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As a new programming paradigm, neural-network-based machine learning has expanded its application to
many real-world problems. Due to the black-box nature of neural networks, verifying and explaining their
behavior are becoming increasingly important, especially when they are deployed in safety-critical applica-
tions. Existing verification work mostly focuses on qualitative verification, which asks whether there exists
an input (in a specified region) for a neural network such that a property (e.g., local robustness) is violated.
However, in many practical applications, such an (adversarial) input almost surely exists, which makes a
qualitative answer less meaningful. In this work, we study a more interesting yet more challenging problem,
i.e., quantitative verification of neural networks, which asks how often a property is satisfied or violated.
We target binarized neural networks (BNNs), the 1-bit quantization of general neural networks. BNNs have
attracted increasing attention in deep learning recently, as they can drastically reduce memory storage and
execution time with bit-wise operations, which is crucial in recourse-constrained scenarios, e.g., embedded
devices for Internet of Things. Toward quantitative verification of BNNs, we propose a novel algorithmic
approach for encoding BNNs as Binary Decision Diagrams (BDDs), a widely studied model in formal verifica-
tion and knowledge representation. By exploiting the internal structure of the BNNs, our encoding translates
the input-output relation of blocks in BNNs to cardinality constraints, which are then encoded by BDDs.
Based on the new BDD encoding, we develop a quantitative verification framework for BNNs where precise
and comprehensive analysis of BNNs can be performed. To improve the scalability of BDD encoding, we
also investigate parallelization strategies at various levels. We demonstrate applications of our framework
by providing quantitative robustness verification and interpretability for BNNs. An extensive experimental
evaluation confirms the effectiveness and efficiency of our approach.
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1 INTRODUCTION

Background. Neural-network-based machine learning has become a new programming para-
digm [69], which arguably takes over traditional software programs in various application domains.
It has achieved state-of-the-art performance in real-world tasks such as autonomous driving [6]
and medical diagnostics [82]. Deep neural networks (DNNs) usually contain a great number of
parameters, which are typically stored as 32/64-bit floating-point numbers, and require a massive
amount of floating-point operations to compute the output for a single input [95]. As a result,
it is often challenging to deploy them on resource-constrained embedded devices for, e.g., Inter-
net of Things and mobile devices. To mitigate the issue, quantization, which quantizes 32/64-bit
floating points to low-bit-width fixed points (e.g., 4 bits) with little accuracy loss [39], emerges as
a promising technique to reduce the resource requirement. In particular, binarized neural net-

works (BNNs) [45] represent the case of 1-bit quantization using the bipolar binaries ±1. BNNs
can drastically reduce memory storage and execution time with bit-wise operations, and hence
substantially improve the time and energy efficiency. They have demonstrated high accuracy for
a wide variety of applications [53, 65, 80].

Despite their great success, the intrinsic black-box nature of DNNs hinders the understanding of
their behaviors, e.g., explanation of DNN’s decision [43]. Moreover, they are notoriously vulnerable
to subtle input perturbations and thus are lacking in robustness [14, 16–18, 23, 30, 54, 75, 76, 91, 94].
This is concerning as such error may lead to catastrophes when they are deployed in safety-critical
applications. For example, a self-driving car can interpret a stop sign as a speed limit sign [30].
As a result, along with traditional verification and validation research in software engineering,
there is a large and growing body of work on developing quality assurance techniques for DNNs,
which has become one of the foci of software engineering researchers and practitioners recently.
Many testing techniques have been proposed to analyze DNNs, e.g., [7, 16, 62, 63, 77, 92, 96, 114];
cf. [116] for a survey. While testing techniques are often effective in finding violations of prop-
erties (e.g., robustness), they cannot prove their absence. In a complementary direction, various
formal techniques have been proposed, such as (local) robustness verification and output range
analysis, which are able to prove absence of violations of properties. Typically, these methods re-
sort to constraint solving where verification problems are encoded as a set of constraints that can
be solved by off-the-shelf SAT/SMT/MILP solvers [21, 25, 28, 49, 78, 97]. Although this class of ap-
proaches is sound and complete, they usually suffer from scalability issues. In contrast, incomplete
methods usually rely on approximation for better scalability but may produce false positives. Such
techniques include layer-by-layer approximation [112], layer-by-layer discretization [44], abstract
interpretation [33, 87, 88], and interval analysis [104], to name a few.

Verification for quantized DNNs. Most existing DNN verification techniques focus on real-

numbered DNNs only. Verification of quantized DNNs has not been thoroughly explored so far,
although recent results have highlighted its importance: it was shown that a quantized coun-
terpart does not necessarily preserve the properties satisfied by the real-numbered DNN after
quantization [14, 35]. Indeed, the fixed-point number semantics effectively yields a discrete state
space for the verification of quantized DNNs, whereas real-numbered DNNs feature a continuous
state space. The discrepancy could invalidate the current verification techniques for real-numbered
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DNNs when they are directly applied to their quantized counterparts (e.g., both false negatives and
false positives could occur). Therefore, dedicated techniques have to be investigated for rigorously
verifying quantized DNNs.

Broadly speaking, the existing verification techniques for quantized DNNs make use of con-
straint solving, which is based on either SAT/SMT or (reduced, ordered) binary decision di-

agrams (BDDs). A majority of work resorts to SAT/SMT solving. For the 1-bit quantization
(i.e., BNNs), typically BNNs are transformed into Boolean formulas where SAT solving is har-
nessed [20, 52, 71, 72]. Some recent work also studies variants of BNNs [47, 74], i.e., BNNs with
ternary weights. For quantized DNNs with multiple bits (i.e., fixed points), it is natural to encode
them as quantifier-free SMT formulas (e.g., using bit-vector and fixed-point theories [9, 35, 41])
so that off-the-shelf SMT solvers can be leveraged. In another direction, BDD-based approaches
currently can tackle BNNs only [83]. The general method is to encode a BNN and an input region
as a BDD, based on which various analysis can be performed via queries on the BDD. The crux of
the approach is how to generate the BDD model efficiently. In the work [83], the BDD model is
constructed by BDD-learning [70], which, similar to Angluin’s L∗ learning algorithm [3], requires
both membership checking and equivalence checking. To this end, in [83], the membership check-
ing is done by querying the BDD for each input; the equivalence checking is done by transforming
the BDD model and BNN to two Boolean formulas, and then checking the equivalence of the two
Boolean formulas under the input region (encoded in Boolean formula) via SAT solving. This con-
struction requires n equivalence queries and 6n2 + n · log(m) membership queries, where n is the
number of BDD nodes and m is the number of variables in the BDD. Due to the intractability of
SAT solving (i.e., NP-complete), currently this technique is limited to toy BNNs, e.g., 64 input size,
5 hidden neurons, and 2 output size with relatively small input regions.

Quantitative verification. The existing work mostly focuses on qualitative verification, which
typically asks whether there exists an input in a specified region for a neural network such that a
property (e.g., local robustness) is violated. Qualitative verification is able to prove various proper-
ties, or otherwise often produce a counterexample when a property is violated. However, in many
practical applications, checking the existence only is not sufficient. Indeed, for local robustness,
such an (adversarial) input almost surely exists [14, 19, 24, 36, 37, 64, 100, 120], which makes a qual-
itative answer less meaningful. Instead, quantitative verification, which asks how often a property
is satisfied or violated, is far more useful as it could provide a quantitative guarantee for neural
networks. Such a quantitative guarantee is essential to certify, for instance, certain implementa-
tions of neural-network-based perceptual components against safety standards of autonomous
vehicles specifying failure rates of these components [48, 51]. Quantitative analysis of general
neural networks is challenging and has received little attention so far. To the best of our knowl-
edge, DeepSRGR [115] is the first quantitative robustness verification approach for real-numbered
DNNs. DeepSRGR leverages the abstract interpretation technique, and hence is sound but incom-
plete. For BNNs, approximate SAT model-counting solvers (�SAT) are leveraged [8, 73] based on the
SAT encoding for the qualitative counterpart. Though probably approximately correct (PAC)

guarantees can be provided, the verification cost is usually prohibitively high to achieve higher
precision and confidence.

Our contribution. In this article, we propose a BDD-based framework, named BNNQuanalyst,
to support quantitative analysis of BNNs. The main challenge of the analysis is to efficiently build
BDD models from BNNs [73]. In contrast to the prior work [83], which largely treats the BNN as a
black box and uses BDD-learning, we directly encode a BNN and the associated input region into a
BDD model. Our encoding is based on the structure characterization of BNNs. In a nutshell, a BNN
is a sequential composition of multiple internal blocks and one output block. Each internal block
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comprises a handful of layers and captures a function f : {+1,−1}n → {+1,−1}m over the bipolar
domain {+1,−1}, where n (resp.m) denotes the number of inputs (resp. outputs) of the block. (Note
that the inputs and outputs may not be binarized for the layers inside the blocks.) By encoding the
bipolar domain {+1,−1} as the Boolean domain {0, 1}, the function f can be alternatively rewritten
as a function over the standard Boolean domain, i.e., f : {0, 1}n → {0, 1}m . A cornerstone of our
encoding is the observation that the ith output yi of each internal block can be captured by a
cardinality constraint of the form

∑n
j=1 �j ≥ k such that yi ⇔

∑n
j=1 �j ≥ k ; namely, the ith output

yi of the internal block is 1 if and only if the cardinality constraint
∑n

j=1 �j ≥ k holds, where
each literal �j is either x j or ¬x j for the input variable x j , and k is a constant. An output of the
output block is one of the s classification labels and can be captured by a conjunction of cardinality
constraints

∧m
i=1

∑nm

j=1 �i, j ≥ ki such that the class is produced by the output block if and only if the

constraint
∧m

i=1

∑nm

j=1 �i, j ≥ ki holds. We then present an efficient algorithm to encode a cardinality
constraint

∑n
j=1 �j ≥ k as a BDD with O ((n − k ) · k ) nodes in O ((n − k ) · k ) time. As a result, the

input-output relation of each block can be encoded as a BDD, the composition of which yields
the BDD model for the entire BNN. A distinguished advantage of our BDD encoding lies in its
support of incremental encoding. In particular, when different input regions are of interest, there
is no need to construct the BDD of the entire BNN from scratch.

To improve the efficiency of BDD encoding, we propose two strategies, namely, input propaga-
tion and divide-and-conquer. The former forward propagates a given input region block by block.
This can give the feasible input space of each block, which can reduce the number of BDD nodes
when constructing BDD models from cardinality constraints. The latter is used when constructing
the BDD model of an internal block. Namely, we recursively compute the BDDs for the first half
and the second half of the cardinality constraints, which are to be combined by the BDD AND-
operation. The divide-and-conquer strategy does not reduce the number of AND-operations, but
can reduce the size of the intermediate BDDs. To leverage modern CPUs’ computing capability, we
also investigate parallelization strategies at various levels, namely, BDD operations, BDD encod-
ing of each block, and BDD construction of an entire BNN. We show that these strategies (except
for parallel BDD construction of an entire BNN) can significantly improve the efficiency of BDD
encoding for large BNNs and input regions.

Encoding BNNs as BDDs enables a wide variety of applications in security analysis and decision
explanation of BNNs. In this work, we highlight two of them within our framework, i.e., robust-
ness analysis and interpretability. For the former, we consider two quantitative variants of the
robustness analysis: (1) how many adversarial examples does the BNN have in the input region,
and (2) how many of them are misclassified to each class? We further provide an algorithm to in-
crementally compute the (locally) maximal Hamming distance within which the BNN satisfies the
desired robustness properties. For the latter, we consider two problems: (1) why some inputs are
(mis)classified into a class by the BNN and (2) are there any essential features in the input region
that are common for all samples classified into a class?

Experimental results. We implemented our approach in a tool BNNQuanalyst using two BDD
packages: CU Decision Diagram (CUDD) [90] and Sylvan [102], where CUDD is a widely used
sequential BDD package, while Sylvan is a promising parallel BDD package. We have evaluated
BNNQuanalyst by encoding and verifying properties of various BNNs trained on two popular
datasets, i.e., MNIST [55] and Fashion-MNIST [113]. The experiments show that BNNQuanalyst

scales to BNNs with 4 internal blocks (i.e., 12 layers), 200 hidden neurons, and 784 input size. To the
best of our knowledge, it is the first work to precisely and quantitatively analyze such large BNNs
that go significantly beyond the state of the art, and is significantly more efficient and scalable
than the BDD-learning-based technique [83]. Then, we demonstrate how BNNQuanalyst can be
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used in quantitative robustness analysis and decision explanation of BNNs. For quantitative robust-
ness analysis, our experimental results show that BNNQuanalyst can be considerably (hundreds
of times on average) faster and more accurate than the state-of-the-art approximate �SAT-based
approach [8]. It can also compute precisely the distribution of predicted classes of the images in
the input region as well as the locally maximal Hamming distances on several BNNs. For decision
explanation, we show the effectiveness of BNNQuanalyst in computing prime-implicant features
and essential features of the given input region for some target classes, where prime-implicant fea-
tures are a sufficient condition; if fixed, the prediction is guaranteed no matter how the remaining
features change in the input region, while essential features are a necessary condition, on which
all samples in an input region that are classified into the same class must agree.

In general, our main contributions can be summarized as follows:

• We introduce a novel algorithmic approach for encoding BNNs into BDDs that exactly pre-
serves the semantics of BNNs, which supports incremental encoding.
• We explore parallelization strategies at various levels to accelerate BDD encoding, most of

which can significantly improve the BDD encoding efficiency.
• We propose a framework for quantitative verification of BNNs, and in particular, we demon-

strate the robustness analysis and interpretability of BNNs.
• We implement the framework as an end-to-end tool BNNQuanalyst and conduct thorough

experiments on various BNNs, demonstrating its efficiency and effectiveness.

Outline. The remainder of this article is organized as follows. In Section 2, we introduce bina-
rized neural networks, binary decision diagrams, and two binary decision diagram packages used
in this work. Section 3 presents our BDD-based quantitative analysis framework, including some
design choices to improve the overall encoding efficiency. In Section 4, we investigate feasible
parallelization strategies. Section 5 presents two applications of our BDD encoding, namely, ro-
bustness analysis and interpretability. In Section 6, we report the evaluation results. We discuss
the related work in Section 7. Finally, we conclude this work in Section 8.

This article significantly extends the results presented in [118]. (1) We add more detailed descrip-
tions of the algorithms and missing proofs of lemmas and theorems, and provide a more up-to-date
discussion of the related work. (2) We investigate various parallelization strategies to accelerate
BDD encoding, i.e., parallel BDD operations, parallel BDD encoding of blocks, and parallel BDD
encoding of an entire BNN (cf. Section 4). We thoroughly evaluate these parallelization strategies
(cf. Sections 6.1.4, 6.2, and 6.3). To the best of our knowledge, it is the first work that explores
parallelization for BNN verification. (3) We empirically study the performance of our graph-based
algorithm and the DP-based algorithm [27] for compiling cardinality constraints into BDDs (cf. Sec-
tion 6.1.1), the divide-and-conquer strategy for BDD encoding of blocks (cf. Section 6.1.2), and our
input propagation (cf. Section 6.1.3). (4) We compare our approach with the BDD-learning-based
approach [83] for BDD encoding (cf. Section 6.2.2) and other possible approaches (Section 6.3.2)
for quantitative robustness verification.

2 PRELIMINARIES

In this section, we briefly introduce BNNs and (reduced, ordered) BDDs, as well as the two BDD
packages used in this work.

We denote by R, N, B, and B±1 the set of real numbers, the set of natural numbers, the standard
Boolean domain {0, 1}, and the bipolar domain {+1,−1}, respectively. For a given positive integer
n ∈ N, we let [n] := {1, . . . ,n}. We will use �W, �W′, . . . to denote (2-dimensional) matrices, �x,�v, . . .
to denote (row) vectors, and x ,v, . . . to denote scalars. We denote by �Wi, : and �W:, j the ith row
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Fig. 1. Architecture of a BNN with d + 1 blocks.

and jth column of the matrix �W. Similarly, we denote by �xj and �Wi, j the jth entry of the vector

�x and matrix �Wi, :. In this work, Boolean values 1/0 will be used as integers 1/0 in arithmetic
computations without typecasting.

2.1 Binarized Neural Networks

A BNN [45] is a neural network where weights and activations are predominantly binarized over
the bipolar domain B±1. In this work, we consider feed-forward BNNs. As shown in Figure 1, a
(feed-forward) BNN can be seen as a sequential composition of several internal blocks and one
output block. Each internal block comprises three layers: a linear layer (LIN), a batch normal-

ization layer (BN), and a binarization layer (BIN). The output block comprises a linear layer
and an ARGMAX layer. Note that the input/output of the internal blocks and the input of the
output block are all vectors over the bipolar domain B±1.

Definition 2.1. A BNNN : Bn1
±1 → Bs with s classes (i.e., classification labels) is given by a tuple

of blocks (t1, . . . , td , td+1) such that

N = td+1 ◦ td ◦ · · · ◦ t1,

Here, we have that

• for every i ∈ [d], ti : Bni

±1 → B
ni+1
±1 is the ith internal block comprising a LIN layer t l in

i , a BN
layer tbn

i , and a BIN layer tbin
i with ti = tbin

i ◦ tbn
i ◦ t l in

i ,
• td+1 : Bnd+1

±1 → Bs is the output block comprising a LIN layer t l in
d+1

and an ARGMAX layer

tam
d+1

with td+1 = tam
d+1
◦ t l in

d+1
,

where tbin
i , tbn

i , t l in
i for i ∈ [d], t l in

d+1
, and tam

d+1
are given in Table 1.

Intuitively, a LIN layer is a fully connected layer acting as a linear transformation t l in : Bm
±1 →

R
n over vectors such that t l in (�x) = �W ·�x+�b,where �W ∈ Bm×n

±1 is the weight matrix and �b ∈ Rn is
the bias vector. A BN layer following a LIN layer forms a linear transformation tbn : Rn → Rn such

that tbn (�x) = �y, where for every j ∈ [n], �yj = α j · (
�xj−μ j

σj
) +γj , α j , and γj denote the jth elements of

the weight vector α ∈ Rn and the bias vector γ ∈ Rn , and μ j and σj denote the mean and standard
deviation (assuming σi > 0). A BN layer is used to standardize and normalize the output vector
of the preceding LIN layer. A BIN layer is used to binarize the real-numbered output vector of the
preceding BN layer. In this work, we consider the sign function, which is widely used in BNNs to
binarize real-numbered vectors. Thus, a BIN layer with n inputs forms a non-linear transformation
tbin : Rn → Bn

±1 such that the jth entry of tbin (�x) is +1 if �xj ≥ 0, and −1 otherwise. An ARGMAX
layer tam : Rs → Bs follows a LIN layer and outputs the index of the largest entry as the predicted
class, which is represented by a one-hot vector. (In case there is more than one such entry, the first
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Table 1. Definitions of Layers in BNNs, Where nd+2 = s , t
bin
i Is the sign Function and

arg max(·) Returns the Index of the Largest Entry That Occurs First

Layer Function Parameters Definition

LIN t l in
i : Bni

±1 → Rni+1
Weight matrix: �W ∈ Bni×ni+1

±1

Bias (row) vector: �b ∈ Rni+1

t l in
i (�x) = �y, where ∀j ∈ [ni+1],

�yj = 〈�x, �W:, j 〉 + �bj

BN tbn
i : Rni+1 → Rni+1

Weight vectors: α ∈ Rni+1

Bias vector: γ ∈ Rni+1

Mean vector: μ ∈ Rni+1

Std. dev. vector: σ ∈ Rni+1

tbn
i (�x) = �y, where ∀j ∈ [ni+1],

�yj = α j · (
�xj−μ j

σj
) + γj

BIN tbin
i : Rni+1 → Bni+1

±1 -
tbin
i (�x) = sign(�x) = �y, where ∀j ∈ [ni+1],

�yj =

{
+1, if �xj ≥ 0;
−1, otherwise.

ARGMAX tam
d+1

: Rs → Bs -
tam
d+1

(�x) = �y, where ∀j ∈ [s],
�yj = 1⇔ j = arg max(�x)

one is returned.) Formally, given a BNNN = (t1, . . . , td , td+1) and an input �x ∈ Bn1
±1,N (�x) ∈ Bs is

a one-hot vector in which the index of the non-zero entry is the predicted class.

2.2 Binary Decision Diagrams

A BDD [12] is a rooted acyclic directed graph, where non-terminal nodesv are labeled by Boolean
variables var(v ) and terminal nodes (leaves) v are labeled with values val(v ) ∈ B, referred to as
the 1-leaf and the 0-leaf, respectively. Each non-terminal node v has two outgoing edges: hi(v )
and lo(v ), where hi(v ) denotes that the variable var(v ) is assigned by 1 (i.e., var(v ) = 1), and lo(v )
denotes that the variable var(v ) is assigned by 0 (i.e., var(v ) = 0). By a slight abuse of notation, we
will also refer to hi(v ) and lo(v ) as the hi- and lo-children of v , respectively, when it is clear from
the context.

A BDD with a pre-defined total variable ordering is called an Ordered Binary Decision Dia-

gram (OBDD). Assuming that x1 < x2 < · · · < xm is the variable ordering, OBDD satisfies that
for each pair of nodes v and v ′, if v ′ ∈ {hi(v ), lo(v )}, then var(v ) < var(v ′). In the graphical repre-
sentation of BDDs, the edges hi(v ) and lo(v ) are depicted by solid and dashed lines, respectively.
Multi-Terminal Binary Decision Diagrams (MTBDDs) are a generalization of BDDs in which
the terminal nodes are not restricted to be 0 or 1.

A BDD is reduced if the following conditions hold:

(1) It has only one 1-leaf and one 0-leaf, i.e., no duplicate terminal nodes.
(2) It does not contain a nodev such that hi(v ) = lo(v ); i.e., the hi- and lo-children of each node

v should be distinct.
(3) It does not contain two distinct non-terminal nodes v and v ′ such that var(v ) = var(v ′),

hi(v ) = hi(v ′), and lo(v ) = lo(v ′), namely, no isomorphic sub-trees.

Hereafter, we assume that BDDs are reduced and ordered.
Bryant [12] showed that BDDs can serve as a canonical form of Boolean functions. Given a BDD

over variables x1, . . . ,xm , each non-terminal node v with var(v ) = xi represents a Boolean func-
tion fv = (xi∧ fhi(v ) )∨ (¬xi∧ flo(v ) ). Operations on Boolean functions can usually be efficiently im-
plemented via manipulating their BDD representations. A good variable ordering is crucial for the
performance of BDD manipulations, while the task of finding an optimal ordering for a Boolean
function is NP-hard in general. In practice, to store and manipulate BDDs efficiently, nodes are
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Table 2. Some Basic BDD Operations, Where op ∈ {And,Or,Xor,Xnor},m Denotes the Number of the

Boolean Variables, and |v | Denotes the Number of Nodes in the BDD v

Operation Definition Complexity Operation Definition Complexity

v = New(x ) fv = x O (1) v = Const(1) fv = 1 O (1)
Not(v ) ¬fv O ( |1|) v = Const(0) fv = 0 O (1)

Apply(v,v ′,op) fv op fv ′ O ( |v | · |v ′ |) Exists(v,X ) ∃X . fv O ( |v | · 22m )
SatAll(v ) SatAll( fv ) O (m · |SatAll( fv ) |) RelProd(v,v ′,X ) ∃X . fv ′ ◦ fv O ( |v | · |v ′ | · 22m )

SatCount(v ) |SatAll( fv ) | O ( |v |) ITE(x ,v,v ′) (x ∧ fv ) ∨ (¬x ∧ fv ′ ) O ( |v | · |v ′ |)

Fig. 2. The OBDD for f (x1,y1,x2,y2). Fig. 3. The reduced OBDD for f (x1,y1,x2,y2).

stored in a hash table and recent computed results are stored in a cache to avoid duplicated com-
putations. In this work, we will use some basic BDD operations such as ITE (If-Then-Else), Xor
(exclusive-OR), Xnor (exclusive-NOR, i.e., a Xnor b = ¬(a Xor b)), SatAll(v ) (i.e., returning
the set of all solutions of the Boolean formula fv ), and SatCount(v ) (i.e., returning |SatAll(v ) |).
We denote by L (v ) the set SatAll( fv ). For easy reference, more operations and their worst-case
time complexities are given in Table 2 [12, 13, 66], where m denotes the number of Boolean vari-
ables and |v | denotes the number of nodes in the BDD v . We denote by op (v,v ′) the operation
Apply(v,v ′,op), where op ∈ {And,Or,Xor,Xnor}.

In this work, we use BDDs to symbolically represent sets of Boolean vectors and multiple output
functions. For each BDD v over Boolean variables x1, . . . ,xm that represents a Boolean function
fv : {x1, . . . ,xm } → B, the BDD v essentially represents the set L (v ) ⊆ Bm , i.e., all solutions
of the Boolean formula fv (x1, . . . ,xm ). The function fv is often called the characteristic function
of the set L (v ). A multiple output function f : Bm → Bn can be seen as a Boolean function
f ′ : Bm+n → B such that f (x1, . . . ,xm ) = (y1, . . . ,yn ) iff f ′(x1, . . . ,xm ,y1, . . . ,yn ) = 1, and
hence can also be represented by a BDD.

Example 2.2. Consider the Boolean function f (x1,y1,x2,y2) = (x1 ⇔ y1) ∧ (x2 ⇔ y2). Assume
that the variable ordering is x1 < y1 < x2 < y2. Figures 2 and 3 respectively show the OBDD
and Reduced OBDD of the Boolean function f (x1,y1,x2,y2). The set SatAll( f ) of its solutions
is {(1, 1, 1, 1), (1, 1, 0, 0), (0, 0, 1, 1), (0, 0, 0, 0)}. The Boolean function f (x1,y1,x2,y2) can be seen as
a multiple output function f ′ : {x1,x2} → {y1,y2} such that f ′(1, 1) = (1, 1), f ′(1, 0) = (1, 0),
f ′(0, 1) = (0, 1), and f ′(0, 0) = (0, 0).

2.3 BDD Packages

In this section, we give a brief introduction of two BDD packages used in this work, i.e., CUDD [90]
and Sylvan [102].
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Fig. 4. Overview of BNNQuanalyst.

CUDD. CUDD is a widely used decision diagram package implemented in C. To facilitate the
performance of BDD manipulation, CUDD stores all the decision diagram nodes in a unique hash
table and features a cache for storing recent computed results, both of which can be automatically
adjusted at runtime. The unique hash table and some auxiliary data structures make up a decision

diagram manager (DdManager), which should be initialized by calling an appropriate function
with initial sizes of the subtables and cache.

The CUDD package provides a C++ interface that facilitates application via automatic garbage
collection and operator overloading. Although CUDD allows to execute BDD operations from
multiple threads, each thread has to use a separate DdManager, i.e., a separate unique hash table
for storing decision diagram nodes, which limits its usage for parallel computing [102]. In this
work, CUDD is only used for sequential computing.

Sylvan. Sylvan is a parallel decision diagram package implemented in C. It leverages the working-
stealing framework Lace [103] and scalable parallel data structures to provide parallel operations
on decision diagrams. Similar to CUDD, Sylvan maintains a hash table, an automatic garbage col-
lector, and a cache for managing decision diagram nodes and storing recent computed results.
Both the minimum and maximum sizes of the hash table and cache are initialized by calling an
appropriate function, but the sizes can be automatically adjusted at runtime. In contrast to CUDD,
which implements the unique hash table using several subtables and collects garbage in sequence,
Sylvan directly maintains one single hash table and collects garbage in parallel. Though Sylvan
implements fewer BDD operations than CUDD, it provides many parallel implementations of com-
mon BDD operations, e.g., Apply, Exists, RelProd, SatAll, SatCount, and ITE. It also allows
developers to implement parallel BDD operations at the algorithmic level. In this work, Sylvan is
primarily used for parallel computing.

3 FRAMEWORK DESIGN

3.1 Overview of BNNQuanalyst

An overview of BNNQuanalyst is depicted in Figure 4. It comprises five main components: Re-
gion2BDD, BNN2CC, CC2BDD, BDD Model Builder, and Query Engine. For a fixed BNN N =
(t1, . . . , td , td+1) and a region R of the input space of N , BNNQuanalyst constructs the BDDs
(Gout

i )i ∈[s], where the BDD Gout
i encodes the input-output relation of the BNN N in the region R

for the class i ∈ [s]. Technically, the region R is partitioned into s parts represented by the BDDs
(Gout

i )i ∈[s]. For each query of the property, BNNQuanalyst analyzes (Gout
i )i ∈[s] and outputs the

query result.
The general workflow of our approach is as follows. First, Region2BDD builds up a BDD Gin

R

from the region R, which represents the desired input space of N for analysis. Second, BNN2CC
transforms each block of the BNNN into a set of cardinality constraints (CCs) similar to [8, 72].
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ALGORITHM 1: BDD Construction for Cardinality Constraints

1 Procedure CC2BDD(CC :
∑n

j=1 �j ≥ k )

2 Gk+1,1 = Gk+1,2 = · · · = Gk+1,n−k+1 = Const(1);

3 G1,n−k+2 = G2,n−k+2 = · · · = Gk,n−k+2 = Const(0);

4 for (i = k ; i ≥ 1; i − −) do

5 for (j = n − k + 1; j ≥ 1; j − −) do

6 if (�i+j−1 == �xi+j−1) then

7 Gi, j = ITE(�xi+j−1,Gi+1, j ,Gi, j+1)

8 else

9 Gi, j = ITE(�xi+j−1,Gi, j+1,Gi+1, j )

10 return G1,1

Third, BDD Model Builder builds the BDDs (Gout
i )i ∈[s] from all the cardinality constraints and the

BDD Gin
R

. Both Region2BDD and BDD Model Builder invoke CC2BDD, which encodes a given
cardinality constraint as a BDD. Finally, Query Engine answers queries by analyzing the BDDs
(Gout

i )i ∈[s]. Our Query Engine currently supports two types of application queries: robustness
analysis and interpretability.

In the rest of this section, we first introduce the key component CC2BDD and then provide
details of the components Region2BDD, BNN2CC, and BDD Model Builder. The Query Engine
will be described in Section 5.

3.2 CC2BDD: Cardinality Constraints to BDDs

A cardinality constraint is a constraint of the form
∑n

j=1 �j ≥ k over a vector �x of Boolean variables
{x1, . . . ,xn } with length n, where the literal �j is either �xj or ¬�xj for each j ∈ [n]. A solution of
the constraint

∑n
j=1 �j ≥ k is a valuation of the Boolean variables {x1, . . . ,xn } under which the

constraint holds. Note that constraints of the form
∑n

j=1 �j > k ,
∑n

j=1 �j ≤ k, and
∑n

j=1 �j < k are
equivalent to

∑n
j=1 �j ≥ k + 1,

∑n
j=1 ¬�j ≥ n −k, and

∑n
j=1 ¬�j ≥ n −k + 1, respectively. We assume

that 1 (resp. 0) is a special cardinality constraint that always holds (resp. never holds).
To encode a cardinality constraint

∑n
j=1 �j ≥ k as a BDD, we observe that all the possible solu-

tions of
∑n

j=1 �j ≥ k can be compactly represented by a BDD-like graph shown in Figure 5, where
each node is labeled by a literal, and a solid (resp. dashed) edge from a node labeled by �j means
that the value of the literal �j is 1 (resp. 0), called positive literal. Thus, each path from the �1-node
to the 1-leaf through the �j -node (where 1 ≤ j ≤ n) captures a set of valuations where �j followed
by a (horizontal) dashed line is set to be 0, while �j followed by a (vertical) solid line is set to be
1, and all the other literals that are not along the path can take arbitrary values. Along a path,
the number of positive literals is counted, and the path ends with the 1-leaf iff the number of pos-
itive literals is no less than k . Clearly, for each of these valuations of a path from the �1-node to
the 1-leaf, there are at least k positive literals, and hence the constraint

∑n
j=1 �j ≥ k holds.

Based on the above observation, we build the BDD for
∑n

j=1 �j ≥ k using Algorithm 1. It builds
a BDD for each node in Figure 5, row by row (the index i in Algorithm 1) and from right to left
(the index j in Algorithm 1). For each node at the ith row and jth column, the label of the node
must be the literal �i+j−1. We build the BDDGi, j = ITE(�xi+j−1,Gi+1, j ,Gi, j+1) if �i+j−1 is of the form
�xi+j−1 (Line 7); otherwise we build the BDD Gi, j = ITE(�xi+j−1,Gi, j+1,Gi+1, j ) (Line 9). Finally, we
obtain the BDD G1,1 that encodes the solutions of

∑n
j=1 �j ≥ k .

Lemma 3.1. For each cardinality constraint
∑n

j=1 �j ≥ k , a BDD G with O ((n − k ) · k ) nodes can

be computed in O ((n − k ) · k ) time such that L (G ) is the set of all the solutions of
∑n

j=1 �j ≥ k ; i.e.,

�u ∈ L (G ) iff ξ is a solution of
∑n

j=1 �j ≥ k , where ξ (�xj ) = �uj for each j ∈ [n].
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Fig. 5. A BDD-like graph representation of the cardinality constraint
∑n

j=1 �j ≥ k .

Proof. Consider the cardinality constraint
∑n

j=1 �j ≥ k and the variable ordering �x1 < · · · < �xn ;
the procedure CC2BDD in Algorithm 1 constructs a BDD G1,1 with n Boolean variables and
k (n − k + 1) + 2 nodes. The outer loop executes k iterations and the inner loop executes
n − k + 1 iterations for each iteration of the outer loop. For each iteration of the inner loop,
one ITE-operation is performed. Although the time complexity of ITE(�xi+j−1,Gi+1, j ,Gi, j+1) (resp.
ITE(�xi+j−1,Gi, j+1,Gi+1, j )) is O ( |Gi+1, j | · |Gi, j+1 |) in general, the variable ordering x1 < · · · < xn

ensures that only one node v with New(v ) = �xi+j−1 and two edges between the node v and the
roots of the BDDs Gi+1, j and Gi, j+1 are added, which can be done in O (1) time, as all the roots of
Gi+1, j and Gi, j+1 are either leaves or labeled by the Boolean variable �xi+j . Thus, the BDD G1,1 can
be constructed in O ((n − k ) · k ) time.

To prove that L (G1,1) is the set of all the solutions of
∑n

j=1 �j ≥ k , we prove the following claim:

For any indices i and j such that 1 ≤ i ≤ k and 1 ≤ j ≤ n − k + 1, any valuation ξ of∑n
j=1 �j ≥ k , if there are at least (resp. less than) k − i + 1 positive literals among the literals
{�i+j−1, . . . , �n } under the valuation ξ , then the path starting from the root of the BDD Gi, j

and following the valuation ξ ends at the 1-leaf (resp. 0-leaf).

We apply induction on the indices i and j.

Base case i = k and j = n − k + 1. The BDD Gk,n−k+1 is built via

• ITE(�xn ,Gk+1,n−k+1,Gk,n−k+2) if �n is �xn , or
• ITE(�xn ,Gk,n−k+2,Gk+1,n−k+1) if �n is ¬�xn .

Recall that Gk+1,n−k+1 = Const(1) and Gk,n−k+2 = Const(0). If (�n is �xn and ξ (�xn ) = 1) or (�n
is ¬�xn and ξ (�xn ) = 0), then �n holds under the valuation ξ and the edge starting from the root
of the BDD Gk,n−k+1 with label ξ (�xn ) points to the root of Gk+1,n−k+1, i.e., the 1-leaf. If (�n is �xn

and ξ (�xn ) = 0) or (�n is ¬�xn and ξ (�xn ) = 1), then �n does not hold under the valuation ξ and the
edge starting from the root of BDD Gk,n−k+1 with label ξ (�xn ) points to the root of Gk,n−k+2, i.e.,
the 0-leaf. The claim follows.

Induction step 1 ≤ i ≤ k and 1 ≤ j ≤ n − k + 1 such that i � k or/and j � n − k + 1. The BDD
Gi, j is built via ITE(�xi+j−1,Gi+1, j ,Gi, j+1) if �i+j−1 is �xi+j−1 or ITE(�xi+j−1,Gi, j+1,Gi+1, j ) if �i+j−1 is
¬�xi+j−1.
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Fig. 6. The BDD of the cardinality constraint x1 + ¬x2 + x3 + ¬x4 + x5 + ¬x6 ≥ 3.

• If (�i+j−1 is �xi+j−1 and ξ (�xi+j−1) = 1) or (�i+j−1 is ¬�xi+j−1 and ξ (�xi+j−1) = 0), then the literal
�i+j−1 holds under the valuation ξ and the edge from the root of the BDD Gi, j with label
ξ (�xi+j−1) points to the root of the BDD Gi+1, j .
– If i = k , then j < n − k + 1, Gi+1, j is Const(1) and there is at least one (k − i + 1 = 1)

positive literal (e.g., �i+j−1) among the literals {�i+j−1, . . . , �n }. Since the root of Const(1)
is the 1-leaf, the result follows.

– If i < k , by applying the induction hypothesis to i +1, we get that if there are at least (resp.
less than) k−i positive literals among the literals {�i+j , . . . , �n } under the valuation ξ , then
the path starting from the root of the BDDGi+1, j and following the valuation ξ ends at the
1-leaf (resp. 0-leaf). Since the literal �i+j−1 holds under the valuation ξ , we get that if there
are at least (resp. less than) k − i positive literals among the literals {�i+j , . . . , �n } under
the valuation ξ , then there are at least (resp. less than) k − i + 1 positive literals among
the literals {�i+j−1, . . . , �n } under the valuation ξ and the path starting from the root of the
BDD Gi, j and following the valuation ξ ends at the 1-leaf (resp. 0-leaf).

• If (�i+j−1 is �xi+j−1 and ξ (�xi+j−1) = 0) or (�i+j−1 is ¬�xi+j−1 and ξ (�xi+j−1) = 1), then the literal
�i+j−1 does not hold under the valuation ξ and the edge from the root of the BDD Gi, j with
label ξ (�xi+j−1) points to the root of the BDD Gi, j+1.
– If j = n − k + 1, then i < k , Gi, j+1 is Const(0) and there are less than (k − i + 1) positive

literal among the literals {�i+j−1, . . . , �n }. Since the root of Const(0) is the 0-leaf, the result
follows.

– If j < n − k + 1, by applying the induction hypothesis to j + 1, we get that if there are
at least (resp. less than) k − i + 1 positive literals among the literals {�i+j , . . . , �n } under
the valuation ξ , then the path starting from the root of the BDD Gi, j+1 and following the
valuation ξ ends at the 1-leaf (resp. 0-leaf). Thus, the result follows from the facts that the
literal �i+j−1 does not hold under the valuation ξ and the edge from the root of the BDD
Gi, j with label ξ (�xi+j−1) points to the root of the BDD Gi, j+1. �

Example 3.2. Consider the cardinality constraint x1+¬x2+x3+¬x4+x5+¬x6 ≥ 3; by Algorithm 1,
we obtain the BDD shown in Figure 6.

Compared to the prior work [10, 67], which transforms general arithmetic constraints into BDDs,
we devise a dedicated BDD encoding algorithm for the cardinality constraints without applying
the reduction; thus our algorithm is more efficient. An alternative approach, called the “DP-based”
algorithm [27], recursively constructs the desired BDD from a cardinality constraint via dynamic
programming. Although the DP-based algorithm shares the similar idea to ours during the BDD
construction (i.e., counting the number of positive literals), our “graph-based” algorithm signifi-
cantly outperforms, as shown in Section 6.1.1.
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3.3 Region2BDD: Input Regions to BDDs

In this article, we consider the following two types of input regions:

• Input region based on the Hamming distance. For an input �u ∈ Bn1
±1 and an integer r ≥ 0,

let R (�u, r ) := {�x ∈ Bn1
±1 | HD(�x,�u) ≤ r }, where HD(�x,�u) denotes the Hamming distance

between �x and �u. Intuitively, R (�u, r ) includes the input vectors that differ from �u by at most
r positions.
• Input region with fixed indices. For an input �u ∈ Bn1

±1 and a set of indices I ⊆ [n1], let R (�u, I ) :=
{�x ∈ Bn1

±1 | ∀i ∈ [n1]\I . �ui = �xi }. Intuitively, R (�u, I ) includes the input vectors that differ
from �u only at the indices in I .

Note that both R (�u,n1) and R (�u, [n1]) denote the full input space Bn1
±1.

Recall that each input sample is an element from the space Bn1
±1, namely; the value at each index

of an input sample is +1 or −1. To represent the region R by a BDD, we transform each value ±1
into a Boolean value 1/0. To this end, for each input �u ∈ Bn1

±1, we create a new sample �u(b ) ∈ Bn1

such that for every i ∈ [n1], �ui = 2�u(b )
i − 1. Therefore, R (�u, r ) and R (�u, I ) will be represented by

R (�u(b ), r ) and R (�u(b ), I ), respectively. Hereafter, for ease of presentation, R (�u(b ), r ) and R (�u(b ), I )
are denoted by R (�u, r ) and R (�u, I ). The transformation functions t l in

i , tbn
i , tbin

i , and tam
d+1

of the LIN,
BN, BIN, and ARGMAX layers (cf. Table 1) will be handled accordingly. Note that for convenience,
vectors over the Boolean domain B may be directly given by �u or �x instead of �u(b ) or �x(b ) when it
is clear from the context.

Region encoding under Hamming distance. Given an input �u ∈ Bn1 and an integer r ≥ 0, the
region R (�u, r ) = {�x ∈ Bn1 | HD(�x,�u) ≤ r } can be expressed by a cardinality constraint

∑n1
j=1 �j ≤ r

(which is equivalent to
∑n1

j=1 ¬�j ≥ n1−r ), where for every j ∈ [n1], �j = �xj if �uj = 0, and otherwise

�j = ¬�xj . For instance, consider �u = (1, 1, 1, 0, 0) and r = 2; we have

HD(�u,�x) = 1 ⊕ �x1 + 1 ⊕ �x2 + 1 ⊕ �x3 + 0 ⊕ �x4 + 0 ⊕ �x5 = ¬�x1 + ¬�x2 + ¬�x3 + �x4 + �x5.

Thus, R ((1, 1, 1, 0, 0), 2) can be expressed by the cardinality constraint ¬�x1+¬�x2+¬�x3+�x4+�x5 ≤ 2,
or equivalently �x1 + �x2 + �x3 + ¬�x4 + ¬�x5 ≥ 3.

By Algorithm 1, the cardinality constraint of R (�u, r ) can be encoded by a BDD Gin
�u,r

such that

L (Gin
�u,r

) = R (�u, r ). Following Lemma 3.1, we get that:

Lemma 3.3. For an input region R given by an input �u ∈ Bn1 and an integer r ≥ 0, a BDD Gin
�u,r

with O (r · (n1 − r )) nodes can be computed in O (r · (n1 − r )) time such that L (Gin
�u,r

) = R (�u, r ).

Proof. We first prove that the input region R (�u, r ) = {�x ∈ Bn1 | HD(�u,�x) ≤ r } given by an
input �u ∈ Bn1 and a Hamming distance r is equal to the set of all the solutions of the cardinality
constraint

∑n1
j=1 �j ≤ r .

Consider an input �u′ ∈ Bn1 . For every literal �j , since �j = �xj , if �uj = 0 and �j = ¬�xj otherwise,
the literal �j is positive iff �u′j is different from �uj . Since a valuation ξ is a solution of

∑n1
j=1 �j ≤ r

iff there are at most r positive literals under the valuation ξ , and �u′ ∈ R (�u, r ) iff �u and �u′ differ at
most r positions, we have that �u′ ∈ R (�u, r ) iff ξ is a solution of

∑n1
j=1 �j ≤ r , where ξ (�xj ) = �u′j for

every j ∈ [n1].
By Lemma 3.1, a BDD Gin

�u,r
with O (r · (n1 − r )) nodes can be constructed in O (r · (n1 − r )) time

such that �u′ ∈ L (Gin
�u,r

) iff ξ is a solution of
∑n1

j=1 ¬�j ≥ n1 − r , where ξ (�xj ) = �u
′
j for every j ∈ [n1].

The result then follows from that
∑n1

j=1 �j ≤ r is equivalent to
∑n1

j=1 ¬�j ≥ n1 − r by replacing each
literal �j with 1 − ¬�j . �
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Region encoding under fixed indices. Given an input �u ∈ Bn1 and a set of indices I ⊆ [n1], the
region R (�u, I ) = {�x ∈ Bn1 | ∀i ∈ [n1]\I . �ui = �xi } can be represented by the BDD Gin

�u, I
, where

Gin
�u, I
� Andi ∈[n1]\I ((�ui == 1)?New(�xi ) : Not(New(�xi ))) .

Intuitively,Gin
�u, I

states that the value at the index i ∈ [n1]\I should be the same as the one in�u while

the value at the index i ∈ I is unrestricted. For instance, consider �u = (1, 0, 0, 0) and I = {3, 4}; we
have

R ((1, 0, 0, 0), {3, 4}) = {(1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 1, 1)} = �x1 ∧ ¬�x2.

Lemma 3.4. For an input region R given by an input �u ∈ Bn1 and a set of indices I ⊆ [n1], a BDD

Gin
�u, I

with O (n1 − |I |) nodes can be computed in O (n1) time such that L (Gin
�u, I

) = R (�u, I ).

Proof. Consider an input �u′ ∈ Bn1 . �u′ ∈ R (�u, I ) iff �ui = �u′i for all i ∈ [n1]\I . By the definition
of Gin

�u, I
, �u′ ∈ L (Gin

�u, I
) iff �ui = �u

′
i for all i ∈ [n1]\I . Therefore, L (Gin

�u, I
) = R (�u, I ).

By the definition of Gin
�u, I

, Gin
�u, I

can be built from applying n1 − |I | New-operations, n1 − |I |
And-operations, and at most n1 − |I | Not-operations (cf. Table 2 for BDD operations). The New-
operation and Not-operation can be done in O (1) time. To achieve O (1) time for each And-
operation, the variables are processed according to the variable ordering �x1 < · · · < �xn1 ; namely,
�xi+1 is processed earlier than �xi . Therefore, the BDD Gin

�u, I
can be computed in O (n1) time. Finally,

Gin
�u, I

has n1 − |I |+ 2 nodes. This is because, for every i ∈ [n1], �xi along the path to the 1-leaf inGin
�u, I

can only be �ui if i � I or any value if i ∈ I . �

3.4 BNN2CC: BNNs to Cardinality Constraints

As mentioned before, to encode the BNNN = (t1, . . . , td , td+1) as BDDs (Gout
i )i ∈[s], we transform

the BNN N into cardinality constraints from which the desired BDDs (Gout
i )i ∈[s] are constructed.

To this end, we first transform each internal block ti : Bni

±1 → B
ni+1
±1 intoni+1 cardinality constraints,

each of which corresponds to one entry of the output vector of the internal block ti . Then we
transform the output block td+1 : Bnd+1

±1 → Bs into s (s − 1) cardinality constraints, where one
output class yields (s − 1) cardinality constraints.

For each vector-valued function t , we denote by t↓j the (scalar-valued) function returning the
jth entry of the output vector of t . Specifically, we use tbin

i↓j and tbn
i↓j to denote the element-wise

counterparts of the Binarization and Batch Normalization functions, respectively. Namely, tbin
i↓j

(resp. tbn
i↓j ) takes the jth entry of the input vector of tbin

i (resp. tbn
i ) as input and returns the jth

entry of the output vector of tbin
i (resp. tbn

i ).

Transformation for internal blocks. Consider the internal block ti : Bni

±1 → B
ni+1
±1 for i ∈ [d].

Recall that for every j ∈ [ni+1] and �x ∈ Bni

±1, ti↓j (�x) = tbin
i↓j (tbn

i↓j (〈�x, �W:, j 〉 + �bj )), and each input

�x ∈ Bn1
±1 can be replaced by 2�x(b ) − �1 ∈ Bn1 (cf. Section 3.3), where �1 denotes the vector of 1s

with width ni . To be consistent, we reformulate the function ti↓j : Bni

±1 → B±1 as the function

t (b )
i↓j : Bni → B such that for every �x(b ) ∈ Bni :

t (b )
i↓j (�x(b ) ) =

1

2
×

(
tbin
i↓j

(
tbn
i↓j

(〈
2�x(b ) − �1, �W:, j

〉
+ �bj

))
+ 1

)
.

Intuitively, an input�x ∈ Bni

±1 of the function ti↓j is transformed into the input�x(b ) = 1
2×(�x+1) ∈ Bni

of the function t (b )
i↓j , where the output ti↓j (�x) ∈ B±1 becomes t (b )

i↓j (�x(b ) ) = 1
2 (ti↓j (�x) + 1) ∈ B. Note

that for convenience, vectors over the Boolean domain B may be directly given by �u or �x instead
of �u(b ) or �x(b ) in the following part when it is clear from the context.
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To encode the function t (b )
i↓j as a BDD, we show how to encode the function t (b )

i↓j as an equivalent
cardinality constraint via a series of equivalent transformations, based on which the BDD is built
by applying Algorithm 1. We first get rid of the functions tbin

i↓j and tbn
i↓j according to their definitions;

namely, for every �x ∈ Bni , the function t (b )
i↓j is reformulated as

t (b )
i↓j (�x) = 1

2 ×
(
tbin
i↓j

(
tbn
i↓j

(〈
2�x − �1, �W:, j

〉
+ �bj

))
+ 1

)
= 1

2 ×
(
tbin
i↓j

(
tbn
i↓j

(∑ni

k=1
(2�xk − 1) · �Wk, j + �bj

))
+ 1

)
= 1

2 ×
(
tbin
i↓j

(
α j ·

(∑ni
k=1

(2�xk−1) ·�Wk, j+
�bj−μ j

σj

)
+ γj

)
+ 1

)

=

⎧⎪⎪⎨⎪⎪⎩
1, if α j ·

(∑ni
k=1

(2�xk−1) ·�Wk, j+
�bj−μ j

σj

)
+ γj ≥ 0;

0, otherwise.

By the above reformulation, the function t (b )
i↓j now can be represented by the following

constraint:

t (b )
i↓j (�x) = 1 iff α j · ���

∑ni

k=1
(2�xk − 1) · �Wk, j + �bj − μ j

σj

	
� + γj ≥ 0.

To convert the constraint α j · (
∑ni

k=1
(2�xk−1) ·�Wk, j+

�bj−μ j

σj
) + γj ≥ 0 to an equivalent cardinality con-

straint, we consider different cases of α j , i.e., α j > 0, α j < 0 and α j = 0, based on which α j can be
eliminated from the constraint.

• Case α j > 0. The constraint α j · (
∑ni

k=1
(2�xk−1) ·�Wk, j+

�bj−μ j

σj
) + γj ≥ 0 can be rewritten as

ni∑
k=1

�xk · �Wk, j ≥
1

2
· ��

ni∑
k=1

�Wk, j + μ j − �bj −
γj · σj

α j

	�. (1)

Then, we partition the set [ni ] of indices into two subsets �W+
:, j and �W−

:, j , where

�W+
:, j = {k ∈ [ni ] | �Wk, j = +1} and �W−

:, j = {k ∈ [ni ] | �Wk, j = −1}.

Intuitively, �W+
:, j contains the indices k ∈ [ni ] such that the weight �Wk, j is +1, while �W−

:, j

contains the indices k ∈ [ni ] such that the weight �Wk, j is −1. Using �W+
:, j and �W−

:, j , the

expression
∑ni

k=1
�xk · �Wk, j can be written as

∑
k ∈�W+:, j

�xk −
∑

k ∈�W−:, j
�xk and the expression∑ni

k=1
�Wk, j can be written as | �W+

k, j
| − | �W−

k, j
|. Therefore, the constraint in Equation (1) can

be written as the constraint∑
k ∈�W+:, j

�xk −
∑

k ∈�W−:, j

�xk ≥
1

2
·
(
| �W+

k, j | − | �W
−
k, j | + μ j − �bj −

γj · σj

α j

)
. (2)

After replacing −�xk by ¬�xk − 1 for every k ∈ �W−
:, j , the constraint in Equation (2) can be

reformulated into the constraint∑
k ∈�W+:, j

�xk +
∑

k ∈�W−:, j

¬�xk ≥
1

2
·
(
| �W+

k, j | − | �W
−
k, j | + μ j − �bj −

γj · σj

α j

)
+ | �W−

k, j |.

This transformation eliminates the subtraction operation − from
∑

k ∈�W+:, j
�xk −

∑
k ∈�W−:, j

�xk

using the negation operation ¬. The resulting constraint now can be further rewritten as
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the following cardinality constraint:
∑

k ∈�W+:, j

�xk +
∑

k ∈�W−:, j

¬�xk ≥
⌈
1

2
·
(
ni + μ j − �bj −

γj · σj

α j

)⌉
.

Remark that �W+
:, j ,

�W−
:, j and � 1

2 · (ni + μ j − �bj −
γj ·σj

α j
)� are independent of the input �x and

thus can be computed during the equivalent transformations.

• Case α j < 0. The constraint α j · (
∑ni

k=1
(2�xk−1) ·�Wk, j+

�bj−μ j

σj
) + γj ≥ 0 can be rewritten as

ni∑
k=1

�xk · �Wk, j ≤
1

2
· ��

ni∑
k=1

�Wk, j + μ j − �bj −
γj · σj

α j

	� ,
which can further be reformulated into the following constraint using �W+

:, j and �W−
:, j :∑

k ∈�W−:, j

�xk −
∑

k ∈�W+:, j

�xk ≥
1

2
·
(
| �W−

k, j | − | �W
+
k, j | − μ j + �bj +

γj · σj

α j

)
. (3)

After replacing −�xk by ¬�xk − 1 for every k ∈ �W+
:, j , the subtraction operation − is elimi-

nated from
∑

k ∈�W−:, j
�xk −

∑
k ∈�W+:, j

�xk using the negation operation ¬ and the constraint in

Equation (3) is reformulated into the constraint
∑

k ∈�W−:, j

�xk +
∑

k ∈�W+:, j

¬�xk ≥
1

2
·
(
| �W−

k, j | − | �W
+
k, j | − μ j + �bj +

γj · σj

α j

)
+ | �W+

k, j |,

which is rewritten as the cardinality constraint
∑

k ∈�W−:, j

�xk +
∑

k ∈�W+:, j

¬�xk ≥
⌈
1

2
·
(
ni − μ j + �bj +

γj · σj

α j

)⌉
.

• Case α j = 0. The constraint α j · (
∑ni

k=1
(2�xk−1) ·�Wk, j+

�bj−μ j

σj
) + γj ≥ 0 becomes γj ≥ 0.

Based on the above equivalent transformations, we define the cardinality constraint Ci, j as
follows:

Ci, j �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑ni

k=1
�k ≥ � 1

2 · (ni + μ j − �bj −
γj ·σj

α j
)�, if α j > 0;

1, if α j = 0 ∧ γj ≥ 0;
0, if α j = 0 ∧ γj < 0;∑ni

k=1
¬�k ≥ � 1

2 · (ni − μ j + �bj +
γj ·σj

α j
)�, if α j < 0;

where for every k ∈ [ni ],

�k �
{

�xk , if �Wk, j = +1;

¬�xk , if �Wk, j = −1.

Proposition 3.5. t (b )
i↓j ⇔ Ci, j .

Hereafter, for each internal block ti : Bni

±1 → B
ni+1
±1 where i ∈ [d], we denote by BNN2CC(ti ) the

cardinality constraints {Ci,1, . . . ,Ci,ni+1 }.
Transformation for the output block. For the output block td+1 : Bnd+1

±1 → B
s , similar

to the transformation for internal blocks, we first transform the function td+1 into an equiva-
lent cardinality constraint based on which a BDD can be built by applying Algorithm 1. Since

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 62. Pub. date: April 2023.



BNNQuanalyst 62:17

td+1 = tam
d+1
◦ t l in

d+1
, then for every j ∈ [s], we can reformulate td+1↓j : Bnd+1

±1 → B as the function

t (b )
d+1↓j : Bnd+1 → B such that for every �x ∈ Bnd+1 ,

t (b )
d+1↓j (�x) = td+1↓j (2�x − �1) = tam

d+1↓j
(
t l in
d+1 (2�x − �1)

)
.

According to the definition of the function tam
d+1

, t (b )
d+1↓j (�x) = 1 iff for every j ′ ∈ [s] such that

j � j ′, one of the following conditions holds:

• j ′ < j and t l in
d+1↓j (2�x − �1) > t l in

d+1↓j′ (2�x − �1);

• j ′ > j and t l in
d+1↓j (2�x − �1) ≥ t l in

d+1↓j′ (2�x − �1).

By getting rid of the function t l in
d+1↓j′ according to its definition, the function t (b )

d+1↓j can be en-

coded using the following constraint:

t (b )
d+1↓j (�x) = 1 iff

����
∀j ′ ∈ [j − 1].

∑nd+1

k=1
(2�xk − 1) · ( �Wk, j − �Wk, j′ ) > �bj′ − �bj

and

∀j ′ ∈ {j + 1, . . . , s}. ∑nd+1

k=1
(2�xk − 1) · ( �Wk, j − �Wk, j′ ) ≥ �bj′ − �bj

	

� ,
where the latter holds iff

�����
∀j ′ ∈ [j − 1].

∑nd+1

k=1
�xk ·

�Wk, j−�Wk, j′

2 > 1
4 (�bj′ − �bj +

∑nd+1

k=1
( �Wk, j − �Wk, j′ ))

and

∀j ′ ∈ {j + 1, . . . , s}. ∑nd+1

k=1
�xk ·

�Wk, j−�Wk, j′

2 ≥ 1
4 (�bj′ − �bj +

∑nd+1

k=1
( �Wk, j − �Wk, j′ ))

	


� . (4)

For each pair (j, j ′) of indices, we partition the set [nd+1] into three subsets:

• Posj, j′ = {k ∈ [nd+1] | �Wk, j − �Wk, j′ = 2},
• Negj, j′ = {k ∈ [nd+1] | �Wk, j − �Wk, j′ = −2} and

• Zeroj, j′ = {k ∈ [nd+1] | �Wk, j = �Wk, j′ }.
Let �Posj, j′ and �Negj, j′ denote the size of the subsets Posj, j′ and Negj, j′ , respectively. We will con-

vert the constraints in Equation (4) to an equivalent cardinality constraint C j, j′

d+1
by distinguishing

the cases j ′ ∈ [j − 1] or j ′ ∈ {j + 1, . . . , s}.

• If j ′ ∈ [j − 1], using the subsets Posj, j′ and Negj, j′ , the constraint
∑nd+1

k=1
�xk ·

�Wk, j−�Wk, j′

2 >
1
4 (�bj′ − �bj +

∑nd+1

k=1
( �Wk, j − �Wk, j′ )) can be written as

∑
k ∈Posj, j′

�xk −
∑

k ∈Negj, j′

�xk >
1

4
(�bj′ − �bj + 2�Posj, j′ − 2�Negj, j′ ). (5)

After replacing −�xk by ¬�xk − 1 for every k ∈ Negj, j′ , the constraint in Equation (5) is refor-
mulated as the constraint∑

k ∈Posj, j′

�xk +
∑

k ∈Negj, j′

¬�xk >
1

4
(�bj′ − �bj + 2�Posj, j′ + 2�Negj, j′ ). (6)

Now, we transform the strict inequality > of the constraint in Equation (6) into inequality ≥
by distinguishing if 1

4 (�bj′ − �bj + 2�Posj, j′ + 2�Negj, j′ ) is an integer or not.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 62. Pub. date: April 2023.



62:18 Y. Zhang et al.

– If 1
4 (�bj′ −�bj + 2�Posj, j′ + 2�Negj, j′ ) is an integer, the constraint in Equation (6) is the same

as ∑
k ∈Posj, j′

�xk +
∑

k ∈Negj, j′

¬�xk ≥
1

4
(�bj′ − �bj + 2�Posj, j′ + 2�Negj, j′ ) + 1.

– If 1
4 (�bj′ − �bj + 2�Posj, j′ + 2�Negj, j′ ) is not an integer, the constraint in Equation (6) is the

same as ∑
k ∈Posj, j′

�xk +
∑

k ∈Negj, j′

¬�xk ≥
⌈1

4
(�bj′ − �bj + 2�Posj, j′ + 2�Negj, j′ )

⌉
,

as � 1
4 (�bj′ − �bj + 2�Posj, j′ + 2�Negj, j′ )� > 1

4 (�bj′ − �bj + 2�Posj, j′ + 2�Negj, j′ ).

Therefore, we define the cardinality constraint C j, j′

d+1
for j ′ ∈ [j − 1] as follows:

C j, j′

d+1
�

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∑nd+1

k=1
�k ≥ 1

4 (�bj′ − �bj + 2�Posj, j′ + 2�Negj, j′ ) + 1, if 1
4 (�bj′ − �bj + 2�Posj, j′

+2�Negj, j′ ) is an integer;

∑nd+1

k=1
�k ≥ � 1

4 (�bj′ − �bj + 2�Posj, j′ + 2�Negj, j′ )�, otherwise;

where for every k ∈ [nd+1],

�k �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�xk , if �Wk, j − �Wk, j′ = +2;

¬�xk , if �Wk, j − �Wk, j′ = −2;

0, if �Wk, j − �Wk, j′ = 0.

• If j ′ ∈ {j+1, . . . , s}, using the subsets Posj, j′ and Negj, j′ , the constraint
∑nd+1

k=1
�xk ·

�Wk, j−�Wk, j′

2 ≥
1
4 (�bj′ − �bj +

∑nd+1

k=1
( �Wk, j − �Wk, j′ )) can be rewritten as

∑
k ∈Posj, j′

�xk −
∑

k ∈Negj, j′

�xk ≥
1

4
(�bj′ − �bj + 2�Posj, j′ − 2�Negj, j′ ). (7)

After replacing −�xk by ¬�xk − 1 for every k ∈ Negj, j′ , the constraint in Equation (7) is refor-
mulated into the constraint∑

k ∈Posj, j′

�xk +
∑

k ∈Negj, j′

¬�xk ≥
1

4
(�bj′ − �bj + 2�Posj, j′ + 2�Negj, j′ ),

which can be rewritten as the following cardinality constraint:
∑

k ∈Posj, j′

�xk +
∑

k ∈Negj, j′

¬�xk ≥
⌈1

4
(�bj′ − �bj + 2�Posj, j′ + 2�Negj, j′ )

⌉
.

Therefore, we define the cardinality constraint C j, j′

d+1
for j ′ ∈ {j + 1, . . . , s} as follows:

C j, j′

d+1
�

nd+1∑
k=1

�k ≥
⌈1

4
(�bj′ − �bj + 2�Posj, j′ + 2�Negj, j′ )

⌉
.

Let C j

d+1
denote the constraint

∧
j′ ∈[s].j′�j C

j, j′

d+1
.

Proposition 3.6. t (b )
d+1↓j ⇔ C j

d+1
.
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Hereafter, for each output class j ∈ [s], we denote by BNN2CCj (td+1) the set of cardinality
constraints {C j,1

d+1
, . . . ,C j, j−1

d+1
,C j, j+1

d+1
, . . . ,C j,s

d+1
}.

BNNs in cardinality constraint form. By applying the above transformation to all the
blocks of the BNN N = (t1, . . . , td , td+1), we obtain its cardinality constraint form N (b ) =

(t (b )
1 , . . . , t

(b )
d
, t (b )

d+1
) such that

N (b ) = t (b )
d+1
◦ t (b )

d
◦ · · · ◦ t (b )

1 ,

where

• for each i ∈ [d], t (b )
i is (symbolically) represented by cardinality constraints BNN2CC(ti ),

and
• t (b )

d+1
is represented by sets of cardinality constraints (BNN2CC1 (td+1), . . . ,BNN2CCs (td+1)).

Theorem 3.7. For every input �u ∈ Bn1
±1, N (�u) = N (b ) (�u(b ) ), where �u = 2�u(b ) − 1.

Proof. We first show that ti+1 ◦ ti (2�x−�1) = 2t (b )
i+1 ◦ t

(b )
i (�x)−�1 for each i ∈ [d −1] and each input

x ∈ Bni . Recall that ti↓j (2�x−�1) = 2t (b )
i↓j (�x)−1 for j ∈ [ni+1]. Thus, we have ti (2�x−�1) = 2t (b )

i (�x)−�1,

which implies that ti+1 (ti (2�x−�1)) = ti+1 (2t (b )
i (�x)−�1). Let�y = t (b )

i (�x) ∈ Bni+1 . Then ti+1 (2t (b )
i (�x)−�1)

is ti+1 (2�y − �1). Since ti+1 (2�y − �1) = 2t (b )
i+1 (�y) − �1, we get that ti+1 (ti (2�x − �1)) = 2t (b )

i+1 (t (b )
i (�x)) − �1.

Let N≤d = td ◦ · · · ◦ t1 and N (b )
≤d
= t (b )

d
◦ · · · ◦ t (b )

1 . Then, for any input �u ∈ Bn1
±1, we have

N≤d (�u) = N≤d (2�u(b ) − 1) = 2N b
≤d

(�u(b ) ) − �1.

Recall that t (b )
d+1↓j (�x) = td+1↓j (2�x − �1) for every �x ∈ Bnd+1 , implying that t (b )

d+1
(�x) = td+1 (2�x −

�1). Thus, we get that N (b ) (�u(b ) ) = t (b )
d+1

(N b
≤d

(�u(b ) )) = td+1 (2N b
≤d

(�u(b ) ) − �1) = td+1 (N≤d (�u)) =

N (�u). �

Example 3.8. Consider the BNN N = (t1, t2) with one internal block t1 and one output block t2
as shown in Figure 7 (bottom left), where the entries of the weight matrix �W are associated to the
edges, and the other parameters are given in the top left table. The input-output relation of the
blocks t1 and t2 are given in the top right table. The cardinality constraints are given in the bottom
right table.

Consider an input �x ∈ B3
±1; we have �y1 = sign(0.01× (−�x1 +�x2 +�x3 + 2.7)), namely, �y1 = +1 iff

−�x1 +�x2 +�x3 + 2.7 ≥ 0. By replacing �xi with 2×�x(b )
i − 1 for i ∈ [3] and �x(b )

1 with 1−¬�x(b )
1 , we get

that �y1 = +1 iff −�x(b )
1 + �x

(b )
2 + �x

(b )
3 + 0.85 ≥ 0, which is equivalent to ¬�x(b )

1 + �x
(b )
2 + �x

(b )
3 ≥ 1. Thus,

we get that �y(b )
1 ⇔ ¬�x(b )

1 + �x
(b )
2 + �x

(b )
3 ≥ 1. Similarly, we can deduce that �o1 = 1 iff �y1 − �y2 ≥ 0.7

and hence �o1 ⇔ �y
(b )
1 − �y

(b )
2 ≥ 0.35, which is equivalent to �y

(b )
1 + ¬�y

(b )
2 ≥ 2.

3.5 BDD Model Builder

In general, the construction of the BDDs (Gout
i )i ∈[s] from the BNN N (b ) and the input region R is

done iteratively throughout the blocks. Initially, the BDD for the first block is built, which can be

seen as the input-output relation t (b )
1 for the first internal block. In the ith iteration, as the input-

output relation t (b )
i−1 ◦ · · · ◦ t

(b )
1 of the first (i − 1) internal blocks has been encoded into the BDD,

we compose this BDD with the BDD for the block ti , which is built from its cardinality constraints

t (b )
i , resulting in the BDD for the first i internal blocks t (b )

i ◦ t
(b )
i−1 ◦ · · · ◦ t

(b )
1 . Finally, we obtain the

BDDs (Gout
i )i ∈[s] of the BNN N , with respect to the input region R, where for each i ∈ [s], the

BDD Gout
i encodes the input-output relation t (b )

d+1↓i ◦ t
(b )
d
◦ · · · ◦ t (b )

1 .
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Fig. 7. An illustrating example.

To improve the efficiency of BDD encoding, we propose two strategies, i.e., divide-and-conquer
and input propagation.

3.5.1 Divide-and-conquer Strategy. To encode the input-output relation of an internal block ti
into BDD from its cardinality constraints t (b )

i = {Ci,1, . . . ,Ci,ni+1 }, it amounts to computing the
following function: Andj ∈[ni+1]CC2BDD(Ci, j ),which requires (ni+1−1) AND-operations. A simple
and straightforward approach is to initially compute a BDDG =CC2BDD(Ci,1) and then iteratively
compute the conjunction G = And(G,C2BDD(Ci, j )) of G and CC2BDD(Ci, j ) for 2 ≤ j ≤ ni+1.
Alternatively, we use a divide-and-conquer (D&C) strategy to recursively compute the BDDs
for the first half and the second half of the cardinality constraints, respectively, and then apply
the AND-operation to merge the results. The divide-and-conquer strategy does not reduce the
number of AND-operations, but can reduce the sizes of the intermediate BDDs, and thus improve
the efficiency of BDD encoding for the entire block. This has been confirmed by the experiments
(cf. Section 6.1.2).

3.5.2 Input Propagation Strategy. It becomes prohibitively costly to construct the BDD directly

from the cardinality constraints t (b )
i = {Ci,1, . . . ,Ci,ni+1 } when ni and ni+1 are large, as the BDDs

constructed via the procedure CC2BDD(Ci, j ) (cf. Algorithm 1) for j ∈ [ni+1] need to consider all the
inputs in Bni . To improve the efficiency of BDD encoding, we apply feasible input propagation

(IP), which propagates a given input region block by block, resulting in the feasible inputs of each
block, with respect to the output of its preceding block ti−1. When we construct the BDD for the
block ti , we only consider its feasible inputs. Although it introduces additional BDD operations
(e.g., Exists and And), the feasible inputs of each block can significantly reduce the number of
BDD nodes when the feasible outputs of the preceding block ti−1 are relatively smaller compared
with the full input space Bni that the block ti needs to consider. The effectiveness of this strategy
has been confirmed in our experiments (cf. Section 6.1.3).

3.5.3 Algorithmic BDD Encoding of BNNs. Algorithm 2 shows the overall BDD encoding pro-
cedure. Given a BNN N = (t1, . . . , td , td+1) with s output classes and an input region R (�u,τ ), the
algorithm outputs the BDDs (Gout

i )i ∈[s], encoding the input-output relation of the BNN N with
respect to the input region R (�u,τ ), where Gout

i for the output class i ∈ [s] encodes the function

t (b )
d+1↓i ◦ t

(b )
d
◦ · · · ◦ t (b )

1 .

In detail, it first builds the BDD representation Gin
�u,τ

of the input region R (�u,τ ) (Line 2) and the

cardinality constraints from BNN N (b ) (Line 3).
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ALGORITHM 2: BDD Construction of BNNs with Input Propagation

1 Procedure BNN2BDD(BNN : N = (t1, . . . , td , td+1), Region : R (�u,τ ))
2 Gin = Gin

�u,τ
(cf. Section 3.3);

3 N (b ) = (t
(b )
1 , . . . , t

(b )
d
, t

(b )
d+1

) (cf. Section 3.4);

4 for (i = 1; i ≤ d ; i + +) do

5 G ′ = InterBlk2BDD(t
(b )
i ,G

in );

6 Gin = Exists(G ′,�xi ) ; // �xi denote input variables of t
(b )
i

7 G = (i == 1) ? G ′ : RelProd(G,G ′,�xi );

8 (Gi )i ∈[s] = OutBlk2BDD(t
(b )
d+1
,Gin );

9 for (i = 1; i ≤ s; i + +) do

10 Gout
i = RelProd(G,Gi ,�x

d+1);

11 return (Gout
i )i ∈[s]

The first loop (Lines 4–7) builds a BDD encoding the input-output relation of the entire internal
blocks w.r.t. Gin

�u,τ
. It first invokes the procedure InterBlk2BDD(tb

i ,G
in ) to build a BDD G ′ encod-

ing the input-output relation of the i- block tb
i w.r.t. the feasible inputs L (Gin ) (Line 5). Remark

that the feasible inputs Gin of the block tb
i are the feasible outputs of the (i − 1)-th block tb

i−1 (the
input region Gin

�u,τ
when i = 1). By doing so, we have

L (G ′) = {(�xi ,�xi+1) ∈ L (Gin ) × Bni+1 | t (b )
i (�xi ) = �xi+1}.

From the BDDG ′, we compute the feasible outputsGin of the block t (b )
i by existentially quantifying

all the input variables �xi of the block t (b )
i (Line 6). The BDDGin serves as the set of feasible inputs

of the block t (b )
i+1 at the next iteration. We next assignG ′ toG if the current block is the first internal

block (i.e., i = 1); otherwise we compute the relational product ofG andG ′, and the resulting BDD
G encodes the input-output relation of the first i internal blocks w.r.t. Gin

�u,τ
(Line 7). (Note that the

input variables�xi of the block t (b )
i , which are the output variables of the block t (b )

i−1, in the relational
product are existentially quantified.) Thus, we have

L (G ) = {(�x1,�xi+1) ∈ L (Gin
�u,τ

) × Bni+1 | (t (b )
i ◦ · · · ◦ t (b )

1 ) (�x1) = �xi+1},

L (Gin ) = {�xi+1 ∈ Bni+1 | ∃�x1 ∈ L (Gin
�u,τ

).(�x1,�xi+1) ∈ L (G )}.
At the end of the first for-loop, we obtain the BDD G encoding the input-output relation of the
entire internal blocks and its feasible outputs Gin w.r.t. Gin

�u,τ
, namely,

L (G ) =
{(
�x1,�xd+1

)
∈ L

(
Gin
�u,τ

)
× Bnd+1 |

(
t (b )
d
◦ · · · ◦ t (b )

1

)
(�x1) = �xd+1

}
,

L (Gin ) = {�xd+1 ∈ Bnd+1 | ∃�x1 ∈ L (Gin
�u,τ

).(�x1,�xd+1) ∈ L (G )}.

At Line 8, we build the BDDs (Gi )i ∈[s] for the output block t (b )
d+1

by invoking the procedure

OutBlk2BDD(t (b )
d+1
,Gin ), one BDD Gi per output class i ∈ [s], such that

L (Gi ) =
{
�xd+1 ∈ L (Gin ) | t (b )

d+1↓i (�xd+1) = 1
}
.

Finally, the second for-loop (Lines 9–10) builds the BDDs (Gout
i )i ∈[s], each of which encodes

the input-output relation of the entire BNN and a class i ∈ [s] w.r.t. the input region Gin
�u,τ

. By

computing the relational product of the BDDs G and Gi , we obtain the BDD Gout
i for the class
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ALGORITHM 3: BDD Construction of the ith Internal Block

1 Procedure InterBlk2BDD(CCs : {Cm , . . . ,Cn }, Region : Gin )
2 if n ==m then

3 G1 = CC2BDD(Cm );

4 G = Xnor(New(�xi+1
m ),G1) ; // �xi+1

m denotes the mth entry of the output of t
(b )
i

5 else if n ==m + 1 then

6 G1 = CC2BDD(Cm ); G1 = Xnor(New(�xi+1
m ),G1);

7 G2 = CC2BDD(Cn ); G2 = Xnor(New(�xi+1
n ),G2);

8 G = And(Gin ,G1); G = And(G,G2);

9 else

10 G1 = InterBlk2BDD({Cm , . . . ,C � n−m
2 �+m },Gin );

11 G2 = InterBlk2BDD({C � n−m
2 �+m+1, . . . ,Cn },Gin );

12 G = And(G1,G2);

13 return G

i ∈ [s]. Recall that the BDD G encodes the input-output relation of the entire internal blocks w.r.t.
the input region Gin

�u,τ
. Thus, an input �x ∈ R (�u,τ ) is classified into the class i by the BNN N iff

�x(b ) ∈ L (Gout
i ).

Note that by modifying Line 2 to “Gin = Const(1),” we can disable the feasible input propaga-
tion in Algorithm 2.

Procedure InterBlk2BDD. The procedure InterBlk2BDD is shown in Algorithm 3, which en-
codes a sequence of cardinality constraints into a BDD based on the divide-and-conquer strategy.
Given a set of cardinality constraints {Cm , . . . ,Cn } (note that indices matter, andm = 1,n = |ni+1 |
for block ti at initialization) and a BDD Gin encoding feasible inputs, InterBlk2BDD returns a
BDD G. The BDD G encodes the input-output relation of the Boolean function fm,n such that for
every �xi ∈ L (Gin ), fm,n (�xi ) is the truth vector of the cardinality constraints {Cm , . . . ,Cn } under

the valuation �xi . Whenm = 1 and n = ni+1, fm,n is the same as t (b )
i , i.e.,

L (G ) =
{
�xi × �xi+1 ∈ Gin × Bni+1 | t (b )

i (�xi ) = �xi+1
}
,

where �xi ,�xi+1 denote the input and output variables of t (b )
i , respectively.

In detail, the procedure InterBlk2BDD computes the desired BDD in a binary search fashion.

• If n == m, it first builds the BDD G1 for the cardinality constraint Cm by invoking the
procedure CC2BDD so that L (G1) represents the solutions of Cm . Then G1 is transformed

into the BDD Xnor(New(�xi+1
m ),G1), encoding the input-output relation of t (b )

i↓m , and thus

t (b )
i↓m (�x) = 1 iff �x ∈ L (G1). Note that we regard �xi+1

m as a newly added BDD variable when
applying the Xnor-operation; thusG1 has ni BDD variables, the same as the length of input
vectors to the ith internal block ti .
• If n ==m + 1, it first builds the BDDs G1 and G2 for the two cardinality constraints Cm and
Cn such that L (G1) and L (G2) represent the sets of solutions ofCm andCn . Then, the BDDs
G1 and G2 are transformed into the BDDs Xnor(New(�xi+1

m ),G1) and Xnor(New(�xi+1
n ),G2),

encoding t (b )
i↓m and t (b )

i↓n , respectively. Then, we compute the conjunction G of the BDDs Gin ,

G1, and G2. Note that here we first compute And(Gin ,G1), and then the resulting BDD is
conjuncted with G2.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 62. Pub. date: April 2023.



BNNQuanalyst 62:23

ALGORITHM 4: BDD Construction of Output Blocks

1 Procedure OutBlk2BDD(t
(b )
d+1
, Region : Gin )

2 for (i = 1; i ≤ s; i + +) do

3 Gi = G
in ;

4 for (j = 1; j ≤ s − 1; j + +) do

5 Gi =And(Gi ,CC2BDD(t
(b )
d+1↓i, j ));

6 return (Gi )i ∈[s]

• Otherwise, we build the BDDsG1 andG2 for {Cm , . . . ,C � n−m
2 �+m } and {C � n−m

2 �+m+1, . . . ,Cn },
and then compute the conjunction G of them. Thus, for every (�xi ,�xi+1) ∈ L (G ), �xi+1 is the
truth vector of the constraints {Cm , . . . ,Cn } under the valuation �xi .

Procedure OutBlk2BDD. The procedure OutBlk2BDD is shown in Algorithm 4, which encodes
the cardinality constraints of the output block into the BDDs (Gi )i ∈[s], one BDDGi per class i ∈ [s].
Different from the BDD encoding of the internal blocks, for each output class i ∈ [s] of the output

block t (b )
d+1

, OutBlk2BDD directly conjuncts the feasible inputsGin with the (s−1) BDDs of the car-

dinality constraints t (b )
d+1↓i = {C

i,1
d+1
, . . . ,Ci,i−1

d+1
,Ci,i+1

d+1
, . . . ,Ci,s

d+1
}, which encodes the input-output

relation of the output block for the class i . We could also use the divide-and-conquer strategy
for the output block, but it does not improve efficiency, as the number of classes is much smaller
compared to the sizes of the outputs of the internal blocks and the divide-and-conquer strategy
introduces additional AND-operations.

We should emphasize that instead of encoding the input-output relation of the BNN N as a
sole BDD or MTBDD, we opt to use a family of BDDs (Gout

i )i ∈[s], each of which corresponds to
one output class ofN . Building a single BDD or MTBDD for the BNN is possible from (Gout

i )i ∈[s],
but our approach gives the flexibility especially when a specific target class is interested, which is
common for robustness analysis.

Theorem 3.9. Given a BNNN with s output classes and an input region R (�u,τ ), we can compute

BDDs (Gout
i )i ∈[s] such that the BNN N classifies an input �x ∈ R (�u,τ ) into the class i ∈ [s] iff

�x(b ) ∈ L (Gout
i ).

Proof. By Lemmas 3.3 and 3.4, Line 2 in Algorithm 2 encodes the input region R (�u,τ ) into a
BDD Gin

�u,τ
such that L (Gin

�u,τ
) = R (�u,τ ). By Theorem 3.7, an input �x ∈ R (�u,τ ) is classified into

class i ∈ [s] iff t (b )
d+1↓i ((t (b )

d
◦ · · · ◦ t (b )

1 ) (�x(b ) )) = 1, where �x = 2�x(b ) − 1. It remains to prove that

L (Gout
i ) = {�x(b ) ∈ L (Gin

�u,τ
) | t (b )

d+1↓i ((t (b )
d
◦ · · · ◦ t (b )

1 ) (�x(b ) )) = 1} for each class i ∈ [s].

The first for-loop (Lines 4–7) in Algorithm 2 builds a BDDG encoding the input-output relation
of the entire internal blocks, namely,

L (G ) =
{(
�x1,�xd+1

)
∈ L

(
Gin
�u,τ

)
× Bnd+1 |

(
t (b )
d+1
◦ · · · ◦ t (b )

1

)
(�x1) = �xd+1

}
.

For each class i ∈ [s], the BDD Gi constructed at Line 8 in Algorithm 2 for the output block t (b )
d+1

satisfies that L (Gi ) = {�xd+1 ∈ L (Gin ) | t (b )
d+1↓i (�xd+1) = 1}. Finally, by computing the relational

product ofG andGi for each class i ∈ [s] at Line 10 in Algorithm 2, the BDDGout
i is equivalent to

∃�xd+1.And(G,Gi ). Thus, L (Gout
i ) = {�x(b ) ∈ L (Gin

�u,τ
) | t (b )

d+1↓i ((t (b )
d
◦ · · · ◦ t (b )

1 ) (�x(b ) )) = 1}. �

Our encoding explicitly involvesO (d+s ) RelProd-operations,O (s2+
∑

i ∈[d] ni ) And-operations,
O (

∑
i ∈[d] ni ) Xnor-operations, and O (d ) Exists-operations.
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ALGORITHM 5: Parallel BDD Construction of the ith Internal Block

1 Procedure InterBlk2BDDPara(CCs : {Cm , . . . ,Cn }, InputSpace : Gin )
2 if n ==m then

3 G1 = CC2BDD(Cm );

4 G = Xnor(New(�xi+1
m ),G1) ; // �xi+1

m denotes the mth entry of the output of t
(b )
i

5 else if n ==m + 1 then

6 G1 = CC2BDD(Cm ); G1 = Xnor(New(�xi+1
m ),G1);

7 G2 = CC2BDD(Cn ); G2 = Xnor(New(�xi+1
n ),G2);

8 G = And(Gin ,G1); G = And(G,G2);

9 else

10 construct the BDDs G1 and G2 in parallel:

11 G1 = InterBlk2BDDPara({Cm , . . . ,C � n−m
2 �+m },Gin );

12 G2 = InterBlk2BDDPara({C � n−m
2 �+m+1, . . . ,Cn },Gin );

13 G = And(G1,G2);

14 return G

4 PARALLELIZATION STRATEGIES

In this section, we investigate parallelization strategies at various levels, aiming to improve the en-
coding efficiency further. In general, we classify them into three levels: low-level BDD operations,
high-level BDD encoding of blocks, and BDD construction of the entire BNN.

4.1 Parallel BDD Operations

Designing an effective and efficient parallel decision diagram implementation for BDDs is non-
trivial. We resort to Sylvan, a novel parallel decision diagram implementation that parallelizes
the most common BDD operations and features parallel garbage collection. There are other BDD
implementations (e.g., BeeDeeDee [61]) supporting multi-threaded BDD manipulation. We choose
Sylvan based on the comparative study of BDD implementations for probabilistic symbolic model
checking [101].

As a matter of fact, the speedup of the parallel BDD operations provided by Sylvan depends
on the number of workers used by Sylvan and the size of the underlying problem (i.e., BNN and
input region). Increasing the number of workers does not necessarily improve the encoding effi-
ciency, as the overhead induced by the synchronization between workers may outweigh. Indeed,
as stated in [102], the limited parallel scalability is expected when the amount of parallelism in the
computation task is not sufficient. Our experiments observe that, with the increase of the number
of workers, the improvement is limited for small BNNs and input regions, but significant for large
BNNs and input regions.

4.2 Parallel BDD Encoding of Blocks

In order to improve the encoding efficiency further, we investigate parallelization strategies at the
level of BDD encoding for both internal and output blocks. Our goal is to increase parallelism in
the BDD encoding for each block so that the efficiency can be improved with the increase of the
number of workers.

Parallelization for internal blocks. To improve the efficiency of BDD encoding for internal
blocks, we propose a parallel divide-and-conquer strategy, as shown in Algorithm 5. It is similar
to the sequential procedure InterBlk2BDD shown in Algorithm 3, except that the BDDs G1

and G2 for {Cm , . . . ,C � n−m
2 �+m } and {C � n−m

2 �+m+1, . . . ,Cn } are constructed in parallel. In our
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ALGORITHM 6: Parallel BDD Construction for Output Blocks

1 Procedure OutBlk2BDDPara(t
(b )
d+1
, InputSpace : Gin )

2 construct the BDDs Gi ’s for i ∈ [s] in parallel:

3 Gi = G
in ;

4 for (j = 1; j ≤ s − 1; j + +) do

5 Gi = And(Gi ,CC2BDD(t
(b )
d+1↓i, j ));

6 return (Gi )i ∈[s]

implementation, we use the SPAWN API provided by Lace in Sylvan to spawn two tasks to
construct the BDDs G1 and G2 simultaneously, and use the SYNC API to synchronize the two
tasks. Finally, the BDDs G1 and G2 are conjuncted together. The key advantage of the parallel
divide-and-conquer strategy is the ability to largely reduce the overall synchronization when
constructing the BDD for an internal block. As a result, the encoding efficiency increases with
the increase of the number of workers for small BNNs and small input regions, confirmed by
our experiments (cf. Section 6.1.4). When combined with parallel BDD operations, the encoding
efficiency increases with the increase of the number of workers for arbitrary BNNs and arbitrary
input regions, and hence features a more stable acceleration.

Parallelization for output blocks. To parallelize the BDD encoding of an output block, a straight-
forward approach is to construct the BDD Gi in parallel by leveraging the parallel divide-and-
conquer strategy for a class i ∈ [s], as done for internal blocks in Algorithm 5. However, such a
strategy cannot improve the encoding efficiency. One possible reason is that the overhead induced
by the additional And-operations still occupies a large proportion of the total encoding time, as
the size of feasible input BDDGin can be quite large for the output block. Alternatively, we choose
to construct the BDDs Gi s for the classes i ∈ [s] in parallel, as shown in Algorithm 6.

4.3 Parallel BDD Construction of an Entire BNN

We investigate the potential parallelization strategies at the level of BDD construction for the entire
BNN. However, it is non-trivial to parallelize the composition of BDDs of the blocks, i.e., the first
for-loop (Lines 4–7) in Algorithm 2, as the feasible inputs of a block are computed as the feasible
outputs of its preceding block. Thus, to parallelize the BDD construction of an entire BNN, we have
to disable the feasible input propagation, as shown in Algorithm 7. This definitely results in the
loss of benefit induced by input propagation. Thus, we expected that this strategy is effective for
large input space, e.g., the full input space Bn1

±1, for which input propagation becomes less effective.
However, our experiments show that this is not the case, as the parallelization at this level reduces
the number of workers that can be used for parallel BDD encoding of blocks and BDD operations.

Remark. We have also made some other attempts to improve the overall BDD encoding efficiency,
including (1) parallelize the composition of two BDDs, e.g., the second for-loop in Algorithm 2 and
the for-loops in Algorithm 7, and (2) move the second for-loop of Algorithm 7 into the procedure
OutBlk2BDDPara, which composes the BDD G of the internal blocks with the BDD Gi of the
output block w.r.t. the class i . However, these strategies could not improve the overall encoding
efficiency, and sometimes even incurred additional overhead.

5 APPLICATIONS: ROBUSTNESS ANALYSIS AND INTERPRETABILITY

In this section, we highlight two applications within BNNQuanalyst, i.e., robustness analysis and
interpretability of BNNs.
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ALGORITHM 7: Parallel BDD Construction of BNNs without Input Propagation

1 Procedure BNN2BDDPara(BNN : N = (t1, . . . , td , td+1), Region : R (�u,τ ))
2 Gin = Gin

�u,τ
;

3 N (b ) = (t
(b )
1 , . . . , t

(b )
d
, t

(b )
d+1

);

4 construct the BDDs G ′i ’s for i ∈ [d] in parallel:

5 Gin = (i == 1) ? Gin
�u,τ

: Const(1);

6 G ′i = InterBlk2BDDPara(t
(b )
i ,G

in ) (cf. Algorithm 5);

7 G = G ′1;

8 for (i = 2; i ≤ d ; i + +) do

9 G = RelProd(G,G ′i ,�x
i );

10 (Gi )i ∈[s] = OutBlk2BDDPara(t
(b )
d+1
,Gin );

11 for (i = 1; i ≤ s; i + +) do

12 Gout
i = RelProd(G,Gi ,�x

d+1);

13 return (Gout
i )i ∈[s]

5.1 Robustness Analysis

Definition 5.1. Given a BNN N and an input region R (�u,τ ), the BNN is (locally) robust w.r.t.
the region R (�u,τ ) if each sample �x ∈ R (�u,τ ) is classified into the same class of the input �u, i.e.,
∀�x ∈ R (�u,τ ),N (�x) = N (�u).

An adversarial example in the region R (�u,τ ) is a sample �x ∈ R (�u,τ ) such that �x is classified into
a class that differs from the predicted class of the input �u, i.e., N (�x) � N (�u).

As mentioned in Section 1, qualitative verification that checks whether a BNN is robust is insuf-
ficient in many practical applications. In this article, we are interested in quantitative verification
of robustness, which asks how many adversarial examples are there in the input region of the BNN

for each class? To answer this question, given a BNNN and an input region R (�u,τ ), we first obtain
the BDDs (Gout

i )i ∈[s] by applying Algorithm 2 (or its parallel variants) and then count the number
of adversarial examples for each class in the input region R (�u,τ ). Note that counting adversarial
examples amounts to computing |R (�u,τ ) | − |L (Gout

д ) |, where д denotes the predicted class of �u,
and |L (Gout

д ) | can be computed in time O ( |Gout
д |).

We remark that the robustness and adversarial examples are defined w.r.t. the predicted class of
the input �u instead of its class given in the dataset, which is the same as NPAQ [8] but different
from [118].

In many real-world applications, more refined analysis is needed. For instance, it may be accept-
able to misclassify a dog as a cat, but unacceptable to misclassify a tree as a car [79]. This suggests
that the robustness of BNNs may depend on the classes into which samples are misclassified. To
address this, we consider the notion of targeted robustness.

Definition 5.2. Given a BNN N , an input region R (�u,τ ), and the class t , the BNN is t-target-

robust w.r.t. the region R (�u,τ ) if every sample �x ∈ R (�u,τ ) is never classified into the class t , i.e.,
N (�x) � t . (Note that we assume that the predicted class of �u differs from the class t .)

The quantitative verification problem of t-target-robustness of a BNN asks how many adversarial

examples in the input region R (�u,τ ) are misclassified to the class t by the BNN? To answer this
question, we first obtain the BDD Gout

t and then count the number of adversarial examples by
computing |L (Gout

t ) |.
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ALGORITHM 8: Compute the Maximal Safe Hamming Distance

1 Procedure MaxHD(BNN : N = (t1, . . . , td , td+1), Region : R (�u, r ), Threshold : ϵ, Class : д)
2 (Gout

i )i ∈[s] = BNN2BDD(N ,R (�u, r ));

3 if (Pr (Radv (�u, r )) > ϵ ) then // decrease r
4 while (r > 0) do

5 r = r − 1;

6 (Gout
i )i ∈[s] = (And(Gin

�u,r
,Gout

i ))i ∈[s];

7 if (Pr (Radv (�u, r )) ≤ ϵ ) then

8 return r

9 else // increase r
10 while (r < n1) do // n1 is the input size of the BNN N
11 r = r + 1;

12 (Bout
i )i ∈[s] = BNN2BDD(N ,R (�u, r )\R (�u, r − 1));

13 (Gout
i )i ∈[s] = (Or(Bout

i ,Gout
i ))i ∈[s];

14 if (Pr (Radv (�u, r )) > ϵ ) then

15 return r − 1

16 return r

Note that, if one wants to compute the (locally) maximal safe Hamming distance that satisfies
a robustness property for an input sample (e.g., the proportion of adversarial examples is below a
given threshold), our framework can incrementally compute such a distance without constructing
the BDD models of the entire BNN from scratch.

Definition 5.3. Given a BNNN , an input regionR (�u, r ), and the threshold ϵ ≥ 0, r1 is the (locally)
maximal safe Hamming distance of R (�u,τ ) if one of the following holds:

• r1 is the maximal one such that r1 < r and Pr (Radv (�u, r1)) ≤ ϵ if Pr (Radv (�u, r )) > ϵ ;
• r1 is the maximal one such that r1 ≥ r and Pr (Radv (�u, r ′)) ≤ ϵ for all r ′ : r ≤ r ′ ≤ r1 if
Pr (Radv (�u, r )) ≤ ϵ ,

where Pr (Radv (�u, r )) is the probability
∑

i∈[s].i�д |L (Gout
i ) |

|R (�u,r ) | for д being the predicted class of �u, assum-

ing a uniform distribution over the entire sample space.

Algorithm 8 shows the procedure to incrementally compute the maximal safe Hamming distance
for a given threshold ϵ ≥ 0, input region R (�u, r ), and predicted classд of �u. Basically, it searches for
the maximal safe Hamming distance by either increasing or decreasing the distance r depending
on whether Pr (Radv (�u, r )) > ϵ .

• If Pr (Radv (�u, r )) > ϵ , we iteratively decrease r by 1 and compute the intersection between
the new input region R (�u, r ) and original BDD model Gout

i for each class i ∈ [s], until
Pr (Radv (�u, r )) ≤ ϵ or r = 0.
• If Pr (Radv (�u, r )) ≤ ϵ , we iteratively increase r by 1, obtain the BDDs (Bout

i )i ∈[s] of the BNN
w.r.t. the input region R (�u, r )\R (�u, r − 1), and compute the union of Bout

i and Gout
i for each

class i ∈ [s], until Pr (Radv (�u, r )) > ϵ or r = n1. Recall that the input region R (�u, r ) can
be expressed by a constraint

∑n1
j=1 �j ≤ r (cf. Section 3.3). Thus, R (�u, r )\R (�u, r − 1) can be

expressed by the conjunction of two constraints
∑n1

j=1 �j ≤ r and
∑n1

j=1 �j > r − 1, which can

be further reformulated into two cardinality constraints
∑n1

j=1 ¬�j ≥ n1 − r and
∑n1

j=1 �j ≥ r .

The BDD encoding of the input region R (�u, r )\R (�u, r − 1) can be constructed by applying
the And-operation to the BDDs of

∑n1
j=1 ¬�j ≥ n1 − r and

∑n1
j=1 �j ≥ r .
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5.2 Interpretability

In general, interpretability addresses the question of why some inputs in the input region are

(mis)classified by the BNN into a specific class. We consider the interpretability of BNNs using two
complementary explanations, i.e., prime implicant explanations and essential features.

Definition 5.4. Given a BNN N , an input region R (�u,τ ), and a class д,

• a prime implicant explanation (PI-explanation) of the decision made by the BNN N on the
input L (Gout

д ) is a minimal set of literals {�1, . . . , �k } such that for every �x ∈ R (�u,τ ), if �x
satisfies �1 ∧ · · · ∧ �k , then �x is classified into the class д by N .
• the essential features for the inputs L (Gout

д ) are literals {�1, . . . , �k } such that every �x ∈
R (�u,τ ), if �x is classified into the class д by N , then �x satisfies �1 ∧ · · · ∧ �k .

Intuitively, a PI-explanation {�1, . . . , �k } indicates that {var(�1), . . . , var(�k )} are the key such
that, when fixed, the prediction is guaranteed no matter how the remaining features change. Thus,
a PI-explanation can be seen as a sufficient condition to be classified into the class. Remark that
there may be more than one PI-explanation for a set of inputs. When д is set to be the predicted
class of the benign input �u, a PI-explanation on the input regionGout

д suggests why these samples
are correctly classified into д.

The essential features {�1, . . . , �k } denote the key features such that all samples �x ∈ R (�u,τ ) that
are classified into the class д by the BNNN must agree on these features. Essential features differ
from PI-explanations, where the former can be seen as a necessary condition, while the latter can
be seen as a sufficient condition.

The CUDD package provides APIs to identify prime implicants (e.g., Cudd_bddPrintCover and
Cudd_FirstPrime) and essential variables (e.g., Cudd_FindEssential). Therefore, prime implicants
and essential features can be computed via queries on the BDDs (Gout

i )i ∈[s]. (Note that the Syl-
van package does not provide such APIs, but this problem could be solved by storing the BDDs
(Gout

i )i ∈[s] constructed by Sylvan in a file, which is then loaded by CUDD.)

6 EVALUATION

We have implemented the framework, giving rise to a new tool, BNNQuanalyst. The implementa-
tion is based on CUDD [90] as the default BDD package and Sylvan [102] for parallel computing.
We use Python as the front-end to process BNNs and C++ as the back-end to perform the BDD
encoding and analysis. In the rest of this section, we report the experimental results on the BNNs
trained using the MNIST dataset, including the performance of BDD encoding, robustness analysis
based on both Hamming distance and fixed indices, and interpretability.

Benchmarks on MNIST and Fashion-MNIST. We use the PyTorch deep learning platform pro-
vided by NPAQ [8] to train and test 12 BNNs (P1–P12) with varying sizes based on the MNIST
dataset, and 4 BNNs (P13-P16) on the Fashion-MNIST dataset. Similar to NPAQ [8], we first resize
the original 28 × 28 images to the input size n1 of the BNN (i.e., the corresponding image is of the
dimension

√
n1×
√
n1) via Bilinear interpolation [11] and then binarize the normalized pixels of the

images. Table 3 gives the details of the 16 BNN models based on two datasets, each of which has
10 classes (i.e., s = 10). Column 1 shows the dataset used for training and evaluation. Columns 2
and 5 give the name of the BNN model. Columns 3 and 6 show the architecture of the BNN model,
where n1 : · · · : nd+1 : s denotes that the BNN model has d + 1 blocks, n1 inputs, and s outputs; the
ith block for i ∈ [d + 1] has ni inputs and ni+1 outputs with nd+2 = s . Therefore, the number of the
internal blocks ranges from 1 to 4 (i.e., 3 to 12 layers), the dimension of inputs ranges from 25 to
784, and the number of hidden neurons per LIN layer in each block ranges from 10 to 100. Columns
4 and 7 give the accuracy of the BNN model on the test set of the two datasets. We can observe
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Table 3. BNN Benchmarks Based on MNIST and Fashion-MNIST (F-MNIST),

Where n1 : · · · : nd+1 : s in the Column (Architecture) Denotes That the BNN Model

Has d + 1 Blocks, n1 Inputs, and s Outputs, and the ith Block for i ∈ [d + 1]
Has ni Inputs and ni+1 Outputs with nd+2 = s

Dataset Name Architecture Accuracy Name Architecture Accuracy

P1 16:25:20:10 14.88 % P7 100:100:10 75.16%
P2 16:64:32:20:10 25.14% P8 100:50:20:10 71.1%
P3 25:25:25:20:10 33.67% P9 100:100:50:10 77.37%

MNIST
P4 36:15:10:10 27.12% P10 400:100:10 83.4%
P5 64:10:10 49.16% P11 784:100:10 85.13%
P6 100:50:10 73.25% P12 784:50:50:50:50:10 86.95%

P13 100:100:10 50.01% P15 100:100:50:10 50.40%
F-MNIST

P14 100:50:20:10 39.42% P16 784:100:10 50.25%

Fig. 8. Images from MNIST (top) and Fashion-MNIST (bottom) used to evaluate our approach.

that the accuracy of the BNN models increases with the size of the inputs, the number of layers,
and the number of hidden neurons per layer for each dataset. We remark that the small BNNs (e.g.,
P1–P5) with low accuracy are used to understand (1) the effectiveness of the input propagation
strategy under full input space (cf. Section 6.1.3), (2) the effectiveness of different parallelization
strategies under full input space (cf. Section 6.1.4), and (3) the efficiency of our BDD encoding un-
der full input space (cf. Section 6.2.1). Figure 8 shows 20 images from the test sets of two datasets
(10 images from MNIST and 10 images from Fashion-MNIST, where there is one image per class)
to evaluate our approach unless explicitly stated. Similar to prior work [8, 15, 71, 105, 106], those
images are chosen randomly. Specifically, the image of digit i from the test set of MNIST is called
by i-image.

Experimental setup. The experiments were conducted on a 20-core machine (with two-way
hyper-threading) with 2 × 2.2 GHz Intel 10-core Xeon Silver 4114 processors and 376 GB of main
memory, of which 256 GB are used for evaluation. We kept the default values for the BDD pack-
ages except that (1) the initial cache size is set to 218 entries for both CUDD and Sylvan, (2) the
maximum sizes of the BDD node hash table and operation cache for CUDD are set to 0 (i.e., no
limitation), and (3) the maximum cache size and initial and maximum size of the BDD node hash
table for Sylvan are set to 230, 222, and 233 entries (called buckets in Sylvan). The variable ordering
of BDDs used for input regions is the natural row by row, left to right of the pixels in the images,
the same as the prior work [83]; the variable ordering of BDDs used for each internal block and
composition of internal blocks follow the orders of inputs and outputs, where the input variables
are smaller than output variables; and the variable ordering of BDDs used for the output block
follows the orders of inputs. The time limit for each experiment is set to be 8 hours. For parallel
computing, the maximum number of workers is limited to up to 39 (out of 40), where the remaining
one is reserved for the other computation tasks and system processes.
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Table 4. Abbreviated Names of Sequential and Parallel Algorithms with Various Strategies

Abbreviation Description

DP-based Alg. Dynamic programming-based algorithm for BDD encoding of cardinality constraints [27]
Graph-based Alg. Our algorithm for BDD encoding of cardinality constraints, i.e., Algorithm 1
L0-D&C Algorithm 2 with CUDD
L0-Iteration Algorithm 2 with CUDD, but without the divide-and-conquer strategy
L1-D&C Algorithm 2 with Sylvan
L1-Iteration Algorithm 2 with Sylvan, but without the divide-and-conquer strategy

L2-D&C
Algorithm 2 with Sylvan, where InterBlk2BDD and OutBlk2BDD are replaced by
InterBlk2BDDPara (cf. Algorithm 5) and OutBlk2BDDPara (cf. Algorithm 6)

L2-D&C-NoIP L2-D&C but without input propagation
L3-D&C Algorithm 7 with Sylvan

Table 5. Execution Time (in Seconds) of Our Graph-based Algorithm and

the DP-based Algorithm for BDD Encoding of Cardinality Constraints

Using CUDD, Where x-HD-y Denotes the Cardinality Constraint Obtained

from the Input Region with the Input Size x and Hamming Distance y

100-HD-10 100-HD-20 100-HD-30 100-HD-40

DP-based Alg. 0.021 0.037 0.059 0.059
Graph-based Alg. 0.001 0.001 0.001 0.002

784-HD-50 784-HD-100 784-HD-150 784-HD-200

DP-based Alg. 11.05 37.45 617.3 1123.45
Graph-based Alg. 0.023 0.041 0.052 0.061

6.1 Effectiveness of Strategies

We first compare the performance of our graph-based algorithm (i.e., Algorithm 1) and the DP-
based algorithm [27] for the BDD encoding of cardinality constraints. We then evaluate the effec-
tiveness of input propagation, divide-and-conquer, and parallelization strategies for BDD encoding
of BNNs. We repeated each experiment three times and report the rounded average time in sec-
onds of three runs. For the sake of presentation, we define abbreviated names of sequential and
parallel algorithms with various strategies in Table 4.

6.1.1 Graph-based Alg. vs. DP-based Alg. We compare the performance of our graph-based al-
gorithm and the DP-based algorithm using the cardinality constraints obtained from the input
regions. The input regions use the 0-image with the input sizes 100 and 784, where the Hamming
distance ranges from 10 to 40 with step 10 for the input size 100, and ranges from 50 to 200 with
step 50 for the input size 784.

The results are reported in Table 5 using CUDD. We can observe that our graph-based algo-
rithm is at least 20 times faster than the DP-based algorithm [27]. The improvement is much more
significant for large cardinality constraints, e.g., for the instances 784-HD-150 and 784-HD-200.

We also conduct the same experiments using Sylvan, where the number of workers is set to
1, 2, 4, 6, 8, . . . , 36, 38, 39. The results are depicted in Figure 9. We can observe that our graph-based
algorithm also performs significantly better than the DP-based algorithm [27]. However, with the
increased number of workers, the performance of both algorithms downgraded, in particular, for
small cardinality constraints (cf. Figures 9(a)–9(d).) This is mainly caused by the overhead induced
by the synchronization between workers on the parallel BDD operations mentioned previously.
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Fig. 9. Execution time (in seconds) of our graph-based algorithm and the DP-based algorithm for BDD

encoding of cardinality constraints using Sylvan, where the numbers of workers (x-axis) are 1, 2, 4, 6,

8, . . . , 36, 38, 39.

Table 6. Execution Time (in Seconds) of L0-Iteration and L0-D&C for BDD Encoding

of BNNs, Where Px-HD-y Denotes the BNN Model Px and Hamming Distance y

P8-HD-2 P8-HD-3 P8-HD-4 P9-HD-2 P9-HD-3 P9-HD-4

L0-Iteration 0.44 6.67 165.5 10.14 347.59 6318.7
L0-D&C 0.17 1.88 71.4 2.66 86.13 1598.6

6.1.2 Effectiveness of the Divide-and-conquer Strategy. To study the effectiveness of the divide-
and-conquer strategy, we compare the performance between L0-Iteration and L0-D&C, both of
which use sequential BDD operations (i.e., CUDD), and between L1-Iteration and L1-D&C, both of
which use parallel BDD operations (i.e., Sylvan), on the BNN models P8 and P9 using the 0-image
under Hamming distance r = 2, 3, 4. Note that r is limited up to 4, because when it is larger than 4,
(1) the BDD encoding often runs out of time for both strategies, and (2) for the BDD encoding that
terminates within the time limit, the result of the comparison is similar to that of r = 4. Similarly,
we skip r = 1 because the result of the comparison is similar to that of r = 2. On the other hand,
we choose P8 and P9 as the subjects for evaluation, because (1) they are relatively larger and all the
BDD encoding tasks with different numbers of workers terminate within the time limit (8 hours)
when r ≤ 4, and (2) the experimental results on P8 and P9 can demonstrate the effectiveness of
the divide-and-conquer strategy for different numbers of workers and input regions.

Table 6 reports the average execution time (in seconds) of L0-Iteration and L0-D&C, where the
latter uses the divide-and-conquer strategy (cf. Table 4). We can observe that in this setting, our
divide-and-conquer strategy is very effective, with more than 2.5 times speedup.

Figure 10 reports the average execution time (in seconds) of L1-Iteration and L1-D&C, where
the numbers of workers are 1, 2, 4, 6, 8, . . . , 36, 38, 39. We can observe that our divide-and-conquer
strategy is often very effective when parallel BDD operations are used, in particular for large
Hamming distances (i.e., 3 and 4). However, with the increased number of workers, the perfor-
mance of parallel BDD encoding downgraded, e.g., Figures 10(a), 10(b), and 10(c), due to the over-
head induced by the synchronization between workers. The divide-and-conquer strategy even
becomes worse than the iteration-based one when the number of workers is very large (e.g., 39) in

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 62. Pub. date: April 2023.



62:32 Y. Zhang et al.

Fig. 10. Execution time (in seconds) of L1-Iteration and L1-D&C for BDD encoding of BNNs, where the

numbers of workers (x-axis) are 1, 2, 4, 6, 8, . . . , 36, 38, 39.

Figures 10(a) and 10(b), because the divide-and-conquer strategy requires additional AND-
operations that induce synchronization between workers.

6.1.3 Effectiveness of Input Propagation. To study the effectiveness of input propagation, we
conduct experiments using L2-D&C and L2-D&C-NoIP on the BNN models P8 and P9 with the
0-image under the Hamming distances 2, 3, and 4, and on the BNN models P1, P3, and P4 with
the 0-image under full input space. Recall that both L2-D&C and L2-D&C-NoIP use parallel BDD
encoding of blocks and BDD operations, but only L2-D&C uses input propagation. Note that we
evaluate on BNNs of varied sizes and input regions to thoroughly understand the effectiveness of
the input propagation strategy, which may depend upon both input regions and BNN sizes. Other
BNN models are not considered due to the huge computational cost, and current results are able
to demonstrate the effectiveness of input propagation.

Table 7 shows the results of L2-D&C and L2-D&C-NoIP on the BNN models P8 and P9 under
the Hamming distances 2, 3, and 4, where the number of workers is set to 1, 10, 20, and 39, and
the best ones are highlighted in boldface. Note that -TO- denotes time out (8 hours) and -MO-
denotes out of memory (256 GB). It is easy to see that our input propagation is very effective.

Figure 11 shows the results of L2-D&C and L2-D&C-NoIP on the small BNN models P1,
P3, and P4 under the full input space, where the number of workers (x-axis) is set to
1, 2, 4, 6, 8, . . . , 36, 38, 39. Unsurprisingly, the effectiveness of input propagation varies with BNN
models, due to the difference of the architectures in P1, P3, and P4. Recall that the input propaga-
tion improves the encoding efficiency when the feasible outputs of the preceding block ti−1 (the
input region when i = 1) is relatively small compared with the full input space Bni that the block
ti needs to consider (cf. Section 3.5). On P3 and P4, the feasible inputs of the internal blocks are
close to their full input space; thus the input propagation does not make sense, and actually incurs
overhead due to additional BDD operations (i.e., And and Exists).

In contrast to P3 and P4, P1 has an increase and then decrease in the number of hidden neurons
of the layers; thus the input propagation is still effective on P1. Indeed, the input propagation
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Table 7. Execution Time (in Seconds) of L2-D&C and L2-D&C-NoIP for BDD Encoding

of BNNs Using the 0-Image under Hamming Distance r = 2, 3, 4, Where -TO- Denotes

Time Out (8 hours), -MO- Denotes Out of Memory (256 GB), and s1, s10, s20, s39

Indicate the Number of Workers

Name r
L2-D&C L2-D&C-NoIP

s1 s10 s20 s39 s1 s10 s20 s39

2 0.42 0.57 0.74 0.66 -TO- -TO- -MO- -MO-
P8 3 1.17 0.80 0.98 0.83 -TO- -TO- -MO- -MO-

4 39.90 6.27 4.18 2.87 -TO- -TO- -MO- -MO-

2 1.74 1.77 1.83 2.09 -TO- -TO- -TO- -TO-
P9 3 35.97 6.72 5.51 4.04 -TO- -TO- -TO- -TO-

4 603.6 79.76 52.97 36.79 -TO- -TO- -TO- -TO-

Fig. 11. Execution time (in seconds) of L2-D&C and L2-D&C-NoIP for BDD encoding of BNNs under full

input space, where the numbers of workers (x-axis) are 1, 2, 4, 6, 8, . . . , 36, 38, 39.

reduces the full output space 225 of the first block (i.e., the input space of the second block) to
the feasible outputs 216 (i.e., the input region). We remark that L2-D&C-NoIP quickly runs out of
time on P2 when encoding the second block even with 39 workers due to 64 hidden neurons in its
LIN layer, while it can be done in seconds when input propagation is enabled, i.e., L2-D&C. Thus,
results on P2 are not depicted in Figure 11.

6.1.4 Effectiveness of Parallelization Strategies. By comparing the results between L0-Iteration
and L1-Iteration (resp. L0-D&C and L1-D&C) on the BNN models P8 and P9 using the 0-image
under Hamming distances 2, 3, and 4 (cf. Table 6 and Figure 10 in Section 6.1.2), we can observe
that parallel BDD operations (i.e., Sylvan) are very effective for large input regions (i.e., Hamming
distance r = 3, 4). However, the improvement of sole parallel BDD operations may downgrade with
the increased number of workers. Below we study the effectiveness of the other two parallelization
strategies, namely, parallel BDD encoding of blocks (i.e., Algorithms 5 and 6) on P8 and P9, and
parallel BDD encoding of an entire BNN (i.e., Algorithm 7) on P1, P3, and P4. Due to similar reasons
as mentioned above, we do not consider other BNN models.

To understand the effectiveness of parallel BDD encoding of blocks, we compare L1-D&C and
L2-D&C on the BNN models P8 and P9 under Hamming distance r = 2, 3, 4. Recall that both L1-
D&C and L2-D&C use parallel BDD operations, but only L2-D&C uses parallel BDD encoding of
blocks. The results are shown in Figure 12. We can observe that our parallel BDD encoding of
blocks is often very effective. Furthermore, increasing the number of workers in L2-D&C always
improves the overall encoding efficiency for large BNNs and Hamming distance, e.g., Figures 12(c),
12(e), and 12(f).
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Fig. 12. Execution time (in seconds) of L1-D&C and L2-D&C for BDD encoding of BNNs, where the numbers

of workers are 1, 2, 4, 6, 8, . . . , 36, 38, 39.

Fig. 13. BDD encoding under full input space with L2-D&C-NoIP and L3-D&C, where on the x-axis

(1, 2, . . . , 40) denotes the number of workers, and the y-axis denotes the computation time (seconds).

To understand the effectiveness of parallel BDD encoding of entire BNNs, we compare L2-D&C-
NoIP and L3-D&C on the relatively small BNN models P1, P3, and P4 under the full input region,
Recall that both L2-D&C-NoIP and L3-D&C use parallel BDD operations and BDD encoding of
blocks without input propagation, but only L3-D&C uses parallel BDD encoding of entire BNNs.
The results are shown in Figure 13. The overall BDD encoding efficiency can be improved with
the increased number of workers due to parallel BDD operations and BDD encoding of blocks,
but the parallel BDD encoding of the entire BNNs did not improve the overall performance.

Summary of effectiveness of strategies. While L2-D&C with the largest number of workers (i.e.,
39) does not always outputform the others, L2 (parallel BDD operations + parallel BDD encoding
of blocks) always performs better than L1 (sole parallel BDD operations) and L3 (parallel BDD
operations + parallel BDD encoding of blocks + parallel BDD construction of an entire BNN) (cf.
Figures 12 and 13 in Section 6.1.4). The divide-and-conquer strategy (i.e., D&C) performs better
than the iteration-based one in most cases (cf. Table 6 and Figure 10 in Section 6.1.2), while it
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Table 8. Execution Time (in Seconds) of L0-D&C and

L2-D&C for BDD Encoding of Entire BNNs Using Full

Input Space and Number of BDD Nodes, Where sx
Denotes That Number of Workers Is x

Name L0-D&C
L2-D&C ∑

i ∈[s] |Gout
i |

s1 s39

P1 1.20 0.76 0.26 16,834
P2 31.12 13.21 0.96 19,535
P3 425.2 207.2 13.06 5,071,376
P4 10,947 2,412 110.8 153,448,311
P5 -TO- -TO- -TO- –

performs worse than the iteration-based one when the number of workers is very large (e.g., 39)
and the input region is quite small (e.g., r = 2). On the other hand, the input propagation strategy
can improve the encoding efficiency when the feasible output of the preceding block (or input
region) is relatively small compared with the full input space of the encoding block (cf. Table 7
and Figure 11 in Section 6.1.3). Furthermore, the optimal number of workers for L2-D&C increases
with the size of input region (cf. Table 7, Figures 11 and 12). We summarize the findings as follows.

• When encoding an internal block, the divide-and-conquer strategy can improve the encod-
ing efficiency in most cases.
• When encoding a block, the input propagation can improve the encoding efficiency when

the feasible output of the preceding block (or input region) is relatively small compared with
the full input space of the encoding block.
• L2 (i.e., parallel BDD operations + parallel BDD encoding of blocks) performs better than

L1 (i.e., sole parallel BDD operations) and L3 (i.e., parallel BDD operations + parallel BDD
encoding of blocks + parallel BDD construction of an entire BNN).
• The optimal number of workers for L2-D&C (i.e., L2 with both divide-and-conquer strategy

and input propagation strategy) increases with the size of input region of interest.

6.2 Performance of BDD Encoding for Entire BNNs

We evaluate BNNQuanalyst for BDD encoding of entire BNNs using three types of input regions:
full input space, input regions based on Hamming distances, and fixed indices. According to the
results in Section 6.1, we only consider the sequential BDD encoding using CUDD (i.e., L0-D&C)
and parallel BDD encoding using Sylvan (i.e., L2-D&C) with 1 worker (s1) and 39 workers (s39).

6.2.1 BDD Encoding Using Full Input Space. We evaluate BNNQuanalyst on the BNNs (P1–P5)
with the full input space. We remark that the other large BNNs (P6–P16) cannot be handled by
BNNQuanalyst when the full input space is considered.

The average results of 10 images are reported in Table 8, where the best ones are highlighted in
boldface and

∑
i ∈[s] |Gout

i | denotes the total number of nodes in BDDs (Gout
i )i ∈[s]. BNNQuanalyst

can construct the BDD models of P1–P4 but fails on P5 due to its large input size (i.e., 64). We can
observe that both the execution time and the number of BDD nodes increase quickly with the size
of BNNs. By comparing the results between L0-D&C and L2-D&C (s39), we confirm the effective-
ness of our parallelization strategies for BDD operations and BDD encoding of internal and output
blocks. Interestingly, L2-D&C (s1) also performs better than L0-D&C, which uses CUDD.

6.2.2 BDD Encoding under Hamming Distance. We evaluate BNNQuanalyst on the relatively
larger BNNs (P5–P16). For each BNN model, we consider all the 10 MNIST (resp. Fashion-MNIST)
images shown in Figure 8 for P5–P12 (resp. P13–P16) and report the average result of 10 images,
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Table 9. Execution Time (in Seconds) of L0-D&C and L2-D&C for BDD Encoding of Entire BNNs

under Hamming Distance, Where (#i) (resp. [#i]) Indicates the Number of Computations

That Run Out of Time in 8 Hours (resp. Memory in 256 GB)

Name
r=2 r=3 r=4 r=5

cudd s1 s39 cudd s1 s39 cudd s1 s39 cudd s1 s39

P5 0.02 0.04 0.41 0.03 0.05 0.63 0.16 0.17 0.69 1.03 0.88 0.98
P6 0.35 0.41 1.25 6.18 5.43 2.01 144.6 121.1 9.43 2,635 1,606 84.48

P7 0.80 0.70 1.17 29.35 32.75 3.26 964.0 778.0 63.96 (#2) 17,156 13,952 733.8

P8 0.27 0.26 1.11 3.47 2.75 1.71 94.80 61.44 5.62 1,715 821.6 50.05

P9 2.92 2.11 2.77 83.90 42.85 5.94 1,747 670.9 44.66 (#7) 20,851 (#3) 17,256 [#2] 1,086

P10 5.47 5.19 18.99 205.5 177.8 30.26 (#2) 10,791 (#2) 6,414 401.3 (#10) (#4)[#6] [#8] 8,938

P11 22.14 22.89 70.06 809.9 515.4 102.2 (#6) 11,203 (#4) 8,964 [#1] 1,962 (#10) (#3)[#7] (#1)[#7] 5,702

P12 9.82 9.48 35.73 10.92 10.26 44.65 73.81 40.49 37.93 2,659 746.8 272.1

P13 1.05 0.84 1.07 64.20 29.48 2.18 1,645 789.7 36.56 (#2) 24,501 15,648 733.7

P14 0.32 0.29 0.39 34.00 4.42 0.56 614.5 108.1 7.00 13,904 1,456 97.24

P15 1.82 1.20 1.23 345.3 35.47 4.66 10,283 686.2 60.24 [#10] (#1) 11,761 (#1) 1,621

P16 24.46 15.18 43.28 929.8 429.4 56.88 (#4) 11,403 (#2) 8,268 782.3 (#10) (#9)[#1] (#2)[#4] 14,561

excluding the computations that run out of time or memory. For each BNN model and image, the
input regions are given by the image and Hamming distance r = 2, 3, 4, 5.

The results are shown in Table 9, where the best ones are highlighted in boldface. Overall, the
execution time increases with the Hamming distance r . The comparison between L0-D&C and
L2-D&C with 1 worker (s1) and 39 workers (s39) is summarized as follows:

• Both L0-D&C (i.e., columns cudd) and L2-D&C succeeded on all the cases when r ≤ 3.
• L0-D&C succeeded on 108 out of 120 cases when r = 4, and 69 out of 120 cases when r = 5.
• L2-D&C (s1) succeeded on 112 out of 120 cases when r = 4, and 86 of 120 cases when r = 5.
• L2-D&C (s39) succeeded on 119 out of 120 cases when r = 4, and 95 of 120 cases when r = 5.
• For small-scale problems (i.e., P5 or r = 2 or P12 with r = 3), in most cases, L0-D&C and

L2-D&C (s1) are almost comparable, but are better than L2-D&C (s39).
• For other problems, L2-D&C (s39) is much better than the other two.

Regarding the architecture of BNNs, we observe that the execution time increases with the
number of hidden neurons (P6 vs. P7, P8 vs. P9, and P14 vs P15), while the effect of the number
of layers is diverse (P6 vs. P8, P7 vs. P9, and P13 vs P15). From P11 and P12, we note that the
number of hidden neurons per layer is likely the key impact factor of the BDD encoding efficiency.
Interestingly, BNNQuanalyst works well on BNNs with large input sizes and large number of
hidden layers (i.e., on P12).

Compared with BDD-learning-based method [83]. The results in Table 9 demonstrate the
efficiency and scalability of BNNQuanalyst on BDD encoding of BNNs. Compared with the BDD-
learning-based approach [83], our approach is considerably more efficient and scalable, since the
BDD-learning-based approach takes 403 seconds to encode a BNN with input size 64, 5 hidden
neurons, and output size 2 when r = 6, while ours takes about 2 seconds (not listed in the table)
even for a larger BNN P5. To directly and fairly compare with this approach, we also conduct
experiments on the BNN P0 provided in [83]. P0 is a binary classifier using the architecture 64:5:2,
trained on the USPS digits dataset [46] for distinguishing digit 0 images (class 0) and digit 8 images
(class 1) with 94% accuracy. The input regions of interest are given by three images and Hamming
distance r = 1, . . . , 7. The three input images of size 8 × 8 are provided by [83] and shown in
Figure 14, where the smile image is classified as digit 0 by P0. We use L0-D&C and L2-D&C in
BNNQuanalyst.
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Fig. 14. The three images of size 8 × 8 from [83].

Table 10. BDD Encoding Results of BNN P0 under Different Hamming Distances r for 3 Input Images

Digit 0 Digit 8 Smile

r
[83] BNNQuanalyst [83] BNNQuanalyst [83] BNNQuanalyst

|G | Time(s) |Gout
1 |

Time(s) |G | Time(s) |Gout
0 |

Time(s) |G | Time(s) |Gout
1 |

Time(s)
cudd s1 s39 cudd s1 s39 cudd s1 s39

1 1 0.18 1 <0.01 0.04 0.17 1 0.27 1 <0.01 0.04 0.13 1 0.19 1 <0.01 0.05 0.07
2 1 0.30 1 <0.01 0.04 0.14 1 0.38 1 <0.01 0.04 0.11 258 29.09 499 0.01 0.06 0.10
3 1 0.48 1 <0.01 0.05 0.16 1 0.63 1 0.01 0.04 0.16 1,437 430.4 1,621 0.02 0.07 0.14
4 1 1.54 1 <0.01 0.05 0.19 1 1.30 1 0.01 0.04 0.17 6,048 3,481 5,875 0.04 0.10 0.12
5 1 1.66 1 <0.01 0.05 0.19 243 120.8 546 0.01 0.06 0.12 12,297 25,645 13,127 0.09 0.13 0.08

6 509 436.7 718 <0.01 0.06 0.17 765 606.1 1,221 0.02 0.07 0.12 – -TO- 31,067 0.25 0.22 0.09

7 2,202 2,210 2,437 0.01 0.06 0.21 2,431 3,231 2,907 0.03 0.08 0.10 – -TO- 55,898 0.52 0.22 0.19

The results are reported in Table 10, where the BDD G produced by [83] encodes the input-
output relation of P0 on the input region and both output classes, and the BDD Gout

i produced
by BNNQuanalyst encodes the input-output relation of P0 on the input region and the class i for
i = 0, 1. More specifically:

• Any image �u in the given input region is classified into the class 0 (resp. 1) by P0 iff �u � L (G )
(resp. �u ∈ L (G )); however, it is not guaranteed that images �u outside of the given input
region are classified into class 0 (resp. 1) by P0 iff �u � L (G ) (resp. �u ∈ L (G )).
• Any image �u in the given input region is classified into the class i by P0 iff �u ∈ L (Gout

i ),
while for any image �u outside the given input region, �u � L (Gout

i ).

Therefore, the number of nodes inG may differ from one inGout
i even for the same input region. We

can observe that BNNQuanalyst significantly outperforms the BDD-learning-based method [83].
Interestingly, [83] takes more time on the smile image than the other two. It may be because the
smile image is far away from the real digit 0.

6.2.3 BDD Encoding under Fixed Indices. Similar to Section 6.2.2, we evaluate BNNQuanalyst

on the relatively large BNNs (P5–P16) using 10 images for each BNN and report the average result
of 10 images, excluding those that run out of time or memory. For each model and image, the input
regions are given by the randomly chosen index set I whose size ranges from 10 to 25.

The results are shown in Table 11. We can observe similar results to the BDD encoding under
Hamming distance. For instance, the execution time increases with the number of indices. For
small-scale problems (i.e., |I | = 10) or P10–P12 and P16 with |I | = 15, L2-D&C (s1) often performs
better than the other two. For other problems, L2-D&C (s39) often performs much better than the
other two. The execution time increases with the number of hidden neurons (P6 vs. P7, P8 vs. P9,
and P14 vs. P15). Remarkably, the execution time also increases with the number of layers (P6 vs.
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Table 11. Execution Time (in Seconds) of L0-D&C and L2-D&C for BDD Encoding of Entire BNNs

under Fixed Indices, Where (#i) (resp. [#i]) Indicates the Number of Computations

That Run Out of Time (resp. Memory)

Name
|I |=10 |I |=15 |I |=20 |I |=25

cudd s1 s39 cudd s1 s39 cudd s1 s39 cudd s1 s39

P5 0.03 0.04 0.43 0.05 0.06 0.11 0.31 0.28 0.16 4.87 5.39 0.59

P6 0.24 0.20 0.67 1.20 0.79 0.54 43.38 27.68 1.86 844.0 577.4 28.05

P7 0.64 0.43 1.57 6.08 4.81 2.21 291.8 211.8 12.07 7,916 4,742 219.4

P8 0.25 0.19 0.81 1.51 0.96 0.80 37.56 21.99 2.30 1,074 818.3 43.51

P9 1.42 0.85 2.03 21.68 9.93 2.52 716.4 267.7 17.49 (#1) 18,143 7,739 378.6

P10 5.43 4.04 16.16 8.09 5.92 16.57 85.55 94.59 21.31 2,198 1,666 99.86

P11 21.62 19.75 60.08 24.03 21.41 60.67 73.40 65.85 63.02 1,460 1,120 120.0

P12 10.12 8.40 28.49 10.94 8.73 27.76 15.38 11.88 28.36 69.44 58.38 30.71

P13 0.57 0.45 1.03 7.49 3.48 1.34 386.43 182.9 10.16 15,616 5,538 302.5

P14 0.22 0.21 0.36 5.13 0.80 0.49 126.2 20.56 2.30 5,231 635.3 48.26

P15 1.30 0.83 1.38 66.60 19.06 2.31 1,983 426.6 20.68 (#9) 23,354 11,939 485.4

P16 26.42 15.04 44.75 29.27 27.90 43.04 166.8 73.63 47.60 5,564 1,951 102.7

P8, P7 vs. P9, and P13 vs. P15), which is different from the results on the BDD encoding under
Hamming distance.

6.3 Robustness Analysis

We evaluate BNNQuanalyst on the robustness of BNNs, including robustness verification under
different Hamming distances and maximal safe Hamming distance computing.

6.3.1 Robustness Verification with Hamming Distance. We evaluate BNNQuanalyst on BNNs
(P7, P8, P9, and P12) using 30 images from the MNIST dataset. Note that, besides the 10 digit images
shown in Figure 8, we randomly choose another 20 images from the MNIST dataset. Other BNN
models are not considered due to the huge computational cost and furthermore we will see later
that the most computational cost of BNNQuanalyst is BDD encoding, which has been extensively
evaluated in Section 6.2. The input regions are given by the Hamming distance r ranging from 2
to 4, resulting in totally 360 verification tasks. We use L0-D&C, L2-D&C (s1), and L2-D&C (s39) in
BNNQuanalyst.

Since the BDD-learning-based method [83] is significantly less efficient than our approach, we
only compare with NPAQ [8]. The main difference between NPAQ and BNNQuanalyst is that
NPAQ encodes a verification task as a Boolean formula without input propagation and uses an
approximate SAT model-counting solver to answer the quantitative verification query with PAC-
style guarantees, while BNNQuanalyst encodes a verification task as BDDs with input propaga-
tion and uses the BDD operation SatCount to exactly answer the quantitative verification query.
Namely, NPAQ sets a tolerable error ε and a confidence parameter δ . The final estimated results
of NPAQ have the bounded error ε with confidence of at least 1 − δ , i.e.,

Pr [(1 + ε )−1 × RealNum ≤ EstimatedNum ≤ (1 + ε ) × RealNum] ≥ 1 − δ . (8)

In our experiments, we set ε = 0.8 and δ = 0.2, as done by NPAQ [8].
Table 12 reports the results of the 294 instances (out of the 360 verification tasks) that can be

solved by NPAQ, where the best ones are highlighted in boldface. Note that BNNQuanalyst solved
all of them using either L0-D&C, L2-D&C (s1), or L2-D&C (s39). Columns (#Adv) give the average
number of the adversarial examples for the 30 input images found by NPAQ and BNNQuanalyst.
Columns (Time(s)) show the average execution time in seconds using NPAQ, L0-D&C, L2-D&C
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Table 12. Robustness Verification under Hamming Distance, Where (#i) Indicates

the Number of Verification Tasks That Run Out of Time Whose Execution Time

Is Not Counted in the Table

Name r
NPAQ [8] BNNQuanalyst Diff Speedup

#Adv Time(s) #Adv
cudd

Time(s)
s1 s39

#Adv cudd s1 s39

2 887 317.1 882 0.79 0.76 1.16 0.57% 400 416 272
P7 3 37,161 1,143 35,587 21.76 33.67 2.43 4.42% 52 33 469

4 1,016,050 4,090 996,677 706.6 576.2 38.05 1.94% 5 6 106

2 907 148.9 884 0.23 0.21 0.58 2.60% 646 708 256
P8 3 37,040 427.3 36,490 2.23 2.03 0.89 1.51% 191 209 479

4 1,127,424 2,102 1,093,783 67.74 52.13 3.82 3.08% 30 39 549

2 688 477.5 673 1.97 1.63 1.85 2.23% 241 292 257
P9 3 35,744 2,762 33,915 57.20 35.24 4.03 5.39% 47 77 684

4 (#2) 898,528 5,197 869,715 1,285 672.4 43.84 3.31% 3 7 118

2 (#14) 4,032 14,355 3,756 8.94 8.55 27.98 7.35% 1,605 1,678 512
P12 3 (#23) 0 20,029 0 10.73 10.23 44.27 0% 1,866 1,957 451

4 (#27) 0 22,538 0 10.12 9.43 36.63 0% 2,226 2,389 614

(s1), and L2-D&C (s39). Column (Diff #Adv) shows the error rate τ = EstimatedNum−RealNum
RealNum of NPAQ,

where RealNum is from BNNQuanalyst, and EstimatedNum is from NPAQ. The last three columns
show the speedups of BNNQuanalyst compared with NPAQ. Remark that the numbers of adver-
sarial examples are 0 for P12 on input regions with r = 3 and r = 4 that can be solved by NPAQ.
There do exist input regions for P12 that cannot be solved by NPAQ but have adversarial exam-
ples (see below). One may notice that L2-D&C (s1) performs better than L2-D&C (s39) on P12 for
all the Hamming distances r = 2, 3, 4, which contradicts the results reported in Table 9. It is be-
cause Table 12 only shows the average execution time of the verification tasks that are successfully
solved by NPAQ. Indeed, L2-D&C (39) performs better than L2-D&C (s1) on average when all the
30 verification tasks for P12 under r = 4 are considered.

The average number of BDD nodes inGout
д and the average solving time by BNNQuanalyst are

reported in Table 13, where д denotes the predicted class of the input image. Note that the average
execution time reported in Table 12 includes the time used for BDD encoding and adversarial
example counting, while the average solving time reported in Table 13 only includes the time used
for adversarial example counting. By comparing the execution time in Table 12 and solving time in
Table 13, we can observe that most verification time of BNNQuanalyst is spent in BDD encoding.
We also observe that while the number of BDD nodes blows up quickly with the input size of the
BNN when the full input space is considered (cf. Table 8), it grows moderately when the input
region is relatively small even for large BNNs (e.g., with Hamming distance r = 2, 3, 4), as shown
in Table 13.

Compared with NPAQ. NPAQ runs out of time (8 hours) on 66 verification tasks (i.e., in P9 with
r = 4 and P12 with r = 2, 3, 4), while BNNQuanalyst successfully verified all the 360 verifica-
tion tasks. On BNNs that were solved by both NPAQ and BNNQuanalyst, BNNQuanalyst is often
significantly faster and more accurate than NPAQ. Specifically,

• L0-D&C (i.e., CUDD) is 3–2,226 times faster than NPAQ.
• L2-D&C (s1) is 6–2,389 times faster than NPAQ.
• L2-D&C (s39) is 106–684 times faster than NPAQ.
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Table 13. Average Number of BDD Nodes in

Gout
д and Average Solving Time of

BNNQuanalyst w.r.t. Table 12

Name r |Gout
д | Solving Time (s)

cudd s1 s39

2 2,115 <0.01 <0.01 <0.01

P7 3 42,545 0.07 0.02 <0.01

4 625,142 1.40 0.19 0.08

2 2,022 <0.01 <0.01 <0.01

P8 3 40,139 0.11 0.01 0.01

4 679,148 2.55 0.39 0.14

2 2,345 <0.01 <0.01 <0.01

P9 3 55,208 0.16 0.03 0.01

4 870,294 4.56 0.46 0.16

2 5,793 0.01 <0.01 0.01
P12 3 3,125 <0.01 <0.01 <0.01

4 3,901 <0.01 <0.01 <0.01

Fig. 15. Distribution of error rates of NPAQ.

We remark that our input propagation plays a key role in outperforming NPAQ; otherwise
the number of BDD nodes would blow up quickly with the number of hidden neurons per layer
and input size (cf. Table 8). Recall that the input propagation is implemented using the Exists-
operation and RelProd-operation whose worst-case time complexity is exponential in the num-
ber of Boolean variables, but they work well in our experiments. NPAQ encodes the entire BNN
and input region into a Boolean formula without input propagation. However, it is non-trivial to
directly perform input propagation at the Boolean logic level for large Boolean formulas.

Quality validation of NPAQ. Recall that NPAQ only supports approximate quantitative robust-
ness verification with probably approximately correctness. Our exact approach can be used to
validate the quality of such approximate approaches. Figure 15 shows the distribution of error
rates of NPAQ on all the 294 instances, where the x-axis denotes the instances successfully veri-
fied by NPAQ, and the y-axis is the corresponding error rate of the verification result. According
to Equation (8), the error rate τ should satisfy the following equation: Pr (τ ∈ [−0.44, 0.80]) ≥ 0.8.
We can observe that the error rates of all the 294 instances fell in the range of [−0.2, 0.2].

Details of robustness and targeted robustness. Figure 16 depicts the distributions of digits
classified by the BNN models P9 and P12 under Hamming distance r = 2, 3, 4 using the 10 MNIST
images in Figure 8, where the x-axis i = 0, . . . , 9 denotes the i-image. We can observe that P9
is robust for the 1-image when r = 2, but is not robust for the other images. (Note P9 is not
robust for the 1-image when r ≥ 3, which is hard to be visualized in Figures 16(b) and 16(c)
due to the small number of adversarial examples.) Interestingly, most adversarial examples of the
0-image are misclassified into the digit 2, most adversarial examples of the 5-image and 9-image are
misclassified into the digit 4, and most adversarial examples of the 8-image are misclassified into
the digit 1. With the increase of the Hamming distance, more and more neighbors of the 7-image
are misclassified into the digit 3. Though the BNN model P9 is not robust on most input images,
indeed it is t-target robust for many target digits t ; e.g., P9 is t-target robust for the 9-image when
t ≤ 2 and r = 2. We find that P12 is much more robust than P9, as P12 shows robustness for all
cases except for the 7-image when r = 2, {2, 7}-images when r = 3, and {2, 7, 8, 9}-images when
r = 4. Furthermore, we find that P12 is always t-target robust for all the images when t � {3, 4, 9}.
(Note that similar to P9, the small number of adversarial examples of P12 for the 2-image when
r ≥ 3 and {8, 9}-images when r = 4 is also hard to visualize in Figures 16(e) and 16(f).)
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Fig. 16. Details of robustness verification on P9 and P12 with 10 images and Hamming distance r = 2, 3, 4.

6.3.2 Comparing with Other Possible Approaches. Recall that NPAQ directly encodes a verifica-
tion task into a Boolean formula in conjunctive normal forms (CNFs) to which an approximate
model-counting solver is applied, whereas BNNQuanalyst directly encodes a BNN under an input
region with input propagation as a BDD to which the BDD operation SatCount is applied. Since
Boolean formula and BDD are two exchangeable representations, two questions are interesting:
(i) how efficient if the BDD model is built from the Boolean formula generated by NPAQ and
solved by the BDD operation SatCount? and (ii) how efficient if the Boolean formula is con-
structed from the BDD model generated by BNNQuanalyst and solved by applying an approximate
model-counting solver?

To answer these questions, we implement two verification approaches, i.e., NPAQ2BDD (con-
sisting of three sub-procedures: BNN2CNF + CNF2BDD + Solving) and BDD2NPAQ (consisting of
three sub-procedures: BNN2BDD + BDD2CNF + Solving). We conduct experiments on the BNNs
(P7, P8, P9, and P12) using the 0-image with Hamming distance r = 2, 3, 4 for computational cost
consideration. The implementation details are as follows:

• BNN2CNF: We use NPAQ to encode a verification task into a Boolean formula f in CNF.
• CNF2BDD: Given a formula f produced by BNN2CNF, we encode all the clauses of f into

BDDs based on which we compute the final BDD model G of f by applying the And-
operations with a divide-and-conquer strategy, similar to Section 3.5.1.
• BNN2BDD: We use BNNQuanalyst with L0-D&C to build a BDD modelGout

д of a verification
task, whereд denotes the predicted class of the input image used for defining an input region.
• BDD2CNF: Given a BDD Gout

д produced by BNN2BDD, we encode it as a Boolean formula
fGout

д
using the API (i.e., Dddmp_cuddBddStoreCnf) provided by CUDD.

• Solving: We use the approximate model-counting solver in NPAQ for solving Boolean for-
mulas and use the BDD operation SatCount for solving all the final BDDs.

Note that we use L0-D&C (i.e., CUDD) only because Sylvan cannot produce a Boolean formula
automatically; NPAQ is BNN2CNF + Solving and BNNQuanalyst is BNN2CNF + Solving.

Table 14 reports the results, where Columns (Time(s)) give the execution time for each sub-
procedure in seconds, and the last four columns give the solving time. Columns 3–4 (resp. Columns
10–11) give the number of variables (#Vars) and clauses (#Clauses) of the Boolean formula f (resp.
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Table 14. Robustness Verification under Hamming Distance Using Different Approaches,

Where -TO- (resp. -SO-) Indicates That the Computation Runs Out of Time (8 Hours)

(resp. Out of Storage (100 GB) When Saving the CNF Formula fGout
д

)

Name
r

Encoding Results of Four Approaches Solving Time(s)

BNN2CNF CNF2BDD BNN2BDD BDD2CNF
f G Gout

д fGout
д#Vars #Clauses Time(s) |G | Time(s) |Gout

д | Time(s) #Vars #Clauses Time(s)

2 717,590 1,315,602 54.34 N/A -TO- 2,994 0.79 100 140,753 0.42 310.5 N/A <0.01 146.7
P7 3 717,623 1,315,731 56.03 N/A -TO- 64,842 29.80 100 2,865,065 9.95 866.8 N/A <0.01 9,182

4 717,656 1,315,858 56.51 N/A -TO- 1,143,994 1,024 100 44,645,415 170.3 3,899 N/A 4.92 -TO-

2 337,646 601,556 44.88 N/A -TO- 809 0.33 100 159,236 0.48 101.0 N/A <0.01 191.0
P8 3 337,679 601,685 44.74 N/A -TO- 10,613 2.16 100 3,837,306 13.77 549.6 N/A 0.02 15,892

4 337,712 601,812 43.74 N/A -TO- 363,343 77.58 100 68,637,805 273.5 2,755 N/A 1.11 -TO-

2 908,082 1,638,938 62.04 N/A -TO- 3,188 2.89 100 141,031 1.35 518.6 N/A <0.01 317.1
P9 3 908,115 1,639,067 65.29 N/A -TO- 83,677 82.13 100 2,897,549 16.46 1,136 N/A 0.20 -TO-

4 908,147 1,639,194 60.12 N/A -TO- 1,120,119 1,773 100 59,234,719 329.2 -TO- N/A 4.18 -TO-

2 5,756,197 9,533,668 78.20 N/A -TO- 2,347 9.53 N/A N/A -SO- 6,169 N/A <0.01 N/A
P12 3 5,756,460 9,534,711 77.13 N/A -TO- 3,125 10.25 N/A N/A -SO- 17,199 N/A <0.01 N/A

4 5,756,751 9,535,753 73.19 N/A -TO- 3,901 19.60 N/A N/A -SO- -TO- N/A <0.01 N/A

N/A means that the data is not available.

fGout
д

) produced by BNN2CNF (resp. BDD2CNF), respectively. Column (|G |) (resp. (|Gout
д |)) gives

the number of BDD nodes of G (resp. Gout
д ) produced by CNF2BDD (resp. BNN2BDD).

We can observe that the Boolean formulas produced by BNN2CNF are too large to be handled by
CNF2BDD within the time limit (8 hours). Thus, NPAQ2BDD (i.e., BNN2BDD + BDD2CNF + Solv-
ing) is not realistic and building the BDD model directly from BNNs (i.e., BNNQuanalyst) is better
than building the BDD model from Boolean formulas produced by NPAQ (i.e., NPAQ2BDD). On
the other hand, though the number of Boolean variables of the Boolean formulas fGout

д
produced

by BDD2CNF is fixed to the input size (100 for P7, P8, and P9; 784 for P12), the number of clauses of
fGout

д
is often larger than that of the Boolean formulas f produced by BNN2CNF (except for P7, P8,

and P9 with r = 2). In particular, BDD2CNF fails to transform BDDs into Boolean formulas on P12.
Consequently, for hard verification tasks (i.e., large BNNs and input regions), building Boolean
formulas directly from BNNs (i.e., NPAQ) is better than building Boolean formulas from the BDD
models produced by BNN2BDD, and BDD2NPAQ performs significantly worse than NPAQ.

6.3.3 Maximal Safe Hamming Distance. As a representative of such an analysis, we evaluate our
tool BNNQuanalyst on 4 BNNs (P7, P8, P9, and P12) with 10 images for 2 robustness thresholds
(ϵ = 0 and ϵ = 0.03), and use s39 as our BDD encoding engine. The initial Hamming distance r is
3. Intuitively, ϵ = 0 (resp. ϵ = 0.03) means that up to 0% (resp. 3%) samples in the input region can
be adversarial.

Table 15 shows the results, where columns (SD) and (Time(s)) give the maximal safe Hamming
distance and the execution time, respectively. BNNQuanalyst solved 73 out of 80 instances. (For
the remaining seven instances, BNNQuanalyst ran six out of time and one out of memory, but
was still able to compute a larger safe Hamming distance. For these cases, we only record the
currently calculated result.) We can observe that the maximal safe Hamming distance increases
with the threshold ϵ on several BNNs and input regions. Moreover, P12 is more robust than the
others, which is consistent with its highest accuracy (cf. Table 3).

6.4 Interpretability

We demonstrate the capability of BNNQuanalyst on interpretability using the BNN P12 and the
{0, 1, 8, 9}-images because P12 has the largest input size 784, which makes the explanations more
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Table 15. Maximal Safe Hamming Distance Using Sylvan with 39 Workers, Where -TO- Denotes

Time Out (8 Hours) and -MO- Denotes Out of Memory (256 GB)

Image

P7 P8 P9 P12
ϵ = 0 ϵ = 0.03 ϵ = 0 ϵ = 0.03 ϵ = 0 ϵ = 0.03 ϵ = 0 ϵ = 0.03

SD Time(s) SD Time(s) SD Time(s) SD Time(s) SD Time(s) SD Time(s) SD Time(s) SD Time(s)

0 0 4.11 0 4.25 1 2.00 3 9.13 0 5.97 0 6.31 6 -TO- 6 -TO-
1 1 4.32 2 3.78 0 1.93 0 2.15 2 5.80 5 -MO- 4 112.5 6 -TO-
2 0 2.74 0 3.33 0 2.14 1 3.22 0 5.75 0 5.57 2 43.77 6 -TO-
3 1 3.09 1 3.02 1 1.52 2 2.86 1 5.72 2 6.16 5 307.4 6 9,398
4 0 3.73 0 4.06 0 2.84 0 2.74 0 8.45 2 7.30 5 263.9 6 7,895
5 0 3.11 0 3.34 1 1.76 1 2.47 0 6.40 0 5.24 6 183.3 6 142.5
6 3 14.51 5 -TO- 1 2.05 2 2.34 1 7.30 2 6.76 6 625.2 6 681.4
7 0 3.83 0 4.25 1 1.57 2 2.46 1 7.66 2 7.28 1 38.87 1 30.28
8 0 4.28 0 4.82 0 3.25 0 4.14 0 8.25 0 8.98 3 100.9 6 -TO-
9 0 4.30 0 4.01 0 2.92 0 1.46 0 8.94 0 7.34 3 63.74 6 5,479

Fig. 17. Graphic representation of PI-explanations and essential features.

visual-friendly. We use Lx (Gout
y ) to denote the set of all inputs in the input region given by the

x-image (based on Hamming distance or fixed indices) that are classified into the digit y.

PI-explanations. For demonstration, we assume that the input region is given by the fixed set
I = {1, 2, . . . , 28} of indices, which denotes the first row of pixels of 28 × 28 images. We compute
two PI-explanations of the inputs L0 (Gout

0 ) and L1 (Gout
4 ), respectively. The PI-explanations are

depicted in Figures 17(a) and 17(b), where the black (resp. blue) color denotes that the value of the
corresponding pixel is 1 (resp. 0), and the yellow means that the value of the corresponding pixel
can take arbitrary values. Figure 17(a) (resp. Figure 17(b)) suggests that, by the definition of the PI-
explanation, all the images in the input region given by the 0-image (resp. 1-image) and I obtained
by assigning arbitrary values to the yellow-colored pixels are always classified (resp. misclassified)
into the digit 0 (resp. digit 4), while changing one black-colored or blue-colored pixel may change
the predication result since a PI-explanation is a minimal set of literals. From Figure 17(a), we find
that the first row of pixels has no influence on the prediction of the 0-image, which means no
matter how we perturb the pixels from the first row of the 0-image, we can always get the same
and correct prediction result by P12.

Essential features. For the input region given by the Hamming distance r = 4, we compute two
sets of essential features for the inputs L8 (Gout

4 ) and L9 (Gout
4 ), i.e., the adversarial examples in

the two input regions that are misclassified into the digit 4. The essential features are depicted in
Figures 17(c) and 17(d). Recall that the black (resp. blue) color means that the value of the corre-
sponding pixel is 1 (resp. 0), and the yellow color means that the value of the corresponding pixel
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can take arbitrary values. Figure 17(c) (resp. Figure 17(d)) indicates that the inputs L8 (Gout
4 ) (resp.

L9 (Gout
4 )) must agree on these black- and blue-colored pixels.

7 RELATED WORK

In this section, we discuss the related work to BNNQuanalyst on qualitative/quantitative analysis
and interpretability of DNNs. As there is a vast amount of literature regarding these topics, we
will only discuss the most related ones.

Qualitative analysis of DNNs. For the verification of real-numbered DNNs, we broadly classify
the existing approaches into three categories: (1) constraint solving based, (2) optimization based,
and (3) program analysis based.

The first class of approaches represents the early efforts that reduce to constraint solving. Pulina
and Tacchella [78] verified whether the output of the DNN is within an interval by reducing to
the satisfiability checking of a Boolean combination of linear arithmetic constraints, which can
be then solved via SMT solvers. However, their reduction yields an over-approximation of the
original problem, and thus may produce spurious adversarial examples. Spurious adversarial ex-
amples are used to trigger refinements to improve verification accuracy and retraining of DNNs
to automate the correction of misbehaviors. Katz et al. [49] and Ehlers [28] independently imple-
mented two SMT solvers, Reluplex and Planet, for exactly verifying properties of DNNs that are
expressible with respective constraints. Recently, Reluplex was re-implemented in a new frame-
work Marabou [50] with significant improvements.

For the second class of approaches that reduce to an optimization problem, Lomuscio and
Maganti [60] verified whether some output is reachable from a given input region by reducing to
mixed-integer linear programming (MILP) via optimization solvers. To speed up DNN verifica-
tion via MILP solving, Cheng et al. [21] proposed heuristics for MILP encoding and parallelization
of MILP solvers. Dutta et al. [25] proposed an algorithm to estimate the output region for a given in-
put region that iterates between a global search with MILP solving and a local search with gradient
descent. Tjeng et al. [97] proposed a tighter formulation for non-linearities in MILP and a novel pre-
solve algorithm to improve performance. Recently, Bunel et al. [15] presented a branch-and-bound
algorithm to verify DNNs on properties expressible in Boolean formulas over linear inequalities.
They claimed that both previous SAT/SMT and MILP-based approaches are its special cases. Con-
vex optimization has also been used to verify DNNs with over-approximations [26, 110, 112].

For the third class, researchers have adapted various methods from traditional static analysis to
DNNs. A typical example is to use abstract interpretation, possibly aided with a refinement proce-
dure to tighten approximations [2, 33, 38, 56, 57, 59, 86–88, 98, 99, 115]. These methods vary in the
abstract domain (e.g., box, zonotope, polytope, and star-set), efficiency, precision, and activation
functions. (Note that [87, 88] considered floating points instead of real numbers.) Another type is to
compute convergent output bounds by exploring neural networks layer by layer. Huang et al. [44]
proposed an exhaustive search algorithm with an SMT-based refinement. Later, the search prob-
lem was solved via Monte-Carlo tree search [109, 111]. Weng et al. [108] proposed to approximate
the bounds based on the linear approximations for the neurons and Lipschitz constants [40]. Wang
et al. [104] presented symbolic interval analysis to tighten approximations. Recently, abstraction-
based frameworks have been proposed [4, 29, 58, 121], which aim to reduce the size of DNNs,
making them more amenable to verification.

Existing techniques for qualitative analysis of quantized DNNs are mostly based on con-
straint solving, in particular, SAT/SMT/MILP solving. SAT-based approaches transform BNNs into
Boolean formulas, where SAT solving is harnessed [20, 52, 71, 72]. Following this line, verifica-
tion of three-valued BNNs [47, 74] and quantized DNNs with multiple bits [9, 35, 41, 119] were
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also studied. Very recently, the SMT-based framework Marabou for real-numbered DNNs [50] has
been extended to support partially or strictly binarized DNNs [1].

Quantitative analysis of DNNs. Comparing to the qualitative analysis, the quantitative analysis
of neural networks is currently very limited. Two sampling-based approaches were proposed to
certify the robustness of adversarial examples [7, 106], which require only black-box access to the
models, and hence can be applied on both DNNs and BNNs. Yang et al. [115] proposed a spurious
region-guided refinement approach for real-numbered DNN verification. The quantitative robust-
ness verification is achieved by over-approximating the Lebesgue measure of the spurious regions.
The authors claimed that it is the first work to quantitative robustness verification of DNNs with
soundness guarantee.

Following the SAT-based qualitative analysis of BNNs [71, 72], SAT-based quantitative analysis
approaches were proposed [8, 34, 73] for verifying robustness and fairness, and assessing heuristic-
based explanations of BNNs. In particular, approximate SAT model-counting solvers are utilized.
Though some of them provide probably approximately correct (PAC) style guarantees, tremen-
dous verification cost has to pay to achieve higher precision and confidence. As demonstrated in
Section 6, our BDD-based approach is considerably more accurate and efficient than the SAT-based
one [8]. In general, we remark that the BDD construction is computationally expensive, but the
follow-up analysis is often much more efficient, while the SAT encoding is efficient (polynomial-
time) but �SAT queries are often computationally expensive (�P-hard). The computational cost of
our approach is more dependent on the number of neurons per linear layer but less relevant to the
number of layers (cf. Section 6.2.2), while the computational cost of the SAT-based approach [8] is
dependent on both of them.

Shih et al. [83] proposed a BDD-based approach to tackle BNNs, similar to our work, in spirit.
In this BDD-learning-based approach, membership queries are implemented by querying the BDD
for each input, and equivalence queries are implemented by transforming the BDD and BNN to
two Boolean formulas and checking the equivalence of two Boolean formulas under the input
region (in a Boolean formula) via SAT solving. This construction requires n equivalence queries
and 6n2+n·log(m) membership queries, wheren (resp.m) is the number of nodes (resp. variables) in
the final BDD. Due to the intractability of SAT solving (i.e., NP-complete), currently the technique
is limited to quite toy BNNs.

Interpretability of DNNs. Though interpretability of DNNs is crucial for explaining predictions,
it is very challenging to tackle due to the black-box nature of DNNs. There is a large body of
work on the interpretability of DNNs (cf. [43, 68] for a survey). One line of DNN interpretability is
based on individual inputs, which aims to give an explanation of the decision made for each given
input. Bach et al. [5] proposed to compute the feature scores of an input via a layer-wise relevance
backward propagation. Ribeiro et al. [81] proposed to learn a representative model locally for each
input by approximating the classifier. Sundararajan et al. [93] proposed to compute an integrated
gradient on each feature of the input that could be used to represent the contribution of that feature
to prediction. Following this line, saliency map-based methods were also proposed [22, 31, 84, 85,
89], varying in the way of computing the saliency map. Simonyan et al. [85] proposed to compute
an image-specific saliency map for each class via a single gradient-based backward propagation.
Later, Smilkov et al. [89] sharpened this map further by randomly perturbing the input with noises
and then computing the average of resulting maps. Another line of DNN interpretability is to learn
an interpretable model, such as binary decision trees [32, 117] and finite-state automata [107].
Then, an intuitive explanation could be obtained by directly querying these models.

Our interpretability analysis method is conducted by querying BDD models. In contrast to prior
work that focuses on DNNs and only approximates the original model in the input region, we
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focus on BNNs and give a precise BDD encoding w.r.t. the given input region. The BDD encoding
allows us to give a precise PI-explanation and essential feature analysis for an input region, which
cannot be done on DNNs. Similar to ours, the BDD-learning based method [42] has also used
PI-explanation for BNN interpretability, but the essential features were not studied therein.

8 CONCLUSION

In this article, we have proposed a novel BDD-based framework for the quantitative analysis of
BNNs. The framework relies on the structure characterization of BNNs and comprises a set of
strategies such as input propagation, divide-and-conquer, and parallelization at various levels
to improve the overall encoding efficiency. We implemented our framework as a prototype tool
BNNQuanalyst and conducted extensive experiments on BNN models with varying sizes and
input regions trained on the popular dataset MNIST. Experimental results on quantitative robust-
ness analysis demonstrated that BNNQuanalyst is more scalable than the existing BDD-learning
based approach, and significantly more efficient and accurate than the existing SAT-based
approach NPAQ.

This work represents the first but a key step of the long-term program to develop an efficient and
scalable BDD-based quantitative analysis framework for BNNs. For the future work, we plan to
evaluate our framework on more applications, improve its encoding efficiency further, and extend
it to handle general quantized DNNs.
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