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A B S T R A C T

Electrochemical impedance spectroscopy (EIS) is a widely used experimental technique for characterising ma-
terials and electrode reactions by observing their frequency-dependent impedance. Classical EIS measurements
require the electrochemical process to behave as a linear time-invariant system. However, electrochemical
processes do not naturally satisfy this assumption: the relation between voltage and current is inherently
nonlinear and evolves over time. Examples include the corrosion of metal substrates and the cycling of Li-
ion batteries. As such, classical EIS only offers models linearised at specific operating points. During the last
decade, solutions were developed for estimating nonlinear and time-varying impedances, contributing to more
general models. In this paper, we review the concept of impedance beyond linearity and stationarity, and
detail different methods to estimate this from measured current and voltage data, with emphasis on frequency
domain approaches using multisine excitation. In addition to a mathematical discussion, we measure and
provide examples demonstrating impedance estimation for a Li-ion battery, beyond linearity and stationarity,
both while resting and while charging.
Electrochemistry studies processes at electrode/electrolyte inter-
faces. These processes involve the movement of charged species (ions
or electrons), generating a current flowing through a cell and a volt-
age drop over its electrodes. Diverse non-invasive techniques rely-
ing on current and voltage measurements have been developed for
studying these processes. Typically, one of the two quantities is kept
constant, swept, or oscillated, while the other quantity’s response
is recorded. Some of the most widely used techniques are linear
sweep voltammetry, constant current chrono-potentiometry, constant-
potential chronoamperometry and electrochemical impedance spec-
troscopy (EIS). In EIS [1–5], the dynamics of electrochemical processes
are studied by means of the impedance response to the applied current
or voltage, and the term ‘spectroscopy’ refers to the frequency depen-
dency. It is worth emphasising that EIS is a nonparametric data-driven
technique, i.e. the impedance is solely computed relying on current and
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voltage data, without prior knowledge about the governing equations
as in physics-based modelling [6–8].

During the last two decades, EIS has gained wide popularity thanks
to its accessible implementation and broad applicability to, among
others, corrosion [9–11], batteries [12–21], and fuel cells [22,23].
Nowadays, EIS is available in many commercial cyclers and poten-
tiostats, where a user decides on a set of frequencies and the device
measures the complex impedance values at these frequencies.

From a system theoretical perspective, the impedance is a special
case of a transfer function, which is a model for a linear time-invariant
(LTI) dynamical system [24]. In system theory, dynamical systems are
systems with memory, that is, systems defined through differential
equations or, equivalently, convolution operators. This is opposed to
static systems, where the output is simply a static function of the input.
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This interpretation of the term dynamic should not be confused with
its use in electrochemistry to denote time-variation. In this article,
we use the system theory convention. Models relate the output of the
system to its input, which, in the EIS case, is the current through
and the voltage over the electrodes. In galvanostatic experiments the
current is the input and voltage the output, while in potentiostatic
experiments it is the other way around. In the remainder of this text, EIS
experiments satisfying the assumptions of LTI systems will be referred
to as ‘classical EIS’. Estimating transfer functions from input and output
data of LTI systems is a thoroughly studied problem in the field of
system identification [25,26].

However, for electrochemical systems it is well known that (i)
the relation between current and voltage is generally nonlinear, e.g.
expressed by exponential functions in the Butler–Volmer equation, and
(ii) the behaviour of the process may evolve over time. Li-ion batteries,
for example, provide such time-variation on different time-scales. On
a large time-scale, the impedance of a fresh and an aged cell are
different [12,18]. On a shorter time-scale, the impedance of a fully
charged and a fully discharged cell are also different [13]. Accordingly,
with classical EIS, one represents electrochemical processes which are
by nature nonlinear and nonstationary with a model for linear and
stationary systems. While classical EIS may be a non-ideal approx-
imation for such cases, important information about the process is
nonetheless revealed by measuring within forced constraints of linear-
ity and stationarity at specific operating points. Linearity is achieved
by applying a small excitation amplitude such that the behaviour of
the process is linearised in a certain operating region. Stationarity
is achieved by measuring at a time, and over a timespan, when the
process is and remains in steady-state. However, these experimental
conditions are very restrictive. How can we obtain information about
the nonlinear behaviour of a system when it is only possible to perform
experiments under linear constraints? How can we study a battery while
t is charging or discharging? How can we study anodising while a
rotective layer is forming?

To relax these limitations, the concept of impedance needs exten-
ions. The required extensions to model systems beyond the linearity
nd stationarity constraints have been studied in system theory. Non-
inear time-invariant (NLTI) systems are commonly studied by Volterra
eries [27,28]. These are convolution operators that are able to capture
ynamical nonlinear behaviour, where the transfer function is ex-
ended to so-called generalised transfer functions. Similarly, nonlinear
mpedances are studied in nonlinear EIS (NLEIS) [29–35]. Assuming
hat the nonlinear behaviour of an electrochemical system can be
aptured by a Volterra series, the behaviour of the process can be split
nto a linear part and purely nonlinear part [36]. The model for the
inear part is denoted as the best linear approximation (BLA) of the
ystem. When the nonlinearities are small enough compared to the
inear behaviour, use of the BLA for describing the system is justified.

Nonstationary systems have been studied by extending the transfer
unction to be a time-varying transfer function to describe a linear time-
arying (LTV) system [37]. The latter is a transfer function depending
n both time and frequency, expressing the evolution of the transfer
unction over time. Similarly, the impedance can be extended to a time-

varying impedance. As an analogy, the impedance can be considered
to be like a photograph where as in the first days of photography –
think mid 19th century – the subject should remain stationary during
a certain exposure time for accumulating light on a sheet, but the
time-varying impedance can be seen as a movie of a subject during an
activity.

Over the years, techniques have been developed to detect nonsta-
tionarities and nonlinearities in measured data, where it was shown
that frequency domain identification techniques with multisine excita-
tions are advantageous [38–42]. Recently, with increasing computation
power, different techniques have been developed and refined for un-
ravelling time-varying impedance from data [43–49]. Time-varying
2

impedance data have already successfully been obtained for a wide
variety of electrochemical processes, including organic coatings [50],
electrorefining [51], hydrogen evolution reactions [52], nickel hex-
acyanoferrate thin films [53], electrochemical double layer capaci-
tors [54], charging/discharging Li-ion batteries [55–59], and Li-plating
in batteries [60–62].

Commonly, drift signals may appear (for instance the slow voltage
increase when charging a battery) during in operando electrochemical
measurements. These drift signals prohibit measuring impedance data
at low frequencies. A method for removing drift signals has been
developed [63], and successfully applied to electrorefining [64], ano-
dising [65], and Li-ion batteries [58,59], such that the time variations
of the low-frequency impedance can also be estimated.

In this review article, we detail the required mathematical con-
cepts associated with impedance and their extensions beyond linearity
and stationarity. Key concepts are supported with illustrations ob-
tained from simulations and real-life measurements. Experiments are
performed on a pristine commercially available Samsung 48X Li-ion
battery. This is a 4.8 Ah 21 700 cylindrical cell format with cathodes
based on lithiated metal oxide (Co, Ni, Al) and anodes based on
graphite and blended Si. The impedance is measured at different tem-
peratures, while resting and while charging. We opt for this case-study
on Li-ion batteries since EIS is becoming a popular tool for characteris-
ing batteries, diagnosing state-of-health, and developing smart charging
protocols. These compelling applications are also discussed as a moti-
vation to perform EIS beyond linearity and stationarity. Moreover, the
measurements are obtained using a commercial potentiostat (Gamry
Interface 5000E), showcasing the practical accessibility of the discussed
modelling techniques.

This article is structured as follows. First, we give a motivational
example on how impedance data beyond linearity and stationarity
is promising for battery aging diagnostics and smart charging pro-
tocols (Section 1). Next, we define a model of an electrochemical
system (Section 2). Then, we revisit classical EIS (Section 3), with
emphasis on the limiting constraints of linearity and stationarity. The
choice between single-sine and multisine excitations is discussed. Then,
we formally introduce nonlinear and nonstationary models for elec-
trochemical measurements through, respectively, Volterra series and
time-varying impedances (Section 4). The Volterra series is linked to
NLEIS and the BLA. Next, we detail the experimental procedure in
measuring current and voltage time-series for proper impedance mea-
surements (Section 5). The estimation of classical impedance data in the
frequency domain from periodic and random excitations is discussed
in Section 6. Then, we detail the assessment of the linearity and
stationarity constraints, and how nonlinearities and nonstationarities
are detected by observing the current and voltage spectra under odd
random phase multisine excitations (Section 7). Obtaining nonlinear
impedance data and the BLA is discussed in Section 8. Extraction of
time-varying impedance data from collected current and voltage data
is studied through various methods in Section 9. This has been detailed
also in Szekeres et al. [66], however, we give a deeper mathematical
foundation. In Section 10, we discuss our illustrative experiments on
Li-ion batteries. Finally, conclusions and an outlook are given in Sec-
tion 11. A list of acronyms and symbols can be found at the end of the
paper.

1. Overview of applications of EIS for batteries

Before we get into the details of how impedance works, let us first
motivate the topic and reflect on why impedance is useful for solving
some of electrochemistry’s crucial research problems, and more im-
portantly, why measuring impedance beyond linearity and stationarity
is promising. We do this for the compelling case of Li-ion batteries.
Here, some relevant research problems include state-of-health (SOH)
prognostics [67–76] and smart charging [77–80]. For SOH prognostics,
EIS is a powerful non-invasive tool [81]. It has been shown that

classical impedance data, mapped onto equivalent circuit model (ECM)
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parameters, contains important information about degradation mecha-
nisms [16,73,82]. Moreover, classical impedance data is an informative
input to machine learning algorithms to predict the remaining-useful-
life (RUL) of batteries [19,83]. Jones et al. [21, Table 1] demonstrate
that the EIS data state representation performs better than other state
representations for SOH forecasting. Bizeray et al. [84] also show that
physical parameters can be identified from classical impedance data,
allowing simulation of the battery using physics-based models such
as the single-particle model (SPM). This is an non-invasive way of
parametrising cells, being more practical than tearing down cells [7].

Impedance data beyond linearity and stationarity has the potential
to improve battery SOH diagnostics since it contains additional infor-
mation compared to classical impedance data. Leveraging nonlinear
and time-varying impedance data has already been carried out for
detecting Li-plating [62,85], an important Li-ion degradation mech-
anism [70,86]. Moreover, Kirk et al. [34] demonstrate that nonlin-
ear impedance data contributes to the identifiability of physical SPM
parameters.

Impedance data beyond linearity and stationarity also has the poten-
tial to improve smart charging protocols. Katzer et al. [87] propose an
adaptive fast charging protocol relying on impedance-based detection
of Li-plating [62]. In Zhu et al. [58], we track the charge transfer
resistance while charging, which can be obtained from time-varying
impedance data, and propose to adapt the charge profile based on this
time-varying charge transfer resistance. A critical reader may argue that
EIS experiments are expensive, and cannot easily be implemented in
battery management systems (BMS). However, different solutions have
been developed to implement low-cost measurement apparatus [88–
90]. Here multisine excitations and frequency domain model estimation
are promising tools.

2. Modelling electrochemical systems

Electrochemical processes are often studied by modelling the rela-
tion between the current 𝑖(𝑡) through, and the voltage 𝑣(𝑡) over the
electrodes, where 𝑡 denotes continuous time. However, this relation
may also be dependent on external parameters 𝑝(𝑡) such as the ambient
temperature, the rotation rate of the electrodes, the pressure, the
concentration distribution on the electrodes, etc.

Two types of experiments are common to measure the relation
between current and voltage. In galvanostatic experiments, a current is
applied and the voltage is measured. In a general setting, the impedance
is modelled as an operator {⋅} acting on the current and external
parameters,

𝑣(𝑡) = {𝑖(𝑡), 𝑝(𝑡)}. (1)

In potentiostatic experiments, the measurements are performed the other
way around, that is, through an operator {⋅}, 𝑖(𝑡) = {𝑣(𝑡), 𝑝(𝑡)}.
Here, the notations for galvanostatic experiments are chosen, that is,
the current 𝑖(𝑡) is the excitation and the voltage 𝑣(𝑡) is the response
appropriate for low impedance devices such as batteries).

As mentioned in the introduction, the operators above are dynami-
al, that is, operators with memory, or also called convolution operators,
ot only acting on the present time, but also making use of past
nformation.

In what follows, it is detailed how the operator  can be modelled
y an impedance. We first consider the system under the constraints
f linearity and stationarity (Section 3), and proceed by introducing
odels beyond these hard constraints (Section 4).

. Classical EIS revisited

.1. The constraints of classical EIS

In classical EIS experiments, the external parameters 𝑝(𝑡) are as-
3

umed constant during the experiment and the generic model (1) is
Fig. 1. Equivalent electrical schematic of an electrochemical system under LTI
constraints.

simplified to

𝑣(𝑡) = OCV +𝑍{𝑖(𝑡)}
⏟⏟⏟
𝑣𝑍 (𝑡)

, (2)

here OCV is the open circuit voltage, assumed constant, 𝑍 is the clas-
ical impedance operator and 𝑣𝑍 (𝑡) is the voltage over the impedance.
n equivalent electrical circuit representing this model is shown in
ig. 1. It is assumed that operator 𝑍 satisfies the constraints of LTI
ystems, that is, linearity and stationarity, and also causality.

inearity. The operator 𝑍 is a linear operator, satisfying additivity and
omogeneity, respectively,

{𝑖1(𝑡) + 𝑖2(𝑡)} = 𝑍{𝑖1(𝑡)} +𝑍{𝑖2(𝑡)} (3a)

{𝛼𝑖(𝑡)} = 𝛼𝑍{𝑖(𝑡)} ∀𝛼 ∈ R. (3b)

s such, when the current 𝑖 doubles, the voltage 𝑣𝑍 over the impedance
lso doubles.

tationarity (time-invariance). A stationary system is a system whose
ehaviour does not change when shifted in time. Accordingly, the
perator 𝑍 is independent of the time at which the excitation is applied:

{𝑖(𝑡 − 𝜏)} = 𝑣𝑍 (𝑡 − 𝜏) ∀𝜏 ∈ R. (4)

ausality. The response of the system is totally determined by the
xcitation. As a consequence, the response to an excitation cannot
recede the excitation.

For potentiostatic experiments under LTI constraints, the excitation-
esponse relation yields,

(𝑡) = 𝑌 {𝑣(𝑡) − OCV
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑣𝑍 (𝑡)

}, (5)

here 𝑌 is called the admittance operator, satisfying the same condi-
ions as the impedance operator 𝑍. Notations in this paper can, hence,
e converted into potentiostatic experiments by swapping 𝑖 and 𝑣𝑍 , and
eplacing the impedance 𝑍 by admittance 𝑌 .

When charge transfer is the rate-determining step, the static relation
etween current and voltage of electrochemical reactions is described
y the Butler–Volmer equation [91],

= 𝑗0𝑆
(

exp
(

𝛼𝑎𝑛𝐹
𝑅T

𝑣Z

)

− exp
(

−
𝛼𝑐𝑛𝐹
𝑅T

𝑣Z

))

, (6)

with 𝑗0 the exchange current density, 𝑆 the surface area of the elec-
trode, T the absolute temperature in Kelvin, 𝑛 the number of electrons,
𝐹 the Faraday constant, 𝑅 the universal gas constant, 𝛼𝑎 the anodic
charge transfer coefficient, and 𝛼𝑐 the cathodic charge transfer coeffi-
cient. When assuming 𝛼𝑎 = 𝛼𝑐 = 0.5, this equation can be rewritten to
obtain the overpotential as a function of the current,

𝑣Z = 2𝑅T sinh−1
(

𝑖
)

. (7)

𝑛𝐹 2𝑗0𝑆
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Fig. 2. Illustration of the linearisation of the Butler–Volmer Eq. (7) for a small
amplitude sinusoidal excitation.

The top left plot of Fig. 2 shows this Butler–Volmer relation between
current and voltage as a dotted line. This relation is obviously not
linear. However, the linearity constraint can approximately be satisfied
by choosing the magnitude of the excitation signal in a specific range.
This can be seen by expanding (7) as a Taylor series around 𝑖 = 0,

Z =
𝜕𝑣Z
𝜕𝑖

|

|

|

|𝑖=0
𝑖

⏟⏞⏟⏞⏟
linear term

+
𝜕2𝑣Z
𝜕𝑖2

|

|

|

|𝑖=0
𝑖2 +

𝜕3𝑣Z
𝜕𝑖3

|

|

|

|𝑖=0
𝑖3 +… (8)

hen the current 𝑖 is small enough, the linear term will dominate the
igher order terms and linearity can be assumed. A rule of thumb for
nsuring linearity is that the voltage deviation should not be larger than
5mV [92]. An illustration of the linearisation of the Butler–Volmer
quation is also shown in Fig. 2. A small amplitude sinusoidal current
xcitation centred around zero (blue) is applied to the Butler–Volmer
quation (dotted black line), and the response is the voltage centred
round the value OCV (red). For an excitation with small amplitude,
he Butler–Volmer equation is quasi-linear in the excited range (black
ine).

The stationarity constraint, on the other hand, is satisfied by driving
he electrochemical system in steady-state, and applying a zero-mean
urrent excitation to remain in steady-state. For a battery, for instance,
pplying a current excitation with a positive mean value would charge
he battery and cause nonstationary behaviour. It is also necessary
hat the external parameters 𝑝(𝑡) remain constant during the experi-
ent. A significant change in ambient temperature, for instance, might

eopardise the stationarity constraint.
The relation between the excitation and response of LTI systems

s well documented in system theory [24]. The response 𝑣Z(𝑡) of an
TI system is commonly modelled by the convolution of the impulse
esponse function 𝑧(𝑡) with the excitation 𝑖(𝑡),

𝑍 (𝑡) = ∫

∞

−∞
𝑧(𝜏)𝑖(𝑡 − 𝜏)d𝜏. (9)

he impulse response function is the response to a Dirac pulse. Note
hat (9) satisfies (3) and (4). Often, the fact that a convolution in the
ime domain becomes a product in the frequency domain is exploited
o rewrite (9) in a way where the frequency dependent impedance 𝑍(𝜔)
ppears,

𝑍 (𝑡) = −1{𝑍(𝜔)𝐼(𝜔)}. (10)

ere, the impedance 𝑍(𝜔) is defined as the Fourier transform of the
mpulse response function 𝑧(𝑡), −1{⋅} is the inverse Fourier transform
perator, and 𝐼(𝜔) the Fourier transform of the current. The Fourier
4

Fig. 3. Illustration of classical impedance data at different operating points for a
Samsung 48X Li-ion battery (see Section 10). The operating points in the temperature-
SOC plane are shown in (d), while the corresponding impedances are shown as Bode
plot in (a–b) and as Nyquist chart in (c). The impedance data at the selected frequencies
is indicated by dots, which are connected with straight lines.

and inverse Fourier transforms are defined in Appendix A. Recall that
the angular frequency 𝜔 is related to the frequency 𝑓 as 𝜔 = 2𝜋𝑓 .

The voltage over the electrochemical system is then

𝑣(𝑡) = OCV + −1{𝑍(𝜔)𝐼(𝜔)}. (11)

Accordingly, the impedance is given by the ratio of the Fourier transforms
of voltage and current,

𝑍(𝜔) =
𝑉 (𝜔)
𝐼(𝜔)

𝜔 ≠ 0. (12)

ote that the impedance is not expressed at DC. The impedance at
C becomes infinite in magnitude and with a purely imaginary phase
ecause the linearised OCV behaves like a capacitor.

As for any frequency response function, the impedance is a complex
alued function, often denoted as

(𝜔) = 𝑍r (𝜔) + 𝑗𝑍j(𝜔), (13)

ith 𝑗 the imaginary unit (𝑗2 = −1), and 𝑍r (𝜔) and 𝑍j(𝜔) the real and
maginary parts of the impedance, respectively. The complex-valued
mpedance is also defined by its magnitude and phase, respectively,

|𝑍(𝜔)| =
√

𝑍2
r (𝜔) +𝑍

2
j (𝜔) (14a)

∠𝑍(𝜔) =

⎧

⎪

⎨

⎪

⎩

arctan
𝑍j(𝜔)
𝑍r (𝜔)

for 𝑍r (𝜔) ≥ 0

𝜋 + arctan
𝑍j(𝜔)
𝑍r (𝜔)

for 𝑍r (𝜔) < 0.
(14b)

ote that in electrochemistry the phase of the impedance is often
enoted as 𝜑(𝜔).

The impedance is usually visualised on a Bode plot (Fig. 3 (a–b)) as
agnitude and phase in function of frequency, or on a Nyquist chart

Fig. 3(c)) as real versus negative imaginary part, since electrochemical
systems are often capacitative in their electrical behaviour.
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In the potentiostatic case, the impedance can still be computed by
12), since the admittance 𝑌 (𝜔) is defined as follows,

𝑌 (𝜔) =
𝐼(𝜔)
𝑉 (𝜔)

= 1
𝑍(𝜔)

. (15)

Kramers–Kronig
The conformity of the required constraints of linearity (3) and sta-

tionarity (4) can be validated through the Kramers–Kronig transforma-
tion [5,93–95]. This transformation states that there is an analytical
relation between the real and imaginary parts of the impedance,

𝑍r (𝜔) = 𝑍r (∞) + 2
𝜋 ∫

∞

0

𝑥𝑍j(𝑥) − 𝜔𝑍j(𝜔)

𝑥2 − 𝜔2
d𝑥 (16a)

𝑍j(𝜔) = −2𝜔
𝜋 ∫

∞

0

𝑍r (𝑥) −𝑍r (𝜔)
𝑥2 − 𝜔2

d𝑥. (16b)

n theory, when the imaginary impedance computed from the measured
eal part coincides well with the measured imaginary part, or vice
ersa, the required constraints are assumed to be satisfied. However,
n practice, (16) is difficult to implement since the integral needs
ontinuous impedance data (while only discrete data is available) and
oes from DC to infinity (while data is only available in a certain
requency band). Moreover, measurement noise is not accounted for.
ence, an alternative approach is to fit an equivalent circuit model
ased on solely the real, or imaginary, part of the impedance data.
hen the model coincides well with the measured complex impedance

ata, the Kramers–Kronig relation is assumed to be satisfied [96,97].

odels at operating points
It is very important to stress that the impedance 𝑍(𝜔) measured with

lassical EIS is dependent on the local operating point (in the sense of a
aylor expansion) at which the experiments have been performed. The
perating point is defined by the OCV value and the constant values of
he external parameters 𝑝(𝑡). As an example, Fig. 3(d) shows operating
oints of a Li-ion battery depending on the state-of-charge (SOC) and
emperature. The measured classical impedances 𝑍(𝜔) of a Samsung
8X Li-ion battery (see Section 10) at these operating points are shown
s Bode (a–b) and Nyquist (c) plots. We observe that the impedance
epends on the SOC and temperature, and that low SOC and low tem-
erature exhibit higher impedance values. Furthermore, for batteries,
difference in impedance would also be visible for experiments at the

ame SOC and temperature, but at different SOH [12,18].

.2. Excitation

The excitation signal 𝑖(𝑡) must be ‘rich’ enough such that the re-
sponse 𝑣(𝑡) contains the information needed for extracting impedance
data. Since impedance data should be measured at a set of frequencies,
it is natural to use sinusoidal functions as excitations. Historically, EIS
was performed with single-sine excitations. Later, multisine EIS was
developed [40]. Both of them have pros and cons, which are discussed
now.

3.2.1. Single-sine excitation
Commonly, single-sine excitations are used for EIS [98,99]. That

is, a sinusoidal zero-mean current signal with small amplitude 𝐼𝑚 at
a selected angular frequency 𝜔𝑚 is applied,

𝑖(𝑡) = 𝐼𝑚 cos(𝜔𝑚𝑡), (17)

and the voltage response (10) is measured,

𝑣(𝑡) = OCV + |𝑍(𝜔𝑚)|𝐼𝑚
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑉𝑚

cos
(

𝜔𝑚𝑡 + ∠𝑍(𝜔𝑚)
⏟⏞⏟⏞⏟

𝜓𝑚

)

. (18)

The voltage response is a sinusoidal signal (assuming linearity due to
the small current amplitude) at the same frequency, however, with a
different amplitude 𝑉 and phase 𝜓 , superimposed on the OCV. This is
5

𝑚 𝑚 b
Fig. 4. Illustration of the response of an LTI system excited by single-sine and multisine
excitations. The first row has a single-sine excitation at angular frequency 𝜔1, the
second row at 𝜔2 = 2𝜔1, and the third row has a multisine excitation, which is the
sum of the two single-sines. The OCV is plotted in black.

illustrated in Fig. 2 and the two top rows of Fig. 4. The complex-valued
impedance at angular frequency 𝜔𝑚 is computed from the amplitude
scaling and phase shift between current and voltage,

𝑍(𝜔𝑚) =
𝑉𝑚
𝐼𝑚
𝑒𝑗𝜓𝑚 . (19)

The selected frequencies 𝜔𝑚, 𝑚 = 1, 2,… ,𝑀 , are applied sequentially
(i.e. one after the other), usually starting from the highest frequency
and ending at the lowest one. Often the selected frequencies are loga-
rithmically spaced over multiple decades such as to excite processes
happening at different time-scales. The impedance at each of these
frequencies is computed. Note that it is only possible to apply the
sinusoids sequentially because stationarity (4) is assumed, and, hence,
the response is independent of the time of excitation.

3.2.2. Multisine excitation
Instead of applying sinusoidal signals sequentially, it is also possible

to apply the different frequencies simultaneously. This is the purpose of
a multisine, where the sum of sinusoidal signals at different frequencies
is applied,

𝑖(𝑡) =
𝑀
∑

𝑚=1
𝐼𝑚 cos(𝜔𝑚𝑡 + 𝜙𝑚). (20)

Here, each of the sinusoidal components is given a different phase 𝜙𝑚
to avoid introducing constructive interference (see Section 5). Due to
the linearity constraint (3), the total response yields the sum of each of
the individual responses,

𝑣(𝑡) = OCV +
𝑀
∑

𝑚=1
|𝑍(𝜔𝑚)|𝐼𝑚
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑉𝑚

cos
(

𝜔𝑚𝑡 + 𝜙𝑚 + ∠𝑍(𝜔𝑚)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝜓𝑚

)

. (21)

he impedance values at the selected angular frequencies 𝜔𝑚 can still
e computed based on the amplitude scaling and the phase shifts of the
inusoidal components,

(𝜔𝑚) =
𝑉𝑚
𝐼𝑚
𝑒𝑗(𝜓𝑚−𝜙𝑚). (22)

n illustration of current and voltage signals for a multisine excitation
nder the assumptions of linearity and stationarity is shown in the
ottom row of Fig. 4.
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3.2.3. The choice of excitation signal
For classical EIS experiments, it is common to use single-sine ex-

periments since they are known to electrochemists and easy to use
with commercially available potentiostats. However, for broadband
experiments, that is, experiments over a large frequency band, we
recommend the use of a multisine.

First of all, since for multisine experiments all frequencies are
applied simultaneously, as opposed to sequentially in single-sine exper-
iments, the experiment time is shorter [40]. Moreover, in single-sine
experiments we should wait for transients to fade out at each individual
frequency, while for multisine experiments this should only be done
once, which also decreases the experiment time.

The constraints of linearity and stationarity are easily checked
for multisine experiments by looking at the measured current and
voltage data in the frequency domain (see Section 7), while for single-
sine experiments one needs to check the Kramers–Kronig relations.
It is noteworthy that for multisine experiments one must use the
frequency domain to detect nonlinearity and nonstationarity, since it
has been empirically shown that multisine experiments always satisfy
the Kramers–Kronig relations [100]. This is studied in more detail
in Section 7. Next, we demonstrate that the most commonly stated
arguments in favour of single-sine experiments over multisine ones can
be debunked.

1. The linearity constraint is believed to be easier to impose in
the single-sine setting. The amplitudes such that the response
stays linear can be determined for each individual sine. In the
multisine case, since a high number of frequencies is added,
the amplitude of each individual frequency should remain small
such that the total multisine signal does not become too high in
magnitude (in a root-mean-square sense) and introduces nonlin-
earities. However, finding the optimal excitation amplitudes for
multisine experiments can also be done by detecting nonlinear
behaviour. Moreover, the amplitudes can be dependent on the
frequency too.

2. The signal-to-noise ratio (SNR) is believed to be better in the
single-sine case. This is since all the power is injected at one
frequency, while, in the multisine case, there is a trade-off
between the number of selected frequencies and the SNR. The
more frequencies are excited, the smaller their amplitudes must
be for the response to remain linear, and hence, the smaller the
SNR. However, it is important to take the measurement time
into account, and compare the SNR for single-sine and multisine
experiments of the same duration [26, Section 5.2.2 p. 154].
Since single-sine experiments take a longer time, we can measure
more periods of the multisine during the same measurement
time, resulting in a better SNR.

3. For a multisine excitation, the selected frequencies should all
be integer multiples of a fundamental frequency such that the
period of the multisine equals the period of the fundamental
sine. These integer multiples are called harmonics. Single-sine
experiments do not have this limitation. Accordingly, multisine
experiments have less flexibility in the choice of frequencies at
the low frequency bands. However, this is not a significant issue;
one could perform multiple multisine experiments with slightly
different fundamental frequencies if required.

4. The extraction of the impedance in the single-sine case is very
intuitive, and can be handled in the time domain. For multisine
excitations, the Fourier transform is usually used for separating
the frequency components, and the impedance is computed by
a ratio of Fourier spectra (see Section 6). Working in the time
domain only, however, is limited because one might not see
leakage, nonlinear distortions and nonstationarity.

nother strong argument in favour of multisine experiments is that if
he system behaves in a nonstationary way, one should use a multisine
xcitation, as pointed out in Section 4.2.

In Section 6, we study how classical impedance data can be esti-
ated from measured current and voltage data.
6

Fig. 5. Illustration of nonlinear time-invariant behaviour in EIS measurements under a
large excitation amplitude. The simulated nonlinearity comes from the Butler–Volmer
Eq. (7).

4. Nonlinear and nonstationary impedance models

In this section, impedance models are introduced beyond the very
restrictive constraints of linearity and stationarity. Eliminating the lin-
earity constraint leads to the Volterra series model, from which the con-
cepts of nonlinear EIS (NLEIS) and the best linear approximation (BLA)
are derived (Section 4.1). Getting rid of the stationarity constraint leads
to the time-varying impedance model (Section 4.2). Eliminating both
the constraints of linearity and stationarity, we will study the best linear
time-varying approximation (BLTVA) (Section 4.3).

4.1. Nonlinear models

The choice of the excitation magnitudes 𝐼𝑚 in classical EIS mea-
surements is a compromise between the need to achieve linearity and
the need for a sufficient signal-to-noise ratio [5]. EIS measurements,
just as any other measurements, contain noise. This noise is caused by
external disturbances and the electronics of the measurement device.
To improve the quality of impedance data, one can increase the mag-
nitudes 𝐼𝑚 in the excitation such that the voltage response becomes

ore dominant over the noise level. However, this may jeopardise
he assumption of linearity since the amplitude span over which the
urrent or voltage is perturbed increases (see Fig. 5). In the case
here weak nonlinear distortions are present in measurements, the
stimation of the best linear approximation (BLA) [36] is a convenient
ool. On the other hand, we could also intentionally introduce nonlinear
ehaviour in experiments to investigate additional properties of the
lectrochemical system, as studied in NLEIS [30,31,33,34] or intermod-
lated differential immittance1 spectroscopy [101–103]. In this section,
e introduce a nonlinear model for EIS measurements through the
olterra series, derive NLEIS from it, and study the concept of BLA. It

s noteworthy that these are still models at fixed local operating points,
hough, but valid over a larger excitation amplitude than classical EIS
easurements.

.1.1. The Volterra series
Nonlinear time-invariant (NLTI) systems can often be modelled by

olterra series [27,28,104]. Note that this is not the case for all NLTI
ystems. Systems with subharmonics or chaotic behaviour, for instance,
annot be captured by Volterra series. Fortunately, most electrochemi-
al systems can. Since stationarity is still assumed and we are looking

1 Impedance and admittance as a combined concept.
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at nonlinear behaviour at specific local operating points, the current
excitation signal should be zero-mean and the external parameters
constant. Mathematically, the general relation between output voltage
and input current (1) may be written as

𝑣(𝑡) = OCV +
𝑛max
∑

𝑛=1
𝑣𝑛(𝑡), (23a)

ith 𝑛max the order of the nonlinearity, with

𝑛(𝑡) = ∫

∞

−∞
⋯∫

∞

−∞
𝑧𝑛(𝜏1,… , 𝜏𝑛)

𝑛
∏

𝑙=1
𝑖(𝑡 − 𝜏𝑙)d𝜏𝑙 (23b)

eing the contribution of the 𝑛th order nonlinearity to the voltage
utput signal, and 𝑧𝑛(𝜏1,… , 𝜏𝑛) the generalised impulse response of the
th order nonlinearity.

The Volterra series can be understood as the extension of a Taylor
xpansion (8) at a local operating point for dynamical systems. The
onlinear behaviour is written as a polynomial (instead of linear)
perator acting on the excitation current.

The generalised impedances 𝑍𝑛 are defined as the 𝑛-dimensional
ourier transform of the generalised impulse responses 𝑧𝑛:

𝑛(𝜔1,… , 𝜔𝑛) = ∫

∞

−∞
⋯∫

∞

−∞
𝑧𝑛(𝜏1,… , 𝜏𝑛)

𝑛
∏

𝑙=1
𝑒−𝑗𝜔𝑙𝜏𝑙d𝜏𝑙 . (24)

or nonlinearity order 𝑛max = 1, the current–voltage relations of linear
ystems (9) and (10) are retrieved from the Volterra series,

1(𝑡) = ∫

∞

−∞
𝑧1(𝜏)𝑖(𝑡 − 𝜏)d𝜏 = −1{𝑍1(𝜔)𝐼(𝜔)}. (25)

esponse to a zero-mean single-sine. Let us now look at the response
f an NLTI system, described by a Volterra series, to a zero-mean
ingle-sine excitation 𝑖(𝑡) = 𝐼 cos(𝜔𝑡). The contribution of the 𝑛th order
onlinearity to the voltage signal yields [104]

𝑛(𝑡) =
𝑛
∑

ℎ=0
|𝑉𝑛,ℎ| cos

(

ℎ𝜔𝑡 + ∠𝑉𝑛,ℎ
)

, (26a)

with

𝑉𝑛,ℎ = 𝑍𝑛,ℎ(𝜔)𝐼𝑛 ℎ > 0 (26b)

𝑍𝑛,ℎ(𝜔) =
1

2𝑛−1
∑

{𝑠1 ,…,𝑠𝑛}∈S𝑛,ℎ

𝑍𝑛(𝑠1𝜔,… , 𝑠𝑛𝜔). (26c)

For harmonic ℎ = 0, the premultiplying factor should be 1∕2𝑛

nstead of 1∕2𝑛−1. The set S𝑛,ℎ contains all possible lists {𝑠1,… , 𝑠𝑛},
ith elements 𝑠1,…,𝑛 ∈ {−1, 1}, such that 𝑠1 + … + 𝑠𝑛 = ℎ. When

the set is empty, 𝑍𝑛,ℎ(𝜔) = 0. The values 𝑍𝑛,ℎ(𝜔) are called the
nonlinear impedance coefficients, and come directly from the generalised
impedances. A sum of 𝑛 elements with values that are either 1 or −1
can never be larger than 𝑛 and the sum of an even number of these
elements can never be odd, and vice versa. This translates into,

𝑍𝑛,ℎ(𝜔) = 0 for ℎ > 𝑛 (27a)

𝑍2𝑛,2ℎ+1(𝜔) = 0 ∀𝑛, ℎ ∈ N (27b)

𝑍2𝑛+1,2ℎ(𝜔) = 0 ∀𝑛, ℎ ∈ N. (27c)

These seemingly complicated mathematics are better understood by
looking at a few special cases. For the linear term (𝑛 = 1) in the Volterra
series we find that 𝑉1,0 = 0 and S1,1 = {1}, such that 𝑉1,1 = 𝑍1(𝜔)𝐼 .
Hence, the voltage response yields

𝑣1(𝑡) = |𝑍1(𝜔)|𝐼
⏟⏞⏟⏞⏟

|𝑉1,1|

cos
(

𝜔𝑡 + ∠𝑍1(𝜔)
⏟⏟⏟
∠𝑉1,1

)

. (28)

The response is present at the same frequency as the excitation, which
is in accordance with the expected linear output (18). For nonlinear
systems, that is 𝑛max ≥ 2, we notice from (26a) that spectral content may
be present at integer multiples of the excited frequency. Considering
7

h

(23) and (27) with purely quadratic (𝑛 = 2) and purely cubic (𝑛 = 3)
nonlinearities, we find, respectively,

𝑣2(𝑡) = |𝑉2,0| + |𝑉2,2| cos
(

2𝜔𝑡 + ∠𝑉2,2
)

3(𝑡) = |𝑉3,1| cos
(

𝜔𝑡 + ∠𝑉3,1
)

+ |𝑉3,3| cos
(

3𝜔𝑡 + ∠𝑉3,3
)

. (29)

he expressions for the different 𝑉𝑥,𝑦 terms are given in Appendix B. We
emark that quadratic nonlinearities introduce spectral content at the
ven integer multiples of the excited frequency smaller than or equal
o two, and that cubic nonlinearities introduce spectral content at the
dd integer multiples of the excited frequency smaller than or equal to
hree. These results can be generalised to higher order even and odd
onlinearities,

𝑣2𝑛(𝑡) =
𝑛
∑

ℎ=0
|𝑉2𝑛,2ℎ| cos

(

2ℎ𝜔𝑡 + ∠𝑉2𝑛,2ℎ
)

2𝑛+1(𝑡) =
𝑛
∑

ℎ=0
|𝑉2𝑛+1,2ℎ+1| cos

(

(2ℎ + 1)𝜔𝑡 + ∠𝑉2𝑛+1,2ℎ+1
)

. (30)

Accordingly, the even and odd degree terms in the Volterra series
introduce frequency content at, respectively, even and odd integer
multiples of the excited frequency. Even nonlinear functions can be
captured by the sum of even degree monomials of the Volterra series,
whereas odd nonlinear functions can be captured by odd degree mono-
mials. Accordingly, even nonlinear behaviour is present at even integer
multiples of the excited frequency, and odd nonlinear behaviour at odd
multiples.

In contrast with the small excitation magnitude applied to the
Butler–Volmer equation (Fig. 2), where the response is only present
at the excited frequency 𝑓1, for a larger excitation magnitude (Fig. 5),
spectral content may also be present at integer multiples of the excited
frequency. For this particular illustrative example, only odd nonlinear
distortions are present, since we fixed 𝛼𝑎 = 𝛼𝑐 = 0.5 and therefore
he Butler–Volmer Eq. (6) is an odd function around 0. However, in
ractice, when 𝛼𝑎 ≠ 𝛼𝑐 the Butler–Volmer equation is neither even nor
dd, and hence, both even and odd nonlinear distortions are present.

Writing out the analytical expression of the response of an NLTI
ystem described by a Volterra series to a multisine excitation is a
ore complicated matter. The mathematical details are omitted for this

eview paper, however, they are given in Lang and Billings [104]. For-
unately, when the multisine consists of excited frequencies at integer
ultiples of a fundamental frequency, the observations made above

re still valid. Nonlinearities will still be present at integer multiples
f this fundamental frequency. However, the distinction between even
nd odd nonlinear distortions can only be made when only odd integer
ultiples of the fundamental frequency are excited in the multisine.
his is discussed in Section 7.2.

.1.2. Nonlinear EIS
It can be shown that the total response of the Volterra series of

nfinite order (𝑛max → ∞), excited by a sinusoidal signal at frequency 𝜔,
(𝑡) = 𝐼 cos(𝜔𝑡), introduces spectral content at all the integer multiples
f the excited frequency 𝜔, that is,

(𝑡) = OCV +
∞
∑

ℎ=0
|𝑉ℎ| cos(ℎ𝜔𝑡 + ∠𝑉ℎ), (31a)

ith

ℎ =
∞
∑

𝑛=1
𝑉𝑛,ℎ =

∞
∑

𝑛=ℎ
𝑍𝑛,ℎ(𝜔)𝐼𝑛 (31b)

=
∞
∑

𝑟=0
𝑍ℎ+2𝑟,ℎ(𝜔)𝐼ℎ+2𝑟. (31c)

In these equations, (23), (26) and (27) have been exploited. Only
ven order nonlinear impedance coefficients larger or equal to ℎ intro-
uce spectral content at an even harmonic ℎ, and vice versa for odd

armonics.
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Nonlinear EIS [31,34,105] aims at measuring the leading order
onlinear impedance coefficients 𝑍ℎ,ℎ(𝜔). These are defined from (31)
s [34],

ℎ,ℎ(𝜔) = lim
𝐼→0

𝑉ℎ
𝐼ℎ
. (32)

ote that the unit of the ℎth leading order nonlinear coefficient 𝑍ℎ,ℎ(𝜔)
s Ω∕Aℎ−1. In practice, the leading order nonlinear coefficients are
easured as,

̂ℎ,ℎ(𝜔) =
𝑉ℎ
𝐼ℎ

= 𝑍ℎ,ℎ(𝜔) +
∞
∑

𝑟=1
𝑍ℎ+2𝑟,ℎ(𝜔)𝐼2𝑟

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
choose 𝐼 such that negligible

, (33)

where the excitation amplitude 𝐼 is chosen large enough such that
he ℎth harmonic 𝑉ℎ is visible, but also small enough such that the
igher order contributions 𝑍ℎ+2𝑟,ℎ(𝜔)𝐼𝑟, 𝑟 ≥ 1, are negligible. Note that

under these measurement conditions, 𝑍1,1(𝜔) is the regular impedance
𝑍(𝜔). The second leading order nonlinear impedance coefficient was
measured for Li-ion batteries in [31,34]. Recall that the leading order
nonlinear impedance coefficients are still models at a specific local
operating point.

4.1.3. The best linear approximation
For reasons of simplicity, we may prefer to work with linear models.

In Schoukens et al. [36], NLTI systems are modelled as so-called
best linear approximations, plus a ‘nonlinear noise source’ generating
nonlinear distortions 𝑣s(𝑡). Hence, in this context

𝑣(𝑡) = OCV + −1{𝑍(𝜔)𝐼(𝜔)}
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑣BLA(𝑡)

+𝑣s(𝑡), (34)

where 𝑣BLA(𝑡) stands for the response of the BLA 𝑍(𝜔). The BLA is
the ‘best’ linear model in the sense that it minimises the nonlinear
distortions in least square sense,

𝑍 = argmin
𝑍′

E

{

∫

∞

−∞
|𝑣s(𝑡)|

2d𝑡

}

, (35)

with the expected value E{⋅} taken over different realisations of the
excitation signal [106]. Using Parceval’s theorem, the BLA can also be
defined in the frequency domain,

𝑍(𝜔) = arg min
𝑍′(𝜔)

E
{

|𝑉 (𝜔) −𝑍′(𝜔)𝐼(𝜔)|2
}

. (36)

It follows that the nonlinear distortions are uncorrelated with, but not
independent of, the excitation signal. Hence, for a zero-mean single-sine
excitation, the response of the BLA is located at the excited frequency,
while the nonlinear distortions are present at the remaining integer
multiples of the excited frequency,

𝑣BLA(𝑡) = |𝑉1| cos(𝜔𝑡 + ∠𝑉1) (37a)

𝑣s(𝑡) = |𝑉0| +
∞
∑

ℎ=2
|𝑉ℎ| cos(ℎ𝜔𝑡 + ∠𝑉ℎ), (37b)

with the coefficients 𝑉ℎ defined in (31). An illustration of this decompo-
sition into a linear response and purely nonlinear response is depicted
in Fig. 6. The linear response is the one at the excited frequency, while
the nonlinear response consists of the remaining frequencies. This BLA
method has the major advantage that a linear model can still be justi-
fied when the nonlinear distortions are sufficiently small. Accordingly,
it still makes sense to measure an impedance from data which shows
nonlinear distortions, as long as these nonlinear distortions are small
enough for the intended application. Therefore, it is important to detect
and quantify the nonlinear distortions in measurements.

The BLA under a single-sine excitation is defined from (31) as,

𝑍(𝜔) =
𝑉1 =

∞
∑

𝑍1+2𝑟,1(𝜔)𝐼2𝑟, (38)
8

𝐼 𝑟=0
i

Fig. 6. Decomposition of the nonlinear time-invariant response of Fig. 5 into a linear
response and purely nonlinear response. Left graph: frequency domain, right graph:
time domain.

Fig. 7. The linearisation of a static nonlinear function depends on the span it is
linearised over. The red line represents the Butler–Volmer Eq. (7). Linearising it over
the black span gives a different BLA (the slope) than linearising it over the grey span.

and hence, the BLA depends on the amplitude of the excitation. This is
illustrated for the static case in Fig. 7, the linearisation depends on the
span over which the Butler–Volmer equation is linearised. The BLA here
is the slope between voltage and current, which is clearly different for
the black and grey lines. The reasoning in the dynamic case is similar.

Note that for nonlinear systems the first generalised impedance and
the first leading order nonlinear impedance coefficients are equal, but
the BLA impedance is different: 𝑍1(𝜔) = 𝑍1,1(𝜔) ≠ 𝑍(𝜔). This is because
the higher order odd polynomials in the volterra series also contain a
linear part, leading to a spectral contribution at the excited frequency
that contributes to the BLA 𝑍(𝜔).

.2. Nonstationary models

The stationarity constraint in classical EIS experiments is very re-
trictive. The operating point, and hence also the external parame-
ers, should be constant during an experiment. (NL)EIS can only be
erformed on systems in steady-state, resulting in models at fixed
perating points. Accordingly, if we want impedance data over various
perating conditions, for instance at different OCV values as in Fig. 3,
e have to separately drive the system to each of these operating

onditions and wait for steady-state, which is very time-consuming.
oreover, sometimes the system never reaches steady-state due to in-

erently nonstationary behaviour caused by changes in thermodynamic
tates and kinetically slow side processes (such as the self discharge
f energy storage systems). Furthermore, it is of great interest to
tudy electrochemical systems during operation. Examples include the
ormation of film layers during anodising, the electrorefining of copper,
nd the charging, discharging, and relaxation of batteries. For these
xamples, classical EIS or NLEIS can only be performed as a pertur-
ation around a rest condition, while the evolution of the impedance
uring operation contains important information. Unfortunately, this

nformation cannot be gathered by classical or stationary nonlinear EIS.
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Nonstationarity can occur for two reasons, and they can happen
simultaneously. The first cause is that the external parameters 𝑝(𝑡) vary
uring the experiment. The other cause is that the system is excited
n such a way that it does not remain in steady-state during the ex-
eriment. This happens when superimposing a conventional excitation

exc(𝑡) (see Section 3.2) on a slow signal 𝑖0(𝑡), driving the system in
perating conditions,

(𝑡) = 𝑖0(𝑡) + 𝑖exc(𝑡). (39)

or a battery, time-variation, for instance, occurs when the excitation
s a multisine superimposed on a constant offset 𝑖0 that (dis)charges
he battery [59], or when a zero-mean excitation is applied right after
harging or discharging to study the relaxation behaviour [61].

.2.1. The time-varying impedance
Considering the two sources of nonstationarity, the linear voltage

esponse can be modelled as,

(𝑡) = 𝑣0(𝑡) + ∫

∞

−∞
𝑧(𝜏, 𝑡)𝑖exc(𝜏)d𝜏. (40)

ere 𝑣0(𝑡) represents a drift signal. In the battery example, this would
e the voltage slowly increasing as the battery is charging due to a
ositive constant current. The time-variation due to the external param-
ters 𝑝(𝑡) and/or excitation trajectory 𝑖0(𝑡) is simultaneously captured
y a two-dimensional impulse response. This time-varying impulse
esponse 𝑧(𝜏, 𝑡) was introduced by Zadeh [37] in 1950 for modelling
TV systems. It is a natural extension of (9), where now the impulse
esponse function explicitly depends on the excitation time.

It is also shown in Battistel et al. [107] that nonstationarity (40)
ppears from an NLTI system when the response is linearised along a
ime-varying trajectory. This is detailed in Appendix C.

Similarly to (10), the time-varying impedance 𝑍(𝜔, 𝑡) appears when
ransforming (40) into the frequency domain [37],

(𝑡) = 𝑣0(𝑡) + −1{𝑍(𝜔, 𝑡)𝐼exc(𝜔)}, (41)

ith the time-varying impedance defined as,

(𝜔, 𝑡) = ∫

∞

−∞
𝑧(𝑡 − 𝜏, 𝑡)𝑒−𝑗𝜔𝜏d𝜏. (42)

Accordingly, when a single-sine excitation (17) is applied, superim-
osed on a slowly varying trajectory 𝑖0(𝑡), the voltage response yields,

(𝑡) = 𝑣0(𝑡) + |𝑍(𝜔𝑚, 𝑡)|𝐼𝑚 cos
(

𝜔𝑚𝑡 + 𝜙𝑚 + ∠𝑍(𝜔𝑚, 𝑡)
)

. (43)

The current excitation is, hence, modulated in amplitude and phase by
𝑍(𝜔𝑚, 𝑡). Since linearity is still assumed, the response to a multisine
excitation (20) is simply the sum of the responses to each separate
sinusoidal signal,

𝑣(𝑡) = 𝑣0(𝑡) +
𝑀
∑

𝑚=1
|𝑍(𝜔𝑚, 𝑡)|𝐼𝑚 cos

(

𝜔𝑚𝑡 + 𝜙𝑚 + ∠𝑍(𝜔𝑚, 𝑡)
)

. (44)

An illustration of the response of a Li-ion battery under zero-mean
and nonzero-mean small amplitude excitation is shown in Fig. 8. For
the zero-mean excitation, the response can be modelled as the OCV plus
an LTI response. For the nonzero-mean excitation, nonstationarity is in-
troduced due to the constant-current charging, which also might cause
external parameters such as the temperature to change. Accordingly,
the response can be modelled as a drift signal plus the response of an
LTV system.

4.2.2. Models along an operating trajectory
By choosing the slow trajectory 𝑖0(𝑡) and/or varying external pa-

rameters during the experiment, we obtain a linear model for the
impedance along an operating trajectory instead of an operating point.
This trajectory is the drift of the system due to external effects during
the measurement. One can, hence, obtain more global models than
9

with classical EIS. This is illustrated in Fig. 9, where a battery with
Fig. 8. Illustration of the response of a Li-ion battery (which can be modelled by a
Volterra series) to zero-mean and nonzero-mean excitations with small amplitudes. The
slow parts 𝑖0(𝑡) and 𝑣0(𝑡) are shown in black. The positive mean value of the current
charges the battery, and, hence, the voltage increases.

Fig. 9. Time-varying impedance data of a Samsung 48X battery along an operating
trajectory. The operating trajectory is caused by a charging current 𝑖0(𝑡) = 2.4 A applied
to a 4.8Ah battery placed in a thermal chamber at 5 ◦C. The time-varying impedance
𝑍(𝜔, 𝑡) along the trajectory in the temperature-SOC plane (d) is shown as Bode plot
a–b) and Nyquist chart (c).
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capacity 𝐶 = 4.8Ah is charged using a 𝐶∕2 current, that is, 𝑖0(𝑡) = 2.4A.
Note that here the external temperature (a parameter), measured at
the battery surface, changes due to thermal dynamics. The SOC also
changes, however, this is not an external parameter, since it depends
on the current excitation.

4.2.3. The importance of multisine excitation
A multisine excitation is mandatory for accurate estimation of time-

varying impedance. Since the system is changing over time during the
experiment, it would be illogical to apply single-sines sequentially, since
then the impedance at each selected frequency would be computed for
a different section of the operating trajectory. The advantage of using a
multisine excitation is that many frequencies are excited simultaneously,
and we can obtain the impedance at all the selected frequencies over
the entire operating trajectory. In Section 9, we study how time-varying
impedance data can be estimated from measured current and voltage
data under multisine excitation.

4.3. Nonlinear and nonstationary models

When a system is excited whilst not in steady-state, and with large
excitation amplitudes 𝐼𝑚, nonstationary and nonlinear behaviour may
happen simultaneously. The system is then denoted as nonlinear time-
varying (NLTV). In this case, the time-varying Volterra series with a
superimposed drift signal provides a general model for the response,

𝑣(𝑡) = 𝑣0(𝑡) +
𝑛max
∑

𝑛=1
∫

∞

−∞
⋯∫

∞

−∞
𝑧𝑛(𝜏1,… , 𝜏𝑛, 𝑡)

𝑛
∏

𝑙=1
𝑖exc(𝜏𝑙)d𝜏𝑙 . (45)

Ideally, from such a time-varying Volterra series, we could measure
time-varying leading order nonlinear impedance functions 𝑍ℎ,ℎ(𝜔, 𝑡).
This would provide models over a large excitation amplitude and
along a time-varying trajectory. However, this has, to the best of our
knowledge, not been studied yet.

In Hallemans et al. [49] we have studied the extension of the
concept of BLA to BLTVA, that is, the best linear time-varying approxi-
mation. In this framework, the relation between current and voltage of
an NLTV system is modelled as,

𝑣(𝑡) = 𝑣0(𝑡) + −1{𝑍(𝜔, 𝑡)𝐼exc(𝜔)}
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑣BLTVA(𝑡)

+𝑣s(𝑡), (46)

with 𝑍(𝜔, 𝑡) the BLTVA and 𝑣s(𝑡) the time-varying nonlinear distor-
tions. The BLTVA is a promising tool to monitor the impedance of
electrochemical systems during operation [59,63] (see Section 9.3).

5. Measuring current and voltage data

In practical settings, we cannot measure continuous-time signals 𝑖(𝑡)
and 𝑣(𝑡) over infinite periods. Instead, sampled current and voltage
data over finite periods should be collected, denoted 𝑖(𝑛) and 𝑣(𝑛)
where 𝑛 is the sample number. To obtain these, we apply an excitation
through a potentiostat and measure sampled and windowed current and
voltage data. For extracting time-varying impedance from this data, a
multisine excitation is recommended, as used for odd random phase
(ORP) EIS [59] and dynamic multi-frequency analysis [107].

Design of excitation signal. Different kinds of excitation signals are
‘rich’ enough to estimate classical impedance; among others, single-
sines, multisines, and white noise. For obtaining stationary nonlinear
impedance estimates, a single-sine excitation should be used. For ob-
taining time-varying impedance data, a multisine should be used. Since
the single-sine excitation is a special case of the multisine, we focus on
10

the latter. e
A multisine with period 𝑇𝑝 superimposed on a time-varying trajec-
tory 𝑖0(𝑡) is given by

𝑖(𝑡) = 𝑖0(𝑡) +
𝑀
∑

𝑚=1
𝐼𝑚 cos

( 2𝜋ℎ𝑚
𝑇𝑝

𝑡 + 𝜙𝑚
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑖exc(𝑡)

. (47)

he trajectory 𝑖0(𝑡) is user defined—for example this could be a charg-
ng or discharging current for a battery, or a chronoamperometry
rajectory. Note that to obtain classical or stationary NLEIS data, this
rajectory should be zero. The set of excited harmonics is defined
s Hexc = {ℎ1, ℎ2,… , ℎ𝑀}, and the excited angular frequencies are
ccordingly 𝜔ℎ𝑚 = 2𝜋ℎ𝑚∕𝑇𝑝, with 𝑇𝑝 the period of the multisine. The
armonic numbers should be integers, ℎ𝑚 ∈ N, such that all sinusoidal
ignals fit an integer number of times in the period 𝑇𝑝. Note that the
owest frequency in the multisine (𝑓1 = 1∕𝑇𝑝) is inversely proportional
o the period of the multisine. For a single-sine excitation, only 𝑓1 is
xcited. In our definition, the natural numbers N do not include zero,
hile the set N0 does include zero. The amplitudes are selected by the
ser, depending on the application. The phases are most of the time
hosen such as to minimise the crest factor of the overall multisine, that
s, to avoid introducing constructive interference when adding sines to
ach other. Different approaches can be used for this, including random
hases picked from a uniform distribution in [0, 2𝜋), and mathemati-
al optimisation techniques such as the Schröder phase or DFT-based
terative algorithms to minimise the crest factor [57,108–112].

The name odd random phase electrochemical impedance spectrosco-
y denotes impedance measurements under multisine excitation with
nly odd harmonics excited (ℎ𝑚 ∈ 2N0 + 1), with random phases. This
xcitation signal was introduced by Hubin and Pintelon et al. [40,41].
n Section 7, we show that inherent nonlinearity and nonstationarity in
lectrochemical systems can easily be detected using an ORP multisine
xcitation, and we discuss why it is advantageous to only excite odd
armonics.

indowing. We cannot measure signals for an infinitely long time, but
nly for a certain period 𝑡 ∈ [0, 𝑇 ). The measurement time 𝑇 is chosen
o measure a certain ongoing reaction, for instance a charge cycle of a
i-ion battery. To avoid spectral leakage in the frequency domain, an
nteger number of periods of a multisine excitation should be measured,
hat is, 𝑇 = 𝑃𝑇𝑝 with 𝑃 ∈ N [26, Section 2.2.3, p 40]2. This is
ot always possible, but it is strongly recommended. Moreover, for
btaining NLEIS or time-varying impedance data, measuring an integer
umber of periods is a requirement.

ampling. Only a sampled representation of the continuous signal can
e recorded, at a sampling frequency 𝑓𝑠. Following the Shannon–
yquist sampling theorem, this sampling frequency should be greater

han twice the highest frequency in the measurements to avoid spectral
liasing. The sampling period is 𝑇𝑠 = 1∕𝑓𝑠. It is important that the data
s uniformly sampled.

easuring the data. The sampled and windowed multisine current
ata is applied to an electrochemical device using a potentiostat. The
otentiostat uses a digital-to-analog converter (DAC) to transform the
enerated time-series to a continuous signal. User-defined excitation
s not always available in commercial potentiostats, but user-defined
xcitation is essential for the techniques in this article. Accordingly,
ultiple periods of the multisine excitation signal can be applied, and

he potentiostat then measures the actual current and the voltage,
hich are also windowed and sampled.

2 Note that measuring an integer number of periods is only a requirement
hen the impedance estimation is performed in the frequency domain, which

s the case for multisine experiments, but not necessarily for single-sine
xperiments.
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The collected data can be written as follows,

time =
{

[𝑖(0), 𝑖(1),… , 𝑖(𝑁 − 1)]
[𝑣(0), 𝑣(1),… , 𝑣(𝑁 − 1)]

}

, (48)

where 𝑥(𝑛) is shorthand notation for 𝑥(𝑛𝑇𝑠), 𝑥 = 𝑖, 𝑣. The number of
samples is 𝑁 = 𝑇𝑓𝑠.

Frequency domain data. Within the constraints of LTI systems, the
impedance is defined as the ratio of the Fourier transforms of voltage
and current (12). Hence, it would be appropriate to directly compute
the impedance in the frequency domain. However, the Fourier trans-
form acts on continuous signals, while only discrete-time measurements
(48) can be collected from potentiostats. Fortunately, the spectrum of
time-series can be computed by replacing the Fourier integral by a
discrete sum. This is called the discrete Fourier transform3 (DFT),

𝑋(𝑘) = 1
𝑁

𝑁−1
∑

𝑛=0
𝑥(𝑛)𝑒−𝑗2𝜋𝑘𝑛∕𝑁 𝑘 = 0, 1,… , 𝑁 − 1. (49)

ere, 𝑥(𝑛) is again shorthand for 𝑥(𝑛𝑇𝑠) and 𝑥 = 𝑖, 𝑣. The DFT index
corresponds to the angular frequency 𝜔𝑘 = 2𝜋𝑘∕𝑇 or frequency

𝑓𝑘 = 𝑘∕𝑇 . The frequency domain current and voltage data yields,

freq =
{

[𝐼(0), 𝐼(1),… , 𝐼(𝑁 − 1)]
[𝑉 (0), 𝑉 (1),… , 𝑉 (𝑁 − 1)]

}

. (50)

When periodic time domain data is measured for an integer number
of periods and sampled satisfying Shannon–Nyquist’s theorem, the DFT
coincides with the Fourier transform, evaluated on the DFT grid 𝑓𝑘 =
𝑘∕𝑇 with 𝑘 = 0, 1,… , 𝑁 − 1 [26, Section 2.2, p 34].

An illustration of one period of a windowed and sampled odd
random phase multisine signal in the time and frequency domain, with
the 7-th harmonic unexcited for detection of odd nonlinear distortions,
is shown in the left plots of Fig. 10. For the time domain plots, the
full line is the continuous signal, while the dots are the sampled data.
For the frequency domain plots, the DFT grid is indicated by vertical
red bars on the frequency axis. Since DFT lines are intentionally left
open at even harmonics and the odd harmonic 7, it is possible to detect,
quantify and classify nonlinear distortions in the response to one period
of the excitation. However, if the system is also nonstationary, it is not
possible to distinguish between nonlinear and nonstationary behaviour
when measuring only one period.

Increasing the frequency resolution. Measuring more than one period
increases the frequency resolution, that is, the distance between two DFT
lines 𝑓𝑠∕𝑁 = 1∕𝑇 becomes smaller. This is illustrated in the right plots
of Fig. 10. For one measured period, the DFT grid is indicated in red,
for three measured periods, in black. Nonlinearities in the spectrum
of the response can only be present at the DFT lines indicated in red,
since these are the integer multiples of the fundamental excitation
frequency 1∕𝑇𝑝. The effect of nonstationarities can be present at all
DFT lines, however. Accordingly, measuring a large number of periods
is commonly used to distinguish between nonlinear and nonstationary
behaviour, and the nonstationary behaviour can be modelled from the
response spectrum.

Influence of measurement noise. We usually assume that noise in the
measured data, 𝑖meas(𝑛) and 𝑣meas(𝑛), is additive,

𝑥meas(𝑛) = 𝑥(𝑛) + n𝑥(𝑛) 𝑥 = 𝑖, 𝑣, (51)

and the noise time-series n𝑥(𝑛) is iid (independent and identically
distributed), zero-mean and Gaussian:

n𝑥(𝑛) ∼  (0, 𝜎2n𝑥 ) 𝑥 = 𝑖, 𝑣. (52)

3 In 1965, Cooley and Tukey designed a highly-efficient algorithm to com-
ute the DFT, which rapidly popularised frequency domain signal processing.
his algorithm became known as the ‘fast Fourier transform’ (FFT) [113] and

s still used to date.
11
Fig. 10. A sampled and windowed odd random-phase multisine in time and frequency
domain. Top row: continuous signal (full line) and sampled data (blue dots). Bottom
row: DFT of the sampled data, with the DFT grid indicated by red (original grid) and
black (grid for 𝑃 = 3 measured periods) vertical bars on the frequency axis.

Here, 𝜎2n𝑖 and 𝜎2n𝑣 are the noise variances on the current and voltage,
respectively. The DFTs of the noise time series, N𝐼 (𝑘) and N𝑉 (𝑘) are
circular complex Gaussian4 distributed. However, the variances scale
inversely with the number of samples 𝑁 ,

N𝑋 (𝑘) ∼ 𝑐

(

0,
𝜎2n𝑥
𝑁

⏟⏟⏟
𝜎2N𝑋

(𝑘)

)

𝑥 = 𝑖, 𝑣. (53)

We can interpret this result as follows: by measuring a higher number
of samples 𝑁 , the number of DFT lines increases, and, hence, the noise
is distributed over more DFT lines, such that the variance of the circular
complex distributed noise at each DFT line decreases. As a consequence,
we can show that the frequency domain SNR increases with the square
root of the number of measured samples,

SNR𝑋 (𝑘) =

√

√

√

√

|𝑋(𝑘)|2

𝜎2N𝑋 (𝑘)
=
√

𝑁
|𝑋(𝑘)|
𝜎𝑛𝑥

. (54)

Accordingly, by measuring a higher number of samples 𝑁 , we increase
the SNR. In practice, the SNR is improved by increasing the number of
measured periods 𝑃 of the data.

6. Classical frequency domain impedance estimation

In the early seventies, Creason and Smith [114–116] adopted the
recently discovered FFT for classical EIS directly from frequency do-
main. These techniques, referred to as FFT-EIS, measure the impedance
starting from DFT data (50). An important question is the choice of
the excitation signal. As explained earlier, a zero-mean excitation is
needed for stationarity. In [116], different zero-mean excitation signals
are studied: periodic excitations, transient inputs, and band-limited
white noise. The conclusion is drawn that periodic excitation, with
excited frequencies lying on the DFT grid, are superior. However, it
is not always possible to apply periodic excitation and measure over
an integer number of periods. Think for instance about a low-cost
measurement apparatus for a BMS where only short and fixed-length
data records can be handled. Hence, estimating techniques are also

4 A two-dimensional Gaussian distribution on the complex plane.
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Fig. 11. Example of classical impedance estimation for a Li-ion battery at 10% SOC
and 25 ◦C under a periodic multisine excitation measured for 𝑃 = 10 periods. The
excited lines, 𝑘 ∈ 𝑃Hexc, are indicated with vertical lines with large dots and crosses.
The remaining DFT lines (small dots) contain noise and a small drift signal.

needed for random excitations. In 1975, Blanc et al. [117] proposed the
so-called ‘pseudo-white noise’ technique (or ‘méthode du bruit blanc’,
since this article was written in French). Pseudo-white noise may also
be used as an excitation, and the impedance is computed as the ratio
of the cross- and auto power spectra in the frequency domain. Howey
et al. [88] also used the ratio of the cross- and auto power spectra in the
frequency domain to perform fast impedance measurements on a self-
made low-cost excitation and measurement system for batteries that
could be used in a BMS. The same issue of the choice of excitation signal
for frequency domain system identification is studied in [108] and in
Pintelon and Schoukens’ book [26, Chapter 2]. We now mathematically
formalise the impedance estimation for periodic and random excitation
signals.

Periodic excitation. When measuring an integer number of periods 𝑃
in steady-state under a periodic excitation, for instance a multisine,
the DFT is exactly a sampled version of the continuous Fourier trans-
form [26, Section 2.2, p 34]. Hence, the impedance can simply be
computed from (12) as the ratio of the voltage and current spectra,

𝑍̂(𝜔𝑘) =
𝑉 (𝑘)
𝐼(𝑘)

𝜔𝑘 =
2𝜋𝑘
𝑇

, 𝑘 ∈ 𝑃Hexc, (55)

ith Hexc the excited harmonics of the excitation signal. A measure-
ent example is shown in Fig. 11. Since the OCV in the voltage is only
resent at DC (zero frequency), it has no influence on the estimate
f the impedance at positive frequencies. Note that in perfect LTI
onditions, only measurement noise causes an uncertainty on the esti-
ate (55). Increasing the number of periods 𝑃 generates an averaging

ffect, which reduces this uncertainty [26, Section 2.4, p 44]. Periodic
xcitation is recommended when possible.

andom excitations. For random excitations, such as pseudo-white
oise, pseudo-random binary sequences (PRBS) or multisine excitations
ot measured for an integer number of periods, the DFT does not
orrespond to the continuous Fourier transform anymore due to tran-
ients. These transients can be reduced by using windows, e.g. the Hann
indow. For random excitation, it is recommended to measure the

mpedance by the ratio of the cross- 𝑆̂ (𝑘) and auto-spectra 𝑆̂ (𝑘) [26,
12

𝑉 𝐼 𝐼𝐼
Section 2.6, p. 54],

𝑍̂(𝜔𝑘) =
𝑆̂𝑉 𝐼 (𝑘)
𝑆̂𝐼𝐼 (𝑘)

=

∑𝑀
𝑚=1 𝑉[𝑚](𝑘)𝐼

∗
[𝑚](𝑘)

∑𝑀
𝑚=1 𝐼[𝑚](𝑘)𝐼

∗
[𝑚](𝑘)

, (56)

here the superscript ∗ stands for the complex conjugate, and the
ubscript [𝑚] stands for different experiments. Averaging over many
ifferent experiments reduces the transient and avoids divisions by
ero. Note that this only makes sense in stationary conditions where
ultiple experiments can be gathered.

As a special case, Blanc [117] chooses the pseudo-white noise
xcitation 𝑖(𝑡) such that 𝐼(𝑘)𝐼∗(𝑘) = 1 in the frequency band of in-
erest. Accordingly, only the numerator of (56) needs to be computed
o estimate the impedance. Note that these cross- and auto spectra
orrespond to correlations in the time domain [118], as also studied
y Blanc [117].

Other, more involved, frequency domain techniques are possible for
easuring the impedance using random excitation [119,120]. Here,

ocal parametric modelling and Gaussian process regression are used
o separate the impedance from the transients. Such techniques are
romising for low-cost experiments where periodic excitation signals
annot be applied. However, explaining these in detail goes beyond the
cope of this article.

. Detection of nonlinearity and nonstationarity

It is empirically shown in You et al. [100] that classical impedance
ata 𝑍̂(𝜔𝑘) obtained from broadband excitation using frequency do-
ain techniques (as studied in Section 6) always satisfies the Kramers–
ronig relations. Hence, the latter cannot assess whether measured
ultisine data satisfies the assumptions of linearity and stationarity,

nd another tool is required for this purpose. Inherently nonlinear and
onstationary behaviour of electrochemical systems is easily detected
y applying a zero-mean ORP excitation (47) (with 𝑖0(𝑡) = 0) and
tudying the measured frequency domain data (50) [40,42,49,121]. We
ecommend the use of this tool, which we now illustrate on a simplistic
xample that demonstrates its advantages.

.1. An example with ORP multisine excitation

Consider an odd random phase multisine with excited harmonics
exc = {1, 3, 7}, that is, excited frequencies 1∕𝑇𝑝, 3∕𝑇𝑝 and 7∕𝑇𝑝. A
easurement is performed for a duration 𝑇 = 10𝑇𝑝, i.e., 𝑃 = 10
eriods are measured. Based on the frequency domain voltage response
ata 𝑉 (𝑘), it is possible to detect whether the electrochemical system
ehaves as an LTI, NLTI, LTV or NLTV system, as illustrated in Fig. 12.

TI: 𝑉 (𝑘) has only spectral content at DC and the excited harmonics
𝑃Hexc.

LTI: 𝑉 (𝑘) has spectral content at DC and the excited frequencies, and
also at harmonics that are integer multiples of the fundamental
frequency 1∕𝑇𝑝, i.e., 𝑃Hnl with Hnl = {0, 1, 2,…}. Both even and
odd nonlinearities are detected, since there is spectral content
at the even left-out harmonics (0, 2, 4, 6) and at the odd left out
harmonic (5).

TV: 𝑉 (𝑘) consists of hyperbolic-like shapes around DC and the excited
frequencies. These shapes, called skirts in the literature [122],
are due to the smooth time-varying function modulating the
multisine components.

LTV: 𝑉 (𝑘) consists of hyperbolic-like shapes around DC, the excited

frequencies and the nonlinear harmonics.
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Fig. 12. Detection of nonlinear and nonstationary behaviour in measured data. An odd random phase multisine signal (blue crosses) with a detector for odd nonlinear distortions
is applied for 𝑃 = 10 periods at two different excitation amplitudes. In the LTI case, the voltage response only has spectral content at DC (dots at 𝑓 = 0Hz) and at the excited
frequencies. For a higher excitation amplitude, the system might become NLTI, and spectral content appears at integer multiples of the fundamental frequency. When the system
is nonstationary, hyperbolic shapes become visible around the excited frequencies, and in the nonlinear case around all the integer multiples of the fundamental frequency.
In Fig. 12 noiseless data are considered. However, real-life measure-
ments also contain noise that is distributed over all DFT frequencies.
Still, it is easy to distinguish between nonlinearities, nonstationarities
and noise. This can, for instance, be seen from Fig. 11 where the
measured voltage spectrum clearly satisfies the LTI constraints and
the noise is at least 1000 times smaller than the linear response.
For a nonzero-mean multisine excitation, the response will likely be
nonstationary. This would look like a sampled version of Fig. 8.

From all the spectra illustrated in Fig. 12, only the LTI one should
be processed with classical EIS techniques, as discussed in the previous
section. If only nonlinearities are detected, one can estimate the BLA
(see Section 8.2). If time-variation is detected, but no nonlinear dis-
tortions, time-varying impedance data can be estimated from the data
record (see Section 9), if there are nonlinear distortions too, but they
are limited, the BLTVA can be estimated from the data using operando
EIS (see Section 9.3).

7.2. Advantages of an ORP multisine excitation

By measuring the response of the electrochemical system to an ORP
multisine excitation for a large number of periods, we can easily detect
the presence of nonstationarities and nonlinearities, and estimate the
noise level. It is possible to do this over a wide frequency range, in one
single experiment, as studied in [38–40,42]. The advantages of using a
multisine excitation over a single-sine one have already been discussed
in depth (Section 3.2.3). However, an interested reader might wonder
why it is particularly advantageous to use a multisine with random
hases and only odd excited harmonics. The reasons are as follows:

The random phases are chosen to minimise the crest factor of the
ultisine. Note that there exist optimal ways to achieve this, however,
sing random phases has the advantage of simple implementation [57].

The choice to excite only odd harmonics, on the other hand, is
ore involved. In fact, the advantage is twofold. First, it allows dis-

inguishing between even and odd nonlinear distortions. The nonlinear
istortions are present at DFT lines which are the product of the excited
13
harmonic numbers and the degrees of the relevant monomials in the
Volterra series [104]. When exciting only odd harmonics, for odd
nonlinear behaviour (odd degree monomials in the Volterra series), the
nonlinear distortions are present at odd harmonics (odd × odd = odd),
while for even nonlinear behaviour (even degree monomials in the
Volterra series) they are present at even harmonics (odd × even = even).
If we would only excite even harmonics, it would not be possible to
distinguish between the two (even × odd = even and even × even = even).
When exciting all harmonics, even and odd, it is also not possible to
distinguish between the types of nonlinearities.

The second advantage is that even nonlinearities do not have a
contribution at the excited frequencies. Hence, when computing the
BLA or BLTVA using a multisine excitation, even nonlinear distortions
introduce no uncertainty, as further discussed in Section 8.2.

8. Nonlinear impedance estimation

8.1. Leading order nonlinear impedance estimation

It is appropriate to perform NLEIS (Section 4.1.2) in the frequency
domain. For this purpose, we apply a zero mean single-sine excitation,
that is, 𝑖0(𝑡) = 0, 𝑀 = 1 and Hexc = {1} in (47), measured over an
integer number of periods 𝑃 ≥ 1. When choosing the right amplitude
𝐼1, as discussed in Section 4.1.2, we obtain estimates of the leading
order nonlinear impedance coefficients as,

𝑍̂ℎ,ℎ(𝜔𝑃 ) =
𝑉 (ℎ𝑃 )
𝐼(𝑃 )ℎ

𝜔𝑃 = 2𝜋𝑃
𝑇

= 2𝜋
𝑇𝑝
. (57)

Measuring a higher number of periods 𝑃 > 1 introduces an averaging
effect of the stochastic noise in the experiments. Different frequencies
𝜔𝑃 are applied sequentially. NLEIS with multisine excitation should
also be possible, however not yet investigated. One has to be careful
for leaving enough gaps in the excitation signal to see the integer

harmonics in the response.
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8.2. Best linear approximation

Independently of the excitation amplitude of single-sine experiments,
the BLA can be estimated from (38), where different frequencies can be
applied sequentially,

̂ (𝜔𝑃 ) =
𝑉 (𝑃 )
𝐼(𝑃 )

𝜔𝑃 = 2𝜋𝑃
𝑇

= 2𝜋
𝑇𝑝
. (58)

For multisine excitations measured for an integer number of periods
𝑃 , the BLA impedance estimate is computed exactly as for classical
impedance experiments (55). If an ORP multisine is used, that is,
exciting odd harmonics, only odd nonlinearities will introduce spectral
content at the excited frequencies. Indeed, even nonlinear distortions
can only be present at even multiples of the odd harmonics, resulting
in even harmonics. Accordingly, the BLA will have uncertainties due to
noise and also due to odd nonlinear distortions that introduce spectral
content at other odd harmonics (see [26, Section 3.4, p. 78]). The
effect of the noise can again be reduced by measuring a larger number
of periods. The odd nonlinear distortions, on the other hand, do not
depend on the number of measured periods. They only depend on
the system and the excitation, that is, the amplitudes and excited
frequencies. The uncertainty of the BLA can be reduced by exciting
fewer frequencies in the multisine. Recall that the BLA depends on
the excitation (38), however, using Riemann-equivalent multisines, one
can adapt the number of excited frequencies without changing the
BLA [123].

9. Time-varying impedance estimation

Estimating a time-varying impedance 𝑍(𝜔𝑘, 𝑡) cannot simply be
done by dividing DFT spectra. Different single-sine and multisine ap-
proaches have been developed over the last two decades to address
this. However, in this review paper we intentionally restrict to mul-
tisine excitations, since we believe this is the only correct solution
(see Section 4.2.3). With ever-growing computation power, more and
more complex techniques have been developed. There are two main
approaches. One implies the use of windowing/filtering of the current
and voltage data in time or frequency domain, respectively, and gives
an average value of the impedance inside the selected time frame.
Another uses the mathematical regression of the voltage response spec-
trum to extract the time-variation. These approaches are detailed next,
chronologically.

9.1. FFT-EIS applied to nonstationary data

The first attempt to obtain time-varying impedance data was by
Bond, Schwall and Smith in 1977 [43,124,125]. This simple and intu-
itive approach is an extension of Smith’s FFT-EIS discussed in Section 6.

Instead of applying only a zero-mean excitation signal, the ex-
citation signal is now superimposed on a slower cyclic-voltammetry
excitation, introducing nonstationarity in the measured system. While
collecting current and voltage data, the FFT-EIS is performed on short
subrecords. This is a type of windowing. Accordingly, for each sub-
record, which corresponds to a certain point in the voltage trajectory of
the cyclic voltammetry, the time-averaged impedance of the subrecord
is computed using the techniques of Section 6. Basically, classical
impedance measurements are applied to nonstationary data, but in
very small time-windows such that the impedance could be assumed
constant within each subrecord.

Since the period length is inversely proportional to the frequency,
the impedance is only measured at high frequencies, such that short
subrecords can be taken. Results of the impedance (or admittance)
varying over the cyclic voltammetry trajectory are only shown for two
particular frequencies above 300Hz. This is a strong limitation of the
technique.
14
Later, in 1997, FFT-EIS was implemented on a microcomputer
[126], for a multisine superimposed onto a staircase DC ramped volt-
age excitation. Time-varying impedance measurements could be ob-
tained within the broader frequency range of 50Hz–50 kHz. Later, Sacci
and Harrington [46,47], developed measurement apparatus to obtain
time-varying impedance data using FFT-EIS with multisine excitation
superimposed on a cyclic voltammogram.

Comment. It is noteworthy that obtaining time-varying impedance data
is much easier at high frequencies. This is due to low-frequency noise
(so-called 1∕𝑓 noise), and also due to the drift signal (also called trend)
𝑣0(𝑡) in (41) having a decreasing shape over frequency, and hence,
iding low-frequency content [59,63]. Remarkably, time-varying be-
aviour is mostly present at the low frequencies, this is possibly due
o mass transport and/or charge transfer kinetics.

.2. Time–frequency analysis methods

During the nineties, time–frequency analysis, as described by L.
ohen5 [127], became a widely used tool in signal processing. Time–

frequency analysis describes how the spectral content of a signal 𝑥(𝑡)
changes in time, and, hence, is relevant for time-varying impedance
estimation. The workhorse here is the short-time Fourier transform
(STFT), which computes the Fourier transform of a signal restricted by
a window function 𝑤(𝑡),

STFT{𝑥}(𝜔, 𝑡) = ∫

∞

−∞
𝑤(𝑡′ − 𝑡)𝑥(𝑡′)𝑒−𝑗𝜔𝑡

′
d𝑡′

= {𝑤(𝑡′ − 𝑡)𝑥(𝑡′)}, (59)

ith the Fourier transform acting on the variable 𝑡′. The most com-
only used window functions are the Gaussian, Hamming and
lackman-Harris windows. These windows reach their largest values

n the centre, and decrease smoothly towards the borders.

.2.1. STFT-EIS
Darowicki [44,45,128] subsequently proposed to estimate the time-

arying impedance under multisine excitation as the ratio of the STFT
f voltage and current,

(𝜔, 𝑡) =
{𝑤(𝑡′ − 𝑡)𝑣(𝑡′)}
{𝑤(𝑡′ − 𝑡)𝑖(𝑡′)}

, (60)

ith again the Fourier transforms acting on the variable 𝑡′. Assuming
he window 𝑤(𝑡) to be a symmetric function centred around zero,
he impedance at time 𝑡 is computed by selecting the time domain
ata around this time-instant, and dividing the corresponding spectra
f voltage and current. Note that FFT-EIS on nonstationary data is a
pecial case of STFT-EIS, with a rectangular window 𝑤(𝑡).

In practice, of course, only discrete-time data (48) is available. The
mpedance can then be computed by [45],

̂ (𝜔𝑘, 𝑡𝑛) =
𝑉 (𝑘, 𝑛)𝐼∗(𝑘, 𝑛)
𝐼(𝑘, 𝑛)𝐼∗(𝑘, 𝑛)

𝑡𝑛 = 𝑛𝑇𝑠, (61a)

ith the DFT acting on subrecords of 𝑁𝑤 data points centred around
, which are windowed by the function 𝑤(𝑡),

(𝑘, 𝑛) = 1
𝑁𝑤

𝑛+𝑁𝑤∕2−1
∑

𝑛′=𝑛−𝑁𝑤∕2
𝑤(𝑛′ − 𝑛)𝑥(𝑛′)𝑒−𝑗2𝜋𝑘𝑛

′∕𝑁𝑤 , (61b)

𝑥 = 𝑖, 𝑣. A division of the cross- and auto spectra is chosen here since the
signals are not periodic anymore, and this estimator is recommended
for random excitations (see Section 6). The time-varying impedance
estimate is computed at the harmonics 𝑘 where the numerator of (61a)
shows peak values, corresponding to the excited frequencies of the
multisine. To make these peaks visible and avoid excessive overlapping,
it is important that many periods are measured. Moreover, the choice
of the window 𝑤(𝑡) is crucial in this technique.

5 Not to be confused with the great Canadian singer-songwriter.
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9.2.2. Dynamic multi-frequency analysis
Later, Battistel and La Mantia [48,54,107] proposed the dynamic

multi-frequency analysis (DMFA) for estimating time-varying impeda-
nce data. Here, the time-varying impedance is computed by filtering
the current and voltage spectra around the excited frequencies of a
multisine, and taking the inverse Fourier transform,

𝑍(𝜔, 𝑡) =
−1{𝑊 (𝜔′ − 𝜔)𝑉 (𝜔′)}
−1{𝑊 (𝜔′ − 𝜔)𝐼(𝜔′)}

, (62)

ith the inverse Fourier transforms acting on 𝜔′. The function 𝑊 (𝜔)
mplements a filtering operation. This process is called quadrature
iltering since only the spectrum at positive frequencies is considered
nd the inverse Fourier transforms give complex-valued results. Using
he inverse Fourier transforms the time-variation of the impedance at
particular frequency is retrieved from the filtered skirt around that

requency.
For sampled frequency domain data (50), with multisine excitation,

he time-varying impedance data estimates translate into

̂ (𝜔𝑘, 𝑡𝑛) =
𝑣(𝑘, 𝑛)
𝑖(𝑘, 𝑛)

, (63a)

ith for 𝑘 ∈ 𝑃Hexc the inverse DFT acting on frequency domain
ubrecords of 𝑁𝑊 data points centred around 𝑘, which are filtered by
he function 𝑊 (𝑓 ),

(𝑘, 𝑛) =
𝑘+𝑁𝑊 ∕2−1

∑

𝑘′=𝑘−𝑁𝑊 ∕2
𝑊 (𝑘′ − 𝑘)𝑋(𝑘′)𝑒𝑗2𝜋𝑘

′𝑛∕𝑁𝑊 𝑥 = 𝑖, 𝑣. (63b)

Here also, it is important that sufficient number of periods are measured
to give enough data around the excited frequencies to extract the
time-variation.

9.2.3. Equivalence between STFT-EIS and DMFA
For a symmetrical window, 𝑤(𝑡) = 𝑤(−𝑡), and 𝑊 (𝜔) = {𝑤(𝑡)},

the continuous definitions of the STFT-EIS (60) and the DMFA (62) are
equivalent (as proven in Appendix E),

{𝑤(𝑡′ − 𝑡)𝑣(𝑡′)}
{𝑤(𝑡′ − 𝑡)𝑖(𝑡′)}

=
−1{𝑊 (𝜔′ − 𝜔)𝑉 (𝜔′)}
−1{𝑊 (𝜔′ − 𝜔)𝐼(𝜔′)}

. (64)

Since the Fourier and inverse Fourier transforms act on, respectively, 𝑡′
and 𝜔′, both left and right hand side of (64) are a function of 𝜔 and 𝑡.
Note that both equations for extracting the time-varying impedance are
heuristic, and do not exactly match with the theoretical definition (42).
Nonetheless, these approximations may be accurate enough in practice.

Since STFT-EIS and DMFA have a mathematically equivalent defini-
tion of impedance, the difference boils down to the choice of window
𝑤(𝑡), or equivalently filter 𝑊 (𝜔), and the actual implementation. The
properties of the symmetrical window or filter can mainly be studied
by its width. This width can, for instance, be defined by the variances

𝜎2𝑡 =
∫ ∞
−∞ 𝑡2|𝑤(𝑡)|2d𝑡

∫ ∞
−∞ |𝑤(𝑡)|2d𝑡

and 𝜎2𝜔 =
∫ ∞
−∞ 𝜔2

|𝑊 (𝜔)|2d𝜔

∫ ∞
−∞ |𝑊 (𝜔)|2d𝜔

. (65)

Just as in quantum mechanics where the uncertainty principle prohibits
to measure simultaneously the position and velocity of an electron
with arbitrary precision, so it is not possible to measure the impedance
with arbitrary precision in both time and frequency. Accordingly, the
so-called Gabor limit [127] states that

𝜎2𝑡 𝜎
2
𝜔 ≥ 1

4
. (66)

The time-selectivity 𝜎2𝑡 and frequency resolution 𝜎2𝜔 cannot both be
ade arbitrarily small; there is a trade-off between them.

TFT-EIS. Darowicki [44] uses a Gaussian window, which has the
roperty that its Fourier transform is Gaussian as well,

(𝑡) = 𝑒−
𝜆
2 𝑡

2
⟺ 𝑊 (𝜔) =

√

2𝜋 𝑒−
𝜔2
2𝜆 . (67)
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𝜆

For this choice of window, the Gabor limit reduces to

𝜎2𝑡 𝜎
2
𝜔 = 1

4
with 𝜆 = 1

2𝜎2𝑡
= 2𝜎2𝜔. (68)

Accordingly, an increase of the time selectivity leads to a deterioration
of the frequency resolution, and vice versa. The time and frequency
resolution are determined by the hyperparameter 𝜆. The larger 𝜆, the
more resolution in time, but the less resolution in frequency.

An issue with STFT-EIS is that first subrecords are taken, followed
by the windowing. As a consequence, we do not actually reach the
Gabor limit. Also the DFT is taken on subrecords, which obviously
contain less data points than the total record, hence, as discussed in
Section 5, the SNR is poorer. Another issue is estimating time-varying
impedance data at low frequencies—the width of the window should, at
least, be a period relating to the lowest frequency of interest. However,
since period is inversely proportional to frequency, at low frequencies
the window width should be large, decreasing the time resolution.
On the other hand, since STFT-EIS is applied to time windows, the
time-varying impedance can be estimated in near real-time.

DMFA. Battistel and La Mantia [107], on the other hand, directly
define the quadrature filter,

𝑊 (𝜔) =

(

1 + 𝑒−𝑞2
)2

(

1 + 𝑒−𝑞
𝜔+𝛥𝜔
𝛥𝜔

)(

1 + 𝑒𝑞
𝜔−𝛥𝜔
𝛥𝜔

)

, (69)

where 𝑞 is a factor determining the roll-off of the filter and 𝛥𝜔 is its
bandwidth. Note that in the limits,

lim
𝑞→0

𝑊 (𝜔) = 1 and lim
𝑞→∞

𝑊 (𝜔) =
{

1 if − 𝛥𝜔 ≤ 𝜔 ≤ 𝛥𝜔
0 else. (70)

he objective of this filter is to mimic a rectangular filter, while being
ontinuous.

The advantage of the DMFA over the STFT-EIS is that only one
FT is needed on the entire time-series (48) to obtain the frequency
omain data (50). Here, the measurement noise is distributed over
ll the DFT lines, resulting in a higher SNR (see Section 5). The
ime-varying impedance data is then directly obtained by applying
he inverse DFT to small windowed subrecords around the excited
requencies of the multisine. This has advantages in computation time
see [107] Section 2.3)). Also the width of the filter can be chosen as a
unction of the spacing of the excited frequencies. Moreover, an analysis
f the influence of measurement noise on the time-varying impedance
ata can be performed [129]. However, the time-varying impedance
stimation cannot be done in real-time.

The main advantage of these time–frequency analysis methods is the
ccessible implementation. However, both methods have difficulty in
stimating time-varying impedance data at low frequencies due to the
rift signal. Moreover, they do not account for nonlinear distortions,
ven though in the DMFA this could be implemented. These problems
re each solved by operando EIS, as detailed next.

.3. Operando EIS

Operando EIS, as developed by Hallemans et al. [49,59,63], is an
xtension of ORP-EIS. Here, we estimate the time-varying impedance
y using the definition of the BLTVA (46) as a model structure. Note
hat when no nonlinear distortions are present in the measurements, the
LTVA and the time-varying impedance in (42) are equal. Nonlinear-

ties in the measurements are detected, quantified and classified, and
he noise level is estimated [49]. Also uncertainty bounds are included
n the estimated impedance data, and drift signals are suppressed,
llowing access to low frequencies [63].

The idea is to write the time-varying impedance as a truncated series
xpansion in a set of known basis functions in time,

(𝜔, 𝑡) =
𝑁𝑝
∑

𝑍𝑝(𝜔)𝑏𝑝(𝑡). (71)

𝑝=0
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Fig. 13. The first five Legendre polynomials in time (a) and frequency domain (b).

The basis functions 𝑏𝑝(𝑡) are chosen as Legendre polynomials
(Fig. 13 (a) and Appendix F), since these benefit from good numerical
conditioning [122]. Using (71), the frequency and time dependencies
are separated. Since the basis functions are known, only the impedances
𝑍𝑝(𝜔) should be estimated.

The time-varying nonlinear distortions 𝑣s(𝑡) are also expanded in
series,

𝑣s(𝑡) =
𝑁𝑝
∑

𝑝=0
𝑣s,𝑝(𝑡)𝑏𝑝(𝑡), (72)

with 𝑣s,𝑝(𝑡) the time-invariant nonlinear distortions generated by a
Volterra series (23), meaning that 𝑉s,𝑝(𝜔) = {𝑣s,𝑝(𝑡)} is only nonzero
at the integer multiples of the fundamental frequency of the periodic
excitation. Plugging (71) and (72) in the excitation-response relation of
NLTV systems (46) yields,

𝑣(𝑡) = 𝑣0(𝑡) +
𝑁𝑝
∑

𝑝=0
−1{𝑍𝑝(𝜔)𝐼exc(𝜔) + 𝑉s,𝑝(𝜔)}𝑏𝑝(𝑡). (73)

The drift signal 𝑣0(𝑡) is unknown and hides low-frequency content.
Therefore, it should also be modelled, for instance by Legendre poly-
nomials [42,49],

𝑣0(𝑡) =
𝑁𝑞
∑

𝑞=0
𝜃𝑞𝑏𝑞(𝑡). (74)

Drift signals can also be removed by differencing, as detailed in [63].
This has better performance, however, the mathematics are more in-
volved, so for this review paper we restrict to modelling the drift signal
with basis functions. Taking the DFT of (73) gives,

𝑉 (𝑘) =
𝑁𝑞
∑

𝑞=0
𝜃𝑞𝐵𝑞(𝑘) +

𝑁𝑝
∑

𝑝=0

(

𝑍𝑝(𝜔𝑘)𝐼exc(𝑘) + 𝑉s,𝑝(𝑘)
)

∗ 𝐵𝑝(𝑘). (75)

Here it was used that a product in the time domain becomes a convo-
lution in the frequency domain and 𝐵𝑝(𝑘) is the DFT of the Legendre
polynomials, shown in Fig. 13(b). For a multisine excitation measured
over an integer number of periods 𝑃 , we have that 𝐼exc(𝑘) is only
nonzero at the harmonics 𝑃Hexc and 𝑉s,𝑝(𝑘) is only nonzero at the
harmonics 𝑃Hnl, with Hnl = {0, 1, 2, 3,…}. Note that Hexc ⊂ Hnl.
Accordingly, (75) can be simplified as,

𝑉 (𝑘) =
𝑁𝑞
∑

𝑞=0
𝜃𝑞𝐵𝑞(𝑘) +

𝑁𝑝
∑

𝑝=0

∑

𝑘′∈𝑃Hnl

𝜃𝑝(𝑘′)𝐵𝑝(𝑘 − 𝑘′), (76)

with

𝜃 (𝑘′) = 𝑍 (𝜔 )𝐼 (𝑘′) + 𝑉 (𝑘′). (77)
16

𝑝 𝑝 𝑘′ exc s,𝑝
Eq. (76) is linear in the parameters 𝜃, hence, the data can be written
in matrix form,

𝑉 = 𝐾𝜃 +𝑁𝑣, (78)

where 𝑉 is a stacked vector of the measured voltage spectra 𝑉 (𝑘), the
regression matrix 𝐾 consists of regressors 𝐵𝑝(𝑘) centred around the
harmonics 𝑃Hnl, the parameter vector 𝜃 contains the parameters 𝜃𝑞 ,
𝑞 = 0, 1,… , 𝑁𝑞 , 𝜃𝑝(𝑘′), 𝑝 = 0, 1,… , 𝑁𝑝 and 𝑘′ ∈ 𝑃Hnl, and 𝑁𝑉 a vector
representing the noise. The optimal parameters are estimated in linear
least squares sense,

𝜃̂ = argmin
𝜃
(𝑉 −𝐾𝜃)𝐻 (𝑉 −𝐾𝜃) = (𝐾𝐻𝐾)−1𝐾𝐻𝑉 . (79)

For long data records, the regression problem becomes too large to
solve in one go. Therefore, it is proposed to solve it in local frequency
bands as detailed in [49]. We retrieve the impedance and nonlinear
distortion estimates from the estimated parameter vector 𝜃̂,

𝑍̂𝑝(𝜔𝑘) =
𝜃̂𝑝(𝑘)
𝐼exc(𝑘)

𝑘 ∈ 𝑃Hexc (80a)

𝑉s,𝑝(𝑘) = 𝜃̂𝑝(𝑘) 𝑘 ∈ 𝑃
(

Hnl ⧵Hexc
)

(80b)

Finally, the estimate of the time-varying impedance at the excited
frequencies is obtained as,

𝑍̂(𝜔𝑘, 𝑡) =
𝑁𝑝
∑

𝑝=0
𝑍̂𝑝(𝜔𝑘)𝑏𝑝(𝑡) 𝑘 ∈ 𝑃Hexc. (81)

dd nonlinear distortions and noise introduce uncertainties on the
ime-varying impedance estimates 𝑍̂(𝜔𝑘, 𝑡). For the computation of
ncertainty bounds due to nonlinear distortions and noise, the reader
s referred to [49], where also a noise estimation is performed.

The strength of operando EIS is that it measures the theoretical
efinition of the time-varying impedance (42), which is not the case
or the time–frequency analysis methods. Moreover, when the data
s NLTV, it computes the BLTVA, together with uncertainty bounds.
ence, electrochemical systems not satisfying linearity can still be
onitored using an impedance when the odd nonlinearities are not

oo strong. Since the drift signal is modelled too, low-frequency infor-
ation becomes attainable, which is important for some applications.
herefore, operando EIS is applicable to a wide range of experiments.

The trade-off between time and frequency resolution, however,
emains. To be able to extract the time-variation, one should leave
ufficient number of empty DFT lines between the excited frequencies
corresponding to measuring a large integer number of periods), which
ecreases the resolution of the excited frequencies.

0. A case study on commercial Li-ion batteries

Li-ion batteries were chosen as a case study to illustrate the im-
ortant concepts in this article using real-life measurements. Similar
xperiments were performed as per Hallemans et al. [59], using a
ristine commercially available Samsung INR21700-48X cell placed in
thermal chamber at 5 ◦C or 25 ◦C. The Samsung 48X is a 4.8Ah 21700

ell format with cathodes based on lithiated metal oxide (Co, Ni, Al)
nd anodes based on intercalation graphite and blended Si.

Current and voltage data were collected using a Gamry Interface
000E potentiostat, which as well as running classical EIS experiments,
llows user-defined excitations to be applied, with measurement of
urrent and voltage data (albeit with a sampling frequency limited
o 200Hz). We worked in galvanostatic mode (current as excitation),
here the range is limited to [−5, 5] A.

An odd random phase multisine signal 𝑖exc(𝑡) was designed with
eriod 𝑇𝑝 = 3 min. The 76 excited frequencies were chosen as odd

harmonics, Hexc = {1, 3, 5,…}, logarithmically spaced between 𝑓min =
5.6mHz and 𝑓max = 80Hz. The phases were chosen randomly, uniformly
distributed in [0, 2𝜋). Since noise is often more prominent at low
frequencies, and while doing operando experiments the low-frequency
content is hidden by drift signals, we chose for decreasing amplitudes
of the sines over frequency, with total root-mean-square (RMS) of 0.8 A

rms.
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Fig. 14. Voltage response of the Samsung 48X cell in LTI conditions at 25 ◦C. The zero-
ean excitation signal 𝑖exc(𝑡) is used and 𝑃 = 10 periods of the current and voltage are
easured at different SOC levels. Every colour indicates a measurement at a different

OC. Note that for every SOC, the OCV is also different. The time-series are subsampled
50 times.

0.1. Estimating classical impedance data

For the classical EIS experiments, the battery was first entirely
ischarged, then charged at a 𝐶∕3 rate (constant current of 4.8∕3 =

1.6 A) until reaching the desired SOC level (10, 20,… , 90%). Two hours
of relaxation were allowed such that the battery reached steady-state
and the voltage reached the OCV value. Then, the zero-mean excitation
signal 𝑖(𝑡) = 𝑖exc(𝑡) was looped for 𝑃 = 10 periods, that is for 𝑇 =
𝑃𝑇𝑝 = 30 min. The measured voltage at the different operating points
(SOC = 10, 30, 50, 70, 90% and T = 25◦C) is shown in Fig. 14. Note that,
as expected, the voltage data is periodic with period 3 min and centred
around the OCV value—as should be the case in a LTI system. Since
the measurements are periodic, the classical impedances can be easily
computed from Section 6, Eq. (55).

The spectra of the measured current and voltage, and estimated
impedance for the 10% SOC and 25 ◦C operating point are shown in
Fig. 11. Note that for the chosen excitation amplitudes, the battery
behaves linearly. No nonlinear distortions nor nonstationarities can
be detected. However, a (small) drift signal is present. Also, noise is
present in the measurements, but it is fairly low—an SNR of at least
1000 is obtained.

The estimated impedances at different operating points (depending
on SOC and temperature) are shown in Fig. 3; we do indeed obtain a
different impedance for each of the operating points. Note that if we
want to perform quicker experiments, we can measure fewer periods,
for instance 𝑃 = 4, leading to experiments of 𝑇 = 12 min, however,
with a higher noise floor.

10.2. Estimating time-varying impedance data

To obtain time-varying impedance data, the battery was charged
with a 𝐶∕2 current, with the multisine superimposed,

𝑖(𝑡) = 2.4A + 𝑖exc(𝑡). (82)

The top graph of Fig. 15 shows the measured current and voltage data
at 5 ◦C. Due to the DC current offset of 2.4 A, the battery is charging,
and the voltage increases, leading to a drift signal superimposed on the
multisine response. The measurement was stopped when the voltage
reached the safety bound of 4.2 V. For constant current charging of 𝐶∕2
we would expect the 4.2 V limit to be reached after 2h. However, due
to the multisine signal added on top of this charging current, the safety
limit was reached prematurely. Accordingly, 𝑃 = 29 and 𝑃 = 31 periods
of the excitation were measured for the 5 ◦C and 25 ◦C experiments,
respectively.

The middle graph of Fig. 15 shows the SOC, with values from
0 % to 72.5%, and the battery’s surface temperature, which increases
17

slightly during charging. This is also shown in the SOC-temperature c
Fig. 15. Experiment performed on a Samsung 48X cell in time-varying conditions in
a thermal chamber at 5 ◦C. Top graph: current excitation and voltage response. The
current has a DC offset of 2.4 A, hence, the battery charges, and the voltage increases.
Middle graph: SOC, obtained by Coulomb counting, and the external parameter
temperature during the experiment. Since the battery is charging with a constant
current plus zero-mean multisine, the SOC increases linearly and the temperature
increases slightly. Bottom graph: time-variation of the impedance at 0.9389Hz obtained
from operando EIS [59].

Fig. 16. Current and voltage spectra of an experiment performed on a Samsung 48X
cell in time-varying conditions at 5 ◦C. Top graph: spectra of current and voltage in
three different frequency bands of each 38.5mHz wide, with a linear frequency axis.
Note the decreasing shape of the drift spectrum hiding low-frequency content. Bottom
graph: entire spectra, with a logarithmic frequency axis.

plane in Fig. 9. The spectra of the current and voltage data of the
5 ◦C experiment are shown in Fig. 16. The bottom graph shows the
spectra with a logarithmic frequency axis, while the top graph shows
zoomed spectra in different frequency bands, each 38.5mHz wide, with

linear frequency axis. Note the general decreasing shape of the drift
pectrum 𝑉0(𝑘) in the voltage spectra which hides the low-frequency
ontent. For the lowest zoomed frequency band (top left), the time-
nvariant contributions at the excited frequencies barely exceed the
rift spectrum, and the skirts are completely hidden. At frequencies
lose to 1Hz, the skirt around the excited frequency is more visible,
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but the drift spectrum still hides information. At frequencies close to
80Hz the skirts are clearly visible.

The time-varying impedance at 1Hz, estimated using operando
IS [59], is shown in the bottom graph of Fig. 15. The time-varying
mpedance at all excited frequencies is shown in Fig. 9. Even though
he drift signal hides the low-frequency content, clean impedance data
an be obtained at these frequencies using operando EIS. Note that
he impedance is highest at low SOC, and that the impedance while
harging is different from the one while resting [59].

0.3. Estimating equivalent circuit model parameters

Processes at different time-scales are often investigated by mapping
mpedance data onto ECM parameters. The exact physical meaning of
hese parameters is often ambiguous. However, they allow description
f the impedance data by a small number of parameters, which could
e related to physical processes. The aim of this section is to show
hat such ECM parameters are different under operating conditions
ompared to at steady state.

Kirk et al. [34] have demonstrated that conventional Randles ECMs
an be derived by linearising the SPM, a physics-based battery model,
hile considering a double-layer capacitance. The computations result

n two Randles circuits, one for each electrode, along with a series
esistor (see Fig. 3 of [34]). Such a model has a physical interpretation,
owever, it may overparametrise measured impedance data. For the
mpedance data of the Samsung 48X cell, the Warburg element in
ne of the two Randles circuits (related to diffusion in one of the
lectrodes) can be removed without compromising the goodness of fit.
herefore, we use the simplified ECM of Fig. 17. This simplification may
e justified by assuming fast diffusion in one of the electrodes (typically
he positive one), although this cannot be said with certainty. As a
esult of using simplified models, parameters may have an ambiguous
hysical meaning. In a general way, we can say that the series resis-
ance 𝑅0 (yellow) is related to the electrolyte resistance, the Warburg
lement (purple straight line) is related to electrode diffusion, and the
𝐶-branches (green and purple semi-circles) to the electrochemical
inetics. Giving an in-depth physical interpretation of the model is be-
ond the scope of this review, however. The corresponding parametric
mpedance yields,

ECM(𝜔, 𝜃) = 𝑅0 +𝑍𝐶1//(𝑅1 +𝑍W) +𝑍𝐶2//𝑅2, (83a)

where the parameter vector 𝜃 is given by

𝜃 = [𝑅0, 𝑅1, 𝐶1, 𝑅2, 𝐶2,W, 𝛼], (83b)

the symbol ‘//’ stands for the parallel connection, that is,

𝑍𝑋 (𝜔)//𝑍𝑌 (𝜔) =
𝑍𝑋 (𝜔)𝑍𝑌 (𝜔)
𝑍𝑋 (𝜔) +𝑍𝑌 (𝜔)

, (83c)

and the impedance of a capacitor and Warburg element, respectively,
yield,

𝑍𝐶 (𝜔) =
1

𝐶𝑗𝜔
and 𝑍W(𝜔) = W

(𝑗𝜔)𝛼
. (83d)

The Nyquist chart in Fig. 17 illustrates the contribution of the three
branches in series (yellow, purple and green) on the total impedance
(black), being the sum of the three other colours.

The ECM parameters 𝜃 can now be estimated from impedance data
by minimising the cost function,

𝜃̂ = argmin
𝜃

∑

𝑘∈𝑃Hexc

|𝑍̂(𝜔𝑘) −𝑍ECM(𝜔𝑘, 𝜃)|
2. (84)

his cost function is nonlinear in the parameters 𝜃, hence, a nonlinear
olver is required. Here, we use a hybrid of particle swarm optimisa-
ion [130–132] and the built-in MATLAB function lsqnonlin. Fits
ver the frequency band [16.7 mHz, 50 Hz] are obtained with mean
elative errors over frequency all smaller than 0.2% and 0.5% for the
18

lassical and time-varying impedance data, respectively.
Fig. 17. Equivalent circuit model and estimated parameters for the Samsung 48X cell.
The Nyquist plot shows the influence of the different branches (yellow, purple and
green) on the total impedance (black). In the ECM parameter graphs, dots represent
the parameters obtained from classical EIS at different operating points, while the
continuous lines show the parameters obtained from time-varying impedance data along
operating trajectories. For the time-varying experiments, the temperature is assumed
approximately constant at 5 or 25 ◦C.

The estimated ECM parameters for the measured impedance data
of the Samsung 48X cell at 5 ◦C and 25 ◦C are shown in Fig. 17. The
ECM parameters of the classical impedance data at different operating
points are shown as dots, while the ECM parameters of the time-
varying impedance data along trajectories are shown as continuous
lines. The temperature is assumed approximately constant during the
experiments. It is observed that the parameters obtained in operating
and classical conditions are not necessarily equal. For Li-ion batteries,
this was already studied by Huang et al. [56], where the charge transfer
resistance (related to 𝑅1 and 𝑅2) at a certain SOC is shown to be smaller
while charging than while resting.

As an application, Zhu et al. [58] propose a fast charging protocol by
applying a charging current inversely proportional to the time-varying
charge-transfer resistance, tracked using operando EIS.
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11. Conclusions & outlook

Classical EIS provides impedance data of electrochemical systems at
selected frequencies. Due to the constraints of linearity and stationar-
ity, impedance data is only valid for small amplitude excitations and
at fixed operating points. Nonetheless, classical impedance data is a
powerful tool for monitoring electrochemical systems.

Models beyond linearity and stationarity, such as nonlinear leading-
order and time-varying impedance, reveal higher-dimensional impe-
dance data, valid over larger excitation amplitudes and along oper-
ating trajectories. This higher-dimensional impedance data contains
additional information to classical impedance data, which is promis-
ing for electrochemical applications. One could, for instance, increase
the accuracy of health forecasting of Li-ion batteries using nonlinear
and/or time-varying impedance data as indicator. This is also extend-
able to other electrochemical applications, such as detecting corrosion
or studying coatings.

It is shown that the multisine excitation is a strong asset for mod-
elling electrochemical systems. It allows nonlinear and nonstationary
behaviour to be detected from the measured current and voltage data.
If this current and voltage data does not satisfy the linearity and
stationarity constraints, nonlinear or time-varying impedance data can
still be extracted.

Nomenclature

Acronyms

BLA Best linear approximation
BLTVA Best linear time-varying approximation
BMS Battery management system
DC Direct current - zero frequency
DFT Discrete Fourier transform
DMFA Dynamic multi-frequency analysis
ECM Equivalent circuit model
EIS Electrochemical impedance spectroscopy
FFT Fast Fourier transform
LTI Linear time-invariant
LTV Linear time-varying
NLEIS Nonlinear electrochemical impedance spectroscopy
NLTI Nonlinear time-invariant
NLTV Nonlinear time-varying
OCV Open circuit voltage
ORP Odd random phase
RMS Root-mean-square
RUL Remaining-useful-life
SNR Signal-to-noise ratio
SOC State-of-charge
SOH State-of-health
SPM Single-particle model
STFT Short-time Fourier transform

Constants

𝑓𝑠 Sampling frequency
𝑗 Imaginary unit
𝑁 Number of measured samples
𝑃 Number of measured periods
𝑇 Measurement time
𝑇𝑝 Period length
𝑇𝑠 Sampling period
19

f

Functions

𝑏𝑝(𝑡) Legendre polynomial basis functions
𝑖(𝑡) Current signal
𝑝(𝑡) External parameters
𝑣(𝑡) Voltage signal
𝑣0(𝑡) Drift signal
𝑣s(𝑡) Nonlinear distortions
𝑣𝑍 (𝑡) Voltage over the impedance
𝑌 Admittance
𝑍(𝜔) Impedance
𝑍(𝜔, 𝑡) Time-varying impedance
𝑧(𝑡) Impulse response function
𝑍j Imaginary part of the impedance
𝑍r Real part of the impedance

Operators

∠⋅ Phase (𝜑)
⋅̂ Estimate
E{⋅} Expected value
{⋅} Fourier transform
−1{⋅} Inverse Fourier transform
| ⋅ | Magnitude

Sets

Hexc Excited harmonics
Hnl Nonlinear harmonics

Variables

𝜔 Angular frequency
𝑓 Frequency
𝑘 DFT index
𝑡 Time
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Appendix A. The Fourier transform

𝑋(𝜔) = {𝑥(𝑡)} = ∫

∞

−∞
𝑥(𝑡)𝑒−𝑗𝜔𝑡d𝑡 (A.1)

𝑥(𝑡) = −1{𝑋(𝜔)} = 1
2𝜋 ∫

∞

−∞
𝑋(𝜔)𝑒𝑗𝜔𝑡d𝜔. (A.2)

Appendix B. Volterra series coefficients

Second order nonlinearity

𝑉2,0 =
1
4
(

𝑍2(−𝜔,𝜔) +𝑍2(𝜔,−𝜔)
)

𝐼2 (B.1)

2,1 = 0 (B.2)

2,2 =
1
2
𝑍2(𝜔,𝜔)𝐼2 (B.3)

Third order nonlinearity

𝑉3,0 = 0 (B.4)

𝑉3,1 =
1
8
(

𝑍3(−𝜔,𝜔, 𝜔) +𝑍3(𝜔,−𝜔,𝜔) +𝑍3(𝜔,𝜔,−𝜔)
)

𝐼3 (B.5)

𝑉3,2 = 0 (B.6)

𝑉3,3 =
1
8
𝑍3(𝜔,𝜔, 𝜔)𝐼3 (B.7)

ppendix C. Linearising an NLTI system around an operating tra-
ectory

The origin of the nonstationarity could be proven by applying a
articular excitation to a Volterra series, consisting of a slow part,
ictating the trajectory, and a fast part, which is the excitation,

(𝑡) = 𝑖0(𝑡)
⏟⏟⏟

slow

+ 𝑖exc(𝑡)
⏟⏟⏟

fast

. (C.1)

s an example, the slow part could be a positive constant current for
harging a battery, and the fast part a multisine. By assuming that the
ast perturbation has a small amplitude, and hence, only the linear part
f the Volterra series (𝑛 = 1) is needed with respect to 𝑖exc(𝑡), the voltage

response 𝑣(𝑡) can also be separated into a slow and fast part,

𝑣(𝑡) = 𝑣0(𝑡) + 𝑣exc(𝑡), (C.2a)

ith

𝑣0(𝑡) = OCV +
𝑛max
∑

𝑛=1
∫

∞

−∞
⋯∫

∞

−∞
𝑧𝑛(𝜏1,… , 𝜏𝑛)

𝑛
∏

𝑙=1
𝑖0(𝑡 − 𝜏𝑙)d𝜏𝑙

𝑣exc(𝑡) = ∫

∞

−∞
𝑧(𝜏, 𝑡)
⏟⏟⏟

depends on 𝑧𝑛 ’s and 𝑖0(𝑡)

𝑖exc(𝜏)d𝜏. (C.2b)

The slow part 𝑣0(𝑡) is called the drift signal, and solely depends on
the slow excitation 𝑖0(𝑡). The fast response is now the convolution of a
two-dimensional impulse response 𝑧(𝜏, 𝑡) with the excitation. This two-
dimensional impulse response function explicitly depends on the time
of excitation 𝑡, such that stationarity is not satisfied anymore. Moreover,
this function is shown to depend on the generalised impulse responses
𝑧 (𝜏 ,… , 𝜏 ) and the slow signal 𝑖 (𝑡).
20

𝑛 1 𝑛 0
Appendix D. The discrete Fourier transform

𝑋(𝑘) = 1
𝑁

𝑁−1
∑

𝑛=0
𝑥(𝑛𝑇𝑠)𝑒

−𝑗 2𝜋𝑘𝑛𝑁 (D.1)

𝑥(𝑛𝑇𝑠) =
𝑁−1
∑

𝑘=0
𝑋(𝑘)𝑒𝑗

2𝜋𝑘𝑛
𝑁 (D.2)

Appendix E. Equivalence between (60) and (62)
Using the following properties of the Fourier transform,

𝑋(𝜔) = {𝑥(𝑡)} 𝑥 = 𝑥, 𝑦,𝑤, 𝑖, 𝑣 (E.1a)

{𝑥(𝑡)𝑦(𝑡)} = 𝑋(𝜔) ∗ 𝑌 (𝜔) = ∫

∞

−∞
𝑋(𝜔 − 𝜔′)𝑌 (𝜔′)d𝜔′ (E.1b)

{𝑥(𝑡′ − 𝑡)} = 𝑋(𝜔)𝑒−𝑗𝜔𝑡, (E.1c)

here  acts on 𝑡′, one finds that,

{𝑤(𝑡′ − 𝑡)𝑥(𝑡′)} = ∫

∞

−∞
𝑊 (𝜔 − 𝜔′)𝑒−𝑗(𝜔−𝜔

′)𝑡𝑋(𝜔′)d𝜔′

= 𝑒−𝑗𝜔𝑡 ∫

∞

−∞
𝑊 (𝜔 − 𝜔′)𝑋(𝜔′)𝑒𝑗𝜔

′𝑡d𝜔′

= 𝑒−𝑗𝜔𝑡−1{𝑊 (𝜔 − 𝜔′)𝑋(𝜔′)}. (E.2)

ssuming that 𝑤(𝑡) = 𝑤(−𝑡), one has that 𝑊 (𝜔) = 𝑊 (−𝜔), accordingly,

{𝑤(𝑡′ − 𝑡)𝑣(𝑡′)}
{𝑤(𝑡′ − 𝑡)𝑖(𝑡′)}

=
−1{𝑊 (𝜔 − 𝜔′)𝑉 (𝜔′)}
−1{𝑊 (𝜔 − 𝜔′)𝐼(𝜔′)}

=
−1{𝑊 (𝜔′ − 𝜔)𝑉 (𝜔′)}
−1{𝑊 (𝜔′ − 𝜔)𝐼(𝜔′)}

(E.3)

with all Fourier and inverse Fourier transforms acting on, respectively,
𝑡′ and 𝜔′.

Appendix F. Legendre polynomials

The Legendre polynomials 𝐿𝑝(𝑥), 𝑝 = 0, 1,…, 𝑥 ∈ [−1, 1] are the
olution of Legendre’s differential equation

d
d𝑥

(

(1 − 𝑥2)
d𝐿𝑝(𝑥)
d𝑥

)

+ 𝑝(𝑝 + 1)𝐿𝑝(𝑥) = 0. (F.1)

The basis functions 𝑏𝑝(𝑡) are chosen as rescaled Legendre polynomials
over the interval [0, 𝑇 ], that is,

𝑏𝑝(𝑡) = 𝐿𝑝
( 2𝑡
𝑇

− 1
)

. (F.2)
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