A, AF = 0.9229, gnomAD.EAS 
AF = 0.9049), rs2280789 (A > G, AF = 0.3531, gno- 
mAD.EAS AF = 0.3285), rs2280788 (G > C, AF = 0.1182, 
gnomAD.EAS AF = 0.1117), rs3754413 (C > T, AF = 0.0737, 
gnomAD.EAS AF = 0.0731), rs72474224 (C > T, 
AF = 0.0522, gnomAD.EAS AF = 0.0854) and rs77592601 

(C > T, AF = 0.0510, gnomAD.EAS AF = 0.0479). In cor- 
respondence to these SNVs, the ClinVar annotated diseases 
included renal tubular epithelial cell apoptosis, familial hyper- 
cholesterolemia, human immunodeficiency virus type 1, rare 
genetic deafness, myeloproliferative neoplasm and premature 

rupture of membranes. The INS and DEL corresponded to 

hepatocellular carcinoma. The SIFT and PolyPhen algorithms 
provided consistent prediction of deleterious variants, that 
was a large fraction (96%) were very rare variants (AC ⇐ 2) 
(Supplementary Figure S2e). Over 72% variants can be 
predicted as deleterious by both algorithms (Supplementary 
Figure S2f). For the low-frequency and common variants 
(MAF > 0.005), 23 (0.3%) of them were annotated as 
deleterious. In particular, seven variants were predicted as 
deleterious mutations by both SIFT and PolyPhen algo- 
rithms, seven variants were uniquely annotated by SIFT and 

nine were uniquely annotated by PolyPhen (Supplementary 
Table S3). 

Imputation performance evaluation 

We compared the imputation performance of the CKB ref- 
erence panel with that of the extended 1KGP ( 6 ), TOPMed 

( 46 ), ChinaMAP ( 14 ) and NyuWa ( 47 ) from the perspective 
of number of imputed variants and imputation accuracy. We 
used 50 CKB and 50 1KGP microarray datasets as input sam- 
ples to be imputed. The corresponding high-coverage WGS 
data were used as ground truth datasets. In imputation of the 
CKB array data, the CKB reference panel provided the high- 
est number of medium-quality imputed variants (10.86 mil- 
lion), followed by the extended 1KGP (10.01 million), NyuWa 
(9.23 million), TOPMed (8.80 million) and ChinaMAP (7.98 

million) reference panels. When focusing on only high-quality 
imputed variants, we observed that the ChinaMAP reference 
panel had the greatest percentage of high-quality variants 
(86.23%), followed by CKB (84.63%), TOPMed (80.22%), 
extended 1KGP (78.50%) and NyuWa (77.32%) (Figure 3 a, 
Table 2 ). We note that the reason why the ChinaMAP pro- 
vides the smallest number of medium-quality variants is that 
it automatically filters out almost half of low-quality variants 
in the actually used panel. 

We evaluated the imputation accuracy by using three mea- 
surements: Pearson correlation coefficient ( R 

2 ), precision and 

sensitivity. The mean R 

2 of the compared reference panels 
were 0.964 (ChinaMAP), 0.961 (CKB), 0.946 (TOPMed), 
0.943 (NyuWa) and 0.926 (extended 1KGP) (Figure 3 b). 
For the ratios of true positive (TP), false positive (FP) and 

false negative (FN) variants, the ChinaMAP reached the high- 
est ratio of TP variants (94.62%), subsequently followed by 
CKB (93.71%), then followed by TOPMed (92.21%), NyuWa 
(92.18%) and extended 1KGP (90.09%). Meanwhile, the Chi- 
naMAP obtained the lowest ratios of FP (1.71%) and FN 

(3.68%) variants, and for the CKB panel, the two ratios 
were 1.93 and 4.35%, respectively. These ratios in TOPMed 

(FP: 2.35 and FN: 5.43%) and NyuWa (FP: 2.57% and FN: 
5.28%) were slightly higher than those in the CKB panel. The 
extended 1KGP reference panel had the highest ratio of FP 

(3.08%) and FN (6.85%) variants (Figure 3 c). Consequently, 
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Figure 3. The performance for imputing 50 CKB microarray data. ( A ) The numbers of high- and medium-quality imputed variants under different AF 
(allele frequency) by using different reference panels. ( B ) The histogram of imputed variants and Pearson correlation coefficients for different panels. ( C ) 
T he bo xplots of the ratios of true positiv e (TP), f alse negativ e (FN) and f alse positiv e (FP) v ariants. ( D ) T he imputation precision of reference panels. ( E ) 
The sensitivity of the reference panels. 
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Table 2. The high-quality and medium-quality imputed variants for imputing 50 microarray samples 

Reference panels Type AF ≤ 1% 1% < AF ≤ 5% AF > 5% ALL 

CKB medium-quality (M) 0 .71 0 .69 0 .27 1 .67 
high-quality (M) 1 .06 2 .10 6 .04 9 .19 
high-quality rate 0 .6000 0 .7519 0 .9570 0 .8463 

ChinaMAP medium-quality (M) 0 .44 0 .40 0 .25 1 .10 
high-quality (M) 0 .73 1 .67 4 .49 6 .88 
high-quality rate 0 .6205 0 .8052 0 .9468 0 .8623 

1KGP medium-quality (M) 0 .63 1 .01 0 .51 2 .15 
high-quality (M) 0 .38 1 .53 5 .95 7 .86 
high-quality rate 0 .3730 0 .6021 0 .9217 0 .7850 

TOPMed medium-quality (M) 0 .69 0 .60 0 .45 1 .74 
high-quality (M) 0 .66 1 .58 4 .83 7 .06 
high-quality rate 0 .4867 0 .7234 0 .9154 0 .8022 

NyuWa medium-quality (M) 0 .45 0 .88 0 .76 2 .09 
high-quality (M) 0 .74 1 .18 5 .22 7 .14 
high-quality rate 0 .6202 0 .5741 0 .8723 0 .7732 

Notes: (M) represents million. 

the ChinaMAP attained the highest precision of 98.23%, 
followed by CKB (97.98%), TOPMed (97.52%), NyuWa 
(97.29%) and extended 1KGP (96.70%). For sensitivity, the 
ChinaMAP and CKB panels reached 96.25 and 95.57%, 
respectively. Following that, the NyuWa, TOPMed and ex- 
tended 1KGP obtained sensitivities of 94.59, 94.44 and 

92.94%, respectively. The CKB reference panel achieved very 
similar R 

2 , precision and sensitivity compared to the Chi- 
naMAP, displaying an outstanding imputation performance 
(Figure 3 d and e). 

In the imputation of the 1KGP array data, we compared 

the performance of the CKB panel with that of ChinaMAP 

and TOPMed. We excluded the extended 1KGP panel as it 
had overlap samples with the array data, and also excluded 

NyuWa panel as the web server is unstable and not acces- 
sible for submitting jobs currently. The CKB reference panel 
provided the highest number of medium-quality imputed vari- 
ants (9.75 million), followed by TOPMed (7.83 million) and 

ChinaMAP (6.98 million) reference panels. When focusing on 

only high-quality imputed variants, we observed that the Chi- 
naMAP reference panel had the greatest percentage of high- 
quality imputed variants (87.92%), followed by TOPMed 

(84.46%) and CKB (84.11%) (Supplementary Figure S3a). 
For the Pearson correlation coefficient R 

2 , both the CKB and 

ChinaMAP panels achieved 0.979, while the TOPMed had a 
lower R 

2 of 0.965 (Supplementary Figure S3b). 

Imputation of 100 706 microarray data 

For the 100 706 samples with microarray data, we provided 

their sex and age distribution in each sampling site (Figure 4 a). 
Specifically, the provinces of Heilongjiang ( N = 13 131), Hu- 
nan ( N = 12 512), Zhejiang ( N = 12 042), Henan ( N = 11 

421), Sichuan ( N = 10 637) and Gansu ( N = 10 058) had re- 
cruitments > 10 000. The province of Hainan had smallest re- 
cruitment of 5794. The PCA of microarray data before impu- 
tation was provided in Figure 4 b. The PC1 represents the lat- 
itudinal gradient. The imputation-completed whole genome 
data contained 42.61 million medium-quality variants and 

17.45 million high-quality variants. To assess the imputation 

performance of the 100 706 CKB microarray data, we calcu- 
lated the Pearson correlation coefficients ( R 

2 ) of 50 CKB sam- 
ples with imputed genotype and high-depth WGS data. Note 
that we did not have WGS data for the 100 706 samples, thus 

we could not use that as the true set. As an alternative, we 
used a subset of 50 individuals with WGS data as samples 
being evaluated. Consequently, the averaged R 

2 was 0.972. 
Remember that when we simulated only these 50 microarray 
samples, the averaged R 

2 was 0.961 (Supplementary Figure 
S4). This R 

2 difference may be due to the randomity of the 
imputation algorithm in Beagle v.5.2, hidden Markov model 
( 28 ). The high imputation accuracy of 0.972 demonstrated 

that the proposed CKB reference panel is quite capable of im- 
puting extensive data. 

GWAS analysis of simulated data 

With imputed phenotype data under the null hypothe- 
sis that there were no associated SNPs, the GWAS anal- 
ysis did not identify any significant signals and the P - 
values were uniformly distributed (Supplementary Figure 
S5a and b) as expected. When the phenotype was gener- 
ated by involving the effects of SNPs, the GWAS study suc- 
cessfully discovered causal SNPs and those in high link- 
age disequilibrium (LD) (Supplementary Figure S5c). Specif- 
ically, in addition to the five randomly selected causal 
SNPs (rs3003378, rs6764623, rs10905649, rs13254191 and 

rs10915307), high-LD SNPs (e.g. rs12564681, rs11923809, 
rs7092291, rs545854, rs12123277) were also identified. The 
results of GWAS analysis with simulated data under both null 
and alternative hypotheses demonstrated the high-quality of 
genotype data. 

GWAS analysis of real phenotype data 

After filtering in SNPs with MAF > 0.01, HWE P -value > 1E- 
06, and genotype missing rate < 0.01, the numbers of SNPs in 

GWAS analysis before and after imputation were 3 038 178 

and 9 205 896, respectively. The increase in number of SNPs 
was substantial. At the significance threshold of 5E-08, the 
number of significant SNPs increased from 7971 to 16 508 

after imputation (Figure 5 , Supplementary Table S4). The 
numbers of identified significant loci for original and after- 
imputed data were 119 and 147, respectively. The shared 119 

loci included the well-known height-associated genes GDF5 

(cartilage-derived morphogenetic protein 1) ( 48 ), IGF1R 

(insulin-like growth factor 1 receptor) ( 49 ), and ADCY3 (ATP 

pyrophosphate-Lyase 3) ( 50 ). Among the additional 28 loci, 
26 (92.9%) were previously reported to be associated with 
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Figure 4. The sample information and principal component analysis of the microarray data. ( A ) The sex and age distribution of samples in each sampling 
site. The age distributions of males (females) were on the top (bottom) of the x -axis. The total number of samples from all sampling sites was 100 640, 
as 66 samples with missing sampling site information. ( B ) The principal component analysis of 100 706 samples with microarray data before genotype 
imputation. The PC1 represents a latitudinal gradient, from north to south China. Each color represents a province of sampling site. 

Figure 5. The GWAS results of height before and after genot ype imput ation. ( A ) The mirrored Manhattan plots of GWAS results based on the microarray 
data after (top) and before (bottom) genotype imputation. Genes in black are a list of shared genes identified before and after imputation. Genes in 
purple are a list of representative genes identified only after imputation. ( B ) The QQ-plot of GWAS results after genotype imputation. ( C ) The QQ-plot of 
GWAS results before genotype imputation. The genomic inflation factors ( λgc ) were 1.287 and 1.343 after and before imputation, respectively. 
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height, for example CHD8 (chromodomain helicase DNA 

binding protein 8) functioned in transcriptional regulation 

and promotion of cell proliferation ( 51 ), ZBTB20 (zinc finger 
protein 288) played a role in glucose homeostasis and post- 
natal growth ( 51 ), and PAMR1 (regeratioin-associated mus- 
cle protease homolog) might played a role in regeneration of 
skeletal muscle ( 51 ). The GWAS results with real phenotype 
indicated the high quality and credibility of the imputed data. 

Discussion 

A population-specific haplotype reference panel is a collec- 
tion of ancestral chromosome sequences that represents the 
genetic diversity of the population. A high-precision reference 
panel is the basis for population genetic analysis and preci- 
sion medicine. China has the largest population in the world 

and possesses vast amounts of genetic resources, but lacks 
a high-quality reference panel, which has hindered the devel- 
opment of genetic studies and their application in human dis- 
eases based on the Chinese population. Fortunately, in the last 
2 years, a few reference panels have been constructed for accu- 
rate genotype imputation in the Chinese population, including 
the ChinaMAP and NyuWa. 

In this work, we developed a high-resolution haplotype- 
resolved reference panel of 10 000 sequenced individuals 
from the CKB cohort and the 1KGP database. Even with 

medium sequencing depth (15.41 ×), the proposed CKB panel 
can compete with the ChinaMAP (40.80 ×) and outperform 

the extended 1KGP, TOPMed and NyuWa in imputation ac- 
curacy measured by Pearson correlation coefficient, preci- 
sion and sensitivity. From the perspective of the number of 
well-imputed variants, the CKB provided the largest num- 
ber of medium-quality variants with an information score be- 
tween 0.4 and 0.8; for high-quality variants with an informa- 
tion score > 0.8, the CKB panel obtained the second largest 
amount among all considered panels. What is more valuable is 
that we completed the genotype imputation for 100 706 CKB 

microarray data based on the constructed panel. The impu- 
tation accuracy reached as high as 0.972 and GWAS analysis 
based on the simulated data and the real phenotype height 
demonstrated the reliability of the extensive imputed data. 
This imputed dataset is the largest whole genome data for Chi- 
nese population to date and will certainly play a fundamental 
role in personalized medicine and drug development. 

However, it must be acknowledged that our study has some 
limitations. First, the sequencing depth is medium ( ∼15 ×). 
Based on our evaluation, compared to high coverage data 
( > 30 ×), medium sequencing data have comparable base qual- 
ity measured by Q20, Q30 and GC content. However, the ge- 
nomic coverage at different sequencing depth has differences, 
especially for higher coverage. In detail, for 1 ×, 4 × and 10 ×, 
the coverage differences are about 0.2, 1.0 and 18%, respec- 
tively, which might have influence on rare and novel variants 
detection. We note that the comparison results were obtained 

from two particular datasets and could not represent a general 
tendency. Second, 9914 out of 9964 (99.50%) subjects in the 
CKB reference panel were stroke cases, even though the results 
of variants detection and association analysis were promising, 
the explicit influence of potential disease haplotype is hard to 

tell and needs further investigation. 
The ultimate goal of imputing genotype data is to increase 

statistical power of genetic association studies for identify- 
ing trait-associated SNPs and to reveal the etiology of com- 

plex diseases. As the hitherto largest cohort of Chinese pop- 
ulation, CKB collected abundant clinical data, including de- 
mographic, anthropometric, biochemical, radiographic traits, 
metabolomic tests and diseases coded by ICD10 (interna- 
tional classification of diseases, v.10). There are > 1500 dis- 
eases, mostly chronic, such as heart attack, stroke, diabetes, 
cancers and so on. As a significant future work, we aim to 

perform GWAS analysis for the vast wealth of phenotypes 
and over 100 000 imputed WGS genotype data. In recent 
years, as a precision medicine tool, the polygenic risk score, 
also known as the polygenic score, has been widely used 

to predict an individual’s genetic risk of disease. The pre- 
dictive accuracy of the polygenic risk score largely relies on 

the sample sizes in discovery samples. To the best of our 
knowledge, with the after-imputed genomic data, it should 

be the largest population genetic study of the Chinese pop- 
ulation and is also comparable to numerous international ge- 
nomics research projects, for example, the UK Biobank study 
( https:// www.ukbiobank.ac.uk/ ), the All of Us research pro- 
gram ( https:// allofus.nih.gov/ ) and the biobank Japan project 
( https:// biobankjp.org/ en/ ). 

Most of the reference panels are now packaged into online 
imputation servers, such as the Michigan imputation server 
( 40 ), TOPMed imputation server ( 40 ), ChinaMAP imputa- 
tion server, NyuWa server and our developed CKB imputation 

server. These imputation servers all provide free genotype im- 
putation service by uploading to-be-imputed files and select- 
ing reference panel, population and imputation software. All 
the imputation results can be downloaded directly by click- 
ing on filenames. Even though the online server provides a 
convenient way to impute genotype data, it typically cannot 
handle large-sized files, which causes difficulties in imputing 
large-sample data. When imputing large-scale datasets, the 
individual-level reference panels are needed for offline imputa- 
tion. Since the completion of the first human genome project in 

2003 ( https:// www.genome.gov/ human- genome- project ), the 
only database that is fully publicly available is the 1000 

Genomes Database. Sharing genomic data is critical for re- 
search efficiency, translating research results into clinical ap- 
plications and ultimately improving public health. Hence, we 
appeal for the sharing of genomic and health-related data with 

controlled management. 

Data availability 

The CKB reference panel and the after-imputed > 100 000 

CKB microarray data have been deposited into CNGB 

Sequence Archive (CNSA) of China National GeneBank 

DataBase (CNGBdb) with accession number CNP0003405. 
All genotype data are shared with controlled management. 

Supplementary data 

Supplementary Data are available at NAR Online. 

A c kno wledg ements 

The most important acknowledgement is to the participants 
in the study and the members of the survey teams in each of 
the 10 regional centers, as well as to the project development 
and management teams based at Beijing, Oxford and the 10 

regional centers. 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/51/21/11770/7327062 by guest on 01 M

arch 2024

https://www.ukbiobank.ac.uk/
https://allofus.nih.gov/
https://biobankjp.org/en/
https://www.genome.gov/human-genome-project
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad779#supplementary-data


Nucleic Acids Research , 2023, Vol. 51, No. 21 11781 

Author contribution : L.L., X.J ., J .L. and H.Z. conceived 

the study, designed the research program and managed the 
project. C.Y ., Y .G., D.S., Z.Y ., L.D., F .R. and P .Q. finished the 
laboratory processing and data acquisition. C.Y ., X.L., Y .T., 
Y.G., D.S., P.Q. and Y.Z. preprocessed the data, finished the 
quality control and constructed the haplotype reference panel. 
Y.T., X.L., L.L., P.P., J .Z., R.G. and X.J . finished the evalua- 
tion of the haplotype reference panel. R.W., I.M., H.D., L.Y., 
Y.C. and Z.C. provided useful advice on constructing and 

evaluating the reference panel. T.Y ., F .Y ., F .C. and X.W . built 
the online imputation server . X.L., Y.T . and H.Z. drafted the 
manuscript. C.Y ., X.L., Y .T., L.L., Y .Z., H.Z. and X.J. mainly 
organized the revised version and performed data analysis. All 
authors participated in revising the manuscript. 

Funding 

This work was supported by grants National Natural Sci- 
ence Foundation of China (32000398, 82192901, 82192904, 
82192900), the National Key R&D Program of China 
(2016YFC0900500), the China National GeneBank, Guang- 
dong Provincial Key Laboratory of Genome Read and Write 
(2017B030301011), Guangdong Provincial Academician 

Workstation of BGI Synthetic Genomics (2017B090904014), 
open project of BGI-Shenzhen, Shenzhen 518000 China 
(BGIRSZ20200008) and the Innovation Platform for Aca- 
demicians of Hainan Province (YSPTZX202118). The CKB 

baseline survey and the first re-survey were supported 

by a grant from the Kadoorie Charitable Foundation in 

Hong Kong. The long-term follow-up is supported by 
grants from the UK Wellcome Trust (212946 / Z / 18 / Z, 
202922 / Z / 16 / Z, 104085 / Z / 14 / Z, 088158 / Z / 09 / Z), Na- 
tional Natural Science Foundation of China (81390540, 
91846303, 81941018) and Chinese Ministry of Science and 

Technology (2011BAI09B01). The funders had no role in the 
study design, data collection, data analysis and interpretation, 
writing of the report or the decision to submit the article for 
publication. 

Conflict of interest statement 

None declared. 

References 

1. Dugger, S.A. , Platt, A. and Goldstein, D.B. (2018) Drug 
development in the era of precision medicine. Nat. Rev. Drug 
Discovery , 17 , 183–196.

2. Gough, A. , Soto-Gutierrez, A. , Vernetti, L. , Ebrahimkhani, M.R. , 
Stern, A.M. and Taylor, D. (2021) Human biomimetic liver 
microphysiology systems in drug development and precision 
medicine. Nat. Rev. Gastroenterol. Hepatol., 18 , 252–268.

3. International HapMap Consortium (2005) A haplotype map of 
the human genome. Nature , 437 , 1299.

4. International HapMap Consortium (2007) A second generation 
human haplotype map of over 3.1 million SNPs. Nature , 449 , 
851.

5. Genomes Project Consortium (2015) A global reference for 
human genetic variation. Nature , 526 , 68.

6. Byrska-Bishop, M. , Evani, U.S. , Zhao, X. , Basile, A.O. , Abel, H.J. , 
Regier, A.A. , Corvelo, A. , Clarke, W.E. , Musunuri, R. and 
Nagulapalli,K. (2022) High-coverage whole-genome sequencing 
of the expanded 1000 Genomes Project cohort including 602 
trios. Cell , 185 , 3426–3440.

7. McCarthy, S. , Das, S. , Kretzschmar, W. , Delaneau, O. , Wood, A.R. , 
Teumer, A. , Kang, H.M. , Fuchsberger, C. , Danecek, P. and Sharp, K. 
(2016) A reference panel of 64,976 haplotypes for genotype 
imputation. Nat. Genet., 48 , 1279.

8. Taliun, D. , Harris, D.N. , Kessler, M.D. , Carlson, J. , Szpiech, Z.A. , 
Torres, R. , Taliun, S.A.G. , Corvelo, A. , Gogarten, S.M. and 
Kang,H.M. (2021) Sequencing of 53,831 diverse genomes from 

the NHLBI TOPMed Program. Nature , 590 , 290–299.
9. Francioli, L.C. , Menelaou, A. , Pulit, S.L. , Van Dijk, F. , Palamara, P .F ., 

Elbers, C.C. , Neerincx, P.B. , Ye, K. , Guryev, V. and Kloosterman, W.P. 
(2014) Whole-genome sequence variation, population structure 
and demographic history of the Dutch population. Nat. Genet., 
46 , 818–825.

10. Maretty, L. , Jensen, J.M. , Petersen, B. , Sibbesen, J.A. , Liu, S. , 
V illesen, P. , Skov, L. , Belling, K. , Theil Have, C. and Izarzugaza, J.M. 
(2017) Sequencing and de novo assembly of 150 genomes from 

Denmark as a population reference. Nature , 548 , 87–91.
11. Gudbjartsson, D.F. , Helgason, H. , Gudjonsson, S.A. , Zink, F. , 

Oddson, A. , Gylfason, A. , Besenbacher, S. , Magnusson, G. , 
Halldorsson, B.V. and Hjartarson, E. (2015) Large-scale 
whole-genome sequencing of the Icelandic population. Nat. 
Genet., 47 , 435–444.

12. Wu, D. , Dou, J. , Chai, X. , Bellis, C. , Wilm, A. , Shih, C.C. , 
Soon,W .W .J., Bertin,N., Lin,C.B. and Khor,C.C. (2019) 
Large-scale whole-genome sequencing of three diverse Asian 
populations in Singapore. Cell , 179 , 736–749.

13. Cao, Y. , Li, L. , Xu, M. , Feng, Z. , Sun, X. , Lu, J. , Xu, Y. , Du, P. , Wang, T. 
and Hu,R. (2020) The ChinaMAP analytics of deep whole 
genome sequences in 10,588 individuals. Cell Res. , 30 , 717–731. 

14. Li, L. , Huang, P. , Sun, X. , Wang, S. , Xu, M. , Liu, S. , Feng, Z. , 
Zhang, Q. , Wang, X. and Zheng, X. (2021) The ChinaMAP 
reference panel for the accurate genotype imputation in Chinese 
populations. Cell Res., 31 , 1308–1310.

15. Zhang, P. , Luo, H. , Li, Y. , Wang, Y. , Wang, J. , Zheng, Y. , Niu, Y. , Shi, Y. , 
Zhou, H. and Song, T. (2021) NyuWa Genome resource: a deep 
whole-genome sequencing-based variation profile and reference 
panel for the Chinese population. Cell Rep. , 37 , 110017. 

16. Chen, Z. , Lee, L. , Chen, J. , Collins, R. , Wu, F. , Guo, Y. , Linksted, P. and 
Peto,R. (2005) Cohort profile: the Kadoorie study of chronic 
disease in China (KSCDC). Int. J. Epidemiol., 34 , 1243–1249.

17. Chen, Z. , Peto, R. , Zhou, M. , Iona, A. , Smith, M. , Yang, L. , Guo, Y. , 
Chen, Y. , Bian, Z. and Lancaster, G. (2015) Contrasting male and 
female trends in tobacco-attributed mortality in China: evidence 
from successive nationwide prospective cohort studies. Lancet 
North Am. Ed., 386 , 1447–1456.

18. Bennett, D.A. , Du, H. , Clarke, R. , Guo, Y. , Yang, L. , Bian, Z. , Chen, Y. , 
Millwood, I. , Yu, C. and He, P. (2017) Association of physical 
activity with risk of major cardiovascular diseases in Chinese men 
and women. JAMA Cardiol. , 2 , 1349–1358. 

19. Du, H. , Li, L. , Bennett, D. , Guo, Y. , Key, T.J. , Bian, Z. , Sherliker, P. , 
Gao, H. , Chen, Y. and Yang, L. (2016) Fresh fruit consumption and 
major cardiovascular disease in China. N. Engl. J. Med., 374 , 
1332–1343.

20. Qin, C. , Lv, J. , Guo, Y. , Bian, Z. , Si, J. , Yang, L. , Chen, Y. , Zhou, Y. , 
Zhang, H. and Liu, J. (2018) Associations of egg consumption with 
cardiovascular disease in a cohort study of 0.5 million Chinese 
adults. Heart , 104 , 1756–1763.

21. Bragg, F. , Holmes, M.V. , Iona, A. , Guo, Y. , Du, H. , Chen, Y. , Bian, Z. , 
Yang, L. , Herrington, W. and Bennett, D. (2017) Association 
between diabetes and cause-specific mortality in rural and urban 
areas of China. JAMA , 317 , 280–289.

22. Yu, C. , Tang, H. , Guo, Y. , Bian, Z. , Yang, L. , Chen, Y. , Tang, A. , 
Zhou, X. , Yang, X. and Chen, J. (2018) Hot tea consumption and 
its interactions with alcohol and tobacco use on the risk for 
esophageal cancer: a population-based cohort study. Ann. Intern. 
Med., 168 , 489–497.

23. Walters, R.G. , Millwood, I.Y. , Lin, K. , Schmidt Valle, D. , 
McDonnell, P. , Hacker, A. , Avery, D. , Edris, A. , Fry, H. , Cai, N. , et al. 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/51/21/11770/7327062 by guest on 01 M

arch 2024



11782 Nucleic Acids Research , 2023, Vol. 51, No. 21 

(2023) Genotyping and population characteristics of the China 
Kadoorie Biobank. Cell Genom. , 3 , 100361. 

24. Chen, Y. , Chen, Y. , Shi, C. , Huang, Z. , Zhang, Y. , Li, S. , Li, Y. , Ye, J. , 
Yu, C. and Li, Z. (2018) SOAPnuke: a MapReduce 
acceleration-supported software for integrated quality control 
and preprocessing of high-throughput sequencing data. 
Gigascience , 7 , gix120.

25. Van der Auwera, G.A. , Carneiro, M.O. , Hartl, C. , Poplin, R. , Del 
Angel, G. , Levy-Moonshine, A. , Jordan, T. , Shakir, K. , Roazen, D. , 
Thibault, J. , et al. (2013) From FastQ data to high confidence 
variant calls: the Genome Analysis Toolkit best practices pipeline. 
Curr. Protoc. Bioinformatics , 43 , 11.10.1–11.10.33.

26. Jun, G. , Flickinger, M. , Hetrick, K.N. , Romm, J.M. , Doheny, K.F. , 
Abecasis, G.R. , Boehnke, M. and Kang, H.M. (2012) Detecting and 
estimating contamination of human DNA samples in sequencing 
and array-based genotype data. Am. Hum. Genet., 91 , 839–848.

27. DePristo, M.A. , Banks, E. , Poplin, R. , Garimella, K.V. , Maguire, J.R. , 
Hartl, C. , Philippakis, A.A. , Del Angel, G. , Rivas, M.A. and 
Hanna,M. (2011) A framework for variation discovery and 
genotyping using next-generation DNA sequencing data. Nat. 
Genet., 43 , 491–498.

28. Browning, B.L. , T ian, X. , Zhou, Y. and Browning, S.R. (2021) Fast 
two-stage phasing of large-scale sequence data. Am. Hum. Genet., 
108 , 1880–1890.

29. Manichaikul, A. , Mychaleckyj, J.C. , Rich, S.S. , Daly, K. , Sale, M. and 
Chen,W.-M. (2010) Robust relationship inference in genome-wide 
association studies. Bioinformatics , 26 , 2867–2873.

30. McLaren, W. , Gil, L. , Hunt, S.E. , Riat, H.S. , Ritchie, G.R. , 
Thormann, A. , Flicek, P. and Cunningham, F. (2016) The ensembl 
variant effect predictor. Genome Biol. , 17 , 122. 

31. Ng, P.C. and Henikoff, S. (2003) SIFT: predicting amino acid 
changes that affect protein function. Nucleic Acids. Res., 31 , 
3812–3814.

32. Adzhubei, I.A. , Schmidt, S. , Peshkin, L. , Ramensky, V.E. , 
Gerasimova, A. , Bork, P. , Kondrashov, A.S. and Sunyaev, S.R. 
(2010) A method and server for predicting damaging missense 
mutations. Nat. Methods , 7 , 248–249.

33. Landrum, M.J. , Lee, J.M. , Riley, G.R. , Jang, W. , Rubinstein, W.S. , 
Church, D.M. and Maglott, D.R. (2014) ClinVar: public archive of 
relationships among sequence variation and human phenotype. 
Nucleic Acids Res., 42 , D980–D985.

34. Landrum, M.J. , Lee, J.M. , Benson, M. , Brown, G. , Chao, C. , 
Chitipiralla, S. , Gu, B. , Hart, J. , Hoffman, D. and Hoover, J. (2016) 
ClinVar: public archive of interpretations of clinically relevant 
variants. Nucleic Acids Res. , 44 , D862–D868. 

35. Novembre, J. and Stephens, M. (2008) Interpreting principal 
component analyses of spatial population genetic variation. Nat. 
Genet., 40 , 646–649.

36. Patterson, N. , Price, A.L. and Reich, D. (2006) Population structure 
and eigenanalysis. PLos Genet. , 2 , e190. 

37. Purcell, S. , Neale, B. , Todd-Brown, K. , Thomas, L. , Ferreira, M.A. , 
Bender, D. , Maller, J. , Sklar, P. , De Bakker, P.I. and Daly, M.J. (2007) 
PLINK: a tool set for whole-genome association and 
population-based linkage analyses. Am. Hum. Genet., 81 , 
559–575.

38. Chang, C.C. , Chow, C.C. , Tellier, L.C. , Vattikuti, S. , Purcell, S.M. 
and Lee,J .J . (2015) Second-generation PLINK: rising to the 
challenge of larger and richer datasets. Gigascience , 4 , 7.

39. Fuchsberger, C. , Abecasis, G.R. and Hinds, D.A. (2015) minimac2: 
faster genotype imputation. Bioinformatics , 31 , 782–784.

40. Das, S. , Forer, L. , Schönherr, S. , Sidore, C. , Locke, A.E. , Kwong, A. , 
Vrieze, S.I. , Chew, E.Y. , Levy, S. and McGue, M. (2016) 
Next-generation genotype imputation service and methods. Nat. 
Genet., 48 , 1284–1287.

41. Browning, B.L. , Zhou, Y. and Browning, S.R. (2018) A one-penny 
imputed genome from next-generation reference panels. Am. 
Hum. Genet., 103 , 338–348.

42. Wang, J. , Raskin, L. , Samuels, D.C. , Shyr, Y. and Guo, Y. (2015) 
Genome measures used for quality control are dependent on gene 
function and ancestry. Bioinformatics , 31 , 318–323.

43. Sherry, S.T. , Ward, M. and Sirotkin, K. (1999) dbSNP—database 
for single nucleotide polymorphisms and other classes of minor 
genetic variation. Genome Res. , 9 , 677–679. 

44. McCarthy, D.J. , Humburg, P. , Kanapin, A. , Rivas, M.A. , Gaulton, K. , 
Cazier, J.-B. and Donnelly, P. (2014) Choice of transcripts and 
software has a large effect on variant annotation. Genome 
Medicine , 6 , 26.

45. Tan, A. , Abecasis, G.R. and Kang, H.M. (2015) Unified 
representation of genetic variants. Bioinformatics , 31 , 2202–2204.

46. Kowalski, M. , Qian, H. , Hou, Z. , Rosen, J. , Tapia, A. , Shan, Y. , 
Jain, D. , Argos, M. , Arnett, D. and Avery, C. (2019) NHLBI 
Trans-Omics for Precision Medicine (TOPMed) Consortium; 
TOPMed Hematology & Hemostasis Working Group: use of 
> 100,000 NHLBI Trans-Omics for Precision Medicine 
(TOPMed) Consortium whole genome sequences improves 
imputation quality and detection of rare variant associations in 
admixed African and Hispanic / Latino populations. PLoS Genet., 
15 , e1008500.

47. Zhang, P. , Luo, H. , Li, Y. , Wang, Y. , Wang, J. , Zheng, Y. , Niu, Y. , Shi, Y. , 
Zhou, H. , Song, T. , et al. (2021) NyuWa Genome resource: a deep 
whole-genome sequencing-based variation profile and reference 
panel for the Chinese population. Cell Rep. , 37 , 110017. 

48. Sanna, S. , Jackson, A.U. , Nagaraja, R. , Willer, C.J. , Chen, W.M. , 
Bonnycastle, L.L. , Shen, H. , T impson, N. , Lettre, G. , Usala, G. , et al. 
(2008) Common variants in the GDF5-UQCC region are 
associated with variation in human height. Nat. Genet., 40 , 
198–203.

49. Fontenele, E.G. , Moraes, M.E. , d’Alva, C.B. , Pinheiro, D.P. , 
Landim, S.A. , Barros, F.A. , Trarbach, E.B. , Mendonca, B.B. and 
Jorge,A.A. (2015) Association study of GWAS-derived loci with 
height in Brazilian children: importance of MAP3K3, MMP24 
and IGF1R polymorphisms for height variation. Horm Res 
Paediatr , 84 , 248–253.

50. Stergiakouli, E. , Gaillard, R. , Tavaré, J.M. , Balthasar, N. , Loos, R.J. , 
Taal, H.R. , Evans, D.M. , Rivadeneira, F. , St Pourcain, B. , 
Uitterlinden, A.G. , et al. (2014) Genome-wide association study of 
height-adjusted BMI in childhood identifies functional variant in 
ADCY3. Obesity (Silver Spring) , 22 , 2252–2259.

51. Yengo, L. , Vedantam, S. , Marouli, E. , Sidorenko, J. , Bartell, E. , 
Sakaue, S. , Graff, M. , Eliasen, A.U. , Jiang, Y. , Raghavan, S. , et al. 
(2022) A saturated map of common genetic variants associated 
with human height. Nature , 610 , 704–712.

Received: January 19, 2023. Revised: August 2, 2023. Editorial Decision: August 30, 2023. Accepted: September 12, 2023 
© The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http: // creativecommons.org / licenses / by / 4.0 / ), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/51/21/11770/7327062 by guest on 01 M

arch 2024


	Graphical abstract
	Introduction
	Materials and methods
	Results
	Discussion
	Data availability
	Supplementary data
	Acknowledgements
	Funding
	Conflict of interest statement
	References

