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ABSTRACT
Competency-based education is the recommended paradigm of the
ACM/IEEE-CS Computing Curricula 2020 (CC2020) and the Com-
puter Science Curricula 2023 (CS2023) guidelines. Learners apply
knowledge, dispositions and skills in a task context as an integral
part of their studies is the competency model advocated. While
it would be highly unusual to deliver computing-related degree
programmes without considering programming in some manner,
competency in programming extends beyond simply writing code;
indeed, teaching programming is more akin to teaching craft skills
than a traditional academic discipline.
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Competency-based education for computing-related degrees is the
model recommended by CC2020 and CS2023. The implementa-
tion of this approach has been explored by recent ITiCSE Working
Groups, with one in 2022 highlighting how a focus on competency
may help address the issue of computing graduate employment
and underemployment [4]. Learning to program requires the devel-
opment of craft competencies and deeper understanding beyond
the actual writing of code. A learner must develop competencies as
a problem analyser/solver, computational thinking, development
technical competencies, as well as classical coding [3]. A traditional
lecture/workshop approach will not effectively develop these com-
petencies. The apprentice model can be far more effective: a large
computing laboratory (100+ seats) with one lecturer being sup-
ported by a small team of senior tutors, who are in turn supported
by a team of senior undergraduate students can be employed to
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teach in a practical manner. Software carpentry, codemanship, code
literacy, and related sustainable software competencies are devel-
oped by such an approach [1, 5]. Here debugging is a craft that must
be taught, not a problem that must be bypassed [2]. One advantage
with using PhD students as tutors is that they are invariably closer
in age to the undergraduates, lending itself to a more peer-to-peer
learning experience as opposed to the traditional lecturer/student
or master/apprentice model, fostering a more empathetic approach
to tutorial delivery. Also, they are sufficiently close to their own
undergraduate experience to be able to recall the learning chal-
lenges of the respective discipline. This is advantageous as the
undergraduate students grow in confidence as they develop their
competencies in the subject. We have thus found the following
ideas useful: (i) As cohort sizes have grown, teaching teams have
grown haphazardly. Large teams need structure; (ii) We try to as-
sign students to specific groups of seats, each group with its own
tutor, encouraging the tutor to engage with each student’s learning
journey; and (iii) The tutors need clear briefing. The temptation is
for the tutor to solve the problem; rather, the tutor must be socratic
e.g. “why do you believe the problem is here?”. This poster presents a
summary from a number of UK universities on the use of craft com-
puting to teach programming, including the approaches used and
the resources required to adequately support it. Craft computing
is presented as a good practice model that may be worth consid-
ering for broader adoption [2], fostering and promoting software
carpentry and “codemanship” as key competencies [1, 3, 6].
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