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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:In microorganisms, different from primary metabolism for cellular growth, secondary metab-

olism is for ecological interactions and stress responses and an important source of natural

products widely used in various areas such as pharmaceutics and food additives. With

advancements of sequencing technologies and bioinformatics tools, a large number of bio-

synthetic gene clusters of secondary metabolites have been discovered from microbial

genomes. However, due to challenges from the difficulty of genome-scale pathway recon-

struction and the limitation of conventional flux balance analysis (FBA) on secondary metab-

olism, the quantitative modeling of secondary metabolism is poorly established, in contrast

to that of primary metabolism. This review first discusses current efforts on the reconstruc-

tion of secondary metabolic pathways in genome-scale metabolic models (GSMMs), as well

as related FBA-based modeling techniques. Additionally, potential extensions of FBA are

suggested to improve the prediction accuracy of secondary metabolite production. As this

review posits, biosynthetic pathway reconstruction for various secondary metabolites will

become automated and a modeling framework capturing secondary metabolism onset will

enhance the predictive power. Expectedly, an improved FBA-based modeling workflow will

facilitate quantitative study of secondary metabolism and in silico design of engineering

strategies for natural product production.

1. Introduction

The cellular metabolism in microorganisms is the set of biochemical reactions to maintain life,

and it can be divided into 2 branches, primary and secondary metabolisms: primary metabolism

generates energy and synthesizes cellular biomass, while secondary metabolism mediates micro-

organisms’ adaptation to the living environment [1]. Secondary metabolites have been defined

as metabolites that are unessential for growth and reproduction [2–5], but they usually have spe-

cialized functions and the biosynthesis of them is sometimes species specific. Though secondary

metabolites have little contribution to cell growth from the simple mass balance point of view,

they are ecologically and evolutionarily important as they often contribute to inter-species

antagonistic or mutualistic interactions [6] and responses to environmental stresses [7–9].
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As a rich source of valuable natural products, microbial secondary metabolites have been

contributing to pharmaceutical, cosmetic, food, and agricultural industries since the discovery

of penicillin [10], for example, cyclic lipopeptides derived from Bacillus subtilis used as anti-

bacterial agents in both medicine and agriculture [11], lactic acid bacteria-derived exopolysac-

charides (EPSs) used as food additives [12], and sacran produced by cyanobacteria for

skincare [13]. Compared to plant-based processes, microbial bioproduction processes are

more efficient and implementable, as the doubling time of a microbial cell is usually 20 to 60

min [14], much shorter than that of a plant cell, which typically takes days [15]. In addition, a

microbial system is more controllable than a plant system, as the latter is more subject to fluc-

tuating environmental factors [16]. There have been many successful applications to optimize

the microbial production of secondary metabolites, e.g., through eliminating competing path-

ways, using genome shuffling to obtain a high-yield strain [17], or fine-tuning gene expression

by promoter engineering [18]. Overall, microorganisms are ideal platforms to produce second-

ary metabolites, due to the richness of valuable natural products and inherent advantages as

cell factories.

Data-driven computational modeling has become widely used in the quantitative study of

the synthetic biology of secondary metabolism [19] due to the fast growing amount of multio-

mics data and computational resources [20,21]. Two most commonly used modeling methods

of cellular metabolism are differential equation-based models [22,23] and flux balance analysis

(FBA)-based models [24]. Admittedly, differential equation-based models can be easily con-

nected with process control, but most of them treat the whole metabolic network as a “black

box” [25,26]. On the other hand, fine-grained “white-box” differential equation-based models

[23] are typically costly to construct due to limited data availability [19,27] and complex

enzyme kinetic mechanisms [28]. Alternatively, the reconstruction of a genome-scale meta-

bolic model (GSMM) is fast and mostly automated [29], and the major analytical approach of

a GSMM, i.e., FBA using linear programming, is less computationally expensive than solving a

large-scale differential equation set [30,31]. Therefore, this review focuses on FBA-based

modeling techniques and GSMMs integrated with secondary metabolic pathways

(smGSMMs).

In recent years, utilizing FBA to model and engineer secondary metabolism has gained sig-

nificant interest in synthetic biology, especially in the production of antibiotics [32]. Conse-

quently, review articles on this topic have emerged: Breitling and colleagues focused on

modeling challenges caused by incomplete and uncertain information and suggested quantita-

tive consideration of parameter uncertainties [19]; Mohite and colleagues provided an over-

view of various smGSMMs for actinomycetes’ and modeling techniques applied for the

production of antibiotics [32]; Weber and Kim summarized tools for searching secondary

metabolites’ biosynthetic gene clusters (BGCs) and smGSMM reconstruction [21]. Neverthe-

less, existing reviews cover either BGC identification which is only part of the modeling pro-

cess or modeling techniques for a specific class of secondary metabolites; therefore, this review

intends to elucidate this topic more holistically and generically via presenting the current prog-

ress of the complete modeling process, i.e., from building an smGSMM for target secondary

metabolites to predicting secondary metabolite production flux within the scope of FBA-based

modeling techniques. We begin with compiling recent developments on the reconstruction of

secondary metabolic pathways, which are necessary for building smGSMMs. Then, we move

on to discuss FBA-based modeling techniques for predicting secondary metabolite production,

where various modeling techniques that manage to capture secondary metabolism are criti-

cally reviewed. Finally, suggestions are given to potential extensions of FBA to improve the

prediction accuracy of secondary metabolite production. Unlike an early relevant work that

discusses how to incorporate parameter uncertainties that result from incomplete information
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of secondary metabolism [19], this review directs attention to approaches that manage to

quantitatively capture secondary metabolite production with pathway reconstruction and

FBA-based modeling techniques developed in recent years.

2. Pathway reconstruction for microbial-derived secondary

metabolites

To model secondary metabolism, 3 key steps are needed: (1) the identification of secondary

metabolites and associated BGCs through genome mining; (2) reconstruction of secondary

metabolic pathways; and (3) the simulation of metabolic fluxes (Fig 1). The first 2 steps are the

basis of the third step. For BGC identification, a number of well-developed genome mining

tools that can find BGCs for the biosynthesis of secondary metabolites are available, such as

antiSMASH [33], PRISM [34], or BAGEL [35]. The development of genome mining tools in

recent years has been reviewed by many well-written articles [21,36–41], from which inter-

ested readers can find in-depth information. Compared to genome mining tools applicable to

finding BGCs of secondary metabolites, commonly used metabolic network reconstruction

tools show limitations in assembling the biosynthetic pathways of secondary metabolites, yet

there exists a few tools capable of addressing such a challenge [42,43].

2.1. Limitations of current genome-scale metabolic network reconstruction

tools on assembling secondary metabolic pathways

The computational modeling of secondary metabolism requires in silico biosynthetic pathway

reconstruction of secondary metabolites. Commonly used automated GSMM reconstruction

tools are CarveMe [44], ModelSEED [45], RAVEN [46], Merlin [47], AutoKEGGRec [48],

AuReMe [49], MetaDraft [50], Pathway Tools [51], FAME [52], and GEMSiRV [53]. They rely

on metabolic reaction databases: BiGG [54], SEED [45], MetaCyC [55], and KEGG [56].

Fig 1. AU : Abbreviationlistshavebeencompiled=updatedforthoseusedinFigs1to4andTables1and2:Pleaseverifythatallentriesarecorrect:Graphical abstract of the workflow of FBA-based metabolic modeling for secondary metabolism. Orange circle: secondary metabolite; pink circle:

primary metabolite. FBA, flux balance analysis; smGSMM, genome-scale metabolic model with secondary metabolic pathway.

https://doi.org/10.1371/journal.pcbi.1011391.g001
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Among them, BiGG and SEED both integrate and standardize genome annotations, reactions,

and GSMMs of different microorganisms, but leave many gaps in peripheral pathways associ-

ated with secondary metabolites [44]. MetaCyC contains 747 secondary metabolic pathways

[57], but most of them are plant specific [58,59]. Reconstruction of 24 penicillium GSMMs by

Prigent and colleagues reveals that MetaCyc allows automatic reconstruction of 34 biosyn-

thetic pathways of terpenoids, polyketides (PKs), phenylpropanoids, alkaloids, and nonriboso-

mal peptides (NRPs) [57]. Compared to MetaCyc, KEGG has significantly depleted

“Metabolism Of Terpenoids And Polyketides” and enriched “Alkaloid And Other Secondary

Metabolite Biosynthesis” pathway classes [60]. Despite advances in smGSMMs of penicillium

[57] and actinomycetes [32], the incomplete description of species-specific secondary metabo-

lism in databases still makes it hard to reconstruct secondary metabolic pathways based on

genome annotation alone without supplementary experimental information [19,61]. In short,

among the currently available genome-scale metabolic network reconstruction tools, it is diffi-

cult to recommend a state of the art one for reconstructing complete biosynthetic pathways of

secondary metabolites.

Given the issues presented in automated pathway reconstruction tools, manual curation is

sometimes used as an expedient solution, e.g., the paulomycin pathway in the smGSMM of

Streptomyces albus J1074 [62], the lumped biosynthetic reaction of EPS from monosaccharides

in Lactobacillus casei LC2W [63]. However, manual curation is laborious, inefficient, and sub-

ject to human error. Most manual approaches are not fine-grained enough, which means

intermediary metabolites are left out. As a result, smGSMMs are incapable of accounting for

bottlenecks that affect secondary metabolite production, such as precursor depletion, poor

enzyme capacity of intermediate step, or toxic intermediate accumulation [19,64]. The limited

performance calls for pathway reconstruction tools specialized for secondary metabolism. For-

tunately, there are still some tools for automated pathway reconstruction of certain secondary

metabolites, which were developed via bottom-up (BGC-based) or top-down (retrosynthesis-

based) approaches (Table 1).

2.2. BGC-based pathway reconstruction

Firstly, the bottom-up approach, namely the BGC-based approach, reconstructs secondary

metabolic pathways from identified BGCs. Genome mining tools such as antiSMASH identify

BGCs of secondary metabolites and output genbank files containing annotated functional

domains. Subsequently, reconstruction tools such as BiGMeC [42] and DDAP [65] take iden-

tified BGCs as inputs and assemble reactions from template smGSMMs (e.g., Sco-GEM for

Streptomyces coelicolor [66]) or pre-curated pathway databases (e.g., DDPA database for type I

PKS pathways [65]) based on annotated genes in BGCs. The BGC-based method reconstructs

Table 1. Automated pathway reconstruction tools for microbial secondary metabolism.

Tool Scope Input Output Reference

BiGMeC PKs, NRPs Genbank files of BGCs from antiSMASH Json files containing reconstructed pathways [42]

DDAP Type I PK synthase Fasta/genbank/csv files of polyketide synthase

sequences

A list of possible pathways and the associated product

SMILES strings

[65]

RetroPath

2.0

All classes of secondary

metabolites

Source and sink compounds’ SMILES strings and

reaction rules

A reaction network linking the source set to the sink set [67]

BioNavi-NP All classes of secondary

metabolites

Products’ SMILES strings and reaction rules Possible precursors and biosynthetic pathways [68]

BGC, biosynthetic gene cluster; NRP, nonribosomal peptide; PK, polyketide.

https://doi.org/10.1371/journal.pcbi.1011391.t001
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genome-scale biosynthetic pathways of secondary metabolites with sufficient accuracy; how-

ever, its scope is limited, i.e., the reconstruction usually works for PKs and NRPs only [42],

because genome mining tools like antiSMASH or PRISM sometimes cannot detect BGCs of

other secondary metabolites, such as EPSs or fatty acid derivatives [40]. Also, the pre-curated

databases and template smGSMMs have low coverage of biosynthetic pathways of secondary

metabolites other than PKs or NRPs.

2.3. Retrosynthesis-based pathway reconstruction

Unlike reconstructing pathways from BGCs, a “top-down” approach predicts pathways based

on retrosynthesis of end products. Tools like RetroPath 2.0 [67] or BioNavi-NP [68] can pre-

dict reactions to produce target secondary metabolites using the retrosynthesis algorithm. This

algorithm uses a dataset of curated reactions from databases, such as SimPheny [69] or BNICE

[70], as the input to generate reaction rules, which are used to decompose the end product’s

molecular structure into possible precursors [71]. The final output is a route linking precursors

to the end product, in which all reactions are essential for their viability [67]. For example, Bio-

Navi-NP decomposes Sterhirsutin J into potential candidate precursors, such as colletorin D

acid, and those candidates’ biosynthesis are further traced back to simple building blocks (e.g.,

malonyl CoA), finally outputting most possible biosynthetic pathways [68]. The advantage of

retrosynthesis is that the pathway reconstruction is no longer restricted to certain classes of

secondary metabolites, as its pathway prediction is based on reaction rules and the molecular

structure of the end product. However, retrosynthesis might give multiple solutions and the

suggested solutions are not always consistent with the actual genome of the studied microbe,

since reaction rules from databases are not species specific. Therefore, for better reconstruc-

tion accuracy, users need to adjust either the list of reaction rules or the reconstructed pathway

based on the organism’s protein sequences, before making predictions.

In short, to build smGSMMs, the practical approach seems to be first reconstructing sec-

ondary metabolic pathways with automated methods, and then integrating them to the pri-

mary metabolic network. For PKs and NRPs, BGC-based tools (BiGMeC and DDAP) are

advantageous, while retrosynthesis can predict the biosynthetic pathways for other secondary

metabolites.

3. Towards predicting microbial production of secondary

metabolites: FBA-based modeling techniques

3.1. Challenges faced by flux balance analysis to predict secondary

metabolite production

FBA models cellular metabolism by utilizing linear programming to compute metabolic fluxes,

optimizing an objective function, usually biomass formation (vgrowth) or a tailored objective

(c1×R*[v1, v2,. . .,vR]T, c1×R is a vector of coefficients, T stands for matrix transpose) (Eq 1), v
stands for the reaction flux. The linear programming is solved in a constrained solution space

of mass conservation (Eq 2) and upper/lower bounds of reaction fluxes, vi,max and vi,min (Eq 3)

[24]. Eq 2 is based on the pseudo-steady state assumption, and hence, FBA is often applicable

only for modeling different stabilized steady states but not transient phases where intracellular

metabolite concentrations will change [72].

Maximize objective ¼ vgrowth or c1�R∗½v1; v2; . . . ; vR�
T

ð1Þ

Mass conservation : SM�R∗½v1; v2; . . . ; vR�
T
¼ 0 ð2Þ
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Upper=lower bounds : vi;min� vi � vi;max ð3Þ

vgrowth is the biomass formation rate normalized to 1 gram dry weight, also considered as the

growth rate. SM×R is the stoichiometric matrix of the metabolic network with M metabolites and

R reactions. A lot of toolboxes have been developed for conducting FBA, such as COBRA Tool-

box [73], MetaFlux [74], and FBA-SimVis [75], and it has become increasingly common to use

FBA to quantitatively study cellular metabolism, e.g., elucidation of metabolic responses to dif-

ferent culture conditions [76,77], identification of gene knockout to improve metabolite pro-

duction [78], prediction of metabolite cross-feeding in microbial communities [79].

Although FBA has been successful in predicting microbial growth and primary metabolism,

its application in predicting secondary metabolite production faces challenges from several dif-

ferent aspects. The conventional FBA is tailored to simulate the growth and metabolism of

microbes in the exponential phase, which is not ideal for simulating secondary metabolites’

biosynthesis that typically occurs in the stationary phase or late growth phase [32,72]. Ergo,

the first apparent challenge is the unsuitable objective function. Generally, the maximization

of biomass synthesis is used as the objective function, based on the assumption that cells use

the available nutrients most efficiently for biomass synthesis [80]. Consequently, the metabolic

fluxes involved in the biosynthesis of secondary metabolites, which are not essential compo-

nents of biomass, are often neglected. Therefore, selecting a suitable objective function is cru-

cial when simulating the metabolic switch from primary metabolism to secondary metabolism

using FBA [32]. Another inherent shortcoming of FBA is its lack of characterization of regula-

tion. The metabolic switch is controlled by gene expression regulation, and therefore, the pre-

diction of secondary metabolite production will become more accurate if FBA incorporates

the gene regulatory network (GRN) [81]. Besides, the overlook of environmental stresses (such

as temperature [7,82], pH [83], nutrient availability [84,85], etc.), which impact the expression

of enzymes in secondary metabolic pathways, also limits the accuracy of predictions. The opti-

mality principle used to predict microbial metabolism should keep the balance between bio-

mass formation and minimization of death under stress conditions, but the latter is ignored in

conventional FBA [72]. Without incorporating important cellular activities such as stress

response, FBA would not be able to predict nongrowth associated metabolic fluxes.

3.2. Existing FBA-based modeling techniques for secondary metabolism

To address the limitations of conventional FBA on secondary metabolism discussed in Section

3.1, several techniques have been developed, including: (1) adding the targeted secondary

metabolite into the growth function (biomass formation); (2) switching from the classical bio-

mass formation objective to a secondary metabolism-associated objective; (3) estimating meta-

bolic fluxes through sampling in a strictly constrained space; and (4) integrating gene

expression data in FBA. The first 3 techniques aim to overcome the limitation caused by the

unsuitable objective function, while the last one manages to incorporate gene expression regu-

lation. The existing modeling techniques and their applications are summarized in Table 2,

and their predictive power is also discussed.

Firstly, the flux distribution obtained from conventional FBA highly depends on the specific

objective function used. If maximizing biomass formation is selected as the objective function,

as commonly done, FBA would predict zero flux through the secondary metabolic pathways as

it does not contribute to cell growth [86]. To resolve this type of limitation, it has been pro-

posed to add the secondary metabolite into the biomass formation reaction, so that FBA will

optimize both the synthesis of biomass precursors and the target secondary metabolite. This
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modeling technique was used to simulate the antibiotic production in Streptomyces coelicolor:
based on the observed antibiotics production rate, the amount of antibiotics was increased

dynamically when the cell transitioned from primary metabolism to secondary metabolism

[87,88]. Because stoichiometric coefficients of undecylprodigiosin (RED) and actinorhodin

(ACT) in biomass formation objective function were set based on experimental measurement,

the accuracy in predicting the growth rate, R-squared value = 0.95, could reflect the accuracy

of predicting secondary metabolite production (Fig 2A). This technique could account for the

metabolic switch, as the studies by Alam and colleagues [87] and Amara and colleagues [88]

demonstrated significant correlations between gene expression levels and predicted metabolic

fluxes for most genes in secondary metabolic pathways. However, anti-correlations of pre-

dicted fluxes and gene expression levels for some genes in calcium-dependent antibiotics

(CDAs) and RED biosynthesis indicated that the failure of including regulatory constraints

was an important source of error [87,88]. From the perspective of modeling technique, in this

case, FBA still optimizes the growth rate and makes the production of secondary metabolites

growth-associated, which contradicts with the biological fact that the biosynthesis of most sec-

ondary metabolites is growth-unassociated. Also, this modeling technique manually fixes the

ratio between secondary metabolite production and biomass formation (i.e., product yield per

unit biomass) with experimental measurements, which restricts its applicability for cases

where the yield of the secondary metabolite is varied or unknown. Due to the lack of a solid

biological basis, this approach can only model flux distributions if the microbial cell behaves

according to the artificially adjusted objective function. Though such an approach can, to

some extent, reflect statuses of primary and secondary metabolisms, it can hardly be used

directly for design purposes, because it cannot predict secondary metabolite production for

different design settings of interest (e.g., different growth media, different strains).

As an alternative to the manipulation of the biomass formation while still adopting the clas-

sic objective function that maximizes biomass growth, switching to a new objective function

can avoid introducing inappropriate growth association. The commonly used candidates of

alternative objective functions are ATP yield, ATP yield per unit flux, biomass formation per

unit flux, and target secondary metabolite production. Toro and colleagues compared 4 differ-

ent objective functions’ performances on both primary metabolism and clavulanic acid

Table 2. Summary of different modeling techniques to predict secondary metabolite production.

Secondary metabolite Organism Modeling technique Predictive power Reference

ACT, RED Streptomyces coelicolor Add the secondary metabolite

into biomass and maximize

biomass formation

Good accuracy but

restricted by settings

[87,88]

Clavulanic acid Streptomyces clavuligerus Use ATP yield as the objective

function

Good accuracy and

unrestricted by settings

[89]

Riboflavin Ashbya gossypii Use secondary metabolite yield

as the objective function

Good accuracy and

unrestricted by settings

[90]

Acetoin, diacetyl, acetaldehyde, benzaldehyde,

2,3-butanediol, and amino acid-derived flavor

metabolites, 2-methylbutanal, 2-methylpropanoic

acid, etc.

Lactococcus lactis subsp. cremoris,
Lactococcus lactis subsp. lactis,
Streptococcus thermophilus, Leuconostoc
mesenteroides

Maximize secondary

metabolite yield in the solution

space of FVA

Not quantitatively

examined

[92]

ACT, RED, CDA, Cpk Streptomyces coelicolor Random sampling with

enzyme constraints

Qualitatively accurate

but not quantitatively

examined

[66]

ACT, RED Streptomyces coelicolor Integration of transcriptomics

data into FBA

Low quantitative

accuracy

[97]

ACT, actinorhodin; CDA, calcium dependent antibiotics; Cpk, coelimycin P1; FBA, flux balance analysis; FVA, flux variability analysis; RED, undecylprodigiosin.

https://doi.org/10.1371/journal.pcbi.1011391.t002
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production of Streptomyces clavuligerus [89], and the study found that maximization of ATP

yield could predict primary metabolism and clavulanic acid production flux with best accuracy

(Fig 2B). ATP yield maximization can be assumed to be the objective for microorganisms in

both exponential growth and stationary phases, as the cell is always in need of energy to main-

tain its activity. A more direct objective function is to maximize the target secondary metabo-

lite production. In the simulation of riboflavin overproduction by Ashbya gossypii, Ledesma-

Amaro and colleagues assumed that Ashbya gossypii in the stationary phase switched from

maximizing biomass formation entirely to maximizing riboflavin production [90]. The result

showed that the simulated value of riboflavin production rate, 0.0156 mmol/gDW/h [90], was

close to the experimental value, 0.0126 mmol/gDW/h [91]. Using flux variability analysis

(FVA) to maximize the target secondary metabolite production from the flux solutions that

maximize biomass growth is another approach, which has been used in modeling the produc-

tion of flavor metabolites, such as acetoin, in lactic acid bacteria [92], but this approach has not

been quantitatively examined with experimental data. The mathematical formulation of sec-

ondary metabolism-associated objective function in place of biomass formation has shown its

ability to predict the production of some secondary metabolites, independently of condition-

specific experimental data. However, changing the objective function may be too simplistic to

account for metabolic activities that keep the balance of growth and minimization of death

(stress resistance) as discussed in Section 3.1.

Since the FBA solution can be inaccurate with an unsuitable objective function, a modeling

technique that is independent of objective functions has been adopted to resolve the issue. In

the simulation using the Sco-GEM model, a consensus smGSMM for Streptomyces coelicolor,

Fig 2. Quantitative assessment of existing FBA-based modeling techniques for predicting secondary metabolite production. (A) Comparison of predicted

and observed growth rates and ACT production fluxes at different observed growth rates in Alam and colleagues [87]. (B) Comparison of 4 different objective

functions used in FBA to predict both primary metabolism and clavulanic acid production flux [89]. Correlation scores are computed for predicted and

observed fluxes. P-lim: limited phosphorus content. (C) Comparison of predicted and observed production fluxes of ACT and RED in Kim and colleagues [97].

ACT, actinorhodin; FBA, flux balance analysis.

https://doi.org/10.1371/journal.pcbi.1011391.g002
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the metabolic fluxes were strictly constrained with the enzyme capacity, v�kcat[E]. kcat is

the turnover rate and [E] is the concentration of the enzyme. Fluxes were approximated

using unbiased random sampling in the constrained solution space instead of optimizing a

defined objective function [66]. The metabolic switch from glycolysis, fatty acid, and nucle-

otide biosynthesis to ACT, RED, CDA, and coelimycin P1 (Cpk) biosynthesis was captured

by this technique [66], but no comparison of predicted and observed reaction fluxes was

performed for quantitative validation. Because random sampling without a highly con-

strained space will output multiple flux states with wide ranges, the accuracy of the pre-

dicted fluxes relies on the strict constraints imposed by quantified enzyme protein

concentrations and enzyme kinetic parameters, which are strain specific and condition spe-

cific. Therefore, this modeling technique cannot compute metabolic fluxes through second-

ary metabolic pathways without proteomic data measured under a given setting. The cost of

proteomics quantification makes it hard to predict secondary metabolite production with

different growth conditions.

Modeling techniques discussed above do not take into account the inherent lack of charac-

terizing regulation in conventional FBA. Reactions in a GSMM, if not gap filled, have associ-

ated gene-protein-reaction (GPR) rules, allowing the integration of quantitative gene

expression data, such as transcriptomics or proteomics. If gene expression levels are integrated

into FBA, the predicted fluxes can reflect metabolic enzyme activities and thus characterize

regulations. The generic algorithm is to minimize the utilization of reactions with low gene

expression levels and allow reactions with high gene expression levels to have higher absolute

flux values.

There have been various developed techniques for integrating gene expression data into

FBA, e.g., GIMME [93], E-flux [94], iMAT [95], but most were applied only on primary

metabolism [96]. However, there exists a transcriptomics-based strain optimization tool for

secondary metabolite production that uses iMAT to predict the secondary metabolism of

Streptomyces coelicolor [97]. The comparison of different gene expression integrated FBA

modeling techniques, iMAT was found to be the only technique that can capture the onset of

secondary metabolism in Streptomyces coelicolor [97]. Nonetheless, the discrepancy between

predicted and observed production fluxes of ACT and RED indicates that iMAT only performs

well in a qualitative manner (Fig 2C). Also, this technique relies on condition-specific gene

expression data, limiting the scope of extrapolation. It can predict metabolism for various

design settings of interest only if different gene expression data corresponding to the different

settings are provided. Otherwise, this technique, to a large extent, can merely compute the flux

distribution corresponding to a specific set of gene expression levels. In short, to our knowl-

edge, so far there has not been a gene expression integrated modeling technique that predicts

secondary metabolite production with quantitative accuracy.

In a nutshell, existing FBA-based modeling techniques that manipulate the objective func-

tion cannot capture 2 distinct life objectives of a microbial cell concurrently, i.e., maximizing

growth and minimizing death [72]. Besides, how to formulate a mathematical model that

keeps the balance between the 2 objectives still remains an open question. Furthermore, no

mechanistic representation of gene expression regulation upstream to metabolism has been

built and integrated in FBA to make better use of omics datasets than simply determining “on”

and “off” of reactions for fixed settings. In summary, for existing FBA-based modeling tech-

niques that predict secondary metabolite production, those without integration of gene expres-

sion data are either limited to specific cases or too simplistic that only work under certain ideal

assumptions, while gene expression integrated techniques are scarce and unable to make pre-

dictions for different settings without costly data generation.
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3.3. Potential extensions of FBA towards predicting secondary metabolite

production

The associated GPR rules, already targeted by some of the existing approaches to predict the

secondary metabolite production as summarized in Section 3.2, suggests that the ability to

determine the activity of enzymes in secondary metabolic pathways could be the key to the

accuracy of modeling the secondary metabolite production. Here, this review proposes 2

potential extensions of FBA that may resolve issues of existing modeling techniques discussed

in Section 3.2.

3.3.1. Constrained proteome allocation for secondary metabolism

Proteome allocation, namely the distribution of proteome resources in different pathways,

governs cellular metabolism by controlling maximum reaction fluxes [98]. The constrained

proteome allocation theory has been proposed to model the competition for proteome

resources among different functional sectors such as catabolism, anabolism, transportation,

etc., characterizing the coordination of proteome partitions and cellular metabolism under dif-

ferent growth conditions [99–101]. The theoretical model has been applied in various FBA-

based models, such as CAFBA [102] or ME-model [103], via converting it into proteomic con-

straints on reaction fluxes. There are different ways to divide the proteome based on the

modeling requirement. For example, the proteome was divided into fermentation, respiration,

and biomass formation sectors in the prediction of overflow metabolism in Escherichia coli
[104]. Usually, glycolytic enzymes are clustered as the sector of catabolism or energy, mem-

brane transporter proteins are clustered as the sector of transportation, and a lumped prote-

ome resource for the growth function (biomass formation) is considered the sector of

anabolism [102,105,106]. The neglect of other enzymes’ proteome costs normally will not sig-

nificantly affect the simulation, as fluxes through those pathways are far smaller than that

through central carbon metabolism [102,105,106].

Though constrained proteome allocation-embedded FBA models have achieved good accu-

racy in case studies such as predicting overflow metabolism in E. coli [105] or explaining lactic

acid production in lactic acid bacteria [106], to our knowledge it has not been used to predict

the secondary metabolite production yet. The proteome partitioning has not included a sector

defined for secondary metabolism, as we found in various proteome allocation models. To

apply proteome allocation to predict secondary metabolite production, one potential approach

is integrating synthetic chemostat model (SCM) into FBA [72]. SCM is a differential equation-

based model of microbial growth kinetics that divides cellular metabolism into a P-component

for growth and a U-component for stress resistance [107]. Being a macroscopic bioreactor-

level model, SCM is too coarse to characterize different functional proteome sectors, but the

embedded concept can be used to modify the original constrained proteome allocation frame-

work. If a U-sector containing enzymes in biosynthetic pathways of secondary metabolites is

included and stress response is introduced into proteome allocation, then the modified model

might be able to characterize both growth and stress response via proteome allocation at the

metabolic switch that leads to secondary metabolite production. Below, an illustrative example

of pH-induced EPS production in lactic acid bacteria [108,109] is presented for the proposed

constrained proteome allocation model for both branches of metabolism (Fig 3).

�Qð50%Þ þ �U þ �C þ �R þ �T � 1 ð4Þ

�U

�U þ �C þ �R þ �T
� k1e

� k2

ð6:5� pHÞ2 ; k1; k2 > 0 ð5Þ
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vi � kcati½Ei�;
X

i

½Ei� � �x½PTOT�; x ¼ U;C; R;T ð6Þ

The cellular proteome is divided into inflexible housekeeping sector (Q-sector), catabolic

sector (C-sector), ribosomal sector for protein translation (R-sector), transportation sector (T-

sector), and secondary metabolism sector (U-sector). ϕx is the mass fraction of the sector x,

and ϕQ is assumed to 50% [102,105,106] (Eqs 4, 6). The total amount of proteome resources is

conserved (Eq 4). In response to environmental stress, which is acidity in this case, the fraction

of proteome resources allocated to the U-sector, which is EPS biosynthesis, rises up (Eq 5). k1

and k2 in Eq 5 are empirical coefficients. The metabolic fluxes are constrained by the total

amount of proteome resources allocated to the sector (Eq 6). [Ei], kcati are the concentration

and turnover rate of the enzyme i, respectively, and [PTOT] is the concentration of total cellular

proteins. The proteome allocation of secondary metabolism (Eq 5) can materialize in different

forms in actual implementation, e.g., modeling the consequence of differing proteomic costs

caused for different stress factors, such as temperature, inhibitors, or nutrient limitation

[102,110,111].

3.3.2. Combine gene regulatory and metabolic networks to capture

secondary metabolism onset

Constrained proteome allocation-embedded FBA models can capture the shift in metabolic

states via modeling resource distribution among functional proteome sectors [102]. However,

they do not characterize regulatory interactions between regulatory factors (RFs) and genes at

transcriptional or translational level. On the other hand, existing gene expression integrated

Fig 3. An illustrative example of pH-induced EPS production in lactic acid bacteria, used to explain the constrained proteome allocation model for both

primary and secondary metabolism. (A) The metabolic network of lactic acid bacteria for both primary metabolism (C, R, T sectors) and secondary

metabolism (U sector). (B) Simulated metabolic response to pH: the increase of acidity inhibits the growth rate and induces EPS production. (C) Simulated

proteome allocation in response to pH: the increase of acidity activates secondary metabolism, and more proteome resources get allocated to the U sector.

Note: this “toy” model is for illustration only. EPS, exopolysaccharide.

https://doi.org/10.1371/journal.pcbi.1011391.g003
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FBA modeling techniques, such as iMAT, do not have a mechanistic representation of gene

expression regulation, and hence, their applications on the prediction of secondary metabolite

production are restricted by condition-specific data availability. Therefore, a regulatory net-

work model needs to be combined with FBA, as illustrated in Fig 4, to resolve the limitation of

direct integration of gene expression into FBA. Though not for predicting secondary metabo-

lite production, several integrated regulatory-metabolic models, also called regulatory FBA

(rFBA), have been reported for a while [112–115]. The generic framework of dynamic rFBA is

a combination of FBA for intracellular metabolic fluxes, a Boolean logic network modeling

regulatory interactions, and a set of differential equations modeling concentrations of RFs, bio-

mass, and extracellular metabolites [116]. The rFBA model constrains metabolic fluxes by pre-

dicting the expression status of the gene associated with the reaction, which means that

metabolic fluxes only flow through active reactions.

Enlightened by the idea of dynamic rFBA, if regulatory interactions related to secondary

metabolism are elucidated in a Boolean logic network, dynamic simulation of gene expression

regulation at metabolic switch can be performed, and thus quantitatively capture the onset of

secondary metabolite production (Fig 4). The stress response can be appended into rFBA, as

the process from stress sensing to regulation can be represented by signal transduction in a

network [117], though such approach has not been applied to the modeling of secondary

metabolism yet. In essence, rFBA has the potential to overcome the limitation of conventional

FBA by including regulation, an important cellular activity apart from biomass formation,

which will enhance the predictive power of FBA on secondary metabolite production.

4. Conclusion and outlook

This review summarized the current key challenges that limit the modeling of secondary

metabolism, which are mainly derived from 2 aspects: (1) the difficulty in reconstructing the

complete biosynthetic route of a secondary metabolite in an enzymatically detailed manner;

and (20) the inability of FBA-based modeling techniques to make quantitatively accurate pre-

dictions for secondary metabolism under different conditions for engineering and practical

Fig 4. Schematic diagram of the combination of metabolic and GRNs to predict the secondary metabolite

production. The stress signal stimulates the expression of RF, resulting in the activation of enzymes catalyzing

reactions for secondary metabolite biosynthesis. Orange circle: secondary metabolite; pink circle: primary metabolite.

Enz, enzyme; GRN, gene regulatory network; RF, regulatory factor.

https://doi.org/10.1371/journal.pcbi.1011391.g004
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purposes. As for the first challenge, except for PKs/NRPs, the pathway reconstruction for sec-

ondary metabolites generally lacks template models and databases containing information of

biochemical reactions associated with secondary metabolism. Consequently, this process is

much less automated. For example, although databases related with EPS biosynthesis are avail-

able, e.g., EPS-DB [118], CAZy [119], the information on enzymes and molecular structures is

not assembled together, which makes automated reconstruction of EPS biosynthetic pathways

currently infeasible.

The existing FBA-based modeling techniques that are intended to tackle the second chal-

lenge have been evaluated in this review. It shows that they are either too simplistic or have

restricted application scopes. None of them are predictive enough to capture the production of

secondary metabolites. Nevertheless, those modeling techniques show usefulness in certain

cases, such as manipulating the objective function and incorporating transcriptomics data.

With the aim of building a modeling technique that captures the mechanistic understanding

of secondary metabolism, we have suggested the application of 2 potential extensions of FBA-

based modeling techniques. They respectively incorporate constrained proteome allocation

that explicitly account for the enzyme capacity for secondary metabolism and connect with the

regulatory network model for gene expression states that control reaction activities with high

resolution. Detailed implementation approaches in those directions remain to be explored,

which we envisage will benefit from further and more mechanistic understanding of cellular

responses leading to the production of secondary metabolites. Additionally, future curation

works of proteomic and gene regulatory information, both in connection with typical or spe-

cific secondary metabolic pathways, will contribute to the advancement of those approaches.

When a high coverage of biosynthetic pathways for secondary metabolites is achieved in

metabolic reaction databases for smGSMM reconstruction, and a modeling technique that

accurately captures the mechanism of secondary metabolism is developed, the complex bio-

process of secondary metabolite production will then become more “white-boxed.” Research-

ers, particularly those in the field of synthetic biology, will be able to conduct more reliable in

silico analysis of secondary metabolite production. This advancement will contribute to the

development of model-based design and pathway engineering approaches aimed at controlling

secondary metabolism, such as enhancing the productivity of high-value secondary

metabolites.
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67. Delépine B, Duigou T, Carbonell P, Faulon J-L. RetroPath2.0: A retrosynthesis workflow for metabolic

engineers. Metab Eng. 2018; 45:158–170. https://doi.org/10.1016/j.ymben.2017.12.002 PMID:

29233745

68. Zheng S, Zeng T, Li C, Chen B, Coley CW, Yang Y, et al. BioNavi-NP: Biosynthesis Navigator for Nat-

ural Products. arXiv [q-bio.QM]. 2021. Available from: http://arxiv.org/abs/2105.13121.

69. Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, et al. Metabolic engineering of

Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol. 2011; 7:445–452. https://doi.

org/10.1038/nchembio.580 PMID: 21602812

70. Hadadi N, Hafner J, Shajkofci A, Zisaki A, Hatzimanikatis V. ATLAS of Biochemistry: A Repository of

All Possible Biochemical Reactions for Synthetic Biology and Metabolic Engineering Studies. ACS

Synth Biol. 2016; 5:1155–1166. https://doi.org/10.1021/acssynbio.6b00054 PMID: 27404214

71. Watson IA, Wang J, Nicolaou CA. A retrosynthetic analysis algorithm implementation. J Chem. 2019;

11:1. https://doi.org/10.1186/s13321-018-0323-6 PMID: 30604073

72. Panikov NS. Genome-Scale Reconstruction of Microbial Dynamic Phenotype: Successes and Chal-

lenges. Microorganisms. 2021; 9. https://doi.org/10.3390/microorganisms9112352 PMID: 34835477

73. Becker SA, Feist AM, Mo ML, Hannum G, Palsson BØ, Herrgard MJ. Quantitative prediction of cellular

metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc. 2007; 2:727–738. https://

doi.org/10.1038/nprot.2007.99 PMID: 17406635

74. Latendresse M, Ong WK, Karp PD. Metabolic Modeling with MetaFlux. Methods Mol Biol. 2022;

2349:259–289. https://doi.org/10.1007/978-1-0716-1585-0_12 PMID: 34718999

75. Grafahrend-Belau E, Klukas C, Junker BH, Schreiber F. FBA-SimVis: interactive visualization of con-

straint-based metabolic models. Bioinformatics. 2009; 25:2755–2757. https://doi.org/10.1093/

bioinformatics/btp408 PMID: 19578041

76. Chen X, Alonso AP, Allen DK, Reed JL, Shachar-Hill Y. Synergy between 13C-metabolic flux analysis

and flux balance analysis for understanding metabolic adaption to anaerobiosis in E. coli. Metab Eng.

2011; 13:38–48.

77. Vijayakumar S, Rahman PKSM, Angione C. A Hybrid Flux Balance Analysis and Machine Learning

Pipeline Elucidates Metabolic Adaptation in Cyanobacteria. iScience. 2020; 23:101818. https://doi.

org/10.1016/j.isci.2020.101818 PMID: 33354660

78. Burgard AP, Pharkya P, Maranas CD. Optknock: a bilevel programming framework for identifying

gene knockout strategies for microbial strain optimization. Biotechnol Bioeng. 2003; 84:647–657.

https://doi.org/10.1002/bit.10803 PMID: 14595777

79. Zorrilla F, Buric F, Patil KR, Zelezniak A. metaGEM: reconstruction of genome scale metabolic models

directly from metagenomes. Nucleic Acids Res. 2021; 49:e126. https://doi.org/10.1093/nar/gkab815

PMID: 34614189

80. Toya Y, Shimizu H. Flux analysis and metabolomics for systematic metabolic engineering of microor-

ganisms. Biotechnol Adv. 2013; 31:818–826. https://doi.org/10.1016/j.biotechadv.2013.05.002 PMID:

23680193

81. Nieselt K, Battke F, Herbig A, Bruheim P, Wentzel A, JakobsenØM, et al. The dynamic architecture of

the metabolic switch in Streptomyces coelicolor. BMC Genomics. 2010; 11:10. https://doi.org/10.

1186/1471-2164-11-10 PMID: 20053288

82. Lind AL, Smith TD, Saterlee T, Calvo AM, Rokas A. Regulation of Secondary Metabolism by the Velvet

Complex Is Temperature-Responsive in Aspergillus. G3. 2016; 6:4023–4033. https://doi.org/10.1534/

g3.116.033084 PMID: 27694115

83. Brakhage AA. Regulation of fungal secondary metabolism. Nat Rev Microbiol. 2013; 11:21–32. https://

doi.org/10.1038/nrmicro2916 PMID: 23178386

84. Martı́n JF, Sola-Landa A, Santos-Beneit F, Fernández-Martı́nez LT, Prieto C, Rodrı́guez-Garcı́a A.

Cross-talk of global nutritional regulators in the control of primary and secondary metabolism in Strep-

tomyces. J Microbial Biotechnol. 2011; 4:165–174. https://doi.org/10.1111/j.1751-7915.2010.00235.x

PMID: 21342462

85. Demain AL. Carbon source regulation of idiolite biosynthesis in actinomycetes. Regulation of second-

ary metabolism in Actinomycetes. https://doi.org/10.1201/9781003068600-4/carbon-source-

regulation-idiolite-biosynthesis-actinomycetes-arnold-demain
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