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1 Introduction

Compactifying a field theory using a topological twist, [1], has long been a useful tool
for studying supersymmetric field theories and their holographic duals, [2]. Recently, a
novel class of anti-de Sitter solutions were discovered which realise supersymmetry using a
different type of twisting. The solutions are obtained from wrapping branes on the orbifold,
Σ ≡ WCP1

[n−,n+], known as a spindle. The spindle has conical deficit angles at both poles
with weights, n±, with n± relatively prime integers. The first spindle solutions in the
supergravity literature describe D3-branes wrapped on a spindle, [3]. Since then, spindle
solutions have been extended to many other brane configurations and multi-charged solutions:
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D3-branes, [4, 5], M2-branes, [6–10], M5-branes, [11], D4-branes, [12, 13], mass-deformed
D3-branes, [14], D2-branes, [15], and more general massive type IIA brane configurations
in [16, 17]. All of these solutions exhibit a universal feature. Supersymmetry is preserved
by one of two new types of twist, dubbed twist or anti-twist. In [18] it was shown that these
are the only two possible twists on a spindle that preserve supersymmetry.1

In a somewhat parallel development, orbifold solutions known as discs were constructed
in [20, 21] describing M5-branes wrapped on a punctured sphere. These AdS5 solutions
are conjectured to be dual to a class of 4d N = 2 Argyres-Douglas theories, [22], with
further checks of the dualities and generalisations of the punctures performed in [23, 24].
Like the spindles this has been extended to other brane configurations: D3-branes, [25, 26],
M2-branes, [9, 27], D4-branes, [28], and M5-branes, [29]. In [9, 25] it was shown that the
disc solutions are different global completions of the same local solution. This fact will
appear later in this work where we extend it to additional types of spaces including the
defect solutions of [30].

A natural generalisation of this program is to find AdS solutions obtained from branes
wrapped on higher-dimensional orbifolds. A simple higher-dimensional oribfold is given by
the product of a spindle and a constant curvature manifold. In this spirit, AdS2 × Σ× Σg

solutions in six-dimensional gauged supergravity were constructed in [12, 13, 31], while
in seven-dimensional gauged supergravity, AdS3 × Σ × Σg solutions with Σg a Riemann
surface of genus, g, were constructed in [5, 31] and AdS2 × Σ× H3 solutions in [15]. These
solutions can be viewed as orbifold generalisations of the solutions obtained from branes
wrapped on a product of constant curvature manifolds: AdS2 × Σg1 × Σg2 solutions in
six-dimensional gauged supergravity, [32–34], and AdS3 × Σg1 × Σg2 and AdS2 × Σg × H3

solutions in seven-dimensional gauged supergravity, [35].
More recently, this has been further extended in [36] to AdS3×Σ1nΣ2 and AdS3×ΣgnΣ2

solutions in seven-dimensional gauged supergravity where the two factors are fibred over each
other. These solutions were found by performing a consistent truncation on the AdS5 × Σ
solutions in seven-dimensional U(1)2-gauged supergravity of [11] to five-dimensional minimal
gauged supergravity. Utilising the truncation ansatz the authors uplifted solutions of five-
dimensional minimal gauged supergravity to seven dimensions leading to the aforementioned
fibered solutions.

In this paper we will perform the analogous construction of [36] for six-dimensional U(1)2-
gauged supergravity. We construct a consistent truncation of six-dimensional U(1)2-gauged
supergravity down to four-dimensional minimal gauged supergravity by compactifying
on a local solution which contains the spindle as a choice of global completion. We
study two classes of the multitude of possible solutions, focussing on AdS2 × Σ1 n Σ2 and
AdS2 × Σg n Σ2 solutions. We further uplift the solutions to massive type IIA supergravity
on the Brandhuber-Oz solution, [37]. For the vanishing two-form field, B = 0, the uplift
formula of six-dimensional U(1)2-gauged supergravity to massive type IIA supergravity was

1In [19] infinite families of examples of M2-brane solutions admitting both twist and anti-twist solutions
were constructed, complementing the analysis in [18]. It is interesting to note that of the known solutions only
the M2-brane and D3-brane solutions allow for both twists, this is not to say that the other configurations
cannot allow both though.
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first presented in [38] and improved in [12], but the full truncation was lacking. We have
remedied this, constructing the most general uplift of the U(1)2 theory.

The layout of this paper is as follows. In section 2 we perform a consistent KK
reduction of six-dimensional U(1)2-gauged supergravity to four-dimensional minimal gauged
supergravity. The choice of two-dimensional surface on which we compactify is large,
including, but not restricted to, spindles and discs. In section 3 we use our consistent
truncation to construct AdS2×Σ1nΣ2n Ŝ4 solutions of massive type IIA supergravity, with
Ŝ4 a four-dimensional hemisphere. We analyse the global properties of the solutions before
computing their Bekenstein-Hawking entropy, giving a prediction to match with a yet to be
found dual field theory. In section 4, using our truncation we construct AdS2 × Σg n Σ2
solutions. We conclude in section 5. Some technical details are relegated to five appendices.
In appendix A we present the conventions of six-dimensional U(1)2-gauged supergravity
that we use in the main text. In appendix B we present the fully general uplift of six-
dimensional U(1)2-gauged supergravity to massive type IIA on the Brandhuber-Oz solution.
Appendix C studies the zoo of all solutions on which we may perform our truncation.
Some of the solutions presented there have not appeared in the literature previously and
are deserving of further study independent of these results. Appendix D proves that our
consistent truncation preserves supersymmetry provided superysmmetry is preserved in
four dimensions. Finally, in appendix E we study the R-symmetry of the four-dimensional
orbifolds that we construct.

Note added. While we were in a process of submitting we became aware of the work
of [39] which has a large overlap with some of the results presented here. For this reason,
we coordinated the submission to arXiv of our respective papers.

2 Consistent truncation on a two-dimensional surface

In this section, we perform a consistent truncation of matter coupled F (4) gauged supergrav-
ity in six dimensions on a two-dimensional surface down to four-dimensional minimal gauged
N = 2 supergravity. The seed solutions on which we truncate down to four dimensions are
the local AdS4 ×M2 solutions studied in [12], of which a particular global completion is
the spindle, M2 = Σ2. We begin this section by fixing our conventions of matter coupled
F (4) gauged supergravity, then study the local solutions on which we will truncate to
four-dimensional minimal gauged supergravity. There are a plethora of different global
completions, including but not restricted to, spindles, discs, domain walls and constant
curvature Riemann surfaces. Much of the global analysis of the zoo of solutions is relegated
to appendix C, leaving just the analysis of the spindle in this section, since it is the space
we will use when constructing explicit examples in the later sections. Having discussed the
local and global form of the two-dimensional surface, we construct a consistent truncation
of the six-dimensional theory down to four-dimensional minimal gauged N = 2 supergravity.
Proof of supersymmetry preservation of the truncation is also relegated to an appendix, in
this case, appendix D.
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2.1 U(1)2-gauged supergravity in six dimensions

We will consider the truncation of F (4) gauged supergravity, [40], coupled to matter
multiplets, [41], down to four-dimensional minimal gauged supergravity. More concretely,
we consider pure six-dimensional SU(2) × U(1)-gauged supergravity coupled to a vector
multiplet and then truncate to U(1)2-gauged supergravity by gauging the Cartan of the
SU(2) gauge group and a U(1) from the vector multiplet, [42]. This truncation was employed
to construct black hole solutions with a horizon of the form AdS2 × Σg1 × Σg2 in [33, 34].2

We follow the conventions of [12] for the supergravity theory.
The bosonic field content of the truncated theory consists of the metric, two U(1)

gauge fields, Ai, a two-form field, B, and two scalar fields, ϕi, with i = 1, 2. It is useful to
parametrise the scalar fields by

Xi = e−
1
2~ai·~ϕ , ~a1 =

(
21/2, 2−1/2

)
, ~a2 =

(
−21/2, 2−1/2

)
, (2.1)

and to define
X0 = 3m

2g (X1X2)−3/2 . (2.2)

The field strengths of the gauge fields and two-form field are, respectively,

Fi = dAi , H = dB . (2.3)

The action is

S = 1
16πG(6)

N

∫
d6x
√
−g

[
R− V − 1

2 |d~ϕ|
2 − 1

2

2∑
i=1

X−2
i |Fi|

2 − 1
8 (X1X2)2 |H|2

− m2

4 (X1X2)−1 |B|2 − 1
16
εµνρστλ√
−g

Bµν

(
F1ρσF2τλ + m2

12 BρσBτλ

)]
, (2.4)

where the scalar potential is

g−2V = 4
9X

2
0 − 4X1X2 −

8
3X0 (X1 +X2) . (2.5)

For the norm of the form fields appearing in the action we use the canonical convention to
include the numerical weighted factor, i.e.,

|ω|2 = 1
p!ωµ1...µpω

µ1...µp . (2.6)

The equations of motion following from the action are presented in appendix A.
As we have in mind the uplift of supersymmetric AdS vacua to ten dimensions, we

only consider the case of m, g > 0 in this paper. There are two critical points of the scalar
potential V : X1 = X2 = (3m/2g)1/4 which is supersymmetric and X1 = X2 = (m/2g)1/4

which is non-supersymmetric, [40], and unstable, [43]. One typically sets the scalar fields to
have value 1 at the supersymmetric fixed point which fixes 3m = 2g. The uplift formula
to massive type IIA that we present in appendix B does not fix a relation between m and

2Note that this includes AdS2 ×M4 solutions, with M4 Kähler-Einstein, as a subclass.
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g and therefore can be used to uplift both the supersymmetric and non-supersymmetric
solutions to ten dimensions. One must be slightly careful when either g or m vanishes
or become negative, however, by using a scaling symmetry of the solution that we give
explicitly, one can also uplift for these choices.

2.2 AdS4 × M2 solutions

We now discuss the seed AdS4 ×M2 solution on which we may construct the consistent
truncation. Though our focus will be on obtaining a consistent truncation on a spindle,
since the results are independent of the global data of M2, only depending on the local
form of the metric, gauge fields and scalar fields, it will be equally valid for any other
global completion of the local solution. In the following we will present the local solution
before studying the various ways of globally completing the solution. We relegate technical
analysis of the various global solutions to appendix C. As we will show, there is a whole
zoo of globally well-defined solutions of differing topologies that arise from the same local
solution, some of which have not been studied previously.

The local solution we consider is obtained by a double analytic continuation of a black
hole solution in [44]. In [12] it was shown that one choice of global completion of the
solution is a spindle. We will follow their conventions in the following. The metric, the
gauge fields and the scalar fields are, respectively,

ds2
6 =

(
y2h1(y)h2(y)

)1/4 [
ds2

AdS4 + ds2
M2

]
,

Ai =
(
αi −

y3

hi(y)

)
dz , Xi =

(
y2h1(y)h2(y)

)3/8
hi(y)−1 , (2.7)

where the metric on the two-dimensional surface is given by

ds2
M2 = y2

F (y)dy
2 + F (y)

h1(y)h2(y)dz
2 . (2.8)

The constants, αi, are pure gauge and have been introduced for later exposition. The two-
form field, B, is trivial for the solution. This is a supersymmetric solution of six-dimensional
U(1)2-gauged supergravity reviewed in the previous section provided that the functions are

F (y) = m2h1(y)h2(y)− y4 ,

hi(y) = 2g
3my3 + qi , (2.9)

where qi, i = 1, 2, are real parameters. In the following we will set 3m = 2g periodically.
This is the value which allows for the supersymmetric AdS6 vacuum and is thus the necessary
one to uplift if we want to preserve supersymmetry in ten dimensions.

General global analysis. The global properties of the metric depend on the number of
roots of the function, F (y). To analyse this, let us define

s = m3(q1 + q2) , p = m6q1q2 , ⇔ q1 = s−
√
s2 − 4p

2m3 , q2 = s+
√
s2 − 4p

2m3 .

(2.10)
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Figure 1. A plot of the various domains of validity for solutions in (s, p) space. The three coloured
regions denoted R1,2,3 allow for a global completion to a compact space, while region 4 allows for
non-compact domain-wall solutions. The regions are separated by various lines, the non-trivial lines
p = p1(s) and p = p2(s) are given explicitly in (2.12) and (2.14). We have added a ± superscript
on p2 to denote whether it is above or below the axis, the form of p2 is independent of this. There
are three distinguished points arising from the intersection of the boundary lines: A =

( 8
27 ,

16
729
)
,

B =
( 2

3
√

3 , 0
)
and C =

( 8
√

2
27 ,−

4
729
)
.

Clearly, for the qi’s to be real we must impose that s2 − 4p ≥ 0, with equality iff q1 = q2.
Then, with these variables (and setting g,m to their supersymmetric value, 2g = 3m) we
have

F̂ (y) ≡ m4F (ym−1) = p+ y3(y3 − y + s
)
, (2.11)

and it remains to study the roots of the above function while varying the two parameters
p, s. Note that while the metric and gauge fields are invariant under the simultaneous
transformation, y → −y, qi → −qi, the scalar fields are not and pick up a minus sign. We
must restrict to the p, s parameter space where F̂ (y) > 0 and hi(y) > 0 in the domain of y
in order for the scalar fields and metric to be well-defined. From the form of the function
one finds that there can be at most four real non-zero roots. If none of the roots are zero
then there is necessarily a complex pair of roots. Furthermore, it is not hard to see that
there is a root at zero if and only if one of the qi = 0, therefore, away from p = 0, there is
always a complex pair of roots. The form of the function, F̂ (y), also implies that there are
always two real roots, with a further two real roots appearing in a restricted domain. In
figure 1 we have plotted the various regions in (p, s) parameter space giving rise to globally
well-defined solutions.

The regions are defined by four lines, which are further broken up by studying their
intersections. The inadmissible region has 4p > s2 leading to complex qi. Region 1 is has
p < 0 and, therefore, qi’s are of opposite sign. In region 1 there are four real roots, three of
which are positive. In regions 2 and 3 we have p > 0, and so the qi are of the same sign. In
region 2 there are only two real roots both of which are negative. In region 3 there are again
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Special point M2 at special point

Single root R2/Zk

Double root H2/Zk

Root at 0 R× S1/Zk

0 but not a root R× S1/Zk
∞ Asymptotically AdS6

Table 1. The various choices of end-points for the global completion of the metric on M2. The
roots at 0 or an end-point at 0 without being a root both lead to singularities in the six-dimensional
metric, these can be interpreted as smeared branes. For the final choice the metric on AdS4 ×M2
becomes asymptotically locally AdS6 space.

four real roots, this time two positive and two negative. Finally in region 4 we find two
real roots only, one positive and one negative. The two remaining lines are not as simple
to write down but can be given explicitly by studying the vanishing of the discriminant of
F̂ (y). We find that the line bounding region 1 from below is given by

p = p1(s) ≡ 1
324

(
32 + 81s2 − 21/3(ω(α− iβ)1/3 − ω2(α+ iβ)1/3)) , (2.12)

where

ω = (−1)1/3 , α = 272s(320s+ 729s3)− 2048 , β = 27s(128− 729s2)3/2 . (2.13)

In the range, 0 < s < 8
√

2
27 , this is real as it should be. The final line which forms the

boundary between region 2 and 3 and caps off region 1 is

p = p2(s) ≡ 1
324

(
32 + 81s2 + 21/3(ω2(α− iβ)1/3 − ω(α+ iβ)1/3)) , (2.14)

again this is real for 0 < s < 8
√

2
27 . Along these lines F̂ (y) develops a double root and a

triple root at the intersection point at s = 8
√

2
27 , (point C in figure 1).

Altogether we have five different end-points to consider:3 a non-zero single root, a
non-zero double root, a root at 0, 0 where F̂ (0) > 0 and ∞. We have summarised the
various options in table 1 and the local geometry of M2 around that point. Our goal is
now to glue two choices of boundary condition together provided that such a choice of the
gluing is possible. This can be read off from figure, i.e., there is a non-trivial domain in
figure 1 where the two choice of end-points are possible. The different choices of gluing are
summarised in table 2.

We spare the reader the details of studying all the solutions appearing in table 2 here
and refer them to appendix C for this analysis. Here we will present only the analysis of
spindle since this will be the main focus of our consistent truncation, though we emphasise
that it works for any of the solutions given in table 2.

3We will ignore the triple root here since we have not found a suitable way to incorporate this into a
well-defined global completion, unless we take a scaling limit to the torus.
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M2 Root structure Domain of validity
Spindle Σ [12] Two positive single roots Region 1
Disc D [28] ± Single root and 0 Region 2 and 3

Disc D (E.S.) (here) Single root and root at 0 p = 0, s ∈ (0, 2√
27)

Black Bottle BB (here) positive single root and double root p = p−2 , s ∈
( 2

3
√

3 ,
8
√

2
27
)

Black Goblet BG (here) 0 and double root p = p+
2 , s ∈

( 8
27 ,

2
3
√

3
)

S2 [42] Scaling limit at double root p = p1, s ∈ (0, 8
√

2
27 )

T 2 (here) Scaling limit at triple root Point C

H2 [42] Scaling limit at double root p = p2, s ∈
( 8

27 ,
8
√

2
27
)

H2 (E.S.) [42] Scaling limit at double root Point B
Domain wall: conical positive single root and ∞ Region 1,3,4
Domain wall: disc 0 and ∞ Region 2

Domain wall: disc (E.S.) root at 0 and ∞ p = 0, s ∈ ( 2
3
√

3 ,∞)

Domain wall: bottle positive double root and ∞ p = p2, s ∈
( 8

27 ,
8
√

2
27
)

AdS6 [37, 40] — p = s = 0

Table 2. The different choices of global completion and the values of p, s giving rise to such solutions.
We have indicated where these solutions were first considered, in some cases it is in this paper.
Certain solutions lead to an enhanced symmetry group in the uplifted solution and have been
distinguished by writing E.S. (enhanced symmetry). The solutions of the first block have finite free
energies when viewed as an AdS4 solution. The second block of solutions have infinite free energies
due to the AdS6 asymptotics.

Spindle. Here we consider the spindle completion of the local metric above, as originally
discussed in [12]. In order for the metric to give rise to a spindle the parameters must be
chosen to lie in region 1 of figure 1 so that there are positive non-zero single roots at both
end-points. The full domain is given by

s ∈
(
0, 8
√

2
27

)
and p1(s) < p < min

(
0, p−2 (s)

)
, (2.15)

where the bounds on p are s-dependent. Within this region, and away from the boundaries,
we have three real positive roots and one negative root. Let y− be the smallest positive
root and y+ the next positive root. The local metric can be completed to a well-defined
global metric on a spindle, [12], by taking the domain of y to be y ∈ [y−, y+]. The two
end-points correspond to the two poles of the spindle which have conical singularities,
R2/Zn± . The orbifold weights, n+, n−, are taken to be relatively prime. The period of the
circle direction is

∆z
2π =

2y3
+

|F ′(y+)|mn+
=

2y3
−

|F ′(y−)|mn−
. (2.16)
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Using the metric we can compute the Euler characteristic of the spindle, finding

χ (Σ2) = 1
4π

∫
Σ2
RΣ2volΣ2 = n+ + n−

n+n−
. (2.17)

The magnetic flux threading through the spindle is quantised according to

g

2π

∫
Σ2
Fi = g∆z

2π

(
y3
−

hi(y−) −
y3

+
hi(y+)

)
≡ pi
n+n−

, (2.18)

and the integer flux numbers, p1, p2, satisfy the twist condition,

p1 + p2 = n− + n+ , (2.19)

upon application of 3m = 2g. Note that the graviphoton field strength, FR, is given by

FR = g(F1 + F2) , (2.20)

and, therefore, the solution realises the “twist” mechanism for preserving supersymmetry.
One may express the quantities, y±, q1, q2 and ∆z, in terms of the orbifold weights,

n+, n−, and the flux numbers, p1, p2. Following [12] we reparametrise y± in terms of w
and τ as

y− = w (1− τ) , y+ = w (1 + τ) . (2.21)

We also introduce µ and z by
µ = n+ − n−

n+ + n−
, (2.22)

and
p1 = n+ + n−

2 (1 + z) , p2 = n+ + n−
2 (1− z) . (2.23)

By solving the following quartic equation,

P (τ) = τ4 +
(
8z2 − 3− 9µ2

)
τ2 + 12µτ − 9µ2 = 0 , (2.24)

τ can be expressed in terms of the orbifold weights, n+, n−, and the flux numbers, p1, p2.
It follows that we can express y±, q1, q2, w and ∆z in terms of τ , µ and z,

y± = 1± τ
g (τ2 + 3)

√
9µ (τ2 + 1)− 3τ (τ2 + 5)

2 (µ− τ) , (2.25)

q1,2 = w
3
(
1− τ2)

g2 (τ2 + 3)2 (µ− τ)

[
3µ
(
1 + τ2

)
− 2τ ∓ τ

(
τ2 + 3

)
z
]
, (2.26)

w = 1
g (τ2 + 3)

√
9µ (τ2 + 1)− 3τ (τ2 + 5)

2 (µ− τ) , (2.27)

∆z = χ(Σ2)3π
(
τ2 + 3

)
(µ− τ)

8gτ2 . (2.28)

The holographic dual of the solution should be a 3d N = 2 SCFT obtained by
compactifying 5d N = 1 SCFT with gauge group USp(2N), [45], on the spindle, Σ2. The
explicit details of this 3d SCFT are currently lacking, however. Using the uplift formulae
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provided in [12], and extended in appendix B, one may uplift this solution to massive type
IIA supergravity.4 The holographic free energy of the solution is

FS3×Σ2 = 16π3l8

(2πls)8
3π2λ4

10g4

(
y3

+ − y3
−

)
∆z (2.29)

= χ(Σ2)
√

3πN5/2

5
√

8−Nf

[
3µ
(
τ2 + 1

)
− τ

(
τ2 + 5

)]3/2
τ (τ2 + 3) (µ− τ)1/2 , (2.30)

where N and Nf are the number of D4- and D8-branes, respectively.

2.3 Consistent truncation

Using the AdS4×M2 solution given in (2.7) as our seed geometry, we construct a consistent
truncation of matter coupled F (4) gauged supergravity on a spindle, Σ2, to four-dimensional
minimal gauged supergravity. After a little trial and error, we find that the ansatz for the
metric is

ds2
6 =

(
y2h1(y)h2(y)

)1/4
[
ds2

4 + y2

F (y)dy
2 + F (y)

h1(y)h2(y)

(
dz − 1

2mA
)2
]
, (2.31)

where ds2
4 and A are the metric and the gauge field of four-dimensional minimal gauged

supergravity. Accordingly, the gauge fields and the two-form field are given by

Ai = − y3

hi(y)

(
dz − 1

2mA
)
,

B = − 1
m
y ∗4 F , (2.32)

where F = dA. The scalar fields are the same as the ones of the AdS4 × Σ2 solutions,

Xi =
(
y2h1(y)h2(y)

)3/8
hi(y)−1 . (2.33)

Note that we have set the constant gauge parameter introduced in the gauge fields in (2.7)
to zero. That is, by introducing the graviphoton via minimal coupling, dz → dz− 1

2mA, one
must choose the gauge, αi = 0. Given that, in the uplifted theory, the U(1) isometry of the
spindle mixes with the R-symmetry and this is not too unexpected. In the uplifted metric
different gauges for the two gauge fields correspond to different choices of the R-symmetry
direction. It is precisely the gauge, αi = 0, that in the uplifted solution the R-symmetry
direction is ∂z, and any other gauge leads to an R-symmetry direction which mixes the z
coordinate with those of the isometry directions of the four-dimensional hemi-sphere in the
uplift. Since the graviphoton is the gauge field of the R-symmetry, it should appear by
gauging the exact R-symmetry direction. Thus, if this is by a minimal coupling term, the

4One could also consider uplifting this to type IIB supergravity, see for example [46] which considers the
embedding of F(4) gauged supergravity coupled to vector multiplets into type IIB supergravity and the
embedding of pure F(4) gauged supergravity in type IIB supergravity in [47–49]. The analysis above shows
that for the spindle it is necessary to consider the theory coupled to a vector multiplet, not just the pure
theory, so there is currently no known consistent truncation which we may work with.
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gauge choice is important and, more importantly, fixed to the one we consider. A similar
argument also explains why [36] found the need for a particular gauge when considering
the truncation of seven-dimensional gauged supergravity on a spindle to five-dimensional
minimal gauged supergravity.

If we substitute the ansatz to the equations of motion of F (4) gauged supergravity,
they reduce to the equations of motion of four-dimensional minimal gauged supergravity,

Rαβ = −3gαβ + 1
2

(
FαγFβ γ −

1
4gαβFγδF

γδ
)
,

d ?4 F = 0 . (2.34)

The equations of motion can be derived from the action,

S = 1
16πG(4)

N

∫
dx4√−g

(
R+ 6− 1

4FαβF
αβ
)
, (2.35)

where the cosmological constant was normalised so that LAdS4 = 1.
The truncation we have presented above is a local construction and indeed no data

about the global completion of the solution was used in deriving the truncation. Thus, it
can equally be applied to construct truncations on the other backgrounds that we study in
appendix C.5

3 AdS2 × Σ1 n Σ2 solutions

Employing the consistent truncation of the previous section, in particular, (2.31), (2.32),
and (2.33), we will uplift the known spindle solution, AdS2×Σ1, in four-dimensional minimal
gauged supergravity to F (4) gauged supergravity. We obtain a class of AdS2 × Σ1 n Σ2
solutions where the compact space is a four-dimensional orbifold. Unlike the AdS4 × Σ2
solutions which are in the twist class, the minimal AdS2 × Σ1 solutions preserve super-
symmetry via the anti-twist. It would be interesting to extend our consistent truncation
beyond the minimal case studied here. Solutions in four-dimensional U(1)4 gauged super-
gravity have been constructed in [8, 9], including disc solutions, and uplifting solutions in
these large four-dimensional theories would allow for us to uplift solutions which preserve
supersymmetry by the twist instead, [18, 19].

3.1 Uplifting D = 4 to D = 6

In four-dimensional minimal gauged supergravity, supersymmetric AdS2×Σ1 solutions were
constructed in [6].6 The metric and the gauge field are

ds2
4 = x2

4 ds
2
AdS2 + ds2

Σ1 , A =
(

1− a
x

)
dψ , (3.1)

5One subtlety arises for the constant curvature Riemann surfaces. These are obtained by taking a certain
scaling limit of the solutions and in this limit the gauging of the isometry direction in the metric on M2

vanishes. The presence of the gauge field of four-dimensional minimal gauged supergravity is still present in
the flux terms, however, so this does still give a sensible consistent truncation in these cases. This truncation
is more in the spirit of [50, 51].

6In [6] these solutions were allowed to rotate. In the following we will restrict to the static case for
simplicity of exposition, though much of the analysis for the rotating case is the same as that presented
here. This would constitute the first example of a rotating four-dimensional orbifold albeit in only one plane
rather than the two possible planes.
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where the metric on the spindle, Σ1, is

ds2
Σ1 = x2

q(x)dx
2 + q(x)

4x2 dψ
2 , (3.2)

and the function, q(x), is

q(x) = x4 − 4x2 + 4ax− a2 = x4 − (2x− a)2 . (3.3)

This local metric can be extended to a metric on a spindle, with relatively prime
orbifold weights, m+ and m−, and a suitably quantised magnetic flux provided the period,
∆ψ, and the parameter, a, are fixed to be

a =
m2

+ −m2
−

m2
+ +m2

−
,

∆ψ = π
√

2

√
m2

+ +m2
−

m+m−
. (3.4)

The line interval with coordinate x is fixed to lie in x ∈ [x−, x+] where x−, x+ are the two
middle roots of q(x) and take the form,

x− = −1 +
√

1 + a ,

x+ = 1−
√

1− a . (3.5)

The Euler characteristic of the spindle is given by

χ (Σ1) = 1
4π

∫
Σ1
RΣ1volΣ1 = m+ +m−

m−m+
, (3.6)

and the magnetic flux through the spindle is

1
2π

∫
Σ1
F = m+ −m−

m−m+
. (3.7)

From (3.7) we see that the solutions are in the anti-twist class after noting that the gauge
field for the R-symmetry is AR ≡ A. Finally the Bekenstein-Hawking entropy is given by

SBH = Ah

4G(4)
N

= π

4G(4)
N

√
2
√
m2
− +m2

+ − (m− +m+)
m−m+

, (3.8)

where Ah = 1
2 (x+ − x−) ∆ψ is the area of the horizon.

By employing the consistent truncation ansatz worked out earlier in (2.31), (2.32)
and (2.33), we can uplift the AdS2 × Σ1 solution to F (4) gauged supergravity and obtain a
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class of AdS2 × Σ1 n Σ2 solutions given by,

ds2
6 =

(
y2h1(y)h2(y)

)1/4
[
x2

4 ds
2
AdS2 + x2

q(x)dx
2 + q(x)

4x2 dψ
2

+ y2

F (y)dy
2 + F (y)

h1(y)h2(y)

(
dz − 1

2m

(
1− a

x

)
dψ

)2
]
,

Ai =− y3

hi(y)

(
dz − 1

2m

(
1− a

x

)
dψ

)
,

B =− a
2my volAdS2 ,

Xi =
(
y2h1(y)h2(y)

)3/8
hi(y)−1 . (3.9)

From the form of the metric we see that the spindle, Σ2, is non-trivially fibered
over the spindle, Σ1. In order for this fibration to be well-defined, the one-form, η =
2π
∆z

(
dz − 1

2m
(
1− a

x

)
dψ
)
, should be globally defined. This is equivalent to requiring that

the curvature of the bundle over Σ1 is in Z/m−m+, that is we require

1
2π

∫
Σ1
dη = t

m−m+
, t ∈ Z . (3.10)

Since dη = − 2π
∆z

1
2mF , using (2.28) and (3.7), we find a condition relating the spindle

numbers, m±, n±, and the flux numbers, p1, p2,

t = (m+ −m−) n+n−
n+ + n−

4τ2

(τ2 + 3) (µ− τ) ∈ Z . (3.11)

This condition ensures that away from the poles on the Σ2 fibre, the space Σ1 n Σ2 is
well-defined. In fact the circle parametrised by z fibered over the spindle, Σ1, gives the
Lens space L(t, 1). While the conical singularities of Σ1 are removed, those of Σ2 remain.
This is an orbifold version of a Hirzebruch surface where the CP1’s have been replaced with
spindles, [36]. As a final comment it is possible to find solutions of the parameters such that
this quantisation condition is satisfied, thus the set of well-defined solutions is non-empty.

3.2 Uplifting to massive type IIA supergravity

We now want to consider uplifting the solution to massive type IIA supergravity on the
Brandhuber-Oz solution, i.e., with internal manifold a four-dimensional hemisphere. The
uplift of six-dimensional U(1)2-gauged supergravity, where the two-form potential, B, is
set to vanish, was given in [12] with the gauge coupling and Romans mass fixed to satisfy
3m = 2g. In appendix B we have constructed the general uplift allowing for a non-trivial two-
form field, B, and also allowing for the Romans mass and gauge coupling to be independent.
Despite the generality of our uplift, in the following, we will impose the supersymmetry
constraint, 3m = 2g, since we are interested in supersymmetric solutions of massive type
IIA supergravity.

In appendix B we have introduced two free parameters, λ and l, to the uplift formula.
The parameter, l, is an overall length scale and can be thought of as the length scale of
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the background AdS6 solution. The other parameter, λ, is less intuitive but is required for
flux quantisation. Both are symmetries of the action, but only l is a symmetry for flux
quantisation since it may be absorbed by redefining the string length. The metric in string
frame reads

ds2
s.f. = λ2l2µ

−1/3
0

{
y−1∆1/2

h d̂s2
6 +g−2∆−1/2

h

[
y3dµ2

0 +
2∑
i=1

hi(y)
(
dµ2

i +µ2
iDφ

2
i

)]}
, (3.12)

where we have defined

d̂s2
6 =

[
x2

4 ds2
AdS2 + x2

q(x)dx
2 + q(x)

4x2 dψ
2 + y2

F (y)dy
2 + F (y)

h1(y)h2(y)

(
dz− 1

2m

(
1− a

x

)
dψ

)2
]
,

(3.13)

and the one-forms, Dφi = dφi−gAi. The angular coordinates, φi, have the canonical period
2π. The functions appearing in the metric are

∆h = h1(y)h2(y)µ2
0 + y3h2(y)µ2

1 + y3h1(y)µ2
2 ,

Uh = 2
[(
y3 − h1(y)

) (
y3 − h2(y)

)
µ2

0 − y6
]
− 4

3∆h . (3.14)

The solution is supported by the full complement of fields: there are non-trivial NSNS
two-form potential, B(2), RR one- and three-form potentials, C(1) and C(3), dilaton field, Φ,
and the Romans mass, F(0). The field strengths of the potentials are given by

H(3) = dB(2) , F(2) = dC(1) + F(0)B(2) , F(4) = dC(3) +B(2) ∧ F(2) −
1
2F(0)B(2) ∧B(2) .

(3.15)
In particular, the two-form flux and the NSNS two-form potential are given, respectively, by

λl−1F(2) = −m2 µ
2/3
0 B ,

λ−2l−2B(2) = −1
2µ

2/3
0 B , (3.16)

where B is the two-form field of F (4) gauged supergravity. Also the dilaton field and the
Romans mass are given by

eΦ = λ2µ
−5/6
0 y−3/2∆1/4

h , (3.17)

F(0) = m

λ3l
. (3.18)

Due to the unwieldy expression of the four-form flux, F(4) we present only the terms that
are pertinent for flux quantisation: these are the terms on either the hemi-sphere or on the
four-dimensional orbifold Σ1 n Σ2,

λ−1l−3F(4) = µ
1/3
0 h1h2
g3∆h

Uh
∆h

µ1µ2
µ0

dµ1 ∧ dµ2 ∧Dφ1 ∧Dφ2 −
g

3
µ

4/3
0

X1X2
?6 B + . . . . (3.19)

The remaining terms can be read off from appendix B after a little work by the reader.
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Let us define the two-cycles, Sa ≡ {y = ya}, a = ±, to be the two sections defined at
the two poles of the fibre, Σ2, [36], respectively. The fluxes through the two-cycles are

g

2π

∫
S+
Fi = g

2m
y3

+
y3

+ + qi

m− −m+
m−m+

,

g

2π

∫
S−
Fi = g

2m
y3
−

y3
− + qi

m− −m+
m−m+

. (3.20)

Recall that the R-symmetry field strength is FR = g(F1 +F2). Then, on the two-cycles, Sa,
we find

1
2π

∫
S+
FR = m+ −m−

m−m+
+ t

n+m−m+
,

1
2π

∫
S−
FR = m+ −m−

m−m+
− t

n−m−m+
. (3.21)

Note that we have the homology relation, S+ − S− = t
m−m+

Σ2, (see [36] for the analogous
relation in the M5-brane case), and indeed this holds for the R-symmetry field strength,

1
2π

∫
S+
FR − 1

2π

∫
S−
FR = t

m−m+

1
2π

∫
Σ2
FR . (3.22)

The R-symmetry flux through the spindle, Σ2, is
1

2π

∫
Σ2
FR = 1

n−
+ 1
n+

= 1
2π

∫
Σ2
c1 (Σ2) , (3.23)

where c1(Σ2) is the first Chern class of the spindle.
For the solution to be well-defined in string theory we must quantise the fluxes appro-

priately. There are two quantization conditions on the fluxes which are inherited from the
AdS6 vacuum solution, giving the integers, N and Nf , of the parent theory,

(2πls)F(0) ≡ n0 ∈ Z ,
1

(2πls)3

∫
Ŝ4
F(4) ≡ N ∈ Z , (3.24)

where the second one is the four-form flux through the four-hemisphere. We denote by `s
the string length and the number of D8-branes, Nf , is fixed in terms of the flux quantum,
n0, according to n0 = 8−Nf . For the solution, these imply the quantisation conditions

g8 = l8

(2π`s)8
18π6

N3n0
, λ8 = 8π2

9Nn3
0
. (3.25)

There is one further four-cycle upon which we may quantise the fluxes, namely the orbifold
M4 which appears in the title of this paper. This is constructed by going to the pole of the
hemi-sphere at µ0 = 1, giving a copy of the four-dimensional orbifold. The four-form flux
through the orbifold four-cycle, Σ1 n Σ2, is

1
(2π`s)3

∫
Σ1nΣ2

F(4) = 1
6π

m+ −m−
m−m+

[
g2
(
y2
− − y2

+

)] [
g∆z

]
N

= m+ −m−
m−m+

n+ + n−
n−n+

3µ(τ2 + 1)− τ(τ2 + 5)
8τ(τ2 + 3) N , (3.26)
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where we have used (2.25), (2.28), and (3.25). Note that the quantities,
[
g2 (y2

+ − y2
−
)]

and
[g∆z], are independent of the gauge coupling, g. It is an open question what quantization
condition we should impose on this quantity and indeed this was also a problem in the
M5-brane case, [36]. Nevertheless, we may arrange for this to be integer by tuning N .
However, this seems too restrictive and a weaker condition should probably be imposed.

This AdS2 × Σ1 n Σ2 n Ŝ4 geometry should correspond to the near-horizon of a black
hole, as such we may evaluate the leading order correction to the Bekenstein-Hawking
entropy. For a string frame metric of the form,

ds2
s.f. = e2Ads2

AdS2 + ds2
M8 , (3.27)

we have
SBH = 1

4G(2)
N

= 1
4G(10)

N

∫
M8

e−2Φvol(M8) , (3.28)

where the dilaton factor is because we are in string frame. For our solutions arising from
the uplift of a four-dimensional black hole, the metric takes the factorised form,

ds2 = e2B
(
e2C

(
x2

4 ds
2
AdS2 + ds2

N
(1)
2

+ ds2
N

(2)
2

)
+ ds2

M4

)
, (3.29)

where the warp factors are e2B = λ2l2µ
−1/3
0 (X1X2)−1/4∆1/2 and e2C = (y2h1h2)1/4 and it

is understood that N (2)
2 is fibered over N (1)

2 . Then the Bekenstein-Hawking entropy is

SBH = 1
4G(2)

N

= 1
4G(10)

N

∫
e−2Φe8Be4Cvol(N (1)

2 )vol(N (2)
2 )vol(M4) . (3.30)

To simplify this, recall that the holographic free energy of the AdS4 solution, (2.29), is

F
S3×N(2)

2
= π

2G(4)
N

= π

2G(10)
N

∫
e−2Φe8Be4Cvol(N (2)

2 )vol(M4). (3.31)

It follows that we may rewrite the Bekenstein-Hawking entropy in terms of the holographic
free energy of the parent theory, (2.29), as

SBH = Ah
2πFS3×N(2)

2
, (3.32)

where Ah is the area of the horizon of the four-dimensional black hole. By plugging the
solution at hand in we find that the Bekenstein-Hawking entropy is

SBH =

√
2
√
m2

+ +m2
− − (m+ +m−)

2m+m−
FS3×Σ2 . (3.33)

This factorised form of the entropy is a consequence, as is the dependence of the parameter,
t in (3.11) on the spindle weights, of using our truncation to construct the four-dimensional
orbifold horizons: one naturally has the splitting of the integral in (3.32) which is a
generic feature of the uplift here. More general four-dimensional orbifolds, outside of this
construction, will not have this exact factorised form and are currently being investigated.
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It is interesting to note that these four-dimensional orbifolds are complex but not
Kähler. The holomorphic two-form, Ω, is

Ω =
(

x√
q(x)

dx+ i
√
q(x)
2x dψ

)
∧
(

y√
F (y)

dy + i
√
F (y)√

h1(y)h2(y)
Dz

)
, (3.34)

and one can check that

dΩ = i
(
− 1

4∂x
(
q(x)
x2

)
dψ −

√
h1(y)h2(y)

2y ∂y

(
F (y)

h1(y)h2(y)

)
Dz

)
∧ Ω = iPρ ∧ Ω . (3.35)

The putative compatible Kähler form, allowing for an arbitrary conformal factor s(x, y),
would then be

J = s(x, y)
(

y√
h1(y)h2(y)

dy ∧Dz + 1
x
dx ∧ dψ

)
. (3.36)

It is not hard to convince one-self that this can never be closed for any choice of the
conformal factor. One may wonder whether it is possible to make this Kähler for other
uplifts. A necessary condition is that the gauge field strength, F , is proportional to the
volume form on the horizon of the four-dimensional solution by a constant. If this is the
case, one can then solve for the conformal factor in order to obtain a Kähler space. This is,
of course, not a generic condition to impose and is probably restrictive to the point that it is
only possible for constant curvature Riemann surface horizons and, for the four-dimensional
minimal theory, this means a hyperbolic horizon. For the constant curvature solutions
that are known, [32–34], the analogous four-dimensional spaces are Kähler. It would be
interesting to classify the supersymmetric AdS2×M4 spaces of six-dimensional U(1)2-gauged
supergravity in order to understand the underlying geometry of M4 better.

From the exterior derivative of the holomorphic two-form, Ω, above we may extract
the Ricci-form potential Pρ, and by taking an exterior derivative the Ricci-form ρ = dPρ.
Recall that for a complex manifold the Ricci-form ρ is proportional to the first Chern class
c1(M4): ρ = 2πc1(M4). We may then compute the first Chern class threading through the
various two-cycles using the Ricci-form. For the two-cycles S± we find

1
2π

∫
S±
ρ = χ(Σ1)± t

n±m+m−
, (3.37)

while for the spindle Σ2 we have
1

2π

∫
Σ2
ρ = χ(Σ2) . (3.38)

We may also compute the Euler characteristic of the four-dimensional orbifold. The
Chern-Gauss-Bonnet theorem gives

χ(M4) = 1
32π2

∫
M4

vol(M4)
[
|Riemann|2 − 4|Rictr|2

]
, (3.39)

where the first term is the contraction of the Riemann tensor into itself with no 4! weight,
and the second term is the contraction of the traceless Ricci tensor into itself where

Rictr
µν = Rµν −

1
4Rgµν . (3.40)
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For the four-dimensional orbifold, after a tedious but otherwise simple computation, we find

χ(M4) = χ(Σ1)χ(Σ2) . (3.41)

Similarly we may compute the signature of the space,

τ(M4) = 1
3

∫
M4

p1(M4) , (3.42)

with p1(M4) the first Pontryagin class of the four-manifold. Explicit computation gives

τ(M4) =
(n2

+ − n2
−)t

3m−m+n2
−n

2
+
. (3.43)

Note that the signature vanishes if we take the n± → 1 limit, in which case Σ2 becomes a
round two-sphere. For the Hirzebruch surface we have

χ = χ(CP1
1)χ(CP1

2) = 4 , τ = 0 , (3.44)

and, therefore, in the (formal) limit where both spindles become CP1 we indeed obtain the
correct invariants for the Hirzebruch surface.

As a final comment let us understand the eight-dimensional compact spaces appearing
in the uplifted solutions. This is a four-dimensional hemisphere bundle over M4. We can
understand the hemisphere as being embedded in R ⊕ C ⊕ C where the two gauge fields,
Ai, each fibre one of the copies of C. It is interesting to note that the total space of the
C2 bundle over M4 is not Calabi-Yau. To see this, note that the Calabi-Yau condition
requires that the integrated twisting conditions of the R-symmetry vector, FR, should
cancel with the first Chern class of M4 integrated through the same two-cycle. For the two
cycle, Σ2, these are equal, however, through the other two-cycles this is not the case. At
the section, S±, the tangent bundle splits into a direct sum where the complex tangent
bundle to the sections is O(m+ +m−) with Chern number m++m−

m+m−
. The normal bundle

is O(−t) and has Chern number, − t
n±m+m−

. The normal direction has a Zn± singularity
which gives rise to the additional n± in the Chern number. Instead we find that the integral
of the R-symmetry gauge field has m+ +m− replaced with m+ −m−, see (3.21). This is a
consequence of taking a spindle in the four-dimensional theory with the anti-twist, which
turns out to be the only option in the minimal theory. A truncation to a more general
theory, i.e., the four-dimensional U(1)2 theory, would allow us to uplift both twist and
anti-twist solutions, [18, 19], and thus obtain Calabi-Yau solutions in this framework, too.

4 AdS2 × Σg n Σ2 solutions

In four-dimensional minimal gauged supergravity, one can also obtain supersymmetric
AdS2×Σg solutions which are the near-horizon limit of the black hole solutions constructed
in [52, 53] where Σg is a Riemann surface of genus g > 1. The metric and the gauge field
are7

ds2
4 = 1

4ds
2
AdS2 + 1

2ds
2
Σg
, F(2) = volΣg . (4.1)

7This solution can actually be obtained by taking a scaling limit of the spindle solution discussed
earlier. See appendix C where we take this limit in the six-dimensional case. The four-dimensional case
works similarly.
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By employing the consistent truncation ansatz in (2.31), (2.32) and (2.33), we can
uplift the AdS2 × Σg solution to F (4) gauged supergravity and obtain AdS2 × Σg n Σ2
solutions,

ds2
6 =

(
y2h1(y)h2(y)

)1/4
[1

4ds
2
AdS2 + 1

2ds
2
Σg

+ y2

F (y)dy
2 + F (y)

h1(y)h2(y)

(
dz − 1

2mω

)2
]
,

Ai =− y3

hi(y)

(
dz − 1

2mω

)
,

B =− 1
2my volAdS2 ,

Xi =
(
y2h1(y)h2(y)

)3/8
hi(y)−1 , (4.2)

where ω is the Levi-Civita one-form satisfying dω = −volΣg and the volume of the Riemann
surface is

∫
Σg

volΣg = 4π (g− 1).
We see that the spindle, Σ2, is non-trivially fibered over the Riemann surface, Σg. In or-

der for this fibration to be well-defined, the one-form from the fibration, η = 2π
∆z

(
dz − 1

2mω
)
,

should be globally defined,
1

2π

∫
Σg

dη = t ∈ Z . (4.3)

However, since dη = 2π
∆z

1
2mvolΣg , using (2.28), we find a condition on the spindle numbers,

n±, the flux numbers, p1, p2, and the genus, g,

t = (g− 1) n+n−
n+ + n−

16gx2

3m (x2 + 3) (µ− x) ∈ Z . (4.4)

This condition ensures that away from the poles on the Σ2 fibre, the space, Σg n Σ2, is
well-defined, [36]. However, the orbifold singularities remain at the poles of Σ2.

Let us define two-cycles, Sa ≡ {y = ya}, a = ±, to be the section defined at the two
poles of the fibre, Σ2, [36]. The fluxes threading through the two-cycles have charges,

1
2π

∫
S+
Fi = − 1

m

y3
+

y3
+ + qi

(g− 1) ,

1
2π

∫
S−
Fi = − 1

m

y3
−

y3
− + qi

(g− 1) . (4.5)

Recall that the R-symmetry gauge field flux is FR = g(F1 + F2). Then, we have

1
2π

∫
S+
FR = −2 (g− 1) + t

n+
,

1
2π

∫
S−
FR = −2 (g− 1)− t

n−
. (4.6)

We may again use the homology relation, S+ − S− = tΣ2, [36], which implies(
1

2π

∫
S−
F1 + 1

2π

∫
S−
F2

)
−
(

1
2π

∫
S+
F1 + 1

2π

∫
S+
F2

)
= t

( 1
2π

∫
Σ2
FR

)
. (4.7)
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We find that the R-symmetry flux through the spindle, Σ2, is

1
2π

∫
Σ2
FR = 1

n−
+ 1
n+

= 1
2π

∫
Σ2
c1 (Σ2) , (4.8)

where c1 is the first Chern class as before.
The four-form flux threading through the orbifold four-cycle, Σg n Σ2, is

1
(2πls)3

∫
ΣgnΣ2

F(4) = g− 1
3π

[
g2
(
y2

+ − y2
−

)]
[g∆z]N

= (g− 1) n+ + n−
n−n+

3µ(τ2 + 1)− τ(τ2 + 5)
4τ(τ2 + 3) N , (4.9)

where we employed (2.25), (2.28), and (3.25). Note that the quantities,
[
g2 (y2

+ − y2
−
)]

and
[g∆z], are independent of the gauge coupling, g. As before, the exact quantisation condition
that we should impose on this flux number is still to be determined. One can certainly tune
the parameters to make it integer, however, this may be too restrictive.

Finally we can calculate the Bekenstein-Hawking entropy in the same way as in the
previous section,

SBH = (g− 1)FS3×Σ2 = Ah
2πFS3×Σ2 , (4.10)

with FS3×Σ2 is given in (2.29) and Ah = 2π(g − 1) the area of the horizon of the four-
dimensional black hole.

In this case we may again study whether the internal eight-dimensional manifold is
Calabi-Yau. As one may expect given our earlier discussion it is Calabi-Yau in this case.
This is, of course, a consequence of the twisting on the Riemann surface being performed
by the regular topological twist rather than the anti-twist in the spindle example of the
previous section.

5 Conclusion

In this work we have constructed a consistent truncation of U(1)2-gauged supergravity in
six dimensions to four-dimensional minimal gauged supergravity. Given that the truncation
depends only on the local data of the two-dimensional surface on which we compactify, our
truncation can be used to reduce on any of the global completions: spindles, discs, domain
walls, black bottles, Riemann surfaces and more. By employing our consistent truncation
we have constructed the AdS2 × Σ1 n Σ2 solutions of U(1)2-gauged supergravity in six
dimensions, where the compact space is a four-dimensional orbifold.8 In order to uplift our
new solution to massive type IIA we have constructed the uplift of six-dimensional U(1)2

gauged supergravity to massive type IIA on a four-dimensional hemisphere keeping all fields
and allowing for independent Romans mass and gauge coupling.

With the uplift to massive type IIA in hand we obtain AdS2 × Σ1 n Σ2 n Ŝ4 solutions.
These are natural candidates for the near-horizon geometries of six-dimensional black
holes with a four-dimensional orbifold horizon. Alternatively one can view these as the

8One can also replace Σ2 by any of the solutions in appendix C.
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holographic duals of 5d USp(2N) theory compactified on the four-dimensional orbifold.
It is an interesting problem to identify more precisely these field theory duals, as has
been performed for the M5-branes on a disc solutions in [20, 21, 23, 24]. As a first step
we have computed the Bekenstein-Hawking entropy of the solutions with which we may
compare to a field theory computation. As a further application of our uplift formula we
have constructed AdS2 × Σg n Σ2 solutions and once again calculated their Bekenstein-
Hawking entropy. Similar comments about identifying the dual field theories of these
solutions are once again applicable here. In particular, it would be very interesting to
calculate the Bekenstein-Hawking entropy for both classes of solutions using the AdS/CFT
correspondence, [54], via a localization calculation in the dual field theory. For the black
hole solutions with a near-horizon of the form, AdS2 × Σg1 × Σg2 , found in [32–34], the
Bekenstein-Hawking entropy was counted microscopically by the topologically twisted index
of 5d USp(2N) theories, [55, 56]. One expects that a modification of that computation
should be possible here.

We have focused on constructing AdS2 solutions in this work which are natural candi-
dates for the near-horizon geometries of six-dimensional black holes. It would be interesting
to construct the full black hole solutions, which flow from an AdS6 asymptotic regime to
the near-horizon geometries studied here. One can then uplift this full black hole solution
and study its properties directly in ten dimensions, see, for example, [57], for the uplift of
the AdS2 × Σg1 × Σg2 solutions of [32].

A natural further extension of this work is to construct four-dimensional orbifolds
where the parameter, t, appearing in (3.11) is a free parameter. Using our construction
this is not possible since the uplift formula relates this parameter to the magnetic charge
threading through horizon of the four-dimensional solution and thus cannot be made an
independent parameter, leading to the constraints we saw earlier. One must then construct
these more general four-dimensional orbifolds directly in the six-dimensional theory. Work
in this direction is currently ongoing and will be published soon.

Finally, we note that it would be interesting to construct truncations which allow for a
larger number of fields in the truncation, i.e., beyond the minimal case considered here and
in [36]. This would open up the possibility of constructing four-dimensional orbifolds of the
type studied here where the spindle Σ1 allows for both the twist and anti-twist solutions
rather than just the anti-twist case. In four dimensions this would require being able to
uplift the four-dimensional T 3 theory which allows both twist and anti-twist solutions.
In [51] they constructed such a consistent truncation on Σg for g > 1. We argued earlier
that our construction also gives the truncation on Σg to four-dimensional minimal gauged
supergravity after taking a particular scaling limit. It would be interesting to see if one can
indeed construct a consistent truncation to the four-dimensional T 3 theory.
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A The equations of motion

For completeness we give the equations of motion of six-dimensional U(1)2-gauged super-
gravity derived from the action in (2.4). The Einstein equation is

Rµν−
1
2

2∑
i=1

∂µϕi∂νϕi−
1
4V gµν−

1
2

2∑
i=1

X−2
i

(
FiµρFiν

ρ− 1
8gµνFiρσFi

ρσ
)

−m
2

4 (X1X2)−1
(
BµρBν

ρ− 1
8gµνBρσB

ρσ
)
− 1

16 (X1X2)2
(
HµρσHν

ρσ− 1
6gµνHρσλH

ρσλ
)

= 0 ,
(A.1)

where the scalar fields, ϕi, can be read off from

Xi = e−
1
2~ai·~ϕ , ~a1 =

(
21/2, 2−1/2

)
, ~a2 =

(
−21/2, 2−1/2

)
. (A.2)

This is supplemented by the following equations of motion for the scalar fields and fluxes,

d?6 d log
(
X1

X2

)
=−4gm(X1−X2)

X
3/2
1 X

3/2
2

?1−X−2
1 F1∧?6F1 +X−2

2 F2∧?6F2 ,

d?6 d log(X1X2) =−3m2 +4g2X4
1X

4
2 −4gmX3/2

1 X
3/2
2 (X1 +X2)

2X3
1X

3
2

?6 1

− 1
4

(
X−2

1 F1∧?6F1 +X−2
2 F2∧?6F2

)
+ X2

1X
2
2

8 H∧?6H−
m2

8X1X2
B∧?6B ,

(A.3)

d
(
X−2

1 ?6 F1
)

= −1
2H ∧ F2 ,

d
(
X−2

2 ?6 F2
)

= −1
2H ∧ F1 ,

d
(
X2

1X
2
2 ?6 H

)
= 2m2

X1X2
?6 B + 2F1 ∧ F2 + m2

2 B ∧B . (A.4)

The supersymmetry variations of the fermionic fields are9

δψµ = Dµη + 1
8 [g (X1 +X2) +mX0] γµη + i

32
(
X−1

1 F1 +X−1
2 F2

)
νλ

(
γµ

νλ − 6δνµγλ
)
η

+ 1
32m (X1X2)−1/2Bνλ

(
γµ

νλ − 6δνµγλ
)
γ7η + 1

96X1X2Hνλργ
νλργ7γµη , (A.5)

δχ = 1
4∂µ log (X1X2) γµη − 1

8 [g (X1 +X2)− 3mX0] η − i

32
(
X−1

1 F1 +X−1
2 F2

)
µν
γµνη

− 1
32m (X1X2)−1/2Bµνγ

µνγ7η + 1
96X1X2Hµνλγ

µνλγ7η , (A.6)

δλ = 1
2∂µ log

(
X1
X2

)
γµη − g (X1 −X2) η − i

4
(
X−1

1 F1 −X−1
2 F2

)
µν
γµνη , (A.7)

9The Killing spinor equations of F (4) gauged supergravity are traditionally written in terms of a pair of
symplectic Majorana spinors ηA. Instead we will define a Dirac spinor from this pair by η = η1 + η2 since
this is most convenient for our later use.
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where

Dµη = ∇µη −
i

2g (A1 +A2)µ η . (A.8)

B The complete uplift formula to massive type IIA

For the vanishing two-form field, B = 0, the uplift formula of U(1)2-gauged supergravity in
six dimensions was first presented in [38] and improved in [12]. In this appendix we present
the complete uplift formula with non-trivial two-form field, B, and no requirement on a
relationship between the Romans mass and the gauge coupling. This will allow for the uplift
of non-supersymmetric solutions on the branch for which 3m 6= 2g, for example, which were
not possible to uplift previously using the results of [12]. We follow the conventions in [12]
so that the truncation formula we present recover those of [12] upon setting B = 0 and
3m = 2g.

The bosonic field content of massive type IIA supergravity, [58], consists of the metric,
the dilaton field, Φ, the NSNS two-form potential, B(2), the RR one- and three-form
potentials, C(1) and C(3), and the Romans mass, F(0). The field strengths of the potentials
are

H(3) = dB(2) , F(2) = dC(1) + F(0)B(2) , F(4) = dC(3) +B(2) ∧ F(2) −
1
2F(0)B(2) ∧B(2) .

(B.1)
The action in string frame is

S = 1
16πG(10)

N

{∫
d10x
√
−g
[
e−2Φ

(
R+4|dΦ|2− 1

2 |H(3)|2
)
− 1

2
(
F 2

(0) + |F(2)|2 + |F(4)|2
)]

− 1
2

∫ (
B(2)∧dC(3)∧dC(3) + 1

3F(0)B(2)∧B(2)∧B(2)∧dC(3)

+ 1
20F

2
(0)B(2)∧B(2)∧B(2)∧B(2)∧B(2)

)}
. (B.2)

At the level of the classical equations of motion, there are two scaling symmetries of the
fields which preserve the equations of motion. Let λ and l denote the two constant scales.
Then the equations of motion are symmetric under

dŝ2
s.f. = λ2l2ds2

s.f. , eΦ̂ = λ2eΦ , B̂(2) = λ2l2B(2) ,

F̂(0) = λ−3l−1F(0) , Ĉ(n−1) = λn−3ln−1C(n−1) , (B.3)

with n = 2, 4. The scaling parameter, λ, plays an important role for the fluxes to be properly
quantized, however, once the flux quantisation has been imposed, the scaling symmetry is
broken, [12]. On the other hand, the parameter, l, is a length scale one can introduce but
could equally reabsorb it into the string length in the quantisation condition.

The complete uplift formula of U(1)2-gauged supergravity in six dimensions to mas-
sive type IIA supergravity with arbitrary Romans mass and gauge coupling, has string
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frame metric,

ds2
s.f. = λ2l2µ

−1/3
0 (X1X2)−1/4 ∆1/2

{
ds2

6

+ g−2∆−1
[
X−1

0 dµ2
0 +X−1

1

(
dµ2

1 + µ2
1Dφ

2
1

)
+X−1

2

(
dµ2

2 + µ2
2Dφ

2
2

)]}
, (B.4)

eΦ = λ2µ
−5/6
0 ∆1/4 (X1X2)−5/8 , (B.5)

where the function, ∆, is

∆ =
2∑

a=0
Xaµ

2
a , (B.6)

and the one-forms are Dφi = dφi − gAi. The angular coordinates, φi, have canonical 2π
periodicity. The µ’s are embedding coordinates satisfying

∑2
a=0 µ

2
a = 1 and a convenient

parametrisation to employ is

µ0 = cos ξ , µ1 = sin ξ sin η , µ2 = sin ξ cos η , (B.7)

where η ∈ [0, π/2], ξ ∈ [0, π/2]. The restricted range of the ξ coordinate in comparison with
the usual range on an S4 is a result of considering the four-hemisphere as opposed to a
round four-sphere, this is required due to the overall µ0 factor of the metric. The four-form
flux is given by

λ−1l−3F(4) =
√

2g
3m

µ
−2/3
0

2g3∆

[
U

2∆dµ
2
1∧dµ2

2∧Dφ1∧Dφ2

−X1X2

∆

(
µ2

0X
2
0

X1X2

(
µ2

1d
X1

X0
∧dµ2

2−µ2
2d
X2

X0
∧dµ2

1

)
−µ2

1µ
2
2d log X1

X2
∧dµ2

0

)
∧Dφ1∧Dφ2

+g
(
F1∧

(
X2µ

2
2dµ

2
1+(X0µ

2
0+X2µ

2
2)dµ2

2
)
∧Dφ2

+F2∧
(
X1µ

2
1dµ

2
2+(X0µ

2
0+X1µ

2
1)dµ2

1
)
∧Dφ1

)]
+
√

2g
3m

[
1
4gX

2
1X

2
2µ
−2/3
0 ?6H∧dµ2

0−
3m2

4g
µ

4/3
0

X1X2
?6B

]
, (B.8)

where ?6 is the Hodge dual with respect to the six-dimensional metric, ds2
6, and the function,

U , is defined to be

U = 2
2∑

a=0
X2
aµ

2
a −

[4
3X0 + 2 (X1 +X2)

]
∆ . (B.9)

From the above, one finds the following three-form potential for F(4), as defined in (B.1),

λ−1l−3C(3) = 1
2g3

√
2g
3m

[
µ
−2/3
0

(1
2
(
dµ2

2 − dµ2
1
)

+ 1
∆(X2µ

2
2dµ

2
1 −X1µ

2
1dµ

2
2)
)
∧Dφ1 ∧Dφ2

− 3gµ4/3
0

4 (F1 ∧Dφ2 + F2 ∧Dφ1)− 3g2

4 µ
4/3
0 X2

1X
2
2 ?6 H

]
. (B.10)
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For completeness, the Hodge dual of the four-form, F(4), is

λ−3l−5 ?10 F(4) = gUvol6 −
1

2g2

2∑
i=1

X−2
i ?6 Fi ∧ dµ2

i ∧Dφi −
1
2g

2∑
a=0

X−1
a ?6 dXa ∧ dµ2

a

− 1
4g3∆H ∧ (X2µ

2
2dµ

2
1 −X1µ

2
1dµ

2
2) ∧Dφ1 ∧Dφ2

+ X0
12g3∆B ∧ dµ2

1 ∧ dµ2
2 ∧Dφ1 ∧Dφ2 . (B.11)

The two-form flux and the NSNS two-form potential are given, respectively, by

λl−1F(2) = −m2 µ
2/3
0 B ,

λ−2l−2B(2) = −1
2

√
3m
2g µ

2/3
0 B . (B.12)

Note that the RR one-form potential, C(1), is pure gauge. Finally the Romans mass is given
by

λ3lF(0) =
√

2gm
3 . (B.13)

For pure F (4) gauged supergravity there are five inequivalent theories depending on the
values of gauge coupling, g, and mass parameter, m. We have presented the uplift adapted
for the supersymmetric fixed point where 3m = 2g since this is the focus in the main text.
However, for one of the other theories where either g or m vanish, or becoming negative,
one should use the scaling symmetries so that the metric and form fields are smooth in the
vanishing limit.

C A cornucopia of global solutions

In this appendix we will study in more detail the variety of solutions arising from different
global completions of the local solution given in section 2.2. This complements the analysis
of the spindle solution in the main text a similar analysis for the full zoo of possible solutions.
Recall that the different global completions are characterised by the roots of the function
F (y). From figure 1 we see that this is broken up into three regions, with special lines
given by the various boundaries of these regions. In addition to previously studied solutions
we also introduce new solutions which have not appeared previously in the literature. We
find that there are solutions for arbitrary constant curvature Riemann surface, discs, black
bottles, black goblets and domain wall solutions.

Throughout this section we will be setting 3m = 2g since it makes the analysis
simpler, though it is not necessary unless one wishes to obtain a supersymmetric solution
in ten dimensions.

C.1 Discs

The first solution we will study in this appendix are the disc solutions. There are two types
to consider depending on how the space is ended. In both cases one end-point is a single root
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and the other point is at 0. The difference between the two cases arises when considering
whether the 0 is a root of F (y) or not. For 0 to be a root of F (y) it requires one of the qi
to be set to zero, without loss of generality we take q2 = 0. As we will see shortly, when
considering this case, the uplifted metric in ten dimensions has an enhancement of symmetry,
U(1) →SU(2). The second case, which does not have this symmetry enhancement, has
y ∈ [0, y−] or y ∈ [y−, 0] with y− a positive/negative root of F (y) and ±F ′(y−) < 0. This
type of disc has already appeared in the literature in [28], albeit with a different choice of
coordinates. We will first study the disc with enhanced symmetry in ten dimensions which
has not appeared previously, before turning our attention to this second type of disc which
has appeared in [28].

Disc with enhanced symmetry. We want F (y) to have a root at 0 which is achieved
without loss of generality by imposing q2 = 0. In figure 1 this corresponds to the line p = 0.
The function F (y) simplifies to

m4F

(
y

m

)
= y3

(
y3 − y +Q1

)
≡ y3f(y) , (C.1)

where f(y) is now a cubic and we have defined Q1 = m3q1. We can now fix y to start
at y = 0. For the metric to be of the correct signature, and for the scalar fields to be
non-negative, we require that the cubic f(y) admits three real roots, two of which are
positive. Then, y ∈ [0, y+] where y+ is the smaller of the two positive roots. This requires
us to fix

0 ≤ Q1 ≤
2

3
√

3
. (C.2)

In figure 1 this corresponds to the red line stretching between the origin and the point B.
At y = y+ the metric looks locally like R2/Zk if we fix the period of the z coordinate

to be
∆z
2π = 2

m|f ′(y+)|k . (C.3)

The degeneration of the metric at y = 0 is singular, taking the form (we return to using the
q1 parameter rather than the Q1)

ds2
6 = q

1/4
1 r5/2

[
ds2

AdS4 + 4
m2q1

dr2 +m2dz2
]
, (C.4)

where we have introduced the coordinate r via y = r2. It is not hard to convince oneself
that this metric is singular at r = 0 given the overall factor of r. The metric is conformal
to the product metric on AdS4 × I × S1, with I a line interval. In addition to a singular
metric the scalar fields are also singular at y = r2 = 0, observe that near y = 0 we have

X1 ∼ q−5/8
1 r15/4 , X2 = X0 ∼ q3/8

1 r−9/4x . (C.5)

Similarly to the spindle in the main text we may compute the Euler characteristic of
the disc. One must be slightly more careful since the disc has a boundary which can in
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principle contribute to the Euler characteristic, however since the boundary has vanishing
geodesic curvature there is no such contribution here. After the dust settles one finds

χ(D) = 1
k
. (C.6)

Having set q2 = 0 there is a solitary magnetic charge coming from the gauge field A1. The
magnetic charge is

g

2π

∫
D
F1 = −g∆z

2π
y3

+
h1(y+) = 1

k
− m∆z

4π . (C.7)

We see that once again supersymmetry is not preserved by a topological twist but rather
a different mechanism entirely. This twist is common to all discs found in the literature
where symmetry is enhanced when comparing to the symmetry of the uplifted generic local
solution. It would be interesting to understand if this is the only twist possible or whether
there are more possibilities that have so far been missed. For spindles it was shown that
only the twist and anti-twist are possible in [18], it would be interesting to perform a similar
analysis for discs in this spirit.

Since the solution has no B field we may uplift this solution to massive type IIA using
the uplift formula presented in [12], see appendix B where we extended their work to include
the B field. It is useful to introduce explicit coordinates for the embedding coordinates
µa. Contrary to the choice used elsewhere in this paper, it is more convenient to use the
following parametrisation

µ0 =
√

1− µ2 cos θ , µ2 =
√

1− µ2 sin θ , µ1 = µ , (C.8)

with µ ∈ [0, 1] and θ ∈ [0, π/2).
The uplifted metric is

λ−2l−2ds2
10 = µ

−1/3
0 ∆̃1/2√y

[
ds2(AdS4) + 1

yf(y)dy
2 + f(y)

h1(y)dz
2

+ 1
g2y2∆̃

(
(1− µ2)y3(dθ2 + sin2 θdφ2

2) + h1(y)(dµ2 + µ2Dφ2
1)
)]
, (C.9)

where

∆̃ = h1(y)(1− µ2) + µ2y3 , f(y) = m2h1(y)− y . (C.10)

We now want to investigate the singularity at y = 0. It is useful to define

y = r2/3 , (C.11)

and then expand the metric around r = 0, giving

λ−2l−2ds2
10 =µ

−1/3
0 h1(0)1/2(1−µ2)1/2r1/3

[
ds2(AdS4)+m2dz2

+ 1
r4/3g2h1(0)

(
dr2+r2(dθ2+sin2 θdφ2

2
)
+ h1(0)

1−µ2 (dµ2+µ2dφ2
1)
)]

. (C.12)
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Figure 2. A schematic plot of the rectangle over which the S2×S1
z ×S1

φ1
fibers are defined. Within

the interior of the rectangle all the fibers remain of finite size. Along the boundary various cycles
shrink. The red dot on the bottom right hand corner is the location of a monopole of charge k.

This is the near-horizon of the metric of a D4-brane inside the worldvolume of a D8-brane
smeared along two directions, see for example [59]. The dilaton also has the correct r−

1
2

scaling in this limit. There is a two-dimensional hemisphere parametrised by the θ, φ2
coordinates, in the uplifted metric which is part of the SU(2)R×U(1)r symmetry group of
the solution. This SCFT should arise from wrapping the 5d N = 1 SCFT with gauge group
USp(2N) on a twice punctured sphere, one regular and one irregular. The full details of
such a field theory are lacking.

To complete the regularity analysis of the solution one should change to a different set
of coordinates which exhibits the metric as an S2 × S1 × S1 fibration over a rectangle in a
similar manner to that done in previous papers [9, 20, 21]. It is also convenient to introduce
a constant gauge shift δA1 = 1

3dz. We find that the metric can be written in the form

λ−2l−2ds2 = µ
−1/3
0 ∆̃1/2√y

[
ds2(AdS4)+ y(1−µ2)

g2∆̃
(dθ2 +sin2 θdφ2

2)

+ 1
yf(y)dy

2 + h1(y)
g2y2∆̃

dµ2 +R2
z(dz+Ldφ1)2 +R2

1dφ
2
1

]
, (C.13)

where

R2
z = S(y, µ)

y2((1− µ2)h1(y) + µ2y3) , R2
1 = µ2f(y)

g2S(y, µ) , L =
1
3µ

2(2y3 − q1)
gS(y, µ) ,

S(y, µ) = y2((1− µ2)f(y) +m2µ2y3)+ 1
3µ

2(1
3h1(y)− 2y3) . (C.14)

We see that Rz vanishes only at the point y = y+, µ = 0, while R1 vanishes at both µ = 0
and y = y+ independently of the other. Moreover, the fibration term behaves as

L(y, µ = 0) = 0 , L(y = y+, µ) = −∆z
2π k . (C.15)
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This behaviour of the fibration signifies the presence of a monopole located at (y = y+, µ = 0).
At µ = 0 the φ1 circle shrinks smoothly provided φ1 has period 2π. At µ = 1 the metric
degenerates as one would expect for a D4-brane inside a D8-brane. The various degenerations
of the solution is summarised in figure 2.

It remains to consider the quantisation of the fluxes and to compute the free energy,
however this is beyond the scope of this work.

Disc with reduced symmetry. Let us consider the second type of disc which was
previouly studied in [28]. We require that F (y) has a single root at y∗ and is positive in
the domain y ∈ [0, y∗]. As before there is a conical deficit, with deficit angle 2π(1− k−1),
at the single root, when z has period

∆z
2π = 2y3

∗
mk|F ′(y∗)|

. (C.16)

At y = 0 the metric is like in the disc above, singular, albeit in a different manner now.
One can compute the Euler-characteristic of the solution, from [12] or explicit computation
we have

Rvol(M2) = d

dy

(
F (y)∂y

(
h1(y)h2(y)

)
− h1(y)h2(y)∂yF (y)

y
(
h1(y)h2(y)

)3/2
)
dy ∧ dz . (C.17)

The Euler characteristic is then given by

χ(D) = 1
4π

∫
D
Rvol(D) = 1

k
. (C.18)

Since the singular boundary part of the metric has vanishing geodesic curvature there are
no additional contributions to the Euler characteristic from this boundary. The magnetic
flux of the R-symmetry vector threading through the disc is

g

2π

∫
D

(F1 + F2) = 1
k
− m

π
∆z . (C.19)

This is of a similar flavour to the twist of the disc studied above, in both cases the twist is
neither the usual topological twist nor the twist and anti-twist of the spindle.

To analyse the singularity of the metric it is once again convenient to uplift the solution
to ten dimensions. Expanding around y = 0 the metric takes the form

ds2 = µ
−1/3
0

[√
q1q2µ0

y

(
ds2(AdS4)+m2dz2

)
+ yµ0

m2√q1q2
dy2 + 1

g2√q1q2µ0

2∑
i=1

qi
(
dµ2

i +µ2
iDφ

2
i

)]
,

(C.20)
which we identify as the metric on a smeared D4-D8 brane bound state, with the smearing
over four transverse directions, [59].10 Contrast this with the previous disc where the
smearing was only over two of the four directions. Note that after a suitable change of
coordinates it is not hard to see that the four terms in the summation of the last part of
the metric is actually flat. This degeneration is then substantially different to the more

10This also allows for an interpretation as an O4-O8 bound state, see [60].
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canonical disc with enhanced symmetry above and studied in the literature. This type of
disc has been studied in [28] in pure F (4) gauged supergravity and for M5-branes in [29],
similar discs with this kind of degeneration are not possible where other discs have been
found. It would be interesting to try to understand the field theory of these types of
discs. The N = 1 version from wrapping M5-branes may be the most accessible given the
advancements in understanding the field theory there of the N = 2 discs. From the form
of the metric these require a ‘bare’ y coordinate which is not present in any of the lower
dimensional gauged supergravity solutions known, only in six and seven dimensions. It
is possible that this is an artefact of the theories previously considered rather than the
dimension and it would be interesting to see if one can generate these types of discs in the
lower dimensional gauged supergravities.

One could now attempt to draw a similar rectangular diagram over which the isometries
of the space are fibered. In this case the rectangle becomes three-dimensional cube and can
be parametrised by y, µ1, µ2. We refrain from presenting this analysis further details can
be found in [28].

C.2 Black bottles and black goblets

Black bottles. So far we have considered roots which are either single roots or zero, but
what happens when we have a double root? For the Black bottle case the double root is
the bigger of the two positive roots. Let us call the double root of F (y) y = y+, and write
F (y) = (y − y+)2G(y) with G(y+) 6= 0. Note that neither of the hi(y) vanish at this root.
The metric takes the form

ds2
6 =

y
3/2
+√
m

[
ds2

AdS4 +
y2

+
G(y+)

(
dρ2 + e−2ρdẑ2

)]
, (C.21)

where we used the change of coordinates |y − y+| = e−ρ, z = y3
+

G(y+)m ẑ. The metric in the
brackets is the metric of a cusp, it is non-compact but has finite area. For a smooth cusp
the period of ẑ is 2π however we may allow for deficit angles here too. We can now glue
this double root with a single root (y = y−) at the other end-point, thereby obtaining a
conical singularity at that point. The resultant metric is non-compact but has finite area
as we will see shortly. We have drawn a representative of a black bottle in the figure 3.
This type of double zero degeneration has appeared previously in the hep-th literature,
see [61–63], where it was considered at both end-points.11 Black bottles have appeared in
the gr literature, see for example [64, 65].

It would be interesting to compute the Euler characteristic in this case. One expects a
contribution of 1

n+
from the regular conical singularity. The contribution from the cusp is

more subtle. We will leave understanding this to the future.

Black goblets. We can also generalise the black bottle to find a black goblet. In this
case we pick an end-point at y = 0 and a double root at a positive value of y. One then
obtains a surface which we have depicted in figure 3. This is then a patching of the previous

11In the latter reference they obtained such solutions by taking an ultraspinning limit of the four-dimensional
Kerr-Newman-AdS solution.
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Figure 3. Cartoons of a black bottle (left) and a black goblet (right). For the black bottle, the
right end-point is a R2/Zk singularity. The left end-point is cusp metric: this pole is infinitely far
from the other pole but the volume is finite. For the black goblet, the right side is a circle and the
left end-point is cusp metric.

black bottle solution with a disc. We leave a study of this geometry to the future since it
deserves more attention than this appendix can do justice to it.

C.3 Riemann surfaces

To obtain a Riemann surface we need to perform some rescalings. To this end we perform
the transformations

y → α

m
+ εδŷ , z → γ

ε
ẑ , qi → ri + αsε2

m
, (C.22)

with ε playing the role of the parameter we will eventually send to zero, and the other
Greek letters constant parameters. Note that γ and δ may be set to convenient values since
they are just reparametrisations of the coordinates. Further that the scaling of y implies
that dy2 → ε2δ2dŷ2 and therefore to obtain a finite result we must have that F (y) scales
with ε2. This requires us to fix

m3r1 = 2α− 3α3 − α
√

4− 9α2

3 , m3r2 = 2α− 3α3 + α
√

4− 9α2

3 . (C.23)

We may now send ε→ 0 in the solution and obtain a finite metric and scalar fields. The
scalar fields become

X1 = 3α5/4

2−
√

4− 9α2
, X2 = 3α5/4

2 +
√

4− 9α2
, (C.24)

in particular they are constant. The metric on M2 becomes

ds2(M2) =
9α2δ2dŷ2 +m4γ2(4s− 3ŷ2δ2(2− 9α2)

)2
dẑ2

3α2(4s− 3ŷ2δ2(2− 9α2)
) . (C.25)

Clearly for both the metric and scalar fields to be well-defined we require 4s−3ŷ2δ2(2−9α2) >
0, 4− 9α2 > 0 and 2−

√
4− 9α2 > 0. The parameter s may be removed by redefinitions of

the δ parameter depending on its sign and the sign of 2− 9α2. We now have a number of
parameters to play with and the various tunings will allow us to find any of the constant
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curvature metrics. Note that we must take α > 0. In order to obtain a finite result for the
gauge fields we must perform the constant gauge transformation,

δA1 = 3α2

2−
√

4− 9α2
dz , δA2 = 3α2

2 +
√

4− 9α2
dz . (C.26)

Two-sphere. We can find a two-sphere by taking 2 − 9α2 > 0 which requires s > 0.
Defining

δ = 2
√
s√

3
√

2− 9α2
, γ =

√
3α

2m2√s
√

2− 9α2
, ŷ = cos θ , (C.27)

the metric becomes
ds2(M2) = 1

2− 9α2
(
dθ2 + sin2 θdẑ2) . (C.28)

This gives a well-defined solution provided 0 < α <
√

2
3 . The gauge fields, after the pure

gauge transformation are

A1 = 2− 9α2 +
√

4− 9α2

3m(2− 9α2) cos θdẑ , A2 = 2− 9α2 −
√

4− 9α2

3m(2− 9α2) cos θdẑ . (C.29)

Note that
AR = g(A1 +A2) = cos θdẑ , (C.30)

where we have used 2g = 3m. This is then preserving supersymmetry by the usual
topological twist mechanism. To further exhibit this if one computes the Killing spinors
on M2 and takes this limit one finds that they become constant, see appendix D for the
Killing spinors on M2. The constant gauge transformations are important for this. This is
of course a hallmark of a topological twist.

Torus. Next let us consider the two-torus case. We take 2− 9α2 = 0, and fix

α =
√

2
3 , γ = 1√

6m2√s
, δ = 2

√
s√
3
, (C.31)

then the metric is
ds2(M2) =

(
dŷ2 + dẑ2) , (C.32)

the scalar fields become

X1 =
21/8

(√
2 + 1

)
31/4 , X2 =

21/8
(√

2− 1
)

31/4 , (C.33)

and finally the gauge fields are

A1 = −A2 =
√

2
3mŷdẑ . (C.34)

As in the S2 case we may identify this as the topological twist since

AR = g
(
A1 +A2

)
= 0 , (C.35)

and the Killing spinors become constant. To the best of our knowledge this solution has
not appeared before in the literature before.
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Hyperbolic space. The final case to consider is when 2 − 9α2 < 0. Positivity of the
scalar fields then fixes

√
2

3 < α ≤ 2
3 . We have two cases depending on whether s is positive

or not. Firstly, let s > 0 and then perform the redefinitions,

δ = 2
√
s√

3
√

9α2 − 2
, γ =

√
3α

2m2√s
√

9α2 − 02
, ŷ = sinh θ , (C.36)

which gives the metric on H2 in global coordinates,

ds2(M2) = 1
9α2 − 2

(
dθ2 + cosh2 θdφ2) . (C.37)

The gauge fields are

A1 = 2− 9α2 +
√

4− 9α2

3m(9α2 − 2) cosh θdẑ , A2 = 2− 9α2 −
√

4− 9α2

3m(9α2 − 2) cosh θdẑ . (C.38)

For s < 0 we perform the redefinitions,

δ = 2
√
−s√

3
√

9α2 − 2
, γ =

√
3α

2m2√−s
√

9α2 − 2
, x = cosh θ , (C.39)

and then the metric takes the form,

ds2(M2) = 1
9α2 − 2

(
dθ2 + sinh2 θdẑ2

)
, (C.40)

which is the metric on the hyperbolic plane. The resultant gauge fields are

A1 = 2− 9α2 +
√

4− 9α2

3m(9α2 − 2) sinh θdẑ , A2 = 2− 9α2 −
√

4− 9α2

3m(9α2 − 2) sinh θdẑ . (C.41)

In both cases we find

AR = g
(
A1 +A2

)
= −AH , dAH = vol(H) , (C.42)

and therefore we find the expected topological twist. This is the six-dimensional analogue
of the Maldacena-Nunez solution for wrapped M5-branes [2], see [66] for the corresponding
solutions in pure F (4) gauged supergravity.

We have therefore recovered all three types of constant curvature Riemann surface from
the local solution, to the best of our knowledge the T 2 solution is new while the others have
appeared in [42]. Before we move on, it is interesting to note when it is possible for these
solutions to have an enhancement of symmetry in the uplift. This is equivalent to one of
the gauge fields becoming pure gauge. We see that this is not possible for the T 2 solution
given that the two gauge fields are equal up to a sign. For the S2 solution this is only
possible if α = 0 at which point the metric shrinks and therefore is inadmissible. Finally,
for H2 the condition becomes α = 3−1/2, and A1 vanishes. This is indeed in the permissible
region for α and therefore this does allow for an enhancement of the symmetry. In fact it is
not hard to see that this point is just taking us to the point 0 = p2(s) in the notation of
section 2.2. A second question one may ask is if the solutions can also be found in the pure
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F (4) theory, i.e., q1 = q2. From our parametrisation of the functions, this is equivalent to
r1 = r2 in (C.23). It is clear that there are only two solutions, either α = 0 or α = 2

3 , the
former is not admissible while the latter only makes sense for the H2 solution. We find the
known result that only the hyperbolic horizon can be found in the pure theory [66–68].

Note that in order to find these solutions we have taken a scaling limit. One can see
what happens to the gauged metric in this limit. It is not hard to see that the fibration term
in the metric Dz2 becomes ungauged in this limit and the four-dimensional gauge field A
drops out of the metric when we compactify on a Riemann surface in the truncation. One
may worry that this then completely trivialises the truncation and we just end up with the
AdS4 vacuum solution. The answer to this is no, there are still terms in the fluxes which do
not become trivial in this limit, and therefore one does end up with a consistent truncation
to minimal gauged supergravity on a Riemann surface in this case too, this is the power of
performing this reduction on this local solution with multiple global completions.12

C.4 Domain walls/defects

These solutions are the analogs of the M5-brane solutions studied in [30] generalised to
allow for more general end-points. The solutions are non-compact, but unlike the solutions
with a cusp they have infinite volume, as such we cannot compute the free-energy in the
same manner and obtain a sensible result. A full analysis of these solutions is beyond the
scope of this paper and appendix and we leave the full analysis to the future but one should
be able to mimic the analysis of [30] with some small extensions to the allowed choice of
other end-point.

D Supersymmetry of consistent truncation

We now want to show that the truncation ansatz provided in the main text preserves
supersymmetry. To show this, we will reduce the six-dimensional Killing spinors on the
spindle down to four-dimensions and show that the resultant Killing spinor equation is
the Killing spinor equation of four-dimensional minimal gauged supergravity. To begin let
us lay out the conventions that we will employ in the following. The intertwiners for the
SO(1, 5) gamma matrices satisfy

A6γµA
−1
6 = −γ†µ , C−1

6 γµC6 = γTµ , D−1
6 γµD6 = −γ∗µ . (D.1)

We will use the following gamma matrices,13

γa = ρa ⊗ σ3 , γ4 = 14×4 ⊗ σ1 , γ5 = 14×4 ⊗ σ2 , (D.2)

where
ρ0 = iσ1 ⊗ σ3 , ρ1 = σ2 ⊗ σ3 , ρ2 = 12×2 ⊗ σ1 , ρ3 = 12×2 ⊗ σ2 . (D.3)

The intertwiners for this choice of gamma matrices are

A6 = γ0 , C6 = −σ1 ⊗ σ2 ⊗ σ1 , D6 = C6A
T
6 = 12×2 ⊗ σ1 ⊗ σ2 , (D.4)

12See [51] for a gauged version.
13Latin indices range over {0, 1, 2, 3} while Greek indices range over {0, 1, 2, 3, 4, 5}.
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and the chirality matrix is

γ7 = γ012345 = σ3 ⊗ σ3 ⊗ σ3 . (D.5)

Supersymmetry of the AdS4 seed solution. Let us first set the fermionic supersym-
metry transformations to vanish for the AdS4 solution on which the truncation is built. The
solution was shown to be supersymmetric in [12], however, we will repeat the analysis since
we work with a Dirac spinor whereas they worked with the symplectic Majorana spinors.
The spinor decomposes as

η = χ⊗ ξ , (D.6)

where χ is a four-component spinor on AdS4 and ξ is a two component spinor on M2. We
take the Killing spinor on AdS4 to satisfy

∇mχ = −1
2ρmχ , (D.7)

then we find that the gravitino equation along AdS4 requires the projection condition,(
m
√
h1(y)h2(y)18×8 +

√
F (y)γ4 + iy2γ45

)
η = 0 , (D.8)

to be imposed. This may be reduced to a projection condition for the two-dimensional
spinor on M2 as (

m
√
h1(y)h2(y)σ3 + i

√
F (y)σ2 − y212×2

)
ξ = 0 . (D.9)

We may solve the remaining conditions by fixing the spinor, ξ, to be14

ξ = c
e
−imz

(
1− 3(α1+α2)

4

)
y1/8(

h1(y)h2(y)
)3/16

( √
F+(y)

−
√
F−(y)

)
, (D.10)

where
F±(y) = m

√
h1(y)h2(y)± y2 , F+(y)F−(y) = F (y) , (D.11)

and c is an arbitrary complex constant. This gives a total of eight real spinors satisfying
the Killing spinor equation. Four are identified with the Poincaré supercharges and the
remaining four are identified with the superconformal supercharges. Note that one can
specialise the spinor to any of the global completions. For the Riemann surfaces, one finds
constant spinors after taking the limit. This is to be expected since supersymmetry is
preserved via a topological twist in these cases.

14We have added in the constant gauge transformations, αi, of the two gauge fields in the final result.
These appear in the phase of the spinor. Recall that, for the truncation, we set αi = 0. However, when
taking the Riemann surface limit, it is useful to keep this phase.
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Supersymmetry of the consistent truncation. In order to show that supersymmetry
is preserved in the truncation we will show that the supersymmetry transformations reduce
to the Killing spinor equation of four-dimensional minimal gauged supergravity,

δψ4d
α =

[
∇4d
α −

i
2Aα + 1

2ρα + i
4
/F · γα

]
χ , (D.12)

and conditions on the spinor, ξ, which are immediately satisfied for the seed solution. First,
let us define some notation. Let a superscript “g” stand for gauging, i.e.,

Agi = Ai
∣∣∣
dz→Dz

, (D.13)

with Dz = dz − 1
2mA. Recall that the scalar fields are left unchanged in the truncation and

the modification to the fluxes is only through gauging of the isometry for the gauge field
and the inclusion of a two-form potential. Let F̂i be the field strength of the AdS4 vacuum
solution. Then we have

Fi = F̂ gi −
ai(y)
2m F , (D.14)

where
ai(y) = − y3

hi(y) . (D.15)

Let us first consider the vanishing of δλ and δχ. The simplest is δλ where we have15

δλ = δλ
∣∣∣
A=0

+ i
4m

(
X−1

1 a1(y)−X−1
2 a2(y)

)
/Fη . (D.16)

We have written the variation by splitting it into two pieces. The first piece, δλ
∣∣
A=0, is

equivalent to the supersymmetry variation of the AdS4 seed solution if we set A = 0. It
only contains the gauge field, A, through the minimal gauging term, Dz, and no field
strength terms. The vanishing of this term is independent of whether dz is gauged or not
and, therefore, vanishes in the truncation because it vanishes for the seed AdS4 solution.
The second term, on the other hand, proportional to the field strength, F , is new and, in
order to preserve supersymmetry, must vanish identically. Since

a1(y)X2 − a2(y)X1 = 0 , (D.17)

this is satisfied. Next consider the vanishing of δχ. We have

δχ= δχ
∣∣∣
A=0

+ 1
16my1/4(h1(y)h2(y)

)5/8 /F ·γ45
(
m
√
h1(y)h2(y)18×8+

√
F (y)γ4+iy2γ45

)
η .

(D.18)

Using the same notation as in δλ, the first term vanishes identically while the second term
contains the same matrix multiplying η as in (D.8) and, therefore, this vanishes identically,
too. Thus, the gaugini Killing spinor equations are satisfied identically.

15In the results below, all contractions will be with respect to the unwarped four-dimensional metric of four-
dimensional minimal gauged supergravity. In practice this means that there are factors of (y2h1(y)h2(y))1/4

different in /F .
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Finally let us consider the gravitino variation. This requires a bit more work but is
still tractable to do by hand if one wishes. First we need to compute the spin connection.
We will use the following frame,

ea = eC êa , e4 = eC y√
F (y)

dy , e5 = eC
√
F (y)√

h1(y)h2(y)
Dz , (D.19)

where we used the shorthand,

eC =
(
y2h1(y)h2(y)

)1/8
, (D.20)

for the overall warp factor of the metric. Then we have

ωab = ω̂ab + F (y)
4mh1(y)h2(y)F

a
bDz , ωa4 = ∂yC

√
F (y)
y

êa ,

ω5
a = −

√
F (y)

4m
√
h1(y)h2(y)

Fabêb , ω4
5 = −e−C

√
F (y)
y

∂y

( eC
√
F (y)√

h1(y)h2(y)

)
Dz .

(D.21)

Let us now insert this into (A.5). First consider the z components and it reduces to

δψz = δψz
∣∣∣
A=0

+
√
F (y)

16mh1(y)h2(y)
/F · γ4

(
m
√
h1(y)h2(y)18×8 +

√
F (y)γ4 + iy2γ45

)
η .

(D.22)

Once again, the bracketed part vanishes since it is the same combination that appears
in (D.8). Next consider the y components. Similarly we find

δψy = δψy
∣∣∣
A=0
− y

16m
√
F (y)

√
h1(y)h2(y)

/F ·γ5
(
m
√
h1(y)h2(y)18×8+

√
F (y)γ4+iy2γ45

)
η ,

(D.23)
and thusly the y component is also immediately satisfied.

Finally, reducing on the remaining directions, we find

δψα = δψ4d
α ⊗ ξ , (D.24)

where
δψ4d

α =
[
∇4d
α −

i
2Aα + 1

2ρα + i
4
/F · ρα

]
χ . (D.25)

This is the Killing spinor equation for four-dimensional minimal gauged supergravity and we,
therefore, find that, given a supersymmetric solution of four-dimensional minimal gauged
supergravity, we may uplift it to a supersymmetric solution of matter coupled F(4) gauged
supergravity on M2.

E R-symmetry of four-dimensional orbifolds

In this section, we will study the R-symmetry of the orbifolds studied in section 3. A similar
analysis for M5-branes on a four-dimensional orbifolds was studied in [36].16 To do this

16A similar analysis for M2-branes on a spindle was performed in [6].
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we will study the vector bilinears one can construct from the Killing spinors. As a first
step we will review the vector bilinears one can construct using the Killing spinors on AdS2
before studying the Killing vectors one can make with the full six-dimensional spinor, η.
Recall that the Killing spinor, η, is given by the tensor product of the spinor χ on the
four-dimensional spacetime and the Killing spinor on M2, ξ, see (D.6). In turn, as we will
show momentarily, χ may also be decomposed into the tensor product of a spinor on AdS2
and one on the spindle, Σ1, or Riemann surface. Here we will focus only on the spindle
solution since this has novel features.

The four-dimensional Killing spinor satisfying (D.12) is

χ = θAdS2 ⊗ ε , (E.1)

where

ε = 1√
x

( √
q−(x)

−
√
q+(x)

)
. (E.2)

We have defined
q±(x) = x2 ± (2x− a) , q(x) = q+(x)q−(x) , (E.3)

with q(x) defined in (3.3) and θAdS satisfies

∇AdS2
α θAdS2 = 1

2ΓαθAdS2 . (E.4)

First we must give the Killing spinors of AdS2. We take the gamma matrices for AdS2
to be

Γ0 = iσ1 , Γ1 = σ2 , (E.5)

which is compatible with the gamma matrices we chose in the previous section, (D.3). We
take the metric on AdS2 to be

ds2 = r2dt2 + dr2

r2 . (E.6)

Then the Killing spinors on AdS2 satisfying (E.4) are

θ1 =
√
r

2

(
1
i

)
, θ2 = 1√

2
√
r

(
12×2 − t r σ3)( 1

−i

)
. (E.7)

We may construct three Killing vectors from these Killing spinors which generate the
SO(1, 1) isometry of the spacetime. We have

k11 = θ̄1Γαθ1∂
α = −∂t ,

k22 = θ̄2Γαθ2∂α = −1 + r2t2

r2 ∂t + 2tr∂r , (E.8)

k12 = θ̄1Γαθ2∂α = t∂t − r∂r .

These satisfy the expected commutation relations,

[k11, k22] = 2k12 , [k11, k12] = k11 , [k22, k12] = −k22 . (E.9)
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We can now construct the analogous six-dimensional vector bilinears. Let us define

η1 = θ1 ⊗ ε⊗ ξ , η2 = θ2 ⊗ ε⊗ ξ , (E.10)

and we have

K11 = η̄1γ
µη1∂µ = mk11 ,

K22 = η̄2γ
µη2∂µ = mk22 , (E.11)

K12 = η̄1γ
µη2∂µ = mk12 + i

(
m∂φ −

1
2∂z

)
.

This generates the superconformal algebra of 1d N = 2 superconformal quantum mechanical
theory which is dual to 5d USp(2N) theory living on a stack of D4-D8-branes wrapped on
the four-dimensional orbifold. Note that the R-symmetry, appearing as the complex part of
the K12 bilinear, is a linear combination of the two U(1)’s,

R = m∂φ −
1
2∂z . (E.12)
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