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Abstract: In recent years, both machine learning and computer vision have seen growth in the use
of multi-label categorization. SMOTE is now being utilized in existing research for data balance,
and SMOTE does not consider that nearby examples may be from different classes when producing
synthetic samples. As a result, there can be more class overlap and more noise. To avoid this problem,
this work presented an innovative technique called Adaptive Synthetic Data-Based Multi-label
Classification (ASDMLC). Adaptive Synthetic (ADASYN) sampling is a sampling strategy for learning
from unbalanced data sets. ADASYN weights minority class instances by learning difficulty. For hard-
to-learn minority class cases, synthetic data are created. Their numerical variables are normalized
with the help of the Min-Max technique to standardize the magnitude of each variable’s impact on
the outcomes. The values of the attribute in this work are changed to a new range, from 0 to 1, using
the normalization approach. To raise the accuracy of multi-label classification, Velocity-Equalized
Particle Swarm Optimization (VPSO) is utilized for feature selection. In the proposed approach,
to overcome the premature convergence problem, standard PSO has been improved by equalizing
the velocity with each dimension of the problem. To expose the inherent label dependencies, the
multi-label classification ensemble of Adaptive Neuro-Fuzzy Inference System (ANFIS), Probabilistic
Neural Network (PNN), and Clustering-Based Decision tree methods will be processed based on
an averaging method. The following criteria, including precision, recall, accuracy, and error rate,
are used to assess performance. The suggested model’s multi-label classification accuracy is 90.88%,
better than previous techniques, which is PCT, HOMER, and ML-Forest is 65.57%, 70.66%, and
82.29%, respectively.

Keywords: imbalanced data; adaptive synthetic data; improved particle swarm optimization; adap-
tive neuro-fuzzy inference system; probabilistic neural network; multi-class classification

1. Introduction

Multi-label classification is typically used in different data mining applications, like
labeling videos, images, music, and texts. Multi-label classification classifies documents
into various classes simultaneously based on their properties. This task is different from the
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conventional single label, which correlates every document to a single class. The classifica-
tion task of the single label can also be regarded as multi-class or binary classification [1].
In multi-class classification, every document can fall under multiple label categories, but
only one label category is designated. However, the multi-label classification, generalizes
the multi-class and binary classification since it does not emphasize any constraints on
the number of components that are imposed on the outputs [2]. Techniques of multi-label
classification are affected by a higher level of class imbalance, and due to this, they will not
be able to operate with efficiency.

Multiple item identification in images, gene expression prediction, tag prediction for
audio, and categorizing papers into specified categories are just a few examples of the
many fields where multi-label classification is a common challenge in artificial intelligence
research [3,4]. Additionally, classifiers that can develop a global model for a class perform
worse when multi-label datasets are classified [5]. To concentrate on the decision limits of
the classifier(s) in each area, clustering has previously been used to extract the distribution
of data completely or separately for each class [6,7]. In other words, one classifier is trained
for each cluster of data after the initial clustering of the data. The labels of the data are
not used in clustering, which is an unsupervised classification [8,9]. There is no method to
collect the relationship between labels since many algorithms that address the multi-label
classification issue neglect the connection between labels.

Instead of looking at labels separately, using the correlation between labels may help
with multi-label categorization problems. The first Bi-cluster based Synthetic Minority
Oversampling Technique (B-SMOTE) for managing classification with unbalanced datasets
was presented in recent work as a solution to these problems. Moreover, the BAT optimiza-
tion algorithm is used for feature selection, which selects more relevant features from the
samples to increase the multi-label classification accuracy. Then, an ensemble classifier is
used for classification. In tasks requiring many labels, the hierarchical model may thus
be particularly effective. However, in existing work, SMOTE is used for data balancing in
which SMOTE does not take the enclosing instances coming from various classes into con-
sideration during the generation of synthesized examples. As a result, there may be more
class overlap and more noise introduced. An innovative strategy was used in this study to
eliminate these problems called adaptive synthetic data-based multi-label classification.

Organization of This Research Work

In this research work, an introduction to the multi-label classification is given in
Section 1. Multi-label categorization research is reviewed in Section 2. In Section 3, the
proposed multi-label classification model design is formulated, and then a closed-form
solution is derived. Section 4 discusses the results of the simulation. The conclusion and
work intended for the future are discussed in Section 5.

2. Literature Review

This section reviews the multi-label classification with different methods in detail.
Mikolov et al. [10] the Recurrent Neural Network Language Model’s Contextual Real-

Valued Input Vector for Every Word, which enhances performance. However, there are a
few drawbacks to the techniques at varied levels. On the usage of the CNN technique, post
the calculation of convolutions, k-max or average pooling must still be used to determine
the length of each document’s representation. The RNN model is biased, with later words
dominating earlier words.

Lai et al. [11] suggested the RCNN model, which can overcome RNN bias, for document
categorization. While learning the feature representation of texts using CNN, the recurrent
structure’s benefits are successfully used by the RCNN, which facilitates the gathering of
contextual data since this approach will also encounter problems as a result of vanishing
gradients and exploding gradients while the error is updated with back-propagation.

Lin et al. [12] proposed that Label Space Dimension Reduction (LSDR) is performed
using a unique technique called End-to-End Feature-Aware Label Space Encoding (E 2FE).
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In an early study, E 2FE learns a code matrix directly from training example code vectors
without an encoding algorithm. The coding matrix is obtained by concurrently optimizing
the restoration and the predictability of the latent space, which explains E2FE feature
awareness. E2FE additionally teaches a linear decoding matrix to quickly find an unknown
instance’s label vector from its estimated code vector. E2FE trains predictive models to
convert instance attributes into code vectors according to the learned code matrix.

The multi-label categorization must be handled, and an enhanced Convolutional
Neural Network through Hierarchical Dirichlet Process (HDP) model has been put out
by Wang et al. [13] for issues in NLP. An HDP model is applied first to exclude a few
less semantically significant terms. After that, convert words into vectors using word-
embedding techniques. The last step is to train CNN using word vectors. In terms of
performance, experimental findings show that our technique outperforms both text CNN
and the majority of conventional multi-label classification algorithms.

A multi-label ranking approach for document categorization based on LSTM was
suggested by Yan et al. [14], specifically LSTM22, which combines a unified learning-
ranking approach called rank LSTM with rep LSTM, an adaptive data representation
process. The supervised LSTM in repLSTM incorporates the document labels to learn
document representation. Our method also performs well in document categorization tests
on three representative datasets.

Multi-label text may now be effectively and automatically classified using a revolu-
tionary technique given by Jindal [15]. Lexical and semantic ideas serve as the foundation
for the suggested approach. A common IEEE taxonomy is used to identify tokens in text
sources. Using the well-known lexical database WorldNet, the semantic links between
tokens are examined. A database of 150 computer science research studies from the IEEE
Xplore digital library is used to test the suggested technique. With a 75% accuracy rate, it
has shown noticeably excellent performance.

The greatest resampling methods, such as random oversampling, heuristic under-
sampling, and synthetic sample generation approaches, were combined in a suggested
strategy by Charte et al. [16]. To understand how the label decoupling procedure affects
the behavior of these hybrid approaches, empirical analysis is performed. Therefore,
the experimentation may provide a remarkable set of recommendations for combining
various strategies.

Latent class models combined with novel algorithms in classification were proposed
by Alyousef et al. [17]. The new approach clusters patients into groups using latent class
models, which enhances classification and makes it easier to identify the fundamental
distinctions between the groups that are found. Data from individuals with Systemic
Sclerosis, an uncommon and possibly deadly illness, are used to evaluate the approaches.
Results reveal that when compared to competing comparable approaches, accuracy is
improved using the “Latent Class Multi-Label Classification Model”.

An ACkEL paradigm was introduced by Wang et al. [18]. Based on active learning,
a label-selection condition assesses class differentiability and balance. Subsequently, the
suggested condition is used to randomly choose the first label or label subset and itera-
tively select the others. ACkEL uses pool-based and stream-based models in disjoint and
overlapping modes, respectively. Comparing the techniques shows that they are possible
and successful.

An innovative approach referred to as FL-MLC, Che et al. [19] suggested a method
for multi-label learning that takes feature–label interdependence considered. The intrinsic
link between the feature variable and the label variable is originally presented as the
discriminant weight of any feature to label. The label’s feature distribution for inputs
illustrates the distinctive weights of characteristics; kernel alignment and multiple kernel
learning increase computation. The feature distribution-based label correlation uses two
aggregation processes to combine feature distributions on various labels. The random label
variables with almost identical feature distributions should be carefully considered. The
feature distribution-based label correlation is used in this way to alter the distance among
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the parameters for various labels in the FL-MLC approach’s predictive learner. Finally,
it can be shown from the results of the tests performed on twelve real-world datasets
that the method produces improved multi-label classification results in terms of efficiency
and variety.

An innovative classification margin-based MNRS model was presented by Sun et al. [20].
A filter-wrapper pre-processing strategy for feature selection utilizing the modified Fisher
score model reduces the spatiotemporal complexity of multi-label data and improves clas-
sification performance. It is confirmed from the results of experiments conducted that the
suggested technique with thirteen multi-label datasets is efficient in the selection of salient
features, showing its remarkable classification potential in multi-label datasets.

Huang et al. [21] proposed a novel BLS-MLL multi-label classifier with two new
mechanisms: correlation-based label thresholding and a kernel-based feature-reduction
module. The feature-mapping layer, enhancement-nodes layer, and feature-reduction
layer are the three levels that make up the kernel-based feature-reduction module. Elastic
network regularization solves feature randomness to increase performance at the feature-
mapping layer. For efficient high-dimensional nonlinear conversion in the enhancement-
nodes layer, the kernel approach is used. BLS-MLL may build a label-thresholding function
to convert final decision values to logical outputs using correlation-based label thresholding,
boosting classification performance. Eventually, on ten datasets, BLS-MLL is superior to
six cutting-edge multi-label classifiers. BLS-MLL beats the comparable algorithms in 86%
of instances and has greater training efficiency in 90% of cases, according to classification
performance findings.

Bayati et al. [22] suggested a subspace learning-based memetic method for global and
local search in multi-label data. For multi-label feature selection, this is the first attempt
using a filter-based memetic algorithm. Reconstruction error and sparsity regularization are
the objective function’s conflicting objectives. The suggested multi-label feature-selection
approach is compared against nine filter-based methods. Classification accuracy, hamming
loss, average precision, and one mistake are used to evaluate multi-label classification per-
formance. The suggested strategy outperforms comparable methods across all assessment
criteria in eight real-world datasets.

Zhu et al. [23] suggested Multi-Label Classification with Dynamic Ensemble Learning
(MLDE), an innovative approach. MLDE predicts each unseen occurrence with the most
competent ensemble of base classifiers. Classification accuracy and ranking loss as basis
classifier competency measurements to create dynamic choices for the multi-label issue
and improve performance. Classification accuracy is decomposable to numerous labels
and differentiates a classifier’s ability to distinguish labels, whereas ranking loss focuses
on a classifier’s total performance on the label set and completely analyses the connection
among many labels. In comprehensive tests on 24 publicly available datasets, MLDE
exceeds modern techniques.

Zhang et al. [24] suggested Relief-LIFT, a multi-label classification approach. Relief-
LIFT uses LIFT to produce new features, then changes Relief to choose informative features
for the classification model. Our Relief-LIFT approach outperforms previous multi-label
classification algorithms on 12 real-world data sets. Table 1 shows the comparative analysis
between the available techniques of multi-label classification.

Table 1. Comparative analysis of the existing approaches.

Author Approaches Discussion Demerits

Wang [13] et al. (2018)
Multi-label Classification Utilizing
an Improved Convolutional
Neural Network Algorithm

It achieves an average labeling
accuracy above 93%

Quite difficult the classification of
images in various positions

Jindal [15] (2018)
A novel method for multi-label
text document categorization that
is both automatic and effective

Yields reasonable performance
achieving an accuracy of 75%.

However, word embedding does
not discriminate against
different senses.
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Table 1. Cont.

Author Approaches Discussion Demerits

Charte [16] et al. (2019)
Tackling Multi-label Imbalance
using Label Decoupling and Data
Resampling Hybridization

Hamming Loss and Ranking Loss
are minimized.

Performance degradation in using
the high dataset

Alyousef [17] et al. (2019)
Identification of Illness Subclasses
Using Latent Class Multi-label
Classification for Better Prediction

Results show that the “Latent
Class Multi-label Classification
Model” increases the accuracy in
comparison with contemporary
potential techniques.

The primary disadvantage is that
it is undesirable for datasets
having a huge number of labels,
owing to the massive exploration
space

Wang et al. [18] (2020) Active k-label sets ensemble Feasible and effective
How to further improve the
training efficiency will be an
important issue

Che et al. [19] (2021) FL-MLC Is effective and diverse for
multi-label classification Increases the time complexity

Sun et al. [20] (2021) Margin-based MNRS model Effective and feasible Increases the false positive rate

Huang et al. [21] (2022) Correlation-based label
thresholding Produces better performance Does not evaluated on high

volume data

Bayati et al. [22] (2022) Subspace learning and memetic
algorithm Superior to comparing methods Increases the false positive rate

Zhu et al. [23] (2023) Dynamic Ensemble learning Outperforms the state-of-the-art
methods. Time-consuming nature

Zhang et al. [24] (2023) Relief-LIFT Achieve better performance This does not apply to all
applications

Existing works presented in the above literature review do not use proper feature-selection methods to reduce
the time complexity, and they do not use any oversampling models to balance the imbalanced class problem
in the data samples. To avoid those problems, the proposed work used enhanced feature-selection and data
oversampling models, which increases the classification accuracy and reduces the time complexity.

2.1. Contribution to the Work

The main contributions of this work are:

(i) Adaptive synthetic sampling-based synthetic data generation is performed to balance
the input data class label;

(ii) Data normalization is used to normalize the input data scale based on min-max
normalization, which increases the accuracy of the proposed classification model;

(iii) Significant features are selected based on avoiding redundant and noisy data from
the samples using velocity-equalized particle swarm optimization. Standard particle
swarm optimization has the issue of early convergence, and it has been strengthened
by balancing the velocity (v) with each aspect of the issue in the proposed velocity
equalized particle swarm optimization model;

(iv) Multi-label classification using an ensemble of Adaptive Neuro-Fuzzy Inference
Systems, Probabilistic Neural Networks, and Clustering-Based Decision Tree methods
processed based on averaging method.

2.2. Motivation

Multi-Label Classification (MLC) has many applications, such as bio-informatics
as diseases stages identification; text classification, e.g., politics, the environment, and
economics are among the categories in which news articles can be categorized; sentiment
evaluation of microblogs, for instance, can classify a microblog’s emotional state into two
or more categories, including joyful, furious, worried, and surprised; system of suggestions.
Movie grouping, for example, a single movie may be related to more than one genre, such as
action, romantic, and thriller; multi-disease risk identification, for example, one individual
might suffer from yeast disease, diabetes, and other diseases; and book recommender, for
example, could suggest numerous books for a reader; journal article grouping, for example,
a journal paper may fall under various groups, such as multi-label classification, feature
selection, filter method, and wrapper method. In all the applications involving multi-
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label classification, identifying the interdependence of labels, feature selection, handling
imbalances, or any combination of these is a crucial and fundamental issue. These issues
should be well resolved to obtain higher prediction performance in real-world applications.
These challenges motivate us to develop new MLC methods that provide the desired results
for the respective applications.

3. Proposed Methodology

This section explains the proposed improved multi-label classification model. It con-
sists of four modules first one is pre-processing using min-max normalization; the second
one is an ADAptive SYNthetic (ADASYN) sampling strategy for studying unbalanced
data sets; the third one, improved PSO, is used for feature selection that selects additional
pertinent traits from the samples, the Ensemble approach, which comes in at number four,
is the one that is employed for multi-label categorization. Figure 1 depicts the overall
architecture of the suggested work.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 22 
 

 

 
Figure 1. Block architecture of the proposed work. 

3.1. Data Balancing Using ADAptive SYNthetic (ADASYN) Sampling 
ADASYN (Algorithm 1) sampling is used in this work to oversample using artificial 

samples created using the following process on the minority class [25,26]: 

  

Dataset 

Oversampling 

Synthetic data generation for 

minority class samples by using 

ADAptive SYNthetic (ADASYN) 

Pre-processing 

 
Min-max normalization 

Feature Selection 

 
Velocity equalized Particle 

Swarm Optimization  

Multilabel Classification 

Ensemble of ANFIS, PNN, and 

clustering-based decision tree 

Figure 1. Block architecture of the proposed work.



Sensors 2023, 23, 6836 7 of 20

3.1. Data Balancing Using ADAptive SYNthetic (ADASYN) Sampling

ADASYN (Algorithm 1) sampling is used in this work to oversample using artificial
samples created using the following process on the minority class [25,26]:

Algorithm 1: ADASYN

Step 1: Start.
Step 2: Input Training data set Dtr having m samples {xi, yi}, i = 1, ..., m, where xi represents a particular

occurrence of the features X and in the n-dimensional feature space yi ∈ Y = {1,−1} is xi assigned the class
identity label. According to this definition, the percentage of minority class cases and majority class examples
is represented by the letters ms and ml correspondingly. Hence, ms ≤ ml and ms + ml = m.

Equation (1) computes the degree of class imbalance:

d =
ms

ml
(1)

where d ∈ (0, 1]
Step 3: If d < dth then dth is the current cut-off point for the proportion of class unbalance that may

be accepted.

(a) Determine the required number of samples for the minority class; synthetic data included is given in
Equation (2);

G = (m1 −ms)× β (2)

where β ∈ [0, 1], following the creation of the synthetic data, is a parameter considered to establish the
intended level of balance. β = 1 signifies that after the generalization process, a completely balanced data set
is produced;

(b) For each example xi ∈ minority class, calculate the ratio ri as in Equation (3). It entails identifying K’s
nearest neighbors in n-dimensional space using the Euclidean distance;

ri =
∆i

k
i = 1, . . . ms (3)

where ∆i is how many instances in xi’s K closest neighbors fall into the majority class, hence ri ∈ [0, 1];

(c) Normalize ribyr̂i = ri/∑ms
i=1 ri, so that r̂ I provides a distribution of density (∑ms

i=1 ri = 1);
(d) Determine how many instances of synthetic data must be produced for each minority example in xi

according to Equation (4);

gi = r̂i ×G (4)

G is the number of synthesis data samples that must be created for the minority class by the definition
given in Equation (2);

(e) Example data for every minority class xi, create gi examples of synthesized data using the
procedures below:

Do the loop from 1 to gi:
Choose one minority, then choose a random data value, xzi, the K closest neighbors for data xi.
Create the synthetic data, si as in Equation (5), for instance:

si = xi + (xzi − xi)× λ (5)

where (xi − xi) in n-dimensional spaces forms the difference vector, and λ stands for a random number:
λ ∈ [0, 1].

End Loop
Step 4. End.

Utilizing a density distribution is the main principle of the ADASYN algorithm r̂i as a
factor in determining how many synthesized samples must be created for every minority
data example. Physically, r̂i indicates an assessment of the weights that are assigned to
various minority class instances based on how tough they are to learn. The final dataset after
ADASYN will drive the learning algorithm to concentrate on the cases that are challenging
to learn while simultaneously providing a balanced representation of the data distribution.
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3.2. Pre-Processing Using Min—Max Normalization

The data was scaled in this method to a range of [0, 1] or [−1, 1]. Algorithm 2 produces
the detailed steps of this model. This method applies the formula to transform the input
value of the attribute X from [low, high] to x norm by using Equation (6).

xnorm =
(high− low)∗(x−minX)

maxX−minX
(6)

where minX and maxX are the lowest and maximum values for the incoming data set’s
property X. The data is scaled using the method to a range of [0, 1], and it is then sent to
the feature selection stage [27,28].

Algorithm 2: Min-Max normalization

Input: Pima Indian, Yeast 1, and New—thyroid 1 datasets
Output: Normalized values for all datasets
Step 1: Start
Take the maximum value from the array.
Step 2: Take the minimum value from the array.
Step 3: Estimate and show the average value from the array and the number of values that are larger than the
average.
Step 4: Estimate and show the normalized values of the original array values using Equation (6).
Step 5: End.

3.3. Feature Selection Using Velocity Equalized Particle Swarm Optimization

After data normalization, select features to reduce the time consumption. This work
uses Particle Swarm Optimization (PSO) for feature selection.

3.3.1. Particle Swarm Optimization

PSO computation uses a swarm of particles that each represents a solution contender.
The system is initialized with a population that is made up of random solutions, upgrading
its generational data to identify optimum solutions. The search procedure makes use of
a combination of deterministic and probabilistic principles, both of which are dependent
on the members of the population exchanging information with one another to make the
procedure more effective. On the other hand, PSO does not include any evolution operators
such as crossover or mutation. Using their independent memory and the information that
the swarm has collected, each particle in the search space develops a proposed solution
over time. In PSO, the information sent along from particle to particle is limited to the
ranking of the global best particle obtained from the swarm. In most cases, it is a strategy
for transferring information in just one direction. PSO particles rapidly converge to the best
solution, reducing computation time [29].

However, PSO has the issue of early convergence, and it easily falls into the local
optimum solution. To overcome those issues, this work introduced the velocity equalized
particle swarm optimization.

3.3.2. Velocity Equalized Particle Swarm Optimization
Initial Population

Modeling the feature-selection issue mathematically, finding the ideal subset contain-
ing useful features is the goal to be achieved by the feature selection problem, which is
described as an optimization problem [30].

A vector is used to represent a collection of yeast traits given by
F, Fi = f i, 1, f i, b, . . . , f i, j, . . . , f i, t, where t is the overall number of yeast traits, and i repre-
sents the number of data samples. FS should be provided with a fresh set of educational
features SFi = si, 1, si, 2, . . . , si, j, . . . , si, m, this has a new length m that the selection process
generates, sij{0, 1}, j = 1, 2, . . . , m. If so,j = 1 signifies that the sample number has chosen
the jth feature as an informative feature i. But, if so, j = 0 indicates that the jth yeast
characteristic in the data sample number i is either concealed or uninformative.
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Solution Representation

Each solution (particle) represents a subset of sample characteristics in the VPSO
method for the selection issue. The VPSO swarm consists of several particles (positions),
each of which contains one or more positions, expressed as binary vectors in a row (features).
Every point in the sample corresponds to a feature. The situation of the particle is indicated
by its location feature.

The VPSO algorithm’s feature selection process starts with random solutions and
refines the population to get the best overall solution. An entirely new subset of the sample
characteristics is created by the best solution. In the supplied database, each distinct
characteristic is regarded as a separate search area. Table 1 displays the feature selection
technique’s solution representation.

When position j is equal to 1, the jth feature is chosen in the form of an informative
feature; when it is equivalent to 0, it is not selected. The jth feature is not included in the
original text if the position j is equal to 1 [31].

Fitness Function

Each potential solution provided by the feature selection algorithms is assessed using
the Fitness Function (FF), which serves as a measurement of effectiveness. The fitness
function for each generation is calculated for all potential solutions. This solution will be
swapped out for the present one if the quality of the solution is improved, and vice versa.
The VPSO method provides a solution to the feature selection problem for the present
document that is thought to have a high fitness function value. In this study, the fitness
function for the feature selection issue was the classification accuracy in the VPSO method.
The algorithm may easily slip in the local minimum since the typical VPSO has the issue of
premature convergence.

Position Updation

VPSO updates each particle’s location depending on two key factors: velocity and
particle position. Each particle seeks to migrate to the ideal place by updating its velocity
based on the influence of particle movement.

The suggested method addresses the issue of early convergence and has been strength-
ened by balancing the velocity (v) with each aspect of the issue. Each population dimension
has a unique factor v given to it. Therefore, exploration and exploitation procedures are
carried out concurrently for each dimension.

In VPSO, the best solution’s j-dimensional local search space is used. Equation (7)
is updated up to dimension j as follows, doing a local search around the best solution in
VPSO by using Equation (7).

vt+1
ij =

{
αvt

ijxandj > xij

vijtotherwise,
(7)

Based on the number of iterations, the inertia weight value often varies
between [0, 1]. As of iteration number I, LBI is the best local solution available, while
GBI is the best global solution. r and 1, r and 2, and c1 and c2 are typically two constants,
whereas Rand is a random integer between [0, 1]. Equation (8) establishes the inertia weight.

W = (wmax − wmin)×
(

Imax − I
Imax

)
+ wmin (8)

where wmax and lumin are, respectively, the greatest and smallest inertia weights. These
weights have values that are fixed and fall between 0.5 and 0.9. Algorithm 3: produces the
step-by-step procedure for improved particle swarm optimization.
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Algorithm 3: Velocity equalized particle swarm optimization

Step 1: Start.
Step 2: Swarm (job initialization) randomly initialize the position and velocity of each particle.
Step 3: Particle (feature) fitness (classification accuracy) evaluation
if the fitness of xi > pbesti
pbesti = xi
if the fitness of pbesti > gbesti
gbesti = pbesti
Step 4: Update the velocity of particle (feature) i

vt+1
ij =

{
αvt

ijxandj > xij

vijtotherwise,

Update the position of the particle (feature) iVt+1
id

xt+1
id = xt

id

Step 5: If the halting requirement is not satisfied, go to Steps 2 and 3.
Step 6: Return gbest and its fitness values (classification accuracy).
Step 7: End.

3.4. Multi-Label Classification Using Ensemble Classification

After feature selection, those selected features are sent to the classifier for multi-
label classification. This work uses an Ensemble of Adaptive Neuro-Fuzzy Inference
Systems, Probabilistic Neural Networks, and Clustering-Based Decision Tree methods for
classification. Ensemble learning is performed by averaging the model.

3.4.1. Adaptive Neuro-Fuzzy Inference System (ANFIS)

The selected features are given to the ANFIS as input. One sort of neural network that
operates on the neuro-fuzzy network is the ANFIS network. All the nodes on the top layer
are adaptable nodes. The fuzzy membership grade of the inputs is layer 1’s outputs [32,33].

The nodes are fixed nodes in the second layer. They have the letter M written on them,
suggesting they function as a straightforward multiplier. These are possible representations
of this layer’s outputs. The nodes are likewise fixed nodes on the third layer. They are
marked with the letter N, indicating that they normalize the firing intensities from the
preceding layer. The nodes are adaptive in the fourth layer. Simply the normalized firing
intensity and a first-order polynomial are combined to produce each node’s output in this
layer. Only one permanent node with the letter S is present in the fifth tier. The summing
of all incoming signals is done by this node.

3.4.2. Probabilistic Neural Network

A Probabilistic Neural Network is made up of numerous sub-networks, each of which
is an estimate of the pdf for a particular class [34]. Input data are included in the input
nodes. With the train set’s points serving as centers, the second layer is made up of Gaussian
functions. The outputs from the second layer for each class are averaged in the third layer.
Voting is done at the fourth tier, and the highest value is chosen [35,36].

3.4.3. Clustering-Based Decision Tree

Training data set (Xi, Yi), i = 1, 2, 3, . . . . . . , N where Xi refers to a continuous-valued
vector in n dimensions, and Yi = {0, 1} with “0” for normal and “1” for abnormality
denotes the matching class designation. Training and testing are the first and second
phases of the suggested procedure [37]. The training space is divided into k distinct
clusters C1, C2, C3, . . . , CK by using steps 1–3 of the k-Means-based anomaly identification
approach. The cases in each k-Means cluster are then used to train the C4.5 decision
tree. Every training instance is just connected to a single cluster according to the k-Means
approach. But, the C4.5 decision tree, whose training is done on that cluster fine, tunes the
decision boundaries by dividing the instances using a set of if-then rules across the feature
space when any subgroups or overlaps are present inside a cluster.



Sensors 2023, 23, 6836 11 of 20

3.4.4. Ensembling

All ensemble-based systems are founded on the premise that merging multiple models
may lower the error via averaging since distinct classifiers or features might produce
different mistakes. When a single model is unable to do these tasks, ensemble learning is
typically utilized to increase classification or prediction performance, particularly when
dealing with multi-class situations. The ensemble is done by averaging the output of
individual networks, shown in Figure 2.
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Figure 2. Ensemble Learning. The steps involved in this method are, to create N experts with
individual starting points. 1. Train every expert individually. 2. The values of the experts were
combined and averaged.

4. Results and Discussion

Compare the proposed ASDMLC’s performance against that of the PCT, Hierarchy of
Multi-label Classifier (HOMER), A ML-FOREST, BARF-MLC, and FSEA-MLC techniques
in this experiment in terms of precision, recall, accuracy, and f-measure are calculated
and evaluated with a 10-fold cross-validation procedure, and its average values are given
in below Tables [38,39]. The utilized datasets are detailed below. Name, instance count,
attribute type for each data collection, and the imbalance ratio value. According to Table 2,
each data file is organized as follows.

Table 2. Information about imbalanced dataset.

Name of the Data Set Attributes (Real/
Integer/Nominal) Example Imbalance Ratio

Pima Indians Data Set 8 (8/0/0) 768 1.87

Yeast 1 Data Set 8 (8/0/0) 1484 2.46

New—thyroid 1 Data Set 5 (4/1/0) 215 5.14
Pima Indians, yeast, and thyroid datasets are the three categories of data used in this paper. The objective is to
forecast Pima Indian diabetes five years in advance using machine learning. A particularly effective framework
that could do this would aid in targeting the afflicted with preventative actions. The description of the whole
dataset may be found at the link.

Feature Selection results:
1. Pima Dataset:
Totally 6 Features are selected as follows
Pregnancies, Glucose, Blood Pressure, Insulin, BMI, Age.
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3. Yeast Dataset:
Totally five features were selected as follows,
Mcg, gvh,alm,mit,erl.
Description:
Feature 1. mcg: mcg feature describes McGeoch’s approach for signal sequence recog-

nition.
Feature 2. gvh: It describes von Heijne’s technique for signal sequence recognition.
Feature 3. alm: It describes the Score of the ALOM membrane-spanning region

prediction program.
Feature 4. mit: It describes the Score of discriminant anatomy of the amino acid

content in the N-terminal region of mitochondrial and non-mitochondrial proteins.
Feature 5. erl: It describes the Presence of the “HDEL” substring Binary attribute.
3. Thyroid Dataset:
Totally four features are selected as follows,
T3resin, Thyroxin, Triiodothyronine, TSH_value.

4.1. Experimental Setup and Comparative Analysis

The experimental setup is shown in Table 3, and the performance comparison findings
are shown in Tables 4–6.

Experimental setup for the proposed multi-label classification model, such as software
used and the number of data used for training and testing, are clearly given in Table 3.

Table 3. Experimental Setup.

SRL Num Software Component Component Description

1. Coding Language MATLAB 2013a

SRL Num Hardware Component Component Description

1. System Intel Core Processor

2. Hard Disk 40 GB

3. Floppy Drive 44 Mb

4. Monitor 15 VGA Colour

5. Ram 512 Mb

Table 4. Performance comparison results for yeast dataset.

Metrics
Methods

PCT Homer ML-F BARF-MLC FSEA-MLC ASD-MLC

Accuracy 69.53 72.26 83.07 87.23 88.67 90.23

Precision 67.98 70.34 76.23 80.59 90.56 92.10

Recall 69.32 71.23 83.93 85.71 94.32 96.73

F measure 68.56 73.15 79.90 83.07 92.41 94.36

Table 5. Performance comparison results for Pima dataset.

Metrics
Methods

PCT Homer ML-F BARF-MLC FSEA-MLC ASD-MLC

Accuracy 65.56 70.65 82.29 86.71 88.67 90.88

Precision 62.54 69.97 80.44 85.09 90.56 92.13

Recall 65.65 71.35 81.89 86.77 94.32 96.95

F measure 68.89 73.78 81.16 85.92 92.41 94.48
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Table 6. Performance comparison results for thyroid dataset.

Metrics
Methods

PCT Homer ML-F BARF-MLC FSEA-MLC ASD-MLC

Accuracy 67.44 71.56 83.55 86.42 88.12 90.07

Precision 68.56 70.56 73.94 76.86 90.54 92.09

Recall 66.56 72.54 84.36 86.09 94.05 96.68

F measure 67.43 72.54 78.81 81.21 92.26 94.33

4.2. Performance Metrics

(1) Precision

Precision is a percentage of outcomes that are significant and is described as

Precision =
Truepositive

truepositive + falsepositive
(9)

(2) Recall

It is described as the percentage of all relevant results that the suggested algorithm
classifies as relevant, and it is as follows:

Recall =
Truepositive

truepositive + FalseNegative
(10)

(3) Accuracy

The percentage of correct predictions made by this algorithm is called accuracy, as
shown in the following:

Accuracy =
Truepositive + TrueNegative

Total
(11)

(4) F measure

An F-score is the harmonic mean of a system’s precision and recall values.

2 × [(Precision × Recall)/(Precision + Recall)] (12)

4.3. Comparison of Proposed and Existing Models

Table 4 produces the numerical results for the proposed ASD-MLC and existing PCT,
HOMER, ML-FOREST, BARF-MLC, and FSEA-MLC models of the yeast dataset in terms
of accuracy, precision, recall, and f-measure. From the above table, it is proven that the
proposed ASD-MLC obtains better results in all metrics, such as accuracy, precision, recall,
and f-measure, than the existing PCT, HOMER, ML-FOREST, BARF-MLC, and FSEA-MLC
models. For example, the proposed ASD-MLC achieves 90.23% accuracy, and the existing
PCT, HOMER, ML-FOREST, BARF-MLC, and FSEA-MLC models achieve 69.53%, 72.26%,
83.07%, 87.23%, and 88.67%.

Table 5 shows the numerical results for the proposed ASD-MLC and existing PCT,
HOMER, ML-FOREST, BARF-MLC, and FSEA-MLC models of the Pima dataset in terms
of accuracy, precision, recall, and f-measure. From the above table, it is proven that the
proposed ASD-MLC obtains better results in all metrics, such as accuracy, precision, recall,
and f-measure, than the existing PCT, HOMER, ML-FOREST, BARF-MLC, and FSEA-MLC
models. For example, the proposed ASD-MLC achieves 90.88% accuracy, and the existing
PCT, HOMER, ML-FOREST, BARF-MLC, and FSEA-MLC models achieve 65.56%, 70.65%,
82.29%, 86.71%, and 88.67%.

Numerical results for the proposed ASD-MLC and existing PCT, HOMER, ML-FOREST,
BARF-MLC, and FSEA-MLC models of the thyroid dataset in terms of accuracy, precision,



Sensors 2023, 23, 6836 14 of 20

recall, and f-measure are provided in Table 6. From the above table, it is proven that the
proposed ASD-MLC obtains better results in all metrics, such as accuracy, precision, recall,
and f-measure, than the existing PCT, HOMER, ML-FOREST, BARF-MLC, and FSEA-MLC
models. For example, the proposed ASD-MLC achieves 90.07% accuracy, and the existing
PCT, HOMER, ML-FOREST, BARF-MLC, and FSEA-MLC models achieve 67.44%, 71.56%,
83.55%, 86.42%, and 88.12%.

Figure 3 illustrates a comparison of several classifiers based on their accuracy as a
percentage. The classifiers are applied to three different datasets, namely, Pima Indians,
yeast 1, and thyroid. The fitness function of the IPSO shows improved optimization so that
it improves the true-false rate of the suggested system. From the outcomes, it is concluded
that the suggested ASDMLC technique has a higher precision value; for example, while
the dataset Pima Indians proposed ASDMLC produces a higher precision value, which
is 92.1362%, whereas other methods such as PCT, HOMER, ML-FOREST, BARF-MLC,
and FSEA-MLC. Classifiers produce only 62.5456%, 69.9787%, 80.4444%, 85.0940%, and
90.5682% values, respectively.
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Figure 3. Precision is the basis for comparing different classifiers.

Performance comparison on various classifiers is based on recall in terms of percentage
is shown in Figure 4. The classifiers are applied to three diverse kinds of datasets, namely,
Pima Indians, yeast 1, and thyroid. According to the findings, the suggested ASDMLC
approach has a greater recall value. For example, while the dataset was Pima Indians,
the proposed ASDMLC produces a higher recall value which is 96.9539%, whereas other
methods, such as PCT, HOMER, ML-FOREST, BARF-MLC, and FSEA-MLC classifiers
produce only 65.6574%, 71.3579%, 81.8965%, 86.7701%, and 94.3286% values, respectively.

In comparing the suggested method’s performance to that of the current classifiers
according to the f-measure, the suggested technique’s performance is shown in Figure 5.
The classifiers are applied to the various kinds of datasets, namely, Pima Indians, yeast
1, and new thyroid 1. The analysis of the data led to the conclusion that the suggested
ASDMLC approach has great f-measure value. For example, while the dataset was Pima
Indians, the proposed ASDMLC produces a higher f-measure value which is 94.4836%,
whereas other methods, such as PCT, HOMER, ML-FOREST, BARF-MLC, and FSEA-
MLC classifiers produce only 68.8955%, 73.7899%, 81.1650%, 85.9239%, and 92.4101%
values, respectively.
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Figure 4. Comparison of the recall of different classifiers.
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Figure 5. F-measure comparison of different classifiers.

Figure 6 displays the accuracy-based efficiency of several classifiers as a percentage.
The classifiers are used with three separate datasets: Pima Indians, yeast 1, and thyroid.
When using the ASDMLC approach, minority class examples are distributed according to
how difficult they are to learn, with the harder-to-learn examples receiving more synthetic
data, which increases the accuracy of the classifier. The analysis of the data led to the conclu-
sion that the suggested ASDMLC approach has a great accuracy value. For example, while
the dataset was Pima Indians, the proposed ASDMLC produces a higher accuracy value
which is 90.8854%, whereas other methods, such as PCT, HOMER, ML-FOREST, BARF-
MLC, and FSEA-MLC, classifiers produce only 65.5667%, 70.6567%, 82.2917%, 86.7188%,
and 88.6719% values, correspondingly.



Sensors 2023, 23, 6836 16 of 20

Sensors 2023, 23, x FOR PEER REVIEW 17 of 21 
 

 

Figure 6 displays the accuracy-based efficiency of several classifiers as a percentage. 

The classifiers are used with three separate datasets: Pima Indians, yeast 1, and thyroid. 

When using the ASDMLC approach, minority class examples are distributed according to 

how difficult they are to learn, with the harder-to-learn examples receiving more synthetic 

data, which increases the accuracy of the classifier. The analysis of the data led to the con-

clusion that the suggested ASDMLC approach has a great accuracy value. For example, 

while the dataset was Pima Indians, the proposed ASDMLC produces a higher accuracy 

value which is 90.8854%, whereas other methods, such as PCT, HOMER, ML-FOREST, 

BARF-MLC, and FSEA-MLC, classifiers produce only 65.5667%, 70.6567%, 82.2917%, 

86.7188%, and 88.6719% values, correspondingly.  

 

Figure 6. Comparison of the accuracy of different classifiers.  

Table 7 shows the performance comparison results of the ASDMLC model with and 

without VPSO in terms of Accuracy, Precision, Recall, and F-measure.  

Table 7. Performance comparison results of the ASDMLC model with and without VPSO.  

Dataset Metrics 
Methods 

ASDMLC ASDMLC + VPSO 

Thyroid  

Accuracy (%) 89.12 90.07 

Precision (%) 91.23 92.09 

Recall (%) 94.67 96.68 

F-measure (%) 93 94.33 

Pima 

Accuracy (%) 88.90 90.88 

Precision (%) 91 92.13 

Recall (%) 94.89 96.95 

F-measure (%) 93.12 94.48 

Yeast 

Accuracy (%) 88.98 90.23 

Precision (%) 90.45 92.10 

Recall (%) 96.73 94.98 

F-measure (%) 93.10 94.36 

0

10

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
 (

%
)

Methods 

Yeast

Pima

Thyroid

Figure 6. Comparison of the accuracy of different classifiers.

Table 7 shows the performance comparison results of the ASDMLC model with and
without VPSO in terms of Accuracy, Precision, Recall, and F-measure.

Table 7. Performance comparison results of the ASDMLC model with and without VPSO.

Dataset Metrics
Methods

ASDMLC ASDMLC + VPSO

Thyroid

Accuracy (%) 89.12 90.07

Precision (%) 91.23 92.09

Recall (%) 94.67 96.68

F-measure (%) 93 94.33

Pima

Accuracy (%) 88.90 90.88

Precision (%) 91 92.13

Recall (%) 94.89 96.95

F-measure (%) 93.12 94.48

Yeast

Accuracy (%) 88.98 90.23

Precision (%) 90.45 92.10

Recall (%) 96.73 94.98

F-measure (%) 93.10 94.36

Figure 7 shows the performance comparison results for the proposed ASDMLC model
with VPSO and ASDMLC without VPSO in terms of accuracy, precision, recall, and f-
measure for the thyroid dataset. From the results, it is concluded that the proposed
ASDMLC model with VPSO achieves better results than ASDMLC without VPSO in terms
of all metrics. For example, the ASDMLC model with VPSO produces 90.07% accuracy,
and the ASDMLC without VPSO produces 89.12%.
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Figure 7. Comparison results of the proposed ASDMLC model with and without VPSO for the
thyroid dataset.

The above Figure 8 shows the performance comparison results for the proposed
ASDMLC model with VPSO and ASDMLC without VPSO in terms of accuracy, precision,
recall, and f-measure for the Pima dataset. From the results, it is concluded that the
proposed ASDMLC model with VPSO achieves better results than ASDMLC without VPSO
in terms of all metrics. For example, the ASDMLC model with VPSO produces 90.88%
accuracy, and the ASDMLC without VPSO produces 88.90%.
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Figure 8. Comparison results of the proposed ASDMLC with and without VPSO for the Pima dataset.

Performance comparison results for the proposed ASDMLC model with VPSO and
ASDMLC without VPSO in terms of accuracy, precision, recall, and f-measure for the yeast
dataset are shown in Figure 9. From the results, it is concluded that the proposed ASDMLC
model with VPSO achieves better results than ASDMLC without VPSO in terms of all
metrics. For example, the ASDMLC model with VPSO produces 90.23% accuracy, and the
ASDMLC without VPSO produces 88.98%.
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5. Conclusions and Future Work

In multi-label learning, each instance in the training set is associated with a set of
labels, and the task is to output a label set whose size is unknown a priori for each unseen
instance. This work presented an innovative scheme called Adaptive Synthetic Data-Based
Multi-label Classification (ASDMLC). A sampling strategy for learning from unbalanced
data sets is called ADAptive SYNthetic (ADASYN) sampling. To standardize the mag-
nitude of each variable’s impact on the outcomes, min-max normalization is employed
to normalize the numerical variables. Velocity equalized Particle Swarm Optimization
is used for feature selection, which selects more relevant features from the samples to
increase the accuracy achieved with multi-label classification. To uncover the inherent
label dependencies, the Ensemble Method for Multi-Label Classification (EM-MLC) will
be processed in the end. Results show that the proposed system achieves 90.07% accuracy,
92.09% precision, 96.68% recall, and 94.33% f-measure for the thyroid dataset. Existing
models, such as PCT, obtain 67.44% accuracy, 68.56% precision, 66.56% recall, and 67.43%
f-measure. HOMER obtains 71.56% accuracy, 70.56% precision, 72.54% recall, and 72.54%
f-measure. ML-FOREST achieves 83.55% accuracy, 73.94% precision, 84.36%recall, and
78.81% f-measure. BARF-MLC achieves 86.42% accuracy, 76.86% precision, 86.09% recall,
and 81.21%f-measure. FSEA-MLC achieves 88.12% accuracy, 90.54% precision, 94.05%
recall, and 92.26% f-measure. From the results, it is concluded that the proposed model
achieves better performance than other existing models. However, the proposed model
consumes more time for computation, so we need to use dimensionality reduction in future
work and can use deep learning to further extend this model.
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