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A B S T R A C T

We examine the issue of petroleum stockpiling in the Association of Southeast Asian Nations (ASEAN),
computing the optimal build-up and draw-down policies under different conditions. We study, in detail, the
properties of petroleum prices, oil imports and production, and GDP, analyzing the impact of the planning
horizon, discount rate and price elasticity of demand on the optimal policy. We use a finite horizon stochastic
program (with varying branching) in which the policymaker minimizes the negative impacts of oil price
increases on the GDP and the cost of holding the strategic petroleum reserve. We propose an inter-generational
equity rule to compute the level of inventory in the final states of the decision tree. We find that ASEAN
countries would benefit significantly from developing a strategic petroleum reserve, with net benefits ranging
from US$25–125 billion. Our suggested target stockpile is consistent with the International Energy Agency’s
recommendation of holding stocks equal to 90 days of net imports.

1. Introduction

Energy plays a vital role in modern societies, underpinning all
areas of economic activity. The economic impact of supply or price
disruptions can therefore be significant and wide-ranging (Bohi &
Toman, 1993). The oil price shocks of the 1970s, and the resulting
macroeconomic disruptions in oil-importing countries, provided the
initial impetus for building strategic petroleum reserves. In the after-
math of the 1973 oil crisis, a number of OECD countries established
the International Energy Agency (IEA) to coordinate responses to oil
market disruptions, with stockpiling of petroleum emerging as one of
the major policy tools. These reserves are used to mitigate the risk of
shortage (e.g., Rodriguez-Espindola, Alem, & Da Silva, 2020). As such,
each IEA member country is required to have a strategic petroleum
reserve equal to at least 90 days of its net oil import requirements,
where ‘‘oil’’ includes crude oil, natural gas liquids, as well as refined
products (International Energy Agency, 2022). Throughout the paper
we follow the same convention.

The earliest stockpiling models attempted to assess the value of oil
stockpiles by determining the extent to which they could reduce the
economic costs of oil supply interruptions, e.g., Hogan (1981), Balas
(1981) and Rowen and Weyant (1982). Using dynamic programming
models, Teisberg (1981) and Chao and Manne (1983) looked at how to

∗ Corresponding author.
E-mail address: f.oliveira@bradford.ac.uk (F.S. Oliveira).

determine not just the optimal size of the strategic petroleum reserve
but also the optimal fill-up and draw-down rates, given information on
the duration and frequency of oil supply interruptions. Hogan (1983)
explored the interactions between the strategic petroleum reserve (SPR)
of a major oil importer and the SPRs of other oil importing countries,
paying particular attention to free-riding issues. Murphy, Toman, and
Weiss (1986) examined the interaction between public and private
stockpiling in dealing with oil disruptions.

More recently, Fan and Zhang (2010) modeled the buildup of
petroleum reserves in China and India, studying the interaction be-
tween their policies within a game-theoretic framework; Murphy and
Oliveira (2010, 2013) developed a Markov game to model the optimal
build-up and draw-down of the U.S. strategic petroleum reserve using
option contracts; Wu, Fan, Liu, and Wei (2008), Bai, Zhou, Zhou,
and Zhang (2012), and Xie, Yan, Zhou, and Huang (2017) studied
optimal build-up strategies for China’s petroleum reserve, taking into
consideration potential market disruptions; Jiao, Han, Wu, Li, and Wei
(2014) developed a system dynamics model of China’s SPR and use
the model to analyze the circumstances under which an SPR release
can stabilize the domestic oil price, while Bai, Zhou, Tian, and Meng
(2016) analyzed strategic petroleum reserves policy in the presence of
supply uncertainty; Bai and Dahl (2018) subsequently evaluated the
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costs and benefits of the US SPR, finding that the net benefits are
negative. Finally, Wang, Sun, Li, Chen and Liu (2018) analyzed the
optimization of the oil-import portfolio in China, which has been partly
used to build the strategic reserves.

As a methodological contribution we develop a recursive decision
tree (e.g., Wang & Chuang, 2016) to model uncertainty in multistage
stochastic programming (e.g., Azizi, Hu, & Mokari, 2020; Khalilabadi,
Zegordi, & Nikbakhsh, 2020). We then use ARIMA (e.g., Wang & Chen,
2019) and co-integration, based on historical behavior of oil prices, and
other stochastic variables to simulate a wide range of possible future
paths for these variables. This allows the optimal stockpiling policy
chosen in the dynamic programming model to take into account the
level of uncertainty in the oil market. The framework we propose is
more flexible than that used in most of the earlier stockpiling literature,
where the oil market is typically assumed to oscillate between a discrete
number of Markov states. As a result, many of the statistical properties
of stochastic variables (such as the random walk behavior commonly
observed in oil prices) cannot be incorporated into the policy choice.
Our model is solved as a stochastic program, in a finite planning
horizon, that minimizes the total social cost of holding the inventory
(including both the direct costs associated with holding the stockpile
and the indirect cost to GDP of any oil price changes brought about by
stockpiling) by deciding, in each period and under different scenarios,
how much oil to buy or sell from the petroleum reserve.

We chose GDP as our measure of performance because it has long
been identified the link between petroleum price increases and a coun-
try’s economic output. Hamilton (1983) demonstrated the strong corre-
lation between petroleum price increases and decreases in production
in the U.S. economy, for the period 1948–72. Mork (1989) and Mory
(1993) reached the same conclusion in subsequent studies. Analyses
carried out by Herrera (2009) and Herrera, Lagalo, and Wada (2011)
reaffirm the significance of oil price increases for the U.S. economy.

As a policy contribution we therefore analyze the building of a
strategic petroleum reserve in the ASEAN (Association of Southeast
Asian Nations). This issue has received scant attention thus far, in
part because ASEAN has traditionally been rich in natural gas and oil.
However, ASEAN has been a net oil importer since 1993, with net oil
imports accounting for half of its oil consumption in 2010 (e.g., Nicolas,
2009). We show that ASEAN countries would benefit significantly from
risk-pooling to build up a strategic petroleum reserve. The resulting
net economic benefits would be at least US$25–125 billion (depending
on the discount factor). At the end of the 25-year planning horizon,
The ASEAN’s target stockpile is 112 days of net oil imports (with an
average size of about 800 MMB) if the social discount factor is 0.99,
and 53 days of net oil imports (with an average size of about 380 MMB)
if the social discount factor is 0.95. Our suggested target stockpile
is consistent with the IEA’s requirement that member countries hold
stocks equal to 90 days of net imports. This exceeds the current oil
stock targets set by ASEAN countries, with the exception of Vietnam
which has planned to achieve oil reserves amounting to 90 days of oil
imports by 2020. Additionally, our experiments suggest that through
cooperative management of the petroleum reserve by adopting a risk
pooling strategy, the ASEAN will reduce the maximum stockpile size
by about 5000 MMB, a reduction of over 60% of the reserves without
risk pooling.

Finally, we are able to identify the pattern for an optimal response
to a shock in the petroleum market: the best response to a severe
oil price shock involves an immediate large sale of stocks, followed
by further sales in future periods, with some stocks reserved to deal
with potential future crises. The imposition of the inter-generations rule
has only a limited effect on the freedom of the stockpile manager in
mitigating the impact of oil price shocks.

The remainder of the paper is organized as follows. Section 2
describes the dynamic programming model of stockpiling management.
We discuss the model parameterization, paying particular attention to
how we econometrically model the stochastic behavior of oil prices, oil
imports, oil production, and GDP. Section 3 presents and analyzes the
empirical results from a range of simulations of the stockpiling model
developed in this paper. Section 4 concludes the article.

2. Model description

We consider a finite horizon problem represented by a scenario
tree. Exogenous stochastic processes determine the oil world price,
oil imports and production, and GDP at every node of the tree. The
stockpile manager decides how much petroleum to buy or sell at
any given node, in order to minimize the sum of the economic cost
(measured as the loss of GDP) due to increases in oil prices and the
cost of holding the reserve. We consider two alternative stockpiling
regimes. In the cooperative case, the ASEAN countries jointly build a
regional petroleum reserve that is to be shared by all the countries. In
the non-cooperative case, each ASEAN country individually builds its
own petroleum reserve, without regard for the effects on other ASEAN
countries.

2.1. Simulation of stochastic processes using time-series analysis

The stockpiling strategies depend on several stochastic variables,
such as oil prices, oil imports, oil production, and GDP, that are
not known to policymakers in advance. We therefore begin by dis-
cussing how we simulate the uncertainty in the stochastic variables, be-
fore describing the dynamic programming model for making stockpile
decisions.

Table 1 describes the variables and data sources. Although the oil
price (evaluated in real terms) fluctuates considerably in the short-
term, we use the annual average price as we consider long-run stockpile
build-up and draw-down policies, e.g., Zhang, Qin, and Chen (2017)
and Bai et al. (2012). The Augmented Dickey–Fuller unit root test
(see, e.g., Nerlove & Diebold, 1990) indicates that the oil price is a
non-stationary series. After taking first differences, the oil price series
is stationary. We also find no evidence that oil price changes are
serially correlated. As such we model the oil price 𝑝𝑜𝑡 as a random
walk, and take the first difference before implementing the regression.
Our assumption that oil prices follow a random walk without drift
is consistent with the empirical literature on the statistical behavior
of historical crude oil prices. For example, Alquist and Kilian (2010)
compared a variety of econometric models of the oil price based on
not just the current spot price of crude oil, but also survey forecasts of
the oil price, current oil futures prices, and the oil futures spread. They
found that the model of a random walk without drift provides superior
forecast accuracy compared to the alternative models.

The estimated oil price model can thus be represented by Eq. (1), in
which 𝑢𝑝𝑡 ∼ 𝑁(0, 14.72). It is estimated based on the historical path of oil
prices, which reflect past supply interruptions and, therefore, include
severe supply interruptions in the form of large exogenous oil price
shocks. Note that there are two identical approaches to modeling the
statistical behavior of consumption, production, and net oil imports:
treating consumption and production as stochastic variables, with net
imports being the difference between consumption and production;
and treating net imports and production as stochastic variables, with
consumption then equaling the sum of net imports and production. We
follow the latter approach. Nonetheless, the results are not affected by
the choice of method.

𝑝𝑜𝑡 = 𝑝𝑜𝑡−1 + 𝑢𝑝𝑡 (1)

We also develop econometric models for real GDP, net oil imports
and oil production, as these are all key variables in determining the
oil dependency of ASEAN countries. We first describe how we model
the behavior of these variables for the ASEAN region as a whole.
The Augmented Dickey–Fuller test indicates that 𝑖𝑡, 𝑔𝑡 and 𝑜𝑡 are non-
stationary and integrated of order one (I(1) series). Because of this, we
model 𝑜𝑡 as a random walk and 𝑔𝑡 as a random walk with drift (where
the drift term captures the tendency of GDP per capita to grow over
time). The models for 𝑜𝑡 and 𝑔𝑡 are represented by Eqs. (2) and (3) as
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Table 1
Variables and Data Sources.
Variable Data Source

𝑝0𝑡

The real annual crude oil price

BP (2020)(measured in 2011 USD per barrel)
from 1970 to 2012

𝑔𝑡

Real GDP per capita of

World Bank (2020)ASEAN countries (in constant USD)
from 1989 to 2010

𝑖𝑡

Net oil imports per capita of

International Energy Agency, 2020
ASEAN countries (in thousand
tonnes of oil equivalent or ktoe)
from 1989 to 2010

𝑜𝑡

Oil production per capita

International Energy Agency, 2020of ASEAN countries (in ktoe)
from 1989 to 2010

𝐷𝑤
𝑡

World oil consumption
International Energy Agency, 2020(in million barrels per year)

𝐺𝑤
𝑡

World real GDP
World Bank (2020)(in million constant USD per year)

follows, where 𝑢𝑜𝑡 ∼ 𝑁(0, 0.00842) and 𝑢𝑔𝑡 ∼ 𝑁(0, 392), and t-statistics are
provided in parentheses.

𝑜𝑡 = 𝑜𝑡−1 + 𝑢𝑜𝑡 (2)

𝑔𝑡 = 44
(5.45)

+ 𝑔𝑡−1 + 𝑢𝑔𝑡 (3)

We next model net oil imports per capita, 𝑖𝑡, as a function of GDP per
capita (𝑔𝑡) (since oil demand increases as the economy grows) and oil
production (since oil imports decrease as oil production increases). We
regress 𝑖𝑡 on 𝑔𝑡 and 𝑜𝑡, with the error term modeled as an AR(1) process.
The Augmented Dickey–Fuller test shows that the residuals from this
equation follow a stationary process, suggesting there is no need to
model 𝑖𝑡 in differences. The model for 𝑖𝑡 is illustrated in Eqs. (4) and
(5), where 𝑣𝑖𝑡 ∼ 𝑁(0, 0.0142). The coefficients have the expected sign,
and are statistically significant (Table A.1 in Appendix A).

𝑖𝑡 = 0.0002
(4.22)

𝑔𝑡 − 0.76
(−2.15)

𝑜𝑡 + 𝑢𝑖𝑡 (4)

𝑢𝑖𝑡 = 0.76
(6.26)

𝑢𝑖𝑡−1 + 𝑣𝑖𝑡 (5)

Eqs. (2)–(5) capture the stochastic behavior of ASEAN’s GDP per
capita, net oil imports per capita and oil production per capita, and
can be used to generate forecasts and simulations of their behavior in
the future. A similar econometric analysis is also carried out for each
individual ASEAN country, with details provided in Appendix B.

Finally, it is also necessary to model the world’s oil consumption
as it partly determines the impact of a stockpiling intervention on oil
prices (as described in Section 2.3). We model world oil consumption
𝐷𝑤

𝑡 in conjunction with world real GDP 𝐺𝑤
𝑡 , as the two variables are

correlated with one another. The two time series are non-stationary and
integrated of the same order. We model 𝐺𝑤

𝑡 as a random walk with drift,
where the drift term represents the long-term evolution of world GDP.
The model for 𝐺𝑤

𝑡 is illustrated in Eq. (6), where 𝑢𝐺𝑡 ∼ 𝑁(0, 4300002).

𝐺𝑤
𝑡 = 720000

(11.26)
+ 𝐺𝑤

𝑡−1 + 𝑢𝐺𝑡 (6)

Since long-run oil consumption growth depends on the rate of
economic growth, we regress 𝛥𝐷𝑤

𝑡 on 𝛥𝐺𝑤
𝑡 , with the error term modeled

as an AR(1) process. This is illustrated in Eqs. (7) and (8), where
𝑣𝐷𝑡 ∼ 𝑁(0, 4002). The estimates are shown in Table A.2 in Appendix A.

𝛥𝐷𝑤
𝑡 = 0.00073

(5.74)
𝛥𝐺𝑤

𝑡 + 𝑢𝐷𝑡 (7)

𝑢𝐷𝑡 = 0.62
(5.15)

𝑢𝐷𝑡−1 + 𝑣𝐷𝑡 (8)

2.2. Procedure used to build scenario trees

Let 𝑡 and 𝑛 be, respectively, the index for the time period and the
node. Let 𝑇 represent the number of time periods and 𝑁 represent the
number of nodes. In the scenario tree, when we advance by one time
period from time 𝑡 to 𝑡+1, each of the nodes at time t (the parent nodes)
branches out into multiple nodes (which we call child nodes), with
the latter representing different possible scenarios for the stochastic
variables at time 𝑡 + 1 (i.e., oil prices, oil imports, oil production and
GDP). In building the tree we use a branching factor 𝑟𝑡, i.e., the number
of child nodes at time 𝑡+1 created from any given parent node at time
t is 𝑟𝑡. Leaf-nodes are associated with the final period 𝑇 , and have no
descendants. The number of scenarios we consider is therefore ∏𝑇

𝑡=0 𝑟𝑡.
The simplest way to construct a scenario tree for the oil stockpiling

problem is to have each time period represent a single year and use
the same branching factor for every time period. However, because
the tree grows exponentially over time, the computational constraints
associated with this approach are very large: for instance in a tree
with a branching factor of 2 over 30 time periods, the total number
of scenarios is 230 or over a billion. This computational burden is too
high to be handled with the available computers. Another important
reason not to use a brute-force approach (i.e., where the tree grows
exponentially over time) is its inefficiency, as only a few states of the
world are considered during the initial periods, whereas the number of
states considered in the final periods is much greater than required.

For these two reasons, we build a scenario tree in which the
branching factor 𝑟𝑡 is set higher during the initial periods, so that if
𝑡′ < 𝑡∗, 𝑟𝑡′ ≥ 𝑟𝑡∗ . There are three main reasons for this approach.
First, the tree grows quickly during the first few periods, which allows
a better representation of the stochastic behavior of the variables we
are considering, as the impact of the scenarios in the periods closer to
the present is more important. Second, the tree grows at a slower rate
in the last few periods, as these have a lower impact on the current
policy. Even with this approach the number of nodes in the latter
stages is very high. Third, we define the time periods 𝑡 so that they
represent shorter time intervals during the initial periods and longer
time intervals during the later periods; thus the time interval between
periods 𝑡 and 𝑡 + 1 will differ depending on the value of 𝑡.

In order to test this approach and build a very large tree, we have
tested different branching factors and time horizons. Here we report
the results for the approach that gave the highest level of analytical
detail, can be computationally solved in reasonable time and yields
robust results: our testing showed that an increase in the branching
factor and size of the tree would not affect the results significantly.

Fig. 1 illustrates a simplified scenario tree with 2 time periods, 9
nodes and 6 possible scenarios that the decision maker at 𝑛 = 0 needs
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Fig. 1. Example of a scenario tree with 𝑇 = 2, 𝑁 = 9, 𝑟1 = 3, 𝑟2 = 2.

to take into account. In our analysis, we considered a total of 4096
scenarios, with the branching factor set at 8 in the first period, 4 in the
second period, and 2 in the remaining 7 periods. Note that because we
consider a very large number of randomly generated scenarios (over
4000), where the scenarios are drawn based on the statistical behavior
of oil prices, oil imports and GDP, the sample size is large enough to be
representative of the stochastic environment faced by the policymaker.

Each node in the scenario tree is a state of the world and represents
a different realization of the oil price, oil imports, oil production, and
GDP. These values are generated stochastically based on the values
at the parent nodes and randomly generated exogenous shocks, using
the statistical model described in Section 2.1. For instance, suppose at
node 𝑛𝑝 in time period 𝑡, the oil price is 𝑝𝑜(𝑛𝑝). Since the branching
factor is 𝑟𝑡, any one of 𝑟𝑡 nodes can be reached from node 𝑛𝑝 in period
𝑡 + 1. For any such ‘‘child" node 𝑛𝑐 , we randomly generate (using the
distribution given in Eq. (1)) a normal disturbance 𝑢𝑜(𝑛𝑐 ) and calculate
the new oil price as 𝑝0(𝑛𝑐 ) = 𝑝𝑜(𝑛𝑝) + 𝑢𝑝(𝑛𝑐 ). Similarly, we use Eqs. (2)–
(8) to randomly generate regional oil production, regional GDP, net oil
imports, world GDP, and world oil consumption in the new child node.
We recursively perform this procedure for every node of the tree, thus
ending up with 𝑁 distinct scenarios for oil prices, GDP, net oil imports,
and oil production. (Each scenario in this context consists of a 25-year
path for each of the random variables.)

It is important to note that the baseline scenarios are based on the
statistical models described in Section 2.1. Since these statistical models
are necessarily estimated using historical data, they cannot account for
potential structural breaks that may occur in the future. For example,
if ASEAN economies were to implement stringent climate mitigation
policies in the future, this may lower their reliance on petroleum
in the future, a possibility which we cannot directly capture in our
baseline scenarios. Instead, we carry out sensitivity analysis to check
how the optimal behavior of the SPR manager would change if ASEAN
economies were to lower their dependence on oil.

The scenario tree is a representation of the stochastic environ-
ment within which the policymaker operates. We now turn to the
endogenous model describing how the policymaker can optimally make
stockpile decisions when faced with this uncertainty .

2.3. Optimizing the petroleum reserve

The manager of the petroleum reserve aims to minimize the sum of
the economic cost (measured as the loss of GDP) due to oil price shocks
and the cost of holding the reserve, as described by Eqs. (9)–(16), which
are defined over the 𝑁 nodes of the scenario tree. Table 2 summarizes
the key variables of the model.

Table 2
Model Variable Definitions.

Variable Explanation

𝑛 denotes any node of the tree
𝑛𝑐 child node
𝑛𝑝 parent node
𝑁 number of nodes
𝑥(𝑛) change in inventory in node 𝑛

𝑥+(𝑛) quantity of oil added to stockpile
𝑥−(𝑛) quantity of oil sold from stockpile
𝑦(𝑛) inventory in node 𝑛 at end of period
𝑘(𝑛) stockpile capacity at node 𝑛

𝑀(𝑛) minimum target stock level for node 𝑛

𝑝0(𝑛) oil price before stockpile intervention
𝑝′(𝑛) oil price after intervention
𝛥𝑝(𝑛) change in oil price due to intervention
𝐺(𝑛) GDP at node 𝑛

𝐶(𝑛) cost incurred in node 𝑛

𝛱(𝑛) cost-to-go in node 𝑛

For any child node 𝑛𝑐 , let 𝑛𝑝 denote the corresponding parent node.
Let 𝑦(𝑛) and 𝑥(𝑛) stand for the quantity of oil held in the reserve at
node 𝑛 (in barrels) and the quantity bought for (> 0) or sold from
(< 0) the reserve at node 𝑛 (in barrels), respectively. When we need to
distinguish between stockpile purchases and sales, we use the notation
𝑥+(𝑛) to represent the quantity of oil added into the stockpile and 𝑥−(𝑛)
to represent the quantity of oil sold from the stockpile. 𝑀(𝑛) represents
the minimum target level of stocks for the leaf nodes, i.e., nodes
corresponding to the final period of the planning horizon. Let 𝑘(𝑛)
represent the capacity of the oil stockpile at node 𝑛 (in barrels). The
oil price before the stockpile intervention (i.e., the randomly generated
oil price) is 𝑝0(𝑛) while the oil price after the intervention is 𝑝′(𝑛), with
𝛥𝑝(𝑛) denoting the change in oil price due to the intervention.

We start by describing the equation used to compute the level
of inventory in the reserve at any given node, Eq. (9). The level of
inventory 𝑦(𝑛𝑐 ) at the end of the period in node 𝑛𝑐 equals the final level
of inventory in the respective parent node 𝑦(𝑛𝑝) plus the change in the
level of inventory, 𝑥(𝑛𝑐 ).

𝑦(𝑛𝑐 ) = 𝑦(𝑛𝑝) + 𝑥(𝑛𝑐 ), ∀𝑛𝑐 (9)

We model the building of new stockpile capacity as an endogenous
variable, as shown in Eq. (10). This reflects the fact that we need
to consider the capital costs of building storage capacity. A similar
argument for including the cost of building new capacity is made
by Zhu, Liu, and Wang (2012) in the context of China’s SPR: the
stockpile capacity at node 𝑛𝑐 equals the maximum stockpile capacity
in the parent node 𝑛𝑝 and the level of inventory in the current node 𝑛𝑐 .

𝑘(𝑛𝑐 ) = 𝑚𝑎𝑥
[

𝑘(𝑛𝑝), 𝑦(𝑛𝑐 )
]

, ∀𝑛𝑐 (10)

Eq. (11) captures how the oil price changes due to the stockpil-
ing intervention. The oil price before intervention, 𝑝0(𝑛), is randomly
simulated for every node using an econometric model for historical oil
prices. The change in the oil price due to stockpiling, 𝛥𝑝(𝑛), is a function
of the oil demand function, which we assume is characterized by a
constant elasticity of demand, 𝜀 (< 0). The impact of stock changes
on the oil price therefore depends on the existing level of prices 𝑝0(𝑛),
world oil consumption 𝐷𝑤(𝑛), and the elasticity 𝜀. Note that as 𝜀 (< 0),
it follows from Eq. (11) that an increase (decrease) in the level of the
reserve leads to an increase (decrease) in the petroleum price.

𝑝′(𝑛) = 𝑝0(𝑛) + 𝛥𝑝(𝑛)

𝑝′(𝑛) = 𝑝0(𝑛) −
𝑥(𝑛)𝑝0(𝑛)
𝜀𝐷𝑤(𝑛)

, ∀𝑛 (11)
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The cost function (12) encapsulates two main components. The first
term represents the loss in GDP due to the change in the petroleum
price, which is a cost incurred by the economy as a whole. In (12)𝛼 (<
0) represents the oil-price elasticity of the GDP. 𝛥𝑝(𝑛)

𝑝(𝑛) is the percentage
change in the oil price as a function of shocks in the petroleum price
(captured by 𝑝0(𝑛)) and considering the change in the level of the
reserve (11). 𝐺(𝑛) represents the level of GDP at node 𝑛 in the scenario
tree and is randomly simulated using econometric models developed
from historical data (as described in Section 2.1). When the price
increases due to a disruption in the petroleum market that negatively
affects the GDP, as 𝛼 (< 0) . Therefore, a supply disruption increases
the price and the cost function.

𝐶(𝑛) = −𝛼
𝛥𝑝(𝑛)
𝑝(𝑛)

𝐺(𝑛) + 𝑝′(𝑛)𝑥(𝑛) + 𝛽
(

𝑘(𝑛) − 𝑘(𝑛𝑝)
)

+ ℎ𝑦(𝑛) + 𝑢𝑥+(𝑛) + 𝑑𝑥−(𝑛), ∀𝑛
(12)

An important research question is the relationship between
petroleum price changes and GDP. Hamilton’s seminal work (Hamilton,
1983) focuses on price increases because this was the major issue
during the period under analysis. Subsequently, Mork (1989), Mory
(1993) and Hamilton (1983, 2003) identified an asymmetric effect
in the impact of petroleum price increases (decreases) on production.
More recently, Herrera et al. (2011, p. 472) concluded that ‘‘at the ag-
gregate level, there is no evidence against the hypothesis of symmetric
responses to oil price innovations of typical magnitude, consistent with
results of Kilian and Vigfusson [Quantitative Economics, 2(3), 419–453
(2011)] for U.S. real GDP.’’ For these reasons, in Eq. (12) we consider
that the impact of petroleum price changes on GDP is symmetrical.

The remaining terms in (12) describe the various costs incurred
directly by the stockpile manager. The revenue (cost) associated with
selling (buying) petroleum is represented by the second term 𝛥𝑝(𝑛)𝑥(𝑛).
The cost of building new capacity is given by 𝛽(𝑘(𝑛)−−𝑘(𝑛𝑝)), where 𝛽 is
the cost (in $ per barrel of capacity) of building one additional unit of
capacity and (𝑘(𝑛)−−𝑘(𝑛𝑝)) is the capacity added in node 𝑛. The holding
costs are represented by ℎ𝑦(𝑛), in which h stands for the holding cost per
barrel. The costs incurred in filling/refilling the stockpile and drawing
down from the stockpile are represented, respectively, by 𝑢𝑥+(𝑛) and
𝑑𝑥−(𝑛), where 𝑢 is the cost incurred in adding one barrel of oil to the
stockpile and 𝑑 is the cost incurred in withdrawing one barrel of oil
from the stockpile.

The decision maker minimizes the present value of the costs in-
curred during the planning horizon, which is represented in the cost-to-
go function (13), where 𝛱(𝑛𝑝) stands for the cost-to-go in any node 𝑛𝑝
that is not a leaf and which is the parent of nodes 𝑛𝑐 ; 𝛿𝑛𝑝 represents the
discount factor and is linked to the discount rate 𝜏𝑛𝑝 by the following
equation: 𝛿𝑛𝑝 = 1

1+𝜏𝑛𝑝
; and 𝜋(𝑛𝑐 ) is the probability of reaching scenario

𝑛𝑐 , given that we are departing from node 𝑛𝑝. This cost-to-go function
ensures that the decisions in the current period take into account the
long-term effects: the smaller the discount factor (equivalently, the
larger the discount rate), the smaller the weight placed on the future,
and the more short-term focused the decision making will be (with,
possibly, lower investment in stocks). On the other hand, the larger
the discount factor, the more long-term the government perspective
will be (with, possibly, increased inventory size). Typically the discount
factors, per year, are above 0.9 and less than 1.

𝛱(𝑛𝑝) = 𝐶(𝑛𝑝) + 𝛿𝑛𝑝
∑

𝑛𝑐

𝛱(𝑛𝑐 )𝜋(𝑛𝑐 ),∀𝑛 not a leaf (13)

Eq. (14) constrains the inventory to be non-negative. We have addi-
tionally considered various rules specifying the minimum oil reserves
as a function of the net amount of oil (including crude oil, natural gas
liquids and refined products) imported per day. In Eq. (15), 𝑀(𝑛) stands
for the minimum reserve imposed by the rule requiring stocks to equal
a given number of days of net imports. Finally, the objective function
(16) is the present value of all the costs incurred from the inception
of the petroleum reserve at node 𝑛0 to the leaf nodes in the final time

Table 3
Parameter Assumptions for the Base Case with a Single Regional Reserve.

Parameter Value Unit Description

𝛿𝑛𝑐 0.99 – Discount factor
𝜀 −0.067 – Price elasticity of oil demand
𝛽 5 US$/barrel-capacity Cost of building capacity
ℎ 0.227 US$/barrel Annual holding costs per barrel
𝑢 0.08 US$/barrel Cost of adding oil
𝑑 0.1 US$/barrel Cost of withdrawing oil
𝛼 −0.06 – GDP-oil price elasticity

period T. We minimize the cost-to-go function at the starting node 𝑛0
by choosing the quantities of petroleum to buy for and sell from the
reserve in each node of the tree.

𝑦(𝑛) ≥ 0,∀𝑛 (14)

𝑦(𝑛) ≥ 𝑀(𝑛),∀ leaf 𝑛 (15)

𝑚𝑖𝑛𝑥(𝑛1),….,𝑥(𝑛𝑁 )𝛱(𝑛0) (16)

2.4. Case study

We use a scenario tree with a planning horizon of 𝑇 = 25 years,
divided into 9 distinct time periods, with the first 5 time periods
each representing 1-year intervals and the final 4 time periods each
representing 5-year periods. The branching factor 𝑟𝑡 is set at 8 for the
1st period, at 4 for the 2nd period, and at 2 for the remaining 7 periods.
Thus, we consider a total of 𝑁 = 4096 different scenarios.

We use the dynamic programming model described by Eqs. (9)–(16)
to compute optimal stockpiling policies. In analyzing the cooperative
regime, we compute stockpiling policies for the ASEAN region acting
as a whole. In analyzing the non-cooperative regime, we separately
compute stockpiling policies for each country, independently.

The parameters used for the ASEAN are summarized in Table 3. In
the base case, we assume a discount factor of 0.99 per year (roughly
equivalent to a discount rate of 1%). The price elasticity of oil demand
is the long-run price elasticity over the 1990 to 2009 period reported
in a study by the IMF (2011) and consistent with the results reported
by Hamilton (2009) at about −0.06. The GDP-oil price elasticity, or 𝛼,
is based on our analysis of ASEAN’s net oil imports bill in relation to
its GDP. This impact is asymmetric and is consistent with the result
−0.07 reported in Hamilton (2003)). Finally, the unit cost of building
new capacity 𝛽, the unit holding cost ℎ, the marginal cost of filling the
stockpile 𝑢, and the marginal cost of withdrawing oil 𝑑 are based on
Leiby and Bowman (2000), under the assumption that oil will be stored
in salt caverns. As pointed out by Leiby and Bowman (2000), Asia
Pacific Energy Research Centre (2002) and Leesombatpiboon (2010),
salt caverns for oil storage are a feasible option in Thailand.

The parameters for the individual countries are very similar to the
ASEAN parameters, except for the GDP-oil price elasticity, 𝛼, which
varies substantially across countries, reflecting their varying levels of
vulnerability to oil price shocks. Table 4 shows the GDP-oil price
elasticity assumptions for the individual ASEAN countries: these es-
timates are again based on our analysis of each country’s net oil
imports and GDP, and are broadly consistent with empirical estimates
of the macroeconomic effect of oil price shocks in ASEAN countries
(e.g., Abeysinghe, 2001; Cunado & de Gracia, 2005; Chang, Jha, Fer-
nandez, & Jam’an, 2011). As the table shows, 8 of the 10 ASEAN
countries are net oil importers whose economies are negatively affected
by oil price shocks, and it is these 8 countries that could potentially
build their own individual petroleum reserves.

3. Computing a petroleum stockpiling policy for the ASEAN

In this section we examine the key findings from the petroleum
stockpiling model for ASEAN comparing the cooperative and non-
cooperative regimes under different planning horizons.
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Table 4
GDP-oil price elasticity estimates for ASEAN countries.

Country Value Net oil importer?

Brunei 0.702% No
Cambodia −0.103% Yes
Indonesia −0.044% Yes
Laos −0.029% Yes
Malaysia 0.026% No
Myanmar −0.005% Yes
Philippines −0.069% Yes
Singapore −0.154% Yes
Thailand −0.107% Yes
Vietnam −0.028% Yes

Fig. 2. Average stockpile size per year as a function of the planning horizon, assuming
a discount factor of 0.99/year.

3.1. Regional petroleum reserve under various planning horizons

We first consider the impact of the planning horizon on expected
benefit from stockpiling. We initially assume there is no minimum tar-
get reserve for the final period of the planning horizon, i.e., 𝑀(𝑛) = 0. In
Fig. 2 we analyze the average stockpile size across all the scenarios: the
average stockpile size increases with the planning horizon. The largest
average stockpile is about 1280 million barrels (MMB) in the 25-year
planning horizon, registered in year 15. There is a pattern of building
up the reserve in the early stages and then using it in the final years.
Therefore, from Fig. 2 it is evident that without a constraint specifying
that the reserve needs to be maintained in the long-term, the stockpile
is always emptied in the final period. The growth of the maximum
reserve size as a function of the planning horizon is due to increases in
population and economic growth, and a decrease in production, with
the region becoming increasingly dependent on imported petroleum.

Moreover, this shows that with a finite horizon, it is clearly sub-
optimal to have no restriction on the leaf nodes, i.e., we need to
incorporate a rule in the model that reflects the long-term value of
the oil that remains in reserve in the final leaf nodes of the decision
tree. This provides a justification for working with different rules for
deciding how much oil to keep in the final stage of the planning
horizon.

3.2. A long-term target stockpile size for the regional petroleum reserve

We now consider various rules for the choice of stockpile size in
the final period (i.e., the 25th year), discussing a criterion that could
be used to guide the choice of the best rule. Such a rule would stipulate
the minimum quantity of reserves 𝑀(𝑛), as a function of net oil imports,
that should be kept in the final stage (refer to Eq. (15)). For example,
the IEA uses the 90-day rule, which stipulates that a member state
should keep a minimum reserve sufficient to cover 90 days of net
imports.

As can be seen in Figs. 3 and 4, the rules lead to an increase in the
total reserves kept, not only in the final period but also throughout the
planning horizon. The more stringent the rule (i.e., the larger the quan-
tities of petroleum required to be kept in reserve), the greater the level

Fig. 3. Average stockpile per year, using a discount factor of 0.99, as a function of
the final stage rule.

Fig. 4. Average stockpile per year, using a discount factor of 0.95, as a function of
the final stage rule.

of stockpiling in the earlier periods. For example, with a discount factor
of 0.99, the maximum average stockpile per year using the 120-day
rule is about 1860 MMB, which represents an approximate increase of
44% in comparison to the maximum average reserve kept when no rule
exists. The explanation for this behavior is that the government buys
earlier, thus preempting possible price increases during the planning
horizon and avoiding last minute stockpiling in the final years to meet
the rule requirement (as this would increase prices). A similar pattern
holds with different discount factors, although the average size of the
stockpile decreases if the discount factor is lower (see Fig. 4).

The total expected cost of stockpiling increases as the rule becomes
more stringent. This is not only due to the cost of accumulating oil in
order to build a large stockpile, but also because the constraint on the
stockpile in the last period reduces the ability of the planner to mitigate
the effects of oil market disruptions. Thus, the planner faces a trade-off
between the cost of stockpiling and the size of the stockpile in the last
period. If the target rule is too stringent, the stockpiling strategies may
be entirely dependent on the rule, rather than the optimality conditions.
This can lead to the final stockpile size being larger than the stockpile
size at any other time purely due to the final period constraint, as
illustrated in Fig. 4 with the 120-days rule.

This point is reinforced by Table 5, which shows how the expected
cost from stockpiling changes with the stringency of the rule and with
the discount factor. When the rule is not very stringent, the cost of
building the reserve is lower than the GDP benefits from using the
SPR to reduce the impacts of the volatility in oil prices; thus, the
expected cost of managing the SPR is negative. When the rule becomes
sufficiently stringent, however the cost of building the reserve is higher
than the GDP benefits accrued during the current planning horizon, and
so the expected cost is positive. The SPR manager thus has to balance
the welfare of the future generation (which benefits from a larger
stockpile size in the final period) with that of the current generation
(which benefits from a lower expected cost).

Rules that result in very limited reserves for future generations are
unlikely to be socially optimal. Similarly, highly stringent rules that
impose a significant cost on the current generation are not optimal.
The question then becomes identifying an adequate rule that is not
too stringent but at the same time ensures that in the final stage,
an adequate level of reserves is saved for the future generations. We
therefore propose the inter-generations rule.
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Table 5
Total expected cost (in US$ million) of managing the petroleum reserve as a function
of the final stage rule and of the discount factor.

Discount Factor

0.95 0.99

Final Stage Rule

0 days −25,414 −124,012
30 days −10,581 −85,840
60 days 3,777 −54,585
90 days 19,805 −22,475
120 days 36,063 11,911

Table 6
Rule suggested by inter-generations argument for the 25th year (with different discount
factors).

Discount Factor Rule Avg. final stock (MMB)

0.9 20-days rule 142
0.95 53-days rule 377
0.99 112-days rule 798

The inter-generations rule: the current generation should not benefit
on average from stockpiling and the present value of its investments in
stocks should at least equal the discounted value of its GDP benefits.
Ideally, the total expected cost from stockpiling should equal zero.

The inter-generations rule ensures that a generation builds a level of
stocks such that the potential benefit is equal to the potential cost and
leaving the accumulated stock as a safeguard to the next generation.
The unconstrained finite horizon optimization will always tend to favor
the current generation, at the expense of future generations; the inter-
generations rule addresses this tendency and thus serves as insurance
for inter-generational equity. Ensuring inter-generational equity in this
fashion is necessary because oil, and therefore oil stocks, is an ex-
haustible resource: at some point in the future it may not be possible
to build up an oil stockpile at a reasonable cost and thus the current
build-up of oil stocks must take into account the welfare of all future
generations.

While we are not aware of any similar criterion for stockpile
buildup, the inter-generations rule we propose has similarities to
Hartwick’s well-known rule for sustainability in the context of resource
depletion. Hartwick’s rule is also motivated by inter-generational eq-
uity concerns, and prescribes reinvesting rents from the extraction of
exhaustible resources in capital stocks, thus preventing the current
generation from ‘‘shortchanging’’ future generations (Hartwick, 1977).

Table 6 illustrates that for the ASEAN, the rules meeting the inter-
generations argument are 20 days (discount factor 0.9), 53 days (dis-
count factor 0.95), and 112 days (discount factor 0.99). These results
suggest that the IEA’s suggested 90-days rule implies a discount factor
between 0.95 and 0.99, and thus seems an adequate rule for ensuring
inter-generational equity.

Fig. 5 shows that the maximum average stockpile size reached
during the planning horizon is about 280 MMB, 670 MMB and 1790
MMB when the discount factor is 0.9, 0.95 and 0.99, respectively
(in each case the maximum is reached in year 15). Both the final
stockpile size and the maximum average stockpile size thus increase
monotonically with the discount factor. With a larger discount factor
the stockpile size increases as the planner places less weight on the
current cost of building up the reserve and more weight on the future
GDP impact of oil price shocks.

It is important to note that in our model there is a single regional
petroleum reserve built by the ASEAN countries, and we do not explic-
itly account for petroleum reserves built by non-ASEAN countries (such
as the US or China). This is similar to most of the prior literature on
stockpiling. The interaction between SPRs built by different countries
has been studied by Fan and Zhang (2010) who use a game theoretic
model to study the SPR choices of China and India. Nonetheless, im-
plicitly, Eq. (11) considers how the interventions from other countries,
interact with ASEAN countries to condition the effectiveness of their
policies.

Fig. 5. Maximum average stockpile size per year as a function of discounting for a
25-year planning horizon, with the inter-generations rule in place for the final period.

3.3. Comparing the cooperative and non-cooperative regimes

The analysis so far has been confined to the cooperative regime,
where the ASEAN countries jointly build a regional petroleum reserve.
This has allowed us to focus on identifying the petroleum reserve
management strategies that optimize the overall welfare of the region.
However, given that any individual ASEAN country could choose to
build its own stockpile rather than participate in the regional scheme,
it is also important to understand how stockpiling strategies might
evolve under a non-cooperative regime. In this section we analyze the
case where each country separately builds its own petroleum reserves,
assuming a discount rate of 0.99. For ease of comparison with the
cooperative case, we assume that each country adopts a rule specifying
that the reserves at the end of the planning horizon should equal at
least 112 days of net oil imports—in practice, of course, it may well be
that different countries adopt different rules for final period reserves.

Figs. 6 and 7 illustrate the build-up and draw-down strategies for
the petroleum reserves built by each of the 8 oil-importing countries in
ASEAN (Brunei and Malaysia, being net oil exporters for the foreseeable
future, do not build any petroleum reserves). The pattern of building
up the reserves initially and drawing them down to the minimum level
in the later stages is similar to that observed for the regional petroleum
reserve. We observe that each country builds a petroleum reserve that
is quite large in absolute terms: for instance the smallest reserve, built
by Laos, still reaches a maximum average size of 580 MMB in year 15.
Countries with larger economies and greater vulnerability to oil price
shocks (i.e., larger absolute 𝛼) build larger reserves; this is because the
effect of oil price shocks on GDP is the highest for these countries.
In addition, countries experiencing rapid economic growth, and which
are therefore likely to become more dependent on oil imports in the
future (such as Vietnam and Indonesia), build larger stockpiles than
might be expected from just inspecting their current oil trade balances.
This highlights an interesting conclusion from our model: because it
takes several years of stockpile build-up before the SPR can be used
to mitigate oil market shocks, the expected future level of oil imports
matters more for a country’s SPR strategy than its current dependence
on oil imports.

The above results indicate that left to their own devices, each
country could end up building very large stockpile reserves. This is
because in the absence of any sharing of reserves or any guarantee that
its neighbors will engage in reserve-building, any individual ASEAN
country has to rely solely on its own reserves to mitigate the negative
macroeconomic impacts of oil price shocks. The lack of coordination
in the non-cooperative case leads to duplication of reserve-building
and an overall level of reserves within the ASEAN that is much higher
than optimally required, as Fig. 8 below illustrates. Thus cooperating
to build a joint regional petroleum reserve has important benefits: by
coordinating the build-up of reserves and by sharing reserves during oil
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Fig. 6. Average stockpile size per year for Indonesia, Philippines, Singapore, Thailand
and Vietnam, assuming a discount factor of 0.99/year and a 112-days rule on the leaf
nodes.

Fig. 7. Average stockpile size per year for Cambodia, Laos and Myanmar, assuming a
discount factor of 0.99/year and a 112-days rule on the leaf nodes.

Fig. 8. Petroleum reserves held within the ASEAN region, with and without
cooperation.

market disruptions, ASEAN countries can avoid wasteful duplication of
reserves.

It should be noted that the behavioral assumption underlying this
analysis is that each ASEAN country manages its reserves without
accounting for the reserve-building patterns of its neighbors. This ef-
fectively models a situation where policymakers in any individual
country adopt a very risk-averse view of the strategic environment:
in the absence of cooperation, there is no guarantee that any other
country will build reserves or release them at the appropriate time,
and therefore the country must build reserves as if no other country
in the region is building reserves. In such a setting, the benefit of
cooperation is sharing reserves and thereby avoiding too much stockpil-
ing. Alternatively, it is also possible that countries are less risk-averse
and assume their neighbors are also building reserves, in which case
a game-theoretic model of reserve-building will be more appropriate.
In such a strategic environment, free-riding considerations will become
important, and it is quite possible that there will be too little stockpiling
in the absence of cooperation. The question of which strategic setting
could emerge in practice is an empirical question that will depend
greatly on policymaker preferences and priorities. However, given that
a strategic petroleum reserve relates to critical national issues of energy
security and foreign import dependence, the risk-averse setting (which
we have explicitly analyzed) is not implausible. In either setting, a
cooperative approach to stockpiling yields evident benefits, which is
why our focus in this paper is on the impact of a regional ASEAN
reserve where full cooperation is assumed to exist.

3.4. Responses to oil price shocks

Next we explain how the management of the reserve may respond to
extreme shocks in the oil price. The analysis focuses on the cooperative
case where the ASEAN countries build a regional petroleum reserve; the
results obtained for individual country petroleum reserves (under the
‘‘non-cooperative regime’’) are similar, and omitted for brevity. Out of
all the scenarios considered, we identify those in which there is an oil
price disruption in order to analyze the optimal response. We consider
price shocks of $100 or more over a 5-year period (this could happen,
for instance, if the price rose by $20 every year for 5 years). Such shocks
occur in approximately 5% of all the scenarios.

We analyze the policy response in terms of the sale of stocks follow-
ing a shock, considering both different discount factors and different
rules. With a discount factor of 0.95, we consider both the case with
no rule on the leaf nodes and the case with the 53-days rule suggested
by the inter-generations argument ( Table 7). With a discount factor of
0.99, we similarly consider both the case with no rule on the leaf nodes
and the case with the 112-days rule suggested by the inter-generations
argument ( Table 8).

In general, the response to an oil price shock involves an immediate
large stockpile sale, followed by further sales in the following periods.
It is not optimal to empty the entire stockpile directly after an oil price
shock, since the possibility of another disruption in the next period
cannot be ruled out (this is because oil prices follow a random walk and
do not exhibit a mean-reverting tendency). Comparing Tables 7 and 8,
it is apparent that a higher discount factor results both in larger stock
sales (because the accumulated stock is larger) and a smoother pattern
of discharge (due to the greater weight placed on future welfare). The
magnitude of the response is greater if the shock occurs in the later
periods (presumably because of the larger size of the accumulated
stockpile in later periods).

The presence of a rule does not have a major effect on the policy
response if the shock occurs in years 10 or 15, though a shock in
period 20 leads to a somewhat more muted response if the rule is
more stringent (due to the need to balance responding to the shock
versus maintaining enough stocks in the final period). An important
implication is that the inter-generations rule does not adversely affect
the ability of the policymaker to respond to severe oil shocks.

3.5. Sensitivity analysis

Next, we conduct sensitivity analysis on some of the major pa-
rameters in the stockpiling model. Table 9 summarizes the base case
assumptions for key parameters, as well as the alternative assumptions
we test in this section. In all the experiments, we assume the discount
factor is 0.99 and impose a 112-days rule on the leaf nodes; we note,
however, that the results of the sensitivity analysis do not fundamen-
tally change with different discount factors and/or different rules on
the leaf nodes.

We first look at the impact of changing the GDP-oil price elasticity,
𝛼 (Figure 3.8). Our base case assumption for 𝛼 is based on our analysis
of ASEAN’s net oil imports bill in relation to its GDP. However, 𝛼 may
well be higher in absolute terms if the full macroeconomic costs of oil
price shocks exceed the direct impact on the oil imports bill (Toman,
1993). Alternatively, it could also be lower if, for instance, ASEAN
economies reduce their oil import dependence in the future. This would
be the case, for instance, if ASEAN economies were to decarbonize their
economy in the future and reduce their reliance on oil and other fossil
fuels. Fig. 9 illustrates that the average stockpile size increases with
the GDP-oil price elasticity. Intuitively, the greater the GDP-oil price
elasticity, the larger the potential loss of GDP from oil price shocks and,
therefore, the greater the incentive to stockpile oil.

We next analyze sensitivity to the own-price elasticity of oil de-
mand, 𝜀. As shown in Fig. 10, the more elastic the oil market, the
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Table 7
Average stockpile sale after an oil price increase of $100 or more over 5-year period (discount factor of 0.95).

Discount factor = 0.95

No rule on leaf nodes 53-days rule on leaf nodes

Shock occurs in: Year 10 Year 15 Year 20 Year 10 Year 15 Year 20

Stock sale in

Year 10 166 169
Year 15 26 390 20 378
Year 20 17 253 552 −38 211 518
Year 25 16 187 463 −279 −130 190

Table 8
Average stockpile sale after an oil price increase of $100 or more over 5-year period (discount factor of 0.99).

Discount factor = 0.99

No rule on leaf nodes 112-days rule on leaf nodes

Shock occurs in: Year 10 Year 15 Year 20 Year 10 Year 15 Year 20

Stock sale in

Year 10 275 208
Year 15 266 642 194 558
Year 20 302 635 926 229 549 814
Year 25 389 612 939 260 470 824

Table 9
Parameter assumptions for sensitivity analysis.
Parameter Base Case Alternative 1 Alternative 2

Price elasticity of demand, 𝜀 −0.067 −0.09 −0.05
GDP-oil price elasticity, 𝛼 −0.06 −0.09 −0.03

Fig. 9. Average stockpile size as a function of the GDP-oil price elasticity.

Fig. 10. Average stockpile size as a function of the price elasticity of oil demand.

greater the maximum average stockpile size reached during the plan-
ning horizon. This is because in a more elastic oil market, stockpile
interventions of a given magnitude have a smaller impact on the oil
price, and therefore a larger stockpile is needed to guard the economy
against oil price shocks. These results are consistent with previous
analyses (e.g., Teisberg, 1981). However, it should be noted that this
presupposes a constant GDP-oil price elasticity: it may well be that in a
more elastic and flexible oil market, oil price shocks will have a smaller
effect on GDP, in which case the stockpile required will be smaller.

Finally, we have also carried out sensitivity analysis with respect
to the cost of building new capacity, recognizing that not all ASEAN

countries may have the ability to store oil in salt caverns. Doubling
the cost of building storage capacity from US$5/barrel of capacity to
US$10/barrel would cause the maximum average stockpile per year
reached to decrease by only 3.3%. Reductions in the cost of capacity
similarly have little impact on our findings: halving the cost of build-
ing capacity to US$2.5/barrel would cause the peak stockpile size to
increase by 4.3%.

4. Conclusion and policy implications

In this paper, we have used time series analysis, ARIMA and Coin-
tegration to generate a very wide range of future scenarios for oil
prices, oil imports, oil production, and population and GDP growth
in the ASEAN countries, and built a detailed scenario tree. We then
developed a finite horizon stochastic program in which the policymaker
chooses the stockpile build-up and draw-down strategies in order to
minimize the negative impacts of oil price shocks on GDP and the
cost of building the reserve. A key feature of our model is that it
allows for inter-generational equity considerations when choosing the
optimal strategies for reserve management, making it different from
past analyses of SPR policies.

As a major take-way for policy makers, our experiments suggest that
ASEAN countries would significantly benefit from developing a regional
petroleum reserve. In the absence of a rule for the minimum reserves
that need to be held in the final period, SPR strategies will generally
be sub-optimal. We compared different decisions rules setting targets
for the reserve to be held in the final period, showing that the more
stringent the rule, the greater the expected cost of stockpiling to the
current generation. We proposed the inter-generations rule for selecting
the final period reserve. The rule ensures inter-generational equity by
balancing the welfare of the current generation (by mitigating GDP
losses from oil disruptions) with the welfare of future generations (by
saving a sufficient amount of oil reserves for future usage). Based on
this criterion, the ASEAN region’s target stockpile, at the end of the 25-
year planning horizon, is 112 days of net oil imports (with an average
size of about 800 MMB) if the social discount factor is 0.99, and 53
days of net oil imports (with an average size of about 380 MMB) if the
social discount factor is 0.95.

Furthermore, from a policy perspective, we analyzed the savings
from a risk-pooling strategy for managing the petroleum inventory. We
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compared the regional reserve with a non-cooperative regime where
each ASEAN country individually builds its own reserve. We found that
the lack of coordination leads to a regional stockpile size that is much
higher than necessary for optimizing social welfare in the region. From
a practitioner’s perspective, this suggests that a key benefit from risk-
pooling is avoiding the duplication of reserves that can be shared and
allocated optimally by a risk management system. The total savings
from the experiments show that the investment in storage capacity can
be reduced by over 60%.

As an insight into the energy policy in the region, we also studied
the optimal strategies for managing the regional petroleum reserve in
case of an oil price shock. We found that the response to an oil price
shock involves an immediate large sale of stocks, followed by further
sales in future periods. The imposition of the decision rule suggested
by the inter-generations argument showed only a limited effect on the
freedom of the stockpile manager in mitigating the impact of oil price
shocks. We also analyzed how sensitive our findings are to assumptions
on price elasticity of oil demand and the macroeconomic impact of oil
price increases. As expected, the more elastic the oil market and the
greater the macroeconomic impact of oil price increases, the greater
the suggested stockpile size.

From a methodological perspective, we have used ARIMA and coin-
tegration to study the co-evolution of petroleum prices, petroleum
production and imports in the ASEAN, real GDP per capita, and the
world oil consumption and GDP, which we then used to populate a
very large scenario tree spanning a planning horizon of up to 25 years.
We analyzed how the results are sensitive to the long-term target set
for the reserve and proposing the inter-generations rule as a way to build
sustainable strategic reserves.

In conclusion, from a theory perspective regarding the management
of strategic reserves, the new method we have proposed is able to
derive new insights on the interaction between the build-up and draw-
down policies and long-term objectives of the decision makers, and
the inter-generational transfer of welfare. For the decision makers at
the ASEAN, our detailed computational model is able to quantify the
investment effort required, the potential social benefits of having a
reserve, as well as the very sizable savings to be gained from risk-
pooling and cooperation among the ASEAN countries. Finally, our
analysis shows that the strategic reserve topic is still very relevant in the
South East Asia region, and will become even more so as the region is
expected to become increasingly dependent on imports, with oil likely
to become a very scarce resource in this part of the world.
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Table A.1
Regression Analysis. Dependent Variable: Net Imports.
Variable Coefficient

C 43.44∗∗∗

(7.96723)

GDP 0.0002∗∗∗

(4.71E−05)

Oil Production −0.7565∗∗

(0.35215)

AR(1) 0.762∗∗∗

(0.12183)

𝑅2 − 𝐴𝑑𝑗. 0.972
Akaike info criterion −5.59
Schwarz criterion −5.39
S.E. of regression 433462
N. Observations 46

Note: ∗ 𝑝 < 0.1; ∗∗ 𝑝 < 0.05; ∗∗∗ 𝑝 < 0.01. Standard errors are in
parentheses.

Table A.2
Regression Analysis. Dependent Variable: World Petroleum Consumption.
Variable Coefficient

C −126.9
(183.2)

GDP 0.00073∗∗∗

(1.28E−04)

AR(1) 0.6199∗∗∗

(0.120471)

𝑅2 − 𝐴𝑑𝑗. 0.496
Akaike info criterion 14.87
Schwarz criterion 14.99
S.E. of regression 398.1
N. Observations 45

Note: ∗ 𝑝 < 0.1; ∗∗ 𝑝 < 0.05; ∗∗∗ 𝑝 < 0.01. Standard errors are in
parentheses.

Appendix A. Regression tables

See Tables A.1 and A.2.

Appendix B. Econometric models of petroleum imports

The models of net oil imports per capita 𝑖𝑗𝑡, GDP 𝑔𝑗𝑡 and oil pro-
duction 𝑜𝑗𝑡 for each of the ASEAN countries (𝑗) are used together
with the population forecasts to simulate net oil imports, GDP and
oil production. In all the cases, the Augmented Dickey–Fuller tests
indicated that 𝑖𝑗𝑡, 𝑔𝑗𝑡 and 𝑜𝑗𝑡 (for oil producing countries) are I(1)
processes.

Brunei. 𝑜𝑗𝑡 = 𝑜𝑗,𝑡−1 + 𝑢𝑜𝑗𝑡, 𝑔𝑗𝑡 = 𝑔𝑗,𝑡−1 + 𝑢𝑔𝑗𝑡, 𝑖𝑗𝑡 = 0.00021
(2.38)

− 1.09
(−46.05)

𝑔𝑗𝑡 +

𝛽𝑜𝑗𝑜𝑗𝑡 + 𝑢𝑖𝑗𝑡, in which 𝑢𝑜𝑗𝑡 ∼ 𝑁(0, 5.882), 𝑢𝑔𝑗𝑡 ∼ 𝑁(0, 17282) and 𝑢𝑖𝑗𝑡 ∼

𝑁(0, 0.782).
Cambodia. 𝑔𝑗𝑡 = 17.08

(2.69)
+ 𝑔𝑗,𝑡−1 + 𝑢𝑔𝑗𝑡, 𝑢𝑔𝑗𝑡 = 0.62

(3.63)
𝑢𝑔𝑗𝑡−1 + 𝑣𝑔𝑗𝑡, 𝑖𝑗𝑡 =

0.00017
(3.2)

𝑔𝑗𝑡 + 𝑢𝑖𝑗𝑡, 𝑢
𝑖
𝑗𝑡 = 0.82

(5.98)
𝑢𝑖𝑗𝑡−1 + 𝑣𝑖𝑗𝑡, in which 𝑣𝑔𝑗𝑡 ∼ 𝑁(0, 11.812), and

𝑣𝑖𝑗𝑡 ∼ 𝑁(0, 0.00672).
Indonesia. 𝑜𝑗𝑡 = 𝑜𝑗,𝑡−1+𝑢𝑜𝑗𝑡, 𝑔𝑗𝑡 = 20.69

(3.5)
+𝑔𝑗,𝑡−1+𝑢𝑔𝑗𝑡, 𝑢

𝑔
𝑗𝑡 = 0.39

(2.87)
𝑢𝑔𝑗𝑡−1+𝑣𝑔𝑗𝑡,

𝑖𝑗𝑡 = 0.00024
(5.15)

𝑔𝑗𝑡 − 0.96
(−11.39)

𝑜𝑗𝑡 + 𝑢𝑖𝑗𝑡, 𝑢𝑖𝑗𝑡 = 0.75
(5.42)

𝑢𝑖𝑗𝑡−1 + 𝑣𝑖𝑗𝑡, where 𝑢𝑜𝑗𝑡 ∼

𝑁(0, 0.0352), 𝑣𝑔𝑗𝑡 ∼ 𝑁(0, 25.362) and 𝑣𝑖𝑗𝑡 ∼ 𝑁(0, 0.0162).
Laos. 𝑔𝑗𝑡 = 19.18

(2.27)
+ 𝑔𝑗,𝑡−1 + 𝑢𝑔𝑗𝑡, 𝑢

𝑔
𝑗𝑡 = 0.79

(5.39)
𝑢𝑔𝑗𝑡−1 + 𝑣𝑔𝑗𝑡, 𝑖𝑗𝑡 = 𝑖𝑗𝑡−1 + 𝑢𝑖𝑗𝑡,

where 𝑣𝑔𝑗𝑡 ∼ 𝑁(0, 8.052) and 𝑢𝑖𝑗𝑡 ∼ 𝑁(0, 0.00072).
Malaysia. 𝑜𝑗𝑡 = 𝑜𝑗,𝑡−1+𝑢𝑜𝑗𝑡, 𝑢

𝑜
𝑗𝑡 = 0.31

(1.97)
𝑢𝑜𝑗𝑡−1+𝑣𝑜𝑗𝑡, 𝑔𝑗𝑡 = 89.26

(5.65)
+𝑔𝑗,𝑡−1+𝑢𝑔𝑗𝑡,

𝑖𝑗𝑡 = 0.00015
(7.12)

𝑔𝑗𝑡 − 0.86
(−13.49)

𝑜𝑗𝑡 + 𝑢𝑖𝑗𝑡 𝑢
𝑖
𝑗𝑡 = 0.057

(4.67)
𝑢𝑖𝑗𝑡−1 + 𝑣𝑖𝑗𝑡, in which 𝑣𝑜𝑗𝑡 ∼

𝑁(0, 0.0952), 𝑢𝑔𝑗𝑡 ∼ 𝑁(0, 112.792) and 𝑣𝑖𝑗𝑡 ∼ 𝑁(0, 0.0572).
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Myanmar. 𝑜𝑗𝑡 = 𝑜𝑗,𝑡−1 + 𝑢𝑜𝑗𝑡, 𝑢
𝑜
𝑗𝑡 = 0.36

(2.37)
𝑢𝑜𝑗𝑡−1 + 𝑣𝑜𝑗𝑡, 𝑔𝑗𝑡 = 𝑔𝑗,𝑡−1 + 𝑢𝑔𝑗𝑡,

𝑢𝑔𝑗𝑡 = 0.98
(15.53)

𝑢𝑔𝑗𝑡−1 + 𝑣𝑔𝑗𝑡, 𝑖𝑗𝑡 = 0.015
(2.1)

− 0.32
(−1.97)

𝑜𝑗𝑡 + 𝑢𝑖𝑗𝑡, 𝑢
𝑖
𝑗𝑡 = 0.9

(12.1)
𝑢𝑖𝑗𝑡−1 + 𝑣𝑖𝑗𝑡, in

which 𝑣𝑜𝑗𝑡 ∼ 𝑁(0, 0.0032), 𝑣𝑔𝑗𝑡 ∼ 𝑁(0, 6.582) and 𝑣𝑖𝑗𝑡 ∼ 𝑁(0, 0.00352).
Philippines. 𝑜𝑗𝑡 = 𝑜𝑗,𝑡−1 + 𝑢𝑜𝑗𝑡, 𝑔𝑗𝑡 = 𝑔𝑗,𝑡−1 + 𝑢𝑔𝑗𝑡, 𝑢

𝑔
𝑗𝑡 = 0.49

(3.93)
𝑢𝑔𝑗𝑡−1 + 𝑣𝑔𝑗𝑡,

𝑖𝑗𝑡 = 0.000018
(2.36)

𝑔𝑗𝑡 + 𝑢𝑖𝑗𝑡, 𝑢
𝑖
𝑗𝑡 = 0.99

(18.49)
𝑢𝑖𝑗𝑡−1 + 𝑣𝑖𝑗𝑡, where 𝑢𝑜𝑗𝑡 ∼ 𝑁(0, 0.0052),

𝑣𝑔𝑗𝑡 ∼ 𝑁(0, 27.692) and 𝑣𝑖𝑗𝑡 ∼ 𝑁(0, 0.0162).
Singapore. 𝑔𝑗𝑡 = 613

(5.47)
+ 𝑔𝑗,𝑡−1 + 𝑢𝑔𝑗𝑡, 𝑖𝑗𝑡 = 2.6

(3.29)
+ 0.00032

(8.2)
𝑔𝑗𝑡 + 𝑢𝑖𝑗𝑡,

𝑢𝑖𝑗𝑡 = 0.59
(4.35)

𝑢𝑖𝑗𝑡−1 + 𝑣𝑖𝑗𝑡, where 𝑢𝑔𝑗𝑡 ∼ 𝑁(0, 8012) and 𝑣𝑖𝑗𝑡 ∼ 𝑁(0, 0.862).

Thailand. 𝑜𝑗𝑡 = 0.065
(4.98)

𝑜𝑗,𝑡−1 + 𝑢𝑜𝑗𝑡, 𝑔𝑗𝑡 = 47.21
(3.6)

+ 𝑔𝑗,𝑡−1 + 𝑢𝑔𝑗𝑡, 𝑢𝑔𝑗𝑡 =

0.32
(2.31)

𝑢𝑔𝑗𝑡−1 + 𝑣𝑔𝑗𝑡, 𝑖𝑗𝑡 = 0.00035
(6.5)

𝑔𝑗𝑡 − 1.6
(−3.81)

𝑜𝑗𝑡 + 𝑢𝑖𝑗𝑡, 𝑢𝑖𝑗𝑡 = 0.86
(9.51)

𝑢𝑖𝑗𝑡−1 + 𝑣𝑖𝑗𝑡,

where 𝑢𝑜𝑗𝑡 ∼ 𝑁(0, 0.00812), 𝑣𝑔𝑗𝑡 ∼ 𝑁(0, 63.262) and 𝑣𝑖𝑗𝑡 ∼ 𝑁(0, 0.0242).
Vietnam. 𝑜𝑗𝑡 = 𝑜𝑗,𝑡−1+𝑢𝑜𝑗𝑡, 𝑢

𝑜
𝑗𝑡 = 0.36

(2.24)
𝑢𝑜𝑗𝑡−1+𝑣𝑜𝑗𝑡, 𝑔𝑗𝑡 = 30.77

(1.91)
+𝑔𝑗,𝑡−1+𝑢𝑔𝑗𝑡,

𝑢𝑔𝑗𝑡 = 0.92
(11.89)

𝑢𝑔𝑗𝑡−1 + 𝑣𝑔𝑗𝑡, 𝑖𝑗𝑡 = − −0.03
(−9.47)

+0.0003
(22.93)

𝑔𝑗𝑡 − 0.96
(−37.39)

𝑜𝑗𝑡 + 𝑢𝑖𝑗𝑡, where

𝑣𝑜𝑗𝑡 ∼ 𝑁(0, 0.0132), 𝑣𝑔𝑗𝑡 ∼ 𝑁(0, 4.862) and 𝑢𝑖𝑗𝑡 ∼ 𝑁(0, 0.00672).
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