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A B S T R A C T

Punctate White Matter Damage (PWMD) is a common neonatal brain disease. Especially, at the
neonatal stage, the best cure time can be easily missed because PWMD is not conducive to the
diagnosis based on current existing methods. Diffusion Tensor Magnetic Resonance Imaging (DT-
MRI, shorted as DTI) is a non-invasive technique that can study brain microstructures in vivo, and
provide information on movement and cognition-related fiber tracts and the lesion of PWMD is
relatively straightforward on T1 MRI, showing the center of the semi-oval, lateral ventricle, cluster, or
linear T1 high signals. Therefore, we ppropose a new pipeline to use T1 MRI combined with DTI for
better neonatal PWMD analysis based on DTI interpolation and multi-modality image registration.
Firstly, after preprocessing, neonatal DTI super-resolution is performed with the three times B-spline
interpolation algorithm based on the Log-Euclidean space to improve DTIs’ resolution to fit the T1
MRIs and facilitate fiber tractography. Secondly, the Symmetric Diffeomorphic registration algorithm
and inverse b0 image were selected for multi-modality image registration of DTI and T1 MRI. Finally,
the 3D lesion models were combined with fiber tractography results to analyze and predict the degree
of PWMD lesions affecting fiber tracts. Extensive experiments demonstrated the effectiveness and
super performance of our proposed method in comparison with alternative methods. This streamlined
technique plays an essential auxiliary role in diagnosing and treating neonatal PWMD.

1. Introduction
Punctate White Matter Damage (PWMD) is one of the

most common white matter damages in preterm infants
(Niwa et al., 2011; Nguyen et al., 2019; Tusor et al., 2017).
22% of premature infants show PWMD, and the symptoms
are cognitive, motor or a visual impairment, and even de-
velop into cerebral palsy in the later stages(Arrigoni et al.,
2016). These symptoms are not evident in the neonatal
period, so the best treatment period is easily missed. There-
fore, converting undetectable clinical signs into quantifiable
results to analyze and predict PWMD by related medical
image processing methods is crucial for disease treatment
and neurodevelopment.

The lesion of PWMD is relatively clear on T1 MRI,
showing the center of the semi-oval, lateral ventricle, cluster,
or linear T1 high signals (Wang & Mao, 2014). Meanwhile,
the cerebral white matter fiber tracts from Diffusion Tensor
Magnetic Resonance Imaging (DT-MRI, referred to as DTI)
can be related to movement and cognition. The status of
neonatal PWMD can be analyzed and predicted by the
damage to white matter fiber tracts. Therefore, the image
fusion technique of DTI and T1 MRI is used to research and
analyze neonatal PWMD, combining the DTI tractography
results with the lesions in T1 MRI. However, because the
collection of neonatal DTI is more complex, the resolution
is much lower than the T1 MRI, which is not conducive to
the registration with the T1 MRI. And the DTI tractography
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results are not precise enough because the development of
neonatal fiber tracts is incomplete. To solve the abovemen-
tioned problems, the image super-resolution technique is
used for DTI to improve the resolution and the tractography
results.

Moreover, the fusion of DTI and T1 MRI is usually
performed by image registration. But there are few methods
of this multi-modality image registration since DTI is a
tensor image, while T1 MRI is a scalar image. Therefore,
a new pipeline of neonatal PWMD analysis based on DTI
super-resolution and multi-modality image registration is
proposed.

DTI super-resolution algorithms can be divided into two
categories. The first is the traditional tensor interpolation
algorithm, and the other is the super-resolution method
based on learning. Different from general scalar image in-
terpolation, the tensor interpolation of DTI is much more
complicated. Several tensor interpolation methods have been
proposed. For example, tensor interpolation method based
on tensor component form (Zhukov & Barr, 2002), improved
bilinear tensor interpolation method based on image gradient
features of the tensor field (B, 2007) , and tensor interpola-
tion method based on tensor eigenvalues and eigenvectors.
These Euclidean space tensor interpolation methods can be
calculated, but the swelling and non-positive definite effects
of the interpolated tensor may be caused (Hotz et al., 2010;
Yassine, 2010). The tensor interpolation method based on
Riemann space (Pennec et al., 2006) can avoid these defects,
but the calculation is too complicated and takes a long
time. In recent years, the development of super-resolution
methods based on learning has been proposed more and
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more rapidly (Dong et al., 2014; Ledig et al., 2017; Lim
et al., 2017; Haris et al., 2018; Bashir & Wang, 2021b; Wang
et al., 2022; Bashir & Wang, 2021a); a systematic review
of image super-resolution techniques is performed by Bashir
et al. (Bashir et al., 2021). This kind of method has a good
effect on general images. However, directly applying these
networks to DTI tensors will also quickly cause the defects
described above and cannot guarantee the consistency and
the directions of the tensors. At the same time, the network’s
training model needs a large amount of data, which is hardly
obtained.

The tensor interpolation method based on Log-Euclidean
space is a reasonable extension of the Riemann space
interpolation method (Arsigny et al., 2006; Arsigny, 2004).
In Riemann space, the cone of a positive definite symmetric
matrix is regarded as a standard and complete manifold; the
swelling effect and non-positive substantial effect can be
overcome on this manifold, but the calculation is extensive
[14]. In 2006, based on Riemann’s space theory, Arsigny et
al. (Arsigny et al., 2006; Arsigny, 2004), proposed DTI inter-
polation in Log-Euclidean space, which can also guarantee
the constraint property of tensor and simplify the calculation
in Riemannian space. In 2008, Fillard et al. (Fillard, 2008)
proposed a linear interpolation method based on Riemannian
space. However, the interpolation process will damage the
tensor anisotropy (Kung et al., 2011) . Therefore, since the
tensor interpolation method based on Log-Euclidean space
not only inherits the advantages of the Riemann space tensor
interpolation algorithm but also significantly reduces the
computational complexity, the B-spline tensor interpolation
method based on Log-Euclidean space is chosen in this paper
to eliminate swelling effect and non-positive definite effect
and also reduced computing time and complexity.

For the registration of DTI and T1 MRI, several registra-
tion methods of DTI and T1 MRI have been proposed. For
example, Symmetric Dieomorphic (referred to as Syn) Reg-
istration of DTI, T1 MRI, and Cerebral Blood Flow MRI (re-
ferred to as CBF) (Avants et al., 2007), and the registration of
DTI and T1 MRI based on Mutual Information (referred to as
MI), which uses DTI as the constraint condition of T1 image
in deformation tensor morphometry (Studholme, 2007). For
other multi-modality image registration algorithms, there are
DTI multi-channel image registration algorithms based on
diffeomorphic demons registration (referred to as demons)
(Tang et al., 2013), the registration algorithm of DTI and
fMRI based on Large Deformation Diffeomorphic Metric
Mapping (referred to as LDDMM) (Miller et al., 2005),
utilizing convolutional neural networks for medical image
registration (Sloan et al., 2018). However, a convolutional
neural network needs many image data as the training set.
This paper’s data set is too small to use a convolutional
neural network as the registration method.

Meanwhile, these registration algorithms use FA images
for image registration instead of other derivative images of
DTI. Therefore, to compare which modality of DTI deriva-
tive image is better for the registration with T1 MRI, five
derivative images of DTI (including FA, MD, MD-in, b0,

Figure 1: Flowchart of the experiment. First, we use the b0
inverse image with the same resolution to register with the
T1 image to obtain the deformation field, which acts on the
high-resolution DTI image, and carries out fiber tractography
on the DTI image; Then, 3D modeling of lesions reconstruction
of T1 image was performed; Finally, the fibers and the lesions
were mapped to the same space for quantitative analysis.

b0-in) are tested in this paper. The best derivative image b0-
in of DTI is selected as the multi-modality image registration
algorithm needed.

In summary, a new pipeline of neonatal PWMD analysis
based on DTI super-resolution and multi-modality image
registration is proposed in this paper. PWMD can be effec-
tively analyzed in this way.

2. Method
The B-spline tensor interpolation method based on Log-

Euclidean space for DTI super-resolution. The DTI and Syn
registration algorithm’s derivative images are used for DTI
and T1 MRI registration. After interpolation and registra-
tion, draw 15 ROIs on DTI and used for DTI tractography.
The lesions in T1 MRI were modeled in 3D and superim-
posed with DTI tractography results. The main flowchart is
shown in Fig. 1.

2.1. Materials
The neonatal DTI and T1 MRI data are from the Depart-

ment of Radiology in the First Affiliated Hospital of Xi’an
Jiaotong University. A GE 3.0T SignaHDxt MRI scanner
was used to scan six neonatal suspected of having PWMD.
DTI data is in good shape, and there is no motion artifact.
The specific scanning parameters of the DTI data are as
follows: 30 gradient directions, b value, is 0 and 600s/mm2,
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TR=11000ms, TE=69.5ms, the layer thickness is 2.5mm,
continuous scanning without gaps, FOV=180×180mm, the
matrix is 128×128. The DTI resolution is 256×256×44, and
the T1 MRI resolution is 256×256×108.

2.2. Pre-processing
In data preprocessing, the diffusion-weighted magnetic

resonance images (referred to as DWIs) are performed with
the correction of gradient field inconsistency and eddy
current. After this, the skull is stripped, and the brain
mask is calculated. These steps are completed in FSL
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) with default param-
eters. Finally, tensor estimation is performed in DTI-TK
(http://dti-tk.sourceforge.net/pmwiki/pmwiki.php) to obtain
the DTI.

2.3. DTI interpolation
Currently, widely used DTI interpolation algorithms are

based on Euclidean space, which causes the swelling effect
and non-positive definite effect of the interpolation tensor
(Dong et al., 2014; Ledig et al., 2017). Non-positive actual
effect: after interpolation, the eigenvalue of the interpolated
tensor matrix may be zero or negative, which does not meet
the requirement of positive-definite of the matrix. This effect
will make it challenging to visualize tensor fields. Non-
positive definite tensor also has no real physical meaning in
image processing. Swelling effect: in the Euclidean space,
the interpolated tensor matric, calculated by the weighted
sum of two tensors, always has a larger matrix determinant
than another tensor matrix. The swelling effect means that
the dispersion of random variables corresponding to the
interpolation tensor is larger than that of another tensor
which is intuitively incompatible with physical meaning.

2.3.1. DTI interpolation based on Riemann space
Fillard (Fillard, 2008) and Pennec (Pennec et al., 2006)

proposed a new metric that endows the tensor space with
affine-invariant Riemannian metrics to overcome this defi-
ciency. It leads to strong theoretical properties: the positive
definite symmetric matrices cone is replaced by a regular and
complete manifold without boundaries (null eigenvalues are
at infinity). In this metric, the interpolation tensor between
two tensors is obtained by its linear interpolation on the
shortest geodesic. For affine invariant metrics, the distance
between a symmetric matrix with negative eigenvalues and
zero eigenvalues and any tensor is infinite. Therefore, this
method can avoid the appearance of non-positive eigenval-
ues. Although the swelling effect and non-positive definite
effect are avoided, the amount of interpolation calculation
required is much more than other methods.

2.3.2. DTI interpolation based on Log-Euclidean
space

Arsigny et al. (Arsigny et al., 2006) proposed a Log-
Euclidean space for tensor interpolation to overcome the
computational constraints in Riemann space, Arsigny. This
method transforms all the computation of tensor matrix into

the calculation of vector without any unnecessary complex-
ity and dramatically reduces the computation. And it also can
avoid the swelling effect and non-positive definite effect. It
is one of the most classical metrics in tensor computing.

2.3.3. B-spline DTI interpolation based on
Log-Euclidean space

With the research of affine invariant metrics in Riemann
space and Log-Euclidean space, more and more interpola-
tion methods can be used for DTI interpolation. Barmpoutis
et al. (Barmpoutis et al., 2007) extended the interpolation
method of B-spline in vector value image to tensor image
interpolation and proposed B-spline interpolation of tensor
image based on Riemann metric.

Suppose there are N diffusion tensors on a one-dimensional
grid (𝐃1,𝐃2, ...𝐃𝑁 ) and then interpolate between these N
tensors. In linear interpolation, the interpolated point can
be simply computed by a point on a geodesic connecting
two continuous tensors can be obtained by computing the
points on a geodesic connecting two continuous tensors. In
higher dimensional space, a series of control points and node
vectors are needed for interpolation. For B-spline interpola-
tion in k-1 times tensor space, there should be 𝑁 + 𝑘 − 2
control points (𝐀0,𝐀1, ...𝐀𝑁+𝑘−3) and 𝑁 + 2(𝑘 − 1) nodes
(𝐁−𝑘+1,𝐁−𝑘+1, ...,𝐁𝑁+𝑘−2) . For tensor 𝐃(𝑢), 𝑢 ∈ [𝑢𝑗 , 𝑢𝑗+1)
, B-spline interpolation based on Log- Euclidean space are
chosen for DTI interpolation. B-spline curve equation in
Log-Euclidean space is given by

𝐃(𝑢) =
𝑛∑

𝑗=0
�̃�𝑗𝐵𝑗,𝑘(𝑢) (1)

�̃�𝑗 represents the control point tensor in Log-Euclidean
space. In this space, cubic B-spline is chosen for DTI inter-
polation because cubic B-spline is precise enough and has
moderate computation. According to the properties of the
b-spline curve, the cubic b-spline (𝑘 = 3) curve equation of
tensor in Log-Euclidean space is given by

D(u)=exp

⎛⎜⎜⎜⎝
1
6

(
𝑢3 𝑢2 𝑢1 1

)
𝐌𝛼

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝
log(𝐃0)
log(𝐃1)
log(𝐃2)
log(𝐃3)

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ (2)

𝐌𝛼 =

⎛⎜⎜⎜⎝
−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

⎞⎟⎟⎟⎠ (3)

The B-spline curve in Log-Euclidean space is extended
to the B-spline surface, and the B-spline surface equation of
the two-dimensional tensor space is given by

𝐃(𝑢, 𝑣) =𝑒𝑥𝑝

⎛⎜⎜⎜⎜⎝
1
36

⎛⎜⎜⎜⎜⎝
𝑢3

𝑢2

𝑢1
1

⎞⎟⎟⎟⎟⎠
𝑇

𝐌𝛼

⎡⎢⎢⎢⎢⎣
log(𝐃0,0) log(𝐃0,1) log(𝐃0,2) log(𝐃0,3)
log(𝐃1,0) log(𝐃1,1) log(𝐃1,2) log(𝐃1,3)
log(𝐃2,0) log(𝐃2,1) log(𝐃2,2) log(𝐃2,3)
log(𝐃3,0) log(𝐃3,1) log(𝐃3,2) log(𝐃3,3)

⎤⎥⎥⎥⎥⎦
𝐌𝑇
𝛼

⎛⎜⎜⎜⎜⎝
𝑣3

𝑣2

𝑣1
1

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠

(4)
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For the interlayer interpolation of DTI, cubic B-spline
curve equations in Log-Euclidean space for DTI interpola-
tion and the interpolated tensor can be obtained by inter-
polating the four surrounding tensors. For the layer inter-
polation of DTI, cubic B-spline surface equations in Log-
Euclidean space for DTI interpolation and the interpolated
tensor can be obtained by the interpolation of the 16 sur-
rounding tensors. Because of the high order continuity of
the B-spline, this method can process the tensor image with
noise, and the interpolation image is smooth.

2.4. Registration of DTI and T1 MRI
T1 images are scalar images, while DTI images are

tensor images. Registration of different modal images is
complex. DTI derivative images are scalar images, so they
can be selected for registration with T1 MRI. However, the
registration results between different DTI derivative images
and T1 MRI are normally different. It is still a open question
on which DTI derivative image is the best for the registration
of DTI and T1 images. Fractional Anisotropy (referred to
as FA) image, Mean Diffusion (referred to as MD) image,
and b0 image is derived from DTI are chosen for DTI
and T1 MRI registration in this paper. In the MD image
and b0 image, cerebrospinal fluid show a high signal and
white color, which is the opposite of T1 MRI. Therefore,
the MD image and b0 image are processed by inverse gray
transformation, named MD-inverse (referred to as MD-in)
image and b0-inverse (referred to as b0-in) image, which
makes cerebrospinal fluid shows low signal and gray color.
After this processing, the MD-in image and b0-in image are
similar to T1 MRI, so that they can be used for DTI and T1
MRI registration.

We use multi-modality medical image registration-based
DTI derivative images for the registration of DTI and T1
MRI. Speciifically, syn registration algorithm is used for
registration, where five kinds of DTI derivative images are
used. Visual evaluation, the overlap and error rates after
registration were used to evaluate the results. Since the
punctate lesion of PWMD is located on the T1 image, the
location of the lesion needs to be accurate and cannot be
changed. Therefore, in this paper, the T1 image is used as
the template to register DTI on the T1 image to obtain the
registered DTI image. The experimental procedure of the
registration part is shown in Fig.2.

2.4.1. T1 MRI mask making
DTI mask can be generated automatically during DTI

preprocessing. However, the neonatal brain is not fully de-
veloped, and there is no apparent separation between the
brain tissue and the skull. In addition, the artifact of neonatal
data collection is significant, resulting in the mask’s low
accuracy generated by neonatal T1 MRI. To generate a more
accurate T1 MRI mask, T1 MRI was selected as the template
to register the b0 image, and the generated deformation field
was applied to the DTI mask to obtain a more accurate T1
MRI mask. This T1 MRI mask can be used as input in
registration. Fig.3 shows the mask of two images.

Figure 2: Syn registration algorithm and DTI derivative
images.

Figure 3: Left is the DTI mask generated automatically; right
is the T1 MRI mask generated manually.

2.4.2. Registration results and evaluation
The registration results of DTI and T1 MRI are shown

in Fig.4. From b0 image and FA image registration results,
it can be seen that genu is almost invisible on the same slice.
For MD image, MD-in image, and b0-in image registration
results, genu is clearer on the same slice. Therefore, it can
be speculated that the registration results of the MD image,
MD-in image, and b0-in image is better than that of the b0
image and FA image, among which the FA image has the
worst registration effect.

Many subjective factors in the visual evaluation results
might be prone to unpredictable errors and may lead to
inaccurate evaluation results.

However, the object in this study is neonatal with sus-
pected PWMD, so the registration data selected are all
neonatal. Because neonatal brain development is incom-
plete, and the white matter fiber bundle is thin and not com-
pletely myelin, most of the multi-modality image registration
evaluation criteria only apply to adult DTI data. Therefore,
in this paper, the overlapping rate and error rate Forsberg
et al. (2011) of the brain tissue of the registered DTI and
T1 images were selected to evaluate the results of multi-
modality image registration.
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(a) b0 registration re-
sult

(b) FA registration re-
sult

(c) MD registration re-
sult

(d) b0-in registration
result

(e) MD-in registration
result

Figure 4: Different registration results with Syn algorithm in
the same slice; the white box is the region of genu.

We selected two overlapping rates to evaluate the overall
brain registration accuracy of multi-modality image regis-
tration. The quantitative indexes measure expressed as the
degree of overlap between the template image and the image
volume after registration. The first quantitative index is
Template Overlap (referred to as TO), which is defined as the
volume of the overlapping region of the template image and
the registered image divided by the volume of the template
image. The larger the TO is, the better the registration result
will be. TO is given by

𝑇𝑂 =
𝑇 𝑒𝑚

⋂
𝑀𝑜𝑣

𝑇 𝑒𝑚
(5)

𝑇 𝑒𝑚 represents the template image region which means
T1 MRI. 𝑀𝑜𝑣 is the image volume after registration which
means registered DTI. 𝑇 𝑒𝑚

⋂
𝑀𝑜𝑣 represents the area of

the overlapping area between the template image and the
image after registration.

The second quantitative index is Union Overlap (referred
to as UO), defined as the overlapping area volume of the
template image and the registered image divided by the
area volume of the template image and the registered image
union. The larger the UO is, the better the registration result
will be. UO is given by

𝑈𝑂 =
𝑇 𝑒𝑚

⋂
𝑀𝑜𝑣

𝑇 𝑒𝑚
⋃

𝑀𝑜𝑣
(6)

To supplement the evaluation criteria in the above equa-
tions, false-negative errors (referred to as FNE) and False
positive errors (FPE) are also calculated. FNE is a measure
of the template image volume incorrectly identified as a
non-template image in registration. It is the volume of the
template image outside the registered image divided by the

Table 1
Average of four parameters.

FA MD MD-in b0 b0-in

TO 0.8716 0.9178 0.9300 0.8955 0.9315
UO 0.8284 0.8400 0.8409 0.8296 0.8499
FNE 0.1063 0.0617 0.0694 0.0736 0.0635
FPR 0.1052 0.1220 0.1184 0.1232 0.0945

volume of the template image. The smaller the UO is, the
better the registration result will be. FNE is given by

𝐹𝑁𝐸 =
𝑇 𝑒𝑚∖𝑀𝑜𝑣

𝑇 𝑒𝑚
(7)

𝑇 𝑒𝑚∖𝑀𝑜𝑣 represents the size of the part of the template
image that does not overlap with the registered image.

𝐹𝑃𝐸 is a measure of the volume outside the template
image that has been incorrectly identified as a template
image which is defined as the volume outside the template
image divided by the volume of the registered image, which
is given by

𝐹𝑃𝐸 =
𝑀𝑜𝑣∖𝑇 𝑒𝑚

𝑀𝑜𝑣
(8)

𝑀𝑜𝑣∖𝑇 𝑒𝑚 represents the size of the part of the image
that does not overlap with the template image after registra-
tion.

We use 5 DTI-derived images and Syn registration al-
gorithms to register six newborn subjects. And the TO, UO,
FNE, and FPE of registration results are averaged to evaluate
the registration result as shown in Table 1.

From the results, we can see the following:
For all of the DTI-derived images, the comparisons are

𝑇𝑂𝑏0−𝑖𝑛 > 𝑇𝑂𝑀𝐷−𝑖𝑛 > 𝑇𝑂𝑀𝐷 > 𝑇𝑂𝑏0 > 𝑇𝑂𝐹𝐴
𝑈𝑂𝑏0−𝑖𝑛 > 𝑈𝑂𝑀𝐷−𝑖𝑛 > 𝑈𝑂𝑀𝐷 > 𝑈𝑂𝑏0 > 𝑈𝑂𝐹𝐴
𝐹𝑁𝐸𝑀𝐷 < 𝐹𝑁𝐸𝑏0−𝑖𝑛 < 𝐹𝑁𝐸𝑀𝐷−𝑖𝑛 < 𝐹𝑁𝐸𝑏0 <

𝐹𝑁𝐸𝐹𝐴
𝐹𝑃𝐸𝑏0−𝑖𝑛 < 𝐹𝑃𝐸𝐹𝐴 < 𝐹𝑃𝐸𝑀𝐷−𝑖𝑛 < 𝐹𝑃𝐸𝑀𝐷 <

𝐹𝑃𝐸𝑏0

The best result is the b0-in image, and the result of the
MD-in image is a little worse than the b0-in image. The result
of the MD image is third, and the result of the b0 and FA
image is the worst, consistent with the visual evaluation.

2.5. Draw 15 ROIs
There are about 15 ROIs associated with PWMD, namely

Genu, Splenium, bilateral cingulum (referred to as cg),
bilateral corticospinal tract (referred to as cst), bilateral
superior thalamic radiation (referred to as str), bilateral
posterior thalamic radiation (referred to as ptr), superior
bilateral fasciculi fronto-occipitalis (referred to as sfo) and
brain fornix (referred to as fx). We have drawn these 15 ROIs
in DTI, as shown in Fig. 5.
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Figure 5: Neonatal DTI with 15 ROIs. The green part is the
marked ROIs, and the names of ROIs are marked with red lines
and white words.

3. Results
3.1. DTI super-resolution

To compare the difference between original DTI and
interpolated DTI to evaluate the effect of the interpolation
method, the original DTI with resolution of 256×256×44, is
resampled to obtain the DTI with resolution of 128×128×30
firstly. And then, the resampled DTI is interpolated by a dif-
ferent tensor interpolation method to obtain the new DTI, of
which resolution is restored to 256×256×44. The resolution
of both original DTI and interpolated DTI are 256×256×44,
so they can be compared to evaluate different tensor interpo-
lation methods. The interpolated results of the four methods
are shown in Fig.7.

It can be seen from Fig.6, the DTI edge becomes rough
after the down-sampling, and each part is jagged due to the
reduction of resolution. Four different interpolation methods
were used to interpolate the DTI after the reduction of
sampling. The DTI edge of EU-L DTI is fuzzy and jagged.
In EU-B DTI, a series of error interpolation tensor points
appear outside DTI, but the other part is smooth. In LE-
L DTI, the interpolated edge is smoother, but each part
still has some serration. In LE-B DTI, the interpolated edge
and each part in DTI are relatively smooth, and there is no
problem with many false interpolation tensor points in EU-
B. Therefore, the effect of the B-spline interpolation method
based on Log-Euclidean space is the best.

The genu in interpolated DTI was magnified for obser-
vation, as shown in Fig.7.

It can be seen from Fig.7, the genu of down-sampling
DTI becomes fuzzy and jagged. The Genu in EU-L and LE-
L DTI are still relatively fuzzy, and the optimization effect of

Figure 6: Four interpolation results for Linear interpolation
based on Euclidean space (EU-L), B-spline interpolation based
on Euclidean space (EU-B), Linear interpolation based on Log-
Euclidean space (LE-L) and B-spline interpolation based on
Log-Euclidean space (LE-B).

Figure 7: Genu in four interpolated DTI. The first one is
original DTI, The second one is resample DTI, The last four
pictures show four different interpolation results.

interpolation is very low compared with the down-sampling
DTI. The Genu in EU-B and LE-B DTI are relatively clear
and smooth, which is very close to genu in original DTI.
Therefore, the effect of the B-spline interpolation method
based on Log-Euclidean space is the best.

The DTI fiber tractography results in different ROIs are
the focus of this paper, so the fiber tractography results of
genu, splenium, str and ptr before and after interpolation in
6 subjects are selected. The average FA values of 6 subjects
of DTI fiber tractography results are calculated, and shown
in Table.2.

It can be seen from Table.5, the FA values of DTI fiber
tractography results of EU-L and LE-L are significantly
decreased. The FA values of DTI fiber tractography results
of EU-B and LE-B decrease less, and LE-B is closest to the
original data. Therefore, the anisotropy of interpolated DTI
is well maintained with LE-B.

Three kinds of DTI derivative images, FA image, Mode
image and RA image, are chosen to analyze the derivative
images of interpolated DTI and original DTI by MSE. MSE
represents the mean of the sum of squares of errors at the
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Table 2
The average FA values of interpolated DTI fiber tractography.

splenium genu str ptr

original 0.4399 0.3643 0.2597 0.3098
EU-L 0.3709 0.3053 0.2224 0.2734
EU-B 0.4231 0.3400 0.2481 0.2965
LE-L 0.3838 0.3094 0.2229 0.2750
LE-B 0.4267 0.3401 0.2490 0.3006

Table 3
MSE comparison of interpolated DTI and original DTI.

FA Mode RA

EU-L 0.0054 0.0546 0.0015
EU-B 0.0447 0.0674 0.0290
LE-L 0.0036 0.0481 0.0084
LE-B 0.0035 0.0420 0.0072

corresponding points between the interpolated DTI and the
original DTI. The result is shown in Table 3.

The smaller is the MSE, the smaller the difference be-
tween the interpolated DTI and the original DTI will be. It
can be seen from Table 6, the interpolated result of LE-B is
the best, and the interpolated result of EU-L and EU-B is the
worst.

The above interpolation operation is to interpolate the
down-sampling DTI to the same resolution as the original
DTI. The only purpose is to evaluate and analyze the inter-
polation algorithm by comparing the difference between the
original DTI and the interpolated DTI, and the conclusion is
that B-spline tensor interpolation based on Log-Euclidean
space is the best. However, this paper aims to interpolate
the original DTI to the same resolution as T1 MRI. After
interpolation, the DTI resolution is greatly improved, and
the fiber tractography results are optimized. The resolution
of T1 MRI is 256×256×108, and the resolution of original
DTI is 256×256×44. Its resolution is low, and the fiber
tractography result is poor. After the above analysis, the B-
spline interpolation method based on Log-Euclidean space
is selected to interpolate the original DTI, and the resolution
of interpolated DTI is increased to 256×256×108.

Splenium, Genu, str and ptr are selected as examples.
The fiber tractography results of original DTI and interpo-
lated DTI are used to compare the changes before. The fiber
tractography results of healthy adults were provided as a
reference. The results are shown in Fig.8.

It can be seen that the fiber tractography results of DTI
interpolated by B-spline interpolation method based on Log-
Euclidean space have been optimized, which is closed to the
fiber tractography results of DTI adult, especially Splenium
and ptr.

Figure 8: The fiber tractography results of original DTI,
interpolated DTI, and adult DTI. The images from top to
bottom are Genu, Splenium, str, ptr, and after interpolation.

Figure 9: Registration results. The left two pictures show the
T1 MRI and b0-in used in the registration process, and the
third picture shows the registration results.

3.2. Registration of DTI and T1 MRI
The Syn registration method is selected. T1 MRI is taken

as a template image, and a T1 mask is selected. The b0-
in image was used for registration. The deformation field
is applied to the original DTI, and the tensor orientation is
conducted to obtain the final registered DTI. The results are
shown in Fig.9. From left to right: T1 MRI, b0-in, and the
final registered DTI.

3.3. Neonatal PWMD analysis
3.3.1. T1MRI lesion model construction

In the case of a neonatal T1, MRI suspected to have
PWMD is shown in Fig.10. The lesions on T1 MRI are
sketched manually, and the three-dimensional model of the
lesions is constructed, as shown in Fig.11. For the conve-
nience of analysis and observation, the 3D model of the
lesion can be divided into six parts for analysis as shown
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Table 4
The average FA values of interpolated DTI fiber tractography.

a b c d e f

slice 69-70 71-72 71-72 72-74 73-79 73-76
lesion superficial area(mm2) 17.80 16.87 21.56 30.74 126.0 7.87
lesion volume(mm3) 6.13 5.49 7.53 13.57 65.93 1.51

(a) (b)

Figure 10: Lesions in neonatal T1 MRI. The lesions are in a
red rectangle which is very clear.

Figure 11: 3D model of lesions. The lesions area is marked
with green.

in Fig.12. The 3D model of the lesion was analyzed with the
results shown in Table 4.

3.3.2. Fiber tractography results and PWMD analysis
The DTI (interpolated and registered data previously)

and generated 15 ROIs are used for fiber tractography. In
addition, the fiber tractography is combined with the 3D
lesion model generated above, and the position relationship
is observed and analyzed, as shown in Fig.13.

It can be seen that the fiber tractography of r-ptr, r-sfo,
r-scr, r-cst and r-str in the are close to the lesion model, where
r-scr, r-sfo and r-cst intersect with the lesion. The degree
of fiber tract damage with PWMD can be estimated from
the proportion of fiber tracts affected by the PWMD lesion
model to total fiber tracts e, and the results are shown in
Table 5.

Figure 12: Six parts of the 3D lesion model. In each image,
we mark the lesion area with different colors to distinguish it
from the surrounding grayscale image.

Figure 13: Combine 3D lesion model with fiber tractography.
The yellow green lines in the figure represent fiber bundles, and
the irregular spheres in other colors represent lesions.

Table 5
The damage degree of fiber tracts.

total damaged fiber tracts damage degree

R-sfo 9 4 44.4%
R-scr 107 12 11.21%
R-cst 267 9 3.37%

This paper proposes a new technique of neonatal PWMD
analysis based on DTI interpolation and multi-modality im-
age registration. The algorithm includes B-spline interpola-
tion based on Log-Euclidean space, multi-modality image
registration of DTI and T1 MRI, and analysis of the influence
of PWMD lesion on fiber tracts. DTI super-resolution and
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multi-modality registration algorithms are effective and can
predict and analyze PWMD.

Punctate White Matter Damage (PWMD) is one of the
most common white matter damages. Therefore, converting
undetectable clinical symptoms into quantifiable results to
analyze and predict PWMD using related medical image
processing methods is crucial for disease treatment, neu-
rodevelopment, and possible future methods.

Because the acquisition of neonatal DTI is complex, the
resolution is much lower than T1 MRI, which is not con-
ducive to the registration of T1 images, and the development
of neonatal white matter fiber tracts is not complete; the
obtained results of fiber tractography are poor. To solve this
problem, the super-resolution method can be adopted for
neonatal DTI to improve the resolution of DTI, facilitate the
realization of registration, and help improve the results of
DTI fiber tractography. In addition, T1 images need to be
registered with DTI to fuse the lesions in T1 images with
the white matter fiber tracts of DTI; while DTI is a tensor
image and T1 images are scalar images, the registration is
complex because the DTI has a variety of scalar derivative
images that can be used with T1 image registration.

Therefore, this paper proposes a new method to ana-
lyze neonatal white matter injury based on DTI interpola-
tion and multi-mode image registration. In this paper, a b-
spline interpolation method based on Log-Euclidean space
is implemented to interpolate neonatal DTI, and the three
times B-spline interpolation method of Euclidean space is
applied to Log-Euclidean space, which is suitable for tensor
calculation. The interpolation method ensures the essential
characteristics of the tensor, avoids the swelling effect and
non-positive definite effect of the interpolation tensor, and
improves the tensor information of the neonatal DTI, making
the results of fiber tractography richer and more accurate.

Subsequently, Syn registration method was used to reg-
ister five derivative images of DTI (FA, MD, b0, md-in,
and b0-in image). The evaluation indexes based on vision
and overlap rate were selected to evaluate the registration
results. The results showed that the b0-in image had the best
effect. Finally, the T1 MRI lesions were 3D modeled, and
the neonatal DTI containing 15 ROIs was made and used for
DTI fiber tractography.

By mapping the results of fiber tractography with the
lesion model in the same space, the parameters of the lesion
model and the degree of influence on the fiber tracts were
calculated. And the damage situation of neonatal PWMD
was analyzed, which can effectively provide references for
the diagnosis and prediction of PWMD.

In the experiment, it was found that some essential fiber
tracts of the neonatal were not myelin sheathing and could
not be displayed by interpolation (such as slf), making the
experimental results imperfect. Regarding registration, the
effect of using the T2 image as the medium to register the
T1 image with DTI should be the best. However, there is
no T2 image in the data, so the registration result needs im-
provement. Overall, according to the existing data and actual

situation, the method in the paper can provide practical help
for the early analysis of neonatal PWMD.

4. Discussion
This paper proposes a new technique of neonatal PWMD

analysis based on DTI interpolation and multi-modality im-
age registration. The algorithm includes B-spline interpola-
tion based on Log-Euclidean space, multi-modality image
registration of DTI and T1 MRI, and analysis of the influence
of PWMD lesion on fiber tracts. DTI super-resolution and
multi-modality registration algorithms are effective and can
predict and analyze PWMD.

Punctate White Matter Damage (PWMD) is one of the
most common white matter damages. Therefore, converting
undetectable clinical symptoms into quantifiable results to
analyze and predict PWMD using related medical image
processing methods is crucial for disease treatment, neu-
rodevelopment, and possible future methods.

Because the acquisition of neonatal DTI is complex, the
resolution is much lower than T1 MRI, which is not con-
ducive to the registration of T1 images, and the development
of neonatal white matter fiber tracts is not complete; the
obtained results of fiber tractography are poor. To solve this
problem, the super-resolution method can be adopted for
neonatal DTI to improve the resolution of DTI, facilitate the
realization of registration, and help improve the results of
DTI fiber tractography. In addition, T1 images need to be
registered with DTI to fuse the lesions in T1 images with
the white matter fiber tracts of DTI; while DTI is a tensor
image and T1 images are scalar images, the registration is
complex because the DTI has a variety of scalar derivative
images that can be used with T1 image registration.

Therefore, this paper proposes a new method to ana-
lyze neonatal white matter injury based on DTI interpola-
tion and multi-mode image registration. In this paper, a b-
spline interpolation method based on Log-Euclidean space
is implemented to interpolate neonatal DTI, and the three
times B-spline interpolation method of Euclidean space is
applied to Log-Euclidean space, which is suitable for tensor
calculation. The interpolation method ensures the essential
characteristics of the tensor, avoids the swelling effect and
non-positive definite effect of the interpolation tensor, and
improves the tensor information of the neonatal DTI, making
the results of fiber tractography richer and more accurate.

Subsequently, Syn registration method was used to reg-
ister five derivative images of DTI (FA, MD, b0, md-in,
and b0-in image). The evaluation indexes based on vision
and overlap rate were selected to evaluate the registration
results. The results showed that the b0-in image had the best
effect. Finally, the T1 MRI lesions were 3D modeled, and
the neonatal DTI containing 15 ROIs was made and used for
DTI fiber tractography.

By mapping the results of fiber tractography with the
lesion model in the same space, the parameters of the lesion
model and the degree of influence on the fiber tracts were
calculated. And the damage situation of neonatal PWMD
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was analyzed, which can effectively provide s for the diag-
nosis and prediction of PWMD.

In the experiment, it was found that some essential fiber
tracts of the neonatal were not myelin sheathing and could
not be displayed by interpolation (such as slf), making the
experimental results imperfect. Regarding registration, the
effect of using the T2 image as the medium to register the
T1 image with DTI should be the best. However, there is
no T2 image in the data, so the registration result needs im-
provement. Overall, according to the existing data and actual
situation, the method in the paper can provide practical help
for the early analysis of neonatal PWMD.

5. Conclusions and Future Directions
This paper proposes a new technique of neonatal PWMD

analysis based on DTI interpolation and multi-modality
image registration. The three times B-spline interpolation
based on the Log-Euclidean space is used for neonatal
DTI interpolation, improving its resolution and facilitating
fiber tractography. Syn registration algorithms and five DTI
derivative images (FA, MD, b0, MD-in, and b0-in image)
were selected for multi-modality image registration of DTI
and T1 MRI. The results show that the b0-in images are
the best. The DTI and T1 MRI were registered using this
method, 3D lesions model on T1 MRI was made, and the
neonatal DTI with 15 ROIs was built for individual DTI fiber
tractography results. The 3D lesion model was combined
with fiber tractography results to analyze and predict the
degree of PWMD lesion affecting fiber tracts. This method
plays an essential auxiliary role in diagnosing and treating
neonatal PWMD. Because there is too little data in this paper
to use deep learning, a large number of data sets can be
collected in the future, and the method of deep learning can
be used as a further research method.
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