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Quantum state tomography is an essential component of modern quantum technology. In application to
continuous-variable harmonic-oscillator systems, such as the electromagnetic field, existing tomography meth-
ods typically reconstruct the state in discrete bases, and are hence limited to states with relatively low amplitudes
and energies. Here, we overcome this limitation by utilizing a feed-forward neural network to obtain the density
matrix directly in the continuous position basis. An important benefit of our approach is the ability to choose
specific regions in the phase space for detailed reconstruction. This results in a relatively slow scaling of the
amount of resources required for the reconstruction with the state amplitude, and hence allows us to dramatically
increase the range of amplitudes accessible with our method.
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I. INTRODUCTION

The ongoing rapid development of quantum technology
results in an increased complexity of the various quantum
states with which we operate [1–11]. This, in turn, raises the
requirements to quantum state tomography (QST)—the tech-
nique for reconstruction of the quantum state of a system from
measurements [12–16]. The higher dimension of the Hilbert
space can exponentially enlarge the amount of data required
for a QST quorum, as well as the amount of processing power
required to restore the state. These problems are often solved
using machine learning and neural networks, which allow
QST to be carried out quickly and efficiently [17–23].

A convenient choice of state representation for the QST
with neural networks is a basis of discrete variables [17,19]. A
discrete basis is often suitable for systems naturally described
in continuous-variable (CV) bases, such as the harmonic os-
cillator. Indeed, for a long time, QST of harmonic oscillator
states in the optical, microwave, and mechanical domains has
been done in the Fock basis [18,24], even when the measure-
ments were performed in the continuous quadrature basis. We
note that QST of harmonic oscillators historically began in
the CV basis [25] with the filtered back-projection algorithm;
however, this approach later became unpopular because of its
relative computational complexity and unphysical artifacts in
the reconstructed state [24].

However, the choice of the Fock basis for restoring the
states of a harmonic oscillator is optimal only when the state
under consideration has a relatively small amplitude. This
is because the number of Fock terms needed to represent a
state grows quadratically with its amplitude. Moreover, the
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superexponential factor of (2nn!)−1/2 present in the n-photon
Fock state wave function, which enters the QST algorithm,
complicates the calculations for high photon numbers. This is
why the reconstruction space in the currently published results
on QST of a harmonic oscillator in the Fock basis is limited
to the subspace of 30 photons [18], up to our knowledge.

In this paper, we develop an approach to QST of a
harmonic oscillator with a neural network where both the
measurement and the reconstruction are in the CV domain.
Specifically, we reconstruct a density matrix ρ(X, X ′) in the
position basis on a predefined finite coordinate grid. This
enables us to directly obtain density matrices of states with
arbitrarily high amplitudes, overcoming computational issues.
Our method allows us to do so on those areas of the phase
space that are relevant to the state in question. For example,
the wave function of a coherent state |α〉 takes nonzero values
in a narrow region around Xα = α

√
2 and we can query the

network with the position values mainly around Xα , thereby
ensuring that it is particularly well aware of the density matrix
structure around this region. No a priori information about the
state is needed since localized regions of interest can be in-
ferred directly from the measurement data. After the training,
the neural network will correctly interpolate the values of the
density matrix corresponding to the coordinates between the
grid nodes [26,27].

We anticipate our approach to be particularly useful for op-
tical analogs of Schrödinger’s cat states, i.e., superpositions of
coherent states of different amplitudes and/or phases, which
find broad application in CV quantum information processing
[6,28,29]. Similarly to coherent states, cat states are well
localized in the quadrature space, making them amenable to
our method. We demonstrate our method to perform QST of
cat states with amplitudes up to α = 40, which in the Fock
basis would require a reconstruction space with up to ∼1800
photons.
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FIG. 1. CV QST via a fully connected feed-forward neural network. Input position value pairs (X, X ′) within the regions of interests
(shaded gray) are processed with the NN into real and imaginary values of a matrix A(X, X ′), which is then transformed into a physically valid
density matrix via the Cholesky decomposition (3). The NN is trained using the backpropagation algorithm to maximize the log-likelihood of
the measured quadrature set.

II. CONCEPT

We specialize to optical homodyne tomography [15,16],
which measures samples of generalized quadrature X̂θ =
X̂ cos θ + P̂ sin θ , where θ is the phase of the local oscilla-
tor and can be controlled in the experiment (our treatment
is straightforwardly generalized to CV-QST based on other
types of measurement). N homodyne measurements produce
the set of amplitude and phase pairs { Xθn , θn }N

n=1. We utilize
a likelihood maximization approach with the log-likelihood
functional which in our case is defined as

L = −
∑

n

ln
[
P
(
Xθn , θn

)]
, (1)

where P(Xθ , θ ) is the probability density of obtaining a mea-
surement result Xθ for the local oscillator phase equal to θ .
Minimization of L corresponds to finding the density matrix
that maximizes the probability to get the specified quadrature
distribution. This probability density is given (see Refs. [30]
and the Appendix) by

P(Xθ , θ ) = 1

2π | sin θ |
∫∫

ρ(x, x′)

× exp

[
−i

x − x′

sin θ

(
Xθ − cos θ

x + x′

2

)]
dxdx′,

(2a)

where the density matrix ρ(x, x′) in the position basis is
known from the neural network output.

The above equation can give rise to numerical instabilities
for small θ due to the denominator containing sin θ . To avoid
the problem, we use Eq. (2) only for the quadratures with
| sin θ | � 1/

√
2. When | sin θ | < 1/

√
2, we first apply the

Fourier transform to compute the density matrix ρ(p, p′) in
the momentum basis, and then find the probabilities according
to.

P(Xθ , θ ) = 1

2π | cos θ |
∫∫

ρ(p, p′)

× exp

[
−i

p − p′

cos θ

(
Xθ + sin θ

p + p′

2

)]
d pd p′.

(2b)

To reconstruct the density matrix, we exploit a fully connected
feed-forward neural network (NN) [31] based on freely acces-
sible PYTORCH libraries. The reconstruction process is shown
in Fig. 1. NN takes a pair of coordinates as input and outputs
a single complex number A(X, X ′), which is connected to the
density matrix via the Cholesky decomposition [32]

ρ(X, X ′) = A†A

Tr(A†A)
. (3)

The motivation for this intermediate step is to ensure that the
output density matrix is Hermitian, semipositive definite, and
normalized [33].

In order to compute the density matrix, the NN is applied
in sequence to all pairs (X, X ′) from a predefined grid. When
all A(X, X ′) are known, ρ(X, X ′) is calculated via Eq. (3). To
train the NN, we evaluate the loss functional L, and iteratively
apply backpropagation to update the NN parameters.

To choose the grids for the position and momentum
quadratures, we inspect the experimental data for θ ≈ 0 and
θ ≈ π/2 and find the regions where the measured samples
are localized. The grids must cover these regions. The grid
period (δX, δP) is chosen to ensure the correct Fourier trans-
form. That is, large values of momentum quadratures present
in the state imply that the density matrix in the position
space undergoes fast oscillations, and vice versa. The grid
must be sufficiently frequent to capture these oscillations. We
observed correct reconstruction by setting the grid periods
according to

δX � P−1
max, δP � X −1

max,

where Xmax and Pmax are the highest quadrature values ob-
served in the measurement.

III. RESULTS

First, we test our method on several experimentally ac-
quired sets of measurements that correspond to prepared
quantum optical states containing only a few photons. The
experimental apparatus is described, e.g., in Refs. [34,35].
We compare our technique with the discrete iterative
likelihood-maximization algorithm (MaxLik) [24], which re-
constructs the state in the Fock basis. We apply a correction
for linear losses by assuming that the state of light has propa-
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TABLE I. Experimental states reconstructed in Fig. 2. The reconstruction involves correction for linear losses corresponding to the
efficiency η. The fidelity shown is between the reconstructions via the NN and MaxLik [24] techniques.

Figure State η Fidelity

2(a) Single-photon 0.56 >0.999
2(b) Displaced single-photon 0.56 >0.999
2(c) Normalized superposition of Fock states

a0 |0〉 + a1 |1〉 + a2 |2〉
with a0 : a1 : a2 ∼ −0.76 : 0.49 : 0.42 [34] 0.56 0.998

2(d) Normalized superposition of coherent states |α〉 + |−α〉
with |α| = 1.85 squeezed by 3 dB [35] 0.62 0.994

gated through an attenuator of transmissivity η (referred to as
the efficiency); the mathematical details of this correction are
described in the Appendix. The reconstruction NN featured
three hidden layers, each containing 100 units. For the NN
training, the grid in the position and momentum spaces is
chosen to cover the interval P, X ∈ [−4, 4] with 80 equidistant
intervals.

The states are listed in Table I and the results of the recon-
struction are shown in Fig. 2. In all cases, the mutual fidelity
between the density matrices obtained with the two methods
exceeds 0.994. To evaluate the fidelity more precisely, we
exploit the interpolation capability of the NN to predict the
density matrix values over a more frequent grid than during
the training. Specifically, the grid contains 400 equidistant
position values over the interval [−4, 4].

To explore our method further and demonstrate the per-
formance of the CV NN QST approach in its full glory,
we simulate quadrature measurement data sets for a variety
of high-amplitude states. In Fig. 3 we show Schrödinger’s
cat states |α〉 − |−α〉 with different real amplitudes α. These

states’ Wigner functions exhibit an oscillating pattern near the
phase space origin [Fig. 3(c)]. The density matrix in the coor-
dinate representation consists of two positive and two negative
Gaussian peaks as shown in Fig. 3(b). In the momentum basis,
the density matrix exhibits a rapidly oscillating pattern with a
Gaussian envelope centered around p = 0, p′ = 0.

We simulated quadrature measurement data sets with sizes
ranging from 5 × 103 to 105 for cat state amplitudes up to
α = 40. The same NN as in the previous section was used.
The grid in the position space contains 360 values distributed
evenly over the two intervals [±α

√
2 − 4.5,±α

√
2 + 4.5],

i.e., in the vicinity of the expected Gaussian peaks. In the
momentum basis, the grid is in the interval [−5, 5], also with
360 equidistant values.

Figures 3(d) and 3(e) demonstrate the fidelity between the
reconstructed and true cat states as functions of the amplitude
and number of quadrature measurements. The value of each
point is estimated using five sets of synthetically generated
measurements. As expected, the fidelity increases with the
number of quadratures acquired and decreases with the cat
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FIG. 2. Wigner functions reconstructed from the experimental data with the MaxLik method and our neural network for a (a) single-photon
state, (b) displaced single-photon state, (c) engineered Fock superpositions up to the two-photon level, and (d) optical Schrödinger’s cat states.
An efficiency correction is applied to each state (see Table I). Mutual fidelity between each pair of states exceeds 0.994.

042430-3



EKATERINA FEDOTOVA et al. PHYSICAL REVIEW A 108, 042430 (2023)

(a) (b) (c) (d)

(e)

FIG. 3. QST of Schrödinger’s cat states |α〉 − |−α〉 with MaxLik and CV NN from simulated quadrature data sets. (a) Simulated quadrature
data for α = 5, 40 and N = 5 × 103, 20 × 103 (top and bottom panels, respectively). Bottom right insets show the zoomed-in quadrature
samples in the intersection region. Top left insets present ideal probability distributions from the same regions, exhibiting fringe patterns.
(b) Real parts of the reconstructed density matrices for the data in (a). (c) Reconstructed Wigner functions for the same states. The inset in
the bottom panel shows a fringe pattern in the central peak. Gray rectangles show the reconstruction regions. (d) Fidelity as a function of
the amplitude α for a fixed number of quadrature measurements (5 × 103 and 20 × 103). (e) Dependence of the fidelity on the number of
quadrature measurements for fixed amplitudes.

amplitude. Again, we compare the NN method with MaxLik.
The latter method works with cat amplitudes up to α = 10.
Higher amplitudes are inaccessible for MaxLik because of the
aforementioned factor of (2nn!)−1/2 in the position-basis wave
function of a Fock state |n〉. For instance, to represent a cat
state with the amplitude α = 10, the reconstruction Fock basis
must include elements up to at least n = 170, for which this
numerical factor is as low as 10−179, requiring a very high bit
depth for precise calculation. This issue does not arise in the
continuous-variable basis, making our approach advantageous
for high-amplitude states.

To illustrate the challenge of cat state reconstruction, we
refer to Fig. 3(a), which shows the simulated phase-dependent
quadrature data. Visible fringes at the intersection of the two
sinusoidal envelopes is the feature that distinguishes a cat
state from an incoherent mixture of two coherent states. With
growing amplitudes, the phase regions in which these inter-
sections are present reduce in width. At the same time, the
frequency of the fringes increases. This implies the require-
ment for larger quadrature sample sizes to make this feature
statistically significant. At the same time, increasingly finer
grids in the momentum space are needed, as well as high
homodyne photodetection efficiencies. These factors make the
required data acquisition and reconstruction process increas-
ingly complicated and time intensive.

For this reason, the magnitude of the off-diagonal peaks
in the density matrix [blue peaks in Fig. 3(b)], as well as
the amplitude of the interference fringe pattern in the Wigner
function, degrade with the growing amplitude. It is remark-

able, however, that although the fringe pattern is not visible
in the data set of Fig. 3(a) (bottom), the NN is able to make
it out, reconstructing the cat state with a fidelity of 0.87 with
pronounced coherence between the peaks [bottom panels in
Figs. 3(b) and 3(c)] in spite of a relatively small number of
quadrature samples (2 × 104).

Finally, we perform the tomography of more complex
states relevant to continuous-variable quantum information
processing (Fig. 4). We consider the following states.

(1) Two-component Schrödinger’s cat states with imag-
inary amplitudes [Fig. 4(a)]: The state is analogous to
that studied above, but the position and momentum are
exchanged—so the NN needs to predict a density matrix with
fast oscillations. The NN has four hidden layers with 100 units
each. The activation functions are sin(·) in the first two layers
and tanh(·) for the second two layers. The sinusoidal activa-
tion function is helpful in modeling the oscillating behavior of
the wave function. High-quality reconstruction demonstrates
that our algorithm’s capabilities are insensitive to the choice
of the zero phase reference point.

(2) Three-component cat states |α〉 + |α exp (i2π/3)〉 +
|α exp (−i2π/3)〉 containing three peaks with evenly dis-
tributed phases [Fig. 4(b)]: We used the same NN architecture
as for the above two-component state.

(3) Gottesman-Kitaev-Preskill state [36], which is of im-
portance for quantum computing [37,38] [Fig. 4(c)]: Ideally,
the wave function of this state is an infinite array of delta
functions, but the approximate wave function relevant to
experiments is an array of Gaussian peaks under a broader
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FIG. 4. Various reconstructed states. (a) Two-component Schrödinger’s cat state with imaginary amplitude α = 13i. A checkerboard
pattern is observed in the position-basis density matrix. (b) Three-component cat state with amplitude α = 13. The Wigner function contains
three Gaussian peaks and three oscillating regions between each pair of Gaussian peaks. (c) Approximate Gottesman-Kitaev-Preskill state.
Gray rectangles in the Wigner function plots show the reconstruction regions.

Gaussian envelope. The specific state used in our experiment
has the wave function

ψGKP(x) ∼
∞∑

s=−∞
e−2π (sk)2

e− (x−2s
√

π )2

	2 ,

where 	 = k = 1/4. The NN has four hidden layers with 100
units each. The activation functions are sin(·) in the third layer
and tanh(·) for the other layers.

The reconstruction grid parameters and fidelities are given
in Table II. Although some artifacts are present, our NN accu-
rately reconstructs all of these states.

IV. CONCLUSION

We demonstrate an approach to quantum tomography
based on the representation of a density matrix in a
continuous-variable basis by a feed-forward neural network.
The symbiosis of a continuous-variable basis and NN as a
universal approximator allows us to overcome the limita-
tions on reconstructing quantum states with high amplitudes
and/or photon numbers. We believe our method to be espe-
cially valuable in the context of quantum state engineering
in superconducting circuits, which are known to be capable
of producing high-amplitude continuous-variable states with
high efficiencies [39].

TABLE II. Reconstruction grids and fidelities of complex state QST (Fig. 4). The fidelities obtained with our method (FNN) and MaxLik
(FMaxLik) are shown.

State Position grid Momentum grid FNN FMaxLik

Two-component cat state, α = 13i [−5, 5], 500 pts [−23, 23], 500 pts 0.98 N/A
Three-component cat state, α = 13 [−13, −5] ∪ [14, 23], 300 pts [−23, 23], 300 pts 0.91 N/A
Gottesman-Kitaev-Preskill [−14, 14], 600 pts [−14, 14], 600 pts 0.92 0.87
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A particularly useful feature of our NN-based method is
its ability to reconstruct states in the predefined regions of the
coordinate space. However, this feature cannot be taken ad-
vantage of if the state is not well localized in the phase space.
In this case, the reconstruction would require a coordinate grid
that is broad and dense at the same time, and, consequently,
more computing power.

Our choice of a fully connected multilayer perceptron for
the NN architecture was dictated by simplicity considerations.
While this is sufficient for a proof-of-principle demonstration
of NN QST in the CV domain, it is likely that a more advanced
NN architecture may enhance the performance, particularly
for multimode states and states with complex wave-function
structures.

The code and experimental data used for tomography
within this paper are available upon reasonable request.
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APPENDIX

1. Quadrature probability distribution

Here, we present the alternative analytical derivation of the
quadrature probability density function (2a), which might be
found simpler than the original derivation by Man’ko et al.
[30,40,41].

First, consider the overlap between a quadrature state
|Xθ , θ〉 and a position state |x〉. The state |Xθ , θ〉 is the eigen-
state of the position operator in the rotated frame characterized
by angle θ with eigenvalue Xθ :

(X̂ cos θ + P̂ sin θ ) |Xθ , θ〉 = Xθ |Xθ , θ〉 .

In the position basis we can express the action of the momen-
tum operator as −i d

dx , so the above equation becomes

d

dx
〈x|Xθ , θ〉 = i

sin θ
(Xθ − x cos θ ) 〈x|Xθ , θ〉 .

The solution of this differential equation is

〈x|Xθ , θ〉 = C exp

(
i

x

sin θ
Xθ − i tan θ

x2

2

)
, (A1)

with C = 1/
√

2π | sin θ | being a normalization factor obtained
from

〈X ′
θ , θ |Xθ , θ〉 = δ(Xθ − X ′

θ ). (A2)

Finally, the probability density P(Xθ , θ ) of observing the par-
ticular quadrature Xθ for a density matrix ρ̂(x, x′) is

P(Xθ , θ ) =
∫∫

〈Xθ , θ |x〉 ρ(x, x′) 〈x′|Xθ , θ〉 dxdx′.

Substituting 〈x|Xθ , θ〉 from Eqs. (A1) and (A2), we obtain the
final result (2a):

P(Xθ , θ ) = 1

2π | sin θ |
∫∫

ρ(x, x′)

× exp

[
−i

x − x′

sin θ

(
Xθ − cos θ

x + x′

2

)]
dxdx′.

2. Correction for losses

Here, we derive the formalism that would enable our QST
algorithm to correct for the effect of losses and inefficient
photodetection that may affect quadrature measurements. In
the presence of these effects, the probability distribution for
the measured quadrature Xθ is [25]

P(Xθ , θ, η) = 1√
π (1 − η)

∫
P(Qθ , θ )

× exp

[
− η

1 − η

(
Qθ − Xθ√

η

)2
]

dQθ , (A3)

where P(Qθ , θ ) is the quadrature probability density in the ab-
sence of losses given by Eq. (2a). After some simplifications,
we obtain

P(Xθ , θ, η) = 1

2π
√

η| sin θ |
∫∫

ρ(x, x′)

× exp

{
−x − x′

sin θ

[
(x − x′)(1 − η)

4η sin θ

+ i

(
Xθ√
η

− cos θ
x + x′

2

)]}
dxdx′. (A4)

A similar expression can be derived for the momentum basis.
These expressions are then used in place of Eqs. (2a) and (2b)
to compute the likelihood (1). Remarkably, Eq. (A4) contains
integration over as many variables as the lossless integral
(2a). This is in contrast to the iterative algorithm [24], which
requires additional summation over all basis elements.
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