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1 | INTRODUCTION

Portable Raman spectroscopy provides for in situ molecu-
lar analysis without the onerous and complicated
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Abstract

A collection of Hellenistic-Roman glyptics, kept at the Regional Archaeologi-
cal Museum “Paolo Orsi” (Syracuse, Italy), was investigated in situ with porta-
ble Raman spectroscopy with the aim of assessing the viability of this
approach, not only for the immediate identification of the gemstones but also
for a more in-depth successive data treatment. At the same time, a corrobora-
tion of the autoptic identification of the materials, both archeological and
belonging to historical collections, was looked for in order to verify and poten-
tially correct what reported in the museum catalogue. Actually, most of the
identifications could be confirmed, the glyptics being mainly made of chalce-
dony. Other materials found were garnet, glass, and amber. The larger group
of chalcedony Raman spectra was subjected to principal components analysis
treatment that, after appropriate pretreatment, resulted successful in separat-
ing spectra with higher or lower contribution of the band due to the presence
of moganite and Si—OH bonds. The garnet spectra were instead subjected to
quantitative study to identify the main end member. Both the quick identifica-
tions and the more detailed studies on chalcedonies and garnets were achieved
thanks to the nondestructive and noninvasive investigation, directly in situ,
with no sample preparation and minimal interference with the museum's
activities.

KEYWORDS

chalcedony, garnets, PCA on Raman spectra, portable Raman spectroscopy

handling of historical/archeological materials outside
museums, or their disassembly.1 As it is well known, this
approach is nondestructive and can be noninvasive, not
requiring sample preparation, both of which are
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fundamental properties when working with museum
objects.”™ In general, it gives excellent results on the
identification of mineral species that constitute a mate-
rial, and it has been largely used in the field of (applied)
mineralogy/petrography,” including the analysis of
ancient gems and precious stones in museum environ-
ments.®'® The advantages of using this methodology are
that measurements are carried out quickly, bringing lim-
ited disruption to museum activities, offering the possibil-
ity of analyzing a large number of samples in a short
time, and providing a general identification of the min-
eral in situ.'* However, this technology has some limita-
tions that include low spatial and spectral resolution
compared with classical laboratory ones, the negative
effect of environmental conditions that are not always
optimal for measurements (e.g., the presence of light
sources), and a greater tendency to fluorescence effects,
which can cause the saturation of detector, or the impos-
sibility of detecting Raman signals.'?

Following a promising previous study,'® the aim of
this work is to evaluate the contribution of portable
Raman spectroscopy alone to the identification of ancient
gemstones in a museum context. A large number of pre-
cious materials now preserved inside the “Medagliere,” a
section of the Regional Archaeological Museum ‘“Paolo
Orsi” (Syracuse, Italy), were made available for this pur-
pose. The great part of the items analyzed in this work
are engraved gemstones (glyptics) of Roman-Hellenistic
age, mostly loose gems, with the addition of three golden
rings and a fragment of a bronze ring. Considering all the
vicissitudes that these kinds of artifacts may have suf-
fered in time, the museums require a mineralogical clas-
sification to be combined to the classical archeological
and autoptic observation conducted on the materials.
Therefore, the aim of answering this specific need adds to
above-mentioned methodological one.

Besides the immediate mineral identification, further
spectral data treatments might be required for a more
thorough study of the material. For example, multivariate
statistical treatment application to Raman spectra by
means of principal components analysis (PCA), though
quite common for the study of pigments,'* is much less
used for natural and artificial stone and gemological
materials. Within the latter field, it is mainly applied to
the study of amber,'>'> obsidian'® and synthetic glass."”
Therefore, in this study, taking advantage from the high
number of analyzed gemstones, PCA is applied to chalce-
dony, to assess its effectiveness and usefulness in this
application of portable Raman spectroscopy.

Furthermore, many minerals, such as garnets, show
solid solutions, having slightly different chemical compo-
sitions but similar structure.”®° The sensitivity of
Raman spectroscopy to structural changes due to

chemical substitutions can be exploited for determining
the proportions of garnet end members, even though the
different spectral resolution of portable and laboratory
instrumentations must be carefully considered. Although
the separation between pyrope-spessartine-almandine
garnets, and grossular-andradite-uvarovite ones is
straightforward and based on the appearance of the spec-
trum, a software has been proposed to obtain quantitative
data based on the linear combination of Raman band
positions of pure end members, by comparing the
observed shifts to simulated ones, with a reasonable
error, especially as this information is obtained in a
completely noninvasive manner.'®*%-*!

Raman spectroscopy appears to be an ideal tool in
corroborating the autoptic identification of archeological
gemstones, providing the identification of the mineral
species within minutes, directly in situ. The definition of
the gemological materials can therefore be easily
achieved without displacing the precious objects from the
Museum and without sample preparation, which are
both highly desirable aspects in the archeological conser-
vation practice. Moreover, Raman spectroscopy can also
easily be coupled with advanced data processing, such as
PCA on the spectra of chalcedony or computational rou-
tines on the band positions of garnets.

2 | MATERIALS AND METHODS

2.1 | Samples
The materials analyzed belong to the prestigious
“Medagliere” of the “Paolo Orsi” Regional Archaeological
Museum (Syracuse, Italy): They are part of the museum's
diverse historical collections, but the provenance of many
of them remains uncertain. In the catalogue of the
Museum, most of the gems subjected to analysis are reg-
istered as acquisitions, dating between the end of the
18th century and the beginning of the 19th century by
several museum curators. Some of them belong to presti-
gious historical collections, such as the Castelluccio and
the Mezio ones. On the other hand, it is worth noting
that a fair number of samples are indeed archeological
items found during the many excavation campaigns car-
ried out both in Syracuse and in other areas of eastern
Sicily, such as Akrai and Kamarina, until the 1970s.

A total of 73 samples was analyzed (Figure S1),
69 loose gems and 4 ring-set gems. In detail, almost all
loose gems are oval in shape, except for sample 108301,
which is circular; the most recurrent color is orange, pre-
sent in all its shades. There are some white-colored gems
(samples 22800, 24994, and 108301) and some black ones
(40734, 25737, and 33484); some are polychrome, (16493,
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36264, and 40733). Almost all of them have very fine
engravings of mythological figures, animals or busts of
important people of the time (mainly Roman), and scenes
of everyday life, while few have inscriptions (16510 and
25968). Lastly, eight samples are scarabs with engravings
on the flat side.

As for the set gems, three of them are individually
mounted on gold rings, and one on a fragment of a
bronze ring (sample 22801). Also in this case, there is
a strong variation in the colors of the gems, ranging from
brown to deep red. In particular, samples 4885, 9491, and
22801 are circular, the first two have no engravings,
and sample 25241 is oval and shows an engraved figure.
For further details about the gems, such as color, optical
properties, size, place of purchase or finding, and icono-
graphic description, please refer to Table 1. Pictures of all
the samples are reported in Figure S1. A few examples
are shown in Figure 1, while Figures 2—-6 show the gems
as well as their Raman spectra.

2.2 | Techniques

The analyses were performed with a portable i-Raman®
Plus Raman spectrometer by B&W Tek (Newark, DE,
USA). This device includes a 785-nm diode laser with
adjustable output power (maximum nominal power:
455 mW, settable from a minimum of 3 mW through var-
iations of 1%), to avoid thermal effects. It is provided with
a thermoelectrically cooled quantum charge-coupled
device detector and covers the spectral range between

65 and 3400 cm~!, with a maximum nominal spectral
resolution of 3.5 cm ™.

The spectrometer is coupled, via optic fiber cables, to
a probe (BAC102-785E B&W Tek) that allows the posi-
tioning of the laser beam on the desired portion of the
sample. This has a distance regulator to guarantee a suffi-
cient focus on the sample, which is provided by a flat
quartz lens, and it has a focal point diameter in the plane
(spot) of 90 pm. The instrumentation is controlled by the
dedicated software BWSpec®. The analyses, carried out
with the room lights switched off and after a preliminary
dark spectrum acquisition, were generally set at three
accumulations of 30 s with 10% laser power; when neces-
sary, these parameters were adjusted according to the
requirements of the specific sample.

A preliminary identification of the mineral species
allowed to separate chalcedony and garnet spectra. Chal-
cedony spectra were cut in the 435-525cm ' region,
smoothed (Savitsky-Golay function), baseline-subtracted
(multipoint baseline) and decomposed using LabSpec®
5. The same software was also used to obtain first and sec-
ond derivative of the spectra. The spectra and their deriva-
tive curves were subjected to PCA using Orange 3.29
software,”” where they were normalized to the maximum.

In order to increase the knowledge of the analyzed
garnets and, more specifically to obtain a molar composi-
tion without the use of additional analytical techniques,
the spectra were extracted between 100 and 1000 cm ™', a
line-segment baseline correction and a decomposition of
the bands was performed using the GaussLauren func-
tion, by using LabSpec®. The obtained peak positions

FIGURE 1

Photographs of some of the 73 analyzed glyptics, 11 loose engraved gemstones, and 1 set in a bronze ring (fragment, 22801).

Source: Photographs are shown by concession of “Assessorato dei Beni Culturali e dell'Identita Siciliana” and should not be further

duplicated, not even in part.
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were then given as input to the latest available version of
Miragem, the MatLab routine created by Bersani et al. for
the quantitative assessment of garnets.'>** The routine is
designed to work with 3 to 6 band positions, which
allowed to process even spectra of lower quality acquired
with the portable spectrometer.

3 | RESULTS

In the following sections, the results obtained will be
grouped according to the type of attribution, presenting

RAMAN _ 1
spECTRoscopy YYILEY

new identifications of previously unassigned materials
first, then the changed attributions which confuted the
description reported in the catalogue, and finally
the results that confirmed the historical information.
In general, most of the spectra showed a wavy noise
and artifacts that might be confused with Raman sig-
nals, due to both the multilayered filter and problems
with the dark subtraction that can be encountered with
this kind of instrumentation. A reference spectrum
acquired without any sample was used in order to
avoid this confusion and consider true Raman
signals only.
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FIGURE 2 Representative Raman spectra (as acquired) of four scarab gemstones (a) and two cameos (b). Spectra are stacked for clarity.
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FIGURE 3 Representative Raman spectra (as acquired) of a ring-set and a loose gemstone. Spectra are stacked for clarity.
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FIGURE 4 Representative Raman spectra (as acquired) of 2 ring-set gemstones. Spectra are stacked for clarity.
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FIGURE 5 Representative Raman spectrum (as acquired) of 48231 gemstone (black solid line) and reference spectrum acquired without

any sample (dashed gray line); in the inset: close-up on the 2600-3300 cm ™! region. Spectra are stacked for clarity.

3.1 | New attributions

Nine loose gemstones were catalogued as ‘“cameo,”
“scarab,” or “gem” without any attempt of autoptic iden-
tification of the constituting material. All the materials
gave a Raman spectrum with peaks at about 130, 208,
357, 404, 467, and 503 cm™!, where the latter signal leads
to the identification of the material as a microcrystalline

form of silica, that we can generally define as chalce-
dony** (Figure 2). This latter band has been for a long
time uniquely attributed to the presence of the silica
polymorph moganite in chalcedony,”*** but nowadays,
the prevailing hypothesis assigns it to the combination of
the moganite peak at 500-501 cm™ ' and nonbridging
Si—O vibration of silanole at 503 cm™'.*>*’ In this study,
a distinction could not be performed, due to the spectral
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resolution of the portable instrumentation. The Raman
spectra acquired on different areas of the precious cameo
with lioness belonging to the Mezio collection, showed
variable intensities of the approximately 503 cm ™' band
(Figure 2b). This could be due to the different composi-
tion of the variously colored spots of the lioness mantle,
even though the precise position of the analyzed spot
cannot be stated.

3.2 | Changed attributions

Two wrong attributions reported in the catalogue
regarded the ring 4885 and the loose gemstone 24536,
both believed to be made of carnelian. Actually, the
Raman spectra exhibited for both samples signals around
361, 508, 560, 640, 862, 920, and 1048 cm ™}, attributable
to garnets of the pyralspite series.'® Furthermore, a gem-
stone catalogued as carnelian (20145) did not give any
Raman spectrum of chalcedony. On the other hand, it
showed the presence of a strong and broad photolumi-
nescence band between 1100 and 2100 cm ™, with a max-
imum at about 1360cm ', corresponding to
approximately 879 nm considering the excitation wave-
length at 785 nm, and probably due to the presence of
Nd**.*® The same has been found for other materials
classified as “glass”; therefore, this latter attribution can-
not be excluded in this case.®

3.3 | Confirmed attributions

The given attribution could be confirmed for the other
two rings of the selection: For the 9491, garnet signals
were found while for 25241, the principal signals of chal-
cedony at 130, 466, and 503 cm~ ! were revealed
(Figure 4).

Except for the materials that could not be identified
due to fluorescence, all the other gemstones catalogued
as carnelian/agate/onyx gave spectra analogous to those
shown in Figure 2; therefore, the general definition of
chalcedony can be given and the autoptic identification
confirmed. Other confirmations concern a black and
white glass paste gem (25737), where again no signals of
crystalline phases were found but a broad photolumines-
cence band, and an amber gemstone (48231). The spec-
trum of the latter at first view did not seem to show any
Raman signals (see Figure 5); at a closer inspection, by
comparing it with the reference spectrum acquired with-
out any sample, bands at 2880 and 2930 cm ' can be
noticed and cannot be confused with the wavy instru-
mental noise (Figure 5): These are typical of CH, and
CHj stretching vibrations in amber.***°

RAMAN _ | =u
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4 | DISCUSSIONS

The following sections aim at evaluating the possibility of
performing data treatment even if the spectral quality is
affected by fluorescence, filter noise, environmental noise
and low spectral resolution, and at summarizing the per-
formance of the used portable Raman instrument in the
in situ analysis of ancient gemstones.

41 | Chalcedony spectral processing:
decomposition and PCA

The Raman spectra of chalcedony were here considered
with the aim of studying the contribution of the band
typical of microcrystalline silica. Gotze et al.>' suggested
a method to quantify moganite percentage. This is
obtained by building a calibration curve with the ratio of
the intensities of the principal Raman peaks of moganite
and a-quartz versus the moganite content measured with
X-ray diffraction (XRD). It has already been reported that
the 503 cm™' Raman band is probably not due to the
moganite contribution only.?**” Moreover, the limits of
the use of a portable instrumentation instead of a micro-
Raman had to be carefully considered in this case. On
the one hand, using a measuring head without a magni-
fying objective allowed to obtain a relatively large angle
of irradiation, simultaneously analyzing many different
scattering geometries and avoiding crystallographic ori-
entation effects.>! On the other hand, the instrumental
noise could affect the intensity of the bands (see for
example Figures 2 and 4). First of all, of the 53 spectra of
chalcedony, the best 35 were chosen avoiding those in
which the wavy noise was prevailing on the Raman sig-
nals. Second, after baseline subtraction and extraction of
the region 435-525 cm ', the spectra were decomposed
to isolate the main bands at about 465 and 503 cm ™. As
observed in Figure 6, where two extreme examples are
reported, a further component at about 470 cm ™' had to
be added in order to achieve a good fitting and exclude
the contribution of the wavy noise of the multilayer filter.
According to Gotze et al.,>! the background increases
with the increase of moganite content. In our study, no
relation was found between the approximately 470 and
503 cm ™' bands intensities, thus ascribing the former
band to filter noise rather than background. After decom-
position, the ratio of the main bands areas was calculated
as percentage: Asgsz/Agss (%). The values ranged from a
minimum of 5.9% to a maximum of 55.6%, which, accord-
ing to the above-mentioned calibration curve,! would
correspond to a wide range of approximately 25%-75% of
moganite in a system constituted of moganite and
a-quartz only.
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decomposed.

Another kind of approach was attempted for discrimi-
nating spectra with different intensities of the 503 cm '
band avoiding spectral decomposition. Spectra were
appropriately de-spiked, smoothed, cut, baseline-
subtracted and normalized (Figure 7a), as required by
multivariate statistical analysis preprocessing.>* Subse-
quently, PCA was performed. Values of the first principal
component (PC1; explained variance = 85%) were plotted
against the area ratio calculated as described above. The
obtained graph (Figure 7d) shows a positive trend, with
an ill-defined correlation. Deviations from the norm
could be due to the spectral region between 475 and
490 cm ™!, which accounts for the noise presence. Accord-
ing to literature, PCA performed on first>> or second
derivative®**> Raman spectra of different kinds of mate-
rials gives better results than when performed on the
original data, as derivation reduces the contribution of
broad features. Actually, it can be observed that in the
first (Figure 7b) and second (Figure 7c) derivative,
the differences among the samples in the above-
mentioned spectral region are almost eliminated (com-
pare the region within markers in Figure 7a-c). Conse-
quently, correlations of PC1 values (explained variance
for first derivative = 78%; for second derivative = 80%)
with decomposed peaks areas ratios appear much clearer
(Figure 7e,f). In both graphs, few samples show a higher
contribution of the 503 cm™' band, while the larger,
main group of samples exhibits values included between
6% and 30% (see Figure 7f), that is, 25%—60% of moganite
content.>* These values are higher than those measured
with synchrotron radiation XRD on analogous glyptics
from Vigna Barberini (Palatine Hill, Rome, Italy).>** On
the other hand, moganite-rich chalcedony (content up to
70 + 10%) has been found in Indian basalts,’” and it must
be reminded that Pliny mentioned India among the

35 445 455 465 475 485 495 505 515 525
Wavenumber / cm-!

Representative baseline-subtracted Raman spectra of chalcedony samples cut in the region 435-525 cm™" and subsequently

carnelian suppliers.*® However, due to (1) the mentioned
issues about the attribution of the 503 cm ! Raman band,
with a probable overestimation of moganite, (2) the wide
concentration range obtained, and (3) the many other
possible sources cited by Pliny, no sharp conclusions can
be drawn on this respect, but probably XRD and/or ele-
mental analysis would be requested.®

If PC2 and PC3 are added to the PCA treatment on
the second derivative Raman spectra, the explained vari-
ance reaches 93% of the total variance (PC2 = 9%,
PC3 =4%). As observed in the loadings diagram
(Figure 8), PC3 mainly accounts for the artifact signal at
470 cm™' while PC2 considerably varies also for the
other two main bands. Therefore, PC2 was plotted
against PC1 (Figure 8). Though no clusters are visible,
observations can be made looking at the PC wvalues.
Samples of the series “17,” among which those coming
from Guffara and Buscemi are all characterized by a
positive PC1, as well as most of the other samples of
certain archeological origin, but unknown provenance.
Samples 22502, 22503, and 22504 all have negative PC1
values while sample 22501 has positive ones. Samples
22502 and 22504 are most probably modern, as well as
25784 and 25791 falling close to them. PC1 values are
linked to different Asops/A4es ratios, which might
potentially suggest a different source of chalcedony for
modern samples.

4.2 | Garnet spectral decomposition for
quantitative study

Even though the spectra collected in situ with a portable
Raman are affected by interferences of various nature, as
already mentioned, and by the intrinsic limitations of
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instrumental spectral resolution, it is possible to apply a
simple computational routine to the spectra of garnets, to
obtain their composition in terms of end members.'® Mir-
agem'® has demonstrated its effectiveness in the
completely nondestructive chemical analysis of garnets of
geological® and gemological interest."® The basic princi-
ple is that garnets’ Raman bands can be considered as a
linear combination of weighted band positions, the
weight being the proportion of a specific end member,
and the band position being that of the pure end mem-
ber.'® The observed band positions are used as input.
Here the routine is used with only 3 to 4 peak positions,
instead of the optimal 5 to 6 required. Pyralspite garnets
do have weak bands, such as the 220 and the 860 cm™*
ones, which are sometimes not appearing in the spec-
trum, and also show a doublet at approximately 360-
370 cm ™', whose separation is strongly affected by the
instrumental spectral resolution.

Nevertheless, the simulated Raman band positions
match well with the measured ones, used as input
(Table 2), and allow to assess the main component of the
mixture (Table 3), with an error as low as 10%."

From such computational approach, it looks like
besides pyrope, which is the recurring main component,
the second component in this set is grossular. Neverthe-
less, all three garnets display a deep red color, almost
black in the case of 24536. The apparent dissimilarity of

TABLE 2
processing, Raman bands simulated by Miragem and difference.

Raman band positions obtained after spectral

Sample ID Used bands

4885 362.7 561.3 862.7 920.1
Simulated 362.6 560.8 862.6 920.1
Difference 0.1 0.4 0.1 0.0

9491 366.0 559.9 = 920.3
Simulated 363.6 560.8 — 919.6
Difference 2.4 —0.9 — 0.7

24536 362.3 560.8 862.8 919.2
Simulated 362.2 560.7 862.5 919.9
Difference 0.1 0.1 0.2 —0.7

Note: All values in cm ™.

Approximate composition as contributions of end members

sample 9491 from the other two is probably because its
composition was estimated based on three Raman bands
only. Such spectra (and compositional ranges) are in good
agreement with literature on the pyrope-grossular
series,”® which were also tested with Miragem, providing
very good results in the range 100% to 60% pyrope. Such a
composition points to ultrabasic parent rocks, such as peri-
dotites, eclogites, or kimberlites.*' Results obtained with
Miragem on garnets studied in a previous in situ cam-
paign'® show, again, pyrope as the main component
(between 70% and 80%), but with spessartine as the second
one. From visual inspection, the color of such gemstones
is much lighter, supporting a different composition.

Gem quality pyropes in Europe occur in Scotland and
Portugal (Cr poor), and in Bohemia and Norway
(Cr rich).** For the Greco—-Roman period, however, there
is limited compositional data available compared with
later periods,”® which invariably points out, for pyropes,
to the Portuguese mines of Monte Suimo, which were
exploited in Roman times, as mentioned by Pliny the
Elder.** Garnets of comparable composition (~55%-80%
pyrope, 5%-15% grossular + spessartine, and 10%-30%
almandine) have been recognized in Etruscan, Hellenis-
tic, and Roman (mid-1st BC to late 1st century AD) con-
texts.*> Even though there is no information on
chromium content, the historical context indicates this as
the most likely source for the gemstones.

4.3 | General remarks

If we consider the Raman results as a whole (Figure 9),
more than 68% of the total analyses gave a confirmation
of the autoptic identification, corroborating the archeolo-
gical interpretation, with the confirmed vast majority of
chalcedony. There were 12 samples (15%) not identified
due to the prevailing fluorescence effect that could not be
abated notwithstanding the changing of the operational
parameters. On the other hand, the total of successful
new attributions and the corrected ones exceeds 16%.
Within the new identification, a clear predominance of
chalcedony is once more registered. In the changed iden-
tifications, instead, garnet prevailed, originally misidenti-
fied as carnelian.

TABLE 3
analyzed garnets obtained from the

Molar composition of the

Sample ID Almandine Pyrope Spessartine Andradite Grossular processing of Raman spectral data.
4885 4% 84% <1% <1% 12%
9491 <1% 86% <1% <1% 14%
24536 6% 82% <1% <1% 12%
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5 | CONCLUSIONS

The in situ campaign conducted by means of portable
Raman spectroscopy alone at the Regional Archaeologi-
cal Museum “Paolo Orsi” (Syracuse, Italy) underlined the
ability of this technique of obtaining meaningful results
from totally nondestructive and noninvasive investiga-
tions on historical samples as such, without displacing
them from the Museum. In fact, the study was successful
for the identification of 85% of the analyzed Hellenistic-
Roman glyptics. The identification was corrected for
about 4% of the gemstones, among which a precious gold
ring with garnet was previously mistaken for carnelian.
The speediness of the analysis allowed limiting in time
the interference with the Museum's activities. The use of a
785-nm laser surely reduced the possible fluorescence with
respect to higher-energy excitation sources. The possible
problems caused by filter noise were limited comparing
the samples’ spectra with a reference one and performing
spectral treatment. This was possible even if spectra
appeared affected by instrumental weaknesses thanks to
an appropriate pretreatment. In detail, band decomposi-
tion or, in alternative, first/second derivative of chalce-
dony spectra allowed to abate the noise contribution. The
high number of chalcedony spectra was exploited to test

RAMAN _ |
spECTRoscopy YYILEY

the application of PCA to spectra from portable Raman
instrumentation, which is most rarely found in literature,
especially for this kind of materials. PCA data were then
successfully cross-checked with those resulting from bands
decomposition: PC1 variation in accordance with
503 cm ! band intensity in the chalcedony spectra demon-
strated that this approach could replace the longer and
more complex band decomposition. Besides, PCA distin-
guished most of the archeological samples from most of
the probably modern ones based on the Asps/Ayes ratio.
Furthermore, the reasonable estimates of the main end
member (relative error lower than 10%) of garnets are a
promising opportunity for a fast but systematic approach
to label checking in different kinds of museums. On the
other hand, it appears clear that the archeometric results
should be intersected with the archeological information,
without which, as it happens in this case for many historic
private collections and acquisitions, discussions about the
choice of materials in the past and the understanding of
their commercial routes are difficult.
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