
NUCLEON TRANSFER IN HEAVY ION REACTIONS 

Luigi Lo Monaco 

Balliol College 

Wit 
a3.3 -UP 0 

lit 

A thesis submitted for the degree of Doctor of Philosophy in the 

University of Oxford 

Michaelmas Term 1985 



`How do people find the time for quotations 

in their theses?' 

L. Lo Monaco 



Nucleon Transfer in Heavy Ion Reactions 

Luigi Lo Monaco, Balliol College 

Abstract of thesis submitted for the degree of Doctor of Philosophy 
in the University of Oxford, 

Michaelmas Term 1985. 

An analytical formula is derived for the amplitude for transfer of a nucleon in quasi-elastic 
reactions between heavy ions. The derivation takes advantage of the semiclassical condi-
tions found in peripheral collisions between heavy ions. The relative motion of the two nu-
clei is treated classically and the transfer amplitude is calculated by a perturbation method. 
Under the approximation of small overlap between the nuclear potentials, the semiclassical 
amplitude is reduced to a surface integral. This can be calculated analytically by using 
Hankel function forms for the bound-state wavefunctions and by approximating the ac-
tual orbit by a constant velocity orbit tangential to it at the distance of closest approach. 
These approximations seem reasonable in strong absorption conditions. Corrections to the 
formula of the amplitude are evaluated. The analytical form of the amplitude exhibits an 
exponential behaviour as a function of the distance of closest approach. The decay con-
stant of the exponential is given explicitly and it is found to be an important parameter 
of the reaction. Kinematical conditions for maximum transfer are derived which relate the 
incident energy to the reaction Q-value. The physical interpretation of the amplitude is 
discussed. In the case of proton transfer, the effect of Coulomb potential results in a shift 
of the binding energy of the proton. With this prescription we still obtain the same form 
of the transfer amplitude for both neutrons and protons. The formula for the semiclassical 
tranfer amplitude is used to calculate angular distributions within a simplified formalism 
derived from the distorted wave Born approximation (DWBA). The reactions considered 

208 p h( 16 O ,15O)209pb , 26mg(11B,10B)27mg are and 34S( 32 5, 33S) 33,9 for neutron trans-
fer and 208 p h( 16O,15N 209 ) Bi for proton transfer. It is found that the shapes of the present 
angular distributions agree with full DWBA calculations but the magnitude of the former 
depends on whether the distance of closest approach is that of the initial channel, the final 
channel or some average of the two. Conditions for the selective population of definite 
states are discussed in relation to the reaction Q-value, energy and initial and final states 
involved. It is found that an inversion of the selectivity with respect to the spins of the 
initial and final state occurs when the energy of relative motion at distance of closest ap-
prach equals the reaction Q-value. An approximate formula for the angle-integrated cross 
section has also been derived. 
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Chapter I. Introduction 

I.1 

Nuclear reactions can nowadays be produced by accelerating nuclei over a wide range 

of energies. They provide a great volume of data which need to be interpreted through 

a reaction theory in order gain information on the structure of nuclei. In this work we 

consider one of the simplest nuclear reactions, the rearrangement collision 

a1 + C2 ---+ C1 + a2

or 

(C1 +x) +C2  ---+ C1 + (C2 +x)

which can be described as the transfer of one or more nucleons x from the projectile to the 

target or viceversa, leaving the final nuclei in bound states. Transfer reactions are highly 

selective in the nuclear levels they populate. This indicates that they are very sensitive 

to the relationship between the initial and final nuclear states involved and hence can be 

very useful as probes of nuclear structure. While inelastic scattering responds strongly 

to collective correlations in nuclear wavefunctions, one-nucleon transfers probe the single 

particle character of the states, two-nucleon transfers reveal nucleon-nucleon correlations 

such as pairing, two-neutron, two-proton transfers may reveal alpha clustering, and so on. 

Transfer reactions take place when the tails of the single-particle wave functions in 

one nucleus start to overlap with the attractive nuclear field of the other. In fact typical 

distances for these processes are larger than those relevant for nuclear inelastic scatter-
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the bottom of (b). (From Broglia 311.d Winther 1985) 



Wig. This is because the associated form factors ftr(r) are proportional to the overlap of 

the nucleon single-particle wavefunctions in the initial and final nucleus with the nuclear 

potential (Fig. I.1a). Then ftr (r) has a longer range than the inelastic scattering form 

factor fi,(r), which is proportional to the overlap between the initial and final nucleon 

wavefunctions of the same nucleus with the potential (Fig. I.1b). 

In closer collisions, although the properties of individual states lose their importance, 

transfer reactions play an important role in the damping of the relative motion leading to 

deep inelastic collisions and fusion reactions as they dominate the frictional forces acting 

between the nuclear surfaces. They also usually control the depopulation of elastic channels 

and thus are a major component of the absorptive potential for grazing reactions. 

When more than one nucleon is transferred multistep processes, especially through 

inelastic channels, are important and in some cases dominant (Fig. I.2). 

Here we consider only one-step direct processes, which account for most of the one-

nucleon transfer reactions between heavy ions. The difference with respect to experiments 

with light ions, like the (d, p) reaction, arises from the large mass, charge, linear and 

angular momenta involved and the wide variety of systems that can be brought together 

in heavy ion reaction. We shall return to the implications of using heavy ions after briefly 

reviewing, in §I.2, the experimental situation for transfer reactions. In §I.3 we discuss 

some theories developed for these reactions and in §I.4 we give an overview of the present 

work. Most of the material in this chapter is taken from excellent reviews and books on the 

subject (Ascuitto and Seglie 1984, Broglia and Winther 1985, Glendenning 1983, Goldfarb 

and Von Oertzen 1979, Hasan 1976, Hodgson 1971 and 1978, Satchler 1983). 
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I.2 Some phenomenology of transfer reactions. 

In this section we show some experimental results from the literature on transfer 

reactions, although it is difficult to select examples that can be regarded as "typical", 

especially for heavy ions. The angular distributions are different for transfers below and 

above the Coulomb barrier, so we consider the two cases separately. 

The cross sections for sub-Coulomb transfers are considerably smaller than those for 

higher energies and angular distributions are quite featureless and almost independent of 

the f transfer (see §V11.1 for its definition). They increase monotonically to maxima at 

180° (Fig. 1.3). 
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As the energy rises up to and above the Coulomb barrier diffractionlike peaks begin to 

appear at the forward angles and they grow until they dominate the angular distribution 

(Figs. I.4 and I.5) 

An interesting qualitative account can be given which explains some important fea-

tures of transfer reactions. To fix ideas we first consider a reaction much studied in the 

past, the neutron stripping from deuterons. Fig. I.6 shows a typical spectrum of protons 

from a (d, p) reaction. This consists in general of a number of discrete peaks at the higher 

energies, which become closer together and merge into a continuous distribution at lower 

energies. The angular distributions of these protons show that, when averaged over a 

suitable energy interval, the continuous distribution is symmetrical about 90°, and usually 

almost isotropic. These protons are therefore due to the compound nucleus process. The 

more energetic protons resolved into discrete peaks, however, are often peaked in the for-

ward direction at high incident energies (Fig. I.7a) and in the backward direction at low 

incident energies (Fig. I.7b). In addition, the magnitude of the cross-section is often much 

greater than that given by statistical theory. This indicates that the protons leaving the 

system in discrete, low-lying states are the result of direct reactions. 

For light ions, at energies up to few tens of MeV above the Coulomb barrier, the 

number of partial waves participating is not large and the angular distributions show a 

correspondingly moderate amount of structure (Fig. I.8). The position of the first and main 

peak indicates the I transfer as it is usually predicted unambiguously by, say, distorted 

wave Born approximation (DWBA). Matching of the momenta and angular momenta of 

the entrance and exit channels has also an important effect on angular distributions. An 
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example is the reaction (3He, a) shown in Fig. I.9. Since the Q value is large, the incoming 

and outcoming wave are poorly matched and the angular distribution is quite structureless. 

At higher energies the forward peaking of the angular distribution becomes even more 

marked, as Fig. I.10 shows for the (3,4) reaction. 

The effects of strong absorption are usually more pronounced in transfer reactions with 

heavy ions. This, together with their shorter wavelengths and larger angular momenta, 

results in a sharper localization of the reaction on the nuclear surface. There are essentially 

two types of angular distributions for heavy ion transfer reactions above the Coulomb 

barrier: the simple "bell-shaped" angular distributions centered near the scattering angle 

for grazing collisions (Fig. I.11) and more diffractionlike structures (Fig. I.12). Some 

systems may evolve from the first to the second type as the energy is increased (Fig. I.13) 

while others maintain the bell-shaped angular distributions (Fig. I.14). 

i f
w. 23.5 

5 

2 
* 

2oepb (I607I5N)2o9Bi (g.s., h912
) 1 

(- £

I 
51 -Yt ' ,::  35

. 1I • 
11

I • 
i ..i % 

,.... I • % 
/ %i 11 - :.: i• - ° • 7

....... - I • 

I 

0.5 — • .‘ • — li . ' • 
-fl ._. , • • I 

-ci 
0.2 — l 

\i

t 

,
I , 

, 

• I .„ 
1. 
. l

= 
r

, 1
, T3 lab:: I 

0.05: 312.6 I, 216.6 140 , , 104 

—  
MeV 

I
I 
1 H 

MeV 
! I . I I 

MeV 
 i H, I 

Me VI —

0 10 20 30 0 20 30 40 30 40 50 60 50 60 70 

ec.m. (deg) 

S 

80 

Fig. I.14. Measured and calculated cross sections for one-proton transfer to 208Pb at four bombarding energies. The solid 

curves are DWBA predictions, using a spectroscopic factor S = 0.95. The dashed lines are these curves arbitrarily shifted in 

magnitude and angle to obtain the best fit to the data. As the energy increases the angular distributions become narrower and 

are peaked at a lower angle but maintain their "bell" shape. (From Olmer et. al. 1978) 

5 



This behaviour has been interpreted in a way similar to that used for elastic scatter-

ing where one envisages Fresnel scattering when the Sommerfeld parameter n >> 1 and 

Fraunhofer scattering when n S 1. Relevant values of the Sommerfeld parameter n and 

the Coulomb barrier VCB are included in the previous examples of experimental data. 

For transfer one considers waves scattered from the near-side and far-side and their in-

terference. At the lower energies the transfer occurs only from waves scattering from the 

near-side of the target, because of the diverging effect of the Coulomb potential. But, as 

the energy increases, the Coulomb deflection is reduced and contributions from the far-

side begin to interfere with the near-side amplitudes. Hence the interference pattern is 

characterized by an angular period AO — it/kR, where k is the incident wave-number and 

R is the nuclear radius. However, for a more detailed interpretation of experimental data 

one needs to consider a theory of transfer reactions. A brief review follows. 

I.3 Theories of transfer reactions. 

Several methods have been used to study transfer reactions since they were discov-

ered. The neutron stripping in reactions induced by deuterons -(d, p) for short- helped 

recognizing that a different mechanism than compound nucleus formation is responsible 

for an important class of nuclear reactions, which are then called direct. Although the 

latter account for a small part of the total cross section they are invaluable for the study of 

low lying levels in nuclei. Oppenheimer and Phillips (1935) first proposed the mechanism 

of direct capture of the neutron to explain the data obtained by Lawrence et al. (1935) in 

reactions induced by low energy (0-3.6 MeV) deuterons. Later on Serber (1947) suggested 
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a very simple model to explain the forward peaking of (d, n) reactions at high energies ob-

served by Helmotz et al. (1947). The theory of (d,p) reactions proposed by Butler (1950, 

1951) showed the relevance of linear and angular momentum transfers in these relatively 

simple reactions. However, this theory was soon recognized as inadequate in that it made 

use of plane waves to describe the relative motion. One cannot neglect the refractive effects 

that absorption inside the nuclear surface has on the plane waves. Therefore a distorted 

wave theory is a better approximation and, for one-step reactions, is the best we can do 

to date. 

Fig. I.15. Example of recoil effects in heavy-ion trans-
fer reactions. The no-recoil approximation leaves out the 
nonnormal-parity t = 1 amplitude and results in an oscil-
latory angular distribution. Addition of the t = 1 terms in 
an exact calculation results in a structureless distribution 
in agreement with the data. Even for t = 0 the no-recoil 
distribution differs from the exact one. The backward-angle 
elastic scattering predicted by the optical model in this re-
gion is completely negligible. (From de Vries 1973) 
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In the application of DWBA to transfer reactions approximations have been made in order 

to simplify and calculate the six-dimensional integral of the transition matrix. Zero-range 

and no-recoil approximations were used with some success to calculate cross sections for 

transfer induced by light ions. It was initially thought that a no-recoil approximation 

would be justified for heavy ion reactions because the mass of the transferred particle is 

small compared to that of the nuclei. However, recoil effects cannot be neglected in general 

without losing a good deal of the physics in heavy ion transfer reactions, as it was shown 

by Dodd and Greider (1969). Fig. I.15 shows that the no-recoil approximation can predict 

a completely wrong angular distribution. 

In the early analyses of transfer reactions semiclassical theories were used as an aid to 

understand the physics of the process and as an alternative to impossible computations. 

Nowadays exact finite range DWBA computations of one-nucleon transfer reactions (which 

include recoil) are routine practice since programs have been written to do so. As a 

result we are more demanding and require that semiclassical theories give a quantitative 

description of the reactions, while keeping the simplicity that characterizes them. In this 

respect for heavy ion reactions we are particularly fortunate in that a classical description of 

the relative motion is accurate enough while in many cases "a purely quantum-mechanical 

description may be too complicated to be either possible or interesting" (NOrenberg and 

Weidenmiiller 1980, p. 

In most semiclassical theories one considers the nuclei moving along classical trajecto-

ries specified by an impact parameter or relative angular momentum. The transfer process 

is then treated quantum-mechanically and one calculates a transfer amplitude, Atr, along 
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a given trajectory. From this the cross section can be calculated, for instance as a product 

of probabilities: 

= IS 2 lAtr 120-elastic; 

where the reflection coefficient IS!2 gives the probability that the system escapes absorption 

into other inelastic channels. The classical formula (.I.1) is the simplest way to obtain a 

cross section, but it has many drawbacks, as we shall discuss in chapter III. For the moment 

we look at several possible ways to calculate the transfer amplitude. Broglia and Winther 

(1972 a and b) expand the total wave function into a linear combination of the channel 

wavefunctions. The coefficients of this expansion, cap, give the amplitude for transfer from 

the initial channel a to the final channel /3 as a function of time t, with the initial condition 

cap(—co) = Sap. They obtain a set of coupled first order differential equations for these 

coefficients, which can be solved approximatively to arrive at a formula for the transfer 

amplitude cap(-Foo). 

Some semiclassical theories consider a partial-wave expansion for the reaction ampli-

tude f (0) of the form 

f(8) = gL hL (0), (I.2) 

where gL is a partial wave amplitude and hL (0) is a known function of the scattering angle 

0, e.g. a spherical harmonic or a rotation matrix. The amplitude g is then parametrized 

in a suitable form, which is peaked in L-space (e.g. Strutinsky 1964, 1973). This reflects 

the assumption that small L waves are absorbed while for much larger L's there is no 

transfer. Attempts have been made to understand this simple semiclassical parametrization 

of the scattering amplitude with several methods. Broglia et al. (1974) identify gL with 

9 



the solutions of their semiclassical coupled equations times ei5L, where 8L are the elastic 

scattering phase shifts: 

g C ao  e2i6 (.1.3) 

Koeling and Malfliet (1975) use a path integral formalism to derive a transition amplitude. 

Other approaches start with the expression for the transition matrix in DWBA and, under 

high-energy, short-wavelength conditions, utilize the WKB approximation to obtain sim-

plified expressions for the distorted waves and derive a formula of the type (1.2) (Landowne 

et al. 1976, Hasan and Brink 1978). In the latter work the amplitude gL is factorized in a 

form similar to eq. (1.3): 

gL "' At, (2, 1) e2i5L (1.4) 

where Atr (2, 1) is identified as the semiclassical transfer amplitude of Brink (1972). Then 

Atr(2, 1) is integrated numerically and it is shown to decay exponentially with the angular 

momentum of relative motion or with the distance of closest approach. The form /.4 is 

discussed in chapter III, after integrating analytically the semiclassical transfer amplitude 

in chapter II. 

The problem of particle transfer between two bound states in potential wells moving 

along classical trajectories has been solved numerically (Esbensen et al. 1983). In fact even 

the more realistic problem of the time dependent Hartree-Fock approximation (TDHF), 

where the particles to be transferred move in the self-consistent field of all other parti-

cles, can be solved numerically. A different point of view has been taken by Revai (1985), 

who proposes a simultaneous treatment of all reaction channels, elastic, rearrangement 

(transfer) and break-up. With this method, by using separable potentials and straight-
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line trajectories, probabilities for various reaction channels have been computed (Milek 

et al. 1985). Although these calculations are in principle better approximations or even 

exact results, the amount of computation involved seems considerable and no comparison 

with directly observable quantites has been made so far. Therefore a simple semiclassi-

cal description is still of relevance to understand what are the most important physical 

parameters of the process. 

In this work we consider transfer reactions between heavy ions. The difference with 

respect to experiments with light ions like the (d, p) reaction comes from their large charge, 

mass, angular momenta involved and the wide variety of systems that can be brought 

together in a heavy ion reaction. These have implications in the following ways: 

(i) The large charges emphasize the role of the Coulomb interaction. Even at energies far 

exceeding the Coulomb barrier, cross sections can be attributed to certain angular regions 

with the dominant action of the Coulomb field. (ii) The large masses allow first for the 

possibility of localization of the reactions in a peripheral way. This is simply because of the 

comparatively small de Broglie wave lengths that come into play. (iii) Concomitant with 

the large masses are the large linear and angular momenta of the relative motion. With 

the availability of large amounts of angular momenta to transfer to the internal motion, 

transitions to states with high spins are a possibility. There is also an important difference 

in the possible values of the transferred angular momentum t for the transition from the 

initial single particle state ti ji to the final state £2 j2. For reactions induced by light ions 

the initial state is s1/2, so there are only two possible values e = 12 ± 1/2, while for heavy 

ions the allowed values are in general given by the selection rules j l — 12 I < t < ji + .i2 
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d ti _ £2 1 < t < £1 +12 (iv) The composite nature of the projectile and the multiplicity 

of possible reactions lead to loss of flux in break-up channels. High levels of absorption 

become apparent. The exclusion principle also plays a role with the low compressibility of 

the nucleus. The result is an inaccessibility of the nuclear interior and with this we gain 

in the interpretation of phenomena. (v) The diversity of heavy ions as projectiles provides 

the advantage of choice of beams in order to study particular states of nuclei as the same 

final state can be populated in a number of reactions. 

I.4 Overview. 

In chapter II, under the approximation of small overlap between the two nuclei, we 

calculate the semiclassical transfer amplitude A(2, 1) which enters in eq. (I.2) analytically. 

The formula obtained is then used to study the kinematical conditions that favour nucleon 

transfer. This is partially done in chapter II where we consider a physical interpretation 

of the amplitude and more in detail in chapter VII. 

In chapter III the semiclassical amplitude is related to cross sections. A product-of-

probabilities classical formula is first considered and the conditions to apply it to heavy ion 

transfer reactions are discussed. Then we recall a partial-wave formula for the transition 

amplitude derived from the DWBA by Hasan and Brink (1978). One advantage of a simple 

analytical formula for the semiclassical transfer amplitude is that one can use the same 

formula to calculate the cross section in two ways: i) from the classical expression 1-.1, 

whenever it is applicable to angular distributions, or ii) from the partial-wave formula 

(I.2) when diffraction effects are important. We show, however, that the two formulae give 
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the same angle-integrated transfer cross section. Therefore the simpler classical formula 

eq. (Z.1) can be used to study the spin selectivity of transfer reactions and their energy 

dependence, as it is done in chapter VII. 

In chapter IV we apply the theory to one-neutron transfer reactions induced by heavy 

ions. Several calculations for this case are presented and compared with experimental 

data. 

In chapter V the calculation of the semiclassical amplitude is extended to proton 

transfer and results for this case are presented in chapter VI. 

In chapter VII we introduce some possible angular momentum couplings to study the 

selectivity of the reaction with respect to the spins of the initial and final levels. We also 

look at the energy dependence of the cross section and extrapolate it to a higher energy 

regime where it decreases exponentially (Transfert a Grande Vitesse). 

Conclusions are drawn in chapter VIII. 

The main advantage of using the semiclassical approach presented in this work for the 

analysis of transfer reactions is its simplicity. At the same time we obtain an agreement 

with experimental data comparable to that of complete DWBA calculations, as it is shown 

in chapters IV and VI. It is worth mentioning that our expressions include recoil through 

an exponential factor deriving from the Galilean transformation of one of the bound-state 

wave functions. Therefore we can use our analytical formula for the semiclassical transfer 

amplitude to study the conditions favouring a particular transfer at low, medium and high 

energy. The physical interpretation of the process that results is more transparent than a 

full DWBA computation. The use of a formula of the type 1.2 to study transfer reactions 
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allows a certain flexibility in the choice of the optical potential determining the phase 

shifts in eq. 1.3. These can be obtained either by numerical solution of the Schrodinger 

equation with a complex potential U = Uc + UN or by first order WKB approximation. 

Considering the whole nuclear potential UN as a perturbation one obtains for the nuclear 

part of the phase shifts (e.g. Brink 1978, p. 13) 

1 °° 
-

2h 
UN[rc(A,t)] dt, 

-co 

where the integral is taken along the Coulomb orbit corresponding to classical angular 

momentum A = (L + 1/2)h. Alternatively, one can parametrize the nuclear part of the 

radial S-matrix SN(L) exp(2i6f) and study, for example, the energy dependence of 

the cross section without the intermediate step of an optical potential, as it is done in 

chapter VII. Moreover, it has been pointed out (Broglia et al. 1981) that the transfer 

process gives the main contribution to the long-range part, Wtransfer, of the absorptive 

potential. This can be related to the transfer probability per unit time, w, by 

Wtransfer = 2 nw, 

The present theory has been developed for the simple case of one-nucleon transfer 

from/to single particle levels. However, it could reasonably be extended to transfer of 

clusters of nucleons, e.g. alpha particles. It applies to incident energies above the Coulomb 

barrier because we approximate the actual trajectory by a straight line tangential to it at 

the distance of closest approach. Clearly this would be a bad approximation for angular 

distributions that are not forward peaked, as in sub—coulomb transfer. On the other hand 

there are certain advantages when the bombarding energy is so low that the system of the 
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two initial nuclei al +c2 cannot surmount their mutual Coulomb barrier, and the Q value is 

such that the same is true for c1+ a2 in the exit channel. Since the nuclei are kept far apart 

by their Coulomb repulsion the probability of compound nucleus formation is negligible. 

Then any observed transfer reaction is a direct one. At the same time, distortion of the 

elastic Coulomb waves by the nuclear potentials is either negligible or small enough that 

its effects can be easily assessed. As a result the analysis of the reaction is free of the 

uncertainties associated with optical potentials. Another simplicity arising from the lack 

of close approach is that one needs the overlap of only the asymptotic parts of the initial 

and final wavefunctions of the transferred particle and the form of these asymptotic parts 

is known precisely for a single nucleon. However, for heavy ion reactions we are usually 

in a strong absorption condition, so that we need not consider the interior of the nuclear 

region and only the `tails' of the nucleon wavefunctions are relevant to the transfer process. 
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Chapter II. The Transfer Amplitude 

Definition of the Amplitude. 

type 

Here we derive an analytical formula for the amplitude in a transfer reaction of the 

al + c 2 ci + a2

or

(ci + x) + c2 e l + (c2 + x) 

For most of this chapter we follow the derivation of Lo Monaco and Brink (1985). First we 

consider the simpler case of neutron transfer (x = n) between bound states. Let Wi be the 

initial state of the neutron bound in a single particle potential V1(r, t) which represents the 

shell model potential of the nucleus al . The neutron is transferred into a single particle 

state 2 in the potential V2 (r, t) which represents the final nucleus a2. The potential 

moves past V2 during the transfer and the relative motion is described by an orbit s(t), 

where s is the distance between the centres of V1 and V2 . s oo when t +oo. 

The initial and final states 4/„,(r, t) satisfy the time-dependent SchrOdinger equation 

for the neutron bound in the potential Va (r, t), where a = 1, 2, 

ih a = at 

Here T = —(h2 /2m)V2 is the kinetic energy operator and m is the mass of the transferred 

particle. During the transfer process the wave function of the neutron, W, is affected by 
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both potentials V1 and V2 and therefore satisfies the equation 

ih—
at 

=(T+vi +v2)T 

with the initial condition that 41 when t —oo. The transfer amplitude, A(2,1), 

can be defined as the overlap between the wave function IF and the final state 9 2 when 

t OO: 

A(2, 1) W2 IW >t—co (11.3) 

A perturbation formula can be derived for the transfer amplitude A(2,1) in the following 

way (e.g. Brink 1977). Using eqs. (II.1) and (II.2) it is easy to check that 

ih—a < IF2 IT >=< T2Ivi kif > at 

Integrating between t = —oo and t = oo we obtain 

(11.4) 

In deriving eq. (II.4) we used the initial condition that there is no overlap between the 

initial and final neutron bound states long before the collision takes place, i.e. 

< 412 I II' >t=--oo-7---- < IT]. >t=_OO  0. 

Eq. (II.4) is an exact formula. The four-dimensional integral vanishes for values of (r, t) 

such that V1 = 0. In the region where V1 0 0 we approximate by \Pi and we have 

1 f +OO 
A(2, 1) T Th_ < 2IVl l 1 > dt 

1 f +' = < ‘112 1172 IT > dt _co
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The equality between (H.5a) and (11.5b) shows that in first order one can use either the 

initial or the final nuclear potential (post-prior equivalence). 

A method which uses expressions similar to eqs. (11.5) was developed by Oppenheimer 

(1928) to compute the transition probability for the ionization of hydrogen atoms in a 

constant electric field. 

Eqs. (H.5) are a reasonable approximation for our problem because in a peripheral 

collision leading to transfer the potentials do not overlap appreciably. If they do there is 

absorption into other channels ( e.g. deep inelastic or fusion reactions ) than the simple 

transfer considered here. In the case of a peripheral collision eqs. (11.5) can be transformed 

into a simpler form involving a surface integral. Let E be a surface which lies between the 

two potentials V1 and V2 (fig.L1) and which divides the space into two regions R1 and R2. 

— 

z 

Rz

Figure 11.1 Coordinate system for the transfer amplitude. 
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Then the matrix element in eq. (II.5a) can be written as 

< W2 f T.; (r, t)Vi (r,t)Ti(r,t)d3r,  f T;(r,t)Vi(r,t)Ti(r,t)d3r (II.6) 
Ri R2 

The first term in eq. (II.6) can be simplified by using eq. (II.1) to write 

2 
T;ViTid3r 

+ 2m 
= f T; 

at 
V2) Wier 

f 

Since we are dealing with bound states the integration region can be thought of as finite. 

Then it is possible to apply Green's theorem which reduces the above integral to 

2 
f R zV1 1d3r = 2_hrn dS • (W;VTi — TiVIY2') 

2  h2 
.Z772 (ihaut + n v2T2) gild3r+ihat f ;1111d3r 

Ri

where dS is a surface element normal to E directed out of R1. If eq. (II.7) is integrated 

over time between t = —oo and t = oo the third term on the r.h.s. vanishes because the 

potentials V1 and V2 are very far away from each other as t too and Ti and W2 have 

no overlap. By using eq. (11.1) for ' 2 the second term in eq. (II.7) can be expressed as an 

integral containing V2. Hence eq. (II.5 a) becomes 

A(2, 1) = 
2m

h  f 
±c° dt dS • (T;V Alf - i V111;) 

i E

+OO
f dt ( f  xliY2 Tid3r f T;Vi xliid3r) 

ih R1 R2 

Eq.(II.8) is exactly equivalent to eqs.(II.5). It is a perturbative expression for the 

transfer amplitude (II.3) or (II.4) symmetrical in the initial and final states and potentials. 

This reflects the equality between (II.5a) and (II.5b). If in a peripheral collision there is 

(11.8). 
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no overlap between the potentials V1 and V2 it is possible to choose E so that V2 (r, t) = 0 

for all points r in R1 on one side of the surface, while V1 (r, t) = 0 for all points r in R2 on 

the other side. Then the last two terms in eq. (II.8) vanish and 

°° 

A(2, 1)  2mi . E
f 

dt f dS • (111;V — 1N7 111 ) 

In eq. (II.9), which resembles a quantal probability current, the bound state wavefunctions 

W1 and 11/2 are only required on the surface E. If E is outside the range of V1 and 

V2 the wavefunctions can be replaced by their asymptotic forms, proportional to Hankel 

functions. Eq. (II.9) is equivalent to eqs. (II.5) if V1 and V2 do not overlap during the 

collision. For large distances, the bound-state potentials decrease as exp(—r I a), where a 

is the diffuseness parameter, while the wavefunctions decrease as exp(--yr), where -y is 

related to the binding energy of the transferred neutron by eq. (II.21). For typical values 

of diffuseness and neutron binding energies, the slope 1/a is greater than -y by a factor of 

about two or three (see table IV.2). Therefore the "tail" of the potential decays faster than 

that of the bound-state wavefunction. In § II.2 we evaluate the amplitude by assuming 

that the condition of no overlap is satisfied. We discuss corrections to eq. (II.9) in § II.4. 

A formula similar to eq. (II.9) has been used by Nogami (1973) to discuss a decay. 

II.2 Evaluation of the amplitude. 

In this section we evaluate the transfer amplitude, eq. (II.9), when the orbit of relative 

motion is a Coulomb orbit. If the scattering angle is small then the orbit can be replaced 

by a constant velocity orbit s(t) tangential to it at the point of closest approach (fig. II.1). 

This is a reasonable approximation because the acceleration in the Coulomb orbit is small. 

20 



it would not be a good approximation for large angle scattering. The transfer amplitude 

depends only on the relative velocity, so we can assume that V2 is at rest and V1 has 

velocity v, where v is the tangential relative velocity at the distance of closest approach 

d. The coordinate system is shown in fig. II.1. It is convenient to take the z axis parallel 

to the direction of relative motion and the x axis in the plane of the orbit. We write the 

equation of the orbit relative to the centre of V2 as 

s(t) = d + vt (H.10) 

where v is in the z direction and d in the x direction. 

If 4)1(r) and .1)2 (r) are bound-state wave functions in the static potentials V1 and V2 

with energies el and e2 

[T + Vc, (r,„)].1.,,(r,) = Ea t% (r„) , a = 1, 2, (H.11) 

then the time dependence is given by 

`Iii (r, t) = t1 [r — s(t)] exp { (i/h) [my • r — (ei + imy2) 
t-
} 

1112 (r, t) = 432(r) exp(—ie2t1h.) (H.13) 

The wavefunction 1111 is obtained from .1Di by a Galilean transformation. If the surface E 

in the transfer amplitude (H.9) is taken to be the plane x = d2 (see fig. II.1) then the 

surface integral in eq. (H.9) is over the variables y and z: 

A(2, 1) = 2—mhi f: dt r o: dy f ±c° dz[ 2*(d2
'
y

'
z) ad2 (D1(d2 — d, y, z — vt) 

a
(4 

i —.1.1(d2 — d, y, z — vt) unj 2 tq(d2) Y) Z)1 exp { w mvz + (62 — 61 — —1mv2) t] } (H.14) 
2 • 
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There is a minus sign in front of eq. (11.14) because the direction of dS in eq. (II.9) is 

opposite to that of the x-component of the gradient operator. By making the change of 

variables 

(Z, t) (Z, Zi = z - vt) 

the argument of the exponential in eq. (II.14) becomes 

and 

[ 

2 

2 
- -MV 62 - Ei 

[Div 
Z + 2- MV2 61 - 62) Z 

f +OO 
dz 

f+00 

dt —
1 f  +oo 

dz 
f  +OO 

dzi. 
-00 -00 -00 -00 

Now the integrals over z and z1 in eq. (11.14) can be separated into a product: 

ih  f a A(2,1) = [.t.2 (c12,Y,x2z) n_j cr,2 — , y, kiz) 
2mv _ OO tiu,2 

where 

klz = — 

and 

a 
—4.1(d2 — d, y, 

ua nj2 
k2z)1 d y 

+OO 

4)(x, y, k) 
def

 f e-ikz y, z)dz , 
-00 

(Q --l mv2) /(hv), k2z = - (Q - 
2 

(hv), 

Q = El - E2 

is the reaction Q-value. We assume that E is outside the range of the potentials V1 and 

V2 during the whole collision. Then 4)1(r) and 43.2 (r) can be replaced by their asymptotic 
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expressions which are related to Hankel functions (see Appendix ILA for their precise 

definition) 

With this choice 

«(r) = C E„'Y ta (^1 ar)YeaAa (el co) , a = 1, 2, 

Xt('ir) = 

Xi (-Yr)-e-fr /('Yr) 

*Da a exp(—^/ar)r—l Yec, A c, (0; SO) 

when r is large. In eqs. (11.19) and (II.20) and .e2 are the orbital angular momentum 

(II.19) 

(II.20) 

quantum numbers of the initial and final bound states 1 and W2, Al and A2 are their 

projections along the z axis in fig. II.1, Cti and Ce 2 are normalization constants given by 

the ratio between the solution of the radial SchrOdinger equation for the neutron bound 

in the potential V1 or V2 and the function -y,„ Xt1,2 ( 1 1,2 1'1,2); 'y1 and ry2 are related to the 

bound state energies ei and 62 by 

Ea  = —h21! / (2M) (11.21) 

The Fourier transform (11.16) is calculated in Appendix II.A by using eqs. (11.19) 

and (II.20). As in eq. (11.15) we have the derivatives of the 4's with respect to d2 it is 

convenient to rewrite the result of the Fourier transform, eq. (II.A.26), in a form which 

shows the dependence on the x-coordinate explicitly. By using the integral representation 

of the modified Bessel function (Abramowitz and Stegun, 1970, p. 376) 

we have 

K, (z) = f PP exp(—z cosh t nt)dt 
2 

KA (77p)eiA`P = —1 f exP[—np cosh t A(t ico)]dt 
2 „„ 
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By changing the integration variable from t to u = t igo the argument of the expo-

nential becomes 

—77p cos go cosh u int) sin go sinh u Au = —riz cosh u iRy sinh u + Au, 

while the branches (1) and (2) of the u-integration-path (see fig. I1.3) cancel and we get 

1 
KA (77p) 

2 
= — f exp(—Rx cosh u iny sinh u Au)du. (11.24) 

O„, 

.00 

(I) 

4- OO -f 

) 

Re,. 

Fig. II.3. Integration path for eq. (II.24). 

/ 
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Then eq. (I I .A.26) gives for the derivatives of the Fourier transforms in eq. (11.15): 

a 
ad2 e1),, (d2 — d, y, kiz) = cei Yei a1 (Qi, 0) 

• I.
00

—00(-77 cosh ui) exp[n(d — d2) cosh IL I. irlysinh ui Alui]dui 

f 00 

Ct, Ai (Pi, 0) (-1) AI f n cosh u'exp(—ndi cosh u' — iny sinh (11.25a) 
-00 

where u' = u1 ir and d1 = d — d2; 

00 

• f—OO 

a x,* 

2 A2 

7 

ct2, ic2z) = C Q2 17;2A2(0 2,0 ) ad2 ‘2i

(—n coshu2 ) exp(—nd2 coshu2 — irlysinhu2 + A2 U2)C1U2. (II.25b) 

The complex angles gi and 02 have the same meaning as 00 in Appendix A. According to 

eq. (II.A.22) they are then defined by 

• kaZ 
COS fia  = —2 —, sin Q« = a = 1,2. (11.26) 

'Yce 

They give the `direction' of the complex vector ka of neutron momenta before and af-

ter transfer. This vector has components ka E:- (in,0,kaz), where ka, are defined by 

eqs. (11.17), and \✓11x kay k z = i-y a. It is complex because the neutron is in a 

bound state (with negative energy). By substituting eqs. (11.25) into the transfer ampli-

tude (II.15) we find 

ih 
A(2,1) = 

2mv
C ei C t2 (-1)A1 Ye'  Ai (013 0)YE2 A2 (02,0 ) 

00 CO 

• f du' tdu 2 n (cosh u' + cosh u2) exp[-17(d1 cosh u' d2 coshu2) Al u' A211,2] 

—00 

f
OO

e (sinh ut ±sinh u2 )y dy
.1 —00 
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Then eq. (II.A.26) gives for the derivatives of the Fourier transforms in eq. (11.15): 

a - „ , , „ „ „, 
4)4 vt2 — Y, uoi ,u) 

f-/ C/o2 

00 
(-77 cosh ui) exp(n (d — d2) cosh + sinh 

00 

= Ct1 Yei A, (,Qi, 0)(-1))". f n cosh u' exp (-0 1 cosh u' — ivy sinh + Ai u') du' , (/1.25a) 
--00 

where u' = u1 it and d1 = d — d2; 

xs*  (a

ad2
-.e2 A2 ( d2,  y7 r''2Z) L'e2 72 2 k.P2 7 0) 

00 

(-77 cosh u2) exp(-02 cosh U2 — sinh U2 + A2U2)dU2. (II .25b) 

The complex angles ,31 and #2 have the same meaning as 00 in Appendix A. According to 

eq. (II.A.22) they are then defined by 

cos i3c, = kaz , = —77 , a = 1,2. (11.26) 
'7« 'Ya 

They give the `direction' of the complex vector ka of neutron momenta before and af-

ter transfer. This vector has components ka (in, 0,Icaz), where Ic„z are defined by 

eqs. (11.17), and .,/kaz+kay+ kaz = i-„ It is complex because the neutron is in a 

bound state (with negative energy). By substituting eqs. (11.25) into the transfer ampli-

tude (II.15) we find 

00 00 
du' du2 q (cosh u' + cosh u2) exp[-17(d1 cosh u' d2 cosh u2) + Ai u" + A2742] 

f— 00 

in 
A(2,1) = 

2mv Ce1 2 (-1)A1 YeiAi ()31,0)Y4A2 (g2,0) 

f00
e—in (sinh u'-f-sinh u2 ) Y dy

• 1—OO 
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The integral over y gives a 8-function: 

27r 
278 (ri(sinh sinh u2)) = 

77 cosh u' 
8(u/ u2) 

and the integrals over u' and u2 in eq. (11.27) reduce to 

47r f
00 

exp[—rid cosh u (Ai — A2)u} du = 87rKA, —A.„ (rid), 
-0.0 

where we used the integral representation (11.22) again and put d = d1 + d2. Substitution 

into eq. (11.27) gives the final expression for the transfer amplitude 

A(2,1) = —47ri—
h

Ci, Ce,(-1-)A KJ Ai (g1) Yt*2 A2 (32, 0)KA I _A2 (rid). (11.28) 
my 

When the product nd >> 1 the modified Bessel function K can be substituted by the 

asymptotic expression (II.A.13). By introducing the unit vectors 

ka 1 
Ika I V772 k2 z (m, 0, A,„,z), 

eq. (II.28) can be written as 

A(2,1) P.,. —47riM  Cti ce2 ( i) A1 Ye, A l (1C1)YZ A2 VC2) 
V 

  —nd e . 
277d 

(1/.29) 

Eq. (II.29) exhibits two important features of the semiclassical transfer amplitude. 

i) It decays exponentially with the distance of closest approach d, the decay constant being 

given by the quantity For a given d (for instance the `grazing' distance) the amplitude 

has a maximum when z has a minimum. From eqs. (II.A.9), (II.17) and (II.21) we have 

2 ,„2 2m 
= az = n'2z I2z h2 

25 

(11.30) 



where 
2 1 1 ( Q
v2 

1 

2 (
+ E2) 

4 Irri
2 mv`) 

2 

(1/.31) 

is a kind of average bound-state energy. Then maximum transfer is obtained when the 

tangential velocity v satisfies the condition: 

2rnv2 IQI (11.32) 

that is the kinetic energy of the transferred particle compensates for the reaction Q-value. 

This is essentially the same formula given by Siemens et al. (1971). 

ii) The semiclassical transfer amplitude transforms under rotations as the product 

Ki (k1)17 2a2(k2 ) -

Thus one can use the addition theorem for spherical harmonics (of complex angles) to 

calculate an explicit expression for the transfer probability by summing over the final 

magnetic substates and averaging over the initial ones 

Ptr (-62 -61) 
2-e1 ± 1 

1 
IA.(e2A2,.eiAi)12 - (1/.33) 

Eq. (II.33) gives the probability for transfer between single-particle states specified by 

their orbital angular momentum .6,, and energy Ea  (a = 1,2). However, one is usually 

interested in the single particle angular momentum j = s, where s is the spin of the 

transferred particle. Therefore the transfer amplitude A(t2 A2, £1A1) needs to be re-coupled 

to j. This is discussed in chapter VII. 
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It is worth noting that the amplitude (11.28) contains recoil effects. This can be seen 

by comparing it with the factorized DWBA amplitude of Dodd and Greider (1969) [cf. 

AnYas-Weiss et al. 19741, where a recoil term of the form exp(imv - r) appears in the form 

factor. The channel coordinates ri and rf are related to the separation s between the two 

cores and the coordinate r2 of the transferred particle x with respect to the core c2 by (see 

fig. II.4) 

r r 

2 
r . 4. 

rf

Fig. 114. Coordinates to illustrate recoil in the reaction al(= c1 + c2 c1 a2(= c2 + 

ri = 
cl + z cl + x 

rf = s 
x 

 r 2. 
C2 + X 

The term in r2 is due to the centre of mass of the composite system being shifted (by 

"recoil") from the centre of mass of the core. 

In our semiclassical approach the exponential exp(imv • r) arises from the Galilean 

transformation (11.12). In this form it may contain the masses of the cores c1 and c2 if v 

is an average velocity. Even in the case when v is simply the relative velocity at closest 
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approach (in the initial or final channel) we still have "recoil" effects due to the finite 

transferred mass m. 

One implication of recoil is its effect on angular momentum and parity transfer. In 

the no-recoil approximation to DWBA the form factor can be expanded in multipoles 

proportional to Yi,,(0, where t is the transferred angular momentum (defined in §VII.1). 

Then the allowed t-transfers are limited by the "normal parity" rule 

(___)t1 +4 = (_)e.

This is no longer true if the recoil phase exp(imv • r) is included. In fact the expansion 

of this phase into partial waves introduces terms with additional angular momentum, so 

that .£ is no longer restricted to normal parity values but obeys the more general selection 

rules of §VII.1. 

The same conclusions on angular momentum transfer can be reached from our final 

expression (11.29). If ki = ic2 the multipole expansion of A(.62 A2, £1A1) will contain only 

£-terms with normal parity (—)i = (—)4 +4. From eqs. (11.26) and (11.17) we can see 

that this happens only if the mass of the transferred particle m = 0 and el = e2. 

general k1 ic2 and this introduces non-normal parity transfers. 

2 6 
I/ 

In 



'p 

9, 

IY 

L92 ttv 

0 

t 

Figurerr.2. 

Projection of coordinate system for the transfer amplitude onto the x — y plane. 

II.3 Physical Interpretation of the Amplitude. 

The transfer amplitude formula (11.28) gives the population of the various magnetic 

substates and depends only on the existence of the surface E between the two nuclei 

introduced in §II.1 and on their separation d. The arguments presented in this section are 

based on a particular location of E given by d2 and d1 = d — d2 (fig.fl.1), and they lead 

to an approximate factorization of the transfer amplitude and to a matching condition. 

The physical interpretation obtained in this way is not completely satisfactory because the 

location of E is not defined exactly. This may not be too serious because the qualitative 

features of the matching condition are not very sensitive to the precise division of d into 
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d1 and d2. The ratio di/d2 must be near the ratio of the nuclear radii and a typical choice 

/3 
would be di/d2 A11 /A21/3, where Al and A2 are the mass numbers of the two nuclei. 

First we write the transfer amplitude (11.28) in a different form: 

A(t2 A2,11A1) = —iir(hlmv)F(Ai, A2 5 nCOLA, (C12 ) 01 k2z)(-1) Al (el-1A kiz)- 

(1/.34) 

Here is the result of the Fourier transform in eq. (II.A.26): 

di. (x, y, kz) = 2C1Ya (0, yo) icA [77 (x2 + y2)1/21, (1/.35) 

where 0, p and 77 are given by eqs. (11.26), (II.A.3) and (II.A.9) in terms of the arguments 

of and the binding energy parameter 'y of eq. (II.21). If the neutron wavefunction is 

y, z) in the initial or final state then (ii; (x, y, kz)I 2 is the probability density for finding 

the neutron with position (x, y) in the plane perpendicular to that of the relative motion 

of the two nuclei and momentum hkz parallel to the relative velocity v (fig. II.1). Thus 

$L A2 (d2, 0, k2z) is the amplitude for the neutron in the final state 412 to be on the surface 

E with y = 0 and z component of the momentum hk2z relative to the final nucleus. The 

quantity (-1)A1 a;e,A, (di, 0, kiz) is a similar amplitude for the initial state. The factor 

(-1)A1 occurs because co l = it at the point of transfer in the initial state (see fig. II.2). 

The quantity F in eq. (II.34) is defined as 

KA' -A2 (77d) 
F(Al, a2, rid) = KAI (ndi)KA2 (O2) 

(11.36) 

Later in this section we show that F expresses a A-matching condition. 

One feature of formulae (11.28) or (11.34) for the transfer amplitude is that the z 

components of the neutron momentum, hkiz relative to the initial nucleus and hk2z relative 
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to the final nucleus, are fixed by the kinematical matching conditions (11.17). This result 

comes out automatically in the quantal calculation of § II.2, but it is expected from the 

following classical argument. Suppose that at the point of transfer on E (see fig. II.1) the 

neutron has z-components of the velocity viz relative to the initial nucleus and v2, relative 

to the final nucleus. If the transition from one nucleus to the other is smooth then viz 

should add to the relative velocity v of the two nuclei at the point of closest approach to 

give the final velocity : 

viz + V = V2z• (11.37) 

If the velocity component of the neutron in the (x, y) plane is v1  at the point of transfer 

on E and if the potentials V1 = V2 = 0 on E then the initial and final energies of the 

neutron are related to the velocities by 

Subtracting gives 

1 f 
6 1 = -2 m(vi2z 

2 ) 2 
6 2 = mtv2z + 2 \

1 2 2 Q = Ei - 6 2 = m(viz v2z). 

Now we solve eqs. (II.37) and (II.39) to obtain 

1 
viz = -(Q + 2-mv2)/(mv), V2z = - -

2
mv2)/(mv) 

These relations are equivalent to eq. (II.17) because Iclz

perpendicular component of momentum is 

111411, 
h and k2z = 

(11.38) 

(11.39) 

(11.40) 

mv,,z 
h • The 

= mv1  = ih (11.41) 

and is purely imaginary. This is because ci and e2 are negative for bound states and 

eq. (11.38) can be satisfied only if v1  is imaginary. 
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Now we discuss the quantity F, which is defined in eq. (11.36) and appears in the 

expression (11.34) for the transfer ampltude. When w is large and positive and n is not 

too large the Bessel function Kn (w) can be approximated by 

Kn (w) (r/2w)112 exp (—w -li n2 /w) . (11.42) 

This form can be obtained from the integral representation (II.22) by approximating 

cosh t 1 —t2
2 

Using eq. (11.42) we obtain 

F(Ai, A2,O) 
r..

(2O1d2 1/2 exp [(Al — A2)2 A2 )t  1 
ird ) 20 2O1 2O2 i 

(11.43) 

The leading terms in the exponent cancel because d = d1 + d2. If h,kly and hk2y are the 

y-components of the neutron momentum on E just before and just after transfer then 

A1 A2 ^ k2yd2 

Substituting these expressions into the exponent of eq. (11.43) gives 

F(A1, A2, 0) -
(2O1(12 1/2 exp [—clid2(k1_ 

— k2y)2]ll 
7rd ) Y

(2O1d2 ) 1/2 exp [—did2 
Al

 + A2) 2] 

7rd ) 277d d2 

(1/.44) 

Eq. (11.44) is a A-matching condition. It implies that F is large only if kly key or 

Al/dl 

Eq. (11.28) gives a closed-form expression for the transfer amplitude in the case of 

neutron transfer when the coordinate system is chosen as in fig. II.1, with the z axis parallel 
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to the direction of relative motion. It is well known (Brink 1972, 1977, Hasan and Brink 

1978, Bond 1980) that when the relative velocity is large, the states populated in neutron 

transfer are polarized perpendicular to the reaction plane. This has been discussed by 

using a coordinate system with z axis perpendicular to the reaction plane. However, in 

this system it is not possible to obtain a closed-form expression like eq. (11.28). 

II.4 Corrections to the Amplitude. 

When there is some overlap between the potentials V1 and V2 during the collision there 

are corrections to the transfer amplitude of § II.1 and II.2. These are of two kinds: first, 

the integrals containing V1 and V2 in eq. (II.8) are not zero; second, the Hankel function 

form (11.19) for the bound-state wavefunctions (Da is not exact. The radial wavefunctions 

are modified because V1 and V2 are not zero on the surface E. Here we estimate these 

corrections and show that they are of opposite sign. 

To estimate the second correction, we write the exact wavefunctions ‘111 and 'y2 of the 

initial and final states as 

Ilia = [1 — ba (r,„)]‘112,, a = 1,2, (11.45) 

where W°,,, are the Hankel functions forms in eq. (11.19). The quantities ba(ra) are positive 

functions because the effect of Vo, is to reduce the radial wavefunctions below their free-

particle values. By using eq. (II.8) the transfer amplitude can be written as 

A(2,1) = A°(2, 1) + AA, 
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where A° is the amplitude given by eq. (11.28). To lowest order in V1 and V2 we write the 

correction as 

AA = AA1 AA2, 

with 

1 +00 
A.Ai= f dt 

ih 
f xliTV2‘11°(1 — b1 — b2)d3r f Tc2)* Vi WT(1 — bi — b2 )d3r] , 

R2

AA2= 
h  f 

+c° 
2rni 

dt f dS • (TT VT?. —11/?V‘Ilf) (b1 b2). 

(11.46) 

(11.47) 

In obtaining these formulae, we replaced WI and 412 in eq. (II.8) by the expressions (11.45) 

and neglected terms containing the products bi b2 and the derivatives of b1 and b2. In the 

expression for AA2, i2 decays exponentially in the positive x-direction (see fig. II.1) 

while T° decays exponentially in the opposite direction. To estimate AA2 , we replace 

the component of the gradient operator acting on xli° in the direction dS by —77 and the 

component of the same operator acting on Wz by n. We do this because according to 

eq. (II.41) ihn is the component of the momentum of the transferred neutron in a plane 

perpendicular to the reaction plane and the biggest contribution to the integral (11.47) 

comes from the region of the E plane near the point of closest approach, y = 0 in fig. II.2. 

With these replacements AA2 simplifies to 

hri 

f 

+OO 
PA2 = f IF?* C(bi b2) dS. 

oo Errn 
(11.48) 

The factor that multiplies -,41K xIi° in eq. (II.46),K,(1—b1 —b2), is negative because such 

are the binding potentials V, (a = 1,2), while the corresponding factor in eq. (11.48), 

- -,-.—„:1-(bi +-b2), is positive. Thus it is clear that AA1 and AA2 have opposite signs. A simple 

32 



estimate of b1 and b2 gives 

00 
bc,(ra) 2 Va(r) dr. 

'Y« fr 

(I/.49a) 

If we substitute this into eq. (11.48) we see that AA'  and AA2 have comparable magni-

tudes, so that the correction AA is smaller than the individual parts AA1 and AA2. A 

condition for AA2 and hence AA to be small is that both b1 and b2 are small compared 

to unity. By using the exponential approximation for the potential Va (r) = Va (ra)e — 11-111

we have 

ma Va (ra) 
ba (ra) h2yet Va(ra) ea 2  < 1. 

II.5 An alternative way of calculating the amplitude. 

(II.49b) 

Here we give a different derivation of eq. (11.28), which makes use of a two-dimensional 

Fourier transform, eq.(II.50) below. This formulation, used by Bonaccorso, Piccolo and 

Brink (1985), allows a better understanding of the physical meaning of the semiclassical 

transfer amplitude and is more easily extended to proton-transfer. We introduce 

(X, /Cy, kz) 
def f  e-ikyy ( x,  y, kz)dY
= 

f

+OO +00 
dy 

—00 
dz e—i(kYY±kzz) .1.(x,y,z), 

—00

where .5(x, y, Icz) is defined by eq. (II.16). Then 

(II.50) 

1 f +' z 
.1.(x,y,kz) = —27r, _co (1.(x,ky,kz) eikYY dky. (II.51) 

If eq. (II.51) is substituted into eq. (II.15) the integral over y gives a 8-function 

278(k2y — kly) 
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which shows that the momentum component of the neutron perpendicular to the reaction 

plane is not changed by the transition from the initial to the final nucleus. This is the 

same condition given by the approximate form (11.44). Then eq. (11.15) reduces to 

A(2, 1) =  ih  +c° C.i
* a
2(d2,k k2z) — Y' ad247mv _zo

a  z* —4.1(d2— d,ky7k1z) ad2 41:0 2 (d2, ky, k2z)1clky

From eqs. (II.50) and (II.11) we obtain 

82 z 

dy 
A2 82

ax2 
4) (X 7 Icy,k z ) = f +c° f +OO dz e-i(kYY±kzz) (V2  

ay2 aZ 2 (X7-00 -00 

(11.52) 

2m f f e --2(1CyY+kzZ)V (x ,

h 2 _. z) 4)(x, y, z)dydz+(-y2-Fky2 d-kzJ J 2):$(x,ky,kz), (11.53) 

where we dropped the subscript a = 1,2 for simplicity. In eq. (11.52) the two-dimensional 

Fourier transforms 4)1,2 are required for a coordinate x = d2 or x = d2 — d on the surface 

E where the potentials vanish. For these values of x eq. (11.53) gives 

where 

82 

ax e
2) = 0, (11.54) 

= Vry2 — V772 + (11.55) 

Eq. (11.54) can be solved to give 

4)(x, ky,kz) = B(Icy,kz)e— lxl (11.56) 

So the x-dependence of 4. is a simple exponential, while the quantity B has to be deter-

mined. By substituting eq. (11.56) into (11.52) we find 

A(2,1) =  
ih  

.1_ 
7, 

2 (cl2 ,ky,k2z)(1.1(d2 — d,ky,kiz)dky 
27rniv OO 
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27rmv _co
e — ed B2 (ky,k2z)Bi (ky,k1z) dky. (11.57) 

Even before calculating explicitly the quantities B and before the final integration on ky

eq. (11.57) shows that the semiclassical transfer amplitude decreases exponentially with 

the distance of closest approach d. The coefficient B(ky,kz) is calculated in Appendix II.B. 

By substituting the result, eq. (II.B.15), into the transfer amplitude (11.57) we find 

+0̀) e — ed 
AV2 A2, t1 A1) = 

my 
Ci2 (-1)A1  Yle2A7. (k2)YeiAl (ki) dky (.11.58a) f,  _

where 

+co d 
Cei Ce2 ( —1) 1 Yti AM Ai Y;2 7 A (P2 f 

2 
- A1)V02 e e 

oo 
dky  , (II.58b) 

my

kk«=  1 (a = 1,2). (11.59) 
2 

The vectors kc, in § II.2 are a particular case for ky = 0. This is because in that coordinate 

representation the reaction plane (x — z) is a symmetry plane. In eqs. (II.58a) to (/1.58b) 

we used eqs. (II.B.9) and (II.B.10) which show that 00 # does not depend on ky and 

cos (poi = — 1 — — cos (p02 while sin (poi = sin (p02 and then (poi = 7r — cO02. By expressing 

and co02 from eqs. (1/.56) and (II.B.10) in terms of 77 and ky the integral in eq. (II.58b) 

can be written as 

ky A2---A. 
f LV1

cw1 + (kyl77)21 + (ky/02c. 
+co exp[-77 

+ (ky/0 2 77 

f- OO 

+co 
— nd cosh tz-k(As—A l) u du =2KA2--A1(0), 

dky

(11.60) 

where we changed the integration variable from ky to u, defined by ky = i sinh u, and used 

the integral representation (1/.22). Then eq. (11.58) gives 

A(2,1) = —47ri —h Cti Ct2 (-1)A1 (77d), (11.61) Yei AI PIA 174A, (02,0) KA2—Ai 
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which is the same as eq. (11.28) because Kv(z) = K,(z). 

Now we consider the physical interpretation of the double Fourier transform 

e —elxl 
lea (x, ky, kz) = 2iri CE Yea (k)   (11.62) 

The quantity D(x, ky, kz)I 2 gives the probability density that the particle be found at a 

distance x between the two nuclei with z-component of its momentum (along the axis 

of relative motion of the two nuclei - cf. Fig. II.1) given by the kinematical conditions 

(11.17). Eq. (11.57) gives the transfer amplitude essentially as the overlap of two factors: 

the amplitude .1.1(d2 — d,ky,kiz) that the particle be on the surface E before transfer with 

momentum 

ki, = - (Q -1 
2

mv2) /(hv) 

times the amplitude '1.2 (d2, ky, k2,), where the momentum has changed to 

k2, = — (Q — mv2) /(hv). 
2 

That is when the neutron jumps from one nucleus to the other it compensates for the rela-

tive motion by "running" in opposite directions before and after the jump (cf. Von Oertzen 

1985). 

Moreover, the form (II.58a) of the semiclassical amplitude can be used in alternative 

to the approximation (11.29) to calculate the transfer probability, eq. (11.33), between 

single particle states of specified orbital angular momenta 11 and £2. By making use of the 

addition theorem for spherical harmonics (of complex angles) we find 

f +00 (+OO e -
p tr(t2,  = ( 

2mv 
Ct i ) 2

(2e2 + 1) L oo L oo   Pt, (kI • 14)Pe2 (k;  - P2)dkydey, 

(11.63) 
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where Pe is a Legendre polynomial. One can evaluate numerically the double integral in 

eq. (11.63) but it is interesting to make a further approximation and single out the depen-

dence of the transfer probability on the product rid. In eq. (11.63) the main contribution 

comes from ky 0 ley. Then, from eq. (II .55), 

k2

277 

and we also assume 

ttt ,72 ±  
2 

ley2 
+  

(kley ) 2

SSA 
2 

2 
217

 
. 

With these approximations Stancu and Brink (1985) obtain 

7r (hc ei 2 

Ptr(-62,t1) = 2 
ag ,- ) (222 + 1) e 

77d 

-2nd 

Me,e2, 
my 

(11.64) 

where the quantity Me, e2 contains only a one-dimensional integral to evaluate numerically. 

From numerical comparison with eq. (11.63) they find this result accurate within 1%. 

Eq. (11.64) shows explicitly the exponential decrease of Pt r . This expression has been 

used by the same authors to calculate the imaginary part, Wira„, of the optical potential 

due to transfer between heavy ions. The latter is related to the transfer probability from 

all levels in nucleus 1 to all levels in nucleus 2 by 

2 / 4', r „ 
vvtransiRWiat = P21 + P12, (11.65) 

where R(t) is the classical trajectory. The expression (11.64) suggests for the potential at 

the strong absorption radius d 

—20 
Wtrams (d) = woe .
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As we saw in eqs. (II.30) and (11.31), the quantity 77 depends on the energies of the single 

particle levels taking part in the transition. Therefore the absorptive potential is obtained 

by summing eq. (11.66) over all possible transfers from nucleus 1 to 2 and viceversa. In this 

way one studies the effect of the shell structure on the depopulation of the elastic channel. 

Stancu and Brink (1985) find that sometimes very few (or one) transitions contribute to 

Wtrans while in general at higher incident energy more transitions are important. This can 

be explained in terms of the damping parameter 77. Eq. (11.64) shows that the maximum 

transfer probabilty occurs when i is minimum, which happens when the incident energy 

per nucleon Ed 1/2 mv2 at the distance of closest approach d satisfies the condition 

(11.32). If one assumes d as the radius of the Coulomb barrier VCB, the energy Ed is given 

by (cf. chapter VII) 

Al +  A2 
Ed =  VCB) = En 

Al ± A2  
VcB, A1A2 AiA2

(11.67) 

where En = Elab/A1 is the incident energy per nucleon and A2 is the target mass number. 

For Ed = the quantity 77 takes the value 

.\/-2m0j. = if Q < 0; 
(11.68) Amin — -p,/-2mE2 = -y2 , if Q > 0. 

When Ed < the quantity 77 decreases with increasing incident energy. Then one expects 

the contribution of the transition el --+ 02 (Q = ei —02) to the absorptive potential (11.66) 

to become stronger. When Ed > IQ the quantity 77 increases with the incident energy and 

the transfer probability (11.64) decreases. 

For a given value of the initial binding energy 01 and relative energy Ed, we have 

maximum transfer when 

E2 = El + Ed 
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and n attains the value -11 = V-2ms-i /h. The relation (11.69) means that as the incident 

energy is increased a transition from a bound state (6.1 < 0) favours an increasingly `loose' 

final state, to the point that when Ed ≥ 'Eli the energy E'2 can be positive. This implies 

that for high incident energies transfer to continuum levels becomes important and should 

be included in the calculation of the absorptive potential. 

For the particular case Ei = E2 = E(< 0), e.g. the ground state transition 

12c(13c , 12 ct)13c 

studied by Von Oertzen (1985), we have from eq. (11.30) 

(—Ed — 2E), 11(Ed,Q = 0) — 
2 

(11.70) 

which is a monotonically increasing function of the incident energy. Then one expects the 

transfer probability to decrease steadily with increasing energy. The energy dependence 

of transfer cross sections is discussed in more detail in chapter VII. 
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Appendix II.A Calculation of a Fourier transform. 

Here we calculate the Fourier transform 4) which appears in eq. (11.15) and is defined 

by eq. (11.16): 

+OO 
;$1), (x, y, k) d =!--f z)dz, (II.A.1) 

where we now introduced the orbital angular momentum quantum numbers 1, A of the 

bound state wavefunction (D. 

The form of CA gives some immediate constraints for the Fourier transform CA. If 

the binding potentials V1 and V2 have radial symmetry or vanish -as we shall assume later 

on- the wave function CA in polar coordinates can be separated into the product of a 

radial part, f, and a spherical harmonic Y: 

(r, 6, Co) = fi(r)Y D, (0 Co) = f i(r)YIA (0, ei = Ala (r, 0, 0)eiAP. 

The spherical polar coordinates (r, 0, cp) are related to the rectangular coordinates (x, y, z) 

by 

where 

x = p cos p, y = p simp, z = r cos 0, (I I .A.3) 

p = /x2 y2 = r sin 0 (II.A.4) 

defines the relation to the cylindrical polar coordinates (p, co, z). Since (p does not depend 

on z, substituting eq. (I I .A.2) into eq. (II.A.1) gives for the Fourier transform in cylindrical 

polar coordinates 

:$1A (P) 40, = Ala(p, 0, k)eiA `P (II .A.5) 
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Moreover, the bound state wavefunction Ica -+ 0 as p ---+ oo. From this follows that 

A la (P) CO7 k) 0 as p OO. 

Since in eq. (II.15) the Fourier transforms .51 and ;$2 are only required on the surface 

E, which is supposed to be outside the range of the potentials V1 and V2 during the whole 

collision, the function LA in eq. (II.A.1) is the solution of the free-particle Schrodinger 

equation 

—(11,2 /2m)V2 .1)1A (r) = (r) 

or 

(V2 7 2  ) "1.>t = 0, (II.A.7) 

where -y is related to the bound state energy E by E = —h2-y2 /(2771). As a consequence, the 

function i>1), satisfies the two-dimensional equation 

where 

( 32 82 
aX2 

+ 
ay2 

77 2) LA = 0, (II.A.8) 

= .\/k2 (II.A.9) 

The solution of eq. (II.A.8) which tends to zero as p --+ oo is given by (Abramowitz and 

Stegun 1970 p. 374) 

i; 1 (p, cc, k) = D1  (k) K (77 ei A .A.10) 

where the coefficient D1  (k) has to be determined and Ka is a modified Bessel function. 

There are several ways of calculating the coefficient DIA (k) and it is interesting to 

compare them. 
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1) saddle point method. This is the simplest derivation (Lo Monaco and Brink, 1985). 

Though based on an approximate formula, eq. (II.A.16) below, it gives the same result as 

the rigorous derivations which follow. The solution of eq. (II.A.7) is 

(r, 0,P) = C1^/X1(-Yr)YIA (0,40), (II.A.11) 

where 

Xibr) —i1141) (i-yr). (II.A.12) 

The function hl ) in eq. (II.A.12) is a spherical Bessel function of the third kind 

(Abramowitz and Stegun 1970 p. 437). To evaluate D1\ we calculate the integral (II.A.1) 

when p and r are large. Then X1('yr) and KA(77p) can be replaced by their asymptotic 

forms valid for large arguments (Abramowitz and Stegun 1970 p. 364, 378) 

Xl(Yr) -yr KA(71P) 
e-FIP

 277p 

and eqs. (II.A.11), (II.A.1) and (II.A.10) give 

(II.A.13) 

7r e _npeiAso 17-) yiA  (0,  0)dz  

DIA (IC) \ 2qp 
L A (p ,  co , k) CleiAsa f exP(—iicrz OO 

Therefore 

DIA (k) = 
277p en' 

[+OO exp(—ikz — -yr) 
y0,0 ,0)dz 

it co r 

(II.A.14) 

(II.A.15) 

We calculate the integral in eq. (II.A.15) by the saddle-point formula (e.g. Brink 1985, 

P. 194): 

f +OO (z)eif (z) dz 27r
1/2 

g 
00 

g(zo) 
_ f"(zo)l 
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iff(z0)—xl ,
e

(II.A.16) 



where zo is the saddle point given by f'(zo) = 0 and the phase x = 1/2[arg f "(zo) — 

5/2}. Eq. (I I .A.16) can be used when g(z) is slowly varying, that is g(z) should not 

change much in the range z — zo l i Az, where 

Az= [nzo)]-1/2 ( II. A . 1 7) 

is a measure of the width of the saddle region. To use the formula (II.A.16) in the integral 

(II.A.15) we put 

f (z) = —kz i-yr, g(z) = YlA (0, 0)r 

The saddle point 20 is determined by 

where 

f'(zo) = —k ( Yz°
r0

ro = 2 ± zi3 

Eq. (I I .A.19) can be solved in terms of r0 to give 

^IP 
ro = 

77 

where i  is given by eq. (I I .A.9). Then follows 

. kr, . lc p 
zo = — 2 — = —2 —, 

( II . A.1 8 ) 

(II.A . 1 9 ) 

II.A. 2 0) 

(ILA . 21) 

The stationary angle 00 is given in terms of 20 and ro by the relations (II.A.3) and (II.A.4) 

z0 
COS 00 = - = - 

7.0 
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77 sin 80 = — = 
ro -y 

( II. A .22) 



In order to evaluate (II.A.15) we also need 

and 

f (zo) —kzo i-ro = ik2 i•-y2 (II.A.23) 

f il (zo) = 1 7P2 = i 
ro3 

  x = 0. (II.A.24) 

Substituting (II.A.18), (II.A.22), (II.A.20), (II.A.23) and (II.A.24) into (II.A.16) we 

find 
f 00 exp(—ikz — yr)-  

yo, (0 ,O)dz = Ya  (00, 0) -y \/27rp 
I - OO ro n3/2 e

= YlA (00, 0) 
271" 

-71P — e , 
rip 

so that eqs. (II.A.15) and (II.A.10) give 

D1A(k) = 2 C1 YlA (00, 0), 

eta (P, co, = 2 C1 YD, (00, 0) Ka (r1P) eiAS° = 2 CI ITIA(Oo,(P) KA(7 7 P), 

(II.A.25) 

(II.A.26) 

where (p, co) are related to (x, y) in eq. (II.A.l) by (II.A.3) and (II.A.4). We should check 

the assumption that g(z) defined in eq. (II.A.18) does not vary significantly for z within 

the range Az of zo, where Az is given by eqs. (II.A.17) and (II.A.24). The variation of 

g(z) is 

Ag(z) = 
1 dYiA(0,0) d0 1 

r dB dz r2 
Y1A(0,0)

771/2 { 77

'7P3i2 •-Y 
- dYIA (0,0) 

Az 
z=zo 

d0 
liA(00,0) 

_ 0=00

Then Ag can be made smaller and smaller by choosing p bigger and bigger. 

ii) generating function method. Consider the expansion (Abramowitz and Stegun 1970, 

pp. 440 and 437) 

r — al 

00 
= —47r 12, E jl (i-ya) W) (i-yr)171' (a) 

1=0 A=1 
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(II.A.27) 



where a is a vector with modulus a < r and direction a E--_ (0a, Oa), jl is a spherical Bessel 

function of the first kind and Y1A is a spherical harmonic. By inserting eqs. (II.A.12) and 

(/I.A.11) into the definition (II.A.1) we have 

+OO 
IA(X, y, k) = -C1 -y itf e-ikz h1  (..77 \ 

) YIA(0 ,c0) dz. 
-co 

Multiplying eq. (II.A.27) by Crye-ikz and integrating over z we get 

+cc 
-ikz e 

J-OO ir — al dz
IA 

(II.A.28) 

ji(i,ya) YII(a) 1A (0,yo,k) (II.A.29) 

Let p and al  be the projections of r and a onto the x — y plane. Then 

r — al = — I2 + (z — a z) 2 , 

where ax = a cos 0,,. By changing the integration variable from z to z — a, and using the 

integral representation 

Ko(c-Vb2 d2) = 1 f 
•Vc2 + x2

+O° e—ibz exp(—dVc2 + x2) 
dx 

2 -OO  (II.A.30) 

for the modified Bessel function of order zero, the l.h.s. of eq. (II.A.29) can be calculated 

and we obtain 

2Cle—ikaz Ko(rlip — a j_I) = 47r > j1(i'Ya)Yij (a)DIA(k)KA(rip)eiA`Pi—1, (1. I .A.31) 

IA 

where we introduced eq. (II.A.10) in the r.h.s.. Now consider an addition theorem for 

Bessel functions (Abramowitz and Stegun 1970) 

OO 
Ko(w) = > Kn(u)in (v)e,Tha, 

n=—oo 

45 

(II.A.32) 



where w = (u2 +v2 —2uv cos a)1/2. This relation is valid for any u, v, a, w complex, provided 

Ivei'l < u. Then we have 

Ko (771p — al _ l) = Kn (77P).in (77al)ein(P-0a). 

n=—co 

By substituting this result into the I.h.s. of eq. (II.A.31) and writing the sum in the r.h.s. 

as E00 O 
A __OO E i 0 j AI we get for any a 

2Cie—ika'IA (ria±) = 47r >ji(i-ya) YiA (0„, 0) Du (k) i-1
i=jAl 

By summing over A from —oo to +oo and using the expansion (Abramowitz and Stegun 

1970) 
CO 

ez = 

in the l.h.s. we have 

2C1 exp(—ika, + 77a1) = 47r 
IA 

I k (z) 

.7.7(i-Ya)Yi*A(0a, 0)D1A(k)(—i)1 • 

The argument of the exponential in eq. (II.A.33) can be written as 

77 -ya(—i—
k 

cos 0a + — sin 0a) 
'7 'Y 

(II.A.33) 

Consider the expansion of the exponential in terms of spherical Bessel functions 

(Abramowitz and Stegun 1970) 

00 

ezcose = >,...: 

n=— co 
(2n + 1)in (—) nj n (i.Z)Pn (COS 0) 

valid for any z and 0 complex. Then, from eq. (II.A.33), 

00 .k 77 2C1 >,....: (2n + 1)Pn (-1— cos Oct + — sin Oa ) = 47r 
1 -7 n=—oo IA 

Y i*A (0a, 0)D1A (k) . (I I .A.34) 
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If we define 

n 
cos )3 = —z. —

k
, sin /3 =

1 '7 

and use the addition theorem (for complex angles) 

Pn (cos # cos Oa + sin # sin Oa) = 

we get 

from this follows 

47r E YnA(0, 0)Yr*LA (Oa) 0) 
2n + 1 

n 

A= —n 

2C147r E YEA (1(3) 0)11 4A (ea) 0) = 47r EY,i(oa,o)D,),(k). 
IA IA 

Dv, (k) = 2 C1 Yv,(P,0). (II.A.25) 

The above results can also be obtained with a third method which uses raising and 

lowering angular momentum operators. 
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Appendix II.B Calculation of a two-dimensional Fourier transform. 

We evaluate the coefficient B(ky,k,) in eqs. (11.56) and (11.57) in a way very similar 

to the method i) employed in Appendix II.A. For large values of Ixl we substitute eq. (11.20) 

into eq. (11.50) and obtain 

+co f +00 YIA (0 (O) 

'T'IA (X, ky, Icz) —Cd f dy dz exp(—iky y — ikzz — -yr) 
r

'YY  = B(ky,kz)e — lxl, 

(II.B.1) 

where we used eq. (11.56). Now we calculate the integral in eq. (II.B.1) by the saddle 

point formula in two dimensions (e.g. Brink 1985, Appendix B, § 4) 

../ 
+00 +OO 27r  ei[f(Y0,z0)—X], (11.B.2) 

—00 
dy 

f OO 
dz g(y,z) eif(Y'z) g(yo, zo)  

det fik (Yo,zo)I1/2—

where j,k stand for y or z, the stationary point (if there is only one) Po (yo, zo) is given 

by the condition that the derivatives 

f ( Po ) = fz ( Po ) = 0 (II.B.3) 

and the phase 

X = (m — 1); (II.B.4) 

where m is the number of negative eigenvalues of the matrix {fik (Po)}. In eq. (II.B.1) we 

put 

f (y, z) = i7r — (kyy ± kzz), 

g(y,z) . Yix(0,(P) 
r 

Then Po is determined by 

fy (PO = 
iyyo

- ky =0 = fz(P0) = Z0 — kz, 
ro ro 
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(II.B.5) 

(II.B.6) 



where ro = Vx2 + z2. Eqs. (II.B.6) can be solved to give 

ro -=
lyjx 

Yo = —iky— 
o 

= i  
e 

Y 
' 

(II.B.7) 

r0 zo = —ikz— = i
ixikz 

' 

where e is defined in eq. (11.55). Eqs. (II.B.7) show that in our case the stationary point 

is unique. Therefore 

YIA (00, cO0) 
9(x' 0) = (II.B.8) 

ro

where 

and 

Zo .k z Vx 2 + = -V12 + cos Bp — = sin 00 =   = — (I/.B.9) 
ro r0 7 'Y 

Yo  . k 
cos coo =   = , sin coo = = (H.B.10) 

ro sin 00 ro sin 00 17 

Eq. (II.B.9) gives the same stationary (complex) angle 00 as eq.(II.A.22). In eq. (II.B.10) 

cos (pp has the same sign as x. Substituting eqs. (II.B.7) into eq.(II.B.5) we also get 

„12 ix! k2 (xi \ 
if (-Po) ' +  +  z = 

e e e i 

We also need the second derivatives 

2 2 2 2 
. x zo Yozi3 , „ , . x yo 

fyy (Pal 3 , fyz(P0) = 3 = Tzy-1-0), IzzV --0) = 3 , 
r0 ro ro

so that 

det{fik (1)0)} 
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r02 
(II.B.12) 



The matrix {fik(Po)} has no negative eigenvalues. Therefore, from eq. (II.B .4), 

71-
X = -2- • 

Collecting the various terms for eq. (II.B.2) we find 

(II.B.13) 

dy dz exp(—iky y — ikzz — -yr) YlA C°) = 27iY1A PO (PO) e-  x i J_co (//.B.14) 

and then, from (II.B.1), 

B(ky,k,) = 27r i Cl 
YlA 001 (PO) 

• 
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Chapter III. Angular Distributions. 

Classical cross section and transfer probability. 

The simplest way to calculate the transfer cross section is to multiply the elastic cross 

section by a transfer probability 

o-t,.(8) = aei(8)Ptr(8)• (111.1) 

If Lei is the exact elastic cross section eq. (III.1) can be taken as a definition of the transfer 

probability for the scattering angle 0. For instance crei(0) could be the measured angular 

distribution or one calculated with an optical potential which fi ts the elastic scattering. 

The transfer probability will be calculated from our semiclassical amplitude along definite 

trajectories specified by the impact parameter b or the relative angular momentum A. Then 

one has to relate trajectories to scattering angles. In the classical description one solves 

the equations of motion in a ion-ion potential and determines the deflection function 0(b) 

or 0(4 Once this is known eq. (III.1) reads 

ut,(0) = o•ei(8)Ptr[A(8))• 

A further approximation is that the elastic cross section is given by the product of the 

classical cross section 

times a reflection coefficient 

( do-

cl as sin 0 

db 

2 = exp (-41-m0L). 
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In these formulae the classical angular momentum A is related to the angular momentum 

quantum number L of relative motion by 

A = + -2) h.. 

In a rearrangement reaction the deflection function in the final channel is different from 

that in the initial channel because of the transferred energy, angular momentum and mass. 

To take this into account one can use the geometric average between the two cross sections, 

d11 

dcr da) 

c1S1)in. ) fin. ' 

but for this discussion we limit ourselves to the simpler formula (VII.2). The reflection 

coefficient S12 in eq. (111.4) gives the probability that the system escapes absorption into 

other inelastic channels. It is expressed in terms of the imaginary part of elastic scattering 

phase shifts 6L = 8L + 5,r, where Of are the Coulomb phase shifts and off are the nuclear 

phase shifts. The latter can be obtained either by numerical solution of the Schrodinger 

equation with a complex potential U = Uc + UN or by first order WKB approximation. 

Considering the whole nuclear potential UN as a perturbation one obtains for the nuclear 

part of the phase shifts (e.g. Brink 1978, p. 13) 

1 
N —

2h 
UN[rc(A,t)] dt, 

-OO 

where the integral is taken along the Coulomb orbit corresponding to classical angular 

momentum A = (L + 1/2)h. Alternatively, one can parametrize the nuclear part of the 

radial S-matrix SN(L) exp(2iStf ) and study, for example, the energy dependence of 

the cross section without the intermediate step of an optical potential, as it is done in 

chapter VII. 
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For large impact parameters one has a Coulomb trajectory and the deflection function 

is given by 

0 
L 1 = n cot (-0 , 

where n = zkz2 e2 is the Sommerfeld parameter and v„„ the asymptotic relative velocity. 

The classical elastic cross section is given by the Rutherford formula 

( du) ( 1  

cin) = = 4 (sin al 
47cias

where ac = Zi Z2 e2 / (2Ec.m.) is half the distance of closest approach in a Coulomb head-on 

collision. For smaller impact parameters, where the distance of closest approach is within 

the range of the ion-ion nuclear potential, the deflection function is bent forward and there 

is a singularity at g= 0 (rainbow angle). In general two or more impact parameters bi (0) 

contribute to the same scattering angle and eq. (III.3) should be modified into a sum over 

bi (0). However, for small impact parameters more nuclear reactions take place and absorb 

flux from the elastic channel. Absorption is accounted for by the factor SI2 , eq. (III.4). 

Therefore trajectories with small impact parameters, for which the deflection function 

differs appreciably from the Rutherford, are strongly absorbed and do not contribute to 

the quasi-elastic process we are considering here. As a result one can still use the simple 

forms (II1.3) and (III.7). In this case eq. (I II.1) becomes 

ot,.(o) = aR (0) IsA(e) 12Ptr [A MI• 

The effect of the nuclear potential on the Coulomb trajectory can give a shift in the peak 

of the angular distribution predicted by eq. (III.8). This shift, ON, can be calculated as a 

perturbation to the Rutherford scattering angle OR. Let 

0 = OR + ON (H. .9) 
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be the total scattering angle. We use the well known relation between the phase shift and 

the classical deflection function (e.g. Broglia and Winther, 1981, p. 131-132) 

asN ad 825N 
ON = h2 =

aA aA. ad ' (III .10) 

where d is the distance of closest approach for a Rutherford trajectory. d is related to the 

classical angular momentum A by 

kd = n 
2 A 

where k is the asymptotic wave number of relative motion. Then we have 

ad _1 -Vd(d-2ac) 
aA  h k(d — ac) 

(III.11) 

(.1. II .12) 

Here ac = n/k is half the distance of closest approach in a Coulomb head-on collision. 

Approximating the ion-ion real potential UN in eq. (II 1.5) by an exponential (e.g. Brink 

1978, p. 11-15 - also cf. chapter VII where the same approximation is used to relate a 

parametrization of the phase shifts to the imaginary part of the optical potential) we find 

\/27rad 
28N N  

vd 
UN (d), 

h
(II1.13) 

where a is the diffuseness of UN and vd is the tangential velocity at the distance of closest 

approach d. vd is related to the asymptotic velocity voo by 

Vd = V 

From eq. (III.13) we have 

— 2ac 
d • 

a2aN _ V27ra UN(d) 1 ac  d  1 

ad — hvoc,  2ac  2 d — 2a, a exp ( Ra—d ) + 1 

(III .14) 

(III .15) 

If 
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where R is the radius of UN and a its diffuseness. Substitution of eqs. (III.15) and (III.12) 

into (III.10) gives 

oN = 
V'7rad 1  UN (d) 1  aC  d  1 

2 d — ac  Ec.,,. 2 d — 2a, a exp( R-a-d ) + 1 
(111.16) 

This is the correction to be applied to the Coulomb scattering angle OR given by eq. (III.6). 

As an example, for the reaction 2°8Pb(16O,15O)2o9p. ( b gs .) at Elab = 139 MeV, the formula 

(III.8) gives a maximum cross section at OR = 49.1° and eq. (III.16) produces a correction 

ON = —5.1°, which shifts the peak forward and brings it closer to the experimental result. 

The transfer probability on the r.h.s. of eq. (III.1) or (III.8) depends on the quantum 

numbers a that specify the initial and final states. In a more general form the classical 

expression (III.8) is: 

do-(0)1 . rdo-(B)
1

ail i c, I. clii id ISL(e) I 2
P1(6) 

(a). (111.17) 

The simplest case is transfer between single particle states specified by their orbital angular 

momenta -el and £2. The expression for the transfer probability is obtained by summing 

over the final magnetic substates and averaging over the initial ones: 

1 
Ptr (t2) tl) = 221 4. 1 

X1A2

where A is the semiclassical amplitude given by the formula (11.28) for neutron transfer. 

However, one is usually interested in the single particle angular momentum j =1+ s, where 

s is the spin of the transferred particle. Therefore the transfer amplitude A(£2 A2, ilAi) 

needs to be re-coupled to j. This can be obtained by redefining the transfer probability as 

Ptr(3.233.1) =  
231 + 1 

1 

ml m2 
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IB(j2m2,iimi)12, (I- II .19) 



where B is related to the semiclassical transfer amplitude A by 

B(12m2,1imi) = <1217121t2A2sm, > A(t2A2, 4 Ai ) < 21A1smsl11m1 > 
A, A2 m. 

Here ma is the z-projection of the spin of the transferred particle which is not changed by 

the transfer process. If we consider the transfer of a particle x from the single particle state 

(£1,j1) in nucleus a1 = c1 x to the single particle state (22 , j 2) in a2 = c2 x, we have 

a = where ik is the spin of nucleus k, and the transfer probability is 

given by: 

Ptr Val 7 1-C2 

where 

1   
, E E icolcix.2,mai mc2)I2'162) (2/a, +1)(2/c2 +1) M ai  Mc2 Mei Mat 

210, 2 + 1 

C (X i  Ma2 7 Mai M e2 

.1 ) 
(2Ic2 + 1) (212 + 1) Pt r 1

m1 m2 

< ia2 ma2 I-Tc2 Mc2i2m2 > B(~2m27 1m1) 

(III.21) 

< Ic1Mc1jim1II61M61 > (111.22) 

and Ptr .7.1) is the single particle transfer probability defined in eq. (111.19). 

According to which angular momenta are considered, eqs. (III.18), (III.19) and (III.21) 

define transfer probabilities by summing over final states and averaging over initial states. 

In chapter IV we show some angular distributions calculated with eqs. (III.1)-(III.21) and 

compare the various approximations mentioned above. One obtains a bell-shaped angu-

lar distribution in qualitative agreement with the data. The peak at or near the grazing 

angle is explained as the result of absorption for small impact parameters (correspond-

ing to large scattering angles) and the exponential decrease for larger impact parameters 

(corresponding to small scattering angles) of the transfer probability. 

56 



III.2 Semiclassical partial wave sum. 

When diffraction effects are present (cf. Fig. I.12) eq. (111.8) gives completely wrong 

angular distributions. One could try to improve the results by calculating Pt,(0) in 

eq. (111.1) as the modulus square of some partial wave sum over the relative angular 

momentum. In this way several waves (in particular near-side and far-side waves) could 

interfere and contribute to the same scattering angle O. Also the elastic cross section 

should be calculated as a partial wave sum. Then there is no advantage in maintaning the 

approximate factorization (111.8) but it is still possible to use the semiclassical transfer 

amplitude of chapter II in a partial wave formalism. A theory suitable for our discussion 

was developed by Hasan and Brink (1978). Starting from the DWBA full transition ma-

trix they obtain a partial wave formula which contains the semiclassical transfer amplitude 

(11.28) as one term of the sum. Here we give an outline of their method. 

By making a WKB approximation for the distorted waves 

x(r) x(s) ek(r—.).P(s), (111.23) 

where s(t) is the classical trajectory of relative motion and p(s) is the local momentum, the 

six-dimensional DWBA transition amplitude can be written in terms of a form factor G(s) 

which contains the bound state wavefunctions, the interaction potential and the momenta 

pi and pf: 

T = f x(7 )* (s) G(s) (s) d3s. 
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By expanding x,f) (s) in partial waves, they have 

(47)3/2 
T =  E V2Li + 1 ei i8i (Li )+6f (Lf )1 i Li—Lf AIL". m f (0, cO) I(Li, L f f). 

Vkikf
LiL f Mf

(111.25) 

The z-axis of the coordinate system coincides with the direction of the incident momentum 

ki while 0, yo are the polar angles of the final momentum kf . Si,f (Li, L f ) is the sum of the 

Coulomb and nuclear phase shifts in the initial and final channel, respectively. The term 

1 co 
I (Li, Lf, Mf)= 

J 
fLf (S) GL i f  (S) 

.\/ kik f 

where 

2r 

G MT, (S) f sin0sdOs f Yr* A,- (0 ) G(s 0 f S S, 

0 

f (s) ds, (111.26) 

S ) 0(0 Sl ) (111.27) 

and fl if are the radial parts of the expansions of xiV(s). Then Hasan and Brink (1978) 

make the following approximations. 

i) Large values of the angular momenta of relative motion Li, f. This is justified for heavy-

ion reactions because partial waves with small L's are strongly absorbed. 

ii) Transferred angular momenta small compared to Li, f . 

iii) Semiclassical evaluation of I(Li, L f ,Mf), eq. (111.26), by using WKB wavefunctions 

for the radial functions h i,f . This is similar to the approach of Landowne et al. (1976). 

iv) The orbits are not too different in the initial and final channel, so that they expand 

about the final orbit. 

v) For forward-angle scattering the component of pf perpendicular to the incident direction 

is not very large, so that the dependence of G(s) on the scattering angles 0 and go can be 

neglected. 
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The final approximate expression they obtain from the DWBA transition amplitude 

is: 

CO 

Tv2A2,t1A1) .iAi-A2 E -V2L + 1 ei[5i(L)+6f (L)1 AIL(e2A2, tiA1) YL ,A1 —A2 (0 ) 0) 

L=0 

(111.28) 

where we specified the orbital angular momentum quantum numbers (21 .11) and (t2 A2) of 

the initial and final bound states ?pi and '02 . The amplitude A'L (t2 A2,11A1) in eq. (III.28) 

is related to the semiclassical transfer amplitude A calculated in chapter II by the rotation 

A'(12 £1Ac.) 
A2 

dal Ai (8/2) dt -' A2 (0/2) A(12A2,21A1), 

where 4,, is a reduced rotation matrix (Brink and Satchler 1971). 

The differential cross section 51 2- for the reaction 

or 

al ± c2 c1 a2

(c1 + x) + C2 —4 C1 + (C2 + 

(111.29) 

is obtained by re-coupling the transition matrix (III.28) to the spins that define the initial 

and final states, in the same way we did for the transfer probabilities, eqs. (III.19)-(TTT.21). 

For transfer from a single-particle state with spin j in nucleus al to a single-particle state 

with spin 12 in nucleus a2 we have 

do- 7r µi  21a2 + 1 
d1 k2 /if (21,2 + 1)(23.1 + 1)(212 + 1) 

where 

T(j2m2,jimi) = 

T(j2m2,igni)12, 
T1117712 

(111.30) 

< tiAism sljlm1 >< t2A2SMsli2M2 > (t2A2, tiAl) • (1. 11 .31) 

A1 A2 m. 
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In eq. (III.30) k is the wave number of relative motion in the initial channel, Ai,/ are the 

reduced masses of the initial and final system, respectively, I a, and I„ are the spins of the 

final nucleus a2 and of the core c2 . In eq. (III.31) s is the spin of the transferred particle 

and m, its projection along the z-axis. 

The formulae (III.28)-(III.31), together with the semiclassical transfer amplitude of 

chapter 2, provide a simple way for calculating angular distributions. They are used in 

chapter IV and compared with experimental data. One merit of this formulation is that, 

alike the classical expressions (III.8) or (III.17), the various components of the transition 

matrix, eq. (III.28), are factorized and one can `see' how the reaction is taking place 

physically. The elastic scattering is contained in the factor 

and absorption in the factor 

where we put 

ei2 R e 6 (L) 

e-2Irn6 (L) 

(111.32) 

(111.33) 

25(L) = Si (L) + 81(L) and 8i,f = ReSi,f iImbi, fj (111 .34) 

the transfer process is given by the amplitude A'L (12 A 2 , t i A i ) and the rest are geometric 

factors. 

At the same time trajectories with different relative angular momenta L can interfere in 

the sum (III.28) to produce scattering at the angle 0. This is a typical quantum feature. 

In fact eq. (III.28) has the form of the ansatz (I.2) but we do not need to parametrize the 
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partial wave amplitudes. With the notation of eq. (I.2), these are now given by the theory 

as 

gL = -V2L +1 ei[6i (L)±6f (L)1 Aii,(t2A2,tiA1). 

The approximations made in the derivation of eqs. (III.28)-(III.31) seem reasonable for 

heavy-ion transfer reactions at incident energies above the Coulomb barrier, where an-

gular distributions are peaked at forward angles (cf. chapter I). However, the range of 

applicability of these formulae is restricted to well matched reactions, as this is a funda-

mental assumption in the derivation. We shall see in chapter IV that a change in the 

relation between the distance of closest approach and the angular momentum from the 

initial channel, di(L), to the final channel, df (L), alters the magnitude of the cross section 

but not the shape of the angular distribution. 

Last, we note a property of the partial-wave formula (III.28) that simplifies the calcu-

lation of the total (=angle-integrated) transfer cross section. By integrating over cin either 

the classical formula 

do-(6) = b db 

c112 sin 0 0, dO ISL(6) I 2-1Di r(B) (a) (111 .35) 

or the partial-wave angular distribution (III.30) we obtain (almost) the same total transfer 

cross section. This property originates from the form of the partial-wave sum (III.28) and 

does not depend on the coupling of the internal angular momenta. This means that in 

eq. (III.35) the index a can specify the transitions 

or 

a) 

b) 

a = (t1A1 t2A2), 

a = j2m2), 
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Or 

c) a = (Li -rc2 1Ia 2 )1 

with the meaning of the angular momentum quantum numbers indicated before. We shall 

prove the equality of the angle-integrated transfer cross sections for the case c). The 

integral of eq. (111.35) over the solid angle dll = sin 8dOdcp is 

Ua  = 27r. f b(0) 
db 
dO PI( 0) (a) SL(0) I2 dO. 

We assume that the deflection function 0(b) is monotonically decreasing ( as it is the case 

7 2 

for Colulomb scattering where 0 = 2 arctan b ) and that b(0 = 0) = oo (particles 2Eb 

passing undeflected at large distances) while b(0 = 7r) = 0 (particles turned back in a 

head-on collision). Then changing the integration variable from 0 to b gives 

as  = 
"Co 

Pi( b) (a) SL 0) 2 b db. (111.36) 
0 

Eq. (111.36) can be transformed into an integral over the classical angular momentum 

A = L 1/2 by the change of variable A = •V2µE b/h = kb (note that now we use the 

classical angular momentum in units of h): 

00 

aa = — 
2r " 

k2 Pr-v2(a) ISA--1/2I2 A dA k2fo L=0 
(2L + 1.)P1,r(a) ISLI2. (111.37) 

The last form is useful to evaluate the angle-integrated transfer cross section if the reflection 

coefficients ISL 12 are calculated numerically for each value of L. 

By integrating eq. (III.30) over dil we have 
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do-
o-(Ic,„ I„ ---+ I„, _ra j f dit 

4ir

=C 27r E E< > 
mim2 AiA2.8 AcArnf, 

< t2A23m81.127n2 >< ><.e2A'2sm131.12m2 > 

1. 
ir

T*(t2A'2 ,tiAc.) T(t2A2,t1A1) sin0 dO, (I II .38) 

where we denoted by C the factor in front of the Ernin,„ in eq. (TTT.30). By substituting 

the partial-wave sum (III.28) the integral over 0 becomes 

ir

1. 
It

r(i 2 A2̀,-fi)c.) T(t2A2,11A1) sine dO 

01 - A2 - Ai +Al2 E (2L +1)1/2pLi + 1)1/2 e2is, (e2i5,)* 
LL' 

(t2 A'2, AiL(t2A2, elAi) 17;,, YL,A1--A2 (0,0) sin 0 d8, .39) 

where we introduced bL defined by (I11.34). From the Clebsch-Gordan coefficients in 

eq. (I1I.38) we have Ac. — Ai2 = Al — A2. Then, by neglecting the slow dependence of A' on 

0, eq. (III.29), we put A' A and make use of the orthogonality of spherical harmonics in 

eq. (111.39) to get 

10 
IT 

T* (i2A'2,tiAii) T(e2A2,tiAi) sin0 dO 

(2L 1) e-41."251' A*L (e2)12,t1A'1) AL(t2A2,i1A1)• 

Substitution of eq. (III.40) into (III.38) gives 
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c(Iai , IC 2 —4 ICI ) Ia2) = k2 /If
(2L + 1) 

E IBL(3-2m2,3.1.771012, 
m1 m2 

2Ia2 + 1 

(2.1"„ + 1) (251 + 1)(23.2 + 1) 

where we have made explicit the dependence of B(j2m2,.igni), defined by eq. (III.20), 

on the relative angular momentum L. Eq. (TTT.41) is the same as eq. (111.37) (but for 

2I„, +1 the factor µtiµf) because e-4I  ma. = 1,91,12 [cf. eq. (III.33)] and (21.2 +1) (2.7•1 -E1) (2j2 +1) 

Erni rn2 I B  L(..27.1125 3-1M1)12 = Ptr (-Tai Ic„ -Ta2 ) [cf. eqs. (III.21) and 19)] . The 

ratio of the reduced masses p,i/ auf that enters in the cross section (III.30) is neglected in the 

classical formula (III.35). For the transfer reaction al (= c1 x) + c1 + a2(= c2 x) 

it amounts to 

µt c2 ci c2 + xc2 = 
cia2 cic2 xc1'

where we indicated with the same symbols the nuclei and their mass numbers. 

If c1 c2, 

For nucleon transfer (x=1), 

then 

if c1 >> c2 , then 

if c2 then 

µff 

c2 

µf C2 + 1 7

Cl 

µf Cl + 1 

Several properties of transfer reactions can be studied by considering the total cross 

section instead of the angular distribution. The spin- and energy-dependence of Qtr, dis-

cussed in chapter VII, are an example. Therefore one can use the simpler classical formula 

(TTT.36) or (111.37) instead of the full partial-wave expansion (TTT.28). 
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Chapter IV. Neutron Transfer calculations 

rv.1 Transfer amplitudes, normalization and phase shifts. 

In this section we present some examples of the semiclassical transfer amplitude A of 

chapter II and the elastic scattering matrix elements SL mentioned in chapter III. These 

are the `ingredients' we need in §§ IV.2 and IV.3 to calculate angular distributions. We 

also discuss possible parametrizations of A and SL. 

Fig. IV.1 shows a typical exponential decrease of the semiclassical transfer amplitude, 

A, as a function of the relative angular momentum quantum number, L, for the reaction 

208pb(16 ,-. ,15 
O) 2°913 b at an incident energy Elab = 139 MeV. Fig. IV.2 shows several 

components of f ALI for the transition P1/2 d3/2 in 26Mg(hlB,1oB)27Mg at 114 MeV. 

Both figures are obtained by using the formula (II.28). Hasan (1976) reduced the amplitude 

A, eq. (11.5), to a one-dimensional integral to be computed numerically. With that method, 

in particular, transfer amplitudes for the reaction 26Mg( 11B, 1°B) 27Mg at 114 MeV were 

calculated with the same results as Fig. IV.2. 

The transfer amplitudes in figs. IV.1 and IV.2 are very similar, although the angular 

distributions for these reactions are completely different (see §§ IV.2 and IV.3). We note 

that the slope of the curves does not depend on the particular transition, specified by the 

z-projection of the orbital angular momentum quantum numbers, A and a2, of the initial 

and final bound states. These calculations suggest a simple exponential parametrization 

for the modulus of the amplitude: 

I A L( Q2A29tiA1)1 = G(t2A2,-glAi)eLa —L A L . (/V.1) 
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Eq. (W.1) was used by Hasan (1976) to interpolate numerically-calculated amplitudes. We 

can find the constants G, Lo and A from the analytical formula (II.29). For heavy-ion 

reactions at energies well above the Coulomb barrier, the relative angular momenta that 

contribute to quasi-elastic transfer satisfy 

L» n, 

where n is the Sommerfeld parameter. The distance of closest approach d for a Coulomb 

trajectory, given by eq. (III.11), can then be approximated by 

d_ 
n+L 

k 

With this approximation eq. (II.29) becomes 

A(t2 A2,t i Ai) —47ri Cel Ce2 Yti A (IC 1) Y e*2 2 (k2) my 

V 277d 

(IV.2) 

(IV.3) 

where a, = n/k and k is the asymptotic wave number. Eq. (IV.3) is of the form (IV.1), 

but for the L-dependent factor (I-1/2. However, this L-dependence is negligible when 

compared to that in the exponential factor and d in eq. (IV.3) can be considered as a 

constant, e.g. the strong absorption radius Rsa. By equating eq. (IV.3) to (1V.1) we find 

and 

A  h 
k.d G(t2 A.2,t i rt i) e =-

my  
ti c e2 p 

Ck i Y -p2 (kJ' \/ 27-/R8a, 
p—na, (IV.4a) 

A = (IV.4b) 
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As an example, for the g.s. transition 26Mg(11B,10B)27Mg at 114 MeV, Hasan (1976) 

finds numerically A = 7.44. From eqs. (II.30-31) we have ri = 0.77 fm-1 and n= 7.14. 

The amplitude A(t2 A2 11 Ai), given by eq. (II.28), is either real or purely imaginary. 

The normalization constants Ct, and CE, in eqs. (II.28) and (II.19) are given by the 

ratio between the solution of the radial SchrOdinger equation for the neutron bound in 

the potential V1 or V2 and the function -yxi(-yr), which is related to a Hankel function by 

eqs. (I I .A.12) . Fig. 1V.3 compares an exact (numerically computed) radial wave function 

to the Hankel function form. The actual wavefunction oscillates in the nuclear interior 

and assumes the same form as (1r) outside the nuclear surface, with an asymptotic 

exponential decay. The normalization ratio CE takes into account properties of the nuclear 

interior, while the semiclassical transfer amplitude calculated in chapter II depends only 

on the `tails' of the bound-state wavefunctions. These normalization constants can also 

be approximated by an analytical formula based on the WKB expression of the radial 

wavefunction. Stancu and Brink (1985) obtain a formula which agrees quite well with the 

numerically calculated Ct for energy levels which are not too deep. Such a formula is useful 

when an exact solution of the SchrOdinger equation for the bound states is not known. For 

example, normalizations Ct for experimental single-particle levels can be calculated by 

using a standard potential. 

To calculate angular distributions one also needs elastic scattering phase shifts 6.L . 

The classical formulae of § III.1 contain only their imaginary part in the absorption factor 

SL I2 = exp(-4Im5L), while the formulae of § III.2 contain the complete phase shifts 

SI, (real and imaginary parts, initial and final channel) in the term SL = e2i51' of the 
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partial-wave sum (III.28). Fig. IV.4 shows that the inclusion of the real part of 8L in this 

formula can produce a shift in the peak of the angular distribution. To obtain accurate 

angular distributions and compare with experimental data, we determined the phase shifts 

by numerically solving the SchrOdinger equation with optical potentials that give a good 

fit to elastic scattering. However, throughout this work, we also used some semiclassical 

formulae and parametrizations for 6L and SL. We already mentioned the expression (III.5), 

which is derived by considering the nuclear potential UN as a perturbation to the Coulomb 

potential Uc. Then eq. (III.5) or (III.13) can be used when UN is weak, but also when 

W Im UN is very large, as it is usually the case for heavy ion reactions. This is because 

the absorption is so strong for orbits with small impact parameters that errors are not 

very important, while for large impact parameters the potential that enters in eq. (III.5) 

is small. 

We now show some comparisons between exact values of ISLE and the semiclassical 

forms. Fig. IV.5 shows a comparison between ISL I2 = exp(-4Im8L) calculated numerically 

and by using eq. (III.13) for Im8L. The partial-wave angular distributions of § III.2 depend 

on the product between SL and transfer amplitude AL; the classical formulae of § III.1 

depend on the product tr ( ISLIP - \.72 .71), where Prr is related to the modulus of the transfer 

amplitude AL by eq. (III.19). Fig. IV.5 also shows that ISIIPtr is peaked in L-space around 

Lgr such that ISLgr l 2 = 1/2. This entails the localization of classical angular distributions 

around trajectories with scattering angles 0 0(Lgr). According to the semiclassical 

formula (III.5), Re 6L depends on Re UN only while Im 8L depends on Im UN only. In 

an exact solution of the SchrOdinger equation, however, the addition of an imaginary part 
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to the ion-ion potential affects also Re 6L and Im 8L depends on Re UN too. 

A simple way to study the effect of elastic scattering phase shifts on the angular 

distribution is to parametrize the matrix elements 

SL = e228" = e22(8f +5f ) = e215 (IV.5) 

where the superscript C stands for `Coulomb' and N for `Nuclear'. A widely used 

parametrization is due to Ericson (1966). By introducing the classical angular momentum 

h.A. = (L + 1/2)h, one writes 

SN (A) — {1 + exp[(A A0)/A11-1 (IV.6) 

with A = AR — iAi and 0 < AI < IA. With this form ISN I 0 for small A's and 

ISN I 1 for large A's, in agreement with the numerical result. The parameters AR, AI

and A in eq. (1V.6) can be approximatively related to those of an optical potential with a 

Saxon-Woods form (see Brink 1978, p. 15). 

Alternatively, one can parametrize the product gL = SL AL [cf. eq. (I.2) and chapter III, 

p. 61]. A possible form, related to eq. (IV.3), is (Brink 1978, p. 46) 

exp a(A — Ao) 
g(A) = exp[i00(A — Adj. 

1 + exp[(A — Ad/A} 
(IV.7) 

Fig. IV.6a shows that sometimes the absorption given by the semiclassical phase shifts, 

eqs. (III.5) and (III.13), is not strong enough for small angular momenta, so that the prod-

uct ISL AL I rises significantly from zero because of the exponential form (II.28) of AL and 

gives wrong angular distributions. This is avoided if one uses exact phase shifts computed 

with an optical model code (fig. W.6b). The parametrization (IV.7) can reproduce this 
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trend and can be used for calculating angular distributions. In chapter VII, where we 

study the energy dependence of the angle-integrated cross section, we use another expo-

nential parametrization of 6L and relate its parameters to the imaginary part of the optical 

potential. 

IV.2 Angular distributions calculated as a product of probabilities. 

Here we show a few examples of cross sections calculated with the classical formula 

(III.17). Fig. IV.7 shows an angular distribution for the reaction 208ph(16O,15O)209 p bgs.

at 312.6 MeV. For the same reaction, fig. rv.8 shows the effect of using semiclassical 

phase shifts, eq. (III.5), for the factor (SL I2 on the cross section. It should be com-

pared with fig. N.S. Fig. IV.9 shows the classical angular distribution for the reaction 

208pb(16O,15O)209
up 78 mevlat 139 MeV incident energy. The classical formula (III.17) 

always predicts bell-shaped angular distributions. The calculated angle of the maximum is 

usually slightly larger than the experimental one and the peak is too narrow. This formula 

neglects deflection by the real part of the nuclear potential. As we saw in chapter III, 

p.53-55, these can be accounted for in an approximate way and one obtains a correction 

for the position of the peak. But eq. (III.17) also neglects diffraction effects, so it cannot 

give a correct angular distribution for, e.g., 
26mg(11B,I0B)27mg (see § IV.3) which shows 

nearside-farside interference oscillations. A more accurate cross section can be obtained by 

using the transfer amplitude (II.28) in the partial-wave formalism of § III.2, as we discuss 

in the next section. 
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IV.3 Angular distributions calculated from partial-wave formula. 

In this section we apply the formulae of Chapter II and Chapter III to the reactions 

208pb( 16
(I 0) 2°9Pb at 139 and 312.6 MeV laboratory energy (Olmer et al. 1978) and 

26mg(ilivo B)27m . .-g at 114 MeV (Paschopoulos et al. 1975). These reactions (Lo Monaco 

and Brink 1978) have been chosen as typical: the first of bell-shaped angular distributions 

and the second of diffractive ones. We also show an example of neutron transfer between 

medium-mass nuclei, namely the reaction 34S( 32S, 335) 33S. 

The elastic scattering phase shifts in the transition matrix (III.28) were determined 

by numerically solving the Schr5dinger equation with optical potentials having a Saxon-

Woods form for both the real and imaginary parts. We used the parameters in table rv.i 

which give a good fit to elastic scattering. The potentials in the final channel differ only 

by the radius RR(I). The normalization constants Ct, and Ce2 in eqs. (11.28) and (11.19) 

are given by the ratio between the exact (numerically determined) solution of the radial 

SchrOdinger equation for the neutron bound in nucleus 1 or 2 and the function lxi(-yr) of 

eqs. (II.19) and (11.20). To determine the bound-state wavefunctions we used the Saxon-

Woods potentials in table IV.2. The depth of the potential well was adjusted in each case 

to give the experimental neutron separation energy. In the case of 209 ph (16O,15O)208 p b 

following Olmer et al. (1978), we added a spin-orbit potential of the form 

• 
Uso = 4V"   

L S 
ct,or 1 exp [(R80 — r) /a301.

The transfer amplitude in eq. (11.28) depends on the relative angular momentum quan-

tum number L through the distance of closest approach d. For peripheral collisions we 

approximate the orbit by a Coulomb trajectory. Then d is given by eq.(III.11). For the 
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Table Iv.2 Optical potential parameters used to determine elastic scattering phase shifts. VR(1). 
aft(i) and RR(I) are the potential depth, diffusivity and radius for the real (imaginary) part of 
the potential. The radius parameter 1-0 is related to R by R R(1) = r + A where A iORM.— .13 -I, 413, 
and A 2 are the mass numbers of the two nuclei. 

V R aR ref( VI a l rol 
Entrance channel (MeV) (fm) (fm) (MeV) (fm) (fm) 

16O(139 MeV) + 208 Pbt 50 0.612 1.221 50 0.612 1.194 
16O(312.6 MeV) + 2°8P14 50 0.682 1.181 50 0.682 1.145 
11 B(114 MeV)+ 26Mg§ 35 0.8 1.066 25 0.62 1.216

t From Pieper et al (1978). 
t From Olmer et al (1978). 
§ From Paschopoulos et al (1975). 

Table waYarameters of the bound-state potentials. Radii are related to the radius paranicters 

by R = roA 1/3, where A is the mass number of the core. The last column gives the ratio of the 

potential slope 1/a to the quantity y 

Ground-state 

ro a V,„ a„, binding energy 

System (fm) (fm) (MeV) (fm) (fm) (MeV) (ay)-1

to B nt 1.2 0.65 0 - 11.46 2.0 
26 m g nt 1.2 0.65 0 -6.4 2.77 

15O + nt 1.2 0.65 7 1.2 0.65 - 15.7 1.77 

2°8Pb + nt 1.25 0.63 7 1.1 0.5 -3.94 3.53 

t From Paschopoulos et al (1975). 

From Olmer et al (1978). 



calculations presented in this section we took d to be the distance of closest approach for 

the initial channel, assuming no change in the angular momentum L. The velocity v at 

the point of closest approach is then given by 

hL 
v= 

d' (IV.8) 

where p, is the reduced mass in the initial channel,The transfer amplitude AL was calculated 

from eq. (11.28) and the angular distributions from eqs. (111.28)—(111.31). The results for 

208 pb(16 V .--. ,15 
O) 2°9Pb at 139 and 312.6 MeV laboratory energy are reported in figs. IV.10 

and IV.11 respectively. The experimental data and DWBA calculations of Olmer et al. 

(1978) are shown in the same figures. 

Fig. IV.12 shows angular distributions for the reaction 26m g (11B ,10B)27 .. 
114g 

, at 114 MeV, 

together with experimental data and DWBA calculations of Paschopoulos et al.(1975). For 

this reaction our results are very similar to those obtained by Hasan and Brink (1978) by 

reducing the amplitude (II.5) to a one-dimensional integral which is evaluated numerically. 

In all cases our cross-sections are normalized by the same spectroscopic factors used 

for the DWBA calculations. Relevant values of the Coulomb barrier ECB and Sommerfeld 

parameter n are indicated in the figures. 

It can be seen that the shapes of the angular distributions agree quite well with 

experimental data and DWBA calculations. However, there are some discrepancies in 

magnitude when compared with DWBA. Our calculated cross section for the lower states 

in Pb is too large at 312.6 MeV while it is too small for the highest state at 139 MeV. For 

the 26Mg(11B,1°_B) reaction our calculated cross sections are a bit too large. 

We studied the dependence of the results on the choice of the distance of closest 
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approach d. The results in figs. (D/.10-12) correspond to choosing d to be the distance of 

closest approach in the initial channel. We also made calculations by choosing d as the 

average of the distances of closest approach in the initial and final channel. The shapes 

of the angular distributions are not affected, but the magnitude is changed. some results 

for the peak cross sections for the ground-state transitions are shown in table IV.3. The 

effect of the different choice can be quite large, especially at the lowest incident energy for 

16 O 208Pb. This is because the distance of closest approach jumps from its value d2 for 

the initial channel to a larger value df in the final channel, because the energy of relative 

motion is diminished by the negative Q-value and because the reduced mass changes. If 

the change in angular momentum L of relative motion were taken into account it could 

allow the distance of closest approach to vary smoothly from the initial to the final channel. 

In fig. IV.13 we show our results for the pick-up reaction 34S( 32S,33S) 33Sd3/2 g.s. at 

Eicib=97.09 MeV. The experimental data are from Bilwes et al. (1983). Also shown are 

these authors' calculations obtained by an approximate DWBA treatment. This includes a 

parametrization of the elastic scattering matrix similar to eqs. (D/.6-7). We only calculated 

the forward-angle part of the angular distribution, which is symmetrical due to the identity 

of the final nuclei. We used the Saxon-Woods potential parameters given by Bilwes et al. 

(1985) for the elastic scattering of the initial system 32S + 34S at 97.09 MeV (VR=29.8 

MeV, aR=0.65 fm, r0R=1.25 fm, V1=14.6 MeV, a1=0.464 fm, r01=1.35 fm) to compute 

the phase shifts numerically. The potential in the final channel, 33S + 33S, differs only 

by the radius. The normalization was obtained with a standard bound-state potential 

(without spin-orbit term) with radius parameter r0=1.25 fm and diffuseness a=0.65 fm. 
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Table jtf,3 Distances of closest approach and peak cross sections for the ground-state 
transitions in the three reactions considered. dim is the distance of closest approach for a 
Coulomb trajectory in the initial (final) channel with angular momentum L g. This is defined 
by the condition that the reflection coefficient ISL,12 . The last four lines show the values of 
the cross sections at the main maximum. ae.o, aDwBA and ad1 correspond to the values in 
figures 2, 3 and 4, adi being our calculated cross section. In the last line aj is the cross section 
obtained by choosing d as the average between the distances of closest approach in the initial 
and final channels. 

208 pb(16 0 ,  15 O)209 pb
26Mb( ir8. 10B)27Mg 

ELab = 139 MeV EL.„B = 312.6 MeV Elab =1- 114 MeV 

Lg 74 143 39 
di(fm) 12.18 11.68 7.7 

(df — di)(fm) 1.08 0.59 0.49 

a (mb) 1.47 5.0 4.0 

CrDW BA (Mb) 1.47 10.0 7.2 

ad. (mb) 1.25 16.6 9.0 

acAmb) 0.36 9.24 6.0 

SIG(TH) 34s+32s _. _335+ 33
mb/sr 

1 0
-3 

10 " 

0.00 

E =97 09 MeV 
; .0 E. .e.:146, tit-11; Lab - 

-Lc =31.4 
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Fig.TV.13 Angular distribution for 39S(325;33S)336 C13/2. a t Eklb =97.09 MeV. 
Uur calculation is indicated in the figure.Exoerimental data and 
eouroximato DdB4 calculations of iii lwes et al ,(1963) are drawn on 
the experimental data.rhey computed the broken curve by usin9 
S-Parambters deduced from elast ic scatteri ng data ,chile the ful l 
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The distance of closest approach (d.c.a.) d that enters in the transfer amplitude (11.28) 

was taken as the average 

d(L) = 
di (L) + df (L) 

2 

where di(f) (L) is the d.c.a. in the initial (final) channel as a function of the relative angular 

momentum L of the partial-wave sum (II1.28). Our calculation at forward angle 

very close to that of Bilwes et al. 
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Chapter V. Proton Transfer Amplitude 

V.1 Modification of the Amplitude by Coulomb Potentials. 

In this chapter we extend the formalism of Chapter II to the analytical calculation 

of the amplitude (11.5) for proton transfer. A priori, one would expect that both the 

perturbation approach and the surface integral approximation, eq.(H .9), are not accurate 

enough because of the long range of the Coulomb potential. In fact the potential of one 

nucleus affects the proton wave funcion in the other even before transfer. By using a 

method similar to that employed by Hasan (1976), we shall take this into account in an 

approximate way. Then the analytical calculation proceeds in a parallel way to the method 

developed in § II.5 for neutron transfer. 

The transfer amplitude for the reaction 

al c2 c1 a2

or 

(el c2 ci (2+p) 

is still defined as in eq. (11.3) : 

A(2,1) =< 1112 >t=OO • 

Now the initial and final states of the proton bound in the nucleus al or a2 satisfy the 

following time-dependent SchrOdinger equations: 

( t) 
ina atr' = [T (r, t) V2C(r, 0111/1(r, t), 
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ih, 
8'1'2 (atr, t) = [T 

V2 (r, ± (r, t)1T2 (r, t), 

where, for a = 1, 2, 

17O,(r,„) = V„N (r,„) Vac (re,), 

In eq. (V.1) the term V2c(r,t) represents the effect of the Coulomb potential of nucleus a2

on the proton when it is bound in nucleus at and viceversa for Vic(r,t) in eq. (V.2). V1

and V2 are the potentials of the isolated cores c1 and c2 , respectively. They consist of a 

short-range nuclear part and a long-range Coulomb term. The nuclear potential can have 

a Saxon-Woods form 

—Vo«
Tr,,N (ra) = 

1+ exp (raa—„Ra 

and the Coulomb potential can be that of two point charges 

Va (ra) = 
Z, e2

Ta

(V.3') 

(V.3") 

for the proton outside the nuclear surface or that of a particle in a charged sphere. 

The wave function ‘11(r, t) of the proton interacting with both nuclei is the solution of 

the Schrodinger equation: 

ih at= + V1 + v2)T, 

with the initial condition that W —+ WI when t —oo. 

From eqs. (V.2) and (V.4) we have 

ih—at <412 D >=< xp2rvi - vlc IW >=< 4,21v PIT > 

Integrating eq. (V.5) over time between —co and +oo we find 

A(2,1) < 
1 +OO 

>t.co= 
z 

f < xi/2 1171N D > dt. 
00
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Eq. (V.6) is an exact expression for the proton transfer amplitude. Since it contains 

a matrix element of the nuclear potential it is non-zero only in the region where V1N 0. 

In this region the nuclear potential V2N 0 but the Coulomb potential V 2C is still present. 

Then we approximate the wave function W by IF '  [cf. eqs. (V.1) and (V.4)] and we get 

1 f  +00 
A(2,1) = L < ‘112iViN ITi> dt (V.7a) oo 

i+co 
. <T2Iv2N1411 > dt (V.7b) 

h j _co

We shall use the first form. Then, analogously to the neutron case, eq. (V.7a) can be 

transformed (Appendix V.A) into 

h +00 
A(2,1) = 2m: 

I  
dt f dS • (V2 C7‘111 — TiVW) 

00 

+00 

+ f 00  dt T;V2N‘Fid3r+ f qqViNTid3r 
R2 

(V.8) 

This is similar to the expression for neutron transfer, eq. (II.8), but now Alic, and Ira, (a = 

1,2) are proton wave functions and potentials. The last term can be neglected, as we dis-

cussed in § II.4 for neutron transfer. Then the surface integral can be evaluated analytically 

as in the neutron case. 

Eqs. (V.1) and (V.2) can be satisfied approximately by 

where 

T„(r, t) Tra (r, t) e—t96.(r,t), 

ih al-T1 ata (r' t) = [T 
+Va(r,t)]L,(r,t),

01(r, t) f V2 (r, tl) dt' 

02 (r, t) = f (r, t') de .J 
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The functions lka are solutions for the proton bound in nucleus a completely isolated, 

i.e. when the Coulomb interaction from the other nucleus is switched off. Eqs. (V.9) are 

solutions of (V.1) and (V.2) if one assumes that space derivatives of 0,(r,t) are small. This 

is reasonable since they contain potentials that go as 1/r. 

Hence, with the same system of reference and definitions as in Chapter II, we have 

11(r, t) = (r — s(t)) exp (i/h) [rriv • r — (Ei -2-1 mv2) t (V.12) 

4 2 (r, t) = I.2(r) exp(—ie2t1h), (V.13) 

where the bound-state proton wavefunctions (13., satisfy the eigenvalue equations 

[T Va(ra)1.1)a (ra) = 6,,A,(r„), a = 1,2. (V.14) 

Here Va are the proton static potentials and ea the corresponding binding energies. We 

assumed that V2 is at rest while V1 moves along the trajectory s(t). Since the biggest 

contribution to the integral over E comes from the point of closest approach (fig. II.1) 

we approximate Vac(ra) by their values at the point of closest approach given by the 

coordinates xa, y = 0,z = 0, where x1 = d2 — d = —d1 and x2 = d2 (see fig. II.2). By 

doing so eqs. (V.11) give 

Z 2e
V2C(d2) t   t, 

d2 

2 
02 Vic(di) t= Z,' e  

t. 
d1 

Setting this into the first line of eq. (V.8) gives 
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A(2,1) = 2mi 
—h f +" 

dt 
f +" 

dy 
f  

dz V2' { ad (D1(d2 d,y,z — vt) uu.2

a —4i(d2 — d,Y,z — vt) ac12 4,;(d2,Y,z) 

a a +—i t4.i(d2 — d, y, z — vt)V2'(d2) y, z) (ad 2 Vic(di) 
ad V2c(d2)) 

2 

1 
exp {— [mvz (e.2 — — —2my2 Vic(di) — V2c(d2)) t] , (V.16) 

Henceforth we neglect the term containing derivatives of V. This is consistent with the 

approximation in eq. (V.9). With the change of variables (z, t) (z, z1 = z — vt) the 

argument of the exponential in eq. (V.16) becomes 

Div 
(

2
1 1 
—MV2 — yeff) -F (-2MV2 -r Qeff) z1] 

where 

Qeff 61 — 62 — {ViC(d1) V2C(d2)1 = Q [VI (di) — V2C(d2 )1 = — (V.17a) 

with 

= Ea  — Vf(d a ) = Ea
Z e2

cl„ 
a = 1,2. (V.17b) 

In eq. (V.17b) the Coulomb potential between the proton and the core c, is that of two 

point charges. This form of the effective Q-value is different from the one used in other 

references. We discuss the difference at the end of this chapter. Eq. (V.16) gives 

= 
ih,  f a 

A(2,1) 2mv 
[.4,;(d2,y,k2z) ad2 41(d2 — d, y, kiz) 

—co 

a --;$1(d2 — d,y,kiz) 
ou,2 (d2, y, k2z)1 dY, 
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where the Fourier transform (1,(x, y, k) is defined in eq. (11.16) but now 

klz = —(Qeff ± 2 MV2) I (hV), k2Z = — (Qeff 2— MV 2) I (hV) 

Therefore 

kr:ftOn = kr a TirO71 +  1 k 1/ V C (d V C (fl 
2 k w2 )  — kneutron e2 (Zci. Z2 

hv d1 d2 hv 

V.2 Calculation of the Proton Transfer Amplitude. 

(V.10) 

a --= 1,2. 

In this section we calculate the amplitude (V.18) analytically. We use the same method 

developed in § II.5 for neutron transfer. The final formula is very similar to eq. (II.28) 

but contains effective binding energies and normalization constants that account for the 

Coulomb effects. By introducing the double Fourier transform 1.(x, ky, kz), defined by 

eq. (II.50), we find 

ih  f±',z* a A(2,1) = 
47rmv i'Dz(d2,ky,k2z) d2

1(c12 — ky, kiz) OO 
a  z * 

— d,ky, kiz) ad2 .1.2(d2,ky,k2z)jdky, (V.20) 

which is identical to eq. (11.52). In the proton case, however, eq. (11.53) will contain a 

Coulomb term from the potential V which does not vanish on the surface E. So, in place 

of eq. (11.54), we have, for a = 1,2, 

( 8 2
— 

2 Z 

(13. cx(Xcx, ky, ka 2m f +OO 
f 

+00 
az2 

e---t(kyy+kaz) v co \ 

zi n 2 j 
Y a U X CY J-OO 

dydz, (V.21) 
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where x1 = d2 — d = —d1 and x2 = d2 are the distances of the surface E from the two 

nuclei at closest approach (see figs. 1I.1 and 11.2). 

One could try to solve eq. (V.21) by iteration, taking as a first approximation for tl)a

on the r.h.s. an Hankel function form which corresponds to the case of vanishing potential. 

The simplest thing to do, however, is to approximate the Coulomb potentials by their value 

at the point of closest approach given by the coordinates lx, I d a, y = 0, z = 0. Then 

eq. (V.21) gives 

where a = 1, 2 and 

Lx(Xce , ky,ICaz) 7= 0, 

Sa = + 
1   1  

= —
h 

= —
h 

\/-2m [Ea — VcF (da)]. 

(V.22) 

(V.23) 

Notice that with these definitions 6. = which makes the analytical calculation 

feasible. The effective parameters 7ya in eq. (V.23) can be written as 

= 
Aea

e a

where -ya are defined by eq. (II.21) in terms of the proton binding energies Ea  and 

Zca e2
ACa  = V aC(da ) —  da . 

(V.24) 

(V.24') 

In eq. (V.24') we have explicitly inserted the Coulomb potential between the proton and 

the charge of the core ca. If DEn < 1 we can use the following approximation: 

1 ea 
'I a = 

mZc
' 

e2 

2 Ea  h2 da-ya
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where 

n a  = 
mZ,a e2

h2-ya
(V.25) 

are the Sommerfeld parameters for the initial and final bound states. 

However, eq. (V.24") is not always a good approximation. For example, the reaction 

208pb(160,15 
IA

vT\ ) 2.9Bi at 312.6 MeV has a grazing distance d 12 fm = d1 d2. With 

the prescription of p. 28, d1/d2 = AI1/3
/A2

1/3
, where Al and A2 are the mass numbers of 

the two nuclei, we have d1 = 3.58 fm, d2 = 8.42 fm and 

but 

= —12.13 Mev, LE1 = 
7 * 1.44 

= 2.82 MeV 
3.58 

82 * 1.44 
62 = -3.8 Mev, Ae2 = = 14 MeV . 

8.42 

As a next step we need to approximate the radial proton wavefunction which enters 

in We write the actual proton wavefunction (obtained by numerical integration of the 

Schr8dinger equation with both nuclear and Coulomb potentials) as 

' proton(r ) — Rt(r) 

radial r • 

Then Re satisfies the radial equation 

d2 2  
r2 

1(1+ 1) 

2 

2m 
V (r) — -y2] Rt = O. 

dr h (V.26) 

At a distance greater than the nuclear potential range (as on the surface E where ra = 

VX2 + y2 + z2) the potential V(r) reduces to its Coulomb part Zronly. Dividing by 

4-y2 and setting 

k = 
mZee2 

h2-y 
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eq. (V.26) can be cast in the form of the Whittaker equation (Abramowitz and Stegun, 

1970, p.505) 

dd 2 Re ( 1 k 1/4 — µ2 ) 
Re= 0. (V.27) 

z2 
+ + + 

4 z z2 

The solution of eq. (V.27) which vanishes at infinity (as a bound state must do) is given 

by the Whittaker function 

Re= W—n,e+1/2 (21r)• 

Then the radial part of the proton wave function is given by 

ff , 

m
proton (l = Be _1 

'radial l' 1 r W—n,t+1/ 2 PIO ) r ≥ ra , (V.28) 

where Be is a normalization constant which keeps into account the behaviour of the wave 

function inside the region of the nuclear potential. However, the form (V.28) is still too 

complicated for an analytical calculation of the transfer amplitude. Then we approximate 

the wavefunction by 

4)prarodti oanl (r) n.,_. , c ;1 7.-1 xt elT\ 
) 

ff, 
a' approx (0, (V.29) 

where MIT) is the neutron wave function defined in (11.19) and CI; is a normalization 

constant that depends on r. We choose it such that 

'ID approx(rE) = l'exact(rE) 

on the surface E where it is needed. With this we have for r very large 

,.-7r 
n, proton i \ p G 

radial tri ' --- rie r 

For distances of the order of the distance of closest approach, d, eqs. (V.28) and (V.29) have 

a similar decay. Then we use the approximation (V.29) to calculate the transfer amplitude 
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as in the neutron case, in particular from eq. (11.53) to (11.60). The result is 

A(2,1) = —47ri CtP, CtP2 (-1) Ye, A 0) Yt*2 ),2 (02P , 0) KA, _ A, (77(1), (V.36) 

where 

M V 

•  kaz 
cos p  = sin /Og, = a = 1,2, (V.37) a 

kaz are given by eq. (V.19) and 

Here 

= Allqz
 Yi  = \//c2 z  -7 —21 = / — 

2 '2

1 (Q e2ff 
= -2 i (t). -f2) 

4 mP v2 
-
2 

m
P

V 

2 

(V.38) 

(V.39) 

is a kind of average bound-state energy for the proton. 

The analytical formula (V.36) for proton transfer has the same form as eq. (II.28) 

for neutron transfer, but the quantities /3 and 77 are substituted by effective quantities, 

pP and 77, eqs. (V.37)- (V.39), which take into account the Coulomb field. This results 

in a shift of the proton binding energies e1,2 by Ac112 , eqs. (V.24'). Another difference is 

in the prescription (V.29) for determining the normalization constants. Since the surface 

E on which the transfer amplitude is integrated lies between the two nuclei, a suitable 

choice is, for a = 1,2, to calculate Cita at a distance da such that d1 d2 = d(Lpeak ) and 

di /d2 = (A1/A2)'/3 Here d(Lpeak ) is the distance of closest approach for an orbit with 

L corresponding to the maximum of ISLAL I and Al and A2 are the mass numbers of the 

two nuclei. 
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V.3 Discussion of the effective Q-value. 

As we mentioned in §V.2, our definition of the Q-value for proton transfer, 

Qeff = Q 

Zc l  ZC2 e2 

d1 d2 
(V.17a) 

is different from the one used elsewhere. In particular, a widely used definition is (Buttle 

and Goldfarb 197 Brink 1972, Broglia and Winther 1972) 

(Zif — 44 ) e2
Qe(f )f  Q  

(V.40) 

where Zi1(f) are the charges in the initial and final channels and d is the sum of the radii 2 

of the nuclei (neglecting differences between initial and final channel). To compare with 

our definition (V.17a) we can put d1 d2 = d. For proton transfer, in our notation (cf. 

beginning of this chapter), we have 

Then 

Z l  E_- Zai = Zel + 1, 4 = Zc2 ; 

Zi Zci = Zi — 1, Z„2 + 1 = + 1. 

— Zf, e2 (Zc z
d 

ca ) e2 
QeYf = Q  = Q Q + AQ(0). 

If di = d2 = d/2 eq. (V.17a) gives 

AQ Q eff  Q = 2 (.2.,2 - z e2 
264 (°) . 

d 

(V.41) 

In general AQ and AQ(°) are quite different. For example, in the case of the reaction 

208 pb( 160,1 5N) 2°9Bi at 312.6 MeV, with the values of d1 and d2 use at p. 82, we have 

AQ = A€2 — del = 11.18MeV, 
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while eq. (V.41) gives 

AQ(' ) = 9 MeV . 

Such a difference in Qeff implies a different optimum kinetic energy for proton tranfer [cf. 

eq. (II.32)] 

1  2 f t -)
—2 mPv = 1`.eef fl• (V.42) 

The definition (V.17a) of Qef f follows in our calculation from the approximations (V.9) 

and (V.15) for the bound-state proton wavefunctions. One advantage of this definition is 

that the quantities eq. (V.23), and r7, eq. (V.38), are the same for the initial and 

final state, as in the neutron case. This makes the analytical calculation of the transfer 

amplitude feasible. The new form (V.17a) of Qeff may also be better than the old one, 

eq. (V.40), because it depends on the Coulomb potentials at the transfer point in the initial 

and final channel. 
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Appendix V.A Proton Transfer Amplitude as a Surface Integral 

The matrix element in eq. (V.7a) can be written as 

<11121VPIIII I >= f x1r;ViN xIi id3r f ‘112*ViN lIf id3r. (V.A.1) 
R2 

Eq. (V.1a) gives 

from which follows 

a h2 v-1NT1 . (ih— + - V1C - V291111.1 at 2m 

2 
f R i x11;17 d3 r = —

h 
f dS • (11'27 - Ti V111;) 

2m E

(V.A.2) 

2 
i

1
 (ihaT 2m 2 + —h v2 4/ 2) \p1 d3r + ih—a [ xii;AF ler - f iv2̀ (vic +v2c)T, d3r. at , 171

Eq. (V.2) gives 

aT2 h2 2
ih + —V W2) = (V2 Vic ) xiq (r, at 2m 

(V.A.3) 

Then we substitute eqs. (V.A.1) and (V.A.3) into eq. (V.7a). Integrating between t = —co 

and t = •.o the third term on the r.h.s. of eq. (V.A.3) vanishes because there is no overlap 

between W1 and W2 long before and long after transfer. So we get 

+0° 
A(2,1) = 

f 
 

2mi 
dt f dS • (V7‘111 - xi/ V \if; ) 

—co 

1 f  +" 
+7-- dt 

[J
IF;v2Nwid3r± f 

th —00 Ri R2

which is eq. (V.8) of text. 
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Chapter VI. Proton Transfer Calculations 

Here we show some results for the reaction 2ospb(16 0 ,
15N) 

209 
Bi at several incident 

energies and for various final states. The following angular distributions are obtained by 

using the analytical form (V.36) of the semiclassical transfer amplitude and the partial-

wave formulae (III.28)- (III.31) for the differential cross section. The phase shifts that enter 

in eq. (III.28) are calculated numerically for the initial channel only, i.e. we appoximate 

61. In all cases we used the same optical potentials as for the DWBA calculations 

shown. The normalization constants Ci; that enter in the amplitude (V.36) are given by 

eq. (V.29). Following the discussion at the end of § V.2, p.84, we use 

exact (d a  ) 

Cf a (d a )  
iaXe c,(lada) '

a = 1,2. (VI.1) 

In eq. (VI.1) xta (=y„r) is the Hankel function form (II.19), 

where 

2 2mP F 
ICY h2 013

Z e2ce, 

da

(VI.2) 

(VI.3) 

is the proton binding energy diminished by the Coulomb term. The distances d a  are such 

that d1 d2 = d(Lpeak (cf. p. 84) in the initial channel. 

Fig. VI.1 compares our angular distributions to the experimental data and DWBA 

calculations of Pieper et al. (1978) for the reaction 208 pb( 16 0, 15 iv)9n9Bi at incident 

energies Eh yb =138.5 and 216.6 MeV. 
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Fig. VI.2 shows our results for the same reaction at 312.6 MeV for several final states 

in 209Bi. Experimental data and DWBa calculations (Olmer et al. 1978) are also shown. 

Our cross sections are normalized by the spectroscopic factors given in the references 

cited. In all cases the shape of our angular distributions is very similar to the DWBA 

results. However, there are discrepancies in the magnitude of the cross section. At the 

highest incident energy, the transitions to the ground state (h912) and to the excited state 

at 1.61 MeV (113/2 ) are well reproduced by our calculations. But the transfer to the 

f7/2 state at 0.91 MeV excitation energy is underestimated, at variance with the DWBA 

prediction which is larger than the experimental data. 

Et: 216.61\ileV 

Et: 138.5 MeV 
1 

Ex=0.O0 MeV_ 
I h 9/2 

acfr- / o I /1! \JAI \ 
i,:.,i , i,. . 1 , 1 , I I ..i, It',  ial ILL ILL, I 

I • , l 

LI LI 

Id ad-ad,d3d4ci 531 EktuJda'ea7dscr._ loci' 
8c.111. 

Fig.VI,1 Di lc ferent i wl cross sections for the '1''s-ID("(l,"-.4)"Illi reaction. Fhe sol id curves are DiW1A calCulations t toe dashed curves are those cal-
culations shifted in angle anci renormal i ,!ed to bust tit the uata(Pieper at al , 1')7J),Our calculatiuns are the dashed-dottel curves,The incident enerqv F L is shown in the fiwire. 
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Chapter VII. Uses of the Transfer Amplitude 

Spin Selectivity and Angular Momentum Transfer. 

Information about the selectivity can be obtained by considering the transfer proba-

bility 

1 

Pr  (.2.2 3-1)
2j1 + 1 

m1 m2 

IBL(3.2m2,igni)12, (V 11.1) 

where B is related to the semiclassical transfer amplitude A (given by the formula (11.28) 

for neutron transfer and (V.36) for proton transfer) by 

BL (j2rn2, = Z. < i2m2le2A2sms > AL (t2 A2 , Ai ) < £1Aismsljlml > • 
) 2 me

(V II .2) 

Here s is the spin of the transferred particle and m, its z-projection, which is not changed 

by the transfer process. For example, by using eq. (VII.1) and the semiclassical formula 

(II.28), we calculated the relative population of all the transitions shown in fig. VII.0 

(from Bond 1983). Our predictions qualitatively agree with the spectra shown. In 

particular they reproduce the enhancement of some final states in one reaction with respect 

to another. This effect is associated with the different Q-value of the three reactions 

considered. 

Now we express the amplitude (V 1 .2) in terms of the transferred angular momentum. 

For the reaction 

al + c2 c1 a2
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FIG N11. 0 Single neutron transfer reactions for 148Srn 149Sm. Spectra were taken 
at the peaks of the bell-shaped angular distributions. Note the strong difference in the 
relative population of final states with (a) the (13C, "C) reaction, (b) the (12C, "C) 
reaction and (c) the (160, "0) reaction. ( From Bond icig3) 



Or 

(C1 + X) + C2 ---> Cl + (C2 + X) 

the angular momentum transfer £ is defined as the difference between the total spin in the 

final and initial channel: 

= i ci Ia2 Ia i Ic2 • 

From angular momentum conservation 

Lin + Ia, + IC2 = L fin + Ici Ict2

we find 

£ = Lin — 

where L is the angular momentum of relative motion. The single particle angular momenta 

ji and j2 relative to the cores c1 and c2 are defined by 

I ai = 1 1a2 = 1 c2 +j2. 

If the interaction is spin-independent I„ and Ic 2 have the same orientation in the initial 

and final channel. Then 

E =I~1 + (I„ +.i2) +.h.) 

and we have the selection rule 

y71 - 12h ≤QG.11+.12, = M2 - 

where nit is the z-projection of t and mc, that of jc, (a = 1,2). 
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Since the spin orientation of the particle z is not changed by the transfer process we have 

Ji -7----- Li ± s, J2 = t2 ± s, 

where t, is the single particle orbital angular momentum in the initial (a = 1) and final 

(a = 2) nucleus. Then 

t = t2 - -el 

and we have the selection rule 

Itl — t2 I < t < -el + e2, me -= A2 — All 

where as  is the z-projection of ea. 

In order to decompose the matrix element B(j2m2,.iimi) into terms corresponding 

to the angular momentum transfer i we have to vector-couple its two states to a resultant 

that behaves under rotation of the coordinates like < brit'. To do so we must remember 

that Ijimi > behaves under rotation like (—)11 —ml < ji. — mil. Then we may write 

B(j2m2,j1m1) = (-)li -
tMt 

< 2.2m2.7.1 — rni itmt > B(..7O.2; brit). (V II.3) 

Substituting into eq. (V II.1) and using the orthogonality property of the Clebsch-Gordan 

coefficients it is easy to see that 

ptr(3'2,3).) = 
211 + 

1 

1 
Crilt 

IB(.7Li2; tme)I 2, (VII.4) 

where we dropped the relative angular momentum subscript L for simplicity. The ampli-

tude B(.1O.2;-emt) is given by the inverse of the relation (VII.3): 

B(.iti2;tme) = (—)3.1—ml < .7.2m2.ii — mi lime > B (j27712 , hmi) = 
MI M2 

A(I2 A 2 , I'M 
Al .X2 
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• E < ><12A28m31/2m2 ><127n211 — mdtme >, (V11.5) 
ml t712 M. 

where we substituted the definition (VII.2). The sum of Clebsch-Gordan coefficients in 

eq. (V II.5) can be expressed in terms of a six-j symbol (e.g. Lawson 1980, p.472): 

ml m2m. 

—3-2+t2 

< 21a1sma ljl ml >< £2A2smal12m2 ><3.2m23.1 — miltrne > 

(212 + 
(24 + 1) 

>711171,7ri. 

< tiAism8igni ><31m1.2 — m2 — me > 

• < SM,932 — m2 I22 — A2 >= (—)3.1±844' 442+Y(23.1 + 1)(212 + 1) 

el s it 

12 2 

•<£1A122 —A2 2 —me > 
£2 

This implies that each of the four sets of quantum numbers 

(el s 11), • (el e2)) (12 S £2), (12 e 11) 

must satisfy the triangular inequality, e.g. Iti — si < ≤ s. 

Using the geometric relation (V II.6) into (V II.5) we have 

{ el s 3.1 
B(3.112; tme) = (_.).ii±e2+8+t /I 

v (2.71 + 1)(212 + 1) A(lit2; tme), 

.i2 2 £2

where 

A(2it2;tmt) < t2A2.6. — alltme > Av2A2, elm• 
A,A2 

Substituting eq.(V II .7) into (VII.4) gives 

{ el 3 :71 } 2

Ptr  (3.2 3.1) = (212 + E jA(1,t2; bile) I 2

12 e e2 mt
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12(11,12) 92(11, t2, Q , E). (V11.9) 

In this form the transfer probabilty is separated into a geometrical factor f which depends 

on the initial and final single particle angular momenta, j, and a dynamical factor g which 

depends on the other variables of the reaction, notably the incident energy and the reaction 

Q-value. In the case of nucleon transfer, for a given reaction specified by (el , £2 ) this factor 

weighs the selectivity with respect to the four possible transfers 

11 = tl - 1 / 2 --+ 32 = -e2 - 1/2, 

11 = -el + 1/2 ---)' j2 = 22 - 1/2, 

.ii. ---- ti - 1/2 ---4 12 = -e2 + 1/2, 

11 = tl ± 1/2 --÷32 = t2 + 1/2. 

Table VII.1 and Fig VII.1 show the results obtained for the reaction 208 pb ( 16 0 , 15 0)209 pb 

as an example. 

Table VII.1 : geometric factors for the transfer probability eq. (VII.9) 

{ 21 S 11 } 2

ft(11,12)= (212 + 1) 

12 t 22 

11 x 12 .2 = 3 i = 4 2 = 5 

1/2 ->7/2 1/3 5/27 0 

1/2 --9/2 0 4/27 1/3 

3/2.-47/2 1/18 7/54 6/27 

3/2 --)- 9/2 5/18 11/54 1/9 
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1 0 -3 -3, I
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EInL

(NI eV/nactton) 

Fig. VII.1a. Transfer probabilities calculated from eq. (V II.9) or eq. (V 11.17) for the reaction 

208 pb(16 0  ,i5 0)209 pb (g...) as a function of incident energy. The four possible transitions from the initial 

p-state to the final g-state are indicated. The calculation is done for the relative angular momentum corre-

sponding to the grazing orbit. 



30Spb(160 ,150)209pb — 

-e=3 
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1 0-6 - 
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Fig. VII.lb. For the same reaction in fig. a, coefficients gt in the sum (VII.9) as a function of incident 

energy. The possible values of the transferred angular momentum a are indicated. 



The coefficients g and the transfer probabilities P'(j 2 , j i ) were calculated numeri-

cally from the analytical formula (11.28) at a relative angular momentum Lo such that 

the transmission coefficients ISLo 2 = 1/2. Lo was obtained from the optical potential 

of table IV.1 and extrapolated at higher energies with the parametrization (VII.32). 

VII.2 A new angular momentum coupling. 

In this section we want to study the selectivity of the reaction with respect to the spin-

flip of the transferred nucleon. Then we define new quantities F0 and F1 corresponding 

to antiparallel and parallel spins of the nucleon before and after transfer. Formally, this is 

done by expanding the coefficients g of the previous section in the following way: 

11 12 2} 
gt(ti,t 2,Q,E) tmt)I2 = (—)t(2t 1) E (viLio)

mt 12 11 

where the sum runs over all (integral) values of J which satisfy the triangular inequality 

for the sets (11,11, J) and (12,12, J), i.e. 0 < J < 211 and 0 < J < 212. The Fj are given 

by the inverse relation of (VII.10), namely 

el +t2 11 12 
Fj  = (2.1 + 1) (—)t 9e. (VII.11) 

t=lt1—e21 12 11 

Substituting eq. (VII.10) into (VII.9) and using the symmetry relations for the six-j 

symbols (e.g. Messiah, 1969, p. 914-915) 

(_....)3.1±3.2±2a+J 

11 S 
E( —)e(22 1) 

./2 2 

>(_)e+1i+12+23+J(2 2 + 

(_...).7.1±3.2+2.9+J { 21 

jl 2 11 12 

22 12 11 

{ 11 12 2} { 3.2 11 

tS}{ 

21 £2 e 

3.2 11 12 2 tl 

8 J S J 

11 

.

31 }{ £2 22 .72 
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we have for the transfer probability 

{s s J s s J 
ptru 2 (2j2 1)(_)11+12+23 E(_) Fl (V I I .12)

J

1 1 £1 £2 e2 

Because of the selection rules for the 6-j coefficients in the sum (V H.12) J spans the range 

0 < J < 2s, 0 < J < 2ti , 0 < J < 2t2, 

that is J is an integer or zero whose maximum value is given by twice the min(s, £1,t2). 

Therefore if one of these quantities is zero only F0 contributes to the sum (VH.12). 

By using eq. (V H.1) or (VII.4) or (V H.12) it is straightforward to prove that the 

probability P satisfies the sum rule: 

1 aef 
Pr(i2,51) - 2t1+ 1 IA(£2A2,11A1)12 Pitz,ti) 

1 

Al A2 

IA(tit2;trnt)12 = 
1 

2£1 + 1 

where we introduced the probabilty of transfer from a single particle level with orbital 

angular momentum .£i in the initial nucleus to a single particle level with orbital angular 

momentum £2 in the final nucleus. Notice that the sum over the final single particle spins 

32 is independent of the initial spin Ji. In the case of nucleon transfer s = 1/2, then 

J = 0,1 and eq. (V 11.12) becomes 

1/2 1/2 0 I 1/2 1/2 0

1313.2d1) = (2j2 + 
1)(—).11+3.z+1 1 10 

el el 1 1 £2 £2 32 

• (1 — 
FO 
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where (for a = 1,2) 

1/2 1/2 1 

3“ — 1/2 1/2 0 

La La 3« 

aect

La3(ta +1) 

2ta 1/2 — ja 

3(1« + 1/2) 

if ja = La — 1/2, 

if ja = E« + 1/2. 

Now we calculate F0 and F1 from eq. (VII.ii) 

(-)4±t2 
_ED 2 -el 

+

 1 4. 

F0 
IA V i t 2;  t rnt )I2 = )4. - rx.2   p4fre 2,

V(2.e1 ± (2t2 + 1) emt I 2t2  1 

3  (_)ti-Ft2+1 
= 

2 -0 1 (4. + 1) (24 1)E2 (E2 1) (2.e2 + 1) 

[t1 (el + + t2 (e2 + 1)1E gt — E ng,} , 
_ 3  1  i(E+ i)gt 

F0 - 2 Vei (E1 -►- 1)E2 (t2 + 1) Et gi 
Eq. (VII.14) can be written as 

E1 (E1 + — E2 (E2 + 1) 

(V11.15) 

(VII.16a) 

(VIIt16b) 

. (VII.16e) 

P112,11) = 

1 

2 

(2L22
.F±1 

.4_ 1) ( 1. 

D3 
D52 ptrv2, t i ) (VII.17) 

2 + 
FO 

Eq. (VII.17) gives the probability for transfer from ji = E1 t 2 to 12 = 12 - 2 or j 2 + -12- in 

terms of the simpler probability Ptr(t2,4), eq.(VII.13). The factor in front of P tr (e21 -el) 

is separated into a j-dependent part 1311D12 and the energy-dependent ratio R = F1/Fo. 

This ratio can change sign as a function of energy (fig. VII.2). This implies a change in 

the selectivity of the reaction as a function of incident energy. As it has been suggested 

by classical arguments, at low energy the `spin-flip' transitions j i = ti ± 2 --+12 = E2 
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0 • 0 

— 1 • 0 
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Fig. VII.2. Ratio R Fi/Fo for the transfer probability eq. (VII.17) as a function of incident energy. Same 

reaction as fig. 1. 



are favoured , while the opposite situation j i = El ± j2 = £2 ± 2 occurs at higher 

energy. Our calculation suggests that this `inversion' of selectivity occurs at an incident 

energy such that (cf. chapter II) 

—2 7nvci = lQl = IE1 — e2l, (11.32) 

where vd is the relative velocity at the point of closest approach, d. This corresponds to 

an incident energy Ecrit 20 Mev/nucleon for the reaction 208 pb(16 0 , 15 O)209pb . Thi s

is the point where R in fig. VII.2 changes sign. As a result the factor (1 — D3 Die R) 

that enters in eq.(VII.17) crosses the value 1 at this energy (see fig.VII.3). The transfer 

probability ptr(t2, ) eq. (VII.13), rises from low energy to a maximum at E crit, then 

decays exponentially at higher energy (fig. VII.4). Due to the form of the transfer ampli-

tude, eq.(II.29), the energy dependence of P'(£2,t1) is governed by the quantity i (cf. 

p. 26). From the factors shown in figs. VII.2-VII.4 we obtain the transfer probability 

P112,3 .1)1 eq. (VII.17). Of course this is the same result obtained with the transferred 

angular momentum coupling, eq.(VII.9), shown in fig.(VII.1a). In a realistic calculation 

figs. VII.1 and VII.3 would be slightly modified because single-particle states with differ-

ent spins in general have different binding energies. In particular the energy Ecrit would 

be shifted by an amount AEcrit = IQ [cf. eqs. (11.32) and (VII.25)]. The analytical 

calculation of Ptr (i2,3.1) can be taken a step further by using an approximate formula of 

the type (I1.29) for the transfer amplitude A(t2 A2,11A1), where the rotational properties 

are contained only in the factor Yti (ICI) Yt*2 A2 (1C2). Thus one can calculate analytically 

the ratio R = 1-1  which determines the spin dependence. The calculation of H. Hashim Fo 

(private communication) shows that R changes sign when either k1  or k2z, defined by 

eq.(II.17), changes sign. This happens when the condition (II.32) is satisfied. 
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Fig. VII.3. The factor (1 — DAD;, -9°-) that enters in eq. (VII.17). The ratio R = F1/Fo is given in fig. 2. 

The possible transitions ji § are indicated (cf. fig. la) 



208pb (18O , 15O)209.p b _ 

fir ltt = 4i tI= 1) 

1 0 -4 - 

10  
0.00 20.00 40.00 60.00 80.00 100.00 

Einc. 
(Memin vcle.on) 

Fig. V11.4. Same reaction as fig. 1. Transfer probability, eq. (VII.13), as a function of incident energy. 

ti and £2 are the orbital angular momenta of the initial and final single-particle states. 



VII.3 Energy Dependence of the Transfer Cross Section. 

In Chapters IV and VI we discussed mainly angular distributions and we saw that 

DWBA calculations as well as our model predict shapes which agree quite well with those 

observed for several one-nucleon transfer reactions. Both methods also reproduce the 

relative intensities of transitions to single-particle states. However, the DWBA cross sec-

tions increase more rapidly with energy than the measured cross sections (see fig. I.14). 

Fig. VII.5 shows that, after a rapid increase through the Coulomb barrier, the experimen-

tal cross sections level off at around 100 MeV and start to decrease steadily with incident 

energy. The DWBA cross sections, after reproducing the observed increase of about two 

orders of magnitude through the Coulomb barrier, remain almost constant with increas-

ing energy and become clearly too large with respect to experimental data. In a region 

of considerably higher incident energy ( ≥ 20 MeV /nucleon) one expects an exponential 

decrease of the transfer cross section due to the diminished overlap of the momentum dis-

tributions of the transferred nucleon in the initial and final state. This has been studied 

by Von Oertzen (1985) and is often referred to as TGV (Transfert h Grande Vitesse). In 

particular the reaction 12c (13c , 12c )13 C was calculated for an incident energy between 20 

and 80 MeV/nucleon. The calculation clearly showed an exponential decrease with energy. 

In this section we study the energy dependence of the cross section with our analyt-

ical formula for the semiclassical transfer amplitude in relation to the selectivity of the 

reaction. To do so it is better to consider the angle-integrated cross section. This elimi-

nates the uncertainty in the angle ( a prescription could be °peak) and the relative angular 

momentum at which the cross section is calculated. Another advantage is that both the 
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classical formula (I II .17) and the partial wave formula (111.28) for the transfer angular 

distribution, once integrated over the solid angle al give the same cross section, as we 

proved in §III.2. We recall the classical expression (II 1.17): 

da(0) r da (0)1 
dll dIl cI 

Pt 
460 (a)IS (e)12L (VII.18) 

where a stands for the quantum numbers describing the initial and final (single particle) 

states. This formula assumes that for a given scattering angle 8 the contribution to the cross 

section comes from one orbit with classical angular momentum hA(0) or impact parameter 

b(0). A is related to the angular momentum quantum number L by A = L 1/2. In 

eq. (V I I.18) 

do, 
d11 

b 
sin 0 

db 

is the classical cross section for elastic scattering. If more impact parameters lead to the 

same scattering angle the classical cross section is given by the sum of the cross sections 

for each impact parameter. For our discussion we shall exclude this case. 

pr (a) is the transfer probability for the transition specified by the quantum numbers a. 

The factor ISL 12 gives the probability that the system escapes absorption into other in-

elastic channels. 

Integrating eq. (VII.18) over the solid angle dfl = sin Odecico gives 

0"„ = 271- f  b(0) 
db 

Pir(6)(a) IS L(e)I 2 d0. 

We assume that the deflection function 0(b) is monotonically decreasing ( as it is the case 

Z 
for Coulomb scattering where 0 = 2 arctan zc Z e2

 ) and that b(0 = 0) = oo (particles 
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passing undeflected at large distances) while b(0 = 7r) = 0 (particles turned back in a 

head-on collision). Then changing the integration variable from 0 to b gives 

27r f
00 

PP(0) (a)ISL(0 12 b db. (VII.19) 

Eq. (V II.19), with the analytical expression for the transfer amplitude given before, was 

used by Bonaccorso, Brink and Lo Monaco (1985). In that work a sharp cut-off approxi-

mation for the transmission coefficient 

0 for b <bo
ISL(b)i2 

{ 1 for b> bo 

was used to derive an explicit formula for the cross section. This was applied to the 

reactionl2C (13 C, 21u, -A )13C studied by Von Oertzen (1985) (see fig. VII.7). 

Here we derive a similar analytical formula for the cross section with a more realistic 

parametrization of ISL I2 and an explicit j -dependence in the transfer probability. 

Eq. (V II.19) can be transformed into an integral over the classical angular momentum 

A = L+ 1/2 by the change of. variable A = i /2µEc.m. b = kb : 

27r fC° «
t

k2 
o 

PAr 
1/2‘(,,,,)) i,,,A_1/2 12 A dA. 

J
(VII.20) 

Our strategy will be to identify which factors in the integrand of eq. (V /I.20) are slowly 

varying with A, approximate them at a fixed value b such that the integrand is maximum 

and then integrate analytically the factors which vary rapidly with A. We must specify the 

quantum numbers a in the transfer amplitude. If we consider the transfer of a particle 

x from the single particle state (Eiji) in nucleus al = c1 + x to the single particle state 

(I2,.12) in a2 = c2 + x, with the same notation of §VII.1, we have a = Val ,Ic2 Ici 1 Ict2) 
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and the transfer probability in eq. (V II .20) is given by: 

2/ a2 + 1 
Pt rli r (I al c2 Icl '12) — (21,2 + 1) (2j2 + 1) 

2 (2Ic2 1)(2.e2 + 1) 
(1 —Dii Di,R)Ptr(t2,t i) (VI/.21) 

where P'(j 2,ji ) is the single particle transfer probability defined in eq. (V I I .1) and the 

factor in front takes into account the sum over final states and the average over initial 

states, as we discussed in §III.1. In the last step we used the result eq. (VII .17), where 

the Di's are given by eq. (VII.15). The quantity R , given by eq. (V I I .16c), is the 

ratio of quantities containing the modulus square of the semiclassical transfer amplitude. 

Therefore R varies slowly with the relative angular momentum A and will be substituted 

by the constant Ro R(A = A). By using the approximation 

K _ A2 (7 K 0 (7. d)   n— d 
2r id 

(VII.22) 

in the expression of the semiclassical transfer amplitude A(t2 A2,t i Al) [eq. (11.28) for 

neutrons and (V.36) for protons] we have (cf. Bonaccorso, Brink and Lo Monaco 1985) 

(he Ce1 Ct, )2 e-2nd
P iti r 112 ( t2 1 11) = (2t2 + 1) 

MC2 Ed 
Pt, (cos wt ) Pe e  (cos W2) rid (V I I .23) 

where Pi(z) is a Legendre polynomial and 

(k az ) 2
COS Wa  + 2 

'7« 

cos WI 1 
(Q + Ed) 2 

2ElEd 
COS CA.12 = 1 

2c2Ed • 

a = 1,2, 

(Q — E d)2 (V 11.24) 

In these formulae Ed is the kinetic energy of the nucleon at the distance of closest approach 

d: 

2 M l + A2 (hA) 2
Ed = —MV d = --[E cm — V (d)] =  [Ecm V (d)] = 

2 

A

AA2 2/.1c12
(VII.25) 
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where p, is the reduced mass, Al and A2 are the mass numbers of the colliding nuclei (in 

the initial channel). The tangential relative velocity vd of the nuclei at the distance of 

closest approach can be related to A and Ecn, by using the angular momentum and energy 

conservation 

avd 1  
= 

h 
— 72µ[E cm — V (d)] d E--: kd d 

For Coulomb scattering we have 

where 

d=  \/ 
n n2 A2 

Z1Z2e 2 Zi Z2 e2
n = 

hv hOE, ml eth' 

is the Sommerfeld parameter, and 

7., Al +A2 A Ed
Ecm 

A1A2 (n+ Vn 2 + A2 ) 2

(VII.26) 

(VII.27) 

(V 11.28) 

Then in eq. (V II.23) a smooth A-dependence is contained in the factor 1/Ed, in the 

arguments of the Legendre polynomials (V17.24) and in the quantity [cf. eqs. (II.30) and 

(11.31)] 

1 1 ( Q2

2 E d +  Ed) — (61+ 62)]• (VII.29) 

To integrate the differential cross section we shall only retain the A-dependence of d 

nr  in the exponential of the transfer probability and consider all other slowly varying 

quantities independent of A. We evaluate the latter at the value A = X such that the 

integrand in eq. (V II.20),  PST 1/2 SA-1/2I2 , is maximum. To a good approximation, A

= Ao (grazing angular momentum defined later on). If do is the distance of closest 
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approach for a Coulomb orbit with angular momentum Ao (do is the strong absorption 

radius discussed later on) we obtain 

Ai +A2 
Ed E0 = 

A1A2 
[Ec.m. — V (d0)]• 

Then eq. (VII.23) gives 

(VII.30) 

ptr ( p _) = (2t2 + 1) (tic Celce2)2 e-2noac 
— 2--La A Pe, (cosC4.101)13t 2 (cos woe)  e k J- A1/2 k.L'2.  5 '-.1/ 4 me2 

E0 770d0 

(VII.31) 

where cos woc, and rio are defined by eqs. (V II.24) and (V I/.29) by substituting E0 to Ed 

and 

a, = nlk =  
Z1Z2e2
2E,, 

is half the distance of closest approach in a Coulomb head-on collision. 

The transmission coefficient in eq. (V II.20) is 

ISA-1/212 = exp [-4 Im 8(A.)], 

where 6 is the elastic scattering phase shift. We parametrize the imaginary part of the 

phase shift by 

Im SN (A) = 1n2e 
4 

(VII.32) 

This form gives ISI 2 0 for small A's (strong absorption) and ISI 2 rz..- 1 for big A's (no 

absorption). The parameters A. and Ao can be related approximatevely to the imaginary 

part of the optical potential, as we show at the end of this section. The factor in front of 

the exponential in eq. (V II.32) ensures that '512 = -} for A = Ao = Lgrazing + 1/2. 
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By substituting eqs. (V II.32), (V II.31) and (VII.21) into eq. (V II.20) we have 

a V., ,-Tc2 
(rhc Cti ce,)2 210,2 + 1 ra j 477-1c2 2.1,2 +1 

• (1 — D11 Di, Ro) Pt, (COS wol)P4 (cosw02) 

A0 e-2"a. °° e_ A e— In 2 exp ( A°:  ) dA. 
k2 E0770d0 J0 

The integral in eq. (VII.33) can be calculated analytically: 

1 

J 

2"k 

e A — in 2 exp(.'it A ) dA = z YaA—le—PY 
dy 

o 
e— 

(VII.33) 

= A 13—aA -y(aAO3), (VII.34) 

where we put y = e— A , a = 277  7 ° 13 = 1n2 e A La, and the incomplete gamma func-

tion(Abramowitz and Stegun 1970, p. 260) 

Since is very large 

-y(a, ta-ie-tdt. 

00 
1(aL1, 13) taA-l e-tdt =r(aA). (V II .35) 

By substituting eqs. (V II.35) and (VII.34) into (VII.33), our final result for the angle-

integrated cross section is 

(1-he Cei Cti 2 2/a, + 1 
a(Ia,,-Tc2 = 4me2 21C2 + 1 

• (1 — D11 Dj2Ro) Pel (cos Wol)Pi2 (cos W02) 

.10A or 2— (1n2)-2t" e ( 770) 
k2 Eoliodo k 
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Fig. VII.7. Angle-integrated transfer cross section for the reaction 12c (13C, 12C) 13C(1/2-'.g.a.) as a function 

of incident energy per nucleon. The squares are DWBA calculations by Von Oertzen (1985). The crosses 

and the stars are the results of the calculations of Bonaccorso, Brink and Lo Monaco (1985) for two different 

choices of the strong absorption radius R,: + correspond to R, such that IS12 = 1/2 and * to R, such that 

ptr . 1512 be maximum. These results are obtained by the analytical formula for the cross section shown on 

top of the figure, which uses the sharp cut-off approximation for the reflection coefficient 1S12. The symbols 

have the same meaning as in the present work. Finally, the triangles are obtained by integrating over the 

angle the differential cross section given by eqs. (III.28)-(III.31). It can be seen that the agreement between 

this calculation (triangles) and DWBA (squares) is better than for the other two approximation. 



All factors in eq. (V11.36) depend slowly on energy, except the exponential e 2 n kA° n0 — 

e-2nodo and the Legendre polynomials. The parameters Ao and A can be related to the 

depth Wo and diffuseness aw of the imaginary part of the optical potential W(r). By using 

an exponential form of the nuclear potential (Broglia and Winther 1981, p. 112) and the 

parametrization (VII.32) of the phase shifts, we find 

2 
Ao = kay, In [ W 

In 2 

A = kat°, 

mc 2 AlAz awRCB 

(lc) 2 Al + A2 Ec.m. — ECB 
kR,„ — n. 

The expressions given above for Ao and A have been tested with the results of reflection 

coefficients calculated numerically by solving the radial SchrOdinger equation. 

By extrapolating the parameters of W(r) given in table IV.1 to higher energies, we calcu-

lated the angle-integrated cross section, eq. (VII.36), for the reaction 208 pb(l60, 15 O)209pb 

in a wide range of energies above the Coulomb barrier. For incident energy Elab > 20 

MeV/nucleon the cross section decreases exponentially with increasing energy. At high 

energy the dependence of the cross section is very similar to that of the transfer probabil-

ity in fig. VII.1 
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Chapter VIII. Conclusions 

The evaluation of the amplitude presented in this work provides a practical way of 

calculating angular distributions for single nucleon transfer between heavy ions. At the 

same time, the semiclassical approach makes it easier to understand the physics of the 

process. 

The perturbative treatment of chapter II is accurate enough for heavy ion reactions 

above the Coulomb barrier, because of the strong absorption in the interior region. The 

analytical form shows the explicit dependence of the amplitude on the distance of closest 

approach (d.c.a.), the relative velocity, the Q-value and the angular momenta of the initial 

and final states. This gives the condition between Q and the incident energy for maximum 

transfer and allows the spin selectivity of the reaction to be studied. 

The physical interpretation of the process is also quite transparent, as we showed 

with the approximate factorization of the amplitude in § II.3 or by introducing the double 

Fourier transform (1. in § II.5. The transfer amplitude is essentially given by the overlap of 

two factors: the amplitude that before transfer the nucleon be on the surface E between 

the two nuclei with specified momentum k1, times the amplitude that it is found bound 

in the final nucleus with momentum k2z. The momenta klz and k2z are given by the 

kinematic condition (II.17) that comes out from our calculation, but can also be deduced 

from the addition of velocities. 

One aim of our work was to see how reliable semiclassical calculations are for a quan-

titative descripton of transfer reactions. The calculations done with the appropriate for-
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malism of Hasan and Brink (1978) and the analytical form of the semiclassical amplitude 

derived in this work show that the shapes of our angular distributions are very similar 

to those obtained by DWBA. However, the magnitude of our cross section is sensitive to 

the choice of the distance of closest approach in the initial or final channel. This may be 

particularly serious at lower energies for a transfer with a large Q-value. The sensitivity to 

the choice of the orbit makes such a calculation unreliable to extract spectroscopic factors. 

The evaluation of the absolute cross section could be improved if one finds a consistent way 

of treating the angular momentum loss from the relative motion to the intrinsic degrees of 

freedom. 

An interesting observation about the partial wave formalism of Hasan and Brink 

(1978) for calculating angular distributions is that it gives the same angle-integrated cross 

section as the classical product-of-probabilities formula, as we showed in chapter III. There-

fore one can use the simpler classical formula to study spin selectivity and energy depen-

dence of the reaction. 

The semiclassical neutron transfer amplitude is easily extended to the case of proton 

transfer. A new definition of effective Q-value is necessary for a consistent formalism. 

A new j-coupling scheme was introduced to study the spin selectivity of the reaction 

with respect to the incident energy. This gives a formula for the transfer probability and 

accounts for the observed `spin-flip' preference at low energies and vice-versa at higher 

energies. The change occurs at an incident energy such that the relative velocity v at the 

distance of closest approich satisfies the condition (II.32). This condiion is equivalent to 

saying that v matches the change in the nucleon velocity caused by the transfer from the 
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initial level with energy Ei to the final level with energy E2 = ei — Q. 

Cross sections calculated within this coupling scheme could be used for j identification of 

single-particle levels. 

Also an approximate analytical formula for the angle-integrated cross section has been 

obtained. This formula can be used in conjunction with transfer probabilities in the new 

j-coupling scheme to study the spin dependence at high energy. 

Another problem is the calculation of the optical potential. It has been stressed several 

times that transfer plays an important role in the depopulation of the elastic channel. As 

we mentioned in chapter I, transfer form factors have a longer range than those for inelastic 

excitation. Therefore they affect more the `tail' of the absorptive potential. The analytical 

formula (II.28) for the semiclassical transfer amplitude has been used to calculate the 

imaginary part of the optical potential W (Brink and Stancu 1985). One result of that 

calculation is that transfer to the continuum states should be included in the calculation 

of the W, especially at higher incident energy. Therefore an extension of the present 

formulation to transfer in the continuum would be interesting. 
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