

Citation for published version:
Crick, T, Davenport, J, Hayes, A & Prickett, T 2023, Teaching Programming Competencies: A Role for Craft
Computing? in T Astarte, F Moller, K Quille & S Russell (eds), UKICER '23: Proceedings of the 2023 Conference
on United Kingdom & Ireland Computing Education Research., 27, Association for Computing Machinery, New
York. https://doi.org/10.1145/3610969.3611140

DOI:
10.1145/3610969.3611140

Publication date:
2023

Document Version
Peer reviewed version

Link to publication

Publisher Rights
CC BY

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 07. Nov. 2023

https://doi.org/10.1145/3610969.3611140
https://doi.org/10.1145/3610969.3611140
https://researchportal.bath.ac.uk/en/publications/2e68bd3c-c37e-44de-8c2d-d010f1198935

Teaching Programming Competencies:
A Role for Craft Computing?

Tom Crick
Swansea University

Swansea, UK
thomas.crick@swansea.ac.uk

James H. Davenport
Alan Hayes

University of Bath
Bath, UK

{masjhd,ah347}@bath.ac.uk

Tom Prickett
Northumbria University
Newcastle upon Tyne, UK

tom.prickett@northumbria.ac.uk

ABSTRACT
Competency-based education is the recommended paradigm of the
ACM/IEEE-CS Computing Curricula 2020 (CC2020) and the Com-
puter Science Curricula 2023 (CS2023) guidelines. Learners apply
knowledge, dispositions and skills in a task context as an integral
part of their studies is the competency model advocated. While
it would be highly unusual to deliver computing-related degree
programmes without considering programming in some manner,
competency in programming extends beyond simply writing code;
indeed, teaching programming is more akin to teaching craft skills
than a traditional academic discipline.

CCS CONCEPTS
• Social and professional topics→ Computing education.

KEYWORDS
Programming, craft computing, software carpentry, competence
ACM Reference Format:
Tom Crick, James H. Davenport, Alan Hayes, and Tom Prickett. 2023. Teach-
ing Programming Competencies: A Role for Craft Computing?. In The United
Kingdom and Ireland Computing Education Research (UKICER) conference
(UKICER 2023), September 07–08, 2023, Swansea, Wales Uk. ACM, New York,
NY, USA, 1 page. https://doi.org/10.1145/3610969.3611140

Competency-based education for computing-related degrees is the
model recommended by CC2020 and CS2023. The implementa-
tion of this approach has been explored by recent ITiCSE Working
Groups, with one in 2022 highlighting how a focus on competency
may help address the issue of computing graduate employment
and underemployment [4]. Learning to program requires the devel-
opment of craft competencies and deeper understanding beyond
the actual writing of code. A learner must develop competencies as
a problem analyser/solver, computational thinking, development
technical competencies, as well as classical coding [3]. A traditional
lecture/workshop approach will not effectively develop these com-
petencies. The apprentice model can be far more effective: a large
computing laboratory (100+ seats) with one lecturer being sup-
ported by a small team of senior tutors, who are in turn supported
by a team of senior undergraduate students can be employed to
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
UKICER 2023, September 07–08, 2023, Swansea, Wales Uk
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0876-3/23/09.
https://doi.org/10.1145/3610969.3611140

teach in a practical manner. Software carpentry, codemanship, code
literacy, and related sustainable software competencies are devel-
oped by such an approach [1, 5]. Here debugging is a craft that must
be taught, not a problem that must be bypassed [2]. One advantage
with using PhD students as tutors is that they are invariably closer
in age to the undergraduates, lending itself to a more peer-to-peer
learning experience as opposed to the traditional lecturer/student
or master/apprentice model, fostering a more empathetic approach
to tutorial delivery. Also, they are sufficiently close to their own
undergraduate experience to be able to recall the learning chal-
lenges of the respective discipline. This is advantageous as the
undergraduate students grow in confidence as they develop their
competencies in the subject. We have thus found the following
ideas useful: (i) As cohort sizes have grown, teaching teams have
grown haphazardly. Large teams need structure; (ii) We try to as-
sign students to specific groups of seats, each group with its own
tutor, encouraging the tutor to engage with each student’s learning
journey; and (iii) The tutors need clear briefing. The temptation is
for the tutor to solve the problem; rather, the tutor must be socratic
e.g. “why do you believe the problem is here?”. This poster presents a
summary from a number of UK universities on the use of craft com-
puting to teach programming, including the approaches used and
the resources required to adequately support it. Craft computing
is presented as a good practice model that may be worth consid-
ering for broader adoption [2], fostering and promoting software
carpentry and “codemanship” as key competencies [1, 3, 6].

REFERENCES
[1] Tom Crick, James H. Davenport, and Alan Hayes. 2015. Innovative Pedagogical

Practices in the Craft of Computing. Advance HE. https://www.advance-he.ac.
uk/knowledge-hub/innovative-pedagogical-practices-craft-computing.

[2] Quintin Cutts, Maria Kallia, Ruth Anderson, Tom Crick, Marie Devlin, Mo-
hammed Farghally, Claudio Mirolo, Ragnhild Kobro Runde, Otto Seppälä, Jaime
Urquiza-Fuentes, and Jan Vahrenhold. 2023. Considering Computing Educa-
tion in Undergraduate Computer Science Programmes. In Proc. of ITiCSE’23.
https://doi.org/10.1145/3587103.3594210

[3] James H. Davenport, Alan Hayes, Rachid Hourizi, and Tom Crick. 2016. Innovative
Pedagogical Practices in the Craft of Computing. In Proc. of LaTICE’16. 115–119.
https://doi.org/10.1109/LaTiCE.2016.38

[4] Rajendra K. Raj, John Impagliazzo, Sherif G. Aly, David S. Bowers, Harold Con-
namacher, Stan Kurkovsky, Bonnie MacKellar, Tom Prickett, and Maíra Mar-
ques Samary. 2022. Toward Competency-Based Professional Accreditation in Com-
puting. In Proc. of ITiCSE-WGR’22. 1–35. https://doi.org/10.1145/3571785.3574121

[5] Colin C. Venters, Rafael Capilla, Stefanie Betz, Birgit Penzenstadler, Tom Crick,
Steve Crouch, Elisa Yumi Nakagawa, Christoph Becker, and Carlos Carrillo.
2018. Software Sustainability: Research and Practice from a Software Archi-
tecture Viewpoint. Journal of Systems and Software 138 (2018), 174–188. https:
//doi.org/10.1016/j.jss.2017.12.026

[6] Colin C. Venters, Rafael Capilla, Elisa Yumi Nakagawa, Stefanie Betz, Birgit Pen-
zenstadler, Tom Crick, and Ian Brooks. 2023. Sustainable Software Engineering:
Reflections on Advances in Research and Practice. Information and Software
Technology (2023).

https://orcid.org/0000-0001-5196-9389
https://orcid.org/0000-0002-3982-7545
https://orcid.org/
https://orcid.org/0000-0002-9671-2250
https://doi.org/10.1145/3610969.3611140
https://doi.org/10.1145/3610969.3611140
https://www.advance-he.ac.uk/knowledge-hub/innovative-pedagogical-practices-craft-computing
https://www.advance-he.ac.uk/knowledge-hub/innovative-pedagogical-practices-craft-computing
https://doi.org/10.1145/3587103.3594210
https://doi.org/10.1109/LaTiCE.2016.38
https://doi.org/10.1145/3571785.3574121
https://doi.org/10.1016/j.jss.2017.12.026
https://doi.org/10.1016/j.jss.2017.12.026

	Abstract
	References

