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A B S T R A C T   

To mitigate the carbon print of buildings, they should have on-site renewable energy generation systems to 
supply energy for the buildings without relying on the national grid. Renewable generation sources rely on 
weather conditions and are therefore difficult to rely on as the only source of energy. Photovoltaic (PV) is 
forecasted through machine learning algorithms (MLA), but different methods have varied accuracy and have 
different training requirements such as more inputs or more data in general. No previous research has concluded 
an optimal MLA but to better apply them to PV systems, this must be established. To conclude an optimal MLA 
for a particular application, the dataset and required outputs must be determined, and how they affect the 
performance of the algorithm must be evaluated. The aim of this work is to compare benchmark MLA’s through 
accuracy and usability for an operational University campus located in central Manchester, in the north of En-
gland. The MLA’s including random forest (RF), neural networks (NN), support vector machines (SVM), and 
linear regression (LR) have been employed to forecast the PV system. If the power output of the renewables is 
accurately forecasted, a building management system (BMS) can be equipped to optimise on-site renewable 
energy generation. To accomplish this, sixty-four MLA models are created in total for forecasting at multiple 
horizons and dataset sizes which are validated against real-time data. Results in this work revealed that the RF 
algorithms have the lowest average error of the multiple tests at 32 root mean squared error (RMSE), whereas 
SVM, LR, and NN showed at 32.3 RMSE, 36.5 RMSE, and 38.9 RMSE respectively. Errors between forecasted and 
actual results are recorded in RMSE whereas changes in error are shown in mean actual percentage error (MAPE) 
to show the changes with respect to the original value. No MLA outperforms all others for accuracy and for 
requiring less data. No previous research is conducted to evaluate the performance of various MLA PV forecasting 
models through various sized data sets with critical analysis on the results. The comparison of benchmark al-
gorithms when forecasting the PV generation of a local system allows the critical analysis of the models’ accuracy 
and surrounding characteristics.   

1. Introduction 

Large business’s consume 45% of non-domestic building energy [1] 
and the UK has plans to become the world leader in green energy, stating 
that by 2050, buildings will need to be almost completely decarbonised 
[2]. Renewable energy (RE) cannot be considered a reliable source [3] 
but can provide a more reliable energy mix [4], with promotion of RE by 
the world leaders improving application [5]. Energy generation in the 
UK connected at the distribution level accounts for 28% of all generation 
[6] which shows there is clear room for increasing decentralised RE. RE 
generation contributes 17.18 GW which is 43% of the UK’s total energy 
demand [7], with 4% solar and 31% wind due to the 6500 wind turbines 
installed across the country. This shows usability of various RE sources 

to contribute to the whole demand. 
Building management systems (BMS)’s are an increasingly 

researched topic that should consider all aspects of a building including 
physical models, environmental conditions, comfort, safety, occupants’ 
preferences, thermal, and visual specifications [8]. A BMS is designed to 
improve the efficiency of all building functions, mostly through opti-
misation of energy actuation and use [9]. The accuracy of prediction 
techniques and local climate conditions are critical for an optimisation 
system [10] with BMS’s reducing annual energy consumption by an 
average of 16% [11] and saving costs in the range of 11% [12]. Com-
bination of a BMS and smart-design features can reduce energy con-
sumption by up to 49% [13,14]. A control strategy is developed to 
forecast energy generation and on-site energy storage for a reduction of 
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energy costs of up to 84% [15]. On site-storage is forecasted with the 
intention of reducing the size of required battery systems [16]. The 
MLA’s applied to BMS’s are used to forecast on-site energy generation 
among other energy characteristics. Multiple MLA’s can be applied to 
forecast PV generation [17] with different results of accuracy. Super-
vised machine learning relies on historical data of inputs and PV gen-
eration data to train the algorithm, but with various algorithms, it 
cannot be undisputed which algorithms provide the most accurate 
forecasts. 

Recent research contains many single uses of machine learning for 
their respective datasets with the aim of optimisation towards their 
respective dataset [18–21]. The MLA cannot be accurately compared 
against a different MLA with a different dataset as there are many var-
iations in the methodology. This leaves a problem in which there cannot 
be a justifiable conclusion of a more suitable method of machine 
learning algorithm for PV forecasting. 

This research compares ML techniques for the forecasting of a 
localised PV system in a cool climate with various datasets to resemble 
real scenarios. For the successful application of ML to a buildings’ PV 
system, the right ML technique must be used, in which the comparison of 
actual results in this research are crucial. Furthermore, the use of various 
datasets authenticates the method of comparing the MLAs for real 
scenarios. 

The contributions are given as below.  

1) A comprehensive analysis of MLA performances for the application 
of photovoltaic forecasting into a building management system.  

2) Computational power, training and prediction speed, and accuracy 
over various sized datasets and horizons are analysed.  

3) Feature importance of a UK roof-mounted PV system is evaluated 
through the maximum relevance minimum redundance algorithm, 
providing critical information on what data is necessary for an ac-
curate algorithm. This may lead any future applications of MLA for 
forecasting PV as only the necessary data can be collected, and 
effective algorithms can be developed by considering the results in 
this research. 

The novelty of this research is the comparison between benchmark 
MLA’s for the forecasting of a local PV system for a non-domestic 
building in a cooler climate (UK). The forecasting of on-site renew-
ables is crucial towards the improvement of energy efficiency in build-
ings and the effect on the national grid [22]. Previous research shows the 
independent accuracies of MLA’s for the forecasting of PV generation 
plants, and localised systems, with various data and ML methods. Each 
algorithm performs better for different PV systems, meaning no decision 
can be made on the best algorithm for the purpose of PV forecasting as 
no investigation has occurred under the same conditions. The proposed 
work analyses the available MLA’s and critically analyses them for 
real-world utilisation through varied training and forecasting datasets 
on a working localised PV system. The motivation for this research is to 
reduce carbon emissions of that buildings through optimisation of 
renewable energy generation. This is performed through MLA fore-
casting of the energy generation, but it is not certain which algorithm 
provides the best results and how much data needs to be collected. For 
buildings with less or incorrect collected data, the application of MLA’s 
can be difficult as they require cleaned data and depending on the al-
gorithm, a defined time of collected data. This work computes the 
necessary data for an accurate forecast, with the aim of showing the 
algorithms forecasting shorter and longer horizons with varied datasets. 

The paper is organized as below. The literature review in section 2 
summarises previous work on the applications of MLA’s for buildings’ 
energy characteristics. The novelty and contribution to knowledge are 
reiterated in this section. The proposed research methodology in section 
3 describes the data collection and processing, feature importance and 
selection, the datasets used in each algorithm, an explanation of how 
each algorithm works, and how the machine learning models are 

validated and tested. The results and analysis in section 4 show the ac-
curacy of each algorithm depending on the size of the dataset it is 
trained with, the effect less inputs have on the accuracy, and the training 
and forecasting speeds of the algorithms. Critical analysis and discussion 
in section 5 contain a deeper description of the results, limitations of the 
study, and comparison with existing works. The conclusion in section 6 
summarises the works completed in the study. 2. Literature Survey. 

1.1. Photovoltaic energy generation 

Two types of solar energy including thermal and photovoltaic (PV) 
are available in the market. There are varied efficiencies of PV energy 
generation depending on the climate [23], with the integration of 
photovoltaic and thermal methods showing greater energy generation 
[24,25]. Application of solar technologies is just as important as gen-
eration as [26] shows various uses to aid building systems reducing 
energy demand. PV generation doesn’t rely on heat and instead gener-
ates energy almost purely through sunlight. It is the preferred method 
for this research in a cooler climate because there is less heat energy but 
there is still enough light for a PV system to produce enough energy to be 
useful towards the building. Renewable generation can be stored within 
the building through 11 different methods of recent research with 6 of 
them being consistently improved [27]. The application of renewable 
generation energy storage relies greatly on accurate forecasting of the 
buildings’ energy demand and renewable generation [28]. Renewable 
energy contains many forms such as solar PV, solar thermal, hydro, 
wind, geothermal, and more, but the accurate forecasting of any RE 
provides necessary information for an optimised BMS. Demand and 
on-site generation are the most combined forecasting objectives for 
home and building energy management systems [29,30]. PV forecasting 
is vital towards the optimisation of economical operation of the grid 
[31]. 

1.2. Machine learning algorithm methods and applications 

A machine learning algorithm (MLA) can form mathematical bonds 
from inputs to outputs of a given dataset. When new data is added, the 
bonds remain, and the outputs can be predicted [32]. More training data 
increases the accuracy of MLA’s with 97 unknown datasets [33] but 
more data isn’t always necessary for an accurate forecast as 95% accu-
racy is achieved with only 200 out of 5000 samples [34]. Neural 
network (NN) is used to forecast PV generation in Refs. [18–21,35] with 
an average MAPE of 15% over various horizons no more than a day. 
Random forest (RF), support vector machine (SVM) and linear regres-
sion have a mean actual error (MAE) of 1.47, 5.92, and 9.3 J/m2 

respectively, with RF providing higher accuracy [36]. A comparison of 
MLA’s for PV forecasting shows high accuracy from kernel ridge but 
takes an extremely long training time and huge memory. The NN has the 
second highest accuracy with a much lower training time and compu-
tational power [37]. An MLA is recommended for forecasting the energy 
generation of a solar plant. 

Previous models are trained and tested on a fixed dataset whereas for 
real applications, buildings have been collecting data for various time 
periods. Various accuracies have been achieved in recent research be-
tween 1.7% error [38] and 10% error [39] and forecasting horizons are 
between 1 min [21] and 36 h [39]. A single model is developed for 
optimisation of a single dataset [21,38], whereas multiple datasets are 
used which also cannot be used to compare the performance of multiple 
algorithms [39]. The size of the PV systems vary between the largest 
solar plant in the world [36] and various localised systems [20]. The 
1.7% error was achieved through a SVM for a 3 kWp PV system in 
Australia with 6672 training points with an unspecified forecast horizon. 
The 10% error was achieved through an analogue ensemble algorithm 
which is very similar to a K-nearest neighbour. The system was tested on 
3 plants with a peak power output of 11,994 kW, 2,649 kW, and 6,876 
kW, in south-west France. The training data is in 30-min intervals from 
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January 2014–September 2018 having at least 80,352 training points 
over 7 inputs and 5 years. The forecast horizons varied from 30 min to 
36 h in advance. The comparison of the two algorithms with 1.7% and 
10% error isn’t a fair comparison as they are being used with many 
different variables. Average temperatures across previous research vary 
from 24.66OC in central China with 4% error [40] to 11.73OC in Belgium 
with 11.89% error [20]. The correlation between 6 case study errors and 
average temperatures of the locations is 0.338 [18,20,38,39,41,42], 
showing warmer temperatures have slightly higher accuracies. The 
variation between these studies’ PV system sizes, amounts of data, and 
method of forecasting vary drastically, making the methods very diffi-
cult to compare. The sizes of PV systems’ forecasted through MLA’s vary 
from 75 MW [18] to 700W [43] with outdoor air temperatures ranging 
from 23.12 ◦C [44] in Peru to 8.04 ◦C [41] in America. The errors of the 
forecasts of the PV generation range from 1.64% [45] to 13.04% [46] 
across the 4 algorithms and variety of developed models. The numerous 
methods of PV forecasting through MLA’s provide varied results of ac-
curacy, different forecast horizons, and can be applied for different sized 
systems. As each of these results are collected from various algorithms, 
using different sizes and types of data, from a different sized PV system, 
in different climates, no conclusion can be made on which algorithm is 
most suitable for the desired forecast. The research in this paper focuses 
on the use of varied ML methods with different datasets and forecasting 
horizons for a local PV system in the UK. This is a novel method of 
comparing the effectiveness of each ML forecasting method through an 
actual PV system in a cool climate while maintaining the same condi-
tions for each test. 

2. Proposed research methodology 

The proposed method employing MLA’s are used to forecast installed 
PV generation with validation of the model against actual data collected 
from an operational university campus. The MLA’s are trained using 
previous collected weather and solar generation data which corresponds 
with that horizon. The MLA’s consist of neural networks, random for-
ests, linear regression and support vector machines. Data collection and 
processing algorithms are explained in this section. Comparison of 
developed methods are determined through accuracy of forecast, 
through training data of weekly, monthly, and yearly, for forecast ho-
rizons of 15-min, hourly, and daily. The models are evaluated using 
mean actual percentage error (MAPE) when compared against actual 
data. 

2.1. Data collection and processing 

The raw PV generation data contains 10 months of data and 30,842 
iterations. The predictor variables are cloud coverage (%), humidity 
(%), rainfall (mm), air pressure (mb), temperature (oC), and wind speed 
(mph). The entire original dataset contains 215,818 data points across 
the 6 inputs and the output (PV generation) for 10 months of data 
collection (see Fig. 1). 

The initial dataset is split into multiple smaller datasets for each al-
gorithm to be trained and tested on. These are aggregated to include the 
original dataset of 15-min iterations, hourly, and daily measurements. 
These can be used to train the algorithms with a varied time lag to 

Fig. 1. The methodology from data collection to PV forecasting for multiple algorithms and datasets.  
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forecast a specified horizon. The hourly dataset contains 7281 iterations 
and the daily dataset contains 302 iterations. For each smaller dataset, 
another predictor variable is added for the time of day. This ranges from 
1 to 96 for 15-min iterations, 0–24 for hourly, and 0–7 for daily. Daily 
forecasting has larger errors when used with a ‘time of day’ input, so it 
isn’t used as an input for training. To show the effects of processing the 
data, the training and testing hourly dataset is shown in Fig. 2. 

Major outliers and missing data are emphasised, where the data is 
much too high, too low, or completely missing. This is due to the sensors 
malfunctioning and restarting, which aggregates all the missing data 
collected over a period of time into a high value at a single timescale. 
The data after processing is shown in Fig. 3. 

Major outliers and missing data are corrected and removed to pro-
vide the algorithms with higher quality training and testing data. 
Although there are clearly data points that don’t follow the trend of the 
data, they are not outlying by 90% or more. For data that doesn’t follow 
the trend but also isn’t outlying, it can often be advantageous to include 
it in the training set to increase the algorithms’ ability to learn a variety 
of data. The missing data points are filled through linear interpolation or 
removed, and outlying data points are corrected through a rolling 
average of the surrounding day, week, or month, depending on the size 
of iteration. The linear interpolation and rolling average methods are 
shown in equations (1) and (2) respectively. 

y= y1 + (x − x1)
(y2 − y1)

(x2 − y1)
(1)  

Where the previous and next points in the dataset are ‘y1’, ‘y2’, ‘x1’, and 
‘x2’ respectively for each variable. Current points are represented with 
‘x’ and ‘y’. 

μ=
1
N
∑n

− n
Ai (2) 

The rolling average is ‘μ’ and is the sum of the selected values, from 
‘ − n’ to ‘n’ divided by the number of variables between those points ‘N’. 
The values of ‘n’ influence the calculated value of the rolling average, 
depending on the data. If the data is volatile, the values of ‘n’ should be 
smaller, and thus will cover less data around the missing dataset. This is 
because there will be more known data in the form of ‘n’ that is varied 
from the missing data that is being calculated. The value of ‘n’ may be 
larger for less volatile data as known data in the form of ‘n’ will have less 
of an effect on the calculation. This is because the known values are 
closer in value to the unknown values that are being calculated. In the 
case of the missing data shown in Fig. 2, no missing data consists of more 
than a single month and so the values of ‘n’ are equal to the 30 days 
either side of the missing data, totalling at 60 days, or two months of 
daily data. This value has been chosen as it still gives a full month of 
correct data to use even when the missing data is in the middle of a 

month and there is 15 days of missing data either side of it. 
The three datasets that the MLA’s are trained with from 10 months of 

data are shown in Table 1. 
The three iterations are used to train the models on 2 different ho-

rizons each. 15-minute iterations are forecasted for 15-min in advance 
and a full day in advance. Hourly iterations are forecasted for 1 h and 1- 
day horizons, and daily iterations are forecasted for 1 day and 1 week 
horizons, so each horizon has a different sized dataset. The total data-
points are the sum of iterations multiplied by the sum of the input 
variables. The three datasets that the MLA’s are trained with from 1 
month of data are shown in Table 2. 

2.2. Machine learning algorithms 

2.2.1. Random forest (RF) 
Random forest is an ensemble algorithm that use an aggregated 

result of multiple decision trees to determine the outcome. The data is 
recursively split to classify the target data when given a set of predictor 
data. The size of the random forests can be optimised for the dataset 
which range from 1 leaf per tree to 50, and between 30 trees and 50 for 
each algorithm. Gini impurity is used to decide whether to continue 
splitting the data. 

Gini= 1 −
∑n

i=1
(Pi)

2 (3) 

It can be defined as the deduction of squared probabilities of each 
class from one, where ‘Pi’ is the probability of an element being classi-
fied for in a certain class. 

Once the Gini impurity reaches the minimum value, it can be 
considered a ‘pure’ split, meaning it no longer must be split. This means 
that the tree cannot split the data to a better degree and the algorithm 
has finished training. The data splits and values of the target variables 
are remembered, and once new data is added, the target variables can be 

Fig. 2. The hourly dataset, spanning 11 months; 10 months of training and 1 
month of testing. 

Fig. 3. The hourly dataset after processing.  

Table 1 
The average size of the datasets used for training when forecasting various ho-
rizons with 10 months of data.  

Iteration Inputs Total 
Datapoints 

Training Features 

15 min 8 220,000 Cloud coverage, humidity, rainfall, air 
pressure, temperature, wind speed, PV 
generation, and time of day 

Hourly 8 58,228 Cloud coverage, humidity, rainfall, air 
pressure, temperature, wind speed, PV 
generation, and time of day 

Daily 7 2285 Cloud coverage, humidity, rainfall, air 
pressure, temperature, wind speed, and PV 
generation  
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calculated through splitting the data like it did while training. 

2.2.2. Neural network (NN) 
Neural networks build non-linear relationships between predictor 

and target variables. These relationships are determined through 
weights assigned to each input depending on the importance of the input 
towards the prediction of the target variable. In this case, weights are 
selected at random, and the error of the target variable is measured with 
comparison to the actual target variable. The weights can then be 
altered. If the error decreases, the weights will be continuously altered 
until the error reaches a minimum. This provides the algorithm with the 
weights for the inputs that provide the highest accuracy. To do this, the 
Levenberg-Marquardt training algorithm is used. This is a combination 
of the two simpler algorithms including gradient descent and Gauss- 
Newton. It combines the better features from each algorithm to find 
the minimum error quickly. Firstly, it uses the gradient descent method 
to find the weights with the lowest error with large steps in the weights. 
Then it uses the Gauss-Newton method to find the value of the weights 
more accurately with smaller steps. Once the weights are calculated that 
provide the minimum error, new data can be added, and the weights 
remain, allowing the network to forecast the target variable. The NN’s 
applied in this work vary from 10 neurons to 25 neurons that are single 
or double layer with an ReLU activation function and a limit of 1000 
iterations. 10 neurons with a single layer are used for the daily models, 
20 neurons with a single layer are used for hourly models, and 25 
neurons for two layers are used for 15-min resolutions. As data is 
collected in smaller iterations, the relationship between the training and 
target data becomes more complex. To calculate more complex re-
lationships, more neurons and layers are added to the network. 

2.2.3. Support vector machines (SVM) 
Support vector machines use kernel functions to separate and 

transform the data through a hyperplane so the data can be categorised. 
The most used function is the radial basis function kernel (RBF). The 
SVM’s used range from linear to medium gaussian. Once the training 
data is categorised, new data can be used within the same categories and 
relationship between training and target data. The RBF kernel is 
explained in equation (4) [47]. 

K(X1,X2)= exp
(

−
‖X1 − X2‖

2

2∂2

)

(4)  

In equation (4), ‘K(X1,X2)’ is the function of the input variable(s) to the 
target, ‘∂’ is the variance, and ‘‖X1, X2‖’ is the Euclidian distance be-
tween two points. The Euclidian distance is calculated through equation 
(5). 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑k

i=1
(xi − yi)

2

√
√
√
√ (5)  

In equation (5), it can be described as the sum of the distances between 

the number of inputs selected to the target variable. ‘k’ is the amount of 
input variable distances from the target variable are calculated and 
summed, ‘x’ is the input variable(s) and ‘y’ is the target variable. 

2.2.4. Linear regression (LR) 
Linear regression is the simplest in terms of mathematical compu-

tation as the slope of the line of the training data is calculated and is used 
when provided with new information. It doesn’t have to update the 
model which often results in quicker training and forecasting when 
compared to other benchmark models. It is used to estimate the rela-
tionship between two variables including the input and the target. This 
can be computed through equation (6). 

y=Bo + B1X + ε (6)  

In equation (6), ‘y’ is the predicted output value when an input value is 
specified, ‘Bo’ is the predicted value of the output when the input is 0, 
‘B1’ is the relationship between the input and the output, ‘X’ is the input 
variable, and ‘ε’ is the error between the estimated value of the output 
and the actual value [48]. 

2.3. Feature importance and selection 

The maximum relevance minimum redundance (MRMR) algorithm 
is used to calculate which features have the best impact on the fore-
casting algorithms accuracy and efficiency. It calculates the relevance of 
the predictor feature to the target feature while also calculating how 
closely linked that predictor feature is to all other predictor features. 
This negates the scenario where two features have a high correlation 
that one of them is not improving the performance of the forecasting 
algorithm. The maximum relevance, minimum redundance, and infor-
mation gain calculations are provided in equations (7)–(9) respectively. 
The maximum relevance equation is given in equation (7). 

Vs=
1
|S|

∑

x∈S
I(x, y) (7)  

In the above equation (7), the importance of the feature with respect to 
the target is calculated. Where ‘S’ is the set of features, ‘x’ is the pre-
dictor, ‘y’ is the target, and ‘I’ is information gain. The information gain 
of the given feature to the target is summed for each iteration to give 
maximum relevance of the feature to the target [49]. The minimum 
redundance equation is shown in equation (8). 

Ws=
1
|S|2

∑

x,z∈S
I(x, z) (8)  

In equation (8), ‘Z’ symbolises another feature and not the target. It is 
calculated the same way as maximum relevance, but instead of with 
respect to the target, it is with respect to a different feature, giving 
minimum redundance of a feature [49]. Information gain is shown in 
equation (9). 

I(X,Z)=
∑

i,j
P
(
X = xj,Z = zj

)
log

P
(
X = xj,Z = zj

)

P(X = xi)P(Z = zi)
(9)  

In the above equation (9), information gain shows the mutual infor-
mation between two variables, where the uncertainty of one variable 
can be reduced by knowing the other variable. ‘I’ is information gain, ‘(X,
Z)’ are variables and ‘P’ is the probability of that event occurring. It can 
be described as each variable’s probability of occurring simultaneously 
divided by the probability of them occurring independently. The itera-
tions are summed, and it is multiplied by log to give an answer between 
0 and 1, where the variables are independent at 0 and are completely 
dependent at 1 [49]. Each algorithm requires varied pruning of pre-
dictor features, so the performance of a pruned model can be compared 
to that of a benchmark model to dictate the optimal MRMR feature 

Table 2 
The average size of the datasets used for training when forecasting various ho-
rizons with 1 month of data.  

Iteration Inputs Total 
Datapoints 

Training Features 

15 min 8 23,087 Cloud coverage, humidity, rainfall, air 
pressure, temperature, wind speed, PV 
generation, and time of day 

Hourly 8 5764 Cloud coverage, humidity, rainfall, air 
pressure, temperature, wind speed, PV 
generation, and time of day 

Daily 7 210 Cloud coverage, humidity, rainfall, air 
pressure, temperature, wind speed, and PV 
generation  
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selection. The accuracy of the developed methods is validated against 
actual data collected from the case study public building. This is eval-
uated in mean-actual-percentage-error (MAPE)due to it allows a fair 
comparison between various sized PV systems as it scales as a 
percentage. 

M =
1
n

∑n

t=1

⃒
⃒
⃒
⃒
At − Ft

At

⃒
⃒
⃒
⃒ (10) 

The errors between the forecasted and actual value are multiplied by 
1% of the actual value in equation (10). All the values are averaged to 
give an average MAPE for the forecast horizon. 

3. Results and analysis 

Each ML technique is applied for minimum and maximum horizon 
forecasting when trained with 1 month and 10 months of data. Mini-
mum horizons are just 1 step ahead of the time iteration. The maximum 
forecasting horizons for daily, hourly, and 15-min are 1 week, 1 day, and 
1 day in advance, respectively. Results of RF, NN, LR, and SVM fore-
casting are displayed in this section. 

3.1. Forecasting obtained by RF 

Results for RF forecasting errors based on the size of data are shown 
in Fig. 4. The errors range from 123.53 RMSE to 1.98 RMSE, with 
smaller forecast horizons providing a higher accuracy. The RF algorithm 
has an average error of 32.02 RMSE throughout all tests. An RF algo-
rithm is trained with 10 months and 1 month of data and is used to 
forecast daily, hourly, and 15-min iterations. Each iteration is forecasted 
with a small-time horizon into the future and for a larger time horizon. 
Daily minimum and maximum forecasting horizons are 1 day and 1 
week. Hourly minimum and maximum forecasting horizons are 1 h and 
1 day. 15-minute minimum and maximum forecasting horizons are 15- 
min and 1 day in advance. There are three-time iterations each for when 
the algorithm is trained with 10 months and 1 month of data considering 
daily, hourly, and 15-min. 

Each of these algorithms are then tested for minimum and maximum 
time iterations as is shown in Fig. 4. These variables are the same for 
each ML technique. The daily error is much higher when trained with 10 
months of data for the RF technique compared to just 1 month of 
training. This involves much less data for training, for 1 month, but the 
RF algorithm still only creates the same number of decision tress, 
regardless of how much data it is given. The RF performing poorly when 
trained with more data but performing better when trained with less 
data shows how the algorithm has been overfitting the data. The algo-
rithm has been trained with too much data, showing that it has calcu-
lated the relationship between the training data and the target data to a 
high degree. This provides a high accuracy when training the algorithm, 

but this sometimes does not translate to new data. If new data varies 
from the training data, which in this case it does, the algorithm is not 
able to provide accurate forecasts. This is not demonstrated well for a 
minimum forecasting horizon but is clearly shown for the maximum 
forecasting horizon where the forecasting error has increased. 50 DT’s 
are used for each algorithm to allow accurate comparisons of using 
different sized datasets. To eliminate overfitting, the algorithm can be 
validated against new data, and less DT’s or less data can be used. More 
DT’s and data result in more overfitting and thus, less accuracy when 
provided with new data. More trees within an algorithm can provide a 
more stable prediction, but the computation time increases linearly 
[50]. 

3.2. Forecasting obtained by NN 

Results for NN forecasting errors are presented in Fig. 5. The NN 
forecasting errors range from 170.86 to 1.76 RMSE. The maximum error 
is when the algorithm is trained with only 1 month of data and is fore-
casting daily PV generation with a 1-day horizon. In 4 out of 6 forecasts, 
the maximum horizon forecast provides a higher error than when the 
minimum horizon is forecasted. The NN algorithm has an average error 
of 38.88 RMSE for all tests. It is more affected by lower quality data as in 
Fig. 9 when the lowest importance data is removed, and the error is 
decreased. 

3.3. Forecasting obtained by LR 

Results for LR forecasting errors are shown in Fig. 6. The LR fore-
casting errors range from 99.019 to 5.3187 RMSE. Minimum horizon 
forecasting consistently provides lower errors except from when the 
algorithm is trained with 10 months of data for hourly and 15-minite 
forecasts. In this case, the minimum horizons provide a lower accu-
racy. The LR algorithm has an average error of 36.47 RMSE for all tests. 
The algorithm provides lower accurate forecasts when forecasting for 
hourly and 15-min iterations than other algorithms, whereas it out-
performs the RF algorithm when forecasting for daily iterations. Even 
though the LR algorithm is the simplest model, it can still provide a 
higher accuracy than RF and SVM when trained with 10 months for a 
daily forecast. 

When trained with only 1 month of data, it provides less accuracy 
than RF and SVM due to the need for more data. As it calculates the 
linear relationship between the inputs and target data, it requires 
enough data to do so. When it is given a limited amount of data, it cannot 
calculate the relationship accurately. The only other algorithm that re-
quires more data than the LR is the NN when it is forecasting the PV 
generation in daily horizons. This is due to the limited amount of data in 
daily iterations. 

Fig. 4. The RF forecasting results when trained with 1 month and 10 months 
of data. 

Fig. 5. The NN forecasting results when trained with 1 month and 10 months 
of data. 
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3.4. Forecasting obtained by SVM 

The SVM algorithm has a maximum and minimum error of 84.85 and 
2.61 RMSE respectively. Results for SVM forecasting errors are shown in 
Fig. 7. Maximum horizons have a higher error in 4 out of 6 tests but the 
RMSE error difference between the minimum and maximum horizons 
are much smaller than other algorithms. The average RMSE for the SVM 
algorithm across all tests is 32.34. The variation of the SVM’s perfor-
mance is limited when less data is given. When compared against the 
other algorithms, the SVM is better when forecasting all larger horizons 
than LR. Overall, the SVM models have higher accuracies than 16 other 
models. 

The limited error increase from 10 months of training to 1 month 
shows that SVM’s require less data to be optimised, but they cannot 
compete with the other techniques in this research when given 10 
months of data apart from while forecasting the daily model. The daily 
model has the smallest dataset for 10 months of data. The MRMR feature 
importance findings are presented in Fig. 8. 

As the MRMR algorithm compares importance of features with 
respect to the target, it also compares importance with respect to other 
training features. If multiple features have a high correlation between 
each other, they may slow down the MLA if they are both used for 
training as they may have the same effect with the target feature. To 
eliminate unnecessary training features, the MRMR algorithm calculates 
the feature importance with dependence on correlation with other fea-
tures too. Although the rainfall may have high importance when used to 
train an MLA independently, it has less importance when used with 
other training features and thus, the MRMR score is represented in 
Fig. 8. 

The previous forecasting of a 10 kW PV system includes 13 inputs 
and 131,616 5-min samples [46]. This equates to 1.7 million datapoints. 
The training speeds for the RF, NN, and SVM algorithms were 1–3 h, 
2–24 h, and 30–50 h respectively (see Table 3). This is due to the ref-
erences research having optimised models. The models can be optimised 

by selecting different parameters and evaluating the results of the al-
gorithm. For the RF, the number of trees vary from 400 to 3000 whereas 
in the proposed work the RF only contains 50 decision trees. The NN ran 
for a longer amount of time to determine the value of the weights when a 
minimum error is reached. The SVM contains a higher ‘C’ value, where 
the algorithm doesn’t misclassify any data, requiring more computa-
tional power and time, while developing a more complex algorithm, 
increasing the accuracy. 

LR is the simplest and thus is the quickest to train, but NN is the 
quickest algorithm to use once it is trained. The LR algorithm only cal-
culates a linear relationship between the input and output variables, 
providing the simplest algorithm capable of forecasting the PV genera-
tion. It does not have to train like a NN does where it must optimise 
weights, bias, and activation functions. Instead, the relationship be-
tween the input and output variables are linearly updated at each iter-
ation through equation (6). The NN takes the longest to train due to the 
complexity and each input has a weight and bias with the activation 

Fig. 6. The LR forecasting results when trained with 1 month and 10 months 
of data. 

Fig. 7. The SVM forecasting results when trained with 1 month and 10 months 
of data. 

Fig. 8. The MRMR feature importance algorithm, showing the optimal selec-
tion methodology. Humidity has greatest effect on PV generation whereas 
rainfall has the least effect. 

Fig. 9. A confusion matrix showing the association between the collected 
variables used for training the algorithms. 

Table 3 
The average training and forecasting speeds across all tests.  

Model Training 
Speed 

Forecasting Speed 

RF 61.9 s 2368/s 
NN 270.3 s 29821.9/s 
LR 41.7 s 22802.4/s 
SVM 172.4 s 8087.7/s  

C. Scott et al.                                                                                                                                                                                                                                    



Energy 278 (2023) 127807

8

function summing the inputs together. This increase in complexity 
provides the capability to accurately learning the relationships between 
non-linear data, often providing more accurate forecasts than LR. Once 
the NN is trained, it retains the values of the weights, bias, and activation 
functions, and can forecast the PV generation output quicker than the 
other algorithms as it is not required to calculate anything else. The NN’s 
used in this research vary from a 1 to 2 layers, meaning they do not need 
to be as complex as they have the potential to be. If more layers are 
added, more weights, bias, and activation functions must be calculated, 
and the algorithm becomes slower to train and forecast. 

Among previous research, there are limited results of the time taken 
to train the algorithms and the forecasting speed of the algorithms once 
they have been trained. Evaluation of the developed algorithms for long 
term and short-term dataset training is shown in Fig. 9. 

Interestingly, the insolation of the area was not associated highly 
with the PV generation. Instead, the highest value was obtained from the 
outdoor air temperature. This does not indicate the importance of each 
variable to the performance of the algorithms; however, it shows the 
association. This association is different from the correlation, showing 
any relationship between variables, linear or non-linear. The data from 
this is necessary to collect as this can allow accurate manipulation of the 
training data. For example, if the temperature and the humidity had a 
high association close to 1, the algorithms would probably benefit from 
the removal of one of the variables. This is due to them having a linear 
relationship, and therefore, a similar effect on the accuracy of the 
forecast is seen. In this case, none of the variables have a high associa-
tion due to them being weather variables as the temperature can often be 
low while the cloud coverage is high and vice versa. The association 
results show that the cloud coverage and humidity have the highest 
association, although it is only 0.352. These have the highest MRMR 
feature importance scores, so those have not been removed from the 
algorithm. 

Although the calculated association have not shown the causation of 
the variables from one to another, variables with less association with 
the target variable may be removed for a faster and potentially more 
accurate algorithm. The variable with the smallest association score 
with the PV output is the rain, and thus it may be removed. The asso-
ciation can be compared to the calculated feature importance scores, 
showing large differences. This is because the MRMR feature importance 
algorithm does not measure association, but actual importance of the 
input variable to the accuracy of the output variables’ forecast, requiring 
more computational power. The MRMR algorithm calculates the cor-
relation of the selected variable to the output variable and also calcu-
lates the correlation from that variable to other variables in the training 
dataset. This is performed for each iteration of the dataset and the results 
are summed to achieve a single value of correlation towards the output 
and a single value for correlation towards other input variables. The 
correlation of the variable to the output variable is then divided by the 
correlation between the variable and other variables of the training 
dataset to give a feature importance score. The multitude of calculations 
to achieve the feature importance score requires more computational 
power than calculating the association score between two features. The 
average RMSE forecasting horizons using the 10 months and 1 month 
data is presented in Fig. 10. 

The NN, LR, and SVM algorithms all performed better with more data 
with an average RMSE increase of 10.6% when the training set was 
reduced. The RF performed better when given less data by 20.3%. In this 
research, the algorithms are not changed with dependence on the 
number of inputs, but they may become more complex with input data 
while requiring the same computational power. There are no cases in the 
selected previous work where the same algorithms are compared with 
different amounts of data when forecasting the same target. It can be 
concluded from this research that more data aids the algorithms’ fore-
casting accuracy, as overall, 10 months of training data provided an 
error of 774.16 kW whereas 1 month of training data provided an error 
of 902.42 kW. Removal of predictor data does not improve any of the 

developed algorithms when they are trained with 1 month of data, but 
the performance of them is decreased when more data is removed 
(Fig. 11). 

The average change for RF, NN, LR, and SVM are +10.94%, − 5.65%, 
− 8.77%, and − 11.18% respectively. The largest decrease in error is for 
the NN during daily iterations at − 37.25% and the largest increase in 
error is for the RF during 15-min iterations at +33.19%. 10 months of 
data is used and forecasting horizons are kept to a minimum to deter-
mine the change in accuracy. This allows there to be enough data to still 
train the algorithms to provide an accurate comparison on how the 
features affect the performance of the algorithm. 

The process of calculating feature importance and optimising the 
MLA through the removal of features with less importance is often not 
included in previous literature. Although this is an important method 
towards improving the performance of MLA’s, it is not the main 
achievement of much literature. The results of this study show that by 
measuring the importance of the input features towards the target 
feature(s), the algorithms can be improved, especially where there is an 
abundance of data. 

4. Critical analysis and discussion 

4.1. Strength of this study 

The size of the datasets, forecast horizon, feature importance and 
selection, training, and prediction speed, and forecast accuracy are all 
evaluated and discussed comprehensively. 

As each building will have various datasets, the forecasting achieved 
by the techniques are evaluated with different amounts of data. When 
provided with more data, the ML techniques performed better as a 
whole. This is not followed by the RF algorithm due to the method of 
generating the same number of decision trees regardless of the amount 
of data it is given. The remaining algorithms employed in this study rely 
more on the volume of training data, meaning was a new build and had 

Fig. 10. The average RMSE for daily, hourly, and 15-min forecasting horizons 
when trained with 10 months and 1 month of data. 

Fig. 11. The change in MAPE when the three features with the lowest MRMR 
are removed, showing the results for daily, hourly, and 15-min iteration aver-
ages for each method. 
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only collected a week or a month of climate and PV generation data, it 
would have to choose RF ahead of other methods. This is due to the RF 
model providing a higher forecasting accuracy when trained with less 
data. The NN, LR, and SVM’s required more data to reach optimum 
accuracy but even when given less data, the RF had higher accuracy than 
LR and SVM’s on average. If the building had collected upwards of 1 
month of data then a NN outperforms the other methods. 

Each BMS’s forecast horizon requirements are different. The various 
forecasting horizons show that the error increased through LR and RF 
techniques the most when the forecasting horizon was increased. The 
error achieved by SVM did not change enough to warrant an absolute 
conclusion on the optimum amount of data. Shorter forecasting horizons 
provided higher accuracies in 4 of the 6 comparisons. The NN error 
increased with a larger horizon when trained with 10 months of data but 
decreased with a larger horizon when trained with 1 month of data. This 
shows that the NN may be more advantageous if a BMS requires a larger 
forecasting horizon and has a month of data to use to train the algorithm. 
In contrast, if the NN has 10 months of data to use for training, then a 
smaller forecasting horizon provides larger accuracies. 

The removal of predictor features with an increase in accuracy means 
that the predictor no longer needs to be collected, which saves time. The 
NN’s error decreased the most when rain, temperature, and air pressure 
was removed. This was unexpected as these are important climate var-
iables for the other algorithms, but the NN was benefited from it. The 
error of RF increased the most from the removal of data due to the 
removal of a lot of data as it was for 15-min iterations. If the data is 
collected for less time, the RF performs the best however, the NN has the 
highest accuracy for more time and less features. If this method was 
applied to a PV system in a different climate, such as with low cloud 
coverage, the MRMR algorithm might provide information that cloud 
coverage is less important to the algorithms. In this case, input features 
with less importance may still be removed from the algorithms and 
features with more importance may be used instead, such as wind speed 
or any feature that may have a higher importance. The affecting factors 
of the PV power output remain the same. The algorithms will have 
similar performances with regards to the development, training, and 
accuracy, while the MRMR algorithm is used, and the target variable is 
the power output of a PV system. 

The training and prediction speeds are evaluated for each algorithm 
to evaluate the useability of them. They were all trained in under 5 min 
but there was only 10 months of data used for training. If an algorithm 
required more data to improve accuracy, the NN would take much 
longer to train. LR algorithms have the simplest method and thus are 
trained the fastest, making them the most appealing if there’s less time 
available or more data for training. All the forecasting speeds are above 
2000 per second and BMS is not required that much data that means all 
forecasting speeds of the algorithms are sufficient. For 15-min fore-
casting for a full week, there are 672 samples, meaning it can still be 
trained in under half a second. 

4.2. Limitation 

The limitations of this study exist within the data collection and 
applications. A BMS could potentially employ solar PV, solar thermal, 
and wind, whereas this research only focuses on solar PV. Although the 
methodology of this research is applicable towards other types of 
renewable generation such as wind, solar thermal, kinetic, hydrogen, 
etc, this research only addresses solar PV. 

Previous research shows the variability of accuracies for various 
sized PV forecasting in various locations. As previous research is inde-
pendent and have many variables, it can be difficult to determine the 
cause of the different accuracies. This research only focuses on the PV 
forecasting in a UK climate, showing the MLA forecasting accuracy of a 
local PV systems’ energy generation. This doesn’t provide information 
on how the forecasting methods change with different weather condi-
tions or sized systems. 

4.3. Performance comparison with existing works 

The comparison of this research against previous ML techniques 
applied on PV system forecasting through NN methods is shown in 
Table 4. The results in this research are shown in the final row. The other 
results show that most research is executed for forecasting a PV solar 
farm and not for localised systems. The accuracy of the forecasts is 
difficult to compare due to the different sized systems and climate they 
are in. The largest system is in South Africa with 75 MW peak, and the 
smallest is in this research for the local PV system at 30 kWh peak. 

The coolest climate is in the proposed work with a temperature of 
10.43 ◦C was still able to forecast with an error of 1.76 kW or 5.86% of 
the peak output power. The warmest climate is in South Africa with 
19.76 ◦C was able to forecast with an error of 3.42% of the peak output 
power. Most of the available research have used NN’s when forecasting a 
solar farm. A comparison of this research against SVM PV forecasting 
system forecasting is shown in Table 5. 

The first reference uses many PV systems across Germany. The size of 
the systems is not disclosed, but the method of using SVM to forecast the 
PV generation have an average RMSE of 10% of the total peak power 
output. The systems are all rooftop, but no actual size is given. From the 
previous research, SVM’s are used more when forecasting smaller PV 
systems. This may be due to the way SVM’s work, as they can produce 
higher accuracies when they are given less input variables. Buildings 
may not prioritise the collection of data as they have other functions. 
The comparison of this research against previous MLA PV system fore-
casting through RF methods are shown in Table 6. 

The second reference uses various sized systems across the 
Netherlands, hence the measurement of error that is in W/kW peak. This 
allows the error to be divided by the size of the system to give a universal 
error to compare the different sized systems. Most of the previous work 
that uses RF models apply it to various different systems under the same 
weather conditions to try to produce a general model. This means that 
can be used by anybody within a defined distance, under the same 
weather conditions. The first reference in Table 6 has an error of 11.77% 
whereas the proposed systems’ RF error is 6.6%. As the size of the sys-
tems in the second reference from Table 6 vary, the error can be difficult 
to compare, but the error can be converted to a percentage to compare 
against the proposed work. This equates to 1.64% error on average. The 
outdoor air temperature, system size, and algorithm are very similar, 
leading to the probability that the first reference has less or poorer 
quality data for training. The second reference has 17 input variables to 
train the algorithm with, allowing an accurate forecast. The perfor-
mance comparison of this research against previous MLA PV forecasting 
systems through LR methods are shown in Table 7. 

Gaussian Regression is a more complex variation of LR, capable of 
producing higher accuracies at the expense of more computational 
power. The second and third reference in Table 7 have multiple PV 
systems that are all stated to be rooftop installed. Although the size isn’t 
stated, it can be assumed that they are of a similar size to the system in 

Table 4 
A comparison of current research against previous research when forecasting PV 
energy generation through MLA methods [31,34,35,41].  

Location and Average Outdoor Air 
Temperature oC 

System Size Performance Method 

South Africa. 19.76 [18]. 75 MW 
Peak 

3.42% MAPE Neural 
Network 

Belgium. 11.73 [20]. 368 kWh 
Peak 

11.89% 
RMSE 

Neural 
Network 

Italy. 15.04 [21]. 327 kWh 
Peak 

3.41% RMSE Neural 
Network 

Peru. 23.12 [43]. 700W Peak 10.57% 
MAPE 

Neural 
Network 

Proposed work. 10.43 30 kWh 
Peak 

1.76 kW 
RMSE 

Neural 
Network  
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the proposed work. The second reference has a RMSE% of 8.95% 
whereas the LR model in this research has a RMSE% of 17.7%. This is 
due to the model used, as the size of the system and the average outdoor 
temperature are similar. 

The correlation between the temperatures and the performance of 
previous research has a value of 0.137, showing there is little correla-
tion. The correlation between the size of the systems and the perfor-
mance is − 0.4, showing there is a moderate negative correlation 
between the size of the system and the accuracy. Bigger PV systems have 
higher accuracies when forecasting the PV generation. The main dif-
ferences between sizes include the number of PV panels and the amount 
of collected data, where larger systems have more data, and can train 
algorithms with higher accuracies. Another consideration is faults 
within the PV system, as a building has other priorities to solve, whereas 
a PV farm may repair any faults quicker, and thus, maintain the quality 
of the training data. There is no definitive algorithm that can forecast 
with the highest accuracy while requiring the least data for both PV 
farms and local systems. As previous algorithms are trained with data for 
different sized and located PV systems, there cannot be an accurate 
comparison between methods. 

5. Conclusions 

The proposed methodology developed in this work has compared 
benchmark within machine learning algorithms for forecasting a local-
ised photovoltaic system and to demonstrate the benefits of each 
method. Data collection and processing is important for the performance 
of the algorithms; however, it is not crucial for all of them. The quality of 
data improves the accuracy of the algorithms more than quantity of 
data. Rain, temperature, and air pressure have the least effect on the 
performance of the algorithms when forecasting PV generation in a UK 
climate. This demonstrates the effectiveness of selecting the correct al-
gorithm for the amount and type of data within the dataset. In this 
research, 64 models are created with 4 algorithms and tested with a 
variety of sizes for training data and horizons. Random forest algorithms 
produced the lowest error with an average RMSE of 32 and it required 
less data to successfully train the algorithms. This is due to the algorithm 
generating a set amount of decision trees regardless of the amount of 
data it is given. This means that it may not be able to include all the data 
it is provided with for training. The incorrect datapoints that the pro-
cessing algorithm cannot remove are still included in the training set 
which can reduce the accuracy of the algorithm. These include data that 
isn’t an outlier or missing. The neural networks showed the highest 
RMSE at 38.8 however it had a lower error on 7 of the 12 datasets it was 
trained and validated with compared to the RF with the lowest error on 
only 3 of the 12 datasets. The linear regression algorithms trained the 
fastest on average at 41.7 s per model. Overall, RF provided the highest 
accuracy among the tested algorithms in this research work while 
requiring the least amount of training data. As more buildings are 
aiming to reduce the carbon emissions, RE is becoming more popular 
and thus, the forecasting of RE systems is necessary. The forecasting of 
these systems can be implemented into BMS’s and can be used to reduce 
the carbon emissions of the building. Currently, there is no comparison 
of MLA’s when forecasting the PV generation of a rooftop system. This 
research provides information on how they can be improved through the 
MRMR algorithm and how much data they require for an optimal model. 
The information provided in this research can be used as a guide to how 
much data and what variables are needed for training, and what algo-
rithms to use when forecasting the PV generation of a rooftop system. 
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[17] Gaviria JF, Narváez G, Guillen C, Giraldo LF, Bressan M. "Machine learning in 
photovoltaic systems: a review,". Renewable Energy; 2022. https://doi.org/ 
10.1016/j.renene.2022.06.105. 2022/07/01. 

[18] du Plessis AA, Strauss JM, Rix AJ. "Short-term solar power forecasting: 
investigating the ability of deep learning models to capture low-level utility-scale 
Photovoltaic system behaviour,". Appl Energy 2021;285:116395. https://doi.org/ 
10.1016/j.apenergy.2020.116395. 2021/03/01. 

[19] Huang Q, Wei S. "Improved quantile convolutional neural network with two-stage 
training for daily-ahead probabilistic forecasting of photovoltaic power,". Energy 
Convers Manag 2020;220:113085. https://doi.org/10.1016/j. 
enconman.2020.113085. 2020/09/15. 

[20] Kaffash M, Bruninx K, Deconinck G. Data-driven forecasting of local PV generation 
for stochastic PV-battery system management. Int J Energy Res 2021;45(11): 
15962–79. https://doi.org/10.1002/er.6826. 

[21] Polimeni S, Nespoli A, Leva S, Valenti G, Manzolini G. "Implementation of different 
PV forecast approaches in a MultiGood MicroGrid: modeling and experimental 
results,". Processes 2021;9(2). https://doi.org/10.3390/pr9020323. 

[22] Perera M, De Hoog J, Bandara K, Halgamuge S. "Multi-resolution, multi-horizon 
distributed solar PV power forecasting with forecast combinations,". Expert Syst 
Appl 2022;205:117690. https://doi.org/10.1016/j.eswa.2022.117690. 2022/11/ 
01. 

[23] Li Z, et al. "Investigation on the all-day electrical/thermal and antifreeze 
performance of a new vacuum double-glazing PV/T collector in typical climates — 
compared with single-glazing PV/T,". Energy 2021;235:121230. https://doi.org/ 
10.1016/j.energy.2021.121230. 2021/11/15. 

[24] Joshi SS, Dhoble AS. "Photovoltaic -Thermal systems (PVT): technology review and 
future trends,". Renew Sustain Energy Rev 2018;92:848–82. https://doi.org/ 
10.1016/j.rser.2018.04.067. 2018/09/01. 

[25] Reddy S, Mallick T, Chemisana D. "Solar power generation,". Int J Photoenergy 
2013;2013. https://doi.org/10.1155/2013/950564. 01/01. 

[26] Tzivanidis C, Bellos E. "Solar energy utilization in buildings,". 2018. p. 119–65. 
[27] Wang W, Yuan B, Sun Q, Wennersten R. "Application of energy storage in 

integrated energy systems — a solution to fluctuation and uncertainty of renewable 
energy,". J Energy Storage 2022;52:104812. https://doi.org/10.1016/j. 
est.2022.104812. 2022/08/01. 

[28] Dreher A, et al. "AI agents envisioning the future: forecast-based operation of 
renewable energy storage systems using hydrogen with Deep Reinforcement 
Learning,". Energy Convers Manag 2022;258:115401. https://doi.org/10.1016/j. 
enconman.2022.115401. 2022/04/15. 

[29] Sierla S, Pourakbari-Kasmaei M, Vyatkin V. "A taxonomy of machine learning 
applications for virtual power plants and home/building energy management 

systems,". Autom ConStruct 2022;136:104174. https://doi.org/10.1016/j. 
autcon.2022.104174. 2022/04/01. 

[30] Bao-ying W, Yu X, Majd JK. "A novel forecasting method based on the economic 
and demand response for FC/WT/PV unit and a 3 in 1 TES energy storage,". Int J 
Hydrogen Energy 2021;46(65):32995–3009. https://doi.org/10.1016/j. 
ijhydene.2021.07.074. 2021/09/21. 
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