NUCLEON TRANSFER IN HEAVY ION REACTIONS

Luigi Lo Monaco

‘Balliol College

A thesis submitted for the degree of Doctor of Philosophy in the

University of Oxford

Michaelmas Term 1985




‘How do people find the time for quotations

in their theses?’

L. Lo Monaco




Nucleon Transfer in Heavy Ion Reactions

Luigi Lo Monaco, Balliol College

Abstract of thesis submitted for the degree of Doctor of Philosophy
in the University of Oxford,
Michaelmas Term 1985.

An analytical formula is derived for the amplitude for transfer of a nucleon in quasi-elastic
reactions between heavy ions. The derivation takes advantage of the semiclassical condi-
tions found in peripheral collisions between heavy ions. The relative motion of the two nu-
~clei is treated classically and the transfer amplitude is calculated by a perturbation method.
Under the approximation of small overlap between the nuclear potentials, the semiclassical
amplitude is reduced to a surface integral. This can be calculated analytically by using
Hankel function forms for the bound-state wavefunctions and by approximating the ac-
tual orbit by a constant velocity orbit tangential to it at the distance of closest approach.
These approximations seem reasonable in strong absorption conditions. Corrections to the
formula of the amplitude are evaluated. The analytical form of the amplitude exhibits an
exponential behaviour as a function of the distance of closest approach. The decay con-
stant of the exponential is given explicitly and it is found to be an important parameter
of the reaction. Kinematical conditions for maximum transfer are derived which relate the
incident energy to the reaction Q-value. The physical interpretation of the amplitude is
discussed. In the case of proton transfer, the effect of Coulomb potential results in a shift
of the binding energy of the proton. With this prescription we still obtain the same form
of the transfer amplitude for both neutrons and protons. The formula for the semiclassical
tranfer amplitude is used to calculate angular distributions within a simplified formalism
derived from the distorted wave Born approximation (DWBA). The reactions considered
are 2Oan(mO,lsO)?‘Ogl’b, 26Mg(nB,mB)27Mg and 345(328,335)335 for neutron trans-
fer and 2OSPb(mO,lSN )ZogBi for proton transfer. It is found that the shapes of the present
angular distributions agree with full DWBA calculations but the magnitude of the former
depends on whether the distance of closest approach is that of the initial channel, the final
channel or some average of the two. Conditions for the selective population of definite
states are discussed in relation to the reaction Q-value, energy and initial and final states
involved. It is found that an inversion of the selectivity with respect to the spins of the
initial and final state occurs when the energy of relative motion at distance of closest ap-
prach equals the reaction Q-value. An approximate formula for the angle-integrated cross
section has also been derived.
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Chapter 1. Introduction

1.1

Nuclear reactions can nowadays be produced by accelerating nuclei over a wide range
of energies. They provide a great volume of data which need to be interpreted through
a reaction theory in order gain information on the structure of nuclei. In this work we

consider one of the simplest nuclear reactions, the rearrangement collision
a; +cg — ¢y +az

or

(1 +2z)+ca— 1+ (c2+ 1)

which can be described as the transfer of one or more nucleons z from the projectile to the
target or viceversa, leaving the final nuclei in bound states. Transfer reactions are highly
selective in the nuclear levels they populate. This indicates that they are very sensitive
to the relationship between the initial and final nuclear states involved and hence can be
very useful as probes of nuclear structure. While inelastic scattering responds strongly
to collective correlations in nuclear wavefunctions, one-nucleon transfers probe the single
particle character of the states, two-nucleon transfers reveal nucleon-nucleon correlations
such as pairing, two-neutron, two-proton transfers may reveal alpha clustering, and so on.

Transfer reactions take place when the tails of the single-particle wave functions in
one nucleus start to overlap with the attractive nuclear field of the other. In fact tyéical
distances for these processes are larger than those relevant for nuclear inelastic scatter-
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Fig. [.1
Schematic representation of the radial dependence of the

one-particle transfer and inelastic formfactors. In (a) a

nucleon maving in the orbital with guantum numbers a, "in

the projectile a is transferred under the action of the
shell model potential UlA to the target nucleus A into an

orbital a, . The dependence of the formfactor on

the distance bhetween the two nuclei is determined
by the overlap of the product of the single-particle wavefunc-

tions ¢ and ¢_. WwWith the potential U Ab' A schematic
a, a, 1 ‘

representation of this dependence is given at the bottom of (a).
In (b) a nucleon in the projectile a 1s excited

under the influence of the target field U , from the single-—

1A
particle orbital with guantum numbers a; to the orbital with

guantum numbers a; . The dependence of the formfactor .on
the distance betiween the cores is here determined by the overlap of

the product of .the functions ¢_, and ¢a] .with the potential
1 27
Ujp ° A representation of this dependence is shown at

the bottom of (b). (From Broglia and Winther 1985)




ing. This is because the associated form factors f:r(r) are proportional to the overlap of
the nucleon single-particle wavefunctions in the initial and final nucleus with the nuclear
potential (Fig. I.1a). Then fi,(r) has a longer range than the inelastic scattering form
factor fin(r), which is proportional to the overlap between the initial and final nucleon

wavefunctions of the same nucleus with the potential (Fig. I.1b).

In closer collisions, although the properties of individual states lose their importance,
transfer reactions play an important réle in the damping of the relative motion leading to
deep inelastic collisions and fusion reactions as they dominate the frictional forces acting
between the nuclear surfaces. They also usually control the depopulation of elastic channels

and thus are a major component of the absorptive potential for grazing reactions.

When more than one nucleon is transferred multistep processes, especially through

inelastic channels, are important and in some cases dominant (Fig. 1.2).

Here we consider only one-step direct processes, which account for most of the one-

nucleon transfer reactions between heavy ions. The difference with respect to experiments

L

with light ions, like the (d,p) reaction, arises from the large mass, charge, linear and
angular momenta involved and the wide variety of systems that can be brought together
in heavy ion reaction. We shall return to the implications of using heavy ions after briefly
_ reviewing, in §1.2, the experimental situation for transfer reactions. In §I.3 we discuss
some theories developed for these reactions and in §1.4 we give an overview of the present
work. Most of the material in this chapter is taken from excellent reviews and books on the
subject (Ascuitto and Seglie 1984, Broglia and Winther 1985, Glendenning 1983, Goldfarb
and Von Oertzen 1979, Hasan 1976, Hodgson 1971 and 1978, Satchler 1983). |
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1.2 Some phenomenology of transfer reactions.

In this section we show some experimental results from the literature on transfer
reactions, although it is difficult to select examples that can be regarded as “typical”,
especially for heavy ions. The angular distributions are different for transfers below and
above the Coulomb barrier, so we consider the two cases separately.

The cross sections for sub-Coulomb transfers are considerably smaller than those for
higher energies and angular distributions are quite featureless and almost independent of

the £ transfer (see §V11.1 for its definition). They increase monotonically to maxima at

180° (Fig. 1.3).
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FiG. 1 .3. Apgular distributions for nucleon transfer at sub-Coulomb energies for several
different ! transfers. The curves are the results of DW calculations. (a) The {d, p) reaction at 8 MeV.
{From Erskine, Buechner and Enge 1962.) (b) The (7O, !°O)reaction at 67 MeV. (From Franey et
al. 1979.)
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appear at the forward angles and they grow until they dominate the angular distribution

(Figs. 1.4 and L.5)

An interesting qualitative account can be given which explains some important fea-
tures of transfer reactions. To fix ideas we first consider a reaction much studied in the
past, the neutron stripping from deuterons. Fig. 1.6 shows a typical spectrum of protons
from a (d, p) reaction. This consists in general of a number of discrete peaks at the higher
energies, which become closer together and merge into a continuous distribution at lower
energies. The angular distributions of these protons show that, when averaged over a
suitable energy interval, the continuous distribution is symmetrical about 90°, and usually
almost isotropic. These protons are therefore due to the compound nucleus process. The
more energetic protons resolved into discrete peaks, however, are often peaked in the for-
ward direction at high incident energies (Fig. I.7a) and in the backward direction at low

incident energies (Fig. 1.7b). In addition, the magnitude of the cross-section is often much

greater than that given by statistical theory. This indicates that the protons leaving the

system in discrete, low-lying states are the result of direct reactions.

For light ions, at energies up to few tens of MeV above the Coulomb barrier, the
number of partial waves participating is not large and the angular distributions show a
correspondingly moderate amount of structure (Fig. I.8). The position of the first and main
peak indicates the £ transfer as it is usually predicted unambiguously by, say, distorted
wave Born approximation (DWBA). Matching of the momenta and angular momenta of

the entrance and exit channels has also an important effect on angular distributions. An

As the energy rises up to and above the Coulomb barrier diffractionlike peaks begin to
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Fig. [ .6. Energy distribution of protons from a (d, p) reaction.
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The figures in this page are from Hodgson 1977, p. 434-5.
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example is the reaction (®He, ) shown in Fig. 1.9. Since the Q value is large, the incoming
and outcoming wave are poorly matched and the angular distribution is quite structureless."
At higher energies the forward peaking of the angular distribution becomes even more
marked, as Fig. 1.10 shows for the (p,d) reaction.

The effects of strong absorption are usually more pronounced in transfer reactions with
heavy ions. This, together with their shorter wavelengths and larger angular momenta,

results in a sharper localization of the reaction on the nuclear surface. There are essentially

two types of angular distributions for heavy ion transfer reactions above the Coulomb

barrier: the simple “bell-shaped” angular distributions centered near the scattering angle

for grazing collisions (Fig. I.11) and more diffractionlike structures (Fig. 1.12). Some

systems may evolve from the first to the second type as the eneigy is increased (Fig. 1.13)

while others maintain the bell-shaped angular distributions (Fig. 1.14).
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Fig. 1.14. Measured and calculated cross sections for one-proton transfer to 208Pb at four bombarding energies. The solid
curves are DWBA predictions, using a spectroscopic factor S = 0.95. The dashed lines are these curves arbitrarily shifted in
Mmagnitude and angle to obtain the best fit to the data. As the energy increases the angular distributions become narrower and

are peaked at a lower angle but maintain their “bell” shape. (From Olmer et. al. 1978)




This behaviour has been interpreted in a way similar to that used for elastic scatter-
ing where one envisages Fresnel scattering when the Sommerfeld parameter n > 1 and
Fraunhofer scattering when n < 1. Relevant values of the Sommerfeld parameter n and
the Coulomb barrier Vo p are included in the previous examples of experimental data.
For transfer one considers waves scattered from the near-side and far-side and their in-

terference. At the lower energies the transfer occurs only from waves scattering from the

near-side of the target, because of the diverging effect of the Coulomb potential. But, as
the energy increases, the Coulomb deflection is reduced and contributions from the far-
side begin to interfere with the near-side amplitudes. Hence the interference pattern is
characterized by an angular period A8 ~ n/kR, where k is the incident wave-number and
R is the nuclear radius. However, for a more detailed interpretation of experimental data

one needs to consider a theory of transfer reactions. A brief review follows.

1.3 Theories of transfer reactions.

Several methods have been used to study transfer reactions since they were discov-
ered. The neutron stripping in reactions induced by deuterons -(d,p) for short- helped
recognizing that a different mechanism than compound nucleus formation is responsible
for an important class of nuclear reactions, which are then called direct. Although the
latter account for a small part of the total cross section they are invaluable for the study of
low lying levels in nuclei. Oppenheimer and Phillips (1935) first proposed the mechanism
of direct capture of the neutron to explain the data obtained by Lawrence et al. (1935) in
reactions induced by low energy (0-3.6 MeV) deuterons. Later on Serber (1947) suggested

6




a veﬁ simple model to explain the forward peaking of (d, n) reactions at high energies ob-
served by Helmotz et al. (1947). The theory of (d, p) reactions proposed by Butler (1950,
1951) showed the relevance of linear and angular momentum transfers in these relatively
simple reactions. However, this theory was soon recognized as inadequate in that it made
use of plane waves to describe the relative motion. One cannot neglect the refractive effects
that absorption inside the nuclear surface has on the plane waves. Therefore a distorted
wave theory is a better approximation and, for one-step reactions, is the best we can do

to date.
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In the application of DWBA to transfer reactions approximations have been made in order
to simplify and calculate the six-dimensional integral of the transition matrix. Zero-range
and no-recoil approximations were used with some success to calculate cross sections for
transfer induced by light ions. It was initially thought that a no-recoil approximation
would be justified for heavy ion reactions because the mass of the transferred particle is
small compared to that of the nuclei. However, recoil effects cannot be neglected in general
without losing a good deal of the physics in heavy ion transfer reactions, as it was shown
by Dodd and Greider (1969). Fig. 1.15 shows that the no-recoil approximation can predict

a completely wrong angular distribution.

In the early analyses of transfer reactions semiclassical theories were used as an aid to
understand the physics of the process and as an alternative to impossible computations.
Nowadays exact finite range DWBA computations of one-nucleon transfer reactions (which
include recoil) are routine practice since programs have been written to do so. As a
result we are more demanding and require that semiclassical theories give a quantitative
description of the reactions, while keeping the simplicity that characterizes them. In this
respect for heavy ion reactions we are particularly fortunate in that a classical description of
the relative motion is accurate enough while in many cases “a purely quantum-mechanical
description may be too complicated to be either possible or interesting” (Norenberg and

Weidenmiiller 1980, p. 1).

In most semiclassical theories one considers the nuclei moving along classical trajecto-
ries specified by an impact parameter or relative angular momentum. The transfer process
is then treated quantum-mechanically and one calculates a transfer amplitude, A¢,, along

8




a given trajectory. From this the cross section can be calculated, for instance as a product
of probabilities:

o= 18[2[Atr|20'ela3tic7 (Il)

where the reflection coefficient | S|? gives the probability that the system escapes absorption
into other inelastic channels. The classical formula (I.1) is the simplest way to obtain a
cross section, but it has many drawbacks, as we shall discuss in chapter III. For the moment
we look at several possible ways to calculate the transfer amplitude. Broglia and Winther
(1972 a and b) expand the total wave function into a linear combination of the channel
wavefunctions. The coeflicients of this expansion, cog, give the amplitude for transfer from
the initial channel « to the final channel 3 as a function of time ¢, with the initial condition
¢ap(—0) = bap. They obtain a set of coupled first order differential equations for these
coefficients, which can be solved approximatively to arrive at a formula for the transfer
amplitude cqp(+00).

Some semiclassical theories consider a partial-wave expansion for the reaction ampli-

tude f(f) of the form

70) =Y g1 hs(0), (1.2)
L

where gy, is a partial wave amplitude and hy () is a known function of the scattering angle
0, e.g. a spherical harmonic or a rotation matrix. The amplitude g is then parametrized
in a suitable form, which is peaked in L-space (e.g. Strutinsky 1964, 1973). This reflects
the assumption that small L waves are absorbed while for much larger L’s there is no
transfer. Attempts have been made to understand this simple semiclassical pa.ra.metriza;tion

of the scattering amplitude with several methods. Broglia et al. (1974) identify gz with

9




the solutions of their semiclassical coupled equations times e*°%, where 6z are the elastic
scattering phase shifts:

gr ~ caﬁeziaL- (13)

Koeling and Malfliet (1975) use a path integral formalism to derive a transition amplitude.
Other approaches start with the expression for the transition matrix in DWBA and, under
high-energy, short-wavelength conditions, utilize the WKB approximation to obtain sim-
plified expressions for the distorted waves and derive a formula of the type (I.2) (Landowne
et al. 1976, Hasan and Brink 1978). In the latter work the amplitude gy, is factorized in a

form similar to eq. (I.3):

gL ~ Atr(2a 1) CZiaL ) (I4)

where Atr(2,1) is identified as the semiclassical transfer amplitude of Brink (1972). Then
A4r(2,1) is integrated numerically and it is shown to decay exponentially with the angular
momentum of relative motion or with the distance of closest approach. The form I.4 is
discussed in chapter III, after integrating analytically the semiclassical transfer amplitude
in chapter II.

The problem of particle transfer between two bound states in potential wells moving
along classical trajectories has been solved numerically (Esbensen et al. 1983). In fact even
the more realistic problem of the time dependent Hartree-Fock approximation (TDHF),
where the particles to be transferred move in the self-consistent field of all other parti-
cles, can be solved numerically. A different point of view has been taken by Révai (1985),
who proposes a simultaneous treatment of all reaction channels, elastic, rearrangexhent
(tl‘ansfer) and break-up. With this method, by using separable potentials and straight-

10




line trajectories, probabilities for various reaction channels have been computed (Milek
et al. 1985). Although these calculations are in principle better a.pprbxima.’cions or even
exact results, the amount of computation involved seems considerable and no comparisoﬁ
with directly observable quantites has been made so far. Therefore a simple semiclassi-
cal description is still of relevance to understand what are the most important physical

parameters of the process.

In this work we consider transfer reactions between heavy ions. The difference with
respect to experiments with light ions like the (d, p) reaction comes from their large charge,
mass, angular momenta involved and the wide variety of systems that can be brought

together in a heavy ion reaction. These have implications in the following ways:

(i) The large charges emphasize the réle of the Coulomb interaction. Even at energies far
exceeding the Coulomb barrier, cross sections can be attributed to certain angular regions
with the dominant action of the Coulomb field. (ii) The large masses allow first for the
possibility of localization of the reactions in a peripheral way. This is simply because of the
comparatively small de Broglie wave lengths that come into play. (iii) Concomitant with
the large masses are the large linear and angular momenta of the relative motion. With
the availability of large amounts of angular momenta to transfer to the internal motion,
transitions to states with high spins are a possibility. There is also an important difference
in the possible values of the fransferred angular momentum £ for the transition from thg
initial single particle state £; 7; to the final state £; jo. For reactions induced by light ions
the initial state is s1/2, so there are only two possible values £ = j3 +1/2, while for héav:}
ions the allowed values are in general given by the selection rules |7; — j2| < £ < J1 + J2
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and |1 — L] << b+ (iv) The composite nature of the projectile and the multiplicity
of possible reactions lead to loss of flux in break-up channels. High levels of absorption
become apparent. The exclusion principle also plays a réle with the low compressibility of
the nucleus. The result is an inaccessibility of the nuclear interior and with this we gain
in the interpretation of phenomena. (v) The diversity of heavy ions as projectiles provides
the advantage of choice of beams in order to study particular states of nuclei as the same

final state can be populated in a number of reactions.

I.4 Overview.

In chapter II, under the approximation of small overlap between the two nuclei, we
calculate the semiclassical transfer amplitude A(2,1) which enters in eq. (1.2) analytically.
The formula obtained is then used to study the kinematical conditions that favour nucleon
transfer. This is partially done in chapter II where we consider a physical interpretation
of the amplitude and more in detail in chapter VIL

In chapter III the semiclassical amplitude is related to cross sections. A product-of-
probabilities classical formula is first considered and the conditions to apply it to heavy ion
transfer reactions are discussed. Then we recall a partial-wave formula for the transition
amplitude derived from the DWBA by Hasan and Brink (1978). One advantage of a simple
analytical formula for the semiclassical transfer amplitude is that one can use the same
formula to calculate the cross section in two ways: i) from the classical expression I.1,
Whenever it is applicable to angular distributions, or ii) from the partial-wave formula
(1.2) when diffraction effects are important. We show, however, that the two formulze give

12
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the same angle-integrated transfer cross section. Therefore the simpler classical formula
eq. (1.1) can be used to study the spin selectivity of transfer reactions and their energy

dependence, as it is done in chapter VIL

In chapter IV we apply the theory to one-neutron transfer reactions induced by heavy

jons. Several calculations for this case are presented and compared with experimental

data.

In chapter V the calculation of the semiclassical amplitude is extended to proton

transfer and results for this case are presented in chapter VI

In chapter VII we introduce some possible angular momentum couplings to study the
selectivity of the reaction with respect to the spins of the initial and final levels. We also
look at the energy dependence of the cross section and extrapolate it to a higher energy

regime where it decreases exponentially (Transfert & Grande Vitesse).
Conclusions are drawn in chapter VIII.

The main advantage of using the semiclassical approach presented in this work for the
analysis of transfer reactions is its simplicity. At the same time we obtain an agreement
with experimental data comparable to that of complete DWBA calculations, as it is shown
in chapters IV and VI. It is worth mentioning that our expressions include recoil through
an exponential factor deriving from the Galilean transformation of one of the bound-state
wave functions. Therefore we can use our analytical formula for the semiclassical transfer
amplitude to study the conditions favouring a particular transfer at low, medium and high
energy. The physical interpretation of the process that results is more transparent thén a
full DWBA computation. The use of a formula of the type I.2 to study transfer reactions
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allows 2 certain flexibility in the choice of the optical potential determining the phase
shifts in eg. I.3. These can be obtained either by numerical solution of the Schrédinger
equation with a complex potential U = Uc + Uy or by first order WKB approximation.

Considering the whole nuclear potential Uy as a perturbation one obtains for the nuclear

part of the phase shifts (e.g. Brink 1978, p. 13)

N 1 [=
5 -
L 2k J_o

Q

Unl[rc(4,t)] dt, (I.5)

where the integral is taken along the Coulomb orbit corresponding to classical angular
momentum A = (L + 1/2)%. Alternatively, one can parametrize the nuclear part of the
radial S-matrix Sy(L) = exp(2:6) and study, for example, the energy dependence of
the cross section without the intermediate step of an optical potential, as it is done in
chapter VII. Moreover, it has been pointed out (Broglia et al. 1981) that the transfer
process gives the main contribution to the long-range part, Wirgnsfer, of the absorptive

potential. This can be related to the transfer probability per unit time, w, by
1
Wtransfer = ‘Z‘hwa (I'6)

The present theory has been developed for the simple case of one-nucleon transfer
from/to single particle levels. However, it could reasonably be extended to transfer of
clusters of nucleons, e.g. alpha particles. It applies to incident énergies above the Coulomb
barrier because we approximate the actual trajectory by a straight line tangential to it at
the distance of closest approach. Clearly this would be a bad approximation for angular
distributions that are not forward peaked, as in sub=-coulomb transfer. On the other hand
there are certain advantages when the bombarding energy is so low that the system of the
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4wo initial nuclei a1 +¢2 cannot surmount their mutual Coulomb barrier, and the Q value is
such that the same is true for ¢; + a3 in the exit channel. Since the nuclei are kept far apart
by their Coulomb repulsion the probability of compound nucleus formation is negligible.
Then any observed transfer reaction is a direct one. At the same time, distortion of the
elastic Coulomb waves by the nuclear potentials is either negligible or small enough that
its effects can be easily assessed. As a result the analysis of the reaction is free of the
uncertainties associated with optical potentials. Another simplicity arising from the lack
of close approach is that one needs the overlap of only the asymptotic parts of the initial
and final wavefunctions of the transferred particle and the form of these asymptotic parts
is known precisely for a single nucleon. However, for heavy ion reactions we are usually

in a strong absorption condition, so that we need not consider the interior of the nuclear

region and only the ‘tails’ of the nucleon wavefunctions are relevant to the transfer process.
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Chapter II. The Transfer Amplitude

1.1 Definition of the Amplitude.

Here we derive an analytical formula for the amplitude in a transfer reaction of the

type

ay+ ¢y — ¢y +as

or

(c1 + )+ ca — c1 + (c2 + 2)

For most of this chapter we follow the derivation of Lo Monaco and Brink (1985). First we
consider the simpler case of neutron transfer (z = n) between bound states. Let ¥; be the
initial state of the neutron bound in a single particle potential Vi (r,¢) which represents the
shell model potential of the nucleus a;. The neutron is transferred into a single particle
state Wy in the potential V3(r,t) which represents the final nucleus a;. The potential V3
moves past V; during the transfer and the relative motion is described by an orbit s(t),
where s is the distance between the centres of V7 and V;. s — oo when t — +o0.

The initial and final states ¥, (r,t) satisfy the time-dependent Schrédinger equation

for the neutron bound in the potential V,(r,t), where o = 1,2,

AV
1h ata =(T+Va)¥, (II.1)
Here 7 = —(h2 /2m)V? is the kinetic energy operator and m is the mass of the transferred

Darticle. During the transfer process the wave function of the neutron, ¥, is affected by
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both potentials V1 and V; and therefore satisfies the equation

z'h%\f— — (T +V; +V3)U (11.2)

with the initial condition that ¥ — ¥; when ¢ — —oco. The transfer amplitude, 4(2,1),
can be defined as the overlap between the wave function ¥ and the final state U5 when
t — ©O:

A(2,1) =< 03| ¥ >;o 00 (11.3)

A perturbation formula can be derived for the transfer amplitude A(2,1) in the following

way (e.g. Brink 1977). Using egs. (II .1) and (II.2) it is easy to check that

Zhg-t‘ < \1/21\1’ >=< ‘I’z,V]_\If >

Integrating between t = —o00 and ¢ = co we obtain

A2,1) = ~ / T G > d (I1.4)

h J_o

In deriving eq. (II.4) we used the initial condition that there is no overlap between the

initial and final neutron bound states long before the collision takes place, i.e.
< \Ile\I’ St 0o=< ‘I'2I\P1 >t o= 0.

Eq. (I1.4) is an exact formula. The four-dimensional integral vanishes for values of (r, ¢)

such that V; = 0. In the region where V; # 0 we approximate ¥ by ¥; and we have

1 [t
A2~ 2 / < Uy |Vi|Uy > dt (I1.50)
—00
1 [t
= _/ < \PZIVZIWI > dt (IISb)
th J_oo
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The equality between (II.5a) and (II.5b) shows that in first order one can use either the
initial or the final nuclear potential (post-priof equivalence).

A method which uses expressions similar to egs. (11.5) was developed by Oppenheimer
(1928) to compute the transition probability for the ionization of hydrogen atoms in a
constant electric field.

Egs. (I1.5) are a reasonable approximation for our problem because in a peripheral
collision leading to transfer the potentials do not overlap appreciably. If vthey do there is
absorption into other channels ( e.g. deep inelastic or fusion reactions ) than the simple
transfer considered here. In the case of a peripheral collision egs. (I1.5) can be transformed
into a simpler form involving a surface integral. Let T be a surface which lies between the

two potentials V; and V; (fig.I.1) and which divides the space into two regions R; and R,.

X
Ry
B e
1 4
|
= - = —1
d
d2.
Z
R,
y

Figure II.{ Coordinate system for the transfer amplitude.
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. the matrix element in eq. (II.5a) can be written as
e

Ui ¥ >==/R U3 (r, 1) Vi(r, )Ty (r, t)d’r + . U3 (r, t)Vi(r,t) ¥y (r,t)d®r  (I1.6)

The first term in eq. (II.6) can be simplified by using eq. (IL.1) to write

8 h?
ViU d%r = T th— + — V2 8
/Rl‘l’zll r /Rl 2(2 at+2mV>\Illdr

Since we are dealing with bound states the integration region can be thought of as finite.

Then it is possible to apply Green’s theorem which reduces the above integral to

h2
/ V1 ¥,d%r = -—-/ ds - (T3V¥; — U VI3)
R 2m Jx

LU, K ) L9

h—= 4+ —V?0, | ¥d°r+ih— [ Ui¥,q° IIT
+/Rl<z 6t+2m 2) 11'“HatRlzlr (I1.7)
where dS is a surface element normal to ¥ directed out of R;. If eq. (IL.7) is integrated
over time between ¢t = —oo and ¢ = co the third term on the r.h.s. vanishes because the
potentials V; and V5, are very far away from each other as ¢ — oo and ¥; and ¥, have
no overlap. By using eq. (I.1) for ¥; the second term in eq. (IL.7) can be expressed as an

integral containing V2. Hence eq. (I.5 a) becomes

o[t
A(2,1) = %/ dt/;:ds-(\IqV\Ill——\IﬁV\Il;)

1 [T®
+.—/ dt (/ \P;VZ\yldSH/ \P;Vl\llld3r) (I1.8).
Zh - 00 R1 Rg

Eq.(IL.8) is exactly equivalent to eqgs.(IL.5). It is a perturbative expression for the

transfer amplitude (I1.3) or (I1.4) symmetrical in the initial and final states and potenfials.
This reflects the equality between (I1.5a) and (I1.5b). If in a peripheral collision there is
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|
]

1e to cioose 2 so tnat Vair,r) =0

for all points T in R; on one side of the surface, while V1 (r,t) = 0 for all points r in E; on

the other side. Then the last two terms in eq. (II.8) vanish and

+ 00
A= e /2 dS - (WYY, — 1, VE) (IT.9)

2mit J_ oo

In eq. (I1.9), which resembles a quantal probability current, the bound state wavefunctions
¥, and ¥, are only required on the surface ¥. If ¥ is outside the range of Vi and
V, the wavefunctions can be replaced by their asymptotic forms, proportional to Hankel
functions. Eq. (I1.9) is equivalent to egs. (IL5) if V; and V, do not overlap during the
collision. For large distances, the bound-state potentials decrease as exp(—r/a), where a
is the diffuseness parameter, while the wavefunctions decrease as ezp(—~r), where v is
related to the binding energy of the transferred neutron by eq. (II.21). For typical values
of diffuseness and neutron binding energies, the slope 1/a is greater than ~ by a factor of
about two or three (see table IV.2). Therefore the “tail” of the potential decays faster than
that of the bound-state wavefunction. In § I1.2 we evaluate the amplitude by assuming
that the condition of no overlap is satisfied. We discuss corrections to eq. (I1.9) in § II.4.

A formula similar to eq. (II.9) has been used by Nogami (1973) to discuss o decay.

I1.2 Evaluation of the amplitude.

In this section we evaluate the fransfer amplitude, eq. (I1.9), when the orbit of relative
motion is a Coulomb orbit. If the scattering angle is small then the orbit can be replaced
by a constant velocity orbit s(¢) tangential to it at the point of closest approach (fig. iI.l).
This is a reasonable approximation because the acceleration in the Coulomb orbit is small.
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It would not be a good approximation for large angle scattering. The transfer amplitude
depends only on the relative velocity, so we can assume that V3 is at rest and Vi has
velocity v, where v is the tangential relative velocity at the distance of closest approach
d. The coordinate system is shown in fig. II.1. It is convenient to take the z axis parallel
to the direction of relative motion and the z axis in the plane of the orbit. We write the

equation of the orbit relative to the centre of V5 as
s(t)=d+vt (I1.10)

where v is in the z direction and d in the x direction.
If ®1(r) and ®;(r) are bound-state wave functions in the static potentials ¥; and V3

with energies €; and ¢,
[T + Va (ra)}@a(ra) = E'cvz@a(rcn)a a=1,2, (II.ll)

then the time dependence is given by

Ty (r,8) = B, [r — s(t)] exp {(z‘/h) [mv r— (51 + %mvz> t} } (I1.12)
U3 (r,t) = B3 (r) exp(—iezt/h) (11.13)

The wavefunction ¥, is obtained from ®; by a Galilean transformation. If the surface &
in the transfer amplitude (I1.9) is taken to be the plane z = ds (see fig. I.1) then the

surface integral in eq. (I1.9) is over the variables y and z:

“+o00 +oc0 +oo
A(2,1) / dt/ dy/ ®3(d2,y,2) = P1(dy — d,y,z — vt)
2mz1 Bd

0 1
—®1(d2 — d,y,2 )Bd 93(d2,y, 2)] exp {% [mvz + (52 —€1 — Emv2> t} } _ (I1.14)
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There is a minus sign in front of eq. (I1.14) because the direction of dS in eq. (I1.9) is

opposite to that of the z-component of the gradient operator. By making the change of

variables

(2,t) — (2,21 = z — vt)

the argument of the exponential in eq. (II.14) becomes

-i lmvz—i-e-: —£&1)z+ 1mvz—}-z-: —&3 ]2
Ao 2 2 1 2 1 2|21
+o0 +oc0 1 -+oco 400 -
/ dz/ dt-——+—-~/ dz/ dz.
- —0o0 VJ_oco —00

Now the integrals over z and z; in eq. (I1.14) can be separated into a product:

and

ih [T . 9 -~
A(2,1) = = / [@2(d2:y’k2z)5g2'@1(d2 —d,y, k12)

—&1(dy — d,y, k1) =—@5(d2, v, kaz)|dy

. 3
ad;

where

= det [T _;
P®(z,y, k) -é/ e~ *2P(z,y, 2)dz,

be == (@4 Jmo? ) Jw), hae= (@ gm?) /(o).

and

Q=¢e1—¢

(II.15)

(I1.16)

(I1.17)

(I1.18)

is the reaction Q-Value. We assume that T is outside the range of the potentials V; and

V. during the whole collision. Then ®;(r) and ®2(r) can be replaced by their asymptotic
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expressions which are related to Hankel functions (see Appendix II.A for their precise

definition)
A B4 (r) = Co VaXtn (VaT)Yeura. (0, 9), a=1,2,
(I1.19)
— ALy,
xi(yr) = —i'h) 7 (197).
With this choice
xi(yr)~e~7 /()

(I1.20)

B, (r)~Co, exp(—Yar)r Yz 2. (8,0)
when 1 is large. In egs. (I1.19) and (I1.20) £; and £; are the orbital angular momentum

quantum numbers of the initial and final bound states ¥y and ¥z, A; and A are their
projections along the z axis in fig. IL.1, Cy, and Cy, are normalization constants given by
the ratio between the solution of the radial Schrodinger equation for the neutron bound
in the potential V; or V2 and the function 7, , xe, ,(7,.7:2); 7, and 7, are related to the

bound state energies €, and g, by
£o = —h242/(2m) (I1.21)

The Fourier transform (I1.16) is calculated in Appendix IL.A by using egs. (11.19)
and (I1.20). As in eq. (II.15) we have the derivatives of the ®’s with reépect to dq it is
convenient to rewrite the result of the Fourier transform, eg. (I1.A.26), in a form which
shows the dependence on the z-coordinate explicitly. By using the integral representation

of the modified Bessel function (Abramowitz and Stegun, 1970, p. 376)

K,(2) = izl- / exp(—zcosht + nt)dt (I1.22)
—00
we have
. 1 [®
Ky (np)e? = 3 / exp[—npcosht + A(t + ip)|dt (11.23)
—o0
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By changing the integration variable from ¢t to u = t + 1 the argument of the expo-

nential becomes
—npcospcoshu + inpsinp sinhu + Au = —nzcoshu + inysinhu + Au,
while the branches (1) and (2) of the u-integration-path (see fig. IL.3) cancel and we get

fo o]

' 1
Ky (np)e™® = :2-/ exp(—nzcoshu + inysinhu + Au)du. (11.24)

—0Q

D

- +{If . : . | +oo+(-CF
(1) ()

Rew

Fig. I1.3. Integration path for eq. (II.24).
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Then eq. (I1.A.26) gives for the derivatives of the Fourier transforms in eq. (I1.15):

J ~
__—'@elAl (d2 - dﬁy’ klz) = Cel Yelz\l (13170)
ad, .

o0
/ (—7ncoshu;) exp[n(d — dz) coshuy + inysinhuy + Ajuq]duy

—00
(e #]
= Cy, Yo, 2, (81,0)(—1)M / n coshu’ exp(—ndy cosh v’ —inysinhu'+Aju')du’; (I1.25q)

-0

where v’ = u; + 17 and d; = d — ds;

d X * *
5&'2“1)52 A2 (d2a Y, kZz) = C£2 ng,\z (ﬁz, 0)
(o o]
. / (—n coshug) exp(—ndz coshug — tnysinhug + Agusg)dus. (I11.250)
—o0

The complex angles B, and f; have the same meaning as 8, in Appendix A. According to

eq. (I1.A.22) they are then defined by

k
cos By = —1 —=, sinfo = —n—, a=1,2. (11.26)

@ Ve

They give the ‘direction’ of the complex vector k, of neutron momenta before and af-

ter transfer. This vector has components k, = (i7,0,kq,z), where k., are defined by

egs. (II1.17), and \ﬁcgz + k%, + k2, = 17o. It is complex because the neutron is in a
bound state (with negative energy). By substituting egs. (I1.25) into the transfer ampli-

tude (IL.15) we find

1h

mv

A(Z,l) = ‘—2 031022(_1))‘11/31/\1 (IHl?O)YZ)\z (162’0)

(o o] cOo
. / du'/ dus n(coshu' + coshu,) exp[—n(dy coshu’ + dg coshug) + A1u’ + Azuz)
-0 —00

/oo e—in(sinh u’+sinh uz)y dy (I1.27)

— 00
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Then eq. (I1.A4.26) gives for the derivatives of the Fourier transforms in eq. (I1.15):

d -~
_—_@51/\1 (d2 - d’ Y, klz) = Cel Yvell\1 (161’0)
ad, A

o
/ (—ncoshuy) exp[n(d — dz) coshuy + tnysinhuy + Aju1]duy
—o00
oo
= Cy, Yo, (61,0) (1) M / n coshu’ exp(—ndy cosh v’ —inysinh v’ + Ayu')du’, (I1.25q)

-0

where v/ = uy + 17 and d; = d — dy;

8 -, .
5:[2'@[2,\2 (d27 Y, k?z) = Ce2Y£2A2 (162’ 0)
o0
. / (—n coshug) exp(—ndz coshuy — inysinhus + Agusz)du,. (11.250)
hand® @)

The complex angles #; and 3; have the same meaning as fy in Appendix A. According to

eq. (II.A.22) they are then defined by

.k )
COSIBa = —1 779‘.5.’ Sln,Ba = _71", o = 1,2 (1126)

o Yo

They give the ‘direction’ of the complex vector k, of neutron momenta before and af-

ter transfer. This vector has components k, = (i7,0,kq2), where k., are defined by

egs. (I1.17), and \/kgz + k2, + k%, = i7e. It is complex because the neutron is in a
bound state (with negative energy). By substituting egs. (I1.25) into the transfer ampli-

tude (I1.15) we find

1h
muv

A(2’ 1) = “2 Cel Cez (-1)A1Y31/\1 (ﬂl’ O)YE’;\g (:62’0)

o0 oo
. / du’/ duy n(coshu’ + coshus) exp|—n(d; coshu' + da coshug) + Aru' + Agus)
—O0 hande o

/oo e—in(sinhu'+sinhu2)y dy (II.27)

-0
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The integral over y gives a §-function:

27

. 4 . —
276(n(sinh v’ + sinhu,)) = pp——

§(u’ + u2)
and the integrals over v’ and us in eq. (I1.27) reduce to

47r/ exp[—ndcoshu + (A1 — A2)u]| du = 87K, _»,(nd),

— 00

where we used the integral representation (I1.22) again and put d = di + d3. Substitution

into eq. (I1.27) gives the final expression for the transfer amplitude

. h .
A(2,1) = —4mi—Cy, Cy, (—1)* Y5, (B1,0)Y5 5, (B2, 0)Kx, —», (nd). (I1.28)
When the product nd > 1 the modified Bessel function K can be substituted by the

asymptotic expression (I1.A.13). By introducing the unit vectors

k, 1

= (imO, kaz):
Kol %+ k2,

ko =

eq. (I1.28) can be written as

R Sk (h T _
A(2,1) ~ —4m%celcg2(—1)hyel a (B Y5 S, (R2) 3 © nd, (I1.29)

Eq. (I1.29) exhibits two important features of the semiclassical transfer amplitude.
i) It decays exponentially with the distance of closest approach d, the decay constant being
given by the quantity 5. For a given d (for instance the ‘grazing’ distance) the amplitude

has a maximum when 7 has a minimum. From egs. (II.A.9), (I1.17) and (II.21) we have

2m
W=kt =k = 7 S (11.30)
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1 1/ Q° L o
E£= 5(61 +e2) — 1 (W'F 5mY > (11.31)

is a kind of average bound-state energy. Then maximum transfer is obtained when the

tangential velocity v satisfies the condition:

Zmo? = (0] (I1.32)

that is the kinetic energy of the transferred particle compensates for the reaction Q-value.
This is essentially the same formula given by Siemens et al. (1971).

ii) The semiclassical transfer amplitude transforms under rotations as the product
Yo, (k1) Yg, (k2)-

Thus one can use the addition theorem for spherical harmonics (of complex angles) to
calculate an explicit expression for the transfer probability by summing over the final

magnetic substates and averaging over the initial ones

1

Py (£s,41) = 20 + 1

D 1A As, 1 2) [ (11.33)
A1da

Eq. (I1.33) gives the probability for transfer between single-particle states specified by
their orbital angular momentum £, and energy e, (« = 1,2). However, one is usually
interested in the single partic‘le angular momentum j = £ + s, where s is the spin of the
transferred particle. Therefore the transfer amplitude A(£3X5, 41 A1) needs to be re-coupled

to g. This is discussed in chapter VI
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It is worth noting that the amplitude (71.28) contains recoil effects. This can be seen
by comparing it with the factorized DWBA amplitude of Dodd and Greider (1969) [cf.
Anyas-Weiss et al. 1974], where a recoil term of the form exp(imv - r) appears in the form
factor. The channel coordinates r; and ry are related to the separation s between the two

cores and the coordinate r; of the transferred particle z with respect to the core ¢, by (see

fig. 11.4)

-t
< s

Fig. I1.4. Coordinates to illustrate recoil in the reaction a;(= ¢y + z) + cg — ¢; + ag(= ¢3 + z).

r C1 + T
P = 8 Iz
c1+z c1+zx ’

T
ca+z

ry=8-— Ira.

The term in r, is due to the centre of mass of the composite system being shifted (by
“recoil”) from the centre of mass of the c§re.

In our semiclassical approach the exponential exp(imv - r) arises from the Galilean
transformation (17.12). In this form it may contain the masses of the cores ¢; and ¢, if v
is an average velocity. Even in the case when v is simply the relative velocity at closest

/
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approach (in the initial or final channel) we still have “recoil” effects due to the finite
transferred mass m.

One implication of recoil is its effect on angular momentum and parity transfer. In
the no-recoil approximation to DWBA the form factor can be expanded in multipoles
proportional to Yy, (f), where £ is the transferred angular momentum (defined in §VIL1).

Then the allowed {¢-transfers are limited by the “normal parity” rule
m= ()t = ()"

This is no longer true if the recoil phase exp(¢mv - r) is included. In fact the expansion
of this phase into partial waves introduces terms with additional angular momentum, so
that £ is no longer restricted to normal parity values but obeys the more general selection
rules of §VIIL.1.

The same conclusions on angular momentum transfer can be reached from our final
expression (11.29). If k, = k, the multipole expansion of A(€a)X5,21)1) will contain only
¢-terms with normal parity (—)¢ = (=)#*%. From egs. (I1.26) and (II.17) we can see
that this happens only if the mass of the transferred particle m = 0 and €; = 3. In

general I::l #* @2 and this introduces non-normal parity transfers.
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Figurell.2.

Projection of coordinate system for the transfer amplitude onto the z — y plane.

I1.3 Physical Interpretation of the Amplitude.

The transfer amplitude formula (I1.28) gives the population of the various magnetic
substates and depends only on the existence of tilé surface & between the two nuclei
introduced in §II.1 and on their separation d. The argﬁments presented in this section are
based on a particular location of & given by dz and d; = d — d; (fig.IL.1), and they lead
to an approximate factorization of the transfer amplitude and to a nﬁatching condition.

The physical interpretation obtained in this way is not completely satisfactory because the

location of ¥ is not defined exactly. This may not be too serious because the qualitva.t';ive’

features of the matching condition are not very sensitive to the precise division of & into
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d, and d2. The ratio d; /d; must be near the ratio of the nuclear radii and a typical choice
would be di/d; = Ai/s/A;/3, where A; and A are the mass numbers of the two nuclei.

First we write the transfer amplitude (17.28) in a different form:

A(f222,871) = —im(h/mv) F (A1, Az, nd) 8} (d2,0,k2.)(—1)* @4, 5, (d1,0,k12).

(11.34)

Here @ is the result of the Fourier transform in eq. (II.A.26):
élx\ (.'ZI, Y, kz) = 2CY1» (ﬂ) QO)KA [77 (232 + yz) 1/2], (II35)

where (3, and 7 are given by egs. (11.26), (I1.A.3) and (I1.A.9) in terms of the arguments
of ® and the binding energy parameter v of eq. (I.21). If the neutron wavefunction is
®(z,y, 2) in the initial or final state then [&)(z, y,k2)|? is the probability density for finding
the neutron with position (z,y) in the plane perpendicular to that of the relative motion
of the two nuclei and momentum #k, parallel to the relative velocity v (fig. II.1). Thus
ézz Ag (d2,0, k22) is the amplitude for the neutron in the final state ¥, to be on the surface
Y. with ¥ = 0 and z component of the momentum %k, relative to the final nucleus. The
quantity (—1)’\1&’131 A, (d1,0,k1,) is a similar amplitude for the initial state. The factor

(=1)** occurs because ¢y = 7 at the point of transfer in the initial state (see fig. II.2).

The quantity F in eq. (I11.34) is defined as

Ky, —x,(nd)
F(Ai,Aq,nd) = 1722 . I11.36
(s damd) = B K, (1) (11.36)

Later in this section we show that F' expresses a A-matching condition.
One feature of formule (I1.28) or (I1.34) for the transfer amplitude is that the z
components of the neutron momentum, %k;, relative to the initial nucleus and %k, relative
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to the final nucleus, are fixed by the kinematical matching conditions (II.17). This result
comes out automatically in the quantal calculation of § II.2, but it is expected from the
following classical argument. Suppose that at the point of transfer on T (see fig. II.1) the
neutron has z-components of the velocity vy, relative to the initial nucleus and v, relative
to the final nucleus. If the transition from one nucleus to the other is smooth then vy,
should add to the relative velocity v of the two nuclei at the point of closest approach to
give the final velocity :

Viz + U = va,. (11.37)

If the velocity component of the neutron in the (z,y) plane is v, at the point of transfer
on X and if the potentials V; = V; = 0 on X then the initial and final energies of the
neutron are related to the velocities by

g1 = %m(vfz +v3) €2 = %m(vgz +v3) (11.38)
Subtracting gives

Q=c1—es = im(v?, —vk,). (I1.39)
Now we solve eqgs. (I1.37) and (I1.39) to obtain

vie=—(Q+ zmo?)/(mu),  ve=—(Q- 2mo?)/(mo) (I1.40)

These relations are equivalent to eq. (IL17) because ki, = ™¥= and ky, = M2z, The

perpendicular component of momentum is
pL =muv; =1hn (I1.41)

and is purely imaginary. This is because €; and €, are negative for bound states and
€q. (I1.38) can be satisfied only if v, is imaginary.
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Now we discuss the quantity F, which is defined in eq. (I1.36) and appears in the
expression (I1.34) for the transfer ampltude. When w is large and positive and n is not

too large the Bessel function K,(w) can be approxirﬁated by

K, (w) = (r/2w)*? exp <——w + %nz/w> . (I1.42)
This form can be obtained from the integral representation (II.22) by approximating
cosht ~ 1+ %tz

Using eq. (11.42) we obtain

1/2 2 , ,
F(A1,A2,nd)z(2ndld2> exp[(h R

— — . I71.43
wd 2nd 2nd;  2nd, ( )

The leading terms in the exponent cancel because d = d; + ds. If hkiy and hkyy are the

y-components of the neutron momentum on ¥ just before and just after transfer then
A]_ ~ _klydla Az ~ kgydz

Substituting these expressions into the exponent of egq. (I11.43) gives

2nd,dy \ V2 —dyd
F(Ah)\z,ﬂd)"‘ ( 777r(1i 2) €xXp [ 2771d2 (kly ‘k2y)2J

II.44
277d1d2 1/2 —d1d2 }\1 Az 2 ( )
~ exp -+ — .
wd 2nd \d1 d2

Eq. (I1.44) is a A-matching condition. It implies that F is large only if kiy = koy or

Al/dl ~ *Az/dz.

Eq. (11.28) gives a closed-form expression for the transfer amplitude in the case of
neutron transfer when the coordinate system is chosen as in fig. II.1, with the z axis parallel
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to the direction of relative motion. It is well known (Brink 1972, 1977, Hasan and Brink
1978, Bond 1980) that when the relative velocity is large, the states populated in neutron
transfer are polarized perpendicular to the reaction plane. This has been discussed by

using a coordinate system with z axis perpendicular to the reaction plane. However, in

this system it is not possible to obtain a closed-form expression like eq. (11.28).

II.4 Corrections to the Amplitude.

When there is some overlap between the potentials V; and V, during the collision there
are corrections to the transfer amplitude of § II.1 and II.2. These are of two kinds: first,
the integrals containing V7 and V3 in eq. (I1.8) are not zero; second, the Hankel function
form (I1.19) for the bound-state wavefunctions @, is not exact. The radial wavefunctions
are modified because V; and V3 are not zero on the surface ¥. Here we estimate these
corrections and show that they are of opposite sign.

To estimate the second correction, we write the exact wavefunctions ¥; and ¥, of the

initial and final states as
U, = [1—ba(ra)]¥S, a=1,2, (II.45)

where U2 are the Hankel functions forms in eg. (I7.19). The quantities b4 (r.) are positive
functions because the effect of V, is to reduce the radial wavefunctions below their free-

particle values. By using eg. (II.8) the transfer amplitude can be written as

A(2,1) = A°(2,1) + AA,
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where A° is the amplitude given by eq. (I7.28). To lowest order in V; and V; we write the
correction as

AA=AA; + AA,,

with

+o0o
ai== [ dt[/ W01~ by - ) [ WV b)s
th —0c0o R; 2
(I1.46)

N . .
AAdy = — -2—%/ dt/zds (T) VI — WOVTS) (by + bs). (I1.47)

In obtaining these formulee, we replaced ¥; and V3 in eq. (I1.8) by the expressions (11.45)
and neglected terms containing the products ;b5 and the derivatives of b1 and b,. In the
expression for AA,, U9 decays exponentially in the positive z-direction (see fig. I1.1)
while W9 decays exponentially in the opposite direction. To estimate AA,, we replace
the component of the gradient operator acting on ¥9 in the direction dS by —n and the
component of the same operator acting on ¥J by n. We do this because according to
eq. (I1.41) ¢hn is the component of the momentum of the transferred neutron in a plane
perpendicular to the reaction plane and the biggest contribution to the integral (I11.47)
comes from the region of the ¥ plane near the point of closest approach, y = 0 in fig. 11.2.
With these replacements A A, simplifies to

hn [+ i
Ady = — dt / 09 Wby + by) dS. (I1.48)
%

m J_oo

The factor that multiplies ;15\113‘ U9 in eq. (I1.46), V(1 — by —b2), is negative because such
are the binding potentials V,, (o = 1,2), while the corresponding factor in eq. (I1.48),
L;’l(bl +b5), is positive. Thus it is clear that A4; and A A3 have opposite signs. A simple
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estimate of b; and by gives

m

Ao Jry

ba(ra) ~ — Va(r) dr. (I1.49a)

If we substitute this into eq. (11.48) we see that AA; and AA, have comparable magni-
tudes, so that the correction AA is smaller than the individual parts A4; and Ad,. A
condition for AA; and hence AA to be small is that both b; and b, are small compared

to unity. By using the exponential approximation for the potential V,(r) = V,(ro)e™ =

we have

Va @ s 7
ba(ra) = —%Va(ra) = E(r ) T <1, (I1.490)

I1.5 An alternative way of calculating the amplitude.

Here we give a different derivation of eq. (11.28), which makes use of a two-dimensional
Fourier transform, eq.(II.50) below. This formulation, used by Bonaccorso, Piccolo and
Brink (1985), allows a better understanding of the physical meaning of the semiclassical

transfer amplitude and is more easily extended to proton-transfer. We introduce
~ def +oo . ~
®(z,ky, k) = / e~*Y &(z,y, k,)dy

—o0

+o0 +o0 )
=/ dy/ dz et kyytks=2) ®(z,y, 2), (11.50)
-0 -0

where &(z,y, k,) is defined by eq. (II.16). Then

~ 1 too .
@(x) y’ kz) = E;/ @(.’U, kyakz) ezkyy dky- (II.S]_)

00

If eq. (11.51) is substituted into eq. (I1.15) the integral over y gives a é-function

27r5(k2y — kly)
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which shows that the momentum component of the neutron perpendicular to the reaction
plane is not changed by the transition from the initial to the final nucleus. This is the

same condition given by the approximate form (11.44). Then eq. (I1.15) reduces to

ih [T zx 3 :
A2 1) =—7— [<1>2(dz,/rc,,,k2z)(—9-&-;@1(612 —d, ky, ki)
z g =*
—&,(dy — d, ky, klz)ggdi)z(dz, ky, koz)]dky (II.52)

From egs. (I1.50) and (I1.11) we obtain

2 +00 +00 . . 52 52
——O(z,ky, k) = / dy/ dz ¢ H(kavtks2) (v? - - —> ®(z,y, 2)

2m [T [t . z
=—7 / e i kvytk2)y (g y,2)®(z,y, z)dydz+(v2+k2+k2)®(z, ky, k.), (11.53)

where we dropped the subscript o = 1,2 for simplicity. In eq. (11.52) the two-dimensional

Fourier transforms ®; ; are required for a coordinate £ = d2 or £ = d3 — d on the surface

¥ where the potentials vanish. For these values of z eq. (I1.53) gives

82 z
<5;:5 — 2) ®(z,ky,kz) =0, (I1.54)
where
E=\[r+R R = /02 + k2 (I1.55)

Eq. (I1.54) can be solved to give
(z, ky, kz) = Blky, k)e— %! (I1.56)

So the z-dependence of disa simple exponential, while the quantity B has to be deter-
mined. By substituting eq. (11.56) into (I1.52) we find

1h

2rmu

+o0 ~ ok ~
/ £ &1 (da, by, kaa) B (da — d, Ky, Krs)dky

—00

A(2,1) = —
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it
— / ¢ e=¢4 B2 (ky, k2s) By (ky, k1s) db,. (11.57)

2rmo J o

Even before calculating explicitly the quantities B and before the final integration on k,
eq. (I1.57) shows that the semiclassical transfer amplitude decreases exponentially with
the distance of closest approach d. The coefficient B(ky, k) is calculated in Appendix IL.B.

By substituting the result, eq. (I1.B.15), into the transfer amplitude (I1.57) we find

.k oo g—&d A -
Alfadz, lidi) = —2mi—Cy, Cy, (—1)A1/ : Yia, (k2)Yen, (k1) dky  (11.58a)
. h A +oo () b C_.Ed
= —2mi—Cy, Cy, (=) Ya 5, (61,0)Y;, (2, 0) / gt (A2—A1)poz dk,, (II.58b)
where
p - (i6ky kas)y  (2=1,2). (I1.59)

RNy
The vectors lzza in § II.2 are a particular case for ky, = 0. This is because in that coordinate
representation the reaction plane (z — z) is a symmetry plane. In egs. (I1.58a) to (I1.58b)
we used egs. (I1.B.9) and (II.B.10) which show that 8, = § does not depend on k, and
COs g1 = —% = — cos g2 While sin pg; = sin gz and then g1 = 7 — 2. By expressing
¢ and o from egs. (I1.56) and (I1.B.10) in terms of n and k, the integral in eq. (11.58b)

can be written as

+ exp[—nd\/1 + (ky/7)2] S kT
[ VoG 2]

o

-+00
= / gmndeoshut(Aa—A)u gy — 2K, (nd), (11.60)

— O .

where we changed the integration variable from k, to u, defined by ky = nsinhu, and used

the integral representation (I1.22). Then eq. (I1.58) gives

. & .
A(Z, 1) = —4m ;,;; Cr, Cy, (“1)/\1 Yo, (61>0) YZgAg (ﬂ%o) Kxz—x (T]d), (IISI)
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which is the same as eq. (I1.28) because K, (z) = K_,(2).
Now we consider the physical interpretation of the double Fourier transform

e_Elz!

E b

o (z, ky, ks) = 2mi Cp Yor (K) (I1.62)

The quantity ]‘%(a:,lcy,kz)[2 gives the probability density that the particle be found at a
distance = between the two nuclei with z-component of its momentum (along the axis
of relative motion of the two nuclei - cf. Fig. II.1) given by the kinematical conditions
(I1.17). Eq. (I1.57) gives the transfer amplitude essentially as the overlap of two factors:
the amplitude %l(dz —d, ky, k1) that the particle be on the surface & before transfer with

momentum
b = = (@ + gmo?) /(b0

times the amplitude éz(dz, ky,k2z), where the momentum has changed to

o (Q - %mvz) /(h).

That is when the neutron jumps from one nucleus to the other it compensates for the rela-
tive motion by “running” in opposite directions before and after the jump (cf. Von Oertzen
1985).

Moreover, the form (II.58a) of the semiclassical amplitude can be used in alternative
to the approximation (I1.29) to calculate the transfer probability, eq. (/1.33), between
single particle states of specified orbital angular momenta £; and £;. By making use of the

addition theorem for spherical harmonics (of complex angles) we find

hCq¢, Co,

2mu

2 +oo rtoo —(&+¢)d . s, -
) (245 + 1)/ / — Py, (ki - k)P, (k3 - kz)dkydlcy,
— 00 —0Q

PtT(ZZsel) = ( 66

(I1.63)
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where Pe is a Legendre polynomial. One can evaluate numerically the double integral in
eq. (II .63) but it is interesting to make a further approximation and single out the depen-
dence of the transfer probability on the product nd. In eq. (I1.63) the main contribution

comes from ky ~ 0 ~ k;,. Then, from eq. (11.55),

2
N Fy
€~77+277

and we also assume

k2 kl2 k. k' 2
et e g T () wn?

With these approximations Stancu and Brink (1985) obtain

—2nd

2
) (262 + 1) S—— My, 4, (I1.64)

Vs hC@l Cez
nd

Ptr(KZ)Zl) = 5 mo

where the quantity My, ,, contains only a one-dimensional integral to evaluate numerically.
From numerical comparison with eq. (I1.63) they find this result accurate within 1%.
Eq. (I1.64) shows explicitly the exponential decrease of Pi,. This expression has been
used by the same authors to calculate the imaginary part, Wirens, of the optical potential
due to transfer between heavy ions. The latter is related to the transfer probability from

all levels in nucleus 1 to all levels in nucleus 2 by

2 [T
7 thns[R(t)]dt = Py + P12, (II.65)

-0

where R (t) is the classical trajectory. The expression (II.64) suggests for the potential at

the strong absorption radius d

Wtrans(d) = WOe‘znd- (II66)
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As we saw in egs. (I1.30) and (I1.31), the quantity n depends on the energies of the single
pa,rticle levels taking part in the transition. Therefore the absorptive potential is obtained
by summing eq. (I1.66) over all possible transfers from nucleus 1 to 2 and viceversa. In this
way one studies the effect of the shell structure on the depopulation of the elastic channel.
Stancu and Brink (1985) find that sometimes very few (or one) transitions contribute to
Wirans While in general at higher incident energy more transitions are important. This can
be explained in terms of the damping parameter . Eq. (I1.64) shows that the maximum
transfer probabilty occurs when 7 is minimum, which happens when the incident energy
per nucleon E; = 1/2 mv? at the distance of closest»approéch d satisfies the condition

(I1.32). If one assumes d as the radius of the Coulomb barrier Vg, the energy Ey is given

by (cf. chapter VII)

AL+ A

A+ A4
Ey= (Ben. — Vep) = B — =22

Ves, I1.67
Ay A, A4, P (£1.67)
where E, = Ej4/A; is the incident energy per nucleon and A, is the target mass number.

For By = [Ql the quantity n takes the value

L/ ame; =, ifQ<O0; ,
Nmin = {%\/‘_‘2—%:;:72’ ifQ>0. (II.GS)

When E4 < |Q| the quantity n decreases with increasing incident energy. Then one expects
the contribution of the transition €; — €3 (Q = £, —&3) to the absorptive potential (11.66)
to become stronger. When E4 > |Q| the quantity # increases with the incident energy and

the transfer probability (11.64) decreases.

For a given value of the initial binding energy e; and relative energy E;, we have
maximum transfer when |

ey =61+ Ey (I1.69)

38




,nd n attains the value vy = /—2me;/h. The relation (11.69) means that as the incident
energy is increased a transition from a bound state (¢1 < 0) favours an increasingly ‘loose’
final state, to the point that when E4 2 |e1]| the energy €3 can be positive. This implies
that for high incident energies transfer to continuum levels becomes important and should
be included in the calculation of the absorptive potential.

For the particular case 1 = g3 = ¢(< 0), e.g. the ground state transition
120(13¢0, 120) 3¢

studied by Von Oertzen (1985), we have from eq. (11.30)

n(Ea, @ = 0) = % m (Eﬁi— = 2s>, (I1.70)

which is a monotonically increasing function of the incident energy. Then one expects the
transfer probability to decrease steadily with increasing energy. The energy dependence

of transfer cross sections is discussed in more detail in chapter VIL
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Appendix IT.A Calculation of a Fourier transform.

Here we calculate the Fourier transform ® which appears in eq. (I1.15) and is defined

by eq. (II.16):
= det [T
Qi (z,y, k) = / e—’kz@u(:c,y,z)dz, (II1.4.1)

—o0
where we now introduced the orbital angular momentum quantum numbers I, A of the
bound state wavefunction .

The form of ®;, gives some immediate constraints for the Fourier transform ®;,. If
the binding potentials V; and V; have radial symmetry or vanish -as we shall assume later
on- the wave function @) in polar coordinates can be separated into the product of a

radial part, f, and a spherical harmonic ¥:
D1 (r,0,0) = filr)Yir(0,0) = fi(r)Y1x(8,0)e™% = &5 (r,0,0)e?. (IT.A.2)

The spherical polar coordinates (r,, ) are related to the rectangular coordinates (z,y, z)

by
T =pcosp, y=psingp, z=rcosh, : (I1.4.3)

where
p=+vVz2+y?=rsind (IT1.A.4)

defines the relation to the cylindrical polar coordinates (p,©,2). Since p does not depend
on z, substituting eq. (11.A4.2) into eq. (II.A.1) gives for the Fourier transform in cylindrical
polar coordinates

Ql/\(Pa(P,k) = él)\(paoak)ei)‘(p' . (II'A5)
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Moreover, the bound state wavefunction ®;), — 0 as p — co. From this follows that
éz,\(p,p,k) —0 as p— 0. (II.A.6)

Since in eq. (I1.15) the Fourier transforms &, and &, are only required on the surface
¥, which is supposed to be outside the range of the potentials V7 and V; during the whole
collision, the function ®;, in eq. (I1.4.1) is the solution of the free-particle Schrédinger

equation

-—(h2/2m)V2¢’l,\ (1‘) = E@z)\ (1')

or

(V2 —4%) &5, =0, (IT.A7)

where ~y is related to the bound state energy € by € = —hzfyz/(Zm). As a consequence, the

function él A satisfies the two-dimensional equation

a2 82 o\ z
(5;2—+é;5—77 >@l/\:09 (11.A.8)

where
n=\Vk?+~2. (II.A.9)

The solution of eq. (I1.A.8) which tends to zero as p — oo is given by (Abramowitz and
Stegun 1970 p. 374)

~

®1x(p, 0, k) = Dix(k) K (np)e?, (11.4.10)

where the coefficient D;y (k) has to be determined and K, is a modified Bessel function.
There are several ways of calculating the coefficient Dy (k) and it is interesting to

compare them.
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i) saddle point method. This is the simplest derivation (Lo Monaco and Brink, 1985).
Though based on an approximate formula, eq. (I1.A.16) below, it gives the same result as

 the rigorous derivations which follow. The solution of eq. (I1.4.7) is

31 (r,0,0) = Crvxi(r)Yix (0, 90), (IT.A.11)

xi(yr) = =AM (iyr). (II.A.12)

The function hl( Vin eq. (I1.A.12) is a spherical Bessel function of the third kind
(Abramowitz and Stegun 1970 p. 437). To evaluate D) we calculate the integral (II.A.1)

when p and r are large. Then xi(yr) and Kx(np) can be replaced by their asymptotic

forms valid for large arguments (Abramowitz and Stegun 1970 p. 364, 378)

(yr) ~ Ka(np) ~ 1/ —— e (I1.4.13)
Xi\ar) ~ 3 Anp)~ e JALS
K r 7 2np

and egs. (II.A.11), (II.A.1) and (I1.A.10) give

~ v‘ +m —. — -
@1x (0, 0, k) ~ Czeu“’/ exp(—ikz — 1) Y1, (8,0)dz ~ Dyy (k)\/ L gTegiAe
—oo r 2np
(I1.A.14)

Therefore

0% exp(—tkz —
Dz,\(k)zCz\/z:’Fee”” / exp ’Tz ) v, (6,0)d (II.A.15)

We calculate the integral in eq. (I1.A.15) by the saddle-point formula (e.g. Brink 1985,

p. 194):

+o0 . o 1/2 ’
[—Oo 9(2)ef@dz ~ g(z) [m:l gilf(z0) = (I1.4.16)
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where zo is the saddle point given by f'(20) = O and the phase x = 1/2[arg f"(20) —
r/2). Eq. (II.A.16) can be used when g(2) is slowly varying, that is g(z) should not

change much in the range |z — zq| < Az, where

Az =[f"(z0)] (IT.4.17)

is a measure of the width of the saddle region. To use the formula (II.4.16) in the integral

(I1.A.15) we put

Y (6,0
f(z) = —kz +iyr, g(z) = ——————”(r -0) (I1.A.18)
The saddle point 2o is determined by
f(z0) = —k + ﬂ—f—‘l =0, (II.A.19)
0
where
ro = \/p% + 22
Eq. (I1.A.19) can be solved in terms of ro to give
ro = 12 (I1.4.20)
n
where 7 is given by eq. (I1.A.9). Then follows
20 = —1 kro _ -133, (II.A.21)
v n

‘The stationary angle 0g is given in terms of zo and ro by the relations (I1.A.3) and (I1.4.4)

coslgp = — = -i—]‘i, sinfg = L1 (I1.A.22)
g 7

To
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In order to evaluate (II.A.15) we also need

f(z0) = —kzo +1yro = ikzg + z"yz-s =1np (I1.A.23)
and
w: _ nd
1" —_ —_— —_
(z0) = 1,78— = z_—fy% = x =0. (I1.A.24)

Substituting (I1.A4.18), (I1.4.22), (I1.A.20), (I1.A.23) and (II.A4.24) into ([I.A.16) we

find
too —ikz — 80,0) ~/
/ exp(—1ikz ’77)}’13(0,0)(12: Y1 (60,0) ~ 32/72rp =11
— 00 r To n
2
= Yix(60,0) 4/ — ¢,
np
so that egs. (I1.A.15) and (I1.4.10) give
DlA(k) =2 () YZ,\(HO,O), (II.A.25)
‘i’lA(PﬂD,k) =2 Cl Yl>\(9030) KA(TIP) eiA(p =2 Cl Yl)\(00>(p) KA(UP): (IIA26)

where (p, p) are related to (z,y) in eq. (II.A.1) by (I1.A.3) and (I1.A.4). We should check
the assumption that g(z) defined in eq. (I1.4.18) does not vary significantly for z within

the range Az of 25, where Az is given by egs. (I1.4.17) and (I1.4.24). The variation of

g(z) is

1 dYin(0,0) d§ 1

Aglz) = |= 220N &7 2 yg

g(2) [r T Y15 (6,0) z=z°Az

1/2 dYix (0 0)}
n N IAY,
=1 ST Ly (60,0) b

0%/ {’7{ df §=04 r{fo:0)

Then Ag can be made smaller and smaller by choosing p bigger and bigger.
ii) generating function method. Consider the expansion (Abramowitz and Stegun 1970,

pp. 440 and 437)

el o Lo » A
Ar—a] —4m Y > 5i(iva) bV (ivr) Yi3(8) Yia(#), (IT.A.27)
=0 A=l
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 where a is a vector with modulus ¢ < r and direction & = (04, ¢,), 71 is a spherical Bessel

function of the first kind and Y7, is a spherical harmonic. By inserting egs. (I1.4.12) and

(I],A.ll) into the definition (771.4.1) we have

~

+oo
Din(z,y,k) = —-C; v z'l/ e~ tk= hl(l)(i'yr) Yia(6,p) dz. (II.A.28)

Multiplying eq. (I1.A4.27) by Crve~ "% and integrating over z we get

too o eir=al o . -
Cl/ e ————dz =4nr Zjl(z'ya) Ya (@) @1a(0,0,k) 17" (I1.4.29)
—oo lr — a >

Let p and a be the projections of r and a onto the z — y plane. Then

r—al=+vlp—ai]?+(z - az)?,

where a, = acosf,. By changing the integration variable from z to z — a, and using the

integral representation

1 [T 4, exp(—dyec? + z2)
KoleV/b2 +d2) == —ibz d II.A.30
O(C + ) 2 /—-oo € \/m z ( )

for the modified Bessel function of order zero, the l.h.s. of eq. (IT.4.29) can be calculated

and we obtain

2Cie™ % Ko(nlp —ayl) = 4r ) ji(iva) V3 (8) Dia (k) K (np) e P17, (IT.A.31)
[

where we introduced eq. (II.4.10) in the r.h.s.. Now consider an addition theorem for

Bessel functions (Abramowitz and Stegun 1970)

Ko(w) = Y Kn(u)ln(v)e™, (I1.A.32)




where w = (u?+v2—2uv cos ) 1/2. This relation is valid for any u,v, a, w complex, provided

[ve*®| < w. Then we have

Ko(nlp—ar)= Y. Ka(np)In(nar)e#=%).

n=-—0oo

By substituting this result into the LA.s. of eq. (I1.A4.31) and writing the sum in the r.A.s.

a5 DS —co oinpy| We get for any A

2Cie~*e= I\ (nay) = 4m Y ji(iva) ¥3(0a,0) Dia(k) ¢
I=|A| .

By summing over A from —oo to +oc and using the expansion (Abramowitz and Stegun

1970)
e = > Ikz)
k=—o00
in the l.h.s. we have
2C) exp(~thas +nay) = 47 > _ ji(i7a)¥33 (0a, 0) Dia (k) (—2)". (I1.A.33)

A

The argument of the exponential in eq. (II.A4.33) can be written as

k
va(—i—cos b, + —sind,)

n
9 ~
Consider the expansion of the exponential in terms of spherical Bessel functions

(Abramowitz and Stegun 1970)

% = > (2n+ 1)i*(=)"jn(iz) Pa(cos 0)

n=—0co
valid for any z and 8 complex. Then, from eq. (I1.4.33),

oo

k
201 Y (204 1) Pa(5= cos@a—i-%sinﬂa) =4 > V5 (0a,0)Dia (k). (I1.A:34)

n=—00 A
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1f we define

k .
cosf =—i1—, sinf=
o

=2 |3

and use the addition theorem (for complex angles)

4

T O Yan(8,0)¥:(64,0)

A=—n

P,(cosBcosb, +sinfsind,) =

we get

2C14m ) Yia (8, 0)Y3 (00, 0) = 47 ) Y15 (0a, 0) Dia (k).
I\ A

from this follows

Dl,\(k) =2 C Y},\(ﬁ,O). v (II.A.ZS)

The above results can also be obtained with a third method which uses raising and

lowering angular momentum operators.
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Appendix I1.B Calculation of a two-dimensional Fourier transform.

We evaluate the coefficient B(ky, k) in egs. (I1.56) and (I1.57) in a way very similar
to the method i) employed in Appendix II.A. For large values of |z| we substitute eg. (1.20)

into eq. (I1.50) and obtain

Y1, (8, 0) _ —¢|z]
" = B(ky, kz)e )

~ +oo 4o

Oz, ky, k) ~ C’z/ dy/ dz exp(—tkyy — tkyz — yr)
(II.B.1)
where we used eq. (I1.56). Now we calculate the integral in eq. (II.B.1) by the saddle

point formula in two dimensions (e.g. Brink 1985, Appendix B, § 4)

y z2g(y,z) e ~ 9(yo, 20) [det f;5 (90, 20)[ /2 e , (I1.B.2)
—oo —o0 3 s

where 7, k stand for y or z, the stationary point (if there is only one) Py = (yo,20) is given

by the condition that the derivatives

fy(Po) = f2(Po) =0 (I1.B.3)
and the phase
x=(m-1)7, (I1.B.4)

where m is the number of negative eigenvalues of the matrix {f;x(Po)}. In eq. (II.B.1) we

put
f(yyz) = 2’77‘ - (kyy + kzZ),
Y (0,0)

9(y,2z) = ———.

(I1.B.5)

Then P, is determined by

- R Z
fy(PO) = 'l,’y:—y—g- — ky = (0 = fz(PO) — 1”7_0 _ kz’
To ro
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where rg = \/m. Egs. (I1.B.6) can be solved to give

iEd
[0 N ’
., To Jz|ky
= —tk,— = —1——, II.B.7
Yo y y ¢ ( )
k.
20 = —iky > = ~iL”il£—,

where ¢ is defined in eq. (11.55). Egs. (I1.B.7) show that in our case the stationary point

is unique. Therefore

Yix (6o,
o(Py) = Lllori0). (II.B.8)
ro
where
k 2 1 .2 SRR
cosfy = 2 = —“2  sinfy = V? + 9 = VAt =7 (I1.B.9)
To “ To 9 i
and
z E f Yo -ky
— — — = = 1. II.B.].O
coso ro sin fg j:n » SifiPo rosinfg ’ 7 ( )

Eq. (I1.B.9) gives the same stationary (complex) angle 6 as eq.(II.A.22). In eq. (II.B.10)

cos oo has the same sign as z. Substituting egs. (I1.B.7) into eq.(I1.B.5) we also get

N e O - = AW
if(Po) = ( R SR >_ £)z]. (II.B.11)

We also need the second derivatives

2t + 2] . Yoz i+ yd
fyy(Po)—‘:Z’)’ 3 O’ fyz(P0)=“‘Z’7 030 :fzy(PO)a fzz(PO) =1 3 O,
7o To ry
so that
det{f;x(Po)} = — <r—2> . (I1.B.12)
0
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The matrix {f;x(Po)} has no negative eigenvalues. Therefore, from eq. (I1.B.4),
X=——. (I1.B.13)

Collecting the various terms for eq. (II.B.2) we find

+o0 +co Yoy (0 —¢&lx
/ dy/ dz exp(—ikyy — tkzz — ~yr) Yu(6,0) = 2711Y1: (00, o) ¢ (I1.B.14)
and then, from (II.B.1),
: Y. (0
B(k,, ks) = 27i C) ﬂ—(—g—’@l. (II.B.15)
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1II.1

section by a transfer probability

Chapter III. Angular Distributions.

Classical cross section and transfer probability.

The simplest way to calculate the transfer cross section is to multiply the elastic cross

O't,-(o) = ael(H)Ptr(a). (IIII)

If o, is the exact elastic cross section eq. (I11.1) can be taken as a definition of the transfer

probability for the scattering angle 8. For instance 0.;(6) could be the measured angular

distribution or one calculated with an optical potential which fits the elastic scattering.

The transfer probability will be calculated from our semiclassical amplitude along definite

trajectories specified by the impact parameter b or the relative angular momentum A. Then

one has to relate trajectories to scattering angles. In the classical description one solves

the equations of motion in a ion-ion potential and determines the deflection function 6(b)

or §(A). Once this is known eq. (I1I.1) reads

ot (8) = 0 (8) Per[A())]- (III.2)

A further approximation is that the elastic cross section is given by the product of the

classical cross section

times a reflection coefficient

do b |db

—_— = — | II1.3
<dﬂ)clas sind |df ( )
}SA(g)]z = exp(—4Imér). (II1.4)
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In these formule the classical angular momentum A is related to the angular momentum

quantum number L of relative motion by

1
A=(L+:Z)h

In a rearrangement reaction the deflection function in the final channel is different from
that in the initial channel because of the transferred energy, angular momentum and mass.

To take this into account one can use the geometric average between the two cross sections,

do _ [(do\ " (do
dﬂ— dfl in. af fin.’

but for this discussion we limit ourselves to the simpler formula (VII.2). The reflection

coefficient |S|? in eq. (I11.4) gives the probability that the system escapes absorption into
other inelastic channels. It is expressed in terms of the imaginary part of elastic scattering
phase shifts 6, = 65 + 5})’ , where 6¢ are the Coulomb phase shifts and § };V are the nuclear
phase shifts. The latter can be obtained either by numerical solution of the Schrédinger
equation with a complex potential U = Ug + Uy or by first order WKB approximation.
Considering the whole nuclear potential Uy as a perturbation one obtains for the nuclear

part of the phase shifts (e.g. Brink 1978, p. 13)

1 o0
o ~ o / Unlro(4,9)] dt, (II1.5)

where the integral is taken along the Coulomb orbit corresponding to classical angular
momentum A = (L + 1/2)h. Alternatively, one can parametrize the nuclear part of the
radial S-matrix Sy(L) = exp(2:6}') and study, for example, the energy dependence of
the cross section without the intermediate step of an optical potential, as it is doné in

chapter VII.
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For large impact parameters one has a Coulomb trajectory and the deflection function

is given by

0
L+ —21- = ncot (-2-) : (II1.6)

where n = %%i—ei is the Sommerfeld parameter and v, the asymptotic relative velocity.
The classical elastic cross section is given by the Rutherford formula
(Bt
A/ 1as i1/ p 4 (sin g)
where ac = Z17Z5¢%/(2E:.m.) is half the distance of closest approach in a Coulomb head-on
collision. For smaller impact parameters, where the distance of closest approach is within
the range of the ion-ion nuclear potential, the deflection function is bent forward and there
is a singularity at %—g = 0 (rainbow angle). In general two or more impact parameters b;(6)
contribute to the same scattering angle and eq. (I/1.3) should be modified into a sum over
b;(8). However, for small impact parameters more nuclear reactions take place and absorb
flux from the elastic channel. Absorption is accounted for by the factor |S|?, eq. (IIL.4).
Therefore trajectories with small impact parameters, for which the deflection function
differs appreciably from the Rutherford, are strongly absorbed and do not contribute to

the quasi-elastic process we are considering here. As a result one can still use the simple

forms ([11.3) and ([I1.7). In this case eq. (III.1) becomes
0:r(0) = or(8)|Sace) > Per[A ()] (I11.8)

The effect of the nuclear potential on the Coulomb trajectory can give a shift in the peak
of the angular distribution predicted by eq. (II1.8). This shift, 5, can be calculated as a

perturbation to the Rutherford scattering angle 6. Let

0=10g+0y (II1.9)

53




the classical deflection function (e.g. Broglia and Winther, 1981, p. 131-132)

Oy = 2= = h=— ,

be the total scattering angle. We use the well known relation between the phase shift and

(II1.10)

where d is the distance of closest approach for a Rutherford trajectory. d is related to the

classical angular momentum A by

[ 2
kd=n+ n2+<%) ,

where k is the asymptotic wave number of relative motion. Then we have

dd 1 \/d(d—2ac)
0L h k(d—ac)

(IT1.11)

(IT1.12)

Here ac = n/k is half the distance of closest approach in a Coulomb head-on collision.

Approximating the ion-ion real potential Uy in eq. (III.5) by an exponential (e.g. Brink

1978, p. 11-15 - also cf. chapter VII where the same approximation is used to relate a

parametrization of the phase shifts to the imaginary part of the optical potential) we find

(II1.13)

where a is the diffuseness of Uy and vg is the tangential velocity at the distance of closest

approach d. vy is related to the asymptotic velocity v, by

d-2ac
V4 = Voo ————(-i—-—

From eq. (II1.13) we have

926y _ V2ma  Un(d) [1 w  d 1

2 d—2a a exp(R——;‘é)—%l

ad - hvoo \/d - 2ac

’

(II11.14)

(II1.15)




where R is the radius of Uy and a its diffuseness. Substitution of egs. (III.15) and (III.12)

into (II1.10) gives

1 d 1
Vrad 1 Uyx(d) |1 ac (II1.16)
2 d—ac Eom |2 d-2a. aexp( )—i—l

This is the correction to be applied to the Coulomb scattering angle 5 given by eq. (IIL.6).
As an example, for the reaction 208Pb(160,15O)zong(g,s_) at Epgp = 139 MeV, the formula
(IIL.8) gives a maximum cross section at §g = 49.1° and eq. (II1.16) produces a correction
fn = —5.1°, which shifts the peak forward and brings it closer to the experimental result.

The transfer probability on the r.k.s. of eq. (I1I1.1) or (I11.8) depends on the quantum
numbers « that specify the initial and final states. In a more general form the classical

expression (I11.8) is

do(0) do(6) -
[ dn L = [ a | SLs)] Prle) (). (I11.17)
The simplest case is transfer between single particle states specified by their orbital angular

momenta £; and £;. The expression for the transfer probability is obtained by summing

over the final magnetic substates and averaging over the initial ones:

Pir(£2,4,) = Y 1AL, i 0) ), (II1.18)

244 —i-l/\/\2

where A is the semiclassical amplitude given by the formula (I1.28) for neutron transfer.
However, one is usually interested in the single particle angular momentum j = £+s, where
s is the spin of the transferred particle. Therefore the transfer amplitude A(ﬁz)q,ﬁl)q)

needs to be re-coupled to j. This can be obtained by redefining the transfer probability as

Ptr(J'Za]'l) Z lB zmz,]lml)lz, (III.IQ)

mymso

2+1
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where B is related to the semiclassical transfer amplitude A by

B(jame,1m1) = Z < Jamaz|ladasme > A(lzA2, L1d1) < €idismg|jimy > . (111.20)
A Agm,

Here m, is the z-projection of the spin of the transferred particle which is not changed by
the transfer process. If we consider the transfer of a particle z from the single particle state
(¢1,71) in nucleus a; = ¢; + z to the single particle state (£2,J2) in as = c; + z, we have

o= (Ia,1I., — I, ,I.,), where Iy is the spin of nucleus k, and the transfer probability is

given by:
1
Po(la,, 1oy — I.,,1,,) = o May, Mo, M,,)|?
ot ) = ey B it )
2l,, +1
Ptr(]27.71)a (111.21)

T @, +1)(2ht1)

where

C(Mc1Ma2 7M0.1Mc2) = Z < IazMaglIcchzJ.2m2 > B(j2m2a.7.1m1)

mims
< I, M. jimy|ly, My, > (I11.22)
and P;r(j2,41) is the single particle transfer probability defined in eq. (I11.19).
According to which angular momenta are considered, eqgs. (I11.18), (II1.19) and (III.21)
define transfer probabilities by summing over final states and averaging over initial states.
In chapter IV we show some angular distributions calculated with egs. (III.1)-(III.21) and
compare the various approximations mentioned above. One obtains a bell-shaped angu-
lar distribution in qualitative agreement With the data. The peak at or near the grazing
angle is explained as the result of absorption for small impact parameters (correspond-
ing to large scattering angles) and the exponential decreasg for larger impact parameters
(corresponding to small scattering angles) of the transfer probability.
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II1.2 Semiclassical partial wave sum.

When diffraction effects are present (cf. Fig. 1.12) eq. (I11.8) gives completely wrong
angular distributions. One could try to improve the results by calculating P:.(4) in
eqg. (II1.1) as the modulus square of some partial wave sum over the relative angular
momentum. In this way several waves (in particular near-side and far-side waves) could
interfere and contribute to thg same scattering angle §. Also the elastic cross section
should be calculated as a partial wave sum. Then there is no advantage in maintaning the
approximate factorization (III.8) but it is still possible to use the semiclassical transfer
amplitude of chapter II in a partial wave formalism. A theory suitable for our discussion
was developed by Hasan and Brink (1978). Starting from the DWBA full transition ma-
trix they obtain a partial wave formula which contains the semiclassical transfer amplitude

(I1.28) as one term of the sum. Here we give an outline of their method.

By making a WKB approximation for the distorted waves
x(r) = x(s) ex F=2)P(), (I11.23)

where s(t) is the classical trajectory of relative motion and p(s) is the local momentum, the
six-dimensional DWBA transition amplitude can be written in terms of a form factor G(s)

which contains the bound state wavefunctions, the interaction potential and the momenta

p: and py:

T= /x;—)*(s) G(s) x5+)(s) d3s. (I11.24)
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By expanding Xf-fc) (s) in partial waves, they have

471')3/2
kik

-

Z V2L0;+1 gilos (L) 67 (L1)] 'I:L{_LfYLfo (6,0) I(Li, Lg, My).
L;LyM;y
(I11.25)
The z-axis of the coordinate system coincides with the direction of the incident momentum

k; while 6, are the polar angles of the final momentum k¢. & ¢(L;, Lf) is the sum of the

Coulomb and nuclear phase shifts in the initial and final channel, respectively. The term

1 (o ]
I(L;, Ly, My) = \/-—k—-k-—;/o fr;(s) Gé‘:ﬁf,(s) fr.(s) ds, (I11.26)

where

T 2w
G, (s) = /O sin ,df, /O dbe Y7,01, (00r$s) G5, 00,85) Yioo(0ards)  (I71.27)

a,na fr, , are the radial parts of the expansions of ng,) (s). Then Hasan and Brink (1978)
make the following approximations.

i) Large values of the angular momenta of relative motion L; . This is justified for heavy-
ion reactions because partial waves with small L’s are strongly absorbed.

ii) Transferred angular momenta small compared to L; ¢.

ili) Semiclassical evaluation of I(L;, Ly, My), eq. (II1.26), by using WKB wavefunctions
for the radial functions fz, . This is similar to the approach of Landowne et al. (1976).
iv) The orbits are not too different in the initial and final channel, so that they expand
about the final orbit.

v) For forward-angle scattering the component of p s perpendicular to the incident direction
is not very large, so that the dependence of G(s) on the scattering angles § and ¢ can be

neglected.
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The final approximate expression they obtain from the DWBA transition amplitude
is:

o0
T(8hs,101) = it =22 3 V2L + 1 B IIFr D AL (8500, 8101) Y ,0,-2,(0,0),
L=0
(I11.28)

where we specified the orbital angular momentum quantum numbers (£; A1) and (£2)2) of
the initial and final bound states 91 and 1. The amplitude A% (€2X2,£1A1) in eq. (II1.28)

is related to the semiclassical transfer amplitude A calculated in chapter II by the rotation

A2, 0]) = 3 d ) (8/2) 4325, (0/2) AL, 210), (I11.29)
A1

where d%,, is a reduced rotation matrix (Brink and Satchler 1971).

The differential cross section g—% for the reaction
ay +cg —r c1+ap

or

(c1+2z)+ea—c1+ (ca+12)

is obtained by re-coupling the transition matrix (I11.28) to the spins that define the irﬁtial
and final states, in the same way we did for the transfer probabilities, egs. (I11.19)-(II1.21).
For transfer from a single-particle state with spin j; in nucleus a; to a single-particle state
with spin 72 in nucleus as we have

do _ 7 ki 2L, +1
dQ k% py (21, +1)(251 +1)(252, + 1)

Y T (Gama, 5rma) |, (I1I.30)

myma
where.
T(J2m23.71m1 Z < Zl}\lsmsl]lml >L £2A28m3']2m2 > T(£2/\2,£1/\ ) (III31)
Alr\gm,
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In eq. (I11.30) % is the wave number of relative motion in the initial channel, x; s are the
reduced masses of the initial and final system, respectively, I,, and I, are the spins of the
final nucleus a3 and of the core ¢z. In eq. (II1.31) s is the spin of the transferred particle
and m, its projection along the z-axis.

The formule (I11.28)-(IIL.31), together with the semiclassical transfer amplitude of
chapter 2, provide a simple way for calculating angular distributions. They are used in
chapter IV and compared with experimental data. One merit of this formulation is that,
alike the classical expressions (IIL.8) or (III.17), the various components of the transition
matrix, eq. (II1.28), are factorized and one can ‘see’ how the reaction is taking place

physically. The elastic scattering is contained in the factor

g2Re8 (L) (I11.32)
and absorption in the factor
e~ ML), (II1.33)
where we put
26(L) = 6;(L) +6¢4(L) and &;,¢r = Reb; 5+ 1Imé; f; (I11.34)

the transfer process is given by the amplitude A’ (£2A2,£1A1) and the rest are geometric
factors.

At the same time trajectories with different relative angular momenta L can interfere in
the sum (II1.28) to produce scattering at the angle §. This is a typical quantum feature.
In fact éq. (I11.28) has the form of the ansatz (I.2) but we do not need to parametrize the
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partial wave amplitudes. With the notation of eq. (1.2), these are now given by the theory
as
g1 = V2L + 1 G IF8 D AL (2,24, 81 01).

The approximations made in the derivation of egs. (II1.28)-(III.31) seem reasonable for
heavy-ion transfer. reactions at incident energies above the Coulomb barrier, where an-
gular distributions are peaked at forward angles (cf. chapter I). However, the range of
applicability of these formule is restricted to well matched reactions, as this is a funda-
mental assumption in the derivation. We shall see in chapter IV that a change in the
relation between the distance of closest approach and the angular momentum from the
initial channel, d;(L), to the final channel, d¢(L), alters the magnitude of the cross section
but not the shape of the angular distribution.

Last, we note a property of the partial—wave formula (II1.28) that simplifies the calcu-
lation of the total (=angle-integrated) transfer cross section. By integrating over df? either

the classical formula

[da(ﬂ)] _ b

a0l sin §

db
|52 Piy @ (111.35)

or the partial-wave angular distribution (II.30) we obtain (almost) the same total transfer
cross section. This property originates from the form of the partial-wave sum (II1.28) and
does not depend on the coupling of the internal angular momenta. This means that in

eq. (I11.35) the index « can specify the transitions
a) a= (L1171 — £223),

or
b) a= (J'1m1 - J'2m2),
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with the meaning of the angular momentum quantum numbers indicated before. We shall
prove the equality of the angle-integrated transfer cross sections for the case c). The

integral of eq. (II1.35) over the solid angle dQ? = sin 8dfdyp is

T ldb|
Og = 27[‘/‘; b(0) la—éi Pz(e)(a) ISL(O)Iz dé.

We assume that the deflection function 8(b) is monotonically decreasing ( as it is the case
2
for Colulomb scattering where § = 2arctan —Z—%%- ) and that b(§ = 0) = oo (particles

passing undeflected at large distances) while 8(§ = 7) = 0 (particles turned back in a

Z
head-on collision). Then changing the integration variable from § to b gives
oo = 21 / P, (@)|Spey? b db. (I11.36)
0

Egq. (II1.36) can be transformed into an integral over the classical angular momentum
A = L+ 1/2 by the change of variable A = \/2uE b/h = kb (note that now we use the

classical angular momentum in units of #):

2 [ . T — ,
O = Eg /0 Pjtx-1/2(a) |SA-—1/2|2 A dA =~ k—2 Z (2L+ 1)P£ (a) lSLIZ- (III'37)
L=0

The last form is useful to evaluate the angle-integrated transfer cross section if the reflection
coefficients |SL|? are calculated numerically for each value of L.

By integrating eq. (II1.30) over d(1 we have
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=C 27 Z Z Z < £1A13m3[]'1m1 >

mimz A1dam, M ALm!

< Lydgsmglgamy >< LN sml|jimy >< £eAhsm|jomg >

/ T* (L)}, 613,) T(Eshs, 1)y) sind db, (111.38)
0

where we denoted by C the factor in front of the Zm1m2 in eq. (I11.30). By substituting

the partial-wave sum (I11.28) the integral over § becomes
T
/ T*(Ez IZ’EIA,l) T(Ez}\g,ElAl) sin @ df
0

= =de= XN N7 (of 4 )2 (2D) + 1) /2 €20 (e""'%‘)*
LL'

/ AIEI(ZZ I2,£1 ;_) AIL(£2>\2,£1)\1) YE’,A;—A; (0,0) YL’)\I._}‘Z(H,O) sin § dH, (IIIgg)
0

where we introduced §; defined byv (II1.34). From the Clebsch-Gordan coefficients in
eq. (I11.38) we have A} — A% = A1 — A5. Then, by neglecting the slow dependence of A’ on

8, eq. (111.29), we put A’ ~ A and make use of the orthogonality of spherical harmonics in

eq. (I11.39) to get

/ T* (€275, £107) T(£2)2,£1A1) sind df

0

= -—;W D (2L +1) 7m0 A7 (8225, 607) Az(€2Aa, i) (I11.40)
L

Substitution of eq. (II1.40) into (III.38) gives

63




T —4Ims 2l,, +1
c = T T 2L 1 L -
O'(Iang - Ic1)Iﬂ-2) k2 y’f 2;4 ( + ) € (2162 +1)(2]1 +1)(2]2 +1)
> |Br(fama, sim1) %, (I11.41)
mimsz

where we have made explicit the dependence of B(jama,j1m1), defined by eq. (II1.20),

on the relative angular momentum L. Eq. (IIL.41) is the same as eq. (IIL37) (but for

2Ia-o +1
(271 +1)(272+1)

the factor u;/us) because e~#/m5L = |Sp[2 [cf. eq. (IT1.33)] and LoD
> mymg | BL(d2ma, 51ma)|? = Pir(lays ey = Loy, 1a,) [cf. egs. (IIL21) and (IIL19)]. The
ratio of the reduced masses u;/p s that enters in the cross section (II1.30) is neglected in the
classical formula (II1.35). For the transfer reaction ay(= ¢y + z) + ¢z — ¢1 + az(= ¢z + z)

it amounts to )

Hi _ G1C2  €1C2 + IC2

9
ur €142 ci1c2 + zcy

where we indicated with the same symbols the nuclei and their mass numbers.

If ¢ =~co, then 21
Ky
For nucleon transfer (z=1),
. K C2
f > th —
1 c1 > Cq, en y cz+1’
. M Ci
if e¢2>c then — =~ .
2 > C1, nr et 1

Several properties of transfer reactions can be studied by considering the total cross
section instead of the angular distribution. The spin- and energy-dependence of oy, dis-
cussed in chapter VII, are an example. Therefore one can use the simpler classical formulae

(II1.36) or (IIL.37) instead of the full partial-wave expansion (II1.28).
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Chapter IV. Neutron Transfer calculations

V.l Transfer amplitudes, normalization and phase shifts.

In this section we present some examples of the semiclassical transfer amplitude A of
chapter II and the elastic scattering matrix elements S; mentioned in chapter III. These
are the ‘ingredients’ we need in §§ IV.2 and IV.3 to calculate angular distributions. We
also discuss possible parametrizations of A and Sy.

Fig. IV.1 shows a typical exponential decrease of the semiclassical transfer amplitude,
A, as a function of the relative angular momentum quantum number, L, for the reaction
2081—"12(160,15O)zong at an incident energy Ej, = 139 MeV. Fig. IV.2 shows several
components of |Ar| for the transition p,/3 — '53/2 in 26Mg(uB,mB)wMg at 114 MeV.
Both figures are obtained by using the formula (I1.28). Hasan (1976) reduced the amplitude
A, eq. (IL5), to a one-dimensional integral to be computed numerically. With that method,
in particular, transfer amplitudes for the reaction 26Mg(** B,'°B)*" Mg at 114 MeV were
calculated with the same results as Fig. IV.2.

The transfer amplitudes in figs. IV.1 and IV.2 are very similar, although the angular
distributions for these reactions are completely different (see §§ IV.2 and IV.3). We note
that the slope of the curves does not depend on the particular transition, specified by the

~z-projection of the orbital angular momentum quantum numbers, A\; and )4, of the initial

and final bound states. These calculations suggest a simple exponential parametrization
for the modulus of the amplitude:
|AL(£222, 1 01)| = G(Lo)a, £ )1 )e 5. (IV.1)
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Eq. (IV.1) was used by Hasan (1976) to interpolate numerically-calculated amplitudes. We

can find the constants G, Lo and A from the analytical formula (I1.29). For heavy-ion

reactions at energies well above the Coulomb barrier, the relative angular momenta that

contribute to quasi-elastic transfer satisfy

L>n,

where n is the Sommerfeld parameter. The distance of closest approach d for a Coulomb

trajectory, given by eq. (III.11), can then be approximated by

i~ "L (IV.2)
k
With this approximation eq. (I.29) becomes
.k A T * 7.
A(l2Az,£101) = —dmi— Cp, Ce, (—1)™ Yo, (k1) Yoo, (k2)
T g=nac L IV.3
e R, (17v3)

where a. = n/k and k is the asymptotic wave number. Eq. (IV.3) is of the form (IV.1),
but for the L-dependent factor d~1/2. However, this L-dependence is negligible when
compared to that in the exponential factor and & in eq. (IV.3) can be considered as a

constant, e.g. the strong absorption radius R,,. By equating eq. (IV.3) to (IV.1) we find

Lo h ™
A

G(£2A27£1A1) € = 4”% Cel Ciz |Y£1}\1 (i‘\:l) Y€2A2 (IEZ)l 277R.sa. e—-—nac’ (IV4G)

and
A =k/n. (IV.4b)
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As an example, for the g.s. transition 26Mg("' B,'°B)* My at 114 MeV, Hasan (1976)
finds numerically A = 7.44. From egs. (IL.30-31) we have n = 0.77 fm~! and 1;— = T.14.

The amplitude A(€2X2,21A1), given by eq. (I1.28), is either real or purely imaginary.

The normalization constants Cy, and Cy, in egs. (II.28) and (I1.19) are given by the
ratio between the solution of the radial Schrédinger equation for the neutron bound in
the potential V; or V, and the function yx;(yr), which is related to a Hankel function by
egs. (II.A.12). Fig. IV.3 compares an exact (numerically computed) radial wave function
to the Hankel function form. The actual wavefunction oscillates in the nuclear interior
and assumes the same form as vx;(vr) outside the nuclear surface, with an asymptotic
exponential decay. The normalization ratio C; takes into account properties of the nuclear
interior, while the semiclassical trénsfer amplittide calculated in chapter II depends only
on the ‘tails’ of the bound-state wavefunctions. These normalization constants can also
be approximated by an analytical formula based on the WKB expression of the radial
wavefunction. Stancu and Brink (1985) obtain a formula which agrees quite well with the
numerically calculated C, for energy levels which are not too deep. Such a formula is useful
when an exact solution of the Schrédinger equation for the bound states is not known. For
example, normalizations C; for experimental single-particle levels can be calculated by

using a standard potential.

To calculate angular distributions one also needs elastic scattering phase shifts ér,.
The classical formulee of § IIL.1 contain only their imaginary part in the absorption factor
|S|* = exp(—4Imér), while the formulee of § III.2 contain the complete phase shifts
6 (real and imaginary parts, initial and final channel) in the term Sp = e2¥r of the

67




0.10

0.05-
0.0
0. {)«LJ_ NvaLov(;
W ve /¢u~cft}m o ]
-0.10-
""O.Ij 1 I \
0.00 5.00 | 10.00 15.00 20.00

Fig. TV.3. Comparison between exact (numerically computed) radial wave function and
Hankel function form yxe(yr) for a neutron bound in the 2g5/, ground state of 2°° Pb.
Relevant parameters for this calculation are given in the last line of table IV.2.

r(f-«)



partial-wave sum (III.28). Fig. IV.4 shows that the inclusion of the real part of §r, in this

formula can produce a shift in the peak of the angular distribution. To obtain accurate

angular distributions and compare with experimental data, we determined the phase shifts
by numerically solving the Schrédinger equation with optical potentials that give a good
fit to elastic scattering. However, throughout this work, we also used some semiclassical
formule and parametrizations for 67, and Sg. We already mentioned the expression (IIL.5),
which is derived by considering the nuclear potential Uy as a perturbation to the Coulomb
potential Uo. Then eq. (IIL.5) or (III.13) can be used when Uy is weak, but also when
W = Im Uy is very large, as it is usually the case for heavy ion reactions. This is because
the absorption is so strong for orbits with small impact parameters that errors are not
very important, while for large impact parametjers the potential that enters in eq. (IIL5)

1s small.

We now show some comparisons between exact values of |Sr| and the semiclassical
forms. Fig. IV.5 shows a comparison between | Sz |2 = exp(—4Imédy) calculated numerically
and by using eq. (I11.13) for Imér. The partial-wave angular distributions of § IIL.2 depend
on the product between Sy and transfer amplitude Ayz; the classical formuleae of § IIL.1
depend on the product ,S L!?Ptr(jz, J1), where Py, is related to the modulus of the transfer
amplitude Az, by eq. (II1.19). Fig. IV.5 also shows that |S {ZPtr is peaked in L-space around

L,, such that [Sz,, 2 = 1/2. This entails the localization of classical angular distributions

around trajectories with scattering angles § ~ §(Ly,). According to the semiclassical
formula (IIL.5), Re 6. depends on Re Uy only while Im 6§;, depends on Im Uy only. In
an exact solution of the Schrédinger equation, however, the addition of an imaginary part
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to the ion-ion potential affects also Re 67 and Im 6y, depends on Re Uy too.
A simple way to study the effect of elastic scattering phase shifts on the angular

distribution is to parametrize the matrix elements
Sp = e — ezi(&f+a,{") - ezia}f SIsz, (IV.5)

where the superscript C stands for ‘Coulomb’ and N for ‘Nuclear’. A widely used

parametrization is due to Ericson (1966). By introducing the classical angular momentum

hA = (L 4+ 1/2)h, one writes
SM(A) = {1 +exp[(A — 40)/A} T, (1V.6)

with A = Agp —¢A; and 0 < A; < ZA. With this form |SN¥| — 0 for small A’s and
|SN| — 1 for large A’s, in agreement with the numerical result. The parameters Ag,As
and A in eq. (IV.6) can be approximatively related to those of an optical potential with a
Saxon-Woods form (see Brink 1978, p. 15).

Alternatively, one can parametrize the product g = S, AL [cf. eq. (1.2) and chapter III,

p. 61]. A possible form, related to eq. (IV.3), is (Brink 1978, p. 46)

exp a(A — Ag)

o) =900 T oA = o)/

expli0o(A — Ao)]. (IV.7)

Fig. IV.6a shows that sometimes the absorption given by the semiclassical phase shifts,
eqgs. (IIL.5) and (II1.13), is not strong enough for small angular momenta, so that the prod-
uct |Sp Ar| rises significantly from zero because of the exponential form (II.28) of Ar and
gives wrong angular distributions. This is avoided if one uses exact phase shifts computed
with an optical model code (fig. IV.6b). The parametrization (IV.7) can reproduce this
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trend and can be used for calculating angular distributions. In chapter VII, where we
study the energy dependence of the angle-integrated cross section, we use another expo-
nential parametrization of 67, and relate its parameters to the imaginary part of the optical

potential.

IV.2 Angular distributions calculated as a product of probabilities.

Here we show a few examples of cross sections calculated with the classical formula
(II1.17). Fig. IV.7 shows an angular distribution for the reaction zost(16o,150)209Pbg'3‘
at 312.6 MeV. For the same reaction, fig. IV.8 shows the effect of using semiclassical
phase shifts, eq. (IIL.5), for the factor |SL|? on the cross section. It should be com-
pared with fig. IV.5. Fig. IV.9 shows the classical angular distribution for the reaction
2OBPb(mO,lsO) 209Pbp.73 Meviat 139 MeV incident energy. The classical formula (I11.17)
always predicts bell-shaped angular distributions. The calculated angle of the maximum is
usually slightly larger than the experimental one and the peak is too narrow. This formula
neglects deflection by the real part of the nuclear potential. As we saw in chapter III,
p-53-55, these can be accounted for in an approximate way and one obtains a correction
for the position of the peak. But eq. (IIL.17) also neglects diffraction effects, so it cannot
give a correct angular distribution for, e.g., 26Mg(*' B ,103)27M g (see § IV.3) which shows
nearside-farside interference oscillations. A more accurate cross section can be obtained by
using the transfer amplitude (I1.28) in the partial-wave formalism of § IIL.2, as we discuss
in the next section.

70




Fo,=17.7702"
- op. peek ol 1504
- pesk o 18.5°

it

|

—
O
illllbl

Lt et

i
!

| _;%J%- /’)w»é/gr)x Sp- Fader 1,78
2

Illlll]

Ittt

10" ' '
0.00 10.00 20.00 30.00
O (o)

Fig, IV.7 Classical angular distribution for the reaction

g N
2ipp (1€ o,'“o)”ﬁ?bg o at 312.6 MeV. We used the classical

formula (ITII.17) with the transfer probability Ptr(lz,l1 ),
where 1‘1 2) is the orbital angular momentum of the initial

(final) bound state.




~ : : _
- 0pt. pét. ph. shi fts = ]
- cemiclassical ph.shifts ]
10° L :
] O-Z ] 1

0.00 - 10.00 20.00 50.00 _

. O.om.
Fig.IV.8 The same as Fig.IV.7 but with Ptr(jT’jZ)' This takes
into account the spin g of the transferred neutron by coupling
to j=l+s. Angular distributions with exact and semiclassical
phasg shifts are compared.




L L 111l

T TTTT

Illlllll 1
|

LFLidrl

IltlHll I IIIHH) T
L Lt rpirg l

I NERR

I

107
20.00 40.00 60.00 'Ve.m.(ﬁat)

. [ 0™
Fig. IV.9 Classical angular distributions for °Pb(!¢0,'0)
qub{;u/L jod8MeVg at By . =139 MeV. The transfer probability
Ptr(joZ) includes the spin of the transferred neutron.




IvV.3 Angular distributions calculated from partial-wave formula.

In this section we apply the formulae of Chapter II and Chapter III to the reactions
208 Pp(*°0,20)*®° Pb at 139 and 312.6 MeV laboratory energy (Olmer et al. 1978) and
26 Mg (' B,'° B)*" Mg at 114 MeV (Paschopoulos et al. 1975). These reactions (Lo Monaco
and Brink 1978) have been chosen as typical: the first of bell-shaped angular distributions
and the second of diffractive ones. We also show an example of neutron transfer between
medium-mass nuclei, namely the reaction 348 (325,335 ) 3.

The elastic scattering phase shifts in the transition matrix (II1.28) were determined
by numerically solving the Schrédinger equation with optical potentials having a Saxon-
Woods form for both the real and imaginary ‘parts. We used the parameters in table IV.1
which give a good fit to elastic scattering. The potentials in the final channel differ only
by the radius Rp (7). The normalization constants Cy, and Cy, in egs. (I1.28) and (I1.19)
are given by the ratio between the exact (numerically determined) solution of the radial
Schrodinger equation for the neutron bound in nucleus 1 or 2 and the function vyx;(vr) of
egs. (I1.19) and (I1.20). To determine the bound-state wavefunctions we used the Saxon-
Woods potentials in table IV.2. The depth of the potential well was adjusted in each case
to give the experimental neutron separation energy. In the case of 209 Pb(1°0,'%0)*°® Py,

following Olmer et al. (1978), we added a spin-orbit potential of the form

_4V30 L-S
asor 1+ exp[(Rso — 1) /s0]

Uso:

The transfer amplitude in eq. (I1.28) depends on the relative angular momentum quan-
tum number L through the distance of closest approach d. For peripheral collisions we
approximate the orbit by a Coulomb trajectory. Then d is given by eq.(III.11). For the
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Table iv.1 Optical potential parameters used to determine elastic scattering phase shifts. Ve
arqy and Rp(y are the potential depth, diffusivity and radius for the real (imaginary) part of

the potential. The radius parameter ry is related to R by Rpqy = rorpy(A 1 +A43), where A,

and A, are the mass numbers of the two nuclei.

Vi ag for Vi ay rot
Entrance channel - (MeV) (fm) (fm) (MeV) (fm) (fm)
Y O(139 MeV) + 8pbt 50 0.612 1.221 50 0.612 1.194
'°0(312.6 MeV) + *®Pbf 50 0.682  LI81 50 0.682  1.145
"B(114 MeV) + Mg} 35 0.8 1.066 25 0.62 1.216

T From Pieper er al (1978).
T From Olmer er a/ (1978).
§ From Paschopoulos er a/ (1975).

Table jv.2Parameters of the bound-state potentials. Radii are related to the rudius paranieters
by R=rpA 113 where A is the mass number of the core. The last column gives the ratio of the

potential slope 1/a to the quantity y

Ground-state

re a Ve Iso Qe binding energy
System (fm) (fm) (MeV) (fm) (fm) (MeV) (ay)™!
18 4+ nt 1.2 065 0 —11.46 2.0
%Mg +nt 1.2 065 0 —6.4 2.77
30 +nt 12 065 7 12 0.65 —15.7 1.77
208pb + ni 1.25  0.63 7 1.1 0.5 —3.94 3.53

+ From Paschopoulos er al (1975).
1 From Olmer e al (1978).




calculations presented in this section we took d to be the distance of closest approach for
the initial channel, assuming no change in the angular momentum L. The velocity v at

the point of closest approach is then given by
(IV.8)

where (. is the reduced mass in the initial channel, The transfer amplitude A7, was calculated
from eq. (11.28) and the angular distributions from egs. (111.28)—(III.31). The results for
208Pb(le‘"O,lsO)zong at 139 and 312.6 MeV laboratory energy are reported in figs. IV.10
and IV.11 respectively. The experimental data and DWBA calculations of Olmer et al.
(1978) are shown in the same figures.

Fig. IV.12 shows angular distributions for the reaction 2°M g(uB,loB)wM g at 114 MeV,
together with experimental data and DWBA calculations of Paschopoulos et al.(1975). For
this reaction our results are very similar to those obtained by Hasan and Brink (1978) by
reducing the amplitude (II.5) to a one-dimensional integral which is evaluated numerically.

In all cases our cross-sections are normalized by the same spectroscopic factors used
for the DWBA calculations. Relevant values of the Coulomb barrier E~p5 and Sommerfeld
parameter n are indicated in the figures.

It can be seen that the shapes of the angular distributions agree quite well with
experimental data énd DWBA calculations. However, there are some discrepancies in
magnitude when compared with DWBA. Our calculated cross section for the lower states
in Pb is too large at 312.6 MeV while it is too small for the highest state at 139 MeV. For
the %M g(uB,loB) reaction our calculated cross sections are a bit too large.

We studied the dependence of the iresults on the choice of the distance of closest
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approach d. The results in figs. (IV.10-12) correspond to choosing d to be the distance of
closest approach in the initial channel. We also made calculations by choosing d as the
average of the distances of closest approach in the initial and final channel. The shapes
of the angular distributions are not affected, but the magnitude is changed. some results
for the peak cross sections for the ground-state transitions are shown in table IV.3. The
effect of the different choice can be quite large, especially at the lowest incident energy for
160 + 298 Pp. This is because the distance of closest approach jumps from its value d; for
the initial channel to a larger value dy in the final channel, because the energy of relative
motion is diminished by the negative Q-value and because the reduced mass changes. If
the change in angular momentum L of relative motion were taken into account it could

allow the distance of closest approach to vary smoothly from the initial to the final channel.

In fig. IV.13 we show our results for the pick-up reaction 345(325,338)33Sd3/2 g.s. at
E145=97.09 MeV. The experimental data are from Bilwes et al. (1983). Also shown are
these authors’ calculations obtained by an approximate DWBA treatment. This includes a
parametrization of the elastic scattering matrix similar to egs. (IV.6-7). We only calculated
the forward-angle part of the angular distribution, which is symmetrical due to the identity
of the final nuclei. We used the Saxon-Woods potential parameters given by Bilwes et al.
(1985) for the elastic scattering of the initial system 325 + 34S at 97.09 MeV (Vp=29.8
MeV, agr=0.65 fm, rop=1.25 fm, V;=14.6 MeV, a;=0.464 fm, ro;=1.35 fm) to compute
the phase shifts numerically. The potential in the final channel, 335 + 323, differs only
by the radius. The normalization was obtained with a standard bound-state poteﬁtial
(without spin-orbit term) with radius parameter ro=1.25 fm and diffuseness a=0.65 fm.
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Table JU3 Distances of closest approach and peak cross sections for the ground-state
transitions in the three reactions considered. dyy) is the distance of closest approach for a
Coulomb trajectory in the initial (final) channel with angular momentum L. This is defined
by the condition that the reflection coefficient | Sy, |2 =14. The last four lines show the values of
the cross sections at the main maximum. Gew, Opwea and g4 correspond to the values in
figures 2, 3 and 4, o, being our calculated cross section. In the last line g is the cross section
obtained by choosing d as the average between the distances of closest approach in the initial
and final channels.

208Pb(l60' 130)20‘9Pb » Zng(HB‘ |08)27Mg
Ey b, =139 MeV Erp=312.6 MeV Ep=114 MeV

L, 74 143 39

d;(fm) 12.18 11.68 1.7
Texpe(mb) 1.47 5.0 >4.0
aDWBA(mb) 1.47 10.0 7.2
a4 (mb) 1.25 16.6° 9.0
oimb) 036 9.24 6.0
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S=paramnocters Jeduced frow elastic scattering data ~hijle the full
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The distance of closest approach (d.c.a.) d that enters in the transfer amplitude (II.2g)

was taken as the average

di(L) +ds(L)
2 b

(L) =

where d;(s)(L) is the d.c.a. in the initial (final) channel as a function of the relative angular

momentum L of the partial-wave sum (III.28). Our calculation at forward angle is

very close to that of Bilwes et al.

s e e S

e e
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Chapter V. Proton Transfer Amplitude

V.1 Modification of the Amplitude by Coulomb Potentials.

In this chapter we extend the formalism of Chapter II to the analytical calculation
of the amplitude (II.5) for proton transfer. A priori, one would expect that both the
perturbation approach and the surface integral approximation, eq.(I1.9), are not accurate
enough because of the long range of the Coulomb potential. In fact the potential of one
nucleus affects the proton wave funcion in the other even before transfer. By using a
method similar to that employed b& Hasan (1976), we shall take this into account in an

| approximate way. Then the analytical calcuié.tion proceedé in a parallel way to the method
developed in § IL5 for neutron transfer.

The transfer amplitude for the reaction
aj +c¢p3 — ¢ +ag

or

(e1 +p) +ca — ¢1 + (c2 + p)

is still defined as in eq. (II.3) :
A(2, 1) =< \112[\]:/ >t—co -

Now the initial and final states of the proton bound in the nucleus a; or a; satisfy the

following time-dependent Schrédinger equations:

Zhg\y—gtitl = [T+ Vi(r,t) + Vo (r, )] ¥a(x, 8), (v-1)
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S

in 0% 39__.._3, ) _ [T+ Vale,8) + VE (r, 1) Ta(r, 1), (vV.2)

~ where, for a =1, 2,

Valra) = V2 (ra) + VE(ra), (v3)

In eq. (V.1) the term V.°(r,t) represents the effect of the Coulomb potential of nucleus as -
on the proton when it is bound in nucleus a; and viceversa for V,C(r,t) in eq. (V.2). vy
and V, are the potentials of the isolated cores ci1 and eq, respectively. They consist of a
short-range nuclear part and a -long-ra.nge Coulomb term. The nuclear potential can have
a Saxon-Woods form

VY (ry) = —— 0o | (V.3")

and the Coulomb potential can be that of two point charges

2
VO(rs) = Zea®” (V.3

Ta
for the proton outside the nuclear surface or that of a particle in a charged sphere.
The wave function ¥(r,t) of the proton interacting with both nuclei is the solution of
the Schrédinger equation:
ov

Zh‘é—t- = (T + Vi + Vg)\I’, (V4)

with the initial condition that ¥ — ¥; when ¢t — —oo.
From egs. (V.2) and (V.4) we have
.. 9 c N
thor < Wal ¥ >=< Wo|Vy — VF|¥ >=< Lo V]"|¥ > (V.5)
Integrating eq. (V.5) over time between —oco and +oo we find

1 [T
A(2,1) =< | ¥ >, = “ﬁ/ < WV |T > dt (V.6)
: -0
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Eq. (V.6) is an exact expression for the proton transfer amplitude. Since it contains
a matrix element of the nuclear potential it is non-zero only in the region where v #o.
In this region the nuclear potential V¥ ~ 0 but the Coulomb potential V.C is still present.

Then we approximate the wave function ¥ by ¥y [cf. egs. (V.1) and (V.4)] and we get

1 [T
Al2,1) = = / < WV T > dt (V.7a)
hade e
1 [te°
= -.—-/ < W[V, > dt (V.7b)
h J_o

We shall use the first form. Then, analogously to the neutron case, eg. (V.7a) can be

transformed (Appendix V.A) into
ho [T .

1 Hoo vy N 3
Zh —00 R1 Rg

vy \Ifld%} ) (V.8)
This is similar to the expression for neutron transfer, eq. (I1.8), but now ¥, and V,, (a =
1,2) are proton wave functions and potentials. The last term can be neglected, as we dis-
cussed in § I1.4 for neutron transfer. Then the surface integral can be evaluated analytically

as in the neutron case.

Egs. (V.1) and (V.2) can be satisfied approximately by

Wo(r, 1) = Ty(r,t) e wtalt) (v.9)
where
o . _
ih__aé'(;,i). = [T + Vo (r,t)]\Ila(r,t), (V.].O)

$1(r, ) =/tV2C(r,t’) dt’ } -
0 11

t
$2(r, 1) -:/ VE(r,t') dt'.
0
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The functions ¥, are solutions for the proton bound in nucleus a completely isolated,
i.e. when the Coulomb interaction from the other nucleus is switched off. Egs. (V.9) are
solutions of (V.1) and (V.2) if one assumes that space derivatives of ¢, (r,t) are small. This
is reasonable since they contain potentials that go as 1/r.

Hence, with the same system of reference and definitions as in Chapter II, we have
U, (r,t) = @, (r —s(t)) exp {(z/h) [mv T — (&:1 + -;—mv2> t} } , (V.12)

Wy (r,t) = &2(r) exp(—ieat/h), (v.13)

where the bound-state proton wavefunctions @, satisfy the eigenvalue equations
[T + Va(ra)]{)a(ra) = Ea@a(ra)a a=1,2. (V14)

Here V,, are the proton static potentials and ¢, the corresponding binding energies. We
assumed that V3 is at rest while V; moves along the trajectory s(t). Since the biggest
contribution to the integral over & comes from the point of closest approach (fig. II.1)
we approximate Vac (rq) by their values at the point of closest approach given by the
coordinates z,,y = 0,z = 0, where z; = d3 — d = —d; and z; = d (see fig. I.2). By

doing so egs. (V.11) give

Z. e
dy

$1 =V (dy) t = =2 ¢, bo = VE(dy) t = . (V.15)

Setting this into the first line of eq. (V.8) gives

78




SLm e G

+o00 “+o0 -+o0 o
2(d dy — -
zmz/ dt/ dy/ dz 27y> )adzgl( 2 d)yaz Ut)

2 _,
t)=—®5(d2,y,2)

—®,(d2 —d,y,z—v )8d2

i . d 9 .
+‘ﬁt@1(d2 - d,y,z - vt)@2(d2,y,z) <3d2 Vl (d ) ad (dz)) }

exp {% [mvz + <E‘2 — & — %mvz +VE(dy) - VF (dz)) t] } , (V.16)

Henceforth we neglect the term containing derivatives of V.C. This is consistent with the
approximation in eg. (V.9). With the change of variables (z,t) — (2,21 = 2z — vt) the

argument of the exponential in eq. (V.16) becomes

v 1 1
E[l-0a) (o001

where
Qeff = 61— 62— [Vld(dl) V(@) = Q~[VO(di) - V¥ (da)] =61 — &2 (V.1Ta)

with

- c anez
Eo =€q —V (do) = €a — 5 a=1,2. (V.170)
[0}

In eq. (V.17b) the Coulomb potential between the proton and the core ¢, is that of two
point charges. This form of the effective Q-value is different from the one used in other

references. We discuss the difference at the end of this chapter. Eq. (V.16) gives

th Foo 3 -
42,0 =~ [ (B3, kae) 51 (02 — )

-él(dz - day7 klz) é (d27y7 kZZ)]dya (Vls)

Q
&lm
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where the Fourier transform &)(z, Yy, k) is defined in eq. (I1.16) but now

bz = —(Qess + gmo?)[(h), koo = —(Qurs — ymo?)/(W0),  (V.19)

Therefore

Vi€(d1) — V5 (d2) t e? (Z. Ze
= ey ron ha 1 2 , — .
Av L AP N =12

proton __ p.neutron
kaz - kaz +

V.2 Calculation of the Proton Transfer Amplitude.

In this section we calculate the amplitude (V.18) analytically. We use the same method
developed in § IL5 for neutron transfer. The final formula is very similar to eq. (II.28)
but contains effective binding energies and normalization constants that account for the

Coulomb effects. By introducing the double Fourier transform %(z,ky,kz), defined by

eq. (I11.50), we find

ih [Tz 9 z
A =~ [ 8l by ae) B — )
z J =*
—®4(d; — d, kyaklz)'éd_zéz(d%ky7k2z)]dky7 (V.20)

which is identical to eq. (I1.52). In the proton case, however, eq. (I1.53) will contain a

Coulomb term from the potential V which does not vanish on the surface X. So, in place
of eq. (I1.54), we have, for a = 1,2,
“+o00

2m

oo ) k C
[ e v )
— 00 —00

8? :
<""“_' - E2> Qa(xa’ kya kaz) =

2
ozs

B4 (za,Y,2) dydz, (v.21)
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where z; = d3 — d = —d; and zo = d; are the distances of the surface ¥ from the two
nuclei at closest approach (see figs. II.1 and I1.2).

One could try to solve eq. (V.21) by iteration, taking as a first approximation for ®,,
on the r.h.s. an Hankel function form which corresponds to the case of vanishing potential.
The simplest thing to do, however, is to approximate the Coulomb potentials by their value
at the point of closest approach given by the coordinates |z4| = do,y = 0,2 = 0. Then

eq. (V.21) gives

oz2

a

92 o\ =
( — §§> Do (Ta, by, kaz) =0, (vV.22)

where a = 1,2 and

fo= /T2 + R+ R,

1 1
~ — o= _ ~. [ _ycC
Ao = h\/ 2mé, = h\/ 2m ey — VS (do)]-

(V.23)

Notice that with these definitions &; = &, = €, which makes the analytical calculation

feasible. The effective parameters 74 in eq. (V.23) can be written as

Ae
Fa =TYar/1l — . =, (vV.24)
e 4

where 4, are defined by eq. (I1.21) in terms of the proton binding energies €, and

Aeq =V (do) = 22—, (V.24")

In eq. (V.24’) we have explicitly inserted the Coulomb potential between the proton and

the charge of the core ¢co. If %—iﬂ < 1 we can use the following approximation:

Ae mZ, e>
e — ’Ya + Ca

MZea® _ oy + 22 V.24")
€a hzda’ya '701 (
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where

— e (V.25)
are the Sommerfeld parameters for the initial and final bound states.

However, eq. (V.24") is not always a good approximation. For example, the reaction
208 pp(*°0,15 N)*°° By at 312.6 MeV has a grazing distance d ~ 12 fm =d; + d;. With

the prescription of p. 28, dy/dy = Ai/3/A§/3, where A, and A, are the mass numbers of

the two nuclei, we have d; = 3.58 fm, dy = 8.42 fm and

7+1.44
€1 =—12.13 Mev, Ae= = 2.82 MeV
3.58
but
82 % 1.44
€g = —3.8 MC’U, Aey = —525— =14 MeV.

As a next step we need to approximate the radial proton wavefunction which enters
in ®. We write the actual proton wavefunction (obtained by numerical integration of the

Schrodinger equation with both nuclear and Coulomb potentials) as

ro RZ r
arrsien(r) = 240,
Then R, satisfies the radial equation
d2
@+ _Zfﬁv(,.) —~%| Ry =0. (V.26)

At a distance greater than the nuclear potential range (as on the surface ¥ where r, =
V2 +y? + 2?) the potential V (r) reduces to its Coulomb part —Z—ﬁre—z only. Dividing by

4~? and setting

z=29r.

!
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eq. (V.26) can be cast in the form of the Whittaker equation (Abramowitz and Stegun,

1970, p.505)

2 1 1/4 — p?
d R‘+(——+E+/———“—> Re = 0. (V.27)

The solution of eq. (V.27) which vanishes at infinity (as a bound state must do) is given

by the Whittaker function
Re - W—n,e+1/2 (2’)’7’)

Then the radial part of the proton wave function is given by

1
(I)Proton(r) = By . W_n,¢+1/2(2f7r), > Ta, (V.28)

radial

where By is a normalization constant which keeps into account the behaviour of the wave
function inside the region of the nuclear potential. However, the form (V.28) is still too
complicated for an analytical calculation of the transfer amplitude. Then we approximate

the wavefunction by
QET (1) = CF A X2(Ar) = @appros(r), (V.29)

where x¢(3r) is the neutron wave function defined in (I1.19) and C} is a normalization

constant that depends on r. We choose it such that

Qapproz (TE) = @ezact(rﬁ)

on the surface ¥ where it is needed. With this we have for r very large

e "

proton P
OF dial (1) ~ Cy r

For distances of the order of the distance of closest approach, d, egs. (V.28) and (V.29) have

a similar decay. Then we use the approximation (V.29) to calculate the transfer amplitude
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as in the neutron case, in particular from eq. (I1.53) to (I1.60). The result is

. h « _
A(Z,l) = —4m — CZ C;; (-1)>‘1 Yen, (,Bf,O) Ylg}\g (,Bg,O) KAI“')Q (nd)’

mypV

where

Here

is a kind of average bound-state energy for the proton.

(V.36)

(V.37)

(V.39)

The analytical formula (V.36) for proton transfer has the same form as eq. (II.28)

for neutron transfer, but the quantities 8 and n are substituted by effective quantities,

BP and 7, egs. (V.37)- (V.39), which take into account the Coulomb field. This results

in a shift of the proton binding energies €1 2 by Aey,2, egs. (V.24'). Another difference is

in the prescription (V.29) for determining the normalization constants. Since the surface

Y on which the transfer amplitude is integrated lies between the two nuclei, a suitable

choice is, for & = 1,2, to calculate Cy_ at a distance d, such that dy + dy = d(Lpear) 2nd

di/ds = (A1/A2)Y/® Here d(Lpeqx) is the distance of closest approach for an orbit with

L corresponding to the maximum of |SpAr| and A; and A, are the mass numbers of the

two nuclei.
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V.3 Discussion of the effective Q-value.

As we mentioned in §V.2, our definition of the Q-value for proton transfer,

Zs, 4o,
—) e’ (V.17q)

Qefsz_(dl - d2

is different from the one used elsewhere. In particular, a widely used definition is (Buttle
and Goldfarb 197, Brink 1972, Broglia and Winther 1972)

(217 - 775) &
y ,

Q% =g~ (V.40)

where Zig ) are the charges in the initial and final channels and d is the sum of the radii
of the nuclei (neglecting differences between initial and final channel). To compare with
our definition (V.17a) we can put d; + d; = d. For proton transfer, in our notation (cf.

beginning of this chapter), we have

Z}=Z,, = Z,, +1, Zi = 2Z,,;
Zi=2,=21-1,  Zi=Z,,=Z,+1=27;+1.
Then . ;
ng,:@*_(fi_—;ﬂw_ (2., —-dzf.-z)e2 —grag®. 4y
If dy = dy = d/2 eq. (V.17a) gives
8Q=Quy-q=2tfa=lale _ypq0.

d
In general AQ and AQ() are quite different. For example, in the case of the reaction

2Ost(mO,lsN) 209B7 at 312.6 MeV, with the values of d; and d; use at p. 82, we have

AQ = Aey — Aey = 11.18MeV,
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while eq. (V.41) gives

AQP) =9MeV.

Such a difference in Q.sy implies a different optimum kinetic energy for proton tranfer [cf.

eq. (11.32)]

1
—2-mpv2 = lQeffI' (V.42)

The definition (V.17a) of Q. s follows in our calculation from the approximations (V.9)
and (V.15) for the bound-state proton wavefunctions. One advantage of this definition is
that the quantities &, eq. (V.23), and 7, eq. (V.38), are the same for the initial and
final state, as in the neutron case. Tilis makes the analytical calculation of the transfer
amplitude feasible. The new form (V.17a) of Q.rs may also be better than the old one,
eq. (V.40), because it depends on the Coulomb potentials at the transfer point in the initial

and final channel.
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Appendix V.A Proton Transfer Amplitude as a Surface Integral

The matrix element in eq. (V.7a) can be written as

< W[V |0y >= / Vv, d3r + / VN o, dr. (V.A.1)
Rl Rz
Eq. (V.1a) gives
N I A R SR |
Vit = (Zha + 2mv -V =V )Yy, (V.A.Z)

from which follows

h2
/ U3V 0 dPr = —/ dS - (¥, V¥ — V)
R 2m b

8v, K2 *
+/ (ih 2+ %v2%> Ty & +ind
Ry

5 5 I, Ui, d3r — / U(VE + V)T, dr.

R,
(V.A.3)
Eq. (V.2) gives
( oV, K’

*
gy T 5,;;"2‘”2) = (V2 + VO)¥3(r, ).

Then we substitute egs. (V.A.1) and (V.A.3) into eq. (V.7a). Integrating between ¢t = —co
and ¢ = co the third term on the r.h.s. of eq. (V.A.3) vanishes because there is no overlap

between ¥y and ¥, long before and long after transfer. So we get
h +oo
2me J_ o )

1 [t
+= / dt { / VN0, a3 + / \IIZVIN\Illd%} (V.A.4)
-0 R1 R2 , ’

which is eg. (V.8) of text.
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Chapter VI. Proton Transfer Calculations

Here we show some results for the reaction 208Pb(mO,lsN ) 99Bi at several incident
energies and for various final states. The following angular distributions are obtained by
using the analytical form (V.36) of the semiclassical transfer amplitude and the partial-
wave formulee (II1.28)- (II1.31) for the differential cross section. The phase shifts that enter
in eq.(III.28) are calculated numerically for the initial channel only, i.e. we appoximate
6}/ o~ 5}: . In all cases we used the same optical potentials as for the DWBA calculations
shown. The normalization constants C} that enter in the amplitude (V.36) are given by

eq. (V.29). Following the discussion at the end of § V.2, p.84, we use

@gxact (da)

C, do) = ’
Ea( ) R/aXE.,(Rfada)

a=1,2. (VI.1)

In eq. (VI.1) x¢, (Jar) is the Hankel function form (I1.19),

2m
Vo = ——5€a (VI.2)
A
where
2
£y = £y — Zeat (VI1.3)
do

is the proton binding energy diminished by the Coulomb term. The distances d, are such
that dy + d2 = d(Lpeqak (cf. p. 84) in the initial channel.

Fig. VI.1 compares our angular distributions to the experimental data and DWBA
calculations of Pieper et al. (1978) for the reaction 29¥Pb(*°0,"* N)**°Bi at incident
energies F;,; =138.5 and 216.6 MeV.
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Fig. V1.2 shows our results for the same reaction at 312.6 MeV for several final states
in 2°° Bi. Experimental data and DWBa calculations (Olmer et al. 1978) are also shown.

Our cross sections are normalized by the spectroscopic factors given in the references
cited. In all cases the shape of our angular distributions is very similar to the DWBA
results. However, there are discrepancies in the magnitude of the cross section. At the
highest incident energy, the transitions to the ground state (hg /2) and to the excited state
at 1.61 MeV (i13/2) are well reproduced by our calculations. But the transfer to the
f7/2 state at 0.91 MeV excitation energy is underestimated, at variance with the DWBA

prediction which is larger than the experimental data.
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Chapter VII. Uses of the Transfer Amplitude

VII.1 Spin Selectivity and Angular Momentum Transfer.

Information about the selectivity can be obtained by considering the transfer proba-
bility

1

PET(J.Z)J.I) = 2‘71 11

Z |B(jama, jim1)|?, (VII.1)

mimes

where B is related to the semiclassical transfer amplitude A (given by the formula (I1.28)

for neutron transfer and (V.36) for proton transfer) by

Br(jama, jimy) = Z < JamgllaAasmg > Ar(Lada, €1A1) < Lidisms|jimy > .
}\1 Az m,

(VII.2)
Here s is the spin of the transferred particle and m, its z-projection, which is not changed
by the transfer process. For example, by using eq. (VIL.1) and the semiclassical formula
(II.28), we calculated the relative population of all the transitions shown in fig. VIL.O
(from Bond 1983). Our predictions qualitatively agree =~ with the spectra shown. In
particular they reproduce the enhancement of some final states in one reaction with respect

to another. This effect is associated with the different Q-value of the three reactions

considered.

Now we express the amplitude (V' I1.2) in terms of the transferred angular momentum.

For the reaction

a; +c¢cg — c1 + as
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or

(c1 +1z)+cg — ¢y +(c2+2)

the angular momentum transfer £ is defined as the difference between the total spin in the
final and initial channel:

£=1., +1,, -1 —L,.
From angular momentum conservation
Lin + Ia1 =+ Icz = Lfin + Ic1 + Ia.2

we find

£=Lin “Lfiny

where L is the angular momentum of relative motion. The single particle angular momenta

j1 and j; relative to the cores ¢; and ¢, are defined by

Ia1 = IC1 +j19 Iaz = 162 +j2'

If the interaction is spin-independent I., and I., have the same orientation in the initial

and final channel. Then
L=1, + (I, +j2) — (Tey, +J1) = I, =J2 —J1
and we have the selection rule
11— 52| <€L g1 +2, me=mg—my,

where my is the z-projection of £ and m,, that of jo (o =1,2).
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Since the spin orientation of the particle z is not changed by the transfer process we have
jl=£1+sa j2=£2+s7

where £, is the single particle orbital angular momentum in the initial (¢ = 1) and final

(a = 2) nucleus. Then

L=145— ¥4
and we have the selection rule _
[ — L] <L < 8y + 4o, me = Az — Ap,

where A, is the z-projection of £,.

In order to decompose the matrix element B(jzmz,jim) into terms corresponding
to the angular momentum transfer £ we have to vector-couple its two states to a resultant
that behaves under rotation of the coordinates like < #my|. To do so we must remember
that |jym; > behaves under rotation like (=)*~™ < j; — my|. Then we may write

B(jamg, jimi1) = (=)™ Y < gamajy — my|tme > B(j1iz; me).- (VII.3)

ey

Substituting into eq. (V II.1) and using the orthogonality property of the Clebsch-Gordan
coefficients it is easy to see that

1
251 +1

> " |B(j1sz tma) 2, (VII.4)
em;

Ptr (.72 ’ .71) =

where we dropped the relative angular momentum subscript L for simplicity. The ampli-

tude B(j1j2;£m,) is given by the inverse of the relation (VII.3):

B(j1J2;tme) = Z (=)' ™™ < jamaji — my|fme > B(jama, jimi) = Z A(lzXa,€17)

mims A1z
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Z ("")jl—m1 < Zl)\lsmsljlml >< £2A23m3|jzm2 > j2m2j1 ——mllﬁmg >, (VIIS)

mymazm,

~ where we substituted the definition (V' II.2). The sum of Clebsch-Gordan coefficients in

eq. (VI1.5) can be expressed in terms of a six-j symbol (e.g. Lawson 1980, p.472):

Z (_)jl—ml < £1A1sms]‘]‘1m1 >< fz/\zsmsljzmz >< jzmz_]‘l — m1]£mg >

myimamy,

= (_)J'x —Ja2+la—Ay (21'2 + 1)

(222 +1) Z < LiArsmgljimy >< Jimags — mall—me >

mimam,

< smsjz —_ mzle2 — Az > (_)J.1+8+£1“A1+22+e\/(2]'1 + 1)(2]2 + 1)

£y s g1
< ZlAlez - )\2!2 — myg > . (VIIG)
Jz £ £

This implies that each of the four sets of quantum numbers

(51 S jl), -(ﬁl £ 52), (J'z s ez), (]'2 ejl)

must satisfy the triangular inequality, e.g. |, —s| < j; < €1 + .

Using the geometric relation (V I1.6) into (V I1.5) we have

£ s g1
B(jljz;ﬁme) = (_)jl +22+3+e\/(2]'1 + 1) (2j2 + 1) A(ﬁlﬁz;emz), (VII7)
J2 £ &
where
Allila;tme) = ) (—)2™M < Ladaly — Aiflme > A(L2As, L A1) (VII.8)
A1 Az
Substituting eq.(VI1.7) into (V II.4) gives
N
£ s 51
P¥(j3,51) = (272 + 1) Z Z |A(L1£2; trme) |

L \j2 £ & ™me
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=Y feli1,12) 9e(ts, £2,Q, E). (VIL9)
- |

| In this form the transfer probabilty is separated into a geometrical factor f which depends
on the initial and final éingle particle angular momenta, 7, and a dynamical factor g which
depends on the other variables of the reaction, notably the incident energy and the reaction
Q-value. In the case of nucleon transfer, for a given reaction specified by (£, £,) this factor

; weighs the selectivity with respect to the four possible transfers
J1=£4-1/2— ja =4, —1/2, =4 —-1/2 — jp =43+ 1/2,

J1=£41+1/2— jo=1L;—-1/2, = +1/2 — o =40+1/2.

Table VIL.1 and Fig VII.1 show the results obtained for the reaction 298 Pb(¢0, 5 0)?°° pp

as an example.

Table VII.1 : geometric factors for the transfer probability eq. (VIL.9)

L s g1
fe(g1,02) = (252 + 1)

' Ja £ £y

J1 = J2 £=3 £=14 =5
1/2 — 7/2 1/3 5/27 0

1/2 - 9/2 0 4/27 1/3
3/2 - 17/2 1/18 7/54 6/27
3/2 —9/2 5/18 11/54 1/9
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The coefficients g and the transfer probabilities P*'( J2,J1) were calculated numeri-
cally from the analytical formula (I1.28) at a relative angular momentum Lo such that
the transmission coefficients IS Lo|2 = 1/2. Lo was obtained from the optical potential
of table IV.1 and extrapolated at higher energies with the parametrization (VII .32).
VII1.2 A new angular momentum coupling.

In this section we want to study the selectivity of the reaction with respect to the spin-
flip of the transferred nucleon. Then we define new quantities Fy and F} corresponding
to antiparallel and parallel spins of the nucleon before and after transfer. Formally, this is

done by expanding the coefficients g of the previous section in the following way:
£ £, £

0:(61,62,Q,E) = ¥ [A(tal; tmg) |2 = (-)4(2¢ + 1) S F;, (VIL.10)
me J ez Zl J

where the sum runs over all (integral) values of J which satisfy the triangular inequality
for the sets (£1,£41,J) and (£2,£5,J), i.e. 0< J < 2¢; and 0 < J < 2¢,. The F; are given

by the inverse relation of (V I1.10), namely

b+t g £ ¢
Fy=027+1) Y (=) ge. (VII.11)
£=[8 &3] 22 81 J

Substituting eq. (VII1.10) into (VII.9) and using the symmetry relations for the six-j

symbols {e.g. Messiah, 1969, p. 914-915)
Zl S jl 2 Zl ‘82 £

> (-2t +1)

£ ]'2 2 £2 £2 !il J

£ £ L Jeo1 £ £y L3 £
— (___).7'1 +32+284+J Z(_)H‘J& +J'2+28+J(2e + 1)
I jz jl S 21 112 S 32 El J

s § J s s J
— (__)J'1+jz+2s+J

L 4 o5 Ly £y 72
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we have for the transfer probability

s s J s s J
P (j2,51) = (242 + 1)(=) 2 H72H2 Y ~(—)Y Fy (VIL12)
' J Ly & o0 Ly £y 72

Because of the selection rules for the 6-j coefficients in the sum (V' I11.12) J spans the range

0<J <2, 0<J<2y, 0<J<2,

that is J is an integer or zero whose maximum value is given by twice the min(s, £1,4;).
Therefore if one of these quantities is zero only Fy contributes to the sum (VI1.12).
By using eq. (VII.1) or (VII.4) or (VII.12) it is straightforward to prove that the

probability P satisfies the sum rule:

> P (ja,g5) =

J2

2£ +1 Z |A(Z2A2a£1A1){2 def Ptr(ﬁz,el)

(& = :
2£1+1 Z]A 1£2; tmg) | zel+1 de, (VII.13)

where we introduced the probabilty of transfer from a single particle level with orbital
angular momentum £; in the initial nucleus to a single particle level with orbital angular
momentum £; in the final nucleus. Notice that the sum over the final single particle spins
72 is independent of the initial spin j;. In the case of nucleon transfer s = 1/2, then

J =0,1 and eq. (VII.12) becomes

1/2 1/2 0) (1/2 1/2 0
Ptr(_].z,jl) = (272 + 1)(_)J1+J2+1 i
b b5 €2 L g2

F
: <1 — D, Dj, —ﬁ) : (VII.14)
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where (for o = 1,2)

D;, =
7= {1/2 1/2 0}
by Lo Ja
| oyEE st (VII.15)
- - L ,
\ 3T if jo = €0 +1/2.

Now we calculate Fy and Fy from eq. (VII.11).

()ath Gty (20 +1
Fy= § A(L1la;0my)|2 = (=)0 | 22— Pir(g,,e
° V(20 +1)(26, +1) 4 [Aetas tme)[* = () 205 +1 (b2, &),

{1/2 1/2 1}
o Lo Ja :(__)eaﬂ.a_m\/zea+1/2—ja

3(jo +1/2)

(VII.16q)
_Ya+i+1
ol ()
2 \/21 (El -+ 1) (231 + 1)82 (52 + 1) (222 + 1)
‘ {[31(‘31 +1) + £2(£2 + 1)) de - ZZ(E + 1)92} , (V11:160)
14 £
Fi 3 1 [ze L+ 1)ge }
—_ == —£L1(L1+1)—Ly(L2+1)]. (VIl16e
Fo 2/l + 1)l +1) | 2, 9 A )
Eq. (VI1.14) can be written as
tri. - 1 (2-7.2 + 1) Fy tr
S 4 St A D; P4y, 2 VII.17
P (-72’-71) 2 (222 +1) DJl JzF ( 2 1) ( )

Eq. (VIL.17) gives the probability for transfer from j; = ¢; = % to Jp =1y — ~21- or Jg + -% in
terms of the simpler probability Pt"(£5,4;), eq.(VIL.13). The factor in front of P*" (£z,£1)
is separated into a j-dependent part D;, D;, and the energy-dependent ratio R = F / Fo.
This ratio can change sign as a function of energy (fig. VIL.2). This implies a change in
the selectivity of the reaction as a function of incident energy. As it has been suggested
by classical arguments, at low energy the ‘spin-flip’ transitions j; = £; = % — Jo =Ly F %
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are favoured , while the opposite situation j; = £€; £ § — j2 = €3 + § occurs at higher
energy. Our calculation suggests that this ‘inversion’ of selectivity occurs at an incident

energy such that (cf. chapter II)

1
5mv,';’ =|Q| = |e1 — &2, (I1.32)

where vy is the relative velocity at the point of closest approach, d. This corresponds to
an incident energy E.ri; =~ 20 Mev/nucleon for the reaction 2°8 P5(10,1°0)2°° P, This
is the point where R in fig. VII.2 changes sign. As a result the factor (1 — D;, D;, R)
that enters in eq.(VIL.17) crosses the value 1 at this energy (see fig.VIL.3). The transfer
probability P (£2,¢,), eq. (V'II.13),-V rises from low energy to a maximum at E.,:, then
decays exponentially ‘at higher energy (fig. VII.4). Due to the form of the transfer ampli-
tude, eq.(I1.29), the energy dependence of P*"({3,£;) is gbverned by the quantity n (cf.
p. 26). From the factors shown in figs. VIL.2-VIL.4 we obtain the transfer probability

P'r(j2,71), eq. (VIL.17). Of course this is the same result obtained with the transferred

angular momentum coupling, eq.(VIL.9), shown in fig.(VIL.1a). In a realistic calculation

~ figs. VIL.1 and VIL3 would be slightly modified because single-particle states with differ-

ent spins in general have different binding energies. In particular the energy E.,;¢+ would
be shifted by an amount AE.,;; = A|Q| [cf. egs. (I1.32) and (VII.25)]. The analytical
calculation of P! (j2,71) can be taken a step further by using an approximate formula of
the type (I1.29) for the transfer amplitude A(£3A2,£,A1), where the rotational properties
are contained only in the factor Yy, », (1‘4\:1) Yy, (1:22) Thus one can calculate analytically
the ratio R = % which determines the spin dependence. The calculation of H. Haéhim

(private communication) shows that R changes sign when either ki, or ko, defined by

eq.(I1.17), changes sign. This happens when the condition (II.32) is satisfied.
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Fig. VIL3. The factor (1 — Dj;, Dj, %) that enters in eq. (VIL17). The ratio R = Fy/F is given in fig. 2.

The possible transitions j; — 72 are indicated (cf. fig. 1a)
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_Fig. VIL4. Same reaction as fig. 1. Transfer probability, eq. (VIL.13), as a function of incident energy.

£ and £; are the orbital angular momenta of the initial and final single-particle states.




VII.3 Energy Dependence of the Transfer Cross Section.

In Chapters IV and VI we discussed mainly angular distributions and we saw that
DWBA calculations as well as our model predict shapes which agree quite well with those
observed for several one-nucleon transfer reactions. Both methods also reproduce the
relative intensities of transitions to single-particle states. However, the DWBA cross sec-
tions increase more rapidly With energy than the measured cross sections (see fig. 1.14).
Fig. VIL.5 shows that, after a rapid increase through the Coulomb barrier, the experimen-
tal cross sections level off at around 100 MeV and start to decrease steadily with incident
energy. The DWBA cross §ections‘, after reproducing the observed increase of about two
orders of magnitﬁde through the Coulomb barrier, remain almost constant with increas-
ing energy and become clearly too large with respect to experimental data. In a region
of considerably higher incident energy ( = 20 MeV /nucleon) one expects an esiponential
decrease of the transfer cross section due to the diminished overlap of the momentum dis-
tributions of the transferred nucleon in the initial and final state. This has been studied
by Von Oertzen (1985) and is often referred to as TGV (Transfert & Grande Vitesse). In
particular the reaction 2C (*3C,12C)'3C was calculated for an incident energy between 20

and 80 MeV /nucleon. The calculation clearly showed an exponential decrease with energy.

In this section we study the energy dependence of the cross section with our analyt-
ical formula for the semiclassical transfer amplitude in relation to the selectivity of the
reaction. To do so it is better to consider the angle-integrated cross section. This glimi—
nates the uncertainty in the angle ( a prescription could be pcqx) and the relative angular
momentum at which the cross section is calculated. Another advantage is that both the
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classical formula (II1.17) and the partial wave formula (I7I.28) for the transfer angular
distribution, once integrated over the solid angle d{) give the same cross section, as we

proved in §III.2. We recall the classical expression (I1I.17):

O R

where o stands for the quantum numbers describing the initial and final (single particle)
states. This formula assumes that for a given scattering angle 4 the contribution to the cross

section comes from one orbit with classical angular momentum AA(f) or impact parameter

b(6). A is related to the angular momentum quantum number L by A=L+1/2. In

eq. (VII1.18)

db
do

do]l _ b
), sind

is the classical cross section for elastic scattering. If more impact parameters lead to the
same scattering angle the classical cross section is given by the sum of the cross sections

for each impact parameter. For our discussion we shall exclude this case.

P}™(e) is the transfer probability for the transition specified by the quantum numbers a.

The factor |SL|? gives the probability that the system escapes absorption into other in-
elastic channels.

Integrating eq. (VII.18) over the solid angle d? = sin 8dfdyp gives

4 db| _,.
Oq = 27!'/(; b(0) |-C-l—g" Pz(e)(a) !SL(6)|2 d0

We assume that the deflection function §(5) is monotonically decreasing ( as it is the case

2 . .
for Coulomb scattering where # = 2arctan % ) and that b(¢§ = 0) = oo (particles
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passing undeflected at large distances) while b(§ = 7) = 0 (particles turned back in a

head-on collision). Then changing the integration variable from 4 to b gives
® ot 2
Gu = 2 /O PE, (2)|S2gyl? b db. (VIL.19)

Eq. (VI1.19), with the analytical expression for the transfer amplitude given before, was
used by Bonaccorso, Brink and Lo Monaco (1985). In that work a sharp cut-off approxi-

mation for the transmission coefficient

O =11 for b > bg

was used to derive an explicit formula for the cross section. This was applied to the
reaction'?C(13C, 12C)13C studied by Von Oertzen (1985) (see fig. VILY).

Here we derive a similar analytical formula for the cross section with a more realistic
parametrization of |SL|? and an explicit j-dependence in the transfer probability.
Eq. (VII.19) can be transformed into an integral over the classical angular momentum

A=1L + 1/2 by the change of variable A = \/2uFE; m. b/h = kb :

2r [
O = ;g? / K"_l/z(a) |SA—1/2{2 A dA. (VIIZO)
0

Our strategy will be to identify which factors in the integrand of eq. (V' I1.20) are slowly
varying with A, approximate them at a fixed value A such that the integrand is maximum
and then integrate analytically the factors which vary rapidly with A. We must specify the
quantum numbers « in the transfer amplitude. If we consider the transfer of a particle
z from the single particle state (¢;,71) in nucleus a3 = ¢; + z to the single particle state
(2,72) in a3 = cz + z, with the same notation of §VIL1, we have a = (I5,, 1., — Ic,, la,)
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and the transfer probability in eq. (V' I1.20) is given by:

| 2L, +1 o
PET(I"'I’ICZ - ICx aIaz) = (21 +[;.2)(2].2 + 1) Ptr(-h’]l)
c2
1 21, +1 ,
= - 2 1-—D'D'RP”£,£ .
2 2L, +1)(26 + 1) (1 = Dj, D, R) P¥ (£2, 1) (VII.21)

where P*"(j,,71) is the single particle transfer probability defined in eq. (VII.1) and the
factor in front takes into account the sum over final states and the average over initial
states, as we discussed in §IIL.1. In the last step we used the result eq. (VII.17), where
the D;’s are given by eq. (VII.15). The quantity R = %, given by eq. (VII.16¢), is the
ratio of quantities containing the modulus square of the semiclassical transfer amplitude.
Therefore R varies slowly with the relative angular momentum A and will be substituted

by the constant Ry = R(A = A). By using the approximation

T
Ky, (nd) ~ Ko(nd) = 4/ nd e " (VII.22)

in the expression of the semiclassical transfer amplitude A(€2)2,£1A1) [eq. (11.28) for

neutrons and (V.36) for protons| we have (cf. Bonaccorso, Brink and Lo Monaco 1985)

2 —2nd
(Aie Ce, Co,)” : (VII.23)

™
Pif_l/z(ﬁz,el) = Z(2£2 -+ 1) mc2 Ed Pgl (COS wl)sz (COS LJ2) T]d 3

where Py(2) is a Legendre polynomial and

k 2
coswazl—i—Z(—;Yiz—) y a=1,2,
o

(Q+Ea)*

(@=Ea)” (VI1.24)
2€1Ed

coswg =1 —
’ 2€2Ed

= coswy =1-—
In these formule Ej is the kinetic energy of the nucleon at the distance of closest approach

d:
(h4)*

_ A+ A,
2ud?’

1l o _Tg VI11.25)
Eyq= gmv} = M[Ecm V(d)] = A, (
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where p is the reduced mass, 41 and A are the mass numbers of the colliding nuclei (in
the initial channel). The tangential relative velocity vq of the nuclei at the distance of
closest approach can be related to A and E.,, by using the angular momentum and energy

conservation

A= -‘fﬁ‘id - —\/zu om—V(d)]d=kqd (VII.26)

For Coulomb scattering we have

d= - , (VII.27)
where
Z1 de Zl Z2€
v A/ 2Eem/p
is the Sommerfeld parameter, and
Ay + Aq A 2
.E _ e Ecm . VII.28
@ A1z (n+Vn2+A2> ( )

Then in eq. (VII.23) a smooth A-dependence is contained in the factor 1/Eg4, in the

arguments of the Legendre polynomials (V I1.24) and in the quantity [cf. egs. (I1.30) and

1=t (L em) - ren] Wit

To integrate the differential cross section we shall only retain the A-dependence of d =

(I1.31)]

ljci in the exponential of the transfer probability and consider all other slowly varying

quantities independent of A. We evaluate the latter at the value A = A such that the
integrand in eg. (VI1.20), A P}" " 1/2 |Sp—1/2]%, is maximum. To a good approximation,
A = Ao (grazing angular momentum defined later on). If do is the distance of closest
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approach for a Coulomb orbit with angular momentum Ao (do is the strong absorption

radius discussed later on) we obtain

= By = ———[Bem. = V(do)). VII.
Eq 0 A4, [ c.m. ( o)] ( 130)
Then eq. (VI1.23) gives
T hc Co, Co, 2 e=2moac 4,
Pilapalla,ts) = Z(zzz + ”L‘—JQTIEQ"P& (cos wo1) P, (Coswoz)Eonodo e h,
(VII1.31)

where coswos and 7o are defined by egs. (V11.24) and (VI11.29) by substituting Eq to Eg

and

Z1 Z;zez
2Ec.m.

a. =nlk=

is half the distance of closest approach in a Coulomb head-on collision.

The transmission coefficient in eq. (VI1.20) is
|Sa—1/2|® = exp[—4Im6{A)],

where 6 is the elastic scattering phase shift. We parametrize the imaginary part of the

phase shift by

_ In2 Ag-a

Iméy(4) = == 5. (VII.32)

This form gives |S|? = 0 for small A’s (étrong absorption) and |S|? = 1 for big A’s (no
absorption). The parameters A and Ag can be related approximatevely to the imaginary
part of the optical potential, as we show at the end of this section. The factor in front of
the exbonentia,l in eq. (VII.32) ensures that |S|% = -;— for A = Ao = Lgrazing + 1/2-
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By substituting egs. (V' I1.32), (VII1.31) and (VII.21) into eq. (V 11.20) we have

(whe Cp, Cp,)* 21, + 1

oo Tz = Loy Jar) = =0 2I,, +1
C2

-(1 = Dj, D;, Rq) Py, (cos woy) Py, (cos woz)

Ao e~ 200 0 _zmg, In 2 exp(2272)
— - - A. VII.33
%2 Eonods /0 e Fre £ d (VII1.33)

The integral in eq. (V I1.33) can be calculated analytically:

% oy maexp(lest PN
/ e~ EHA gmIn2exp(357) g) — A/ y*A—1e=hY gy
0

0
= A 7% (a4, B), (VII.34)
where we put y = e'%?, o = 2—2‘1, B = In2 e%l and the incomplete gamma func-

tion(Abramowitz and Stegun 1970, p. 260)

T
~(a, z) =/ te e tde.
0

Since [ is very large

v(aA,f) ~ /000 teb=le=tgt = T'(aA). (VII.35)

By substituting egs. (VII.35) and (V' II.34) into (VII1.33), our final result for the angle-

integrated cross section is

(whe Co,Cp,)? 2L, + 1
4mc? 2I., +1

O'(Ifh ey — I, ’Idz) =

+(1 = Dj, Dj, Ro) P, (cos wo1) Py, (cos woz) .

AoA

n+ldg A
'm (ln2)_2%’7° 6—2 XA ""I‘(2—170). (VII36)
077040

k
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Fig. VIL7. Angle-integrated transfer cross section for the reaction 12C (130, 120) 13C’(1 /2-g.s.) as a function
of incident energy per nucleon. The squares are DWBA calculations by Von Oertzen (1985). The crosses
and the stars are the results of the calculations of Bonaccorso, Brink and Lo Monaco (1985) for two different
choices of the strong absorption radius R,: + correspond to R, such that |S|* = 1/2 and * to R, such that
P*r -|5|? be maximum. These results are obtained by the analytical formula for the cross section shown on
top of the figure, which uses the sharp cut-off approximation for the reflection coefficient |S|?. The symbols
have the same meaning as in the present work. Finally, the triangles are obtained by integrating over the
angle the differential cross section given by eqgs. (I11.28)-(II1.31). It can be seen that the agreement between

this calculation (triangles) and DWBA (squares) is better than for the other two approximation.




All factors in eq. (V I1.36) depend slowly on energy, except the exponential e— 2% %m0 o

e~ 2104 and the Legendre polynomials. The parameters Ag and A can be related to the
depth Wy and diffuseness a,, of the imaginary part of the optical potential W (r). By using
an exponential form of the nuclear potential (Broglia and Winther 1981, p. 112) and the

parametrization (VII.32) of the phase shifts, we find

A = ka,,,
2 me2  A;As ayRop
=k = Ry —n.
Ao = kay ln [1nzW°\/7r(m)2 A+ 4; By —Eop| T FRw—

The expressions given above for Ag and A have been tested with the results of reflection
coeflicients calculated numerically by solving the radial Schrédinger equation.

By extrapolating the parameters of W(r) given in table IV.1 to higher energies, we calcu-
lated the angle-integrated cross section, eq. (VIL.36), for the reaction 28 Pb(1°0, 150)2%° pp
in a wide range of energies above the Coulomb barrier. For incident energy Ei.p > 20
MeV /nucleon the cross section decreases exponentially with increasing energy. At high
energy the dependence of the cross section is very similar to that of the transfer probabil-

ity in fig. VIL.1
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Chapter VIII. Conclusions

The evaluation of the amplitude presented in this work provides a practical way of
calculating angular distributions for single nucleon transfer between heavy ions. At the
same time, the semiclassical approach makes it easier to understand the physics of the
process.

The perturbative treatment of chapter II is accurate enough for heavy ion reactions
above the Coulomb barrier, because of the strong absorption in the interior region. The
analytical form shows the explicit dependence of the amplitude on the distance of closest
approach (d.c.a.), the relative velocity, the Q-value and the angular momenta of the initial
and final states. This gives the condition between Q and the incident energy for maximum
transfer and allows the spin selectivity of the reaction to be studied.

The physical interpretation of the process is also quite transparent, as we showed
with the approximate factorization of the amplitude in § I1.3 or by introducing the double
Fourier transform é in § IL5. The transfer amplitude is essentially given by the overlap of
two factors: the amplitude that before transfer the nucleon be on the surface & between
the two nuclei with specified momentum k;, times the amplitude that it is found bound
in the final nucleus with momentum k2,. The momenta k;, and k,, are given by the
kinematic condition (II.17) that comes out from our calculation, but can also be deduced
from the addition of velocities.

One aim of our work was to see how reliable semiclassical calculations are for a quan-
titative descripton of transfer reactions. The calculations dqne with the appropriate for-
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malism of Hé.san and Brink (1978) and the analytical form of the semiclassical amplitude
derived in this work show that the shapes of our angular distributions are very similar
to those obtained by DWBA. However, the magnitude of our cross section is sensitive to
the choice of the distance of closest approach in the initial or final channel. This may be
particularly serious at lower energies for a transfer with a large Q-value. The sensitivity to
the choice of the orbit makes such a calculation unreliable to extract spectroscopic factors.
The evaluation of the absolute cross section could be improved if one finds a consistent way

of treating the angular momentum loss from the relative motion to the intrinsic degrees of

freedom.

An interesting observation about the partial wave formalism of Hasan and Brink
(1978) for calculating angular distributions is that it gives the same angle-integrated cross
section as the classical product-of-probabilities formula, as we showed in chapter IIl. There-

fore one can use the simpler classical formula to study spin selectivity and energy depen-

dence of the reaction.

The semiclassical neutron transfer amplitude is easily extended to the case of proton

transfer. A new definition of effective Q-value is necessary for a consistent formalism.

A new j-coupling scheme was introduced to study the spin selectivity of the reaction
with respect to the incident energy. This gives a formula for the transfer probability and
accounts for the observed ‘spin-flip’ preference at low energies and vice-versa at higher
energies. The change occurs at an incident energy such that the relative velocity v at' the
distance of closest approach satisfies the condition (I1.32). This condiion is equivalent to
saying that v matches the change in the nucleon velocity caused by the transfer from the
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initial level with energy &; to the final level with energy e; = ¢; — Q.
Cross sections calculated within this coupling scheme could be used for j identification of
single-particle levels.

Also an approximate analytical formula for the angle-integrated cross section has been
obtained. This formula can be used in conjunction with transfer probabilities in the new
j-coupling scheme to study the spin dependence at high energy.

Another problem is the calculation of the optical potential. It has been stressed several
times that transfer plays an important réle in the depopulation of the elastic channel. As
we mentioned in chapter I, transfer form factors ha&e a longer range than those for inelastic
excitation. Therefore they affect more the ‘tail’ of the absorptive potential. The analytical
formula (I1.28) for the semiclassical transfer amplitude has been used to calculate the
imaginary parﬁ of the optical potential W (Brink and Stancu 1985). One result of that
calculation is that transfer to the continuum states should be included in the calculation
of the W, especially at higher incident energy. Therefore an extension of the present

formulation to transfer in the continuum would be interesting.
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