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ABSTRACT
Background  Metabolic profiling (the extensive 
measurement of circulating metabolites across multiple 
biological pathways) is increasingly employed in clinical 
care. However, there is little evidence on the benefit 
of metabolic profiling as compared with established 
atherosclerotic cardiovascular disease (CVD) risk scores.
Methods  UK Biobank is a prospective study of 
0.5 million participants, aged 40–69 at recruitment. 
Analyses were restricted to 74 780 participants with 
metabolic profiling (measured using nuclear magnetic 
resonance) and without CVD at baseline. Cox regression 
was used to compare model performance before and 
after addition of metabolites to QRISK3 (an established 
CVD risk score used in primary care in England); analyses 
derived three models, with metabolites selected by 
association significance or by employing two different 
machine learning approaches.
Results  We identified 5097 incident CVD events within 
the 10-year follow-up. Harrell’s C-index of QRISK3 was 
0.750 (95% CI 0.739 to 0.763) for women and 0.706 
(95% CI 0.696 to 0.716) for men. Adding selected 
metabolites did not significantly improve measures of 
discrimination in women (Harrell’s C-index of three 
models are 0.759 (0.747 to 0.772), 0.759 (0.746 to 
0.770) and 0.759 (0.748 to 0.771), respectively) or men 
(0.710 (0.701 to 0.720), 0.710 (0.700 to 0.719) and 
0.710 (0.701 to 0.719), respectively), and neither did it 
improve reclassification or calibration.
Conclusion  This large-scale study applied both 
conventional and machine learning approaches to 
assess the potential benefit of metabolic profiling to 
well-established CVD risk scores. However, there was 
no evidence that metabolic profiling improved CVD risk 
prediction in this population.

INTRODUCTION
Early identification of individuals at risk is 
important for primary prevention of major athero-
sclerotic cardiovascular disease (CVD). Several 
risk assessment algorithms have been developed, 
including the Framingham Risk Score, Systematic 
COronary Risk Evaluation (SCORE) and Pooled 
Cohort Equations.1–3 Among these established risk 
scores, QRISK3 is the most widely used across 
England’s primary health service,4 and National 
Institute for Health and Care Excellence (NICE) are 
currently recommending that atorvastatin 20 mg 
is considered for the primary prevention of CVD 
for people with a QRISK3 score of 10% or more, 
or with a score less than 10% but with a concern 

that risk may be underestimated.5 However, the 
discrimination of QRISK3 varies from 0.70 to 
0.86 in different UK cohorts, and several studies 
suggested that QRISK3 may not perform very well 
in older and multimorbid population.6–8 Polygenic 
risk score and lipoprotein(a) have been added to 
QRISK3 but showed modest improvement in the 
risk discrimination.9 10 Therefore, there is still 
considerable interest in finding new biomarkers to 
improve prediction accuracy.

Given the metabolic nature of atherosclerosis, 
circulating metabolic biomarkers are thought to 
have great potential to improve risk stratifica-
tion.11 However, current evidence on the predictive 
value of metabolites has only focused on a limited 
number of biomarkers with significant linear asso-
ciations with CVD, which may not reflect the 
complex pathophysiology of atherosclerosis.12 13 
Nuclear magnetic resonance (NMR) spectroscopy 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Although previous studies have examined the 
associations of metabolic biomarkers with 
incidence and mortality of numerous common 
diseases, including cardiovascular disease 
(CVD), there is little evidence on the benefit of 
metabolic profiling in clinical practice to identify 
those at high risk of CVD.

WHAT THIS STUDY ADDS
	⇒ This study found no evidence of substantive 
improvement in prediction accuracy when 
adding metabolic profiling to a well-established 
CVD risk score (with information of cholesterol, 
blood pressure, body mass index and medical 
history). This was despite the use of machine 
learning methods to account for complex 
interactions of highly correlated metabolites.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ As this prospective study of middle-aged 
adults from the UK general population found 
no evidence that metabolic profiling improved 
CVD risk prediction, it is unlikely that such 
measures would be valued for CVD prediction 
in clinical practice (or as part of national 
screening programmes) in this population, 
although replication in other populations (or 
subgroups, such as young adults or the elderly) 
is warranted.
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is a high-throughput technology used for metabolic profiling of 
numerous metabolites across multiple biological pathways and is 
being used in large-scale prospective studies.14 Therefore, when 
assessing the predictive value, the large number of metabolites 
measured through NMR and their complex inter-relations need 
to be accounted for. Machine learning has been increasingly 
used for development of prediction models, with the strengths 
of incorporating highly correlated features and complex inter-
actions that cannot be captured by traditional statistical models.

In this study, we aimed to evaluate whether adding circulating 
metabolic profiling to a well-established risk score using machine 
learning methods improved the prediction of 10-year CVD risk.

METHODS
Study design and population
UK Biobank is a prospective cohort study of approximately 
500 000 adults in the United Kingdom recruited from 2006 to 
2010.15 16 All participants, aged 40–69 at study entry, completed 
questionnaires and physical measurements and had biological 
samples collected at recruitment. Ethics approval was given by 
the North West Multicentre Research Ethics Committee, and the 
study was conformed to the principles embodied in the Declara-
tion of Helsinki.

Measurement of metabolic profiling
NMR spectroscopy (Nightingale Health, Finland) was used for 
metabolic profiling of the baseline plasma samples of 117 980 
participants (a random subset of the initial cohort).17 To decrease 
the interference from some unstable biomarkers and to avoid 
the overfitting due to large number of lipids-related biomarkers, 
of the metabolites available, the main analyses only included 
39 metabolites all measured with comparable validity to clin-
ical chemistry, as the candidate biomarkers (online supplemental 
table S1).18 In the sensitivity analyses, we expanded the candidate 
metabolites to a larger scope of NMR-derived metabolites that 
available in the UK Biobank (online supplemental table S2).18

Definition of risk scores
In the main analyses, the metabolites were added to QRISK3, an 
established risk score widely used across England’s primary health 
service.4 QRISK includes information on age, ethnicity, depriva-
tion, systolic blood pressure (SBP), body mass index (BMI), total 
cholesterol to high-density lipoprotein (HDL) cholesterol ratio 
(measured by traditional chemistry method), smoking status, 
family history of coronary heart disease and medical history of a 
series of diseases, which were selected based on Bayes informa-
tion criterion. In the sensitivity analyse, QRISK3 was replaced 
by SCORE2, which was another algorithm for risk prediction of 
CVD that widely used in European population, scoring by age, 
smoking status, SBP and total and HDL cholesterol. Detailed 
definitions of QRISK3 and SCORE2 variables and mapping in 
the UK Biobank are provided in online supplemental methods 
and table S3.

Ascertainment of incident CVD
Incident CVD was defined as the first-ever coronary heart 
disease, ischaemic stroke or transient ischaemic attack, identified 
from Hospital Episode Statistics (including diagnostic codes and 
relevant procedures) and the Office for National Statistics cause 
of death data, using codes of the 10th edition of the Interna-
tional Classification of Disease and coronary-related procedures 
(coronary artery bypass surgery or percutaneous transluminal 

angioplasty stent placement) by the OPCS Classification of 
Interventions and Procedures (online supplemental table S4).

Statistical analysis
The analyses were restricted to participants without prior CVD 
and those not taking statins at baseline, and further excluded 
the participants with missing or outlying in QRISK3 variables 
(online supplemental figure S1). Since the participants in the UK 
Biobank are overall healthier (with lower incidence of CVD) 
than the general UK population, QRISK3 score was recalibrated 
by refitting the baseline survival function to the study population 
(online supplemental methods).

The candidate metabolites were selected in three ways: 
(1) adding the metabolites that were significantly associated 
with CVD (independently from QRISK3 score) to QRISK3; 
(2) adding all metabolites to QRISK3 and penalised by elas-
tic-net and (3) adding the novel metabolites selected by Boruta 
SHapley Additive exPlanations (BorutaSHAP) based on Extreme 
gradient boosting algorithm (XGBoost) to QRISK3. Elastic-net 
is a regression method that performs regularisation and variable 
selection simultaneously, with the strength of handling highly 
correlated variables.19 XGBoost is a tree-based machine learning 
method where new models are created that predict the residuals 
or errors of prior models and then added together to make the 
final prediction.20 21 It allows for including higher order interac-
tions and accounting for complex non-linear relationships and 
was chosen as our third model because of its modest computa-
tional cost and outstanding performance of risk prediction in 
recent studies involving a large number of proteins or metabo-
lites.22 23 BorutaSHAP is a wrapper feature selection method to 
explain how much each factor in a model has contributed to the 
prediction, and the combination with Boruta feature selection 
algorithm ensures a faster and more stable feature selection.24 
Detailed explanations of the machine-learning and feature selec-
tion methods are provided in online supplemental methods. The 
hyperparameters were fine tuned using five-fold cross-validation 
(online supplemental table S5). In all three cases, prediction 
performance was assessed using Cox proportional hazards’ 
regression w/o the metabolites. Bootstrapping (500 times) was 
applied to evaluate the optimism of the models.

Harrell’s C-index was used to assess the discriminatory ability 
(how the model separate cases from controls) of each model. 
The improvement in reclassification after adding metabolites was 
evaluated by the integrated discrimination improvement (IDI) 
and net reclassification improvement (NRI). IDI summarises the 
extent that a new model increases risk in events and decreases 
risk in non-events compared with the old model, while NRI 
quantifies the appropriateness of the change in predicted prob-
abilities or categorised risk group when changing from old to 
new model. 10-year probability of event >10% was categorised 
as high risk and set as the cut-off for categorical NRI. The cali-
bration, measuring how close the predicted probability is to the 
observed risk, was assessed with calibration plots at 10 years. 
All analyses followed the suggestions from TRIPOD,25 and all 
models were developed and evaluated separately for men and 
women in Python 3.9.12.

RESULTS
After exclusions, 74 780 participants remained, with mean age of 
55 years at study entry. The overall baseline characteristics of the 
study population were similar to the whole UK Biobank popula-
tion (online supplemental table S6). Among the study population, 
44% were men, 10% were current smokers and 41% reported to 
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have family history of heart disease. After a 10-year follow-up, 
5097 (6.8%) incident CVD events occurred, with about two 
times the rate in men than women (9.4% vs 4.8%). Compared 
with participants who did not have an incident CVD event, those 
with incident CVD were on average older, with higher BMI, SBP 
and higher ratio of total cholesterol to HDL cholesterol, and 
more likely to be men and current moderate/heavy smokers. 
Participants who experienced CVD during follow-up were also 
more likely to have family heart disease history and baseline 
chronic disease history (table 1).

The HR of the recalibrated QRISK3 score was 1.17 (95% CI 
1.15 to 1.18) per one point higher in women and 1.08 (1.07 to 
1.09) in men. Independently from QRISK3 score, 12 metabolites 
(HDL cholesterol, two apolipoprotein biomarkers, six fatty acid 
ratio biomarkers, histidine, albumin and glycoprotein acetyls) in 
women and 5 (very low-density lipoprotein cholesterol, apolipo-
proteinB (ApoB) to ApolipoproteinA-1 (ApoA-1) ratio, omega-3 
fatty acid concentration and its ratio to total fatty acids, albumin 
and glycoprotein acetyls) in men remained significantly associ-
ated with CVD (table 2). In the two machine learning models of 
both sexes, fewer fatty acids were selected, but some amino acids 
and glycolysis-related metabolites were included as predictors. 
Compared with the selection criteria by association significance 
(first model), albumin and glycoprotein acetyls were also selected 
by the two machine learning models for both sexes, while total 
triglycerides in women and glycine and leucine in men were 
newly selected as novel metabolites by the two machine-learning 
models (online supplemental table S7).

Harrell’s C-index of the recalibrated QRISK3 was 0.750 (95% 
CI 0.739 to 0.763) for women and 0.706 (95% CI 0.696 to 
0.716) for men (table 3). Adding metabolites to QRISK, in all 
three models, did not improve the discrimination in women 
(C-index of three models are 0.759 (0.747 to 0.772), 0.759 
(0.746 to 0.770) and 0.759 (0.748 to 0.771), respectively) or 
men (0.710 (0.701 to 0.720), 0.710 (0.700 to 0.719) and 0.710 
(0.701 to 0.719), respectively). The reclassification showed no 
improvement after adding the metabolites, with statistically 
significant relative IDI, but less than 0.5% in all three models 
of both sexes. Although the continuous NRI showed statistically 
significant increase in most models, the categorical NRI (setting 
10-­year event probability ≥10% as high risk), which is a better 
measure of reclassification, showed no improvement in either 
men or women. Calibration plots did not show any significant 
change either (figure 1).

The HRs (per one point higher) of the recalibrated SCORE2 
were 1.12 (1.10 to 1.13) in women and 1.07 (1.06 to 1.07) 
in men (online supplemental table S8). Replacing QRISK3 by 
SCORE2 had limited impact on the selection of novel metabolites 
in all three models, of which XGBoost selected the exactly same 
metabolites as using QRISK3 as the basic score (online supple-
mental table S9). Meanwhile, adding metabolites to SCORE2 
did not significantly improve the overall prediction accuracy, 
although some slight improvements were observed in contin-
uous NRI, which may largely due to the poorer performance of 
SCORE2 in the study population (Harrell’s C-index of SCORE2 
were 0.731 (0.718 to 0.744) in women and 0.689 (0.679 to 
0.699) in men) (online supplemental table S10 and figure S2). 
Similarly, there was no evidence of prediction improvement 
when expanding the scope of the candidate metabolites (online 
supplemental table S11 and figure S3). Among individuals who 
currently identified as low-risk (10-year predicted risk less than 
10%), risk categorisation (measured by categorical NRI) after 
adding metabolites to QRISK3 showed no improvement in 
women and limited improvement (less than 6%) in men.

DISCUSSION
This large-scale prospective study examined the predictive value 
of adding high-throughput metabolic profiling to an estab-
lished risk score among 75 000 participants in UK Biobank. To 
our knowledge, this is the first study to assess the additional 

Table 1  Characteristics of baseline QRISK factors by 10-year incident 
CVD

Incident CVD

AllNo Yes

Number of participants 69 683 5097 74 780

Age, sex and socioeconomic factors

 � Men, % 42.0 59.8 43.3

 � Baseline age, years 55.0 (8.0) 59.6 (7.0) 55.3 (8.0)

 � White, % 94.8 95.7 94.9

 � Townsend Deprivation 
Index*

1.5 (2.9) 1.3 (3.0) 1.4 (3.0)

Anthropometry, blood pressure and lipids by clinical chemistry

 � Body mass index, kg/m2 26.9 (4.5) 27.9 (4.6) 27.0 (4.6)

 � Systolic blood pressure, 
mm Hg

136.2 (17.9) 143.7 (18.1) 136.7 (18.4)

  �  SD between two 
readings,† mm Hg

5.1 (4.0) 5.5 (4.2) 5.2 (4.0)

 � Total cholesterol to HDL-C 
ratio

4.2 (1.1) 4.5 (1.2) 4.2 (1.1)

Smoking intensity, %

 � Ex-smoker 32.4 35.7 32.7

 � Light smoker (<10 per 
day)

4.8 4.9 4.8

 � Moderate smoker (10–19 
per day)

2.9 4.7 3.0

 � Heavy smoker (≥20 per 
day)

2.3 4.6 2.4

Family history of heart 
disease,‡ %

39.5 50.5 40.2

Disease and medication history, %

 � Type 1 diabetes 0.3 0.6 0.3

 � Type 2 diabetes 1.6 3.6 1.7

 � Chronic kidney disease 
(stage 3,4,5)

1.5 2.8 1.6

 � Atrial fibrillation 0.8 2.6 0.9

 � Migraines 4.5 5.2 4.6

 � Rheumatoid arthritis 1.1 2.4 1.2

 � Systemic lupus 
erythematosus

0.1 0.3 0.1

 � Severe mental illness§ 5.0 5.5 5.0

 � Erectile dysfunction 0.2 0.5 0.2

 � Hypertension treatment 11.6 23.0 12.3

 � Atypical antipsychotic 
medication

0.2 0.2 0.2

 � Regular steroid tablets 0.7 1.8 0.8

Sex-adjusted characteristics of QRISK factors at baseline by 10-year incident CVD. Incident 
CVD defined as the first-ever coronary heart disease, ischaemic stroke or transient 
ischaemic attack. Continuous variables are presented as mean (SD) and categorical 
variables are presented as column percentages.
*Higher values indicate higher levels of material deprivation.
†QRISK asks for standard deviation of systolic blood pressure values recorded in the 
5 years before study entry, but UK Biobank only provided two automated or manual 
readings at study entry.
‡QRISK asks for the family history in first-degree relatives aged less than 60 years, but UK 
Biobank only identified family history in first degree relatives in all ages.
§Includes schizophrenia, bipolar disorder and moderate/severe depression.
CVD, cardiovascular disease; HDL-C, high-density lipoproteins cholesterol.
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predictive value of high-throughput circulating metabolites to 
a well-established CVD risk score. The application of machine 
learning approaches allows for highly correlated variables and 
accounts for the complex interactions between metabolites in 
atherosclerosis. However, compared with the standard QRISK3 
score, there was no evidence of substantive improvement in 
prediction of 10-year risk of CVD after adding the metabolic 
biomarkers.

Several previous studies have examined the value of meta-
bolic profiling measured by NMR for the prediction of cardio-
vascular event or subclinical atherosclerosis.12 13 26 Two of 
these studies, both of which used traditional statistical algo-
rithms, found moderate improvement in discrimination or 
reclassification, but neither included BMI as an established 
risk factor in the basic models. One other recent study used 
risk factors, including BMI in the basic model, and observed 

Table 2  Associations of clinical metabolites independent from 
QRISK3 score

Hazard ratio (95% CI)

Women Men

Recalibrated QRISK3 score 1.17 (1.15 to 1.18)* 1.08 (1.07 to 1.09)*

Cholesterols and triglycerides

 � Total cholesterol 0.96 (0.91 to 1.00) 1.01 (0.97 to 1.05)

 � VLDL cholesterol 1.04 (0.99 to 1.08) 1.01 (0.97 to 1.05)

 � LDL cholesterol 0.98 (0.94 to 1.03) 1.01 (0.98 to 1.05)

 � HDL cholesterol 0.89 (0.85 to 0.93)* 0.98 (0.94 to 1.02)

 � Total triglycerides 1.02 (0.98 to 1.07) 0.97 (0.94 to 1.02)

Fatty acids

 � Total fatty acids 1.01 (0.96 to 1.05) 0.98 (0.95 to 1.02)

 � Omega-3 fatty acids 0.96 (0.92 to 1.00) 0.94 (0.91 to 0.97)*

 � Omega-6 fatty acids 0.97 (0.93 to 1.01) 1.00 (0.96 to 1.04)

 � Polyunsaturated fatty acids 0.96 (0.92 to 1.01) 0.98 (0.95 to 1.02)

 � Monounsaturated fatty acids 1.05 (1.00 to 1.09) 0.98 (0.95 to 1.02)

 � Saturated fatty acids 1.01 (0.97 to 1.06) 0.98 (0.95 to 1.02)

 � Docosahexenoic acid 0.95 (0.91 to 0.99) 0.95 (0.92 to 0.98)

 � Linoleic acid 0.96 (0.92 to 1.00) 1.00 (0.96 to 1.03)

 � Omega-3 to total fatty acids 0.95 (0.91 to 0.99) 0.94 (0.90 to 0.97)*

 � Omega-6 to total fatty acids 0.93 (0.89 to 0.97)* 1.03 (0.99 to 1.07)

 � Polyunsaturated to total fatty 
acids

0.92 (0.88 to 0.95)* 1.01 (0.97 to 1.05)

 � Monounsaturated to total fatty 
acids

1.13 (1.08 to 1.18)* 1.00 (0.96 to 1.04)

 � Saturated to total fatty acids 1.02 (0.98 to 1.06) 0.99 (0.96 to 1.03)

 � Docosahexaenoic acid to total 
fatty acids

0.94 (0.89 to 0.98)* 0.96 (0.92 to 0.99)

 � Linoleic acid to total fatty acids 0.92 (0.88 to 0.96)* 1.02 (0.99 to 1.06)

 � Polyunsaturated to 
monounsaturated fatty acids

0.88 (0.84 to 0.92)* 1.00 (0.96 to 1.04)

 � Omega-6 to omega-3 fatty acids 1.02 (0.98 to 1.07) 1.04 (1.01 to 1.08)

Apolipoproteins

 � Apolipoprotein B 1.02 (0.97 to 1.06) 1.02 (0.99 to 1.06)

 � Apolipoprotein A-1 0.91 (0.87 to 0.95)* 0.96 (0.93 to 1.00)

 � Apolipoprotein B to 
apolipoproteinA-1

1.07 (1.02 to 1.12)* 1.06 (1.02 to 1.10)*

Amino acids

 � Alanine 1.02 (0.98 to 1.07) 0.98 (0.94 to 1.01)

 � Glycine 0.95 (0.91 to 0.99) 0.96 (0.92 to 0.99)

 � Histidine 0.91 (0.87 to 0.95)* 0.97 (0.93 to 1.00)

 � Isoleucine 1.02 (0.98 to 1.06) 1.01 (0.98 to 1.05)

 � Leucine 1.00 (0.96 to 1.05) 1.00 (0.97 to 1.04)

 � Valine 0.99 (0.95 to 1.03) 0.98 (0.95 to 1.02)

 � Total branched-chain amino acids 1.00 (0.96 to 1.04) 0.99 (0.96 to 1.03)

 � Phenylalanine 1.05 (1.01 to 1.09) 1.04 (1.01 to 1.08)

 � Tyrosine 1.00 (0.96 to 1.05) 1.01 (0.97 to 1.04)

Glycolysis-related metabolites

 � Glucose 1.02 (0.98 to 1.06) 1.01 (0.98 to 1.04)

 � Lactate 1.03 (0.99 to 1.08) 0.99 (0.95 to 1.02)

Fluid balance

 � Creatinine 1.02 (0.98 to 1.06) 1.01 (0.98 to 1.04)

 � Albumin 0.88 (0.84 to 0.92)* 0.91 (0.88 to 0.94)*

Inflammation

 � Glycoprotein acetyls 1.14 (1.09 to 1.19)* 1.06 (1.02 to 1.10)*

HR per one score higher of concentration. HR of each metabolite was calculated by Cox 
proportional-hazards regression with adjustment of QRISK3 score.
*Associations remained significant (p-value<0.01) by correction of false discovery rate 
using Benjamini-Hochberg method, which is also marked as boldface in the table.
HDL, high-density lipoprotein; LDL, low-density lipoprotein; VLDL, very LDL.

Table 3  Comparing prediction performance of 10-year CVD risk w/o 
metabolites

Prediction performance Women (95% CI*) Men (95% CI)

Recalibrated QRISK3

Harrell’s C-index† 0.750 (0.739 to 0.763) 0.706 (0.696 to 0.716)

Adding metabolites associated with CVD independently from QRISK3 score

C-statistics 0.759 (0.747 to 0.772) 0.710 (0.701 to 0.720)

IDI‡ (%) 0.30 (0.17 to 0.41) 0.20 (0.12 to 0.28)

Continuous NRI§ (%) 12.4 (6.7 to 16.6) 6.8 (2.7 to11.6)

 � Events 6.5 (1.0 to 10.8) 4.0 (0.0 to 8.3)

 � Non-events 5.9 (5.0 to 6.8) 2.8 (1.8 to 3.9)

Categorical NRI (%) 0.3 (−1.8 to 0.9) 0.9 (−0.2 to 2.0)

 � Events 0.4 (−1.2 to 1.5) 0.4 (−0.7 to 1.4)

 � Non-events 0.7 (−0.8 to 0.5) 0.5 (0.3 to 0.8)

Adding metabolites with regularisation (using Elastic-net)

Harrell’s C-index 0.759 (0.746 to 0.770) 0.710 (0.700 to 0.719)

IDI (%) 0.16 (0.03 to 0.26) 0.16 (0.04 to 0.25)

Continuous NRI (%) 4.4 (−0.7 to 9.6) 7.4 (3.3 to 11.0)

 � Events 4.7 (−0.3 to 9.9) 5.2 (1.4 to 8.8)

 � Non-events 0.3 (−1.3 to 0.7) 2.2 (1.2 to 3.3)

Categorical NRI (%) 0.3 (−1.6 to 1.1) 0.7 (−0.8 to 1.8)

 � Events 0.2 (−1.2 to 1.5) 0.3 (−1.1 to 1.5)

 � Non-events 0.4 (−0.5 to 0.3) 0.4 (0.1 to 0.7)

Adding metabolites selected by BorutaSHAP from XGBoost

Harrell’s C-index 0.759 (0.748 to 0.771) 0.710 (0.701 to 0.719)

IDI (%) 0.26 (0.11 to 0.38) 0.13 (0.03 to 0.20)

Continuous NRI (%) 14.7 (9.2 to 19.7) 5.5 (1.7 to 9.5)

 � Events 2.7 (−2.9 to 7.7) 0.1 (−4.0 to 3.4)

 � Non-events 12.0 (11.0 to 12.9) 5.9 (4.9 to 6.9)

Categorical NRI (%) 0.0 (−1.6 to 1.3) 0.7 (−0.5 to 1.8)

 � Events 0.6 (−0.9 to 1.9) 0.3 (−0.9 to 1.2)

 � Non-events 0.6 (−0.7 to 0.5) 0.5 (0.2 to 0.7)

Comparing prediction performance of 10-year CVD risk w/o metabolites. In all models, 
metabolites are added to recalibrated QRISK3 using Cox proportional-hazards regression. 
Hyper-parameters of each model are in appendix.
*Bootstrap percentile CI, bootstrap for 500 times.
†Harrell’s C-index, measuring the probability that a randomly selected subject with 
shorter time-to-event will have a higher predicted probability of event than a randomly 
selected subject with longer time-to-event.
‡Integrated discrimination improvement, summarising the extent a new model increases 
risk in events and decreases risk in non-event compared with the old model.
§Net reclassification improvement, quantifying the appropriateness of the change in 
predicted probabilities or categorised risk group when changing from old to new model; 
categorical NRI is based on a 10% risk threshold.
CVD, cardiovascular disease; NRI, net reclassification improvement.
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Figure 1  Calibration of risk prediction models for 10-year CVD risk. For each model, the observed and predicted CVD event rates are shown for 
each of 10 equally sized groups of absolute predicted risk. Vertical lines represent 95% CIs (bootstrap percentile CI, bootstrap for 500 times). CVD, 
cardiovascular disease.
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very slight C-index improvement of coronary heart disease 
prediction (0.003 (0.001 to 0.004)) and no improvement of 
cerebral stroke prediction (0.001 (−0.003 to 0.005)) when 
adding metabolomics.26 However, the basic model of this study 
still lacked detailed information on several major risk factors, 
such as family history of heart disease. By contrast, QRISK3 
is a score developed from more comprehensive risk factors, 
including BMI, cholesterol level, family history and aspects 
of medical history and mediations. Similarly, when using the 
SCORE2 (a risk score not including BMI and medical history as 
risk factors) as the basic score in our sensitivity, adding metab-
olites showed a slight improvement in continuous NRI due to 
the poorer performance of the original SCORE2; however, the 
overall prediction accuracy that measured by C-index was not 
significantly improved.

Two other cohorts have examined the predictive value 
of metabolites measured by mass spectrometry,27 28 which 
is another type of high-throughput technique for metabolic 
profiling with the capability of detecting thousands of metabo-
lites.29 One study used traditional statistical algorithms and the 
other applied elastic-net and principal components analysis, and 
they both observed modest improvement in the prediction of 
coronary heart disease or subclinical CVD. However, similar 
as the previous evidence on NMR-derived metabolites, neither 
of the studies compared the prediction performance with any 
established risk score. Moreover, because mass spectrometry is 
more expensive and time-consuming than NMR, the sample size 
of both studies was relatively small (less than 3000 individuals).

As a result of selecting metabolites that were associated with 
CVD independently from the QRISK score, our study identi-
fied novel potential predictors for cardiovascular risk by using 
two different machine learning algorithms. Elastic-net allows for 
handling highly correlated variables and enhances the prediction 
accuracy by regularisation, while XGBoost is a novel tree-based 
model with the strength of incorporating complex variables’ 
interactions that cannot be captured by traditional statistics 
model. Additionally, BorutaSHAP is a relatively stable feature 
selection algorithm using shapely value, which provides another 
way of measuring feature importance other than association. 
Although prediction performance was not improved in our 
results, applying machine learning algorithms gave insight into 
the predictive value of some amino acids and glycolysis-related 
metabolites that have previously been overlooked in association 
analyses under linear assumption, and such selection was proved 
to be robust because most of the metabolites remained to be 
select as novel biomarkers when changing to use SCORE2 as the 
basic score in the sensitivity analyses.

This study has a number of key strengths. It uses large-scale 
metabolite profiling and applies machine learning algorithms. 
The linkage to NHS electronic health records and national death 
registries limited loss to follow-up and allowed reliable ascertain-
ment of CVD events. In addition, the use of different analytical 
methods with different assumptions showed that our results were 
robust against different assumptions. However, as about 95% of 
participants are white in the UK Biobank, it is difficult to gener-
alise our results to other ethnicities; more studies are needed 
in diverse populations and with longer follow-up to compare 
with other 10-year or life-time risk scores. Furthermore, the UK 
Biobank is generally healthier than the wider UK population and 
only included participants aged 40–69. Future analyses should 
assess the benefit of metabolic profiling to cardiovascular risk 
in wider age range, in non-white and high-risk individuals, and 
explore the predictive value of other types of metabolites (eg, 
gut microbiome).

CONCLUSION
This large-scale prospective study provides evidence that 
compared with an established risk score with information on 
BMI and medical history, adding circulating metabolic profiling 
measured by NMR spectroscopy is unlikely to lead to a substan-
tive improvement in CVD risk prediction in primary care.
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