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Abstract

Recently Gubbiotti, Joshi, Tran and Viallet classified birational maps in four dimensions admitting
two invariants (first integrals) with a particular degree structure, by considering recurrences of fourth
order with a certain symmetry. The last three of the maps so obtained were shown to be Liouville inte-
grable, in the sense of admitting a non-degenerate Poisson bracket with two first integrals in involution.
Here we show how the first of these three Liouville integrable maps corresponds to genus 2 solutions of the
infinite Volterra lattice, being the g = 2 case of a family of maps associated with the Stieltjes continued
fraction expansion of a certain function on a hyperelliptic curve of genus g ⩾ 1. The continued fraction
method provides explicit Hankel determinant formulae for tau functions of the solutions, together with
an algebro-geometric description via a Lax representation for each member of the family, associating it
with an algebraic completely integrable system. In particular, in the elliptic case (g = 1), as a byproduct
we obtain Hankel determinant expressions for the solutions of the Somos-5 recurrence, but different to
those previously derived by Chang, Hu and Xin. By applying contraction to the Stieltjes fraction, we
recover integrable maps associated with Jacobi continued fractions on hyperelliptic curves, that one of us
considered previously, as well as the Miura-type transformation between the Volterra and Toda lattices.

1 Introduction

In classical mechanics, the study of integrable Hamiltonian systems, given by Hamiltonian vector fields with
a sufficient number of independent first integrals in involution with respect to a Poisson bracket, has a long
history that goes back to the origins of calculus. It was further enriched in the latter half of the last century by
the discovery of the method of inverse scattering for solving certain Hamiltonian partial differential equations,
which gave new perspectives and new techniques for deriving finite-dimensional integrable systems obtained
as reductions of the latter. The case of discrete integrable systems, in the form of difference equations or
maps preserving a symplectic (or Poisson) structure and satisfying the conditions for a discrete analogue of
Liouville’s theorem, soon began to attract attention [7, 34, 54], but it is fair to say that, despite the fact
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that many examples are now known, the theory of discrete integrability is much less well developed. For
integrable birational maps in the plane, the archetypal example is provided by the QRT family of maps
[44], whose level sets are biquadratic curves (generically, of genus one), which are associated with elliptic
fibrations [15]. If one imposes a requirement of subexponential degree growth (zero algebraic entropy, in the
terminology of [6]), then in two dimensions the only possibilities are maps that preserve a pencil of genus
one curves (like QRT), maps that preserve a pencil of rational curves, or completely periodic maps [13]. This
fits in with an observation of Veselov [54], that for an infinite order birational map of the plane with an
algebraic invariant, the level curves can have genus at most one (as a consequence of the Hurwitz theorem
on the automorphism group of a Riemann surface).

Poisson maps in three dimensions with two first integrals, of which one is a Casimir, can be reduced to
the two-dimensional case by restricting to symplectic leaves, and the common level sets are curves, so in an
algebro-geometric setting this will typically lead to elliptic fibrations. Thus, in order to see new geometrical
features, with invariant tori of dimension greater than one, it is necessary to look to integrable maps in four
dimensions. Building on the work [30] and [20], which was based on considering autonomous versions of the
fourth-order members of hierarchies of discrete Painlevé I/II equations from [11], in [21] Gubbiotti et al.
presented a classification of four-dimensional birational maps of recurrence type, that is

φ : (w0, w1, w2, w3) 7→
(
w1, w2, w3,F(w0, w1, w2, w3)

)
, (1.1)

for a suitable rational function F of affine coordinates (w0, w1, w2, w3) ∈ C4, with φ being invariant under
the involution ι : (w0, w1, w2, w3) 7→ (w3, w2, w1, w0) and having two independent polynomial invariants, K1,
K2 say, with specific degree patterns (degw0

Kj ,degw1
Kj ,degw2

Kj ,degw3
Kj) = (1, 3, 3, 1) and (2, 4, 4, 2)

for j = 1, 2, respectively. The result of this classification was six maps with parameters, labelled (P.i-vi),
together with six associated maps, labelled (Q.i-vi), dual to them in the sense of [45], meaning that they
arise as discrete integrating factors for linear combinations of the first integrals. (Note that, aside from the
original connection with [11], the letter P in this nomenclature has nothing to do with the usual labelling of
continuous Painlevé equations.)

1.1 The map (P.iv): an integrable map in 4D

From our point of view, the most interesting examples among those presented in [21] are the maps labelled
(P.iv), (P.v) and (P.vi). According to Table 1 in [21], these are the only ones arising from a discrete variational
principle (Lagrangian), which leads to a non-degenerate Poisson bracket in four dimensions, such that the
two first integrals K1, K2 are in involution, and this means that in the real case the Liouville tori are two-
dimensional (cf. Fig.1). In this paper, our main concern will be the case of (P.iv), which is the birational
map given in affine form by the recurrence

wn+4wn+3wn+2 + wn+2wn+1wn + 2w2
n+2(wn+3 + wn+1)

+wn+2(w
2
n+3 + wn+3wn+1 + w2

n+1) + w3
n+2 + νwn+2(wn+3 + wn+2 + wn+1) + bwn+2 + a = 0.

(1.2)

The above map depends on three essential parameters a, b, ν (compared with [21], by rescaling we have set
the parameter d = 1), and it can be written in the form (1.1), with

F = −w0w1w2 + w1w2w3 + w2
1w2 + w2w

2
3 + 2w1w

2
2 + 2w2

2w3 + w3
2 + ν(w1w2 + w2w3 + w2

2) + bw2 + a

w2w3
,

which is the rational function of w0, w1, w2, w3 obtained by solving for w4 in the recurrence (1.2) with
n = 0. More recently, Gubbiotti, showed how the equation (1.2) also arises from a classification of additive
fourth-order difference equations, based on the requirement of a discrete Lagrangian structure alone [22].

The first integral denoted IP.ivlow in [21] is given in affine coordinates by

K1 = w1w2

(
w2w3 + w0w1 − w0w3 + (w1 + w2)

2 + ν(w1 + w2) + b
)
+ a(w1 + w2). (1.3)
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The latter has the degree pattern (1, 3, 3, 1). In particular, it is linear in w3, which implies that, on each
three-dimensional level set K1 = k1 = const, the map (1.2) reduces to a birational map in three dimensions,
given by the recurrence

wn+3wn+2wn+1(wn+2 − wn) + wn+2w
2
n+1wn + wn+2wn+1(wn+1 + wn+2)

2

+ν wn+2wn+1(wn+1 + wn+2) + bwn+2wn+1 + a (wn+1 + wn+2) = k1.

A second independent invariant for (1.2), with degree pattern (2, 4, 4, 2), is given by

K2 = w1w2

 w2
0w1 + w2

3w2 + w0w3(w1 + w2) + w0(w
2
2 + 2w2

1) + w3(w
2
1 + 2w2

2)
+ 3(w0 + w3)w1w2 + (w1 + w2)

3

+ν
(
w0w3 + (w0 + w3)(w1 + w2) + (w1 + w2)

2
)
+ b (w0 + w1 + w2 + w3)


+a

(
w0w1 + w3w2 + (w1 + w2)

2
)
.

(1.4)

This differs slightly from the second invariant presented in [21], which is IP.ivhigh = K2 − νK1.
The non-degenerate Poisson bracket between the coordinates, which was obtained in [21] by making use

of a discrete Lagrangian for (1.2), is given by

{wn, wn+1 } = 0, {wn, wn+2 } =
1

wn+1
, {wn, wn+3 } = −wn + 2wn+1 + 2wn+2 + wn+3 + ν

wn+1wn+2
, (1.5)

for all n. So the 4D map of the form (1.1) defined by (1.2) is a Poisson map, in the sense that {φ∗G,φ∗H } =
φ∗{G,H } for all functions G,H on C4. Equivalently, the fact that φ is Poisson with respect to a non-
degenerate bracket means that it preserves a symplectic form ω, such that φ∗ω = ω. The two independent
invariants given in [21] are in involution with respect to the Poisson bracket, which is equivalent to the
involutivity of functions (1.3) and (1.4), that is

{K1,K2 } = 0.

Hence the four-dimensional map defined by (1.2) is integrable in the Liouville sense.
Computing the Hamiltonian vector field for the first flow, generated by K1, we find that on the phase

space C4 with coordinates (w0, w1, w2, w3) this takes the form

dwn
dt

= wn(wn+1 − wn−1) for n = 1, 2, (1.6)

while the components of the vector field for n = 0, 3 appear to be more complicated rational functions of
these 4 coordinates and the parameters a, b, ν. However, since (1.2) is a Poisson map it commutes with
this flow, so it follows that the relation (1.6) extends to all n ∈ Z. To see this, note that the vecor field
d
dt = {·,K1} commutes with the action of φ, and φ∗(wn) = wn+1; hence, if (1.6) holds for some particular
n, then

dwn+1

dt
= φ∗

(
dwn
dt

)
= φ∗(wn(wn+1 − wn−1)

)
= wn+1(wn+2 − wn),

which is just the same equation with n → n+ 1. Thus the combined solutions of the iterated map and the
flow, which are compatible with one another, generate a sequence of functions

(
wn(t)

)
n∈Z satisfying (1.6),

which is the Volterra lattice equation, first considered by Kac and van Moerbeke [31]. We will see that, in a
certain sense to be made precise, these are genus 2 solutions of this lattice equation.

A wide variety of difference equations admitting Lax pairs and explicit formulae for first integrals have
been presented by Svinin [49, 50], including a family that arises as reductions of the hierarchy of symmetries
of the Volterra lattice. By eliminating the parameter b from (1.2) we get an equation of fifth order, that is

wn+4

 5∑
j=2

wn+j + ν

+
a

wn+3
= wn+1

 3∑
j=0

wn+j + ν

+
a

wn+2
, (1.7)
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Figure 1: Plot of the 3D projection of 10000 points on the orbit of (1.2) with initial values (2116 ,
21
16 ,

452
343 ,

3124
2373 )

and parameters a = −9, b = 29, ν = −10.

and upon setting a = 0 this reduces to equation (1) in [51] when s = 4 (cf. also the case N = 4 in [27], where
an equivalent equation is obtained via a periodic reduction of the lattice KdV equation); thus the map (1.2)
can be viewed as a 1-parameter generalization of one of Svinin’s symmetry reductions of the Volterra lattice
hierarchy, which in turn is a generalization of one of the maps considered in [12].

1.2 Outline of the paper

The purpose of this article is to give a complete description of the complex geometry of the solutions of the
map defined by (1.2). In reaching this goal, we found that all of the structures we obtained could naturally
be extended to analogous constructions associated with a family of curves of arbitrary genus g (elliptic for
g = 1, hyperelliptic for g ⩾ 2).

Section 2 presents a set of empirical observations, numerical examples and standalone results about the
(P.iv) map. Originally, these were the specific clues that led us to uncover the geometrical structure of
the solutions of (1.2). To begin with, we use a p-adic method to identify the singularity pattern of the
solutions, leading us to introduce a tau function τn, which lifts (1.2) to a recurrence of order 7 with the
Laurent property; this is a Laurentification of the original map, in the sense of [23]. By considering a pattern
of initial values that approaches a singularity, and substituting this set of initial data into the expressions
(1.3) and (1.4) on the level set Kj = kj for j = 1, 2, in the limit that the singularity is reached we find a
hyperelliptic curve of genus 2, isomorphic to the Weierstrass quintic

y2 = (1 + νx+ bx2)2 + 4a(1 + νx+ bx2)x3 + 4k1x
4 + 4(k2 + νk1)x

5. (1.8)

We also show that the tau function τn satisfies a Somos-9 recurrence with coefficients that depend on a, b, ν
and the values of K1,K2 along each orbit of (1.2). It turns out that both the singularity pattern, and the
corresponding tau function substitution wn = τnτn+3/(τn+1τn+2) found for (1.2), are the same as for the
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QRT map associated with the Somos-5 recurrence [24], which is associated with a family of elliptic curves; so
this was a strong initial hint that analogues of the (P.iv) map should exist for any genus g. For enthusiasts
of detective stories, the results in this section provide motivation and insight into how we made the first
steps on the trail that led to the rest of the paper. However, a reader who is not particularly fond of
experimental mathematics can safely omit Section 2 on first reading, since the subsequent sections are not
logically dependent on it, and are written in a more linear, deductive style.

In Section 3, we start from a hyperelliptic curve Γf of arbitrary genus g ⩾ 1, given by a Weierstrass
equation y2 = f(x) where f ∈ C[x] is of odd degree 2g + 1, analogous to (1.8), together with a particular
choice of rational function F0 on the curve, and show how a Stieltjes continued fraction (S-fraction) expansion
of this function, of the form

F0 = 1− w1x

F1
= 1−

w1x

1−
w2x

F2

= 1−
w1x

1−
w2x

1−
w3x

1− · · ·

, (1.9)

leads to a birational map on the coefficients wj of the fraction, in dimension 3g + 1, which we refer to as
the Volterra map Vg. As we shall see, iterating Vg for generic initial data produces the infinite sequence of
coefficients wn for n ⩾ 1 that appear in the fraction (1.9), while applying the inverse map V−1

g extends this
sequence to n ⩽ 0. Furthermore, the recursion for the S-fraction can be rewritten in the form of a discrete
Lax equation. In this setting, the hyperelliptic curve Γf is the spectral curve, and the polynomial f has
2g+ 1 non-trivial coefficients which provide conserved quantities (first integrals) for the map. In particular,
for g = 1 it reduces to a QRT map whose tau functions satisfy the Somos-5 recurrence, while when g = 2
we find that, by fixing the values of three of the first integrals to reduce it to four dimensions, the map is
precisely (1.2). We also show from the S-fraction that, for any g, the solutions of the map can be written
explicitly in terms of tau functions that (up to gauge transformations) are expressed as Hankel determinants.

Next, in Section 4, we introduce a family of compatible Poisson brackets for the map Vg: it is a Pois-
son map with respect to any of these brackets, and the conserved quantities provide a sufficient number of
invariants in involution, so we have a Liouville integrable map for any positive integer g. There is a con-
siderable literature on algebraic completely integrable (a.c.i.) Hamiltonian systems [1, 53], and in this vein
we prove a stronger result on the integrability of the Volterra maps, namely that they can be considered as
discrete analogues of a.c.i. systems: for each g, the generic level set of the invariants is an affine part of an
Abelian variety, namely the Jacobian Jac(Γ̄f ) of the (completion of the) corresponding spectral curve, and
the restriction of the map to any of these complex tori is given by translation over a fixed vector which we
describe explicitly. In particular, for the map (P.iv) given by (1.2), each generic level set defined by fixing
Kj = kj for j = 1, 2 is an affine part of an Abelian surface, that is the Jacobian of the curve (1.8).

The whole basis of our construction is the S-fraction expansion (1.9), which may appear to be a deus ex
machina in Section 3, but in fact has many antecedents in the literature on integrable systems, and especially
in the development of van der Poorten’s results on Jacobi fraction (J-fraction) expansions in elliptic [41] and
hyperelliptic function fields [40, 42, 43], as presented in recent work by one of us [28]. The latter revealed
the integrable structure of maps generated by J-fractions of the form

Y0 = α0(X) +
1

Y1
= α0(X) +

1

α1(X) +
1

Y2

= α0(X) +
1

α1(X) +
1

α2(X) +
1

. . .

, (1.10)

where Y0 =
(
Y +P0(X)

)
/Q0(X) is a rational function on a hyperelliptic curve C defined by a polynomial of

even degree 2g+2, that is C : Y 2 = P 2
0 +Q0Q−1, for polynomials Pj , Qj of degrees g+1, g in X, respectively,

with the coefficents αj = αj(X) in (1.10) being linear in X. It was shown in [28] that, for appropriate such
Y0, the shift from one line of the J-fraction to the next defines a Liouville integrable map on a phase space
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of dimension 3g+1, which (on a generic level set of the first integrals) corresponds to a fixed translation on
the Jacobian of (the completion of) C.

There are classical results going back to Abel on the continued fraction expansion of the square root of
an even degree polynomial (i.e. the function Y on an even hyperelliptic curve C), although the fact that the
sequence of degrees of the coefficients αj(X) in such an expansion is eventually periodic was proved only very
recently [56] (they need not all be linear in X, as per the above assumption about the function Y0 in (1.10)).
This is intimately related to elliptic [2] and hyperelliptic analogues of orthogonal polynomials [3], as well
as more general types of Padé approximation problems connected with integrable systems [5, 14]. In fact,
Stieltjes continued fractions (of finite type) were already used in the solution of the finite Volterra lattice
by Moser [37], and such fractions were applied to obtain Hankel determinant solutions for non-isospectral
extensions more recently [9].

Section 5 of the paper starts by considering the continuous Hamiltonian system that shares the same
phase space with the Volterra map Vg. After proving that this continuous system is a.c.i., we show that
iteration of Vg (and its inverse) leads to an infinite sequence of meromorphic functions

(
wn(t)

)
n∈Z of t,

the time associated with one of the commuting Hamiltonian flows, providing a meromorphic solution of the
Volterra lattice equation (1.6) (hence reproducing the above observation about (P.iv) in the particular case
g = 2). Next we show that this also produces a meromorphic solution of the Toda lattice, taken in the form

ddn
dt

= dn(vn−1 − vn) ,
dvn
dt

= dn − dn+1 , n ∈ Z, (1.11)

by applying the well-known Miura transformation between the Volterra and Toda lattices. We further show
that the latter transformation arises naturally via the contraction procedure for continued fractions, due
to Stieltjes [48], which combines successive pairs of lines in an S-fraction into a single line in a J-fraction,
and thereby maps a generic solution of the Volterra map Vg to an associated solution of the map generated
by van der Poorten’s construction in genus g. The paper ends in Section 6, with a few conclusions and
observations concerning transformations relating solutions of (P.v) and (P.vi) to solutions of the map (P.iv),
which we plan to discuss in detail elsewhere. There is also an appendix (Section 7), in which a birational
Poisson isomorphism is established between the genus g even Mumford system (see [53]) and the Hamiltonian
system associated with the Volterra map Vg.

2 Laurentification and tau functions for the map (P.iv)

In this section we exhibit certain phenomena displayed by the iterates of the map (P.iv), which are related to
its discrete integrability. Firstly, we describe the singularity pattern of the iterates, which is found from an
empirical p-adic approach, and leads to the introduction of a sequence of tau functions τn for these iterates.
On the one hand, these tau functions satisfy a homogeneous recursion relation of order 7 with the Laurent
property; so this is a Laurentification of (P.iv), as we state here and prove in Section 3.4. On the other hand,
these tau functions are also shown to satisfy a Somos-9 relation, with invariants of (P.iv) as coefficients.
Secondly, by considering the limit where a solution of (P.iv) approaches a singularity, we are led to a family
of genus two curves which will turn out to be at the core of the Stieltjes continued fractions (Section 3) and
the algebraic integrability of (P.iv) (Section 4).

The Laurent property is a very special feature of certain birational transformations, appearing in cluster
algebras and their generalizations [17, 33], which a priori is unrelated to integrability [25]. However, it
turns out that the solutions of discrete integrable systems are often encoded by tau functions satisfying
relations that have the Laurent property, such as bilinear equations of discrete Hirota type [35]. Despite
the fact that integrable maps occurring “in the wild” typically do not exhibit the Laurent phenomenon, it
nevertheless seems to be a common feature of such maps that they admit Laurentification, that is, a lift to
a higher-dimensional relation that does have the Laurent property [23]. For some time, singularity analysis
has been used as a tool to detect integrability of maps (see [36] and references), and when the pattern of
places where the solutions have a zero or pole is sufficiently simple, this can further suggest an appropriate
way to introduce tau functions and perform Laurentification [27].
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To start with, we apply the p-adic approach described in [27] (see also [32]) to the map (P.iv) defined
by (1.2), and derive a singularity pattern from it. This empirical approach is based on examining the prime
factorization of the terms of specific orbits (wn)n∈N defined in Q, chosen arbitrarily, and considering the
behaviour of the p-adic norms |wn|p for particular primes p. As a concrete example, upon picking the
specific parameter values ν = 3, a = 5, b = 7 and setting all four initial values to be 1, we then find a
sequence of rational numbers given by

−30, 74330 ,
10541
22290 ,

3819540
7831963 ,−

4315187227
1342059038 ,

6624290612327
739436079902 ,−

23965197528782842
3649794341246183 ,−

304709076970269230792
118290200741883010693 , . . . , (2.1)

where the latter terms factorize as −2 · 3 · 5, 743
2·3·5 ,

83·127
2·3·5·743 ,

22·3·5·63659
83·127·743 , − 13·743·446753

2·83·127·63659 ,
19·83·127·1579·20947
2·13·63659·446753 ,

− 2·59·51593·61837·63659
13·19·1579·20947·446753 , − 23·13·967·446753·6782004923

19·59·1579·20947·51593·61837 , . . . For several different primes, e.g. p = 3, 5, 83, 127,
743, . . ., this reveals a common pattern whereby, for some n,

|wn|p = p−1 , |wn+1|p = p , |wn+2|p = p , |wn+3|p = p−1 , (2.2)

with the prime p being absent from the factorization on the previous and on the next terms: |wn−1|p =
|wn+4|p = 1. The p-adic norms (2.2) identify places where the orbit of the map over the finite field Fp has
a zero or pole, as well as the order of these [32]. Since the recurrence (1.2) defines a birational map, any
orbit defined for n ⩾ 0 can be extended to n < 0 (at least, provided that it does not reach a singularity,
where wn = 0 for some n; but see Corollary 2.6 below). Hence, the pattern (2.2) suggests that for n ∈ Z one
should make the tau function substitution

wn =
τnτn+3

τn+1τn+2
, (2.3)

so that the places where a prime factor p appears in the numerators or denominators of the sequence (wn)n∈Z
can be encoded by the appearance of the factor p in the terms of the tau function sequence (τn)n∈Z. These
tau functions can be defined recursively, in two quite different ways:

Proposition 2.1. Suppose that (wn)n∈Z is a solution of (1.2). Then the corresponding sequence (τn)n∈Z
satisfies

(1) A homogeneous recurrence of order 7 and degree 8:

τn+7τ
2
n+4τ

3
n+3τ

2
n+2 + τ2n+6τ

4
n+3τ

2
n+2 + 2τn+6τ

2
n+5τ

2
n+3τ

3
n+2 + τn+6τn+5τ

2
n+4τ

2
n+3τn+2τn+1

+ τ4n+5τ
4
n+2 + 2τ3n+5τ

2
n+4τ

2
n+2τn+1 + τ2n+5τ

4
n+4τ

2
n+1 + τ2n+5τ

3
n+4τ

2
n+3τn

+ ν(τn+6τn+5τn+4τ
3
n+3τ

2
n+2 + τ3n+5τn+4τn+3τ

3
n+2 + τ2n+5τ

3
n+4τn+3τn+2τn+1)

+ b τ2n+5τ
2
n+4τ

2
n+3τ

2
n+2 + a τn+5τ

3
n+4τ

3
n+3τn+2 = 0 .

(2.4)

(2) A (generalized) Somos-9 recurrence:

α1 τn+9τn + α2 τn+8τn+1 + α3 τn+7τn+2 + α4 τn+6τn+3 + α5 τn+5τn+4 = 0 . (2.5)

The coefficients αi are polynomial functions of the parameters of the map and of the values k1, k2 of
the invariants K1,K2, hence are constant along each orbit (wn)n∈Z. They are given by

α1 = k1, α2 = ak2 − k21, α3 = a
(
ak2 − 2k21

)
,

α4 = a
(
k22 + νk1k2 + bk21 + a2k1

)
, α5 = −k1

(
k22 + νk1k2 + bk21 + a2k1

)
.

Proof. The proof of (1) is by a direct substitution of (2.3) in (1.2), while (2) is derived directly by imple-
menting the method from [26], which involves computing determinants of matrices with entries that are of
degree two in tau functions. More precisely, for (2) one should write five copies of the Somos-9 relation as
a matrix equation Mnα = 0, and then verify that there is a non-zero vector of coefficients α, lying in the
kernel of Mn, that is independent of n; the latter calculations require extensive use of computer algebra.
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The recursion defined by (1.2) requires 4 initial values, while (2.4) requires 7, and the discrepancy between
the two is described by the three-parameter group (C∗)3 of gauge transformations, with action given by

τn 7→ A±B
n τn , A+, A−, B ∈ C∗ , (2.6)

corresponding to the freedom to rescale even/odd terms by a different factor A±, and apply a rescaling Bn

that is exponential in n to all terms. Any 4 non-zero initial values w0, . . . , w3 of (1.2) allow a corresponding
set of non-zero initial data to be determined for (2.4), up to this gauge freedom; for example, we may take as
corresponding initial data τn = 1 for n = 0, 1, 2 and τ3 = w0, τ4 = w0w1, τ5 = w2

0w1w2 and τ6 = w2
0w

2
1w2w3,

which are polynomials (in fact, monomials) in w0, w1, w2, w3. Notice that (2.4) can also be solved rationally
for τn in terms of τn+1, . . . , τn+7 so that the sequence (τn) is actually defined for all n ∈ Z.

Example 2.2. In the case ν = 3, a = 5, b = 7, taking the initial values τj = 1 for 0 ⩽ j ⩽ 6 in (2.4) yields
the sequence of tau functions beginning

1, 1, 1, 1, 1, 1, 1,−30,−743, 10541, 127318, 5807789, 628430947,−188231024119, 52465590084328, . . . , (2.7)

which consists of integers, and the terms after the initial 1s have prime factorizations given by −2 · 3 ·
5,−743, 83 · 127, 2 · 63659, 13 · 446753, 19 · 1579 · 20947,−59 · 61837 · 51593, 23 · 967 · 6782004923, etc. These
correspond to the prime factors appearing in the numerators and denominators in the particular sequence
of rational values of wn illustrated in (2.1) above. Due to a reversing symmetry of the recurrence (2.4), this
sequence extends backwards to n < 0 in such a way that the property τ6−n = τn holds for all n ∈ Z, since
the 7 initial data have this symmetry. Furthermore, these tau functions also satisfy the Somos-9 recurrence

28 τn+9τn − 239 τn+8τn+1 − 5115 τn+7τn+2 + 136125 τn+6τn+3 − 762300 τn+5τn+4 = 0, (2.8)

which corresponds to (2.5) with the coefficients αj being fixed (up to overall rescaling) by the specified
choices of ν, a, b, together with the fact that the first integrals take the values K1 = 28, K2 = 109. For any
solution of (2.4), the subsequences consisting of even/odd index terms, that is τ̂n = τ2n or τ2n+1, respectively,
also satisfy a Somos-8 relation, of the form

α̂1 τ̂n+8τ̂n + α̂2 τ̂n+7τ̂n+1 + α̂3 τ̂n+6τ̂n+2 + α̂4 τ̂n+5τ̂n+3 + α̂5 τ̂
2
n+4 = 0 . (2.9)

For the particular integer sequence above, up to overall scale the coefficients are given by

α̂1 = 195848, α̂2 = −61660241775, α̂3 = 13236763233189375,
α̂4 = −8064076031989579800, α̂5 = −3603810041796109733 .

The relation (2.9) can be regarded as an ordinary difference reduction of a constraint for a tau function defined
on a multidimensional lattice, which arises from a Hermite-Padé approximation problem (cf. equation (2.10)
in [14]). An explanation for why this Somos-8 relation must hold will be provided in Section 5, via the
connection with the Toda lattice and the results in [28].

The following proposition shows that the recurrence (2.4) is a Laurentification of (P.iv). In particular,
this explains why the tau functions in the preceding example are all integers.

Proposition 2.3. The recurrence (2.4) has the Laurent property. More precisely, for all n ∈ Z,

τn ∈ Z[a, b, ν, τ0, τ1, τ±1
2 , τ±1

3 , τ±1
4 , τ5, τ6] .

In principle, for n ⩾ 0 the proof of the proposition is a direct application of Theorem 2 in [23], and the
same method of proof applies for n < 0, because the map defined by (2.4) is birational. However, the formal
verification to be done by this method quickly gets out of hand, since the rational functions obtained as the
formulae for the first few iterations of the map defined by (2.4) soon become too complicated for the checks
to be carried out by a simple computer algebra program. A general proof of Proposition 2.3 that does not
require any computer algebra will be given in Section 3.4.
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Remark 2.4. As mentioned in the introduction, through the relation (1.7), the special case a = 0 of the
(P.iv) map is closely linked to a difference equation appearing in the work of Svinin, and to a reduction of
the lattice KdV equation. Thus, when the parameter a = 0, the result of Proposition 2.3 is subtly related
to the fact that the order 7, degree 6 recurrence

τn+7τ
2
n+4τn+3τn+2τn+1 + τn+6τn+5τn+4τ

2
n+3τn + τ2n+6τ

2
n+3τn+2τn+1 + τn+6τn+5τ

2
n+4τ

2
n+1

+τn+6τ
2
n+5τ

2
n+2τn+1 − ατn+5τ

2
n+4τ

2
n+3τn+2 + βτn+6τn+5τn+4τn+3τn+2τn+1 = 0

(2.10)

has the Laurent property, in the sense that it generates Laurent polynomials in τ0, . . . , τ6 with coefficients
in Z[α, β] (the case N = 4 of Proposition 2.3 in [27]). The point is that (2.3) coincides with the tau function
substitution found for maps related with lattice KdV reductions in [27], and the relation (2.10) holds for
solutions of (2.4) obtained by setting a = 0, ν = β, and taking an orbit for which the value of the first
integral K1 is fixed to be k1 = −α.

Example 2.5. Upon taking a = 0, b = −17, ν = −11 and making a specific choice of 7 integer initial values
for (2.4), with the 3 central values fixed to be 1, we generate an integer sequence that begins as follows:

3, 2, 1, 1, 1, 4, 5, 699,−25626, 453024,−112570254, 23354432973, 61327997061471,−35520663450983076, . . . .

Then we see that this sequence also satisfies the relation (2.10) with β = −11 and α = −k1 = 327. Also,
since three of the coefficients in (2.5) vanish when a = 0, we see that the Somos-9 relation for this sequence
takes the shorter (three-term) Gale-Robinson form

τn+9τn + 327 τn+8τn+1 + 3850083 τn+5τn+4 = 0,

which is a reduction of the discrete Hirota equation, and is in agreement with the N = 4 case of Theorem
1.1 in [27].

The Laurent property for (2.4), together with the formula (2.3), immediately implies that the generic
orbit (wn) of (P.iv) is well-defined, as stated in the following corollary.

Corollary 2.6. For generic non-zero initial values (w0, w1, w2, w3) ∈ (C∗)4, the orbit (wn)n∈Z exists, with
wn ∈ P1 = C ∪ {∞}.

Proof. As we shall see in Section 3.4, the initial tau functions can be chosen so that all τn are polynomials in
the initial data for (1.2). For a fixed index n it is then clear from (2.3) that wn is an indeterminate element
of P1 only when at least two out of three successive tau functions in (2.3) vanish, i.e. belong to a certain
proper Zariski closed subset of the space of (non-zero) initial data for (1.2). Considering this condition for
all n yields a subset of this space of initial data, which is the intersection of a countable family of Zariski
open subsets. Such an intersection is a residual, hence dense, subset so that for generic initial data, the orbit
is well-defined.

Note that (P.iv) was originally defined as a birational affine map in C4, but the above corollary allows the
existence of certain orbits defined in (P1)4. Notice also that this corollary does not state that the subset of
initial data for which the orbit exists is open. This stronger statement will follow from algebraic integrability,
without use of the tau functions (see Section 4).

As an initial foray into the geometry of the map, defined by (1.2), we now consider the singularity pattern
in more detail, by taking three non-zero initial values w0, w1, w2 ∈ C∗ followed by a fourth value proportional
to a small parameter ϵ ∈ C, and consider the behaviour of the solution in the limit ϵ → 0. To reformulate
this in terms of tau functions, we set

τ0 = Z , τ1 = τ2 = τ3 = 1, τ4 = X , τ5 = Y , τ6 = ϵ , XY Z ̸= 0 ,

where three adjacent values have been set equal to 1 by a choice of gauge. This gives, using (2.3), four
non-zero initial values

w0 = Z , w1 = X , w2 =
Y

X
, w3 =

ϵ

XY
, (2.11)

9
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for the map (1.2), such that the fourth value w3 → 0 as ϵ → 0. Upon substituting these values in (1.2) we
find as subsequent values

w4 = C4 ϵ
−1 +O(1) , w5 = C5 ϵ

−1 +O(1) , w6 = C6 ϵ+O(ϵ2) , w7 = C7 +O(ϵ) ,

for certain coefficients Cj which are rational functions of X,Y, Z. Notice that the leading order behaviours
of w3, w4, w5, w6 are ϵ, ϵ−1, ϵ−1, ϵ, respectively, with terms of O(1) on either side, which corresponds to the
singularity pattern (2.2) obtained above by the p-adic method. Now if we substitute the initial values (2.11)
into K1 = k1, K2 = k2, where K1 and K2 are the invariants (1.3) and (1.4), and take the limit ϵ → 0,
then (after clearing denominators) we get two polynomial relations between X,Y, Z, which define an affine
algebraic curve. Upon taking resultants with respect to Z, this yields a single relation between X and Y ,
namely (

aY 2 − (νk1 + k2)Y − ak1
)
X4 +

(
(aν − k1)Y

2 + (a2 − bk1)Y + k21
)
X3 (2.12)

+
(
2aY 3 + (ab− νk1)Y

2 − 2ak1Y
)
X2 + Y 2

(
(aν − k1)Y + a2

)
X + aY 4 = 0 .

This plane curve is birationally equivalent to the Weierstrass quintic (1.8), which can be seen from the
transformation

x =
X(aY − k1X)

Y (aX2 − k1X + aY )
, (2.13)

together with a corresponding formula for y = y(X,Y ), which is rather unwieldy and so is omitted. For
generic values of k1, k2, the curve (2.12) is a smooth hyperelliptic curve of genus 2. As already said, in its
Weierstrass form (1.8), this family of curves will play an important role in all that follows.

3 S-fractions on hyperelliptic curves and Volterra maps

In this section, for a fixed integer g > 0, we introduce an affine space of triplets of polynomials, reminiscent
of the phase space of the Mumford system [38, 53] and use Stieltjes continued fractions (S-fractions) to
construct a series of birational automorphisms of the affine space, indexed by g, which we describe in several
ways. When g = 1 we recover several known integrable maps, and for g = 2 we recover the map (P.iv),
which was the primary motivation for this study, while the maps for g > 2 appear to be new. We also give
solutions in terms of Hankel determinants of the iterates of these maps, i.e., of the corresponding recursion
relations.

For a fixed g > 0 we consider the affine space

Mg :=

(P(x),Q(x),R(x)) ∈ C[x]3
∣∣∣ degP(x) ⩽ g , P(0) = 1

degQ(x) ⩽ g , Q(0) = 2
degR(x) ⩽ g + 1 , R(0) = 0

 . (3.1)

It is clear that Mg is an affine space of dimension 3g + 1: writing

P(x) = 1 +

g∑
i=1

pix
i , Q(x) = 2 +

g∑
i=1

qix
i , R(x) =

g+1∑
i=1

rix
i , (3.2)

the coefficients p1, . . . , pg, q1, . . . , qg, r1, . . . , rg+1 provide a natural system of linear coordinates on Mg. We
will often write an element (P,Q,R) of Mg as a traceless 2× 2 matrix

L(x) :=

(
P(x) R(x)
Q(x) −P(x)

)
, (3.3)

10
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which will later serve as a Lax operator, and think of Mg as an affine space of matrices (Lax operators). It
is then natural to consider the map µ defined by

µ : Mg → C[x]

L(x) =

(
P(x) R(x)
Q(x) −P(x)

)
7→ −detL(x) = P(x)2 +Q(x)R(x) .

(3.4)

In view of the degree constraints on the entries of L(x), the polynomial −detL(x) has degree at most 2g+1
and its constant term is 1; moreover, every such polynomial is contained in the image of µ. In the g = 2 case
these curves are precisely the ones encountered in Section 2 in the singularity analysis of (P.iv), see (1.8),
(2.12) and (2.13), which in part motivates the choice of constraints on the polynomials P,Q and R. (When
Mg is endowed with a Poisson structure, as in Section 4, then µ can be viewed a momentum map.)

Throughout this section, g > 0 is fixed. In each of the following subsections, the results and phenomena
being discussed will be specialized and illustrated for the cases of g = 1 and g = 2, when Mg has dimension
4 and 7, respectively.

3.1 Stieltjes continued fractions

We start from a hyperelliptic curve Γf , defined by an odd Weierstrass equation

Γf : y2 = f(x) , with f(x) := 1 +

2g+1∑
j=1

cjx
j ∈ C[x] . (3.5)

When f has degree 2g+1 and has no multiple roots, Γf is non-singular and its genus is g, which explains the
notation used. Let (P,Q,R) be any point in µ−1(f), the fiber of µ over f , so that f(x) = P2(x)+Q(x)R(x),
and the spectral curve Γf is the characteristic equation det(L(x)− y1) = 0. We consider on Γf the rational
function, given by

F :=
y + P(x)

Q(x)
=

R(x)

y − P(x)
. (3.6)

In preparation for constructing the Stieltjes continued fraction of F , we show in the following lemma how
the triplet (P,Q,R) leads to another triplet (P̃, Q̃, R̃) in the same fiber of µ, under the assumption that
(P,Q,R) is regular, meaning that

2P(x)−Q(x) +R(x)

x

∣∣
x=0

= 2p1 − q1 + r1 ̸= 0 . (3.7)

Lemma 3.1. Given a regular triplet (P,Q,R) in µ−1(f), there exists a unique w ∈ C∗ and a unique triplet
(P̃, Q̃, R̃) in µ−1(f) such that

y + P(x)

Q(x)
= 1− w x

y+P̃(x)

Q̃(x)

. (3.8)

The two triplets are related by

P̃(x) = Q(x)− P(x) , Q̃(x) =
2P(x)−Q(x) +R(x)

−wx
, R̃(x) = −wxQ(x) , (3.9)

and

w = −2 p1 − q1 + r1
2

= − r̃1
2
. (3.10)

Proof. We will constructively show that we can achieve (3.8) with w ∈ C∗ and (P̃, Q̃, R̃) ∈ µ−1(f) uniquely
determined. Clearing the denominators in (3.8) and using y2 = f(x) we get

y(P(x) + P̃(x)−Q(x)) + f(x) + P(x)P̃(x)− P̃(x)Q(x) + wxQ(x)Q̃(x) = 0 , (3.11)
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an equality which holds in the field of fractions of C[x, y]/(y2 − f(x)), so that the coefficients of y and of y0

in (3.11) must be zero. The vanishing of the former coefficient gives the first equation in (3.9) and guarantees
P̃(0) = 1 and deg P̃ ⩽ g. The vanishing of the y0 coefficient gives

−w Q̃(x) =
f(x) + (P(x)−Q(x))P̃(x)

xQ(x)
=
f(x)− (P(x)−Q(x))2

xQ(x)
=

2P(x)−Q(x) +R(x)

x
, (3.12)

where we have used in the last step that f(x) = P2(x) + Q(x)R(x). Notice that in view of the values of
the constant terms in (3.2), the last numerator in (3.12) vanishes for x = 0 and is of degree at most g + 1.
Also, as the triplet (P,Q,R) is assumed to be regular, the polynomial (2P −Q+R)/x does not vanish at
x = 0, hence we can (uniquely) choose w ∈ C∗ such that Q̃(0) = 2. This gives the first equality in (3.10)
and the second equation in (3.9). The first equality in (3.12) also shows that f(x) − P̃2(x) is divisible by
Q̃(x), with quotient −wxQ(x); thus, if we take the third equality in (3.9) to define R̃, then deg R̃ = g + 1,
R̃(0) = 0 and f(x) = P̃2(x) + Q̃(x)R̃(x), completing the proof that (P̃, Q̃, R̃) belongs to µ−1(f). Notice
that the third equality in (3.9) implies the alternative formula for w in (3.10), since Q(0) = 2.

Applying the lemma to all regular points of the fiber µ−1(f) yields a rational map of the fiber to itself,
given by (P,Q,R) 7→ (P̃, Q̃, R̃) with (P̃, Q̃, R̃) given by (3.9). Since the latter can also be solved rationally
for (P,Q,R) in terms of (P̃, Q̃, R̃) by using the second expression for w in (3.10), this rational map is actually
a birational automorphism of the fiber. Iterating this map starting from a triplet (P0,Q0,R0) = (P,Q,R) ∈
µ−1(f), we get an infinite sequence (Pn,Qn,Rn)n∈Z of triplets as well as an infinite sequence (wn)n∈Z in
C∗, such that (Pn+1,Qn+1,Rn+1) and wn+1 are related to (Pn,Qn,Rn) as dictated by the lemma:

Pn+1(x) = Qn(x)− Pn(x) , Qn+1(x) =
2Pn(x)−Qn(x) +Rn(x)

−wn+1x
, Rn+1(x) = −wn+1xQn(x) . (3.13)

Writing, as in (3.2), Pn(x) = 1+
∑g
i=1 pn,ix

i, and similarly for Qn(x) and Rn(x), the value of wn+1 is given,
according to (3.10), by

wn+1 = −2pn,1 − qn,1 + rn,1
2

= −rn+1,1

2
, (3.14)

for all n ∈ Z.
It is clear that (Pn,Qn,Rn) is obtained from (P0,Q0,R0) by repeating the map n times (or, when n < 0,

repeating the inverse of the map −n times). As pointed out in the lemma, the starting triplet (P0,Q0,R0)
must be regular in order for (P1,Q1,R1) and w1 ∈ C∗ to exist. But nothing guarantees that (P1,Q1,R1) will
also be regular, and in general it need not be so; assuming (P1,Q1,R1) to be a regular triplet puts an open
linear condition on the coefficients of (P1,Q1,R1), namely that 2p1,1 − q1,1 + r1,1 ̸= 0, which amounts to an
open polynomial condition on (P0,Q0,R0), and for the existence of every extra term of the sequence such an
extra condition is to be added to the triplet (P0,Q0,R0). However, since this amounts to a countable number
of open conditions on the latter, this means that when (P0,Q0,R0) is generic, in the sense that it belongs
to a residual subset of the fiber µ−1(f), the sequence of triplets of polynomials (Pn,Qn,Rn) ∈ µ−1(f) and
the sequence of constants wn ∈ C∗, both indexed by n ∈ Z, exist. For generic (P0,Q0,R0), iterating (3.8)
gives

F0 :=
y + P0(x)

Q0(x)
= 1− w1x

y+P1(x)
Q1(x)

= · · · = 1−
w1x

1−
w2x

1−
w3x

1− · · ·

, (3.15)

yielding the Stieltjes continued fraction, also called S-fraction, of F0. Similarly, each triple (Pn,Qn,Rn),
n ∈ Z, is associated with a rational function Fn, with a corresponding S-fraction obtained by shifting each
of the indices in (3.15), which for n > 0 appears on the nth line below the top.
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Example 3.2. Suppose that g = 1. Then the entries of the triplets (P,Q,R) and sequences (Pn,Qn,Rn)n∈Z
in Mg =M1 take the form

P(x) = 1 + p1x ,
Q(x) = 2 + q1x ,
R(x) = r1x+ r2x

2 ,
and

Pn(x) = 1 + pn,1x ,
Qn(x) = 2 + qn,1x ,
Rn(x) = rn,1x+ rn,2x

2 .
(3.16)

The birational automorphism (3.9), constructed in Lemma 3.1, and its iterates are given by

p̃1 = q1 − p1 ,
q̃1 = −r2/w ,
r̃1 = −2w ,
r̃2 = −wq1 ,

and

pn+1,1 = qn,1 − pn,1 ,
qn+1,1 = −rn,2/wn+1 ,
rn+1,1 = −2wn+1 ,
rn+1,2 = −wn+1qn,1 ,

(3.17)

where w = − 2 p1−q1+r1
2 and wn+1 = − 2 pn,1−qn,1+rn,1

2 for n ∈ Z.

Example 3.3. Suppose now that g = 2. The entries of the triplets (P,Q,R) and sequences (Pn,Qn,Rn)n∈Z
in M2 now take the form

P(x) = 1 + p1x+ p2x
2 ,

Q(x) = 2 + q1x+ q2x
2 ,

R(x) = r1x+ r2x
2 + r3x

3 ,
and

Pn(x) = 1 + pn,1x+ pn,2x
2 ,

Qn(x) = 2 + qn,1x+ qn,2x
2 ,

Rn(x) = rn,1x+ rn,2x
2 + rn,3x

3 .
(3.18)

From the construction in Lemma 3.1, the birational automorphism (3.9) and its iterates are given by (3.17),
with the expression for q̃1 modified to

q̃1 = −(2p2 − q2 + r2)/w, and qn+1,1 = −(2pn,2 − qn,2 + rn,2)/wn+1,

further supplemented with the following formulae:

p̃2 = q2 − p2 ,
q̃2 = −r3/w ,
r̃3 = −wq2 ,

and
pn+1,2 = qn,2 − pn,2 ,
qn+1,2 = −rn,3/wn+1 ,
rn+1,3 = −wn+1qn,2 ,

(3.19)

where, as in the genus 1 case, w = − 2 p1−q1+r1
2 and wn+1 = − 2 pn,1−qn,1+rn,1

2 for n ∈ Z.

3.2 Lax equation and invariants

In Section 3.1 we defined a birational automorphism of the fiber µ−1(f) ⊂ Mg, where f = f(x) is any
polynomial of degree at most 2g + 1, satisfying f(0) = 1. This map, given by (3.9), is not just defined on
µ−1(f), but is also as it stands a well-defined birational automorphism of Mg. In view of its relation to the
Volterra lattice (see Section 5), we call it the Volterra map, denoted Vg; explicitly,

Vg : (P,Q,R) 7→ (P̃, Q̃, R̃),

where the entries of the latter are given by (3.9); also, we can write Vg(Pn,Qn,Rn) = (Pn+1,Qn+1,Rn+1)
for all n ∈ Z. For a fixed initial triplet (P0,Q0,R0), the entire sequence of triplets (Pn,Qn,Rn)n∈Z in Mg is
called the orbit of Vg through (P0,Q0,R0). We also refer to a sequence of triplets that satisfies the recursion
relations (3.13) for all n as a solution. The equations (3.9) for the Volterra map, as well as the recursion
relations (3.13) for its iterates, are easily rewritten as discrete Lax equations; this fact has many important
consequences which will be worked out in what follows.
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Proposition 3.4. The Volterra map Vg can be written in the compact form

Vg : L(x)M(x) = M(x)L̃(x) , (3.20)

where L(x) is given by (3.3) and M(x) :=

(
1 −wx
1 0

)
, with w given by (3.10). As a consequence, the

2g + 1 polynomial functions H1, . . . ,H2g+1 on Mg, defined by

P(x)2 +Q(x)R(x) = 1 +

2g+1∑
i=1

Hix
i (3.21)

are invariants of the Volterra map, i.e. H̃i = Hi for i = 1, . . . , 2g + 1.

Proof. It is easily checked by direct computation that (3.9) and (3.20) are the same set of equations. Since

the latter says that L̃(x) is obtained from L(x) by conjugation with M(x), the spectrum of L(x) is preserved,
hence also all coefficients of the determinant of L(x), i.e., the coefficients Hi of µ(L(x)) = P(x)2+Q(x)R(x).

Upon iterating the Volterra map, as discussed in Section 3.1, starting from a generic triplet L0(x) of Mg

we get a sequence of triplets

Ln(x) :=

(
Pn(x) Rn(x)
Qn(x) −Pn(x)

)
of Mg. According to (3.20), a discrete Lax equation for this sequence is given by

Ln(x)Mn(x) = Mn(x)Ln+1(x) , (3.22)

where

Mn(x) :=

(
1 −wn+1x
1 0

)
, with wn+1 = −2pn,1 − qn,1 + rn,1

2
= −rn+1,1

2
. (3.23)

Example 3.5. When g = 1, respectively when g = 2, the invariants Hi can be computed from (3.21):

H1 = 2(p1 + r1) ,
H2 = p21 + q1r1 + 2r2 ,
H3 = q1r2 ,

H1 = 2(p1 + r1) ,
H2 = 2p2 + p21 + q1r1 + 2r2 ,
H3 = 2p1p2 + 2r3 + q1r2 + q2r1 ,
H4 = p22 + q1r3 + q2r2 ,
H5 = q2r3 .

(3.24)

The formulae on the left, which correspond to g = 1, can be obtained from the first three formulae on the
right by setting p2 = q2 = r3 = 0 in them.

3.3 The Volterra map and its reductions

The invariants Hi can be used to reduce the Volterra map to the submanifolds obtained by fixing the values
of some of these invariants. Here we will use this to express the Volterra map in terms of the variables wi
which we introduced when constructing the S-fraction (3.15).

We start from the linear coordinates p1, . . . , pg, q1, . . . , qg, r1, . . . , rg+1 of Mg, which we identify with
p0,1, . . . , p0,g, q0,1, . . . , q0,g, r0,1, . . . , r0,g+1. The latter functions are used to define recursively pn,1, . . . , pn,g,
qn,1, . . . , qn,g, rn,1, . . . , rn,g+1, as well as wn, for all n ∈ Z. Recall that this is done using (3.13) and (3.14).

In a first step, we will use a birational map to replace our linear coordinates for Mg by p0,1, . . . , p0,g and
some of its iterates pn,1, . . . pn,g. To do this, we fix the value of the invariant H1 = 2(p1+ r1) to an arbitrary
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constant c1. It means that we consider the hyperplane H1 = c1 of Mg, which denote by M c1
g . On it, we can

take p1, . . . , pg, q1, . . . , qg, r2, . . . , rg+1 as linear coordinates (we left out r1). The invariance of H1 implies
that 2(pn,1 + rn,1) = c1 which, combined with rn,1 = −2wn (see (3.14)), leads to

wn =
1

2

(
pn,1 −

c1
2

)
(3.25)

for all n ∈ Z. Using this and the first and last equations in (3.13), we can express the above variables in
terms of p0,1, . . . , p0,g and their iterates:

qn,k = pn+1,k + pn,k , and rn,k+1 = −wnqn−1,k =
1

2

(c1
2

− pn,1

)
(pn,k + pn−1,k) , (3.26)

where k = 1, . . . , g. Taking n = 0 we get

q0,k = p1,k + p0,k , and r0,k+1 =
1

2

(c1
2

− p0,1

)
(p0,k + p−1,k) , (3.27)

and we have expressed all coordinates of M c1
g in terms of the 3g coefficients of the polynomials P−1,P0

and P1. It is clear that the (3.27) can be solved rationally for p1,k and p−1,k so that (3.27) defines a
birational morphism from M c1

g to the space of triplets (P−1,P0,P1). For later use, we also express the
iterates of the Volterra map as a recursion relation on the polynomials Pn. To do this, we apply (3.13)
several times to get

Pn+2 = Qn+1(x)− Pn+1(x) =
2Pn(x)−Qn(x) +Rn(x)

−wn+1x
− Pn+1(x)

= −Pn+1(x) +
1

wn+1x
(Pn+1(x)− Pn(x)) +

wn
wn+1

(Pn(x) + Pn−1(x)) . (3.28)

We will now go one step further and show how the above coordinates p0,k, p1,k and p−1,k can be expressed
birationally in terms of p0,1 and some of its iterates pn,1. To do this we do a further reduction, namely we
also fix the value of each one of the invariants H2, . . . ,Hg to an arbitrary constant c2, . . . , cg and consider the
(possibly singular) subvariety ∩gi=1(Hi = ci) of Mg, which we denote by M c

g , so c stands now for (c1, . . . , cg).
Using (3.26), we get the following formula for the invariants Hi in terms of Pn,Pn+1 and Pn−1, valid for
any n ∈ Z:

1 +

2g+1∑
k=1

Hix
i = P2

n(x) +Qn(x)Rn(x) = P2
n(x)− wnx(Pn(x) + Pn+1(x))(Pn(x) + Pn−1(x)) ,

with wn given by (3.25). Upon comparing the coefficient of xk on both sides, for k = 1 we recover (3.25),
while for k = 2, . . . , g we recursively obtain pn,k in terms of p0,1 and its iterates, via the following formulae:

ck = 2pn,k +

k−1∑
i=1

pn,ipn,k−i − 2wn(2pn,k−1 + pn−1,k−1 + pn+1,k−1)

− wn

k−2∑
i=1

(pn,i + pn+1,i)(pn,k−1−i + pn−1,k−1−i) . (3.29)

Indeed, aside from the linear term in pn,k, the above equation contains only the variables pn,i and pn±1,i

with 1 ⩽ i < k. For k = 2 one gets

c2 = 2pn,2 + p2n,1 − 2wn(2pn,1 + pn−1,1 + pn+1,1) ,

from which it is clear that pn,2 depends (polynomially) only on pn−1,1, pn,1 and pn+1,1 (see (3.25) for the
formula for wn). An easy recursion on k using (3.29) shows that pn,k depends on pn−k+1,1, . . . , pn+k−1,1
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only. Taking n = −1, n = 0 and n = −1 we get that the coefficients of P−1,P0 and P1 depend only on
p−g,1, . . . , pg,1. Conversely, it is obvious from (3.28) that the coefficients of P2, and hence of all Pn with
n ⩾ 2, are rational functions of the coefficients of P−1,P0 and P1. This applies in particular to pn,1 with
n ⩾ 2. Using the inverse recursion, which yields a formula similar to (3.28) expressing Pn−2 in terms of
Pn+1,Pn and Pn−1 one obtains similarly that all pn,1 with n ∈ Z are rational functions of the coefficients of
P−1,P0 and P1. The upshot is that we have a birational map between M c

g and C2g+1, equipped with the
coordinates p−g,1, . . . , pg,1. In view of (3.25), which we now write as

pn,1 = 2wn +
c1
2
, (3.30)

it amounts to a birational map between M c
g and C2g+1

w where the latter denotes C2g+1, equipped with the
coordinates w−g, . . . , wg.

Hence we can use the birational map between M c
g and C2g+1

w to write the Volterra map on Mg, restricted
to M c

g , as a birational automorphism of C2g+1
w . Since we already gave in (3.28) the Volterra map and its

iterates in terms of the variables Pi, we set n = 0 therein, which gives the Volterra map itself, and take the
leading terms of both sides of (3.28):

w1(p2,g + p1,g) = w0(p0,g + p−1,g) . (3.31)

In view of the dependence of p−1,g, . . . , p2,g on the variables wi, (3.31) gives an equation for wg+1, which
appears linearly in it, and the birational automorphism (w−g, w1−g, . . . , wg) 7→ (w1−g, . . . , wg, wg+1) is the
Volterra map on C2g+1

w . Explicit expressions for it will be given in the examples below.

However, we can do a further reduction, restricting the Volterra map to the subvariety Hk = ck for
some k with g < k ⩽ 2g + 1. The relation

Hk(w−g, . . . , w0, . . . , wg) = ck

defines wg as a rational function of w−g, . . . , wg−1 because by inspection wg appears linearly in it (the same
applies to w−g). As we will see in the examples below, we can therefore take any of the invariants Hk, with
g < k ⩽ 2g + 1 which will give a birational automorphism which is an incarnation of the Volterra map Vg
on M c

g ∩ (Hk = ck); precisely it is conjugate, via the above birational map, to the Volterra map, restricted
to M c

g ∩ (Hk = ck), where values of c = (c1, . . . , cg) and ck are arbitrary.

Example 3.6. We first consider the case g = 1. In this case, we only need to consider k = 1 in (3.27),
which combined with (3.30) yields the following birational map between M c

g =M c1
g and C3

w:

p1 = p0,1 = 2w0 + c1/2 ,

q1 = q0,1 = p1,1 + p0,1 = 2(w0 + w1) + c1 ,

r1 = r0,1 = c1/2− p0,1 , (3.32)

r2 = r0,2 = −w0(p0,1 + p−1,1) = −2w0(w0 + w−1 + c1/2) .

In terms of the polynomials P,Q and R this can also be written as

P(x) = 1 + (2w0 + c1/2)x ,

Q(x) = 2 + 2(w1 + w0 + c1/2)x , (3.33)

R(x) = −2w0x(1 + (w0 + w−1 + c1/2)x) .

For g = 1 the formula (3.31) takes the form w1(p2,1 + p1,1) = w0(p0,1 + p−1,1), and can be expressed
immediately in terms of the quantities w−1, . . . , w2 since pn,1 = 2wn + c1/2, for all n:

w1(2w2 + 2w1 + c1) = w0(2w0 + 2w−1 + c1) . (3.34)
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It defines the Volterra map (w−1, w0, w1) 7→ (w0, w1, w2) on C3
w, being the same as equation (2) in [51], where

Svinin used continued fraction expansions to construct particular solutions; equation (3.34) also appears in
[24]. Substituting (3.33) in P2(x) +Q(x)R(x) = 1 +H1x+H2x

2 +H3x
3 we get the following formulas for

the invariants H2 and H3 of the Volterra map in terms of the variables w−1, w0 and w1:

H2 = −4w0(w1 + w0 + w−1 + c1/2) + c21/4 , (3.35)

H3 = −4w0(w1 + w0 + c1/2)(w0 + w−1 + c1/2) . (3.36)

We now fix c3 and consider the Volterra map on the subvariety H3 = c3 of M c
g . According to (3.36) we get

4w0(w1 + w0 + c1/2)(w0 + w−1 + c1/2) + c3 = 0 , (3.37)

which defines a 2D map (w−1, w0) 7→ (w0, w1), where w1 is computed from (3.37). It has H2 (from which w1

is eliminated using (3.37)) as invariant, given by

H2 =
c3

w0 + w−1 + c1/2
− 4w0w−1 +

c21
4
. (3.38)

We next fix c2 and consider the Volterra map on the subvariety H2 = c2 of M c
1 . From (3.35) we now get

4w0(w1 + w0 + w−1 + c1/2)− c21/4 + c2 = 0 . (3.39)

It defines a 2D map (w−1, w0) 7→ (w0, w1) with H3 as invariant, which (after using (3.39)) to eliminate w1)
takes the form

H3 =
(
w0 + w−1 +

c1
2

)(
4w0w−1 + c2 −

c21
4

)
. (3.40)

To finish the g = 1 example we will present a slightly more involved reduction, leading to a map which
is closely related to Somos-5. To do this, we first compare two different ways of writing of the genus 1 curve
y2 = f(x), which lead to an alternative generating set of invariants of the recursion. If we write

y2 = 1 + c1x+ c2x
2 + c3x

3 = (1− c′1x)(1− c′1x+ 4c′2x
2)− 4c′3x

3 , (3.41)

then the constants ci and c
′
i are related by

c1 = −2c′1 ,

c2 = 4c′2 + c′1
2
,

c3 = −4(c′1c
′
2 + c′3) ,

c′1 = −c1/2 ,

c′2 = 1
4

(
c2 − c21

4

)
,

c′3 = c1
8

(
c2 − c21

4

)
− c3

4 .

(3.42)

Next, if we write the recursion relations (3.37) and (3.39) in terms of the constants c′i using (3.42), we get
respectively

w0 (w1 + w0 − c′1) (w0 + w−1 − c′1) = c′1c
′
2 + c′3 , (3.43)

w0 (w1 + w0 + w−1 − c′1) + c′2 = 0 . (3.44)

Notice that c′1 now appears linearly in (3.44), so we can easily eliminate c′1 between (3.43) and (3.44), which
yields the following simple relation

w1w−1 = c′2 +
c′3
w0

(3.45)

on the generic level surface (H ′
2 = c′2) ∩ ((H ′

3 = c′3), which is also birational with C2. It defines a 2D map
(w−1, w0) 7→ (w0, w1) which is a (multiplicative) QRT map with c′2 and c′3 as parameters. To get an invariant
for this map, we eliminate w1 between (3.43) and (3.44), to get

c′1w0w−1 = (w0 + w−1)w0w−1 + c′2(w0 + w−1) + c′3. (3.46)
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It leads upon division by w0w−1 to the following explicit formula for the invariant:

H ′
1 = w0 + w−1 + c′2

(
1

w0
+

1

w−1

)
+

c′3
w0w−1

. (3.47)

Also, the tau function substitution

wn =
τnτn+3

τn+1τn+2

in (3.45), which we now write in the form of the recursion relation wn+1wn−1 = c′2+c
′
3/wn, yields the general

form of the Somos-5 recursion relation, namely

τn+5τn = c′2τn+4τn+1 + c′3τn+3τn+2 , n ∈ Z . (3.48)

In our previous work [24] we showed how to solve the initial value problem for (3.48) explicitly in terms of
the Weierstrass sigma function, but in Section 3.4 below we will show how it can also be solved in terms of
Hankel determinants, using the S-fraction (3.15).

Note that, apart from (3.45), the maps (3.37) and (3.39) are also examples of symmetric QRT maps [44],
and the orbits of all three maps can be identified by restricting to particular level sets of their invariants,
which is a common feature of families of these maps [29]. To see how the orbits of these different 2D maps
coincide, it is necessary to identify the parameters and values of the invariants (3.38), (3.40) and (3.47) in
an appropriate way, from which it can be seen that H2, H3 and H ′

1 define an identical biquadratic curve
in the (w−1, w0) plane, namely (3.46), whose coefficients can be rewritten in terms of c1, c2, c3 using (3.42).
Moreover, this curve is birationally equivalent to the Weierstrass cubic (3.41).

Example 3.7. Using (3.31) when g = 2, on M c
2 (which is birational to C5) the formula for the Volterra

map takes the form
w1(p2,2 + p1,2) = w0(p0,2 + p−1,2) , (3.49)

so we need to express pn,2 for n = −1, . . . , 2 in terms of the variables wi. To do this, we use (3.29), keeping
in mind that pn,1 = 2wn + c1/2 for all n:

2pn,2 = −p2n,1 + 2wn(pn+1,1 + 2pn,1 + pn−1,1) + c2

= −
(
2wn +

c1
2

)2

+ 4wn(wn+1 + 2wn + wn−1 + c1) + c2

= 4wn

(
wn+1 + wn + wn−1 +

c1
2

)
+ c2 −

c21
4
. (3.50)

Substituted in (3.49) and slightly reordering the terms, we get the following symmetric relation:

w1

(
2w2(w3 + w2) + 2w1(w1 + w0) + 4w2w1 + (w2 + w1)c1 + c2 −

c21
4

)
= w0

(
2w0(w1 + w0) + 2w−1(w−1 + w−2) + 4w0w−1 + (w0 + w−1)c1 + c2 −

c21
4

)
. (3.51)

This defines a 5D map (w−2, w−1, w0, w1, w2) 7→ (w−1, w0, w1, w2, w3), where w3 is computed from (3.51).
Using the first equation in (3.9), the above formulae for pn,1 and pn,2 lead at once to the following expressions
for the coefficients of Qn:

qn,1 = 2wn+1 + 2wn + c1 ,

qn,2 = 2(wnwn−1 + wn+1wn+2) + 2(wn+1 + wn)
2 + (wn+1 + wn)c1 + c2 −

c21
4
. (3.52)

The formulae for rn,k then follow from rn,1 = −2wn and rn,k = −wnqn−1,k−1 for k > 1, by applying the third
equation in (3.9). With these formulae we can express the invariants H3, . . . ,H5 in terms of the variables
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wi. We write this out for H3, in order to find a recursion relation of order 4. According to (3.24), and using
the above expressions for rn,k,

H3 = 2p1p2 + 2r3 + q1r2 + q2r1 = p0,1p0,2 + 2r0,3 + q0,1r0,2 + q0,2r0,1

= 2p0,1p0,2 − w0(q0,1q−1,1 + 2q−1,2 + 2q0,2) ,

which can be written completely in terms of the variables wi using (3.50), (3.52) and the fundamental formula
pn,1 = 2wn+ c1/2. After some simplification, we get on the hypersurface H3 = c3, which is birational to C4,

w2w1w0 + w0w−1w−2 + 2w2
0(w1 + w−1) + w3

0 + w0(w
2
1 + w1w−1 + w2

−1)

+
c1
2
w0(w1 + w0 + w−1) +

1

2

(
c2 −

c21
4

)
w0 +

c3
4

− c1c2
8

+
c31
32

= 0 .

This is exactly the equation (1.2) defining the 4D map (P.iv), after setting n = −2 and

ν =
c1
2
, a =

c3
4

− c1c2
8

+
c31
32

, b =
1

2

(
c2 −

c21
4

)
. (3.53)

The invariants H4 and H5 yield the invariants for (P.iv), given in (1.3) and (1.4).

3.4 Hankel determinant solutions

The function F0 in (3.15) that defines the S-fraction admits a series expansion in x around (0, 1) ∈ Γf that
we shall use to give explicit solutions to the recurrence relation defined by the Volterra map. For a generic
point (P,Q,R) in µ−1(f), with f as in (3.5), we introduce new variables s1, s2, . . . by writing

1−
w1x

1−
w2x

1−
w3x

1− · · ·

= 1−
∞∑
j=1

sjx
j = 1− S(x) , (3.54)

where the latter equality defines the power series S(x), which can be regarded as a generating function for
the moments sj . The moments can be defined from the integral

sj =
1

2πi

∮
(1− F0)

xj+1
dx,

for a sufficiently small contour around the point (0, 1) on Γf , and this leads to a linear functional (defined
on polynomials in x−1), and the connection with the classical theory of orthogonal polynomials [46], but we
shall not pursue this further here. In view of (3.15), F0 = 1 − S(x) in the sense that the latter is a Taylor
series expansion of the rational function F0 at (0, 1). It was shown by Stieltjes [48] that the variables wi can
be expressed as Hankel determinants of the variables si. Precisely, he showed that

wn =
∆n−3∆n

∆n−2∆n−1
for n ⩾ 1 , (3.55)

where ∆2k−1 = det(si+j−1)i,j=1,...,k and ∆2k = det(si+j)i,j=1,...,k, for k ⩾ 1, that is,

∆2k−1 =

∣∣∣∣∣∣∣∣∣∣
s1 s2 · · · sk

s2 . .
. ...

... . .
. ...

sk · · · · · · s2k−1

∣∣∣∣∣∣∣∣∣∣
and ∆2k =

∣∣∣∣∣∣∣∣∣∣
s2 s3 · · · sk+1

s3 . .
. ...

... . .
. ...

sk+1 · · · · · · s2k

∣∣∣∣∣∣∣∣∣∣
. (3.56)
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Also, by definition, ∆−2 = ∆−1 = ∆0 = 1. For example, w1 = s1, w2 = s2/s1, w3 = (s1s3 − s22)/(s1s2), and
so on. It is clear from (3.54) that, conversely, si can be expressed as a polynomial in w1, . . . , wi, for example
s1 = w1, s2 = w1w2, s3 = w1w2(w2 + w3), and so on. (While these expressions can be found by expanding
geometric series, a systematic method using continuants is presented in Section 3.5.)

Theorem 3.8. The terms wn, n ⩾ 1, of the recurrence sequence defined by the Volterra map on µ−1(f) can
be written as

wn =
∆n−3∆n

∆n−2∆n−1
,

where the entries of the Hankel matrices satisfy the recursion relation

sj =

g∑
k=1

(
pk − qk

)
sj−k +

j−1∑
i=1

sisj−i +
1

2

g∑
k=1

qk

j−k−1∑
i=1

sisj−k−i, j ⩾ g + 2 . (3.57)

The initial values s1, s2, . . . , sg+1 and the coefficients for the recursion (3.57) are provided by a generic triple
(P,Q,R) ∈ µ−1(f).

Proof. In order to prove the recursion formula (3.57), we will derive a quadratic formula for S(x) = 1− F0,
introduced in (3.54). We use (3.15) to write

y = −P(x) + F0Q(x) = −P(x) + (1− S(x))Q(x) , (3.58)

which we substitute in
y2 = f(x) = P(x)2 +Q(x)R(x) (3.59)

to get the following quadratic equation for S(x):(
Q(x)− P(x)

)
S(x)− 1

2
Q(x)S2(x) + P(x)− 1

2
Q(x) +

1

2
R(x) = 0 . (3.60)

Substituting the power series for S(x) into the quadratic, as well as the polynomials P,Q,R, the coefficients
of xj for 1 ⩽ j ⩽ g + 1 allow the g + 1 initial values s1, . . . , sg+1 to be determined from these polynomials.
Then, upon taking the coefficient of xj for j ⩾ g + 2, the recursion relation (3.57) is obtained directly.
Observe that the number of initial values plus independent coefficients appearing linearly in the recursion is
g + 1 + 2g = 3g + 1 =dimMg.

As we will see in the examples, it is often more practical not to fix the curve y2 = f(x), i.e. not to fix
the values of all invariants, but only fix some of them and take w0, . . . , wg as extra initial conditions.

Example 3.9. We specialize the above results to g = 1, fixing arbitrary constants c1 and c2 and taking the
Volterra map on the surface H1 = c1, H2 = c2, as in one of the reductions considered in Example 3.6. For
the recursion (3.57) we can take p1, q1 as initial conditions, since given p1 and q1, specifying the values of
H1 and H2 is equivalent to specifying the values of r1 and r2 (see the explicit formulas for H1 and H2 in the
left column of (3.24)). It follows from (3.32) that

p1 − q1 = −2w1 −
c1
2
, and q1 = 2

(
w1 + w0 +

c1
2

)
= −2w2 +

1

2w1

(
c21
4

− c2

)
,

where we obtained the last equality by using the recursion relation (3.39), shifted by 1, to replace w0 by w2.
Substituted in (3.57), we get the following recursive formula for sj (j ⩾ 3) in terms of w1, w2, which we can
take as initial conditions, instead of p1 and q1:

sj =
(
−2w1 −

c1
2

)
sj−1 +

j−1∑
i=1

sisj−i +

(
1

4w1

(
c21
4

− c2

)
− w2

) j−2∑
i=1

sisj−1−i . (3.61)

20

Page 20 of 52AUTHOR SUBMITTED MANUSCRIPT - draft

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Then specifying the two initial values w1, w2 fixes the initial conditions s1, s2 for the above, as s1 = w1 and
s2 = w1w2. Notice that sj is a polynomial of degree j in w1, w2, with w1|sj for all j.

As a concrete example, consider the curve y2 = 1 − 10x + 29x2 − 24x3, with initial conditions s1 = 1,
s2 = 2 (or, equivalently, w1 = 1, w2 = 2). Since c1 = −10 and c2 = 29, the recursion (3.61) becomes

sj = 3sj−1 +

j−1∑
i=1

sisj−i − 3

j−2∑
i=1

sisj−i−1, j ⩾ 3,

which generates the sequence

(sj)j⩾1 : 1, 2, 7, 27, 109, 456, 1969, 8746, 39825, 185266, . . . ,

producing ∆1 = 1, ∆2 = 2,

∆3 =

∣∣∣∣ 1 2
2 7

∣∣∣∣ = 3, ∆4 =

∣∣∣∣ 2 7
7 27

∣∣∣∣ = 5, ∆5 =

∣∣∣∣∣∣
1 2 7
2 7 27
7 27 109

∣∣∣∣∣∣ = 11, ∆6 =

∣∣∣∣∣∣
2 7 27
7 27 109
27 109 456

∣∣∣∣∣∣ = 37, . . . ,

which extends symmetrically to all n ∈ Z to produce the original Somos-5 sequence [39],

. . . , 3, 2, 1, 1, 1, 1, 1, 2, 3, 5, 11, 37, 83, 274, 1217, 6161, 22833, . . . ,

generated by the bilinear recurrence

∆n+5∆n = ∆n+4∆n+1 +∆n+3∆n+2. (3.62)

It is a particular case of (3.48) with c′2 = c′3 = 1, where the latter are computed from c1 = −10, c2 = 29,
c3 = −24, using (3.42).

Remark 3.10. Note that Hankel determinant formulae for Somos-5 were previously obtained in the work of
Chang, Hu and Xin, using a bilinear Bäcklund transformation for Somos-4. We will return to the connection
with Somos-4 in Section 5, but for now we just point out that the Hankel determinant expressions found
in [8] are more complicated than the above, because two different moment sequences are required for the
terms with even/odd indices. In particular, for the original Somos-5 sequence, there are two sequences
of moments, namely (s̄j)j⩾0 : 1,−1, 4,−8, 25,−65, 197,−571, 1753,−5351, 16746,−52626, . . ., and (ŝj)j⩾0 :
2,−1, 3,−1, 12, 2, 61, 39, 352, 374, 2210, 3162, . . ., which are defined by

s̄0 = 1, s̄1 = −1, s̄j+1 = −s̄j + 2s̄j−1 +

j−1∑
i=0

s̄is̄j−i−1, and ŝ0 = 2, ŝ1 = −1, ŝj+1 = ŝj +

j−1∑
i=0

ŝiŝj−i−1,

respectively, where the recursions hold for j ≥ 1, and (with the indexing convention of Theorem 1.2 in [8])
the terms of the Somos-5 sequence [39] are then given by S0 = 1,S1 = 1,S2 = s̄0 = 1,S3 = ŝ0 = 2, and

S4 =

∣∣∣∣ 1 −1
−1 4

∣∣∣∣ = 3, S5 =

∣∣∣∣ 2 −1
−1 3

∣∣∣∣ = 5, S6 =

∣∣∣∣∣∣
1 −1 4
−1 4 −8
4 −8 25

∣∣∣∣∣∣ = 11, S7 =

∣∣∣∣∣∣
2 −1 3
−1 3 −1
3 −1 12

∣∣∣∣∣∣ = 37, . . . ,

which are not related to the determinants in Example 3.9 in a straightforward manner.

Example 3.11. We now specialize the above results to g = 2, thereby continuing Example 3.7. From
(3.53) it is clear that fixing the values c1, c2, c3 is equivalent to specifying the parameters a, b and ν, which
we fix, since these are the coefficients in the recurrence relation (P.iv), and we can take w0, w1, w2, w3 (or
w1, w2, w3, w4) as initial data for the latter. We now have

s1 = w1, s2 = w1w2, s3 = w1w2(w2 + w3),
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providing the 3 initial values for the recursion (3.57), which takes the form

sj = α̂ sj−1 + β̂ sj−2 +

j−1∑
i=1

sisj−i + γ̂

j−2∑
i=1

sisj−i−1 + δ̂

j−3∑
i=1

sisj−i−2 , j ⩾ 4 . (3.63)

While s1, s2, s3 are determined by w1, w2, w3 only, w0 and a, b, ν are required to find the coefficients α̂, . . . , δ̂,
which are computed using p1 = 2w0 + ν (recall that ν = c1/2) and (3.50), (3.52) for n = 1, to give

α̂ = p1 − q1 = −2w1 − ν ,

β̂ = p2 − q2 = −2w1(w2 + w1 + w0 + ν)− b ,

γ̂ =
1

2
q1 = w1 + w0 + ν , (3.64)

δ̂ =
1

2
q2 = w−1w0 + w1w2 + (w0 + w1)

2 + ν(w0 + w1) + b

= −
(
w2w3 + w1w2 + w2

2 + w0w2 + νw2 +
a

w1

)
,

where, in the last equality, we have used the recurrence relation (1.2) to replace w−1 by w3. If desired, one
can apply (1.2) once again to replace w0 by w4 in the above expressions, but we have not done this.

As a particular numerical example, we take the rational orbit (2.1) of (P.iv) considered in Section 2.
Upon fixing w0 = w1 = w2 = w3 = 1 and ν = 3, a = 5, b = 7, we see that for j ≥ 4 the recursion (3.63)
becomes

sj = −5 sj−1 − 19 sj−2 +

j−1∑
i=1

sisj−i + 5

j−2∑
i=1

sisj−i−1 − 12

j−3∑
i=1

sisj−i−2 ,

and the three initial values s1 = s2 = 1, s3 = 2 lead to the following moment sequence and Hankel
determinants:

(sj)j⩾1 : 1, 1, 2,−26, 45, 11,−116, 553, 1151,−26727, 108897,−169157,−310959, 3004412,−4722005, . . . ,

∆1 =1, ∆2 = 1, ∆3 =

∣∣∣∣ 1 1
1 2

∣∣∣∣ = 1, ∆4 =

∣∣∣∣ 1 2
2 −26

∣∣∣∣ = −30, ∆5 =

∣∣∣∣∣∣
1 1 2
1 2 −26
2 −26 45

∣∣∣∣∣∣ = −743,

∆6 =

∣∣∣∣∣∣
1 2 −26
2 −26 45

−26 45 11

∣∣∣∣∣∣ = 10541, ∆7 =

∣∣∣∣∣∣∣∣
1 1 2 −26
1 2 −26 45
2 −26 45 11

−26 45 11 −116

∣∣∣∣∣∣∣∣ = 127318, . . . .

This reproduces the sequence of tau functions in Example 2.2, if we identify ∆n−3 = τn in (2.7).

The preceding explicit form of the recursion for the entries of the Hankel determinants when g = 2 yields
a simple proof of the Laurent property for (2.4).

Proof of Proposition 2.3 (reprise): For n ⩾ 1 we have

wn =
τnτn+3

τn+1τn+2
=

∆n−3∆n

∆n−2∆n−1
,

where τn satisfies (2.4). Hence the tau functions are given by Hankel determinants, up to a shift of index
and a gauge transformation of the form (2.6), with a different scaling for even/odd n. Comparing with the
values ∆−2 = ∆−1 = ∆0 = 1, we see that the relation between the two sequences is

τ2k+1 = τ1

(
τ3
τ1

)k
∆2k−2, τ2k+2 =

τ1τ2
τ3

(
τ3
τ1

)k+1

∆2k−1 (3.65)
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for k ⩾ 0. Recall that R denotes the ring formed of Laurent polynomials in τ2, τ3, τ4 and polynomials in
τ0, τ1, τ5, τ6 with coefficients in Z[a, b, ν]. Upon rewriting the formulae (3.64) for the coefficients in (3.63) in

terms of the 7 initial tau functions, we see that α̂, β̂ ∈ R, but (due to the presence of terms involving w0

and 1/w1), γ̂ and δ̂ both have τ1 appearing in the denominator, so instead γ̂, δ̂ ∈ τ−1
1 R. However, the three

initial values are

s1 =
τ1τ4
τ2τ3

, s2 =
τ1τ5
τ23

, s3 = τ1

(
τ2τ

2
5

τ33 τ4
+

τ6
τ3τ4

)
,

so sj ∈ τ1R for j = 1, 2, 3. Then by induction, since γ̂ and δ̂ appear in front of terms of degree 2 in si in the
recursion (3.63), it follows that sj ∈ τ1R for all j ⩾ 1. Then since ∆2k−1 and ∆2k are k× k determinants, a
factor of τ1 can be taken out of each row (or column), so they are each given by an overall factor of τk1 times
an element of R. Thus the powers of τ1 exactly cancel in (3.65), and hence τn ∈ R for all n ⩾ 1.

Remark 3.12. Hankel determinant formula for negative indices: As was previously noted, the
Laurent property for negative indices n follows automatically from the birationality and reversing symmetry
of (2.4), but it can also be shown directly from an appropriate extension of (3.65) to k < 0. In fact, for any
g there is a version of the Hankel determinant formula (3.55) which is valid for n ⩽ 0. Indeed, the Volterra
map arises from the S-fraction expansion (3.15) of the function F0, based on the power series S(x), with
F0 = 1 − S, as in (3.54), but more precisely this is the expansion around the point (0, 1) on the curve Γf
given by (3.5), with x being a local parameter. The inverse Volterra map arises from another S-fraction,
associated with a power series S∗(x), corresponding to the expansion of the same function F0 around the
point (0,−1) ∈ Γf , that is

F0 =
w0x

1−
w−1x

1−
w−2x

1− · · ·

=
∞∑
j=1

s∗jx
j =: S∗(x) . (3.66)

Then the extension of (3.55) to non-positive values of the index is

wn =
∆∗

−n−2∆
∗
−n+1

∆∗
−n∆

∗
−n−1

for n ⩽ 0 , (3.67)

where ∆∗
2k−1 = det(s∗i+j−1)i,j=1,...,k and ∆∗

2k = det(s∗i+j)i,j=1,...,k for k ⩾ 1, with ∆∗
−2 = ∆∗

−1 = ∆∗
0 = 1.

Mutatis mutandis, this is proved in the same way as Theorem 3.8, and the moments s∗j satisfy another
recursion of the form (3.57). The two sets of Hankel determinants combine to produce a single sequence of
tau functions (τn)n∈Z, consistently defined by taking τn = ∆n−3 for n ⩾ 1, and τn = ∆∗

−n+1 for n ⩽ 3.

3.5 The birational map Mg → C3g+1
w

Elaborating further on the S-fraction of F = y+P(x)
Q(x) , we construct a birational map between Mg and C3g+1

w ,

where the latter stands for C3g+1 equipped with w1, . . . , w3g+1 as affine coordinates. We may call it the
unreduced birational map, in view of the birational mapM c

g → C2g+1
w which we obtained by reduction (fixing

c = (c1, . . . , cg)). This unreduced map turns out to be less convenient for deriving the Volterra map in the
wi coordinates, but it is nevertheless useful for obtaining abstract results in these coordinates.

We start from the equation (3.60), which we can view as a linear relation for P(x),Q(x) and R(x). It
amounts to an infinite linear system of equations for the coefficients p1, . . . , pg, q1, . . . , qg, r1, . . . , rg+1 of these
polynomials, given in terms of the coefficients sj of the power series S(x) defined in (3.54). We show that its
solution can be expressed rationally in terms of s1, . . . , s3g+1, and hence in terms of w1, . . . , w3g+1, yielding
the birational map. To do this, we investigate the first 3g+1 equations only, namely the ones corresponding
to the coefficient of xj in (3.60). For convenience, we set

ρk :=
∑
i+j=k

sisj ,
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for k ⩾ 2, so that S2 =
∑
i+j=k sisjx

k =
∑∞
k=2 ρkx

k, and then consider the terms of (3.60) at each order in

x. At leading order, the constant term cancels, and the coefficients of x, x2, . . . , xg+1 can be used to obtain
r1, . . . , rg+1 in terms of p1, . . . , pg, q1, . . . , qg, and sj for 1 ⩽ j ⩽ g + 1, so it is sufficient to show that we can
solve the coefficients of xj with g + 2 ⩽ j ⩽ 3g + 1 for p1, . . . , pg, q1, . . . , qg in terms of s1, . . . , s3g+1. For
each such j, the equation at order xj in (3.60) is given by (3.57), which we can rewrite as

g∑
i=1

sj−i(pi − qi) +
1

2

g∑
i=1

ρj−iqi = sj − ρj , for g + 2 ⩽ j ⩽ 3g + 1 .

Viewed as a linear system in the 2g variables pj − qj and qj/2, with i = 1, . . . , g, the associated matrix takes
the 2× 2 block form, each block being a Toeplitz matrix,

(
Tg(s, g) Tg(ρ, g)
Tg(s, 2g) Tg(ρ, 2g)

)
where Tg(σ, k) :=


σk+1 σk . . . σk−g+1

σk+2 σk+1
. . .

...
. . .

. . . σk
σk+g σk+2 σk+1

 (3.68)

Our claim that p1, . . . , pg, q1, . . . , qg can be solved rationally in terms of s1, . . . , s3g+1 then follows from the
fact that its determinant is non-zero, which is shown in the following lemma:

Lemma 3.13. The block 2× 2 matrix in (3.68) is non-degenerate.

Proof. Since the entries of the matrix are polynomials in s1, . . . , s3g+1, so is their determinant. To show that
the determinant is non-zero for generic values of the si, it is therefore sufficient to show it for one particular
set of values of the si. We pick

si :=

 i 1 ⩽ i ⩽ g ,
1/4 1 ⩽ i = g + 1 ,
0 g + 1 ⩽ i ⩽ 3g + 1 .

Then Tg(s, g) is upper triangular, with all diagonal entries 1/4, while Tg(s, 2g) is the zero matrix. So we
only need to show that

Vg := Tg(ρ, 2g) =



1 2 3 . . . . . . g
1/4 1 2 3 . . . g − 1
0 1/4 1 2 . . . g − 2
...

. . .
. . .

. . .
. . .

...
... 0 1/4 1 2
0 . . . . . . 0 1/4 1


is non-singular. We show by complete induction that detVg = 22−2gg for all g ⩾ 1. The formula being true
for g = 1, we assume it to be true for all values smaller than g and compute by successive development with
respect to the first column, to find that detVg equals

detVg−1 −
1

4

∣∣∣∣∣∣∣∣∣∣∣∣

2 3 4 . . . g
1/4 1 2 . . . g − 2

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 2
0 . . . 0 1/4 1

∣∣∣∣∣∣∣∣∣∣∣∣
= detVg−1 −

1

4
× 2 detVg−2 +

(
1

4

)2

det

∣∣∣∣∣∣∣∣∣∣∣∣

3 4 5 . . . g
1/4 1 2 . . . g − 3

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 2
0 . . . 0 1/4 1

∣∣∣∣∣∣∣∣∣∣∣∣
,
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and hence (defining detV0 := 1 for convenience)

detVg =

g∑
i=1

(
−1

4

)i−1

idetVg−i =

(
1

4

)g−2 g−1∑
i=1

(−1)i−1i(g − i) + (−1)g−122−2gg ,

where we have used the induction hypothesis in the last step. It remains to be shown that

g−1∑
i=1

(−1)i−1i(g − i) =

{
g/2 when g is even,
0 when g is odd.

The even case follows from an easy induction, while the odd case is completely trivial by symmetry.

Example 3.14. The simplest example is the case of g = 1. Then 3g + 1 = 4. The birational map between
s1, . . . , s4 and w1, . . . , w4 is given by

s1 = w1 , s2 = w1w2 , s3 = w1w2(w2 + w3) , s4 = w1w2

(
(w2 + w3)

2 + w3w4

)
. (3.69)

The linear system for p1, q1, r1, r2 then corresponds to the coefficients of xj in (3.60) with j = 1, . . . , 4. They
are explicitly given by

q1 − 2p1 − 2s1 − r1 = 0 ,

2p1s1 − 2q1s1 − 2s2 + 2ρ2 − r2 = 0 ,

2ρ3 − 2s3 + (ρ2 − 2s2)q1 + 2s2p1 = 0 , (3.70)

2ρ4 − 2s4 + (ρ3 − 2s3)q1 + 2s3p1 = 0 .

As in the general case, we first solve the last 2g = 2 equations for p1, q1, which gives, upon writing each ρk
in terms of the sj ,

p1 = 2
−3s21s

2
2 − 2s32 + 2(s1s2 + s31 − s3)s3 + (2s2 − s21)s4

s1(2s22 − s1s3)
= −w1 − w2 + w3 +

w3(w1 − w4)(w1 − 2w2)

w1(w2 − w3)
,

q1 = 2
s2s4 − s23 − s32
s1(2s22 − s1s3)

= −2w2

(
1 +

w3(w1 − w4)

w1(w2 − w3)

)
,

where we have used (3.69) to write the formulae in terms of w1, . . . , w4. The first two equations can now be
solved for r1 and r2, leading to the following expressions:

r1 = −2w3

(
1 +

(w1 − w2)(w1 − w4)

w1(w2 − w3)

)
, r2 = 2w1w3

(
1 +

w1 − w4

w2 − w3

)
.

Note also that in this case the unreduced version of the Volterra map is the birational map of C4
w defined by

(w1, w2, w3, w4) 7→ (w2, w3, w4, w5) ,

w5w4 + w2
4 − w2

3 − w3w2

w4 − w3
+
w1w2 + w2

2 − w2
3 − w3w4

w3 − w2
= 0 , (3.71)

which (after replacing each wi → wi−2) is the relation obtained by eliminating c1 from (3.34).

For any g, we can describe an explicit algorithmic procedure for obtaining the exact expressions for
the birational map between s1, . . . , s3g+1 and w1, . . . , w3g+1. One way round, this is given by the Hankel
determinant formula (3.55), but to describe the inverse map more explicitly we must recall how this relates
to the approximation problem originally considered by Stieltjes [48], as well as other classical results on
convergents of continued fractions in terms of continuants (for a concise review of the latter, see [16]).

25

Page 25 of 52 AUTHOR SUBMITTED MANUSCRIPT - draft

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



The convergents of the S-fraction (3.15) are the sequence of rational functions of x obtained by truncating
the continued fraction at some finite line n, which approximate the series for F0 = 1− S exactly up to and
including the coefficient of xn, that is

Fn(x) := 1−
w1x

1−
w2x

1−
· · ·

1− wnx

= 1− S(x) +O(xn+1), (3.72)

Thus, for the first few convergents we have

F0 = 1, F1 = 1− w1x, F2 =
1− (w1 + w2)x

1− w2x
, F3 =

1− (w1 + w2 + w3)x+ w1w3x
2

1− (w2 + w3)x
,

and so on. By the usual correspondence between convergents and 2×2 matrices, we see that the monodromy
product over the conjugation matrices (3.23) appearing in the discrete Lax equation is given by

Φn+1 := M1(x)M2(x) · · ·Mn+1(x) =

(
Kn+1(w1, . . . , wn;x) −wnxKn(w1, . . . , wn−1;x)
Kn(w2, . . . , wn;x) −wnxKn−1(w2, . . . , wn−1;x)

)
, (3.73)

with the nth convergent being the ratio of the entries in the first column, that is

Fn(x) =
Kn+1(w1, . . . , wn;x)

Kn(w2, . . . , wn;x)
,

where the polynomial Kn is a continuant of size n, that is

Kn(w1, . . . , wn−1;x) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 . . . 0

−w1x 1 −1
. . .

...

0 −w2x 1
. . . 0

...
. . .

. . . −1
0 . . . 0 −wn−1x 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

From (3.73), the continuants are generated recursively from the linear relation Φn+1 = ΦnMn+1, starting
from Φ0 = 1 (the identity matrix). Hence, by replacing the series for F0 = 1− S in (3.72) by its truncation
at the nth term, then multiplying by Kn(w2, . . . , wn;x) on both sides, we find the relation(

1−
n∑
j=1

sjx
j
)
Kn(w2, . . . , wn;x) = Kn+1(w1, . . . , wn;x) +O(xn+1),

and comparing the coefficients of xj for j = 1, . . . , n allows s1, s2, . . . , sn to be calculated recursively as
polynomial expressions in w1, . . . , wn. For instance, when n = 4 the expressions (3.69) are obtained from
the numerator and denominator of

F4 =
1− (w1 + w2 + w3 + w4)x+ (w1w3 + w1w4 + w2w4)x

2

1− (w2 + w3 + w4)x+ w2w4x2
.

Observe that these expressions are universal, in the sense that they depend only on the structure of the
S-fraction, so that each sn is always given by the same polynomial in wj for 1 ⩽ j ⩽ n, independent of g.

For g ⩾ 2, the corresponding formulae for the coefficients of P(x),Q(x),R(x) in terms of w1, . . . , w3g+1

become very complicated, and we do not have a compact way to write them. However, we will not need the
explicit form of these formulae in what follows, even when dealing with the example of genus 2.
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4 Discrete integrability

We show in this section that the map (P.iv) is a discrete a.c.i. system, in a sense which will be defined below.
To do this, we will first show that the affine space Mg which was constructed in the previous section has
the same integrability properties as the odd and even Mumford systems (see [38, 53]): the invariants Hi

of the Volterra map are in involution with respect to a large family of compatible Poisson structures and
their generic level sets are affine parts of Jacobi varieties. We then show that the Volterra map is a Poisson
map with respect to these Poisson structures and that it is a translation on the latter complex tori. In the
Appendix (Section 7) we further show the precise relation between the Mumford-like system, introduced
here, and the even Mumford system.

4.1 Compatible Poisson structures for the Mumford-like system

Recall that g is a fixed positive integer, and Mg denotes the affine space defined by

Mg :=

(P(x),Q(x),R(x)) ∈ C[x]3
∣∣∣ degP(x) ⩽ g , P(0) = 1

degQ(x) ⩽ g , Q(0) = 2
degR(x) ⩽ g + 1 , R(0) = 0

 , (4.1)

with the 3g + 1 non-constant coefficients of P, Q and R being linear coordinates on Mg.

We first introduce a g + 1-dimensional family of compatible Poisson structures on Mg. The family is
parametrized by the g+1-dimensional vector space of polynomials ϕ ∈ C[x] of degree at most g+1, vanishing
at 0, so ϕ(0) = 0. For such a polynomial ϕ, the corresponding Poisson structure is most naturally written
by viewing P, Q and R as generating functions, and is defined by

{P(x),P(y)}ϕ = {Q(x),Q(y)}ϕ = 0 , {R(x),R(y)}ϕ = ϕ(y)R(x)− ϕ(x)R(y) ,

{P(x),Q(y)}ϕ =
ϕ(x)yQ(y)− ϕ(y)xQ(x)

x− y
, {P(x),R(y)}ϕ = −yϕ(x)R(y)− ϕ(y)R(x)

x− y
, (4.2)

{Q(x),R(y)}ϕ = 2y
ϕ(x)P(y)− ϕ(y)P(x)

x− y
− ϕ(y)Q(x) .

Of course, one needs to verify that the above definition is coherent, in the sense that the right-hand side of
each of these formulae is indeed a polynomial in x and y, and also that the right-hand side does not contain
any monomials xiyj which are absent in the left-hand side. For example, {P(x),Q(y)}ϕ is a polynomial in
x, y with only non-zero coefficients of xiyj when 1 ⩽ i, j ⩽ g, while ϕ(x)yQ(y)−ϕ(y)xQ(x) is clearly divisible
by x − y and the quotient has only non-zero coefficients of xiyj in the same range. The same argument
applies to the other formulae. Moreover, we need to verify that {· , ·}ϕ is a Poisson bracket, i.e., that it
satisfies the Jacobi identity. This follows easily from the formulae (4.2). For example,

{
((((((({Q(x),Q(y)}ϕ,R(z)

}ϕ
+
{
{Q(y),R(z)}ϕ ,Q(x)

}ϕ
+

{
{R(z),Q(x)}ϕ ,Q(y)

}ϕ
=

{
2z
ϕ(y)P(z)− ϕ(z)P(y)

y − z
−XXXXXϕ(z)Q(y),Q(x)

}ϕ
− ⟨x↔ y⟩

=
2zϕ(y)

y − z

ϕ(z)xQ(x)−�����XXXXXϕ(x)zQ(z)

z − x
− 2zϕ(z)

y − z

ϕ(y)xQ(x)− ϕ(x)yQ(y)

y − x
− ⟨x↔ y⟩

=

(
1

(y − z)(z − x)
+

1

(x− y)(y − z)
+

1

(z − x)(x− y)

)
2xzϕ(y)ϕ(z)Q(x)− ⟨x↔ y⟩ = 0 .

Notice that since {· , ·}ϕ is a Poisson bracket for any ϕ ∈ C[x] with deg ϕ ⩽ g + 1 and ϕ(0) = 0, the Poisson

brackets {· , ·}ϕ are compatible, simply because {· , ·}ϕ + {· , ·}ϕ
′
= {· , ·}ϕ+ϕ

′
for any such polynomials ϕ, ϕ′.
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We show in the next proposition that the Volterra map Vg is a Poisson map with respect to each one of
these Poisson brackets. Recall from (3.9) and (3.10) that Vg is given by

P̃(x) = Q(x)− P(x) , Q̃(x) =
2P(x)−Q(x) +R(x)

−wx
, R̃(x) = −wxQ(x) , (4.3)

where w = − 2 p1−q1+r1
2 .

Proposition 4.1. For any ϕ =
∑g+1
i=1 ϕix

i, the Volterra map Vg : Mg → Mg is a (birational) Poisson map

with respect to {· , ·}ϕ.

Proof. We need to check that Vg preserves the Poisson bracket {· , ·}ϕ. In formulae, this means that{
S̃(x), T̃ (y)

}ϕ
=

˜{S(x), T (y)}ϕ, where S and T stand for any of the polynomials P,Q,R. To do this,

it helps to first use (4.2) to derive the following formulae for the Poisson brackets of w with the polynomials
P,Q,R:

{w,P(y)}ϕ = {w,Q(y)}ϕ =
ϕ1
2
Q(y)− ϕ(y)

y
, {w,R(y)}ϕ =

ϕ(y)

y
− wϕ(y)− ϕ1

2
(2P(y) +R(y)) . (4.4)

To derive these formulae from (4.2), it suffices to use that −2w is the linear term of 2P(x)−Q(x) +R(x).
For example,

{−2w,R(y)}ϕ = lim
x→0

1

x
{2P(x)−Q(x) +R(x),R(y)}ϕ

= lim
x→0

1

x

[
−2y

ϕ(x)R(y)− ϕ(y)R(x)

x− y
− 2y

ϕ(x)P(y)− ϕ(y)P(x)

x− y
+ ϕ(y)(Q(x) +R(x))− ϕ(x)R(y)

]
= ϕ1R(y)− ϕ(y)r1 + 2ϕ1P(y) + ϕ(y) lim

x→0

2yP(x) + (x− y)Q(x)

x(x− y)

= ϕ1R(y)− ϕ(y)r1 + 2ϕ1P(y)− 2
ϕ(y)

y
− (2p1 − q1)ϕ(y)

= ϕ1(2P(y) +R(y))− 2
ϕ(y)

y
+ 2wϕ(y) ,

which proves the last formula in (4.4). It is now easy to prove that the Volterra map is a Poisson map. For

example, it is clear from (4.4) that {P(x)−Q(x), w}ϕ = 0, and so{
P̃(x), R̃(y)

}ϕ
= {Q(x)− P(x),−wyQ(y)}ϕ = wy {P(x),Q(y)}ϕ = wy

ϕ(x)yQ(y)− ϕ(y)xQ(x)

x− y

= −yϕ(x)R̃(y)− ϕ(y)R̃(x)

x− y
=

˜{P(x),R(y)}ϕ .

The other verifications are done in the same way. This shows that the Volterra map is a Poisson map.

We show in the next proposition that the invariants of the Volterra map, as introduced in the previous
section, are in involution with respect to any of the Poisson brackets {· , ·}ϕ, where we recall that deg ϕ ⩽ g+1
and ϕ(0) = 0.

Proposition 4.2. The 2g + 1 invariants H1, . . . ,H2g+1 of the Volterra map, defined by

P(x)2 +Q(x)R(x) = 1 +

2g+1∑
i=1

Hix
i . (4.5)

are in involution with respect to {· , ·}ϕ.
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Proof. We first compute from (4.2){
P(x),P(y)2 +Q(y)R(y)

}ϕ
= Q(y) {P(x),R(y)}ϕ +R(y) {P(x),Q(y)}ϕ

= −yQ(y)�
����ϕ(x)R(y)− ϕ(y)R(x)

x− y
+R(y)�

����
yϕ(x)Q(y)− xϕ(y)Q(x)

x− y

= ϕ(y)
yQ(y)R(x)− xQ(x)R(y)

x− y
, (4.6)

and similarly

{
Q(x),P(y)2 +Q(y)R(y)

}ϕ
= 2ϕ(y)

xP(y)Q(x)− yP(x)Q(y)

x− y
− ϕ(y)Q(x)Q(y) , (4.7)

{
R(x),P(y)2 +Q(y)R(y)

}ϕ
= 2xϕ(y)

P(x)R(y)− P(y)R(x)

x− y
+ ϕ(y)Q(y)R(x) . (4.8)

These formulae imply{
P2(x) +Q(x)R(x),P2(y) +Q(y)R(y)

}ϕ
= 2P(x)

{
P(x),P2(y) +Q(y)R(y)

}ϕ
+Q(x)

{
R(x),P2(y) +Q(y)R(y)

}ϕ
+R(x)

{
Q(x),P2(y) +Q(y)R(y)

}ϕ
= 2P(x)ϕ(y)�

�����
yQ(y)R(x)−XXXXXXxQ(x)R(y)

x− y
+Q(x)2xϕ(y)

XXXXXP(x)R(y)−�����XXXXXP(y)R(x)

x− y
+Q(x)ϕ(y)Q(y)R(x)

+R(x)2ϕ(y)�
�����XXXXXXxP(y)Q(x)−�����

yP(x)Q(y)

x− y
−R(x)ϕ(y)Q(x)Q(y) = 0 ,

so that the invariants Hi are in involution, {Hi, Hj}ϕ = 0 for 1 ⩽ i, j ⩽ 2g + 1.

As before, we often fix the Hamiltonians H1, . . . ,Hg to generic values so that we actually work on a
(non-singular) subvariety of M c

g , which is birational with C2g+1. We show in the following proposition that
M c
g is a bi-Hamiltonian manifold, i.e., that it is equipped with a pencil of compatible Poisson structures.

Proposition 4.3. When ϕ = ϕgx
g + ϕg+1x

g+1 the Hamiltonians H1, . . . ,Hg are Casimirs of the Poisson

structure {· , ·}ϕ. Moreover,

Cϕ :=

g∑
i=0

(−1)iϕg−ig ϕig+1H2g+1−i (4.9)

is also a Casimir function of {· , ·}ϕ.

Proof. Consider for i = 1, . . . , g the Hamiltonian vector field XHi
, which is given as the coefficient of yi in{

· ,P(y)2 +Q(y)R(y)
}ϕ

, which we computed in (4.6) – (4.8). These Hamiltonians are Casimir functions for

{· , ·}ϕ if and only if their Hamiltonian vector fields are zero, which is in turn equivalent to the fact that
the right hand sides in (4.6) – (4.8) are divisible by yg+1. Notice that the latter right hand sides, without
the factor ϕ(y), are divisible by y since P(0) = 1, Q(0) = 2 and R(0) = 0, without being divisible by y2.
Therefore, we need ϕ(y) to be divisible by yg; since deg ϕ ⩽ g + 1, it follows that the Poisson structures

which make M c
g into a bi-Hamiltonian manifold are the restrictions to M c

g of the Poisson pencil {· , ·}ϕ with
ϕ(x) = ϕgx

g + ϕg+1x
g+1. It is easily shown by direct computation that Cϕ, given by (4.9) is a Casimir of
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the Poisson pencil. For example,{
P(x),

g∑
i=0

(−1)iϕg−ig ϕig+1H2g+1−i

}ϕ

= Res
y=0

1

y2g+2

{
P(x), H2g+1−iy

2g+1
}ϕ g∑

i=0

(−1)iϕg−ig ϕig+1

= Res
y=0

1

y2g+2

{
P(x),P(y)2 +Q(y)R(y)

}ϕ g∑
i=0

(−1)iϕg−ig ϕig+1y
i

= Res
y=0

1

y2g+2

[
ϕ(x)yQ(y)− ϕ(y)xQ(x)

x− y
R(y)− yQ(y)

ϕ(x)R(y)− ϕ(y)R(x)

x− y

] g∑
i=0

(−1)iϕg−ig ϕig+1y
i

= Res
y=0

1

y2g+2

yQ(y)R(x)− xQ(x)R(y)

x− y

g∑
i=0

(−1)iϕg−ig ϕig+1y
iϕ(y)

= Res
y=0

1

y2g+2

yQ(y)R(x)− xQ(x)R(y)

x− y

(
ϕg+1
g yg + (−1)gϕg+1

g+1y
2g+1

)
= ϕg+1

g Res
y=0

1

yg+2

yQ(y)R(x)− xQ(x)R(y)

x− y
= 0 ,

where we have used in the last two equalities respectively that R(y) is divisible by y and that the polynomial
yQ(y)R(x)−xQ(x)R(y)

x−y has degree at most g in y.

Example 4.4. Continuing Example 3.6, we specialize the above results to g = 1 and make them more
explicit. Recall that M1 is the 4-dimensional vector space of polynomials (P,Q,R) with

P(x) = 1 + p1x , Q(x) = 2 + q1x , R(x) = r1x+ r2x
2 , (4.10)

and the invariants H1, H2, H3 are given in (3.24). The Poisson structures {· , ·}ϕ on M1 are parametrized by
ϕ(x) = ϕ1x + ϕ2x

2 and they all have H1 as a Casimir function. The Poisson matrices of the basic Poisson

structures {· , ·}x and {· , ·}x
2

(with the coordinates taken in the following order: p1, q1, r1, r2) are easily
determined from (4.2) and are given by

{· , ·}x =


0 −q1 0 r2
q1 0 −q1 0
0 q1 0 −r2

−r2 0 r2 0

 , {· , ·}x
2

=


0 2 0 −r1
−2 0 2 2q1 − p1
0 −2 0 r1
r1 p1 − 2q1 −r1 0

 . (4.11)

For a generic c1 ∈ C, the subvariety M c
1 is defined by H1 = c1. The pencil of Poisson structures {· , ·}ϕ

can be restricted to M c
1 and the Casimir function Cϕ on (M c

1 , {· , ·}
ϕ
), given by (4.9), takes the simple form

Cϕ = ϕ2H2 − ϕ1H3. In particular, H2 and H3 are Casimir functions of {· , ·}x
2

and {· , ·}x, respectively, and
{· , ·}x can be restricted to H3 = c3 while {· , ·}x

2

can be restricted to H2 = c2 (for generic c2, c3). Since, by
Proposition 4.1, the Volterra map is a Poisson map with respect to any such ϕ (of degree at most g+1 with
ϕ(0) = 0), it follows that

• (3.34) defines a Poisson map with respect to the full Poisson pencil {· , ·}ϕ;

• (3.37) defines a Poisson map with respect to {· , ·}x;

• (3.39) defines a Poisson map with respect to {· , ·}x
2

.
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It follows from the Poisson matrices (4.11) and from (3.33) that the Poisson structures {· , ·}x and {· , ·}x
2

are respectively given by {wn−1, wn}x = −(wn−1 + wn + c1/2)/2, and {wn−1, wn}x
2

= 1/2.
In Example 3.6 we also considered the recursion relation on the surface H ′

2 = c′2, H
′
3 = c′3. None of

the Poisson structures {· , ·}ϕ considered above can be restricted to these surfaces, but a Nambu-Poisson
structure with H ′

2 and H ′
3 as Casimirs can be so restricted. It leads to the quadratic Poisson bracket

{wn−1, wn} = wn−1wn (4.12)

with respect to which (3.45) is a Poisson map. The above bracket can also be derived via reduction of a
presymplectic structure for the tau functions, by regarding (3.48) as a mutation in a cluster algebra [18].

To see how the quadratic bracket arises here, recall from [52] that, for some fixed choice of m-form Ω, a
Nambu-Poisson bracket of order m is defined by

{f1, f2, . . . , fm}Ω = df1 ∧ df2 ∧ · · · ∧ dfm.

In the case at hand (taking m = 4), observe that the unreduced version (3.71) of the Volterra map φ on C4
w

with coordinates (w−1, w0, w1, w2) preserves the rational volume form

Ω =
w0w1

w0 − w1
dw−1 ∧ dw0 ∧ dw1 ∧ dw2, φ∗(Ω) = Ω.

Then the corresponding Nambu-Poisson bracket defines a Poisson bracket on C4
w according to

{f1, f2} := {f1, f2, H ′
2, H

′
3},

which by construction has Casimirs H ′
2 and H ′

3, and restricts to (4.12) on the surface H ′
2 = c′2, H

′
3 = c′3.

The same Nambu-Poisson bracket also produces any member of the pencil {· , ·}ϕ for g = 1: in particular,

the Poisson structures {· , ·}x and {· , ·}x
2

arise in this way, by taking (up to scaling) {f1, f2, H1, H3} and
{f1, f2, H1, H2}, respectively. However, this construction does not extend to g > 1 in a straightforward
manner.

Example 4.5. Continuing Example 3.7, taking ϕ = x3 when g = 2 we find that the Poisson brackets on
M2 (with coordinates p1, p2, q1, q2, r1, r2, r3) take the form

{r1, r3}x
3

= r1, {r2, r3}x
3

= r2, {p1, q2}x
3

= 2 = {p2, q1}x
3

,

{p2, q2}x
3

= q1, {p2, r3}x
3

= −r2, {p1, r3}x
3

= −r1 = {p2, r2}x
3

,

{q1, r2}x
3

= 2 = {q2, r1}x
3

, {q1, r3}x
3

= 2p1 − q1, {q2, r2}x
3

= 2p1, {q2, r3}x
3

= 2p2 − q2,

where only the non-zero brackets are specified here. By restricting this Poisson structure to M c
g ∩ (H3 = c3),

we find that (up to an overall factor of 1/2) it coincides with Poisson bracket (1.5) for the (P.iv) map that
was derived from a discrete Lagrangian in [21], where the parameters ν, a, b are fixed according to (3.53) in

terms of the values c1, c2, c3 of the 3 Casimirs of {· , ·}x
3

.

4.2 The generic fibers of the momentum map

We will now give an algebro-geometric description of the generic fibers of the momentum map µ :Mg → C[x],
which we recall is given by µ(P,Q,R) = P2 +QR. Precisely, we will describe the fiber over any polynomial
f ∈ C[x] of degree 2g+1, without multiple roots, and satisfying f(0) = 1. Notice that such polynomials are
exactly those f in the image of µ for which y2 = f(x) defines a non-singular affine curve Γf of genus g; we
use Γ̄f to denote the completion of the latter, which can be thought of as a compact Riemman surface.
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Proposition 4.6. Let f be polynomial of degree 2g + 1, without multiple roots, such that f(0) = 1. Denote
by Γf the non-singular affine curve of genus g, defined by y2 = f(x), with Γ̄f being its completion. Then
µ−1(f) is isomorphic to an affine part of the Jacobian variety of Γ̄f minus three translates of the theta
divisor,

µ−1(f) ∼= Jac(Γ̄f ) \ (Θ ∪Θ+ ∪Θ−) . (4.13)

The (−1)-involution on Jac(Γ̄f ) leaves Θ invariant and permutes Θ+ and Θ−.

Proof. Let (P,Q,R) ∈ µ−1(f), so that

P2(x) +Q(x)R(x) = f(x) , degP,degQ,degR− 1 ⩽ g , (P(0),Q(0),R(0)) = (1, 2, 0) . (4.14)

Since f has degree 2g + 1, degQ = g and degR = g + 1; it also implies that Γ̄f is obtained from Γf by
adding a single point, which we denote by ∞. The hyperelliptic involution on Γ̄f is denoted by ı; it fixes ∞
and sends (x, y) ∈ Γf to (x,−y). To (P,Q,R) we associate a divisor

∑g
i=1(xi, yi) − g∞ on Γ̄f as follows:

x1, x2, . . . , xg are the roots of Q(x) and yi := P(xi) for i = 1, . . . , g. It is indeed a divisor on Γ̄f since for
j = 1, . . . , g,

y2j − f(xj) = P2(xj)− (P2(xj) +Q(xj)R(xj)) = 0 .

Of course, (xi, yi) ̸= ∞ for all i. Notice that when Q(x) has multiple roots, say x1 = · · · = xk, then
y1 = y2 = · · · = yk. We show by contradiction that if xi is a root of Q(x) and yi = 0 (so that xi is also a
root of P(x)), then xi is a simple root of Q(x). Indeed, if xi is a multiple root of Q(x) and is also a root
of P(x), then xi is a multiple root of f(x) = P(x)2 + Q(x)R(x), so that f is not square-free, contrary to
the assumptions. The upshot is that the obtained divisors are of the form

∑g
i=1 Pi − g∞, where Pi ∈ Γf

for i = 1, . . . , g and Pi ̸= ı(Pj) when i ̸= j. It is well-known that two such divisors are linearly equivalent
if and only if they are the same; also, that none of these divisors are equivalent to a divisor of the form∑g−1
i=1 Qi − (g − 1)∞, with Qi ∈ Γ̄f for i = 1, . . . , g − 1. Since Jac(Γ̄f ) is the group of degree zero divisors

on Γ̄f , modulo linear equivalence, this shows that the map µ−1(f) → Jac(Γ̄f ), which associates to (P,Q,R)
the divisor class [

∑g
i=1 Pi − g∞], is injective. This map is of course not surjective. In order to determine

the image, let

Θ :=

{[
g−1∑
i=1

Pi − (g − 1)∞

]
| ∀i Pi ∈ Γ̄f

}
,

Θ+ :=

{[
(0, 1) +

g−1∑
i=1

Pi − g∞

]
| ∀i Pi ∈ Γ̄f

}
= Θ+ [(0, 1)−∞] ,

Θ− :=

{[
(0,−1) +

g−1∑
i=1

Pi − g∞

]
| ∀i Pi ∈ Γ̄f

}
= Θ+ [(0,−1)−∞] .

The first one is the theta divisor and the other two are translates of it. Notice that ı(Θ) = Θ and ı(Θ+) = Θ−,

since ı(∞) = ∞. As we already said, the image contains no point of the form
[∑g−1

i=1 Pi − (g − 1)∞
]
, i.e., is

disjoint from Θ. Since Pi = (xi, yi) where xi is a root of Q(x) and since Q(0) = 2, it is clear that xi ̸= 0, so
that every Pi = (xi, yi) is different from (0, 1) and from (0,−1); hence the image is also disjoint from Θ+ and
Θ−. Take now any point in Jac(Γ̄f )\ (Θ∪Θ+∪Θ−). It can as above be written uniquely as [

∑g
i=1 Pi − g∞]

with Pi /∈ {∞, (1, 0), (−1, 0)} and Pi ̸= ı(Pj) for all i ̸= j. When all Pi = (xi, yi) are different, there is a
unique polynomial Q(x) whose roots are the xi and with Q(0) = 2, and there is a unique polynomial P(x)
of degree g, with P(xi) = yi for i = 1, . . . , g and P(0) = 1: setting (x0, y0) = (0, 1), they are given by

Q(x) = 2

g∏
i=1

(
1− x

xi

)
, P(x) =

g∑
i=0

yi
∏
j ̸=i

x− xj
xi − xj

. (4.15)
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This also works in the limiting case when some of the Pi are the same upon adding in the definition of
P(x) a tangency condition (see [38, page 3.18]), which assures that f(x)− P2(x) is divisible by Q(x). The
quotient is a polynomial R(x) of degree g satisfying f(x) = P(x)2+Q(x)R(x); by uniqueness, µ(P,Q,R) =
[
∑g
i=1 Pi − g∞], as required.

Example 4.7. We specialize Proposition 4.6 to the case of g = 1. Notice that in this case we should say
elliptic rather than hyperelliptic, and in this case the (hyper-) elliptic involution is not unique. Another
peculiarity about g = 1 is the well-known fact that a complete non-singular genus one curve (i.e., any
compact elliptic Riemann surface) is isomorphic to its Jacobian, a fact that we will be able to illustrate
here. Let f(x) = 1 + c1x + c2x

2 + c3x
3 be an arbitrary polynomial of degree 3 with no multiple roots.

We investigate µ−1(f), which is the affine curve defined by the following equations, which are found by
expressing that P2(x) +Q(x)R(x) = f(x):

2(p1 + r1) = c1 ,

p21 + q1r1 + 2r2 = c2 ,

q1r2 = c3 .

The curve µ−1(f) can be equivalently written as a plane algebraic curve by first eliminating r1 from the first
two equations and then r2 from the two remaining equations; writing p1 and q1 simply as p and q, the final
equation takes the simple form

µ−1(f) :
pq

2
(p− q) + c1

q2

4
− c2

q

2
+ c3 = 0 . (4.16)

It is easy to see that, thanks to the conditions on f , this curve is non-singular, just like Γf . In fact, if we
denote the left-hand side of (4.16) by F then a singular point (q0, p0) of µ

−1(f) must satisfy

∂F

∂p
(q0, p0) =

q0
2
(q0 − 2p0) = 0 ,

∂F

∂q
(q0, p0) =

1

2
(p20 − 2p0q0 + c1q0 − c2) = 0 . (4.17)

Since q0 ̸= 0 (as F (q0, p0) = 0 and c3 ̸= 0), we get q0 = 2p0; substituted in F (q0, p0) = 0 and in the second
equation of (4.17) we get

p30 − c1p
2
0 + c2p0 − c3 = 0 , 3p20 − 2c1p0 + c2 = 0 ,

which can be written as f(−p0) = f ′(−p0) = 0. Since f has no multiple roots these equations have no
common solution, which shows that µ−1(f) is non-singular.

To see that µ−1(f) and Γf are birationally isomorphic, it suffices to consider the following rational map:

q = − 2

x
, p =

y − 1

x
, with inverse x = −2

q
, y =

q − 2p

q
. (4.18)

Notice that, despite the appearance of q in the denominator, the inverse map in 4.18 is actually regular,
because q ̸= 0 on µ−1(f). The rational map and its inverse extend (uniquely) to an isomorphism of the
completions Γ̄f and µ−1(f), which can be thought of respectively as an elliptic curve and its Jacobian. It

allows us to determine the number and nature of the points at infinity of µ−1(f), i.e., the points needed to
complete µ−1(f) into µ−1(f); they are the points corresponding to affine points (x, y) for which the map is
not defined, to wit (x, y) = (0,±1), and to the point at infinity ∞ of Γ̄f , making a total of three points, as
asserted by Proposition 4.6. More specifically, by using the map we can determine a local parametrisation
around these points from local parametrisations around the points (0,±1) and ∞. For the latter, we can
take (x, y) = (t, 1± c1t

2 +O(t2)) and (x, y) = (t−2,
√
c3t

−3(1+ c2
2c3
t2+O(t4)) to obtain, again using the map,

the following local parametrisations at the three points at infinity of µ−1(f):

∞0 :

(
−2t2,

√
c3
t

(
1 +

c2
2c3

t2 +O(t3)
))

, ∞1 :

(
−2

t
,
c1
2

+O(t)

)
, ∞2 :

(
−2

t
,−2

t
− c1

2
+O(t)

)
.
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Again, using the map we can derive that the (hyper-) elliptic involution on Γf , which is given by (x, y) 7→
(x,−y), is given on µ−1(f) by (q, p) 7→ (q, q− p). It permutes the points ∞1 and ∞2 while leaving ∞0 fixed
(together with the points (2p, p) where −p is a root of f). The points ∞0, ∞1 and ∞2 correspond to Θ ,Θ+

and Θ−, respectively.

Example 4.8. We also specialize Proposition 4.6 to the case of g = 2 and provide some extra information.
The polynomial f is now of degree 5, taking the form f(x) = 1 + c1x + c2x

2 + c3x
3 + c4x

4 + c5x
5, with

no multiple roots, which is equivalent to the curve (1.8) associated with the map (P.iv). In this case,
the theta divisor and its translates are genus 2 curves, isomorphic to Γ̄f . This general fact can also be
seen here directly from the description that Θ =

[
Γ̄f −∞

]
and similarly for Θ+ =

[
Γ̄f + (0, 1)− 2∞

]
and

Θ− =
[
Γ̄f + (0,−1)− 2∞

]
. We show that these curves in µ−1(f) meet according to the intersection pattern

in Figure 2.

Θ+ Θ−

Θ

0

[(0,−1)−∞][(0, 1)−∞]

Figure 2: When g = 2 the divisor at infinity of µ−1(f) consist of three copies of the curve y2 = f(x),
intersecting according to the indicated pattern.

To do this, we first recall the general fact that two translates of the theta divisor (also called theta
curves) intersect in two points which coincide if and only if the curves are tangent. Consider first a point
(divisor class) in Θ+ ∩ Θ−. It must be of the form [P + (0, 1)− 2∞] and of the form [Q+ (0,−1)− 2∞],
for some P,Q ∈ Γ̄f . In particular, the points P and Q must be such that P + (0, 1) ∼ Q + (0,−1); as
we already recalled, a linear equivalence of such divisors amounts to equality, so that P = (0,−1) and
Q = (0, 1) and there is a unique intersection point [(0, 1) + (0,−1)− 2∞] which is the origin O of Jac(Γ̄f ),
since (0, 1) + (0,−1) ∼ 2∞. Consider next a point in Θ ∩ Θ±. It must be both of the form [P − ∞] and
[Q+ (0,±1)− 2∞], for some P,Q ∈ Γ̄f . This leads us now to the linear equivalence P +∞ ∼ Q+ (0,±1),
whose only solutions are P = ∞, Q = (0,∓1) and P = (0,±1), Q = ∞; the first solution corresponds again
to the origin O while the other intersection point is the point [(0,±1)−∞] (see Figure 2).

4.3 Discrete Liouville and algebraic integrability

We are now ready to show that the Volterra map Vg is Liouville integrable on (Mg, {· , ·}ϕ) when ϕ ̸= 0.
Recall that a birational map R on an algebraic Poisson manifold (M, {· , ·}) of dimension n and (Poisson)
rank 2r is said to be Liouville integrable when the following conditions are satisfied:

(1) R is a Poisson map;

(2) R has n− r functionally independent invariants in involution.
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In the case at hand, M = Mg so that n = 3g + 1, and R = Vg, which we already know to be a Poisson
map (Proposition 4.1). Also, we already have 2g + 1 invariants in involution (Proposition 4.2). So it will

be sufficient to show, in the proof which follows, that the rank of {· , ·}ϕ is 2g and that the invariants
H1, . . . ,H2g+1 are functionally independent.

Proposition 4.9. Let ϕ ∈ C[x] be any non-zero polynomial of degree at most g + 1, vanishing at 0. Then

the Volterra map Vg is Liouville integrable on (Mg, {· , ·}ϕ).

Proof. We first show that the components of µ, which are the 2g + 1 polynomial functions Hi, defined by
µ(P,Q,R) = 1 +

∑2g+1
i=1 Hix

i, are independent. According to Proposition 4.6, the generic fiber of µ (which
is the generic fiber of H1, . . . ,H2g+1) is an open subset of the Jacobian of a curve of genus g, hence has
dimension g. The dimension of the generic fiber of µ is given by dimMg − s = 3g + 1− s, where s denotes
the number of independent functions in H1, . . . ,H2g+1. Therefore, s = 2g + 1 and the components of µ are
independent.

It remains to be shown that the rank of {· , ·}ϕ is 2g. Since dimM = 3g + 1 and {· , ·}ϕ admits 2g + 1

independent functions in involution, the rank of {· , ·}ϕ is at most 2g (see [53, Prop. 3.4]); to show equality,
in a neighborhood of a generic point (P,Q,R) ∈ Mg we take the functions x1, . . . , xn, y1, . . . , yn, which

we constructed in the proof of Proposition 4.6. Then {xi, xj}ϕ = {yi, yj}ϕ = 0, since {P(x),P(y)}ϕ =

{Q(x),Q(y)}ϕ = 0. We show that the brackets {xi, yj}ϕ are non-zero if and only if i = j, from which it

follows that the rank of {· , ·}ϕ is indeed 2g. To do this, we compute for 1 ⩽ i ⩽ g the Poisson bracket

{yi, lnQ(y)}ϕ in two different ways. First, using (4.2),

{yi, lnQ(y)}ϕ = {P(xi), lnQ(y)}ϕ =
{P(xi),Q(y)}ϕ

Q(y)
=
yϕ(xi)− xiϕ(y)Q(xi)/Q(y)

xi − y
= y

ϕ(xi)

xi − y
, (4.19)

and next, using (4.15),

{yi, lnQ(y)}ϕ =

g∑
j=1

{yi, ln(1− y/xj)}ϕ = y

g∑
j=1

{yi, xj}ϕ

xj(xj − y)
, (4.20)

so that
ϕ(xi)

xi − y
=

g∑
j=1

{yi, xj}ϕ

xj(xj − y)
.

Since (generically) all xj are different, {xj , yi}ϕ = 0 when j ̸= i, while {xi, yi}ϕ = −xiϕ(xi), so that

{xi, yj}ϕ = −xiϕ(xi)δij . (4.21)

Since ϕ ̸= 0, this shows that the rank of {· , ·}ϕ is 2g.

We now conclude with the main result of this section, namely that the Volterra map is a discrete a.c.i.
system. By this we mean that, besides being Liouville integrable, the generic level sets defined by the
invariants are affine parts of Abelian varieties (complex algebraic tori) and the restriction of the map to any
of these Abelian varieties is a translation.

Theorem 4.10. The Volterra map Vg is a discrete a.c.i. system on (Mg, {· , ·}ϕ).

Proof. Liouville integrability was already shown in Proposition 4.9. Let f ∈ C[x] be a polynomial of degree

2g + 1, without repeated roots and with f(0) = 1. Writing f(x) = 1 +
∑2g+1
i=0 cix

i, the common level set
defined by Hi = ci, i = 1, 2, . . . , 2g + 1 is the fiber µ−1(f) which was shown in Proposition 4.6 to be an
affine part of the Jacobian of Γ̄f , and this is indeed an Abelian variety. It remains to be shown that the

restriction of the Volterra map Vg to µ−1(f) ∼= Jac(Γ̄f ) is a translation; more precisely we will show that it is
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a translation over [(0,−1)−∞] = [∞− (0, 1)]. Let (P,Q,R) ∈ µ−1(f) be a generic point (a regular triplet)
so that (P̃, Q̃, R̃) := Vg(P,Q,R) also belongs to µ−1(f). The degree g divisors on Γ̄f corresponding to these

two triplets are respectively denoted by D =
∑g
i=1(xi, yi) and D̃ =

∑g
i=1(x̃i, ỹi) (so that the corresponding

divisor classes in Jac(Γ̄f ) are [D− g∞] and [D̃ − g∞], respectively). Consider the rational function F̃ on Γ̄f
given by the action of Vg on (3.6), which in view of (4.3) and the definition (4.14) of f , can be written in a
few different ways:

F̃ :=
y + P̃(x)

Q̃(x)
=

R̃(x)

y − P̃(x)
=

−wxQ(x)

y −Q(x) + P(x)
. (4.22)

It is clear from the last, respectively first, expression that F̃ has a simple zero at the each of the points
(xi, yi) and (0,−1), and a simple pole at each of the points (x̃i, ỹi) and ∞. To verify the behaviour at ∞,
one should introduce a local parameter z such that x = 1/z2, y =

√
c2g+1z

−(2g+1)
(
1 + O(z)

)
there, which

gives F̃ =
√
c2g+1q

−1
g /z + O(1). For the other zero or pole candidates in Γf , coming from places where

the numerators or denominators in (4.22) vanish, one checks using one of the alternative formulae that F̃ is
finite and non-zero at these points. Thus F̃ has precisely g+1 zeros and g+1 poles, in accord with the fact
that the degree of the divisor of a rational function is zero. The upshot is that the divisor of zeros and poles
of F̃ is given by

(F̃ ) =

g∑
i=1

(xi, yi) + (0,−1)−
g∑
i=1

(x̃i, ỹi)−∞ = D − D̃ + (0,−1)−∞ ,

which leads to the linear equivalence D + (0,−1) ∼ D̃ +∞, and hence to

[D̃ − g∞] = [D − g∞] + [(0,−1)−∞] , (4.23)

as was to be shown.

According to Proposition 4.3, when ϕ = ϕgx
g+ϕg+1x

g+1 we can restrict the Volterra map and its Poisson
structure to M c

g = ∩gi=1(Hi = ci), and so by the above theorem the Volterra map is a discrete a.c.i. system

on (M c
g , {· , ·}

ϕ
). In particular, the recursion relations obtained by fixing the invariants H1, . . . ,Hg to generic

values ci (and possibly also fixing the other Casimir Cϕ to some generic value) are discrete a.c.i. systems.

Example 4.11. In the genus 1 case, it follows that (3.34), (3.37) and (3.39), equipped respectively with the

Poisson structures {· , ·}ϕ, {· , ·}x and {· , ·}x
2

, are discrete a.c.i. systems. The same holds for (3.45), which
is a discrete a.c.i. system with respect to the quadratic Poisson structure (4.12).

Example 4.12. In the genus 2 case, we have that for generic a, b, ν the map (P.iv) is a discrete a.c.i. system.

5 Continuous flows and the infinite Volterra and Toda lattices

The discrete integrable systems that we have discussed so far are naturally associated with continuous systems
which are equally integrable. More precisely, Liouville integrability of the Hamiltonian systems associated
with the Volterra maps comes for free, and with some extra work we show that these continuous systems
are also algebraically integrable. We further show that in the genus g case any solution wi(t) of one of the
integrable Hamiltonian vector fields extends, under the action of the Volterra map, to a sequence

(
wn(t)

)
n∈Z

that is a solution to the infinite Volterra lattice; notice that in particular, as discussed in the introduction,
this applies to the map (P.iv). We also discuss the relation between the infinite Toda and Volterra lattices,
which explains in part how some of the results in this paper are related to the results in [28], and what
motivated us to introduce S-fractions and the corresponding Mumford-like systems to study the map (P.iv)
and its higher genus analogues.
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5.1 Liouville and algebraic integrability

Recall that on Mg we have a family of compatible Poisson brackets {· , ·}ϕ of rank 2g, as well as a family of
polynomial functions H1, . . . ,H2g+1, where Hi is the coefficient in xi of P2(x) +Q(x)R(x); said differently,
H1, . . . ,H2g+1 are the components of the momentum map µ :Mg → C[x]. For the sake of clarity, and since
the choice of Poisson structure is not important for what follows, we will only consider ϕ = xg+1 here, and
henceforth write {· , ·} for {· , ·}ϕ. With this choice of ϕ, (4.6) – (4.8) become{

P(x),P(y)2 +Q(y)R(y)
}
= yg+1 yQ(y)R(x)− xQ(x)R(y)

x− y
,

{
Q(x),P(y)2 +Q(y)R(y)

}
= 2yg+1xP(y)Q(x)− yP(x)Q(y)

x− y
− yg+1Q(x)Q(y) ,

{
R(x),P(y)2 +Q(y)R(y)

}
= 2xyg+1P(x)R(y)− P(y)R(x)

x− y
+ yg+1Q(y)R(x) .

As we have seen, H1, . . . ,Hg are Casimir functions of the Poisson bracket, as well as Hg+1 = Cϕ (see (4.9)).
The vector fields 1

2XHg+i+1
are denoted by Xi; we will mainly be interested in X1 = 1

2XHg+2
, which we can

compute by dividing the above equations by 2yg+2 and taking the limit for y → 0, so that

Ṗ(x) = lim
y→0

yQ(y)R(x)− xQ(x)R(y)

2y(x− y)
=

2R(x)− xQ(x)R′(0)

2x
=

R(x)

x
− r1

2
Q(x) , (5.1)

where the dot denotes the derivative d
dt , and similarly

Q̇(x) =
2p1 − q1

2
Q(x)− 2P(x)−Q(x)

x
,

Ṙ(x) = r1P(x) +
q1 − 2p1

2
R(x)− R(x)

x
. (5.2)

Notice that the vector field X1 is (non-homogeneous) quadratic. From Proposition 4.2, the functions Hj are
in involution with one another with respect to {· , ·}, which means that the vector fields Xi all commute.

Note that the Liouville integrability of this continuous system is incorporated into the Liouville integra-
bility of the discrete system, so the following statement is an automatic consequence of Proposition 4.9.

Proposition 5.1. The Hamiltonian system (Mg, {· , ·} , µ) is a Liouville integrable system.

We now turn to the algebraic integrability of the Mumford-like system, which is slightly more involved
in the continuous case. Recall (for example from [1, Ch. 6]) that (Mg, {· , ·} , µ) being an a.c.i. system means
that

(1) (Mg, {· , ·} , µ) is a (complex) Liouville integrable system;

(2) The generic fiber of µ is (isomorphic to) an affine part of an Abelian variety;

(3) The integrable vector fields are holomorphic (hence constant) on these Abelian varieties.

Items (1) and (2) have been shown already, in Propositions 5.1 and 4.6, respectively, so it only remains to
address item (3).

Proposition 5.2. The Hamiltonian system (Mg, {· , ·} , µ) is an algebraic completely integrable system (a.c.i.
system).

Proof. We show (3) for one of the integrable vector fields; then it also holds for the other integrable vector
fields, since the latter are holomorphic on the fiber and commute with a constant vector field.

The vector field which we consider is the Hamiltonian vector field X1, given by (5.1) and (5.2). Let
(P0,Q0,R0) be a generic point of Mg and consider for small |t| the integral curve t 7→ (Pt,Qt,Rt) of X1,
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starting at (P0,Q0,R0). Let Dt =
∑g
i=1(xi(t), yi(t)) − g∞ denote the associated divisor on the algebraic

curve Γf , defined by it; recall that Γf is given by y2 = f(x) where f = P2
0 +Q0R0 = P2

t +QtRt. Since the

xi(t) are the roots of Qt(x), upon substituting x = xi(t) in the equation (5.2) for Q̇(x) we get

Q̇(xi(t)) = −2
P(xi(t))

xi(t)
= −2

yi(t)

xi(t)
.

However, we can also compute Q̇(xi(t)) directly from the explicit formula (4.15) for Q(x), to wit

Q̇(xi(t)) =
2ẋi(t)

xi(t)

∏
j ̸=i

(
1− xi(t)

xj(t)

)
.

Comparing these two expressions gives

yi(t) = −ẋi(t)
∏
j ̸=i

(
1− xi(t)

xj(t)

)
. (5.3)

It follows that for k = 0, . . . , g − 1,

g∑
i=1

xki (t)dxi(t)

yi(t)
= −

g∑
i=1

xki (t)
∏
j ̸=i

xj(t)

xj(t)− xi(t)
dt = −δk,0 dt . (5.4)

Above we have used the following identity which is well-known in the theory of symmetric functions:

g∑
i=1

xki
∏
j ̸=i

xj
xj − xi

= δk,0 , k = 0, . . . , g − 1; (5.5)

the proof of the latter follows easily from the fact that any lowest degree antisymmetric polynomial in g
variables is, up to a factor, the Vandermonde determinant. Integrating (5.4) from 0 to t gives∫ Dt

D0

xkdx

y
= −t δk,0 . (5.6)

The left-hand side of (5.6) contains the differentials xkdx/y for k = 0, . . . , g − 1, which form a basis for the
holomorphic differentials on Γ̄f . Thus the left-hand side of (5.6) is the image of the divisor Dt−D0 under the
Abel map, which is (by Abel’s Theorem) an isomorphism between the algebraic Jacobian of Γ̄f , consisting
of degree zero divisor classes on Γ̄f , and the analytic Jacobian of Γ̄f , which is a complex torus, that is

Jac(Γ̄f ) ∼= H0
(
Ω1

Γ̄f

)∗
/H1(Γ̄f ).

Formula (5.6) then says that the integral curve of X1 is a straight line in this complex torus, as was to be
shown.

It follows that for, generic initial conditions, the solutions to X1 are meromorphic functions in t.

5.2 Genus g solutions to the infinite Volterra and Toda lattices

The infinite Volterra lattice is given by the set of equations

ẇn = wn(wn+1 − wn−1) , n ∈ Z . (5.7)

It was first considered by Kac and van Moerbeke [31], who also studied the N -periodic case (wN+n = wn for
all n). We now show that the Volterra map allows us to define, for any g, infinite sequences of meromorphic
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functions (wn(t))n∈Z which satisfy (5.7). Since these sequences are defined from solutions of the genus g
Mumford-like system, and hence can be written in terms of genus g theta functions, we will refer to these
solutions to the Volterra lattice as genus g solutions.

Let g > 0 be fixed and consider the vector field on C3g+1
w , corresponding to the vector field 1

2X1 on
the genus g Mumford-like system, via the birational transformation constructed in Section 3.5. For the
sake of brevity, let us call this the w-system (in genus g). By algebraic integrability, the vector field 1

2X1

has globally defined meromorphic solutions w1(t), . . . , w3g+1(t), corresponding to generic initial conditions.
Using the recursion relation induced by the action of the Volterra map on C3g+1

w , we get also globally defined
meromorphic functions wn(t) for all n > 3g + 1 and all n ⩽ 0. Algebraic integrability further implies that
the recursion and the flow of the vector field must commute, as they both correspond to translations on
the fibers of the momentum map, which are affine parts of g-dimensional tori. (The fact that the map
and the flow commute is already a consequence of Liouville integrability.) It follows that all formulae only
involving the variables wn remain valid when all indices are shifted by the same integer. In the proof of the
theorem which follows we will make extensive use of the birational transformation between the w-system
and the Mumford-like system. The triplet corresponding to a meromorphic solution (w1(t), . . . , w3g+1(t)) of
the w-system in genus g will be denoted (P0(x; t),Q0(x; t),R0(x; t)), the index 0 being added because we
will also use the triplets (Pn(x; t),Qn(x; t),Rn(x; t)), obtained from it by applying the Volterra map or its
inverse several times. Again, all formulae involving only the polynomials Pn,Qn,Rn, n ∈ Z, remain valid
when all indices are shifted by the same integer, and for any n ∈ Z, (Pn(x; t),Qn(x; t),Rn(x; t)) corresponds
to (wn+1(t), . . . , w3g+n+1(t)) under the birational map.

Theorem 5.3. The sequence of meromorphic functions
(
wn(t)

)
n∈Z is a solution to the infinite Volterra

lattice (5.7).

Proof. We first recall the recursion relations (3.9) for the triplets (Pn,Qn,Rn), which we evaluate at any
meromorphic solution to X1 = 1

2XHg+2 :

Pn+1(x; t) = Qn(x; t)− Pn(x; t) , Qn+1(x; t) =
2Pn(x; t)−Qn(x; t) +Rn(x; t)

−wn+1(t)x
, (5.8)

Rn+1(x; t) = −wn+1(t)xQn(x; t) . (5.9)

From (5.9), since H1 = 2(p1 + r1) is a first integral, we have

wn(t) = −1

2
rn,1(t) =

1

2
pn,1(t)−

c1
4
, and rn,2(t) = −wn(t)qn−1,1(t) , (5.10)

where c1 is a constant. It follows that

ẇn(t)
(5.10)
=

1

2
ṗn,1(t)

(5.1)
=

1

2
rn,2(t)−

1

4
rn,1(t)qn,1(t)

(5.10)
=

wn(t)

2
(qn,1(t)− qn−1,1(t))

(5.8)
=

wn(t)

2
(pn+1,1(t)− pn−1,1(t))

(5.10)
= wn(t)(wn+1(t)− wn−1(t)) ,

as was to be shown.

Remark 5.4. It is fairly straightforward to modify the proof of Proposition 5.2, and the preceding result,
to all of the Hamiltonian vector fields Xi, associated with times ti, 1 ⩽ i ⩽ g, which correspond to the
first g flows in the Volterra lattice hierarchy. This replaces t by ti and modifies the Kronecker delta on the
right-hand side of (5.6) to δk,i−1, hence producing solutions that are meromorphic in t = t1, t2, . . . , tg.

We now apply a standard Miura-like formula, to show how a genus g solution of the Volterra lattice,
given by an infinite sequence of meromorphic functions wn(t), also leads to a corresponding solution to the
infinite Toda lattice, given by

dan
dt

= an(bn−1 − bn) ,
dbn
dt

= an − an+1 . (5.11)
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(These are almost the same as the Flaschka variables for the Toda lattice, except that traditionally
√
an is

used in place of an; and similarly, the quantities
√
wn are used in [37].)

Corollary 5.5. Let wn(t), n ∈ Z be a genus g meromorphic solution to the infinite Volterra lattice (5.7).
Upon setting, for j ∈ Z,

aj+1 := w2j−1w2j , bj+1 := −w2j − w2j+1 , (5.12)

the sequence of meromorphic functions aj(t), bj(t) is a solution to the infinite Toda lattice, while another
sequence of meromorphic solutions to (5.11) is given for j ∈ Z by

a∗j+1 := w2jw2j+1 , b∗j+1 := −w2j+1 − w2j+2 . (5.13)

Proof. Differentiating (5.12) and using (5.7) one gets immediately (5.11), and similarly for (5.13).

Example 5.6. Theorem 5.3 and Corollary 5.5 imply that we can obtain elliptic (genus 1) solutions to the
infinite Volterra and Toda lattices, by starting from a generic solution to (3.34). On a fixed orbit of the
latter, any such solution can be identifed with an orbit of the QRT map (3.45) associated with Somos-5.
Hence this means that the analytic results of [24] can be applied, to write the tau function explicitly as

τn = A±B
nσ(z0 + nz)

σ(z)n2 ,

where A+, A−, B are non-zero constants (with A± chosen according to the parity of n), and σ(z) = σ(z; g2, g3)
denotes the Weierstrass sigma function associated with an elliptic curve y2 = 4x3 − g2x − g3, isomorphic
to (3.41). The parameters z, g2, g3 all depend on c1, c2, c3, while z0 also depends on the initial point on the
orbit. Then we can write the solution of the map explicitly in terms of the Weierstrass zeta function, as

wn =
σ
(
z0 + nz

)
σ
(
z0 + (n+ 3)z

)
σ(z)4σ

(
z0 + (n+ 1)z

)
σ
(
z0 + (n+ 2)z

) = ĉ
(
ζ
(
z0 + (n+ 2)z

)
− ζ

(
z0 + (n+ 1)z

)
+ C

)
, (5.14)

where ĉ = σ(2z)/σ(z)4, C = ζ(z) − ζ(2z). Now extending this by the flow of the vector field X1, with
parameter t, we find that only z0 changes, being replaced by z0 + ĉ t (giving a linear flow on the Jacobian of
the elliptic curve). Hence we arrive at the genus 1 solution of the Volterra lattice, given for n ∈ Z by

wn(t) = ĉ
(
ζ
(
z0 + ĉ t+ (n+ 2)z

)
− ζ

(
z0 + ĉ t+ (n+ 1)z

)
+ C

)
(equivalent to the travelling waves found in [55]), and from (5.12) we get a corresponding genus 1 solution
of the Toda lattice, that is

an(t) = ĉ4
(
℘
(
2z

)
− ℘

(
z0 + ĉ t+ (2n− 1)z

))
, (5.15)

bn(t) = ĉ
(
ζ
(
z0 + ĉ t+ (2n− 1)z

)
− ζ

(
z0 + ĉ t+ (2n+ 1)z

)
− 2C

)
,

written in terms of the Weierstrass ℘ function, with the constants ĉ, C as above.

Example 5.7. Similarly, we can produce genus 2 solutions to the infinite Volterra and Toda lattices, by
starting from a generic solution to the map (P.iv), extended to meromorphic functions wn(t) by the flow of
the vector field X1.

In [37], the transformation (5.12) was used to connect the finite Volterra and Toda lattices by Moser, who
attributed it to Hénon. The same transformation has further been applied to connect real-valued solutions
of the infinite lattices, subject to suitable (smoothness/boundedness) conditions [19]. Moser also employed
finite continued fractions in [37]. However, it turns out that the map (5.12) has a much earlier origin in the
classical theory of continued fractions, where it arises from the method of contraction for S-fractions (see
J.3 in [48], and [46]), a fact that has perhaps been overlooked in the integrable systems literature. In the
next subsection, we show how the Volterra maps, as presented in this paper, are related to the integrable
maps recently constructed by one of us [28]; the key is to apply contraction to the S-fraction (3.15), which
produces a J-fraction, and thereby yields the Miura-type formula (5.12).
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5.3 Contraction of continued fractions

We take a fixed set of coefficients ci, which are arbitrary except that, as usual, we assume that the polynomial

f(x) = 1 +

2g+1∑
i=1

cix
i (5.16)

is square-free with c2g+1 ̸= 0, so that the hyperelliptic curve Γf : y2 = f(x) is smooth and has genus g. In
order to simplify the presentation below, initially we make the further assumption that c1 = 0. Then setting

X =
1

x
, Y =

y

xg+1
(5.17)

establishes a birational isomorphism between Γf and an algebraic curve C which (by completing the square)
can be written in the form

C : Y 2 = F̂(X), F̂(X) = A(X)2 + 4R(X), (5.18)

where A(X) is a monic polynomial in X of degree g + 1 with no term of degree g (so that the right-hand
side of (5.18) has no degree 2g + 1 term), and R is a polynomial of degree at most g in X, not identically
zero but otherwise arbitrary; such curves are exactly the ones which were considered in [28].

Let (P,Q,R) = (P0,Q0,R0) ∈ Mg be a generic triplet satisfying P2 +QR = f , in the sense discussed
above (3.15). As we have seen in (3.15), the associated rational function on Γf , denoted F0, admits the
following expansion as an S-fraction:

F0 =
y + P0(x)

Q0(x)
= 1−

w1x

1−
w2x

1−
w3x

1− · · ·

. (5.19)

Now, upon multiplying (5.19) by x−1 = X, rewriting the S-fraction in terms of the new spectral parameter
X, and then applying contraction, we find

x−1F0 = X −
w1

1−
w2

X −
w3

1−
w4

X − · · ·

= X + b1 −
a2

X + b2 −
a3

X + b3 −
a4

X + b4 − · · ·

, (5.20)

where the J-fraction on the right above is the contraction of the S-fraction. More precisely, the second
equality in (5.20) is an identity of continued fractions, obtained by combining successive pairs of adjacent
lines in the S-fraction into a single sequence of lines in the J-fraction, with coefficients aj , bj related to wj by

b1 = −w1 , aj+1 = w2j−1w2j , bj+1 = −w2j − w2j+1 , for j ⩾ 1 . (5.21)

In particular, we observe that this reproduces the transformation (5.12) between the Volterra and Toda
lattices, but for indices j ⩾ 1 only.

We now briefly recall the construction of integrable maps associated with J-fractions, as presented in
[28]. The starting point is a rational function Y0 on an even hyperelliptic curve C of the form (5.18), whose
completion C̄ includes two points ∞1,∞2 at infinity. This function has g + 1 simple poles and g + 1 simple
zeros, with one pole being at the point ∞1 (where Y ∼ Xg+1 ∼ A(X) as X → ∞), and one zero being at
∞2 (where Y ∼ −Xg+1 ∼ −A(X)), taking the form

Y0 =
Y + P0(X)

Q0(X)
, (5.22)
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for polynomials P0, of degree g + 1 with no term at O(Xg), and Q0, of degree g; and there exists another
polynomial Q−1, of degree g, satisfying Y

2 = P 2
0 +Q0Q−1 = F̂. The expansion of Y0 around the point ∞1,

with X−1 as a local parameter, can be considered as an element of C((X−1)), and it was shown by van der
Poorten (see [40, 43]) that this power series admits a J-fraction expansion of the form

Y0 = α0 +
1

Y1
= α0 +

1

α1 +
1

Y2

= · · · = α0 +
1

α1 +
1

α2 +
1

. . .

(5.23)

with αn := ⌊Yn⌋, the polynomial part of Yn. Furthermore, for a generic choice of such P0, Q0 in (5.22), the
polynomial parts αn are of degree 1 in X for any n, and the recursion Yn = αn + 1

Yn+1
leads to a sequence

of polynomials Pn, Qn satisfying the same degree constraints as above, such that

Yn =
Y + Pn(X)

Qn(X)
=

Qn−1(X)

Y − Pn(X)
=⇒ Y 2 = F̂(X) = Pn(X)2 +Qn(X)Qn−1(X), (5.24)

where the above relations extend to all n ∈ Z, not just n ⩾ 0, by reversing (5.23) to find Y−1 from Y0, etc.
The situation for the J-fraction expansion (5.23) is very similar to that for the expansion (5.19), and

allows the construction of a birational dynamical system that is defined by a recursion for the polynomials
Pn, Qn, analogous to the derivation of the Volterra map from the S-fraction in Section 3. Here we refer to
the dynamical system (in dimension 3g + 1) defined by (5.23) as the J-fraction map in genus g, denoted
Jg. In order to explain the very close connection between Vg and Jg, and prove Theorem 5.10, we further
summarize some features of the latter, while referring the reader to [28] for a complete description.

To describe the dynamics defined by Pn, Qn, new variables un, dn and vn are introduced from

Pn(X) = A(X) + 2dnX
g−1 +O(Xg−2) , Qn(X) = un

(
Xg − vnX

g−1 +O(Xg−2)
)
, (5.25)

so that from the terms of O(X2g) in the equation for F̂ on the right-hand side of (5.24), the relation

unun−1 = −4dn ̸= 0 (5.26)

must hold, while calculating the (degree 1) polynomial parts in each line of (5.23) shows that, for any n, we
have αn = (X + bn)/un. Thus, upon substituting for αn and rescaling each line of the continued fraction
using (5.26), we may rewrite the J-fraction (5.23) more explicitly as

Y0 = α0 +
1

Y1
=

2(X + v0)

u0
+

1

2(X+v1)
u1

+
1

2(X+v2)
u2

− · · ·

,

where, by setting ŝ0 = u1

2 , we have

Y1 =
1

ŝ0

X + v1 −
d2

X + v2 −
d3

X + v3 − · · ·

 . (5.27)

Then the J-fraction map Jg is a dynamical system on an affine phase space M̂ ĉ1=0
g of dimension 3g + 1,

which fibers over the space of curves C of the form (5.18), with each (generic) fiber being an affine part of
the corresponding Jacobian variety Jac(C̄); and on each such fiber, the map corresponds to a translation
by the class of the divisor ∞2 − ∞1. It is defined recursively by (5.24), in terms of the coefficients of the
polynomials Pn, Qn, except that the prefactors un in front of each Qn, as in (5.25), are completely decoupled
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from the dynamics. Indeed, the constant ŝ0 in (5.27) is arbitrary: it determines the first coefficient in the
series expansion of the moment generating function 1/Y1 =

∑
j⩾0 ŝjX

−j−1, whose coefficients allow the
solutions of Jg to be written in terms of tau functions given by Hankel determinants; but ŝ0 can be removed
by a gauge transformation on the tau functions. Moreover, once ŝ0 is fixed, then u1 and all the other
prefactors un are determined from ŝ0 and dn, due to (5.26); and the phase space M̂ ĉ1=0

g (which is an affine
space of Lax matrices) does not include the parameter ŝ0. After decoupling from un, the map Jg can be
written equivalently as a recursion for the remaining coefficients in Pn, Qn, or as coupled recurrences for the
quantities dn, vn. (See (5.33) and (5.35) in the examples below for the cases g = 1 and g = 2, respectively.)

We would now like to identify (5.27) with the J-fraction appearing on the right in (5.20), but there are
two problems: firstly, the relation (5.21) is valid only for j ⩾ 1, and gives a different formula for b1 when
j = 0; and secondly, we initially made the assumption that c1 = 0, which does not hold in general. To relax
the latter assumption, we must shift the spectral parameter X, as in (5.30), make a compensating shift in
bj , and allow a linear relation between x−1F0 and Y1, yielding a modification of (5.12), valid for all j ∈ Z.

Proposition 5.8. The odd, genus g spectral curve Γf : y2 = f(x) with f(x) = 1+
∑2g+1
i=1 cix

i, associated with
a generic orbit of the Volterra map Vg, is isomorphic to C, the even spectral curve (5.18) for a corresponding
orbit of the J-fraction map Jg, via the birational equivalence X = x−1 + c1/(2g + 2), Y = y/xg+1. Under
this isomorphism of curves, the function F0 on Γf and the function Y1 on C are related by

x−1F0 − w0 = ŝ0Y1, (5.28)

and the quantities dn, vn satisfying the map Jg are given in terms of the solution of Vg by

dj+1 = w2j−1w2j , vj+1 = −w2j − w2j+1 −
c1

2(g + 1)
, for j ∈ Z . (5.29)

Hence each iteration on the orbit of Jg corresponds to two iterations on the corresponding orbit of Vg.

Proof. The shift in X in the birational transformation, as in (5.30), ensures that the equation Y 2 = F̂(X) =
A(X)2 + 4R(X) for C has no term at O(X2g+1) in F̂(X), so that A(X) = Xg+1 +O(Xg−1), as required for
a spectral curve of the J-fraction map. Also, from the explicit form of the function F0 in (5.19), we may
rewrite the left-hand side of (5.28) in terms of Y and X̃ = X − c1/(2g + 2), as

X̃
(
X̃−(g+1)Y + P0(X̃

−1)
)
− w0Q0(X̃

−1)

Q0(X̃−1)
=
Y + P1(X)

Q1(X)/ŝ0

where we calculate P1(X) = X̃g+1P0(X̃
−1)−w0X̃

gQ0(X̃
−1) = X̃g+1+(p0,1−2w0)X̃

g+O(X̃g−1), and then in

view of (3.25) we see that P1(X) = Xg+1+O(Xg−1), whileQ1(X) = ŝ0X̃
gQ0(X̃

−1) = u1

2

(
2X̃g+O(X̃g−1)

)
=

u1
(
Xg +O(Xg−1)

)
, so both of P1 and Q1 are polynomials in X of the required form for the J-fraction map.

Now from the S-fraction in (5.28), we find that combining contraction with the shift of spectral parameter
modifies (5.20), so that, in terms of fractions in X, x−1F0 − w0 is equal to

X − c1
2g+2 − w0 −

w1

1−
w2

X − c1
2g+2 −

w3

1−
w4

X − c1
2g+2 − · · ·

= X + v1 −
d2

X + v2 −
d3

X + v3 −
d4

X + v4 − · · ·

,

where we have inserted the formula for Y1 from (5.27), and cancelled the arbitrary constant ŝ0 = u1

2 .
Comparing the first line of the above fractions on each side, we see that v1 = −w0 −w1 − c1/(2g+2), which
is the correct form of the relation for v1 in (5.29) when j = 0, and contraction of the subsequent lines on the
left give these expressions for dj+1, vj+1 for all j ⩾ 1. One can also shift the fraction on the left down by
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two lines, to get a relation between F2 and Y2, and the fraction can be inverted to find a relation between
F−2 and Y0; so, by continuing down or up in this way, we find that x−1F2j − w2j =

uj+1

2 Yj+1 holds for all
j ∈ Z, extending (5.29) to negative j as well. In all expressions, a shift of indices j → j + 1 gives a single
iteration of Jg, but all indices of the Volterra variables increase by 2, giving two iterations of Vg.

Corollary 5.9. Under the action of the Hamiltonian vector field X1, each generic solution of Vg produces a
genus g solution of the Toda lattice equation (1.11) which also satisfies the map Jg, via the transformation
(5.29).

Proof. This follows immediately from the preceding result, by applying Theorem 5.3, and noting that the
result of Corollary 5.5 still stands if we set an = dn, bn = vn + c1/(2g + 2) for all n.

The main results of this subsection are collected in the following statement.

Theorem 5.10. By contraction of the S-fraction (5.19) for the associated rational function F0, a generic
orbit of the Volterra map Vg corresponding to a fixed odd spectral curve Γf : y2 = f(x) of genus g, for
square-free f(x) as in (5.16), is transformed to an orbit of the integrable map Jg constructed in [28] from

the J-fraction (1.10), with the even spectral curve C given by (5.18) with F̂(X) = X2g+2+
∑2g+2
j=2 ĉjX

2g+2−j.
For coefficients ĉj given suitably in terms of ci, there is a birational equivalence between Γf and C, given by

X = x−1 +
c1

2(g + 1)
, Y =

y

xg+1
. (5.30)

Moreover, the translation on Jac(C̄) associated with a single iteration of the J-fraction map corresponds to
twice the translation on Jac(Γ̄f ) associated with each iteration of Vg. In fact, each generic orbit of Vg is
related to two different orbits of Jg in this way.

Proof. The main statements in the theorem were already proved in Proposition 5.8. For the relation between
shifts on complex tori, note that in Mg, we have that µ−1(f), the fiber over a generic curve Γf , is an affine

part of Jac(Γ̄f ), while in M̂ ĉ1=0
g the fiber over C is an affine part of Jac(C̄); but then the isomorphism (5.30)

between these two spectral curves means that Jac(Γ̄f ) ∼= Jac(C̄). It was shown in [28] that each iteration of the
J-fraction map Jg corresponds to a translation by the class of the divisor ∞2−∞1 on Jac C̄, where ∞1,2 are
the two points at infinity on C̄, and these are equivalent to the points (0,±1) on (3.5). So in terms of Jac(Γ̄f ),
this is a translation by the class of the divisor (0,−1)− (0, 1) = 2(0,−1)− (0,−1)− (0, 1) ∼ 2

(
(0,−1)−∞

)
,

that is by 2[(0,−1) − ∞
]
, twice the shift corresponding to the Volterra map Vg (as found in the proof of

Theorem 4.10). Finally, notice that in Corollary 5.5 there is the second, alternative formula (5.13), with
the indices on all wi shifted one step forwards. This corresponds to the freedom to start the contraction
procedure one line lower in the S-fraction (5.20), beginning with F1 rather than F0; so the indices on all
Volterra variables must be shifted by the same amount, and the relation (5.28) with the corresponding
rational function on C is modified to x−1F1 − w1 = ŝ0Y1. Then, in terms of the J-fraction coefficients, this
produces

dj+1 = w2jw2j+1 , vj+1 = −w2j+1 − w2j+2 −
c1

2(g + 1)
, for j ∈ Z . (5.31)

Thus each orbit of Vg is transformed to two different orbits of Jg, since the resulting orbit of the latter map
remains the same when the index on the wi in (5.31) is shifted by a multiple of 2.

Remark 5.11. In [28], the phase space M̂ ĉ1=0
g for the J-fraction map Jg is obtained from M̂g, an affine

space of dimension 3g + 2 with a specific Poisson structure {· , ·}, by restricting to a subvariety defined by
setting the value of one of the Casimirs to zero. (This is analogous to the situation described in the appendix,
Section 7.) Although Theorem 5.10 has been stated in terms of a correspondence between specific orbits
of Vg and Jg, the considerations in the proof make it clear that, since the coresponding generic fibers are
birationally equivalent, the restriction of Jg to each fiber is (conjugate to) the square (Vg)2 = Vg ◦ Vg. This
gives a strong hint that M̂ ĉ1=0

g and Mg should also be birationally equivalent, making this into a global
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statement about the two maps. While this global statement is by no means obvious, the first example below
shows that it is correct when g = 1; but it is not true as a Poisson isomorphism, at least for the specific
Poisson structure introduced in [28]. The problem of finding alternative Poisson structures on M̂g, and
making all these statements precise, is best left for future work.

Example 5.12. When g = 1, with the cubic Γf : y2 = 1 + c1x+ c2x
2 + c3x

3, the transformation (5.30) is

X = x−1 +
c1
4
, Y =

y

x2
=⇒ C : Y 2 = (X2 + f̂)2 + 4ûX + 4ĥ,

where the quartic curve C is written in terms of the parameters

f̂ =
1

2
c2 −

3

16
c21, û =

1

4
c3 −

1

8
c1c2 +

1

32
c31, ĥ =

1

16
(c21c2 − c1c3 − c22)−

3

256
c41. (5.32)

Under the transformation (5.29), solutions of the g = 1 Volterra map V1, given by (3.34), or equivalently by
(3.37) (with fixed c3), or by (3.39) (with fixed c2), are mapped to solutions of the corresponding J-fraction
map, which (according to the results in Example 3.2 in [28]) can be written as a 2D map defined by

dn+1 = −dn − v2n − f̂ , (5.33)

vn+1 = −vn +
û

dn+1
,

on a reduced phase space with fixed parameters f̂ , û, which are determined from (5.32) in terms of the values
of the constants c1, c2, c3 for the solution of the map V1. The map (5.33) has the conserved quantity

Ĥ = dn(v
2
n + dn + f̂)− ûvn,

which, on the orbit corresponding to a fixed solution of V1, takes the value Ĥ = ĥ given in (5.32). The
Poisson bracket presented for the J-fraction maps in [28] becomes the canonical bracket

{vn, dn} = 1 (5.34)

on the 2D phase space of the map (5.33), with coordinates (dn, vn), and it can be verified directly that the
vector field {·, Ĥ} extends to the Toda lattice flow (1.11) for all n ∈ Z under the action of this J-fraction
map. Upon comparing with Example 5.6, it is clear that the analytic expressions for an, bn in (5.15) provide
explicit formulae for the solutions of both the map (5.33) and the Toda lattice, by setting dn(t) = an(t) and
vn(t) = bn(t)− 1

4c1. Upon comparison of (5.14) with (5.15), it can be seen that each iteration of V1 gives a
shift by z on the Jacobian of the elliptic curve, while each iteration of (5.33) produces a shift by 2z.

However, the bracket (5.34) cannot be a reduction of any of the Poisson structures in Example 4.4,

because the parameters f̂ , û do not correspond to Casimirs of any of these brackets on the phase space

M1. (This is immediately obvious for the pencil of brackets generated by {· , ·}x and {· , ·}x
2

, while a short
calculation shows this to be the case for (4.12) as well.) Nevertheless, it is still possible to interpret (5.29)

as a Poisson map in terms of members of the pencil {· , ·}ϕ, with c1 being the fixed value of a Casimir.
For instance, using the Nambu-Poisson structure, we can construct a birational transformation between the

symplectic leaves of {· , ·}x
2

, that is M c
1 ∩ (H2 = c2), and a 2D phase space for the J-fraction map with

coordinates (dn, vn), with c1, c2 viewed as fixed parameters, on which the bracket reduces to

{vn, dn}x
2

= vn − 1

4
c1.

Now we take a particular numerical example, with the elliptic curve y2 = 1− 4x+ 4x3 (c1 = −4, c2 = 0,
c3 = 4), and w1 = 1, w2 = 2. The sequence (wn) extends backwards to n ⩽ 0 to give a singular orbit of
(3.34), with the same singularity pattern appearing as was found for (P.iv) in Section 2:

. . . , 7
15 ,

10
3 ,−

3
2 ,−

1
2 , 2, 1, 0,∞,∞, 0, 1, 2,− 1

2 ,−
3
2 ,

10
3 ,

7
15 , . . . .
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This orbit is symmetrical, in the sense that w−n = wn−3 for all n ∈ Z. By applying the formulae in
Example 3.9, the solution is expressed in terms of Hankel determinants ∆n constructed from the moment
sequence determined from s1 = 1, s2 = 2, sj =

∑j−1
i=1 sisj−i −

∑j−2
i=1 sisj−i−1 (j ⩾ 3), that is (sj)j⩾1 :

1, 2, 3, 6, 14, 37, 105, 312, 956, 2996, 9554, . . ., which gives

(∆n)n⩾−2 : 1, 1, 1, 1, 2,−1, 3,−5, 7,−4, 23, 29, 59, 129, 314, . . . .

With ∆−3 = 0, this extends backwards to a sequence of tau functions τn = ∆n−3 = (−1)n+1τ−n for n ∈ Z;
hence from (3.42) and (3.48) we find c′2 = −1, c′3 = 1, so for all n they satisfy the Somos-5 relation

τn+5τn = −τn+4τn+1 + τn+3τn+2.

Applying (5.30) in this case produces the quartic curve Y 2 = (X2 − 3)2 − 4(X + 2), the same one as in
Example 4.2 from [28], and the contraction formulae (5.29) and (5.31) with j = 1 give initial points on two

different orbits of the map (5.33) with parameters f̂ = −3, û = −1, namely (d2, v2) = (2,− 1
2 ) and (−1, 3),

respectively, which both correspond to the value ĥ = −2 for the conserved quantity of this map. For these
two different orbits, we find that

dn =
τ̂n−1τ̂n+1

τ̂2n
,

where τ̂n = ∆2n−4 (even index Hankel determinants) for the first orbit, and τ̂n = ∆2n−3 (odd index Hankel
determinants) for the second one. It follows from Proposition 5.1 in [28] that either of these even/odd index
subsequences (1, 1, 2, 3, 7, 23, 59, 314, . . . and 1, 1,−1,−5,−4, 29, 129, . . ., respectively) must satisfy the same
Somos-4 relation, in this case the original one introduced by Somos [47]:

τ̂n+4τ̂n = τ̂n+3τ̂n+1 + τ̂2n+2.

This connection between Somos-5 and Somos-4 has already been exploited elsewhere (in [24], and in [8], for
example); however, the specific Hankel determinants for Somos-4 obtained here via contraction differ from
the ones found in [8], and also from the ones derived directly from the J-fraction in [28].

Example 5.13. An orbit of the map (P.iv), with the spectral curve (1.8), can be transformed to an orbit of
the g = 2 J-fraction map, as discussed in Example 3.3 of [28], which has an associated sextic curve, related
to it via X = x−1 + ν/3, Y = y/x3, that can be taken in the form

C : Y 2 = (X3 + f̂X + ĝ)2 + 4(ûX2 + ĥ1X + ĥ2).

Defined on a 4D phase space with coordinates (dn−1, dn, vn−1, vn) and depending on the 3 parameters f̂ , ĝ, û,
the map in [28] is given by

dn+1 + dn + dn−1 + û/dn + v2n + vnvn−1 + v2n−1 + f̂ = 0, (5.35)

(2vn + vn−1)dn + (2vn + vn+1)dn+1 + v3n + f̂vn + ĝ = 0.

More precisely, there are two different orbits of (5.35) obtained from each orbit of (P.iv), depending on
whether the formula (5.29) or (5.31) is applied. Then, upon writing each term wj satisfying (P.iv) as a ratio
of the Hankel determinants ∆j defined in Example 3.11, we see that the quantities dn that appear in the
solution of the J-fraction map, as above, are given as a ratio of tau functions, in two different ways:

dn =
τ̂n−1τ̂n+1

τ̂2n
, τ̂n = ∆2n−4 or ∆2n−3,

for n ∈ Z, where the orbit is determined by the choice of parity of the index on ∆j . It follows from the
proof of Theorem 5.5 in [28] that (regardless of which choice is made), the tau functions τ̂n satisfy a Somos-8
relation, which explains why the relation (2.9) appears in Example 2.2.
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6 Conclusions and outlook

We have seen how the map (P.iv) obtained by Gubbiotti et al. can naturally be viewed as the g = 2 member
of a family of algebraically integrable maps, defined for each g, that are naturally related to the infinite
Volterra lattice equation, leading to genus g solutions of the latter. This begs the question as to what can
be said about the other Liouville integrable maps in 4D found in [21], namely (P.v) and (P.vi), which take
the same form (1.1) but for a different rational function F. Note that (P.vi) depends on an extra parameter
compared with (P.v), which we denote here by δ (instead of δ2 in [21]). In fact, (P.v) arises from (P.vi) in
the limit δ → 0.

So far we have made the following observations:

� Each solution ŵn of (P.v) is mapped to a solution wn of (P.iv) via the transformation

wn = ŵn+1ŵn, (6.1)

by suitably identifying the parameters ν, a, b for (P.iv) in terms of the parameters and first integrals
for (P.v).

� Under the flow of the Hamiltonian vector field d
dt associated with one of its first integrals, the sequence

(ŵn)n∈Z generated by iteration of the map (P.v) extends to a solution of the modified Volterra lattice
in the form

dŵn
dt

= ŵ2
n(ŵn+1 − ŵn−1). (6.2)

� Each solution ŵn of (P.vi) is mapped to a pair of solutions w
(+)
n , w

(−)
n of (P.iv), via the transformations

w(±)
n = (ŵn+1 ± δ)(ŵn ∓ δ), (6.3)

by suitably identifying the parameters ν, a, b for (P.iv) in terms of the parameters and first integrals
for (P.vi).

� Under the flow of the Hamiltonian vector field d
dt associated with one of its first integrals, the sequence

(ŵn)n∈Z generated by iteration of the map (P.vi) extends to a solution of the modified Volterra lattice
in the form

dŵn
dt

= (ŵ2
n − δ2)(ŵn+1 − ŵn−1). (6.4)

The formulae (6.1) and (6.3) are the well-known expressions for the Miura transformation connecting the two
forms of the modified Volterra lattice equation, given by (6.2) and (6.4), respectively, to the Volterra lattice
(5.7). Thus the above statements about the connections between the maps can be viewed as restrictions of
a Miura transformation to a finite-dimensional phase space. Preliminary calculations, and the results of [55]
on elliptic solutions, indicate that this picture should extend to arbitrary genus g. We propose that the full
description of the above observations, and their extension to genus g analogues of the maps (P.v) and (P.vi),
should be left as the subject of future work.

It is also worth pointing out that part of the original motivation for the work in [21] was to consider
autonomous versions of the higher order discrete Painlevé equations from [11], and new applications of
the latter have been found very recently. Non-autonomous analogues of the Volterra maps Vg have been
considered in the context of Hermitian matrix models [4], where they arise as string equations, and they also
appear as recursion relations for orthogonal polynomials associated with generalised Freud weights of higher
order [10]. In these applications, the algebro-geometric structure of the Volterra maps should be relevant to
the asymptotic description of the oscillatory behaviour that is observed in specific parameter regimes.
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7 Appendix: the relation between the Mumford-like and the even
Mumford system

Here we now show that the Hamiltonian system (Mg, {· , ·}ϕ , µ) associated with the Volterra map is bira-
tionally isomorphic (as a Poisson isomorphism) to the even Mumford system, or more precisely to a subsystem
thereof, obtained simply by fixing the value of one of the Casimirs. Recall from [53, Ch. 6] that the even
Mumford system (of genus g) is the Hamiltonian system (M ′

g, {· , ·}
′ ψ, µ′), whose phase space M ′

g is the
(3g + 2)-dimensional affine space

M ′
g :=

(U(ξ), V (ξ),W (ξ)) ∈ C[ξ]3
∣∣∣ degU(ξ) = g , U monic

deg V (ξ) < g ,
degW (ξ) = g + 1 , W monic

 . (7.1)

Elements (U(ξ), V (ξ),W (ξ)) of M ′
g are written as Lax matrices

L′(ξ) :=

(
V (ξ) U(ξ)
W (ξ) −V (ξ)

)
,

whose polynomial entries have the form

U(ξ) = xg +

g−1∑
i=0

Uiξ
i , V (ξ) =

g−1∑
i=0

Viξ
i , W (ξ) = xg+2 +

g+1∑
i=0

Wiξ
i .

The 3g + 2 coefficients Wg+1,Wg and Ui, Vi,Wi with 0 ⩽ i < g are used as linear coordinates on M ′
g. The

momentum map µ′ is given by

µ′ : M ′
g → C[ξ]

L′(ξ) =

(
V (ξ) U(ξ)
W (ξ) −V (ξ)

)
7→ −detL′(ξ) = V (ξ)2 + U(ξ)W (ξ) .

It is clear that −detL′(ξ) is monic of degree 2g+2, so 2g+2 polynomial functions H ′
0, H

′
1, . . . ,H

′
2g+1 onM ′

g

are defined by

V (ξ)2 + U(ξ)W (ξ) = ξ2g+2 +

2g+1∑
i=0

H ′
iξ
i ,

For any non-zero polynomial ψ of degree at most g + 1, a Poisson structure of rank 2g on M ′
g is given by

{U(ξ), U(η)}′ ψ = {V (ξ), V (η)}′ ψ = 0 ,

{U(ξ), V (η)}′ ψ =
U(ξ)ψ(η)− U(η)ψ(ξ)

ξ − η
,

{U(ξ),W (η)}′ ψ = −2
V (ξ)ψ(η)− V (η)ψ(ξ)

ξ − η
,

{V (ξ),W (η)}′ ψ =
W (ξ)ψ(η)−W (η)ψ(ξ)

ξ − η
− (ξ + η +Wg+1 − Ug−1)U(ξ)ψ(η) ,

{W (ξ),W (η)}′ ψ = 2(ξ + η +Wg+1 − Ug−1) (V (ξ)ψ(η)− V (η)ψ(ξ)) .

The polynomial functions H ′
i are independent and in involution, which accounts for the Liouville integrability

of the even Mumford system. It is algebraically integrable, with the fiber of µ′ over any monic polynomial
f ′(x) of degree 2g + 2 and without multiple roots being an affine part of the Jacobian of the smooth
hyperelliptic curve defined by η2 = f ′(ξ).
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For the isomorphism, we consider only the Poisson structures {· , ·}′ ψ for which ψ(0) = 0. They admit
H ′

0 as Casimir function, hence we can restrict (M ′
g, {· , ·}

′ ψ, µ′) to the subvariety, defined by H ′
0 = 0; the

resulting system is denoted by (M0
g , {· , ·}

0,ψ
, µ0). We show that this system is birationally equivalent to the

Mumford-like system (Mg, {· , ·}ϕ , µ), where the relation between ψ and ϕ will be spelled out below. To do

this, we construct a biregular map Ψ̃ and a birational map Ψ making the following diagram commutative:

M0
g Mg

B0
g Bg

Ψ

µ0 µ

Ψ̃

In this diagram, Bg and B0
g are the images of µ and µ0, which we view as spaces of curves: Bg consists of

the hyperelliptic curves of the form y2 = f(x), with f(0) = 1 and deg f ⩽ 2g + 1, while B0
g consists of the

hyperelliptic curves of the form η2 = f ′(ξ), with f ′ monic of degree 2g+2, vanishing at 0. The curves of B0
g

have two points at infinity, which we denote by ∞1 and ∞2.
We first establish a natural correspondence between the curves of B0

g and the curves of Bg. Let y
2 = f(x)

be a curve of Bg and substitute x = ξ−1 and y = ηξ−g−1, to get η2 = f ′(ξ) = ξ2g+2f(ξ−1), where f ′(0) = 0
and f ′ is monic of degree 2g+2, so η2 = f ′(ξ) is a curve of B0

g . From the latter, one gets back y2 = f(x) by

setting ξ = x−1 and η = yx−g−1. Notice that when f(x) = 1+
∑2g+1
i=1 cix

i then η2 = ξ2g+2+
∑2g+1
i=1 c2g+2−iξ

i,

which yields the biregular map Ψ̃.
For the construction of Ψ, the biregular map Ψ̃ between the spaces of curves y2 = f(x) and η2 = f ′(ξ) is

extended to divisors on these curves. To do this, we compare the description of points (P(x),Q(x),R(x)) on
a generic fiber of µ in terms of divisors on the corresponding curve y2 = f(x) with the description of points
(U(ξ), V (ξ),W (ξ)) on a generic fiber of µ′ in terms of divisors on the corresponding curve η2 = f ′(ξ). The
first description was given in the proof of Proposition 4.6, while the second description, which we quickly
recall, can be found in [53, Ch. 6]. Let ξ1, . . . , ξg denote the roots of U(ξ) and let ηi := V (ξi), for i = 1, . . . , g.
Then the points (ξi, ηi) belong to the curve η2 = ϕ(ξ) and so the divisor class [

∑g
i=1(ξi, ηi)− g∞1] is a point

of its Jacobian. The relation between the polynomials Q(x) and U(ξ) is clearly given by

ξg

2
Q(ξ−1) = U(ξ) .

Indeed, both sides of this equality are polynomials of degree 2g+2 which vanish for ξ = ξi = x−1
i (which we

may assume to be different). Similarly, P(x) is related to U(ξ) and V (ξ) by

ξgP(ξ−1)− U(ξ) =
U0V (ξ)− V0U(ξ)

ξU0
,

because both sides of this equation are the unique polynomial in ξ of degree less than g which takes for
ξ = ξi the value ηi/ξi. A formula for R follows from the equations of the curves, namely

P2(ξ−1) +Q(ξ−1)R(ξ−1) = f(ξ−1) = ξ−2g−2f ′(ξ) = ξ−2g−2(V 2(ξ) + U(ξ)W (ξ)) .

It is clear that this defines a birational map between Mg and M0
g . Under this map, Hi corresponds to

H ′
2g+2−i, for i = 1, . . . , 2g + 1. To see that Ψ is a Poisson map, hence a birational Poisson isomorphism, we

recall that the Poisson bracket {· , ·}′ ψ is given in terms of the ξi and ηj by {ξi, ηj}′ ψ = ψ(ξi)δij , and hence

{xi, yj}′ ψ =
{
ξ−1
i , ηjξ

−g−1
j

}′
ψ = −ξ−2

i ξ−g−1
j {ξi, ηj}′ ψ = −ξ−g−3

i ψ(ξi)δij = −xg+3
i ψ(x−1

i )δij .

Compared with (4.21), this shows that Ψ : (M0
g , {· , ·}

′ ψ) → (Mg, {· , ·}ϕ) is a birational Poisson isomorphism
when taking ϕ(x) = ψ(x−1)xg+2; notice that ϕ, defined by this formula, is indeed a polynomial of degree
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at most g + 1, vanishing at 0 and that we get all such polynomials ϕ for some appropriate polynomial ψ of
degree at most g + 1, vanishing at 0.
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