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Abstract

Higher cognition encompasses advanced mental processes that enable complex thinking,
decision-making, problem-solving, and abstract reasoning. These functions involve integrat-
ing information from multiple sensory modalities and organizing action plans based on the
abstraction of past information. The neural activity underlying these functions is often com-
plex, and the contribution of single neurons in supporting population-level representations of
cognitive variables is not yet clear.

In this thesis, I investigated the neural mechanisms underlying higher cognition in
higher-order brain regions with single-neuron resolution in human and non-human primates
performing working memory tasks. I aimed to understand how representations are arranged
and how neurons contribute to the population code.

In the first manuscript, I investigated the population-level neural coding for the mainte-
nance of numbers in working memory within the parietal association cortex. By analyzing
intra-operative intracranial micro-electrode array recording data, I uncovered distinct repre-
sentations for numbers in both symbolic and nonsymbolic formats.

In the second manuscript, I delved deeper into the neuronal organizing principles of pop-
ulation coding to address the ongoing debate surrounding memory maintenance mechanisms.
I unveiled sparse structures in the neuronal implementation of representations and identified
biologically meaningful components that can be directly communicated to downstream neu-
rons. These components were linked to subpopulations of neurons with distinct physiological
properties and temporal dynamics, enabling the active maintenance of working memory
while resisting distraction. Lastly, using an artificial neural network model, I demonstrated
that the sparse implementation of temporally modulated working memory representations is
preferred in recurrently connected neural populations such as the prefrontal cortex.

In summary, this thesis provides a comprehensive investigation of higher cognition in
higher-order brain regions, focusing on working memory tasks involving numerical stimuli.
By examining neural population coding and unveiling sparse structures in the neuronal
implementation of representations, our findings contribute to a deeper understanding of the
mechanisms underlying working memory and higher cognitive functions.
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Chapter 1

Introduction

In his Dioptrics, Descartes made astute observations about neural representations. He stated,
"not only do the images of objects form on the back of the eye, but they also pass beyond
to the brain." This idea was based on the physiological structure of nerves: "these small
fibers... do not crowd or impede each other in any way, and are extended from the brain to
the extremities of all parts which are capable of any sensation, in such a way that, however
slightly we touch and move the spot in these places where any one of the fibers is attached,
we also move at the same instant the place in the brain from which it comes" (Fig. 1.1).
Descartes thus suggested that the image transmitted to the brain must bear some resemblance
to the one on the retina, but not as a direct copy of the retinal image. Instead, it represents
various qualities that the object possesses. He further cautioned, "We must not think that it is
by means of this resemblance that the picture makes us aware of the objects - as though we
had another pair of eyes to see it, inside our brain." (Descartes, 1965).

Despite the insights about visual functions, Descartes quickly overlooked his own warning
when he pondered upon high-level cognition and made his famous assertion that the pineal
gland connects the soul, and thus, perceives the image projected onto it and ultimately
operates the activity of human body.

The challenge of mechanistically understanding high-level brain functions still resonates
today. Low-level cognitive functions, such as the early processes of visual perception, have
been mechanistically reduced to a series of processing steps that detect hierarchically or-
ganized visual features, with each step making only minor transformations to the previous
representation (Lindsay, 2021). However, higher up on the functional hierarchy, much re-
mains to be explained about what is represented. In fact, the framing of "representation"
may not even be suitable for high-level brain functions, as an intelligent system does not
necessarily need representations to perform complex tasks (Hayes, 1981; Brooks, 1991). Fur-



2

Y X V

r

s t R S

T

78 9 789

Fig. 1.1 The information at V, X, Y are registered at retinal locations R, S, T that project
through nerve fibers 7,8,9 respectively. Figure adapted from Descartes (1965, The fifth
discourse)
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thermore, although we now know that the pineal gland does not hold the key to coordinating
and controlling behavior as once believed, our understanding has only progressed to attribut-
ing these functions to certain higher-order cortices, namely the prefrontal cortex (Miller
and Cohen, 2001; Quintana and Fuster, 1999; Buschman and Miller, 2022). Trying to
explain the mechanism of higher cognition while treating these higher-order cortices as a
black box is committing the same Homunculus Fallacy as Descartes did, i.e., the circular
argument of explaining brain function by postulating a miniature human capable of these
complex functions in a subset of the brain (Kenny, 1971). A detailed dissection of neuronal
organization and neural dynamics in the higher-order cortices is necessary.

In this introduction, I begin by outlining higher cognition from functional and physio-
logical perspectives. I then explore the neuronal organization underlying higher cognition,
examining how external stimuli and internal cognitive variables are represented in local
neuronal populations. Finally, I identify the key challenges in the study of higher cognition,
which will be addressed in the subsequent results chapter.

1.1 Higher cognition

High-level brain function is often defined in the context of the Perception-Action Cycle
(Fuster, 1990), as illustrated in Figure 1.2. Organisms continually engage with their envi-
ronment, obtaining sensory information that is subsequently integrated through a series of
processes. Decisions are made, and actions are planned and executed based on this processed
information, modifying the environment and producing new sensory input. Although low-
level sensory and motor functions directly relate to the observable environment, high-level
functions, more distant from the environment, rely on low-level functions. Sensory and motor
processes interact at every level. Simple, well-trained behaviors form Perception-Action
Cycles via lower-level processes, while complex and novel behaviors necessitate higher-level
processes. At the top of this hierarchy, sensory information is integrated across modalities
and abstracted to provide behavioral context that is then maintained until a motor plan is
formulated. In complex behavior, retrospective maintenance and prospective planning are
intertwined, sharing contingencies across multiple time steps (Fuster, 2001).

High-level brain function, therefore, is characterized by the following traits: (1) an
extended temporal integration and organization window, not strictly adhering to stimulus oc-
currence or motor onset (Ehrlich and Murray, 2022); (2) intricate neuronal responses, abstract
in nature, resulting from both multi-modal integration and the intermingling of sensory and
motor representation, difficult to attribute to a single semantic interpretation (Rigotti et al.,
2013; Bernardi et al., 2020); and (3) executive control, involving the selection of appropriate
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Fig. 1.2 Intermediate areas or subareas of labeled cortex are represented by unlabeled
rectangles. All arrows indicate connective pathways identified in monkeys. The human
brain image emphasizes reciprocal connectivity between posterior and frontal cortex. Figure
adapted from Fuster (2001) with permission.
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motor plans and the adaptation of external stimulus representations according to internal
objectives (Buschman and Miller, 2022; Cavanagh et al., 2018).

These traits are particularly prominent in working memory. From a cognitive science
perspective, working memory updates the concept of short-term memory that can manifest
in either phonological or visual-spatial forms, with the impairment of one not influencing
the other (Baddeley, 1992). Besides short-term storage, working memory also includes a
central executive component to actively maintain and coordinate storage. Working memory
is essential for numerous cognitive skills, and performance on working memory tasks is
predictive of reading, comprehension, and reasoning abilities (Miller, Lundqvist, and Bastos,
2018; Buschman and Miller, 2022).

1.2 Anatomical bases of higher cognition

The functional hierarchy of the brain is deeply ingrained in its anatomical hierarchy. The
ventral stream of the primate visual system offers an example, with visual information
captured by the retina, relayed to the thalamus, and subsequently reaching the primary
visual cortex (V1). From V1, visual information is transmitted to higher-order visual areas,
such as V2, V4, and inferotemporal lobe (IT), which respond to a series of distinct visual
features with increasing complexity such as oriented lines, figure ground separation and
object identity (Felleman and Van Essen, 1991; Roe et al., 2012; Kravitz et al., 2013).

Although the feedforward structure becomes less clear beyond sensory cortices, the
relative position of a cortical area in the hierarchy can still be determined based on the
connectome obtained from viral tracing. Using the connecome, the cortex is divided into
clusters with stronger within-cluster connections than between them. Then the direction of
information flow between clusters can be inferred from the terminal layer, with feedforward
connections ending in layer 4 of the target area (driving) and feedback connections ending in
other layers of the target area (modulating). Clusters higher in the hierarchy are characterized
by sending more feedback projections than feedforward projections, such as prefrontal,
premotor, and other association areas (Harris et al., 2019).

Local physiological properties can also delineate the cortical hierarchy in species where
viral tracing is not readily available: myelin content density gradually decreases from V1
to the prefrontal cortex; local circuit excitability varies across cortical regions, with higher
spine density in higher cortical hierarchy positions, leading to more persistent activity crucial
for temporal integration function (Wang, 2020; Murray et al., 2014); the ratio between
input-modulating somatostatin-expressing interneurons and output-modulating parvalbumin-
expressing interneurons increases with the position in the cortical hierarchy (Wang, 2020);



1.2 Anatomical bases of higher cognition 6

dopamine D1 receptor density increases along the cortical hierarchy, essential for receiving
inhibitory signals to filter out distracting stimuli in working memory tasks (Froudist-Walsh
et al., 2021). Numerous other physiological properties also partially correlate with the cortical
hierarchy, such as neuron density, pyramidal cell size, myelin content in grey matter, cortical
thickness and laminar differentiation (Amunts and Zilles, 2015).

In all the hierarchy-related measures mentioned, the prefrontal cortex (PFC) stands out
as the typical high-level cortical area. It provides more feedback, has higher local excitability
and has a higher D1 receptor ratio. The PFC, defined as the part of the cerebral cortex that
receives projections from the mediodorsal nucleus of the thalamus (Fuster, 2015), serves as
a platform where information from diverse brain systems can be integrated and processed
within relatively localized circuitry (Miller and Cohen, 2001). The lateral and mid-dorsal
PFC receive direct input from an array of secondary (association) cortices. The dorsolateral
PFC (particularly brodmann area 46) is interconnected with high-level motor areas, including
the supplementary motor area and premotor area, as well as the cerebellum and basal ganglia,
which are responsible for automating behavior (Bates and Goldman-Rakic, 1993). The orbital
and medial PFC are intricately connected with medial temporal limbic structures crucial
for long-term memory, affect, and motivation processing (Barbas and De Olmos, 1990).
Furthermore, all regions of the PFC and their subdivisions are strongly interconnected (Miller
and Cohen, 2001).

The functional significance of PFC in higher cognition is demonstrated by neuropsycho-
logical symptoms in human and non-human primates with lesions. It can be categorized
into three PFC clusters: orbital/inferior, medial/cingulate, and lateral regions of the PFC.
Orbital PFC lesions often lead to dramatic personality changes, impulsiveness, disinhibition,
and attention disorders (MacFall et al., 2001; Izquierdo, Suda, and Murray, 2005). Medial
PFC lesions, including the anterior portion of the cingulate gyrus, result in a loss of spon-
taneity, difficulty initiating movements and speech, apathy, and issues with concentrating
attention (Di Pellegrino, Ciaramelli, and Ladavas, 2007; Ostlund and Balleine, 2005). Lastly,
lateral PFC damage is characterized by an inability to formulate and execute plans and
action sequences, leading to dysexecutive syndrome and a loss of supervisory attentional
control (Tanji and Hoshi, 2008). Compared to other clusters, a lesion in lateral PFC is the
most detrimental to the higher-order temporal integration functions such as organizing and
executing behavior, speech, and reasoning (Fuster, 2001).

The posterior parietal cortex (PPC) also ranks high in the cortical hierarchy as a key
component of association cortices. The PPC is anatomically and functionally interconnected
with the PFC (Quintana and Fuster, 1999). Instead of being exclusively sensory or motor in
nature, the PPC integrates inputs from various brain regions, such as somatosensory, auditory,
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visual, motor, cingulate, and prefrontal cortices, while also integrating proprioceptive and
vestibular signals from subcortical areas (Whitlock, 2017). Notably, PPC neurons near
the intraparietal sulcus respond to numerical quantity regardless of the detailed perceptual
features (Nieder, Freedman, and Miller, 2002), demonstrating high-level abstraction ability.
The parietal-prefrontal circuit is essential to the executive aspects of the perception-action
cycle, responsible for motor planning, decision-making, forward state estimation, and relative-
coordinate representations (Andersen and Cui, 2009; Quintana and Fuster, 1999).

1.3 Representations in neuronal populations

As is warned by Kenny, 1971, mere localization does not constitute an explanation for the
function. To comprehend the mechanisms of higher cognition, a more detailed examination
of neuronal organization, interaction, and computation is required.

It is generally believed that the brain has a certain functional modularity. At a coarse scale,
the cortex is divided into sensory, motor and association cortices in the previous sections. At
a smaller scale, cortical neurons are organized into columns, which are functionally similar
modules of neurons arranged vertically or radially in the cortex, with a horizontal diameter
of around 50 µm for minicolumns or 300 µm for macrocolumns. The columnar structure
is most extensively studied in sensory cortices, such as the visual cortex, where column
positions preserve the topology of the corresponding retinal input (Lund, Angelucci, and
Bressloff, 2003; Molnár and Rockland, 2020; Ringach et al., 2016), just as Descartes posited
(Fig. 1.1). Columns with similar features, for instance, similar orientations, are arranged
adjacently within the cortex (Kremkow et al., 2016). This feature map is also preserved
throughout the visual pathway, even in inferior temporal lobe, where the features represent
abstract and less intuitive dimensions in visual object space (Bao et al., 2020).

However, columnar structures and functional maps are less well-defined in higher motor
and association areas, (Molnár and Rockland, 2020; Constantinidis and Qi, 2018), suggesting
a lack of modularity. The cells in higher-order cortices often exhibit complex response prop-
erties that simultaneously reflect different cognitive variables, and that are not topologically
organized. The response of a PFC neuron, for example, may be correlated with variables of
the sensory stimuli, task rule, motor response or any combination of these. This phenomenon,
known as mixed selectivity, is thought to enable flexible output and serves as a hallmark of
the PFC (Rigotti et al., 2013).

Given the absence of a clear relationship between single neurons and task variables, it is
crucial to analyze task variable representations in the neuronal population in these higher-
order cortices. This is typically achieved by summarizing population activity in population
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state space, with modes (latent variables) extracted based on neuronal covariance, forming a
latent subspace (Cunningham and Yu, 2014). The latent activity subspace can be constructed
to reflect the specific variables in question, such as working memory content (Murray et al.,
2017). Instead of finding the latent variables that give rise to the observed population activity,
alternatively, decoding approaches try to predict the task variables using the population
activity. The generalizability of decoders can be tested across time points or contexts, to in-
vestigate the stability of neuronal population’s representations of task variables (Parthasarathy
et al., 2017; Parthasarathy et al., 2019; Cavanagh et al., 2018; Bernardi et al., 2020).

The population coding in higher-order cortices differs from classical population coding
often described in lower-level sensory systems, such as the wind direction coding in crickets,
where neurons tuned to two cardinal directions represent wind direction with their vector
sum (Dayan and Abbott, 2005). In contrast, higher-order cortices exhibit less clear single-
neuron tuning (Rigotti et al., 2013). Their population coding is also not to accurately represent
external stimuli, but rather to transform sensory input into suitable motor plans (Ehrlich
and Murray, 2022). Therefore, the investigation of higher-order cortices’ functions should
emphasize the dynamics of neuronal states, rather than their passive representations of task
variables. For instance, in working memory, attractor dynamics are often used to explain
the mechanism of maintaining memory content during delay periods (Wimmer et al., 2014).
This usually manifests as persistent activity in the absence of sensory input either in state
space (Murray et al., 2017) or at the single-neuron level (Fuster, 2001). Context-dependent
decision-making processes coincide with the convergence of state trajectory to an appropriate
feature axis corresponding to the context (Mante et al., 2013). Rotational dynamics have
been observed in tasks with serially structured trial stages (Libby and Buschman, 2021) or
tasks requiring periodic movement (Michaels, Dann, and Scherberger, 2016).

1.4 Numerical cognition: gateway to complex functions

Numerical cognition, a critical component of higher cognition, exemplifies the integration
of sensory information across modalities and the abstraction from tangible object proper-
ties (Nieder and Dehaene, 2009). It encompasses three major concepts: numerical quantity,
numerical order, and the concept of nominal numbers (e.g., bus number 3) (Wiese, 2003b).
These concepts in numerical cognition are often presented as dissociable processes; for
instance, in human subjects, quantity judgment between adjacent numbers is slower than for
distant numbers, while order judgment between adjacent numbers is faster than for distant
numbers (Turconi, Campbell, and Seron, 2006). However, these concepts share common
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physiological circuits and processes (Dehaene et al., 2003), and their development for abstract
thinking may rely on shared linguistic foundations (Wiese, 2003a).

All these aspects of numerical cognition are fundamental to apprehending the structure
of complex tasks and organizing behaviors. Accurate numerical quantity cognition underpins
reward estimation (Roitman, Brannon, and Platt, 2007; Cazettes et al., 2023) and the temporal
duration of task periods (Meck, Church, and Gibbon, 1985), which could reflect behavioral
costs (Masset et al., 2020) or guide motor planning (Niemi and Näätänen, 1981). The order
in which a stimulus is presented could determine its behavioral relevance (Jacob and Nieder,
2014; Parthasarathy et al., 2017) and the cued behavioral context (Cavanagh et al., 2018).
Nominal number cognition indicates a subject’s ability to assign identities to items within a
set, forming the basis for associating attributes with these items.

Numerical cognition serves as an excellent springboard for investigating complex higher
cognitive functions. It is deeply involved with humans’ sophisticated linguistic and logical
abilities (Gordon, 2004; Wiese, 2003a) and underpins numerous advancements in human civi-
lizations. Complex arithmetic operations and the recognition of symbolic numbers in humans
share evolutionary and physiological origins with non-verbal number cognition (Halberda
and Feigenson, 2008), which is present in many species and crucial for their survival (Wilson,
Hauser, and Wrangham, 2001; Hauser, Carey, and Hauser, 2000). The neural response for
numerical stimuli in humans and animals can be seamlessly connected (Nieder, Freedman,
and Miller, 2002; Piazza et al., 2007; Nieder, Wagener, and Rinnert, 2020). This allows
us to delve into complex brain functions from a straightforward starting point, utilizing the
numerous experimental tools available in animal models.

In comparison to other higher cognitive functions, neuronal representations for numerical
stimuli are relatively more straightforward. Individual neurons tuned to specific numerical
quantities can be found in PFC and PPC (Nieder and Dehaene, 2009). Neurons selective for
larger numbers display broader tuning curves, with the spread of tuning curves remaining
constant across neurons on a logarithmic number scale(Nieder and Miller, 2003). This
organization of neuronal tuning curves reflects the Weber-Fechner law, exhibiting a structure
fundamentally similar to more tractable low-level sensory processes.

Various studies have compared neuronal representations of symbolic and nonsymbolic
numbers. Non-human primates have shown the ability to associate Arabic numerals with
nonsymbolic numbers. Neurons tuned to Arabic numerals demonstrate tuning curves akin to
those of classic nonsymbolic number-tuned neurons. Some neurons are tuned to numbers
in both symbolic and nonsymbolic formats, which are more abundant in the PFC compared
to the PPC (Diester and Nieder, 2007). In humans, blood-oxygen-level-dependent (BOLD)
signals in the PPC respond to the magnitude of deviation from adapted numerical stimuli,
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irrespective of the presentation format (Piazza et al., 2007). Nevertheless, differences exist
in the neuronal representations of numbers in different formats. Symbolic numbers are
represented more categorically than nonsymbolic numbers in the human medial temporal
lobe (Kutter et al., 2018). The impact of format on the neuronal representation of numbers
in the human PFC and PPC at the single-neuron resolution remains an area for further
investigation.

1.5 The challenges

The functional and physiological complexity of higher cognition presents several challenges
for research. Firstly, higher cognition requires appropriate tasks to be probed. The cognitive
complexity should be high enough such that the automated low-level functions are not
sufficient and that higher cognition must be involved (Fuster, 2001). For example, the tasks
that involve stimuli with certain levels of abstractness, require holding information for an
extended period and have complex task structures that reflect more than passive maintenance,
are better suited. Consequently, this puts a constraint on the choice of model organism, often
necessitating experiments with (non-human) primates.

Secondly, neural recordings should have sufficient resolution and reflect relevant physio-
logical activity for higher cognition. Electroencephalography (EEG) and functional magnetic
resonance imaging (fMRI) may not reveal the intricate dynamics and computations in local
circuits underlying higher cognition. Invasive methods, such as extracellular recordings, can
provide more detailed insights.

Thirdly, access to higher-order brain regions is crucial. This is often difficult in human
experiments, as implanting electrodes into the human brain poses ethical concerns, and
recording sites are often determined based on medical requirements rather than research
questions.

Finally, to understand the neural mechanisms of higher cognition, our concept of popula-
tion coding needs to be updated. The neuronal activity in higher-order cortices is not purely
stimulus-driven. It does not always follow stimulus-onset and can exhibit diverse temporal
modulations (Jacob and Nieder, 2014). A static view of population response patterns is insuf-
ficient. Constructing the stimulus coding subspace using temporally averaged activity may
obscure neurons’ selectivity and bias interpretation. Furthermore, the relationship between
single-neuron coding properties and population-level representations needs clarification.
Among the many possible mechanisms derived from the same population dynamics, adhering
to physiology helps narrow down the hypothesis space.
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In this thesis, I focus on the working memory of number stimuli - the high-level temporal
integration function and high-level abstract cognition. I aim to determine what is represented
in neuronal populations in higher-order cortices during working memory tasks, how these
representations are arranged, and how neurons contribute to the population code.

In the first manuscript (collaborative work), we advanced the investigation of brain func-
tion using acute micro-electrode array recordings in patients undergoing awake tumor surgery.
This approach enabled access to large areas of the cortex including parietal association area
with single-unit resolution. The main contribution of this thesis involved examining the
population-level neural coding for number stimuli in a working memory task through a
decoding approach. I found that the representation of numbers in symbolic and nonsymbolic
forms displayed distinct dimensionality and geometrical constructs in the delay period after
stimulus offset.

In the second manuscript, I aimed to describe and exploit the neuronal organizing
principle of population coding to address the debate surrounding working memory mecha-
nisms—whether memory content is maintained via continuous or sequential representations.
The framework I proposed harnessed the physiological principles of neuronal organization,
enabling the dissection of complex and often ambiguous representations in higher-order
cortices into components that maintain connections to individual neurons.



Chapter 2

Results

2.1 Neuronal representation for numbers in human work-
ing memory

Manuscript 1: Human acute microelectrode array recordings with broad cortical access,
single-unit resolution and parallel behavioral monitoring

Authors: Viktor M. Eisenkolb, Lisa M. Held, Alexander Utzschmid, Xiao-Xiong Lin,
Sandro M. Krieg, Bernhard Meyer, Jens Gempt, Simon N. Jacob

Author contributions
V.M.E., B.M., J.G. and S.N.J. conceived the study and designed the experiments. S.K.

and J.G. performed the surgeries and implanted the arrays. V.M.E. and S.N.J. collected the
data. V.M.E., L.M.H., A.U. and X.-X.L. analyzed the data and prepared the figures. S.N.J.
wrote the manuscript with contributions from V.M.E., L.M.H. and A.U. All authors edited
the manuscript.

Note: Figure 6J-L and Figure S2 comprise all the analyses I performed for this manuscript.
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Summary 20 

There are vast gaps in our understanding of the organization and operation of the human nervous system 21 

at the level of individual neurons and their networks. Here, we report reliable and robust acute multi-22 

channel recordings using planar microelectrode arrays (MEA) implanted intracortically in awake brain 23 

surgery with open craniotomies that grant access to large parts of the cortical hemisphere. We obtained 24 

high-quality extracellular neuronal activity at the microcircuit, local field potential level, and at the 25 

cellular, single-unit level. Recording from parietal association cortex, a region rarely explored in human 26 

single-unit studies, we demonstrate applications on these complementary spatial scales and describe 27 

travelling waves of oscillatory activity as well as single-neuron and neuronal population responses 28 

during numerical cognition including operations with uniquely human number symbols. Intraoperative 29 

MEA recordings are practicable and can be scaled up to explore cellular and microcircuit mechanisms 30 

of a wide range of human brain functions.  31 
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Introduction 32 

There are vast gaps in our understanding of the organization and operation of the human nervous system 33 

at the level of individual neurons and their networks. Limited opportunities to directly access the human 34 

brain call for multidisciplinary collaborations that combine expertise in neuroscience and clinical 35 

medicine to invasively measure neuronal activity with single-unit resolution 1. This approach has been 36 

most fruitful in patients with medically intractable epilepsy implanted with microwire bundles 2-8 and 37 

in patients with movement disorders undergoing deep brain stimulation (DBS) 9-11. Two crucial 38 

challenges persist, however, in the investigation of the cellular and circuit physiology of human brain 39 

functions. First, epilepsy and DBS surgeries do not provide comprehensive brain coverage, leading to 40 

strong focusing of current human single-unit studies on the medial temporal lobe (MTL) and on small 41 

circumscribed regions of the frontal lobe. Second, reliable and robust recording technology is still 42 

lacking, meaning that clinicians must be trained on increasingly complex devices that necessitate 43 

significant modifications to standardized and proven surgical procedures 12,13. 44 

Broad access to the human cortex in large patient groups combined with easy-to-implement methods 45 

would greatly accelerate progress in researching the neuronal basis of human brain functions. Here, we 46 

demonstrate acute recordings from planar multi-channel microelectrode arrays (Utah MEAs) implanted 47 

intracortically in patients operated awake for the removal of left-hemispheric brain tumors. Tumor 48 

surgeries with open craniotomies expose large areas of cortex and allow for flexible placement of 49 

recording devices, meaning that electrode positions can be adapted to research questions - not vice 50 

versa. Awake surgeries with intraoperative functional mapping minimize the risk of postoperative 51 

deficits by delineating functionally important regions and thus increase the precision of tumor resection 52 
14. Patients undergoing awake surgery can perform a wide variety of tasks tapping into sensorimotor 53 

functions, visuospatial functions, language and other higher cognitive functions 15. Penetrating, 54 

intracortical MEAs are widely used for chronic measurements of single-unit and population activity in 55 

non-human primates 16,17 and have shown potential for clinical applications 18,19 as well as for 56 

neurorestorative brain-computer-interfaces (BCIs) in humans 20-25. 57 

Despite these successes, acute intraoperative MEA recordings to investigate human brain functions 58 

have not been reported. Cortical microtrauma and neuronal 'stunning' are believed to prohibit 59 

measurements with these devices shortly after implantation 26,27.  60 

In this study, we show that these obstacles can be overcome with appropriate choice of the arrays' 61 

geometrical configuration. We hypothesized that the degree of tissue impact, and thus the quality of 62 

acquired neuronal signals, would depend on the number of implanted electrodes, and in particular the 63 

electrode density: increased electrode spacing (lower density) might result in larger pressure at the 64 

individual electrode tip during implantation (given the same force applied to the back of the array) and 65 

thus allow for faster and less traumatic cortical penetration. We therefore systematically compared 66 
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higher density MEAs (standard array, 96 electrodes with 400 µm spacing) and lower density MEAs 67 

(custom array, 25 electrodes with 800 µm spacing). We found that all implanted arrays recorded high-68 

quality extracellular signals at the microcircuit level (local field potentials, LFPs). MEAs with increased 69 

electrode spacing, however, outperformed standard arrays with higher densities and also captured 70 

activity at the cellular, single-unit level. To demonstrate applications on these complementary spatial 71 

scales, we describe oscillatory dynamics in the form of waves of activity travelling across human 72 

parietal association cortex, a region rarely explored in human single-unit studies, and investigate single-73 

neuron mechanisms of numerical cognition including operations with uniquely human symbolic 74 

quantities. Our findings demonstrate that intraoperative MEA recording technology is suited to provide 75 

the high-volume recordings necessary to advance translational research on the cellular and microcircuit 76 

basis of a wide range of human brain functions.  77 
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Results 78 

Intraoperative MEA implantation 79 

Awake surgeries with open craniotomies enable direct, controlled investigations of human brain 80 

functions while the patients are alert and can perform tasks of varying complexity 15 (Fig. 1A). 81 

Craniotomies overlap in particular over the motor cortical regions and over the posterior frontal lobes 82 

(Fig. 1B). They can extend anteriorly to the frontal pole and posteriorly to the parieto-occipital junction, 83 

dorsally to the inter-hemispheric fissure (midline) and ventrally to the temporal lobe. Typical 84 

craniotomies expose large regions of cortex (several tens of cm2), yielding broad access to the human 85 

brain. Infrared thermal imaging during a representative surgery verified that physiological temperatures 86 

are maintained at the cortical surface (Fig. 1C). 87 

We performed a total of 13 acute microelectrode array (MEA) implantations in patients undergoing 88 

surgery for brain tumor resection (one array per patient), eight of which were operated awake (Table 1). 89 

Except for the procedures related to the array implantation, the course of the surgery was not changed. 90 

Following skin incision, preparation and opening of the skull and dura mater, but before awakening the 91 

patient from anesthesia, we placed the array's pedestal next to the craniotomy, anchored it with skull 92 

screws and positioned the MEA over the target cortical area (Fig. 1D). Reference wires were inserted 93 

under the dura. We intended for the implantation site to lie as remotely as possible from the bulk tumor 94 

tissue but still within the pre-operatively determined resection area. The array was then pneumatically 95 

inserted and covered with saline irrigated strips (Fig. 1E) until explantation, typically when tumor 96 

resection started. With established and practiced procedures, the implantation could be performed in 97 

less than ten minutes. We encountered no adverse clinical events in connection to MEA implantation 98 

or recordings, neither during the surgery nor during routine patient follow-up over several months to 99 

years. 100 

For each participant, the implantation site was reconstructed using intraoperative photographic 101 

documentation as well as pre-operative structural MR imaging. Three implantations were located in 102 

frontal cortex and ten in parietal cortex (Table 1). Examples of implantations in the middle frontal gyrus, 103 

the supramarginal gyrus and the angular gyrus are shown (Fig. 1F). 104 

We histologically analyzed three implantations (Table 1). Grids of electrode tracts could be clearly 105 

identified from the penetration of the pia mater along the course of the shafts to - in some instances - 106 

the tip of the electrode (Fig. 1G). The majority of the electrode tracts reached deeper cortical layers. In 107 

two patients, cortical tissue surrounding the electrodes showed no structural abnormalities across the 108 

entire array. In one patient, we observed small microbleedings without a space-occupying effect along 109 

several electrode tracts as well as in deep cortical layers 26,27 (Fig. 1H). However, these changes were 110 

strictly confined to the vicinity of the electrodes. We did not detect any pathology distant from the 111 

implantation site. 112 
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In sum, implantation of intracortical MEAs in patients undergoing awake brain surgery is safe and 113 

practicable, achieving broad and direct access to the neuronal networks of the human cortical left 114 

hemisphere. 115 

 116 

Fig 1. Awake brain surgery and intraoperative microelectrode array implantation. (A) Schematic of 117 

awake brain surgery providing access to the human cortex for microelectrode recordings in 118 
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participants who can perform cognitive tasks. (B) Overlap of craniotomy locations in neurosurgical 119 

patients operated awake for the removal of left-hemispheric brain tumors (n = 58 surgeries performed 120 

in our department over the course of five years) projected onto the ICBM template brain. (C) Infrared 121 

thermal imaging of the cortical surface during a typical craniotomy procedure. (D) Placement of the 122 

microelectrode array in preparation of implantation. (E) Pneumatic insertion of the microelectrode 123 

array into cortex. (F) Cortical surface reconstruction of the implantation site in three example 124 

participants. The probability of implantation in the specified gyrus is given according to the JuBrain 125 

probabilistic cytoarchitectonic map. (G) Histological sections of an example implantation site showing 126 

electrode tracts as they penetrate the pia mater (top left, longitudinal section), along the electrode shaft 127 

(bottom left, axial section) and at the electrode tip (right, arrow). (H) Histological section of a different 128 

implantation site showing microhemorrhages along the electrode tracts (single arrow) and in deeper 129 

cortical layers (double arrow). 130 

 131 

Extracellular signal quality on MEAs with differing geometrical configurations 132 

In the group of patients operated for awake tumor resection, we discontinued the anesthesia following 133 

MEA implantation. We began recording wide-band extracellular activity (Fig. 2A) as soon as the 134 

patients were alert and able to engage in conversation with the clinical team and prior to cortical 135 

electrostimulation for mapping of language-associated areas. Typically, the arrays had been settling for 136 

30 to 40 minutes. We emphasize that the surgery was not prolonged by this time period; we merely used 137 

the awakening time to allow for the signals to develop and stabilize. 138 

We first sought to evaluate the ability to detect the activity of individual neurons (i.e. spikes), present 139 

in the high frequency signal components (high-pass filter 250 Hz; Fig. 2B-F). We compared two 140 

different MEA configurations: a standard, higher-density array with 400 µm electrode spacing (pitch) 141 

and 96 active channels on a 10x10 grid and a custom, lower-density array with 800 µm pitch and 25 142 

channels (Fig. 2C left and right, respectively). Electrode lengths were 1.5 mm for both array types. We 143 

performed four implantations with each array type (Table 1). Technical difficulties with grounding 144 

(P08, higher-density array) and a medical complication not related to the implantation (P12, lower-145 

density array) did not allow us to advance to neuronal recording in two surgeries. In one case, we 146 

observed an abrupt drop in signal quality a few minutes into data acquisition (P13, lower-density array), 147 

prompting us to omit this data set from in-depth analysis. Qualitatively, prior to the unexplained event, 148 

the recording was not different from the other lower-density recordings. 149 

The likelihood of recording spiking activity varied significantly between array configurations. In an 150 

example higher-density array, spiking activity of sufficiently high amplitudes for subsequent waveform 151 

sorting was present in only a few channels (Fig. 2D, left). In contrast, in an example lower-density 152 

array, spikes were detected on all electrodes (Fig. 2D, right). SNRs in this array were stable across the 153 
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entire recording (25 minutes), with the exception of a single large electrical artefact leading to an 154 

increase in noise (Fig. 2E; Fig. S1A, B). This did not impact spike amplitudes, however, which 155 

remained stable during data acquisition. Across all successful recordings, this pattern was reproduced 156 

(Fig. 2F): in three consecutive implantations with the higher-density array (five implantations including 157 

two anesthetized participants, Table 1), we did not observe appreciable spiking activity (2 % of 158 

channels). In three consecutive implantations with the lower-density array (one recording not shown 159 

due to early termination, see above), we obtained spikes on the majority of channels (78 % of channels; 160 

p < 0.001, Fisher's exact test higher-density vs. lower-density arrays). In the event that spiking activity 161 

could be recorded, SNRs were comparable (mean 17.1 ± 0.9 dB and 16.8 ± 0.8 dB for higher-density 162 

and lower-density arrays, respectively; p = 0.91, two-tailed Wilcoxon test). 163 

Next, we evaluated the quality of LFPs, a measure of local network activity, i.e. the low-frequency 164 

component of our extracellular recordings (low-pass filter 250 Hz; Fig. 2G-J). Epochs of increased LFP 165 

activity were readily detected in both higher-density and lower-density arrays and across all channels 166 

(Fig. 2H; same example arrays as in Fig. 2D). In both array configurations, SNRs were high and 167 

displayed spatial clusters of similar signal strength. In the lower-density array, the clusters of high 168 

spiking SNR and high LFP SNR overlapped. As for the spiking activity, LFP signals were stable across 169 

the recording session and affected only momentarily due to a single electrical artefact (Fig. 2I; Fig. S1A, 170 

B). Across all successful recordings, LFP SNRs were very uniform across channels (mean 21.5 ± 0.1 dB 171 

and 21.7 ± 0.03 dB for higher-density and lower-density arrays, respectively; Fig. 2J). 172 

Overall, electrical artefacts could be well controlled during intraoperative data acquisition. Very 173 

rarely, we observed a single high-amplitude 'pop' across all electrodes that disrupted recordings for a 174 

few hundred milliseconds until the signals settled again (Fig. S1A, B). Such electrode 'pops' have 175 

been reported with sudden changes in impedance, likely related to the recording system 176 

electrostatically discharging when in contact with a liquid such as blood 28. 50 Hz line noise and its 177 

harmonics were regularly present in the recordings (Fig. S1C, D), but could be efficiently removed by 178 

offline filtering. Good grounding (i.e. strong connection of the pedestal to the skull) significantly 179 

reduced the hum. Bad choice of grounding, in contrast, lead to signal contamination, e.g., by facial 180 
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muscle activity (Fig. S1E, F). 181 

 182 
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Fig 2. Extracellular neuronal signals recorded from microelectrode arrays with different densities. 183 

(A) Wide-band extracellular voltage signal recorded at an individual electrode (10 s trace). (B) High-184 

pass filtered signal showing extracellular spiking activity in the section highlighted in (A) (2 s trace). 185 

(C) CAD drawings of the standard higher-density microelectrode array (left, 96 active channels) and 186 

of the custom lower-density microelectrode array (right, 25 active channels) used for intraoperative 187 

recordings. (D) Top: Schematic of the procedure for identifying spikes in high-pass filtered voltage 188 

signals. Bottom: Session-averaged SNR of a representative higher-density and a lower-density array 189 

(left and right, respectively). (E) Time course of spike SNR (top), peak-to-peak amplitude (middle) and 190 

RMS noise (bottom) across the entire session (bin width 60 s, step 30 s) recorded with the lower-density 191 

array in (D). Note the brief increase in noise and reduction in SNR in the middle of the recording. 192 

(F) Distribution of spike SNR values obtained from electrodes in higher-density and lower-density 193 

recordings (top and bottom, respectively). (G) Low-pass filtered signal showing oscillatory LFP 194 

activity in the section highlighted in (A) (2 s trace). (H) Top: Schematic of the procedure for quantifying 195 

SNR in low-pass filtered voltage signals. Bottom: Session-averaged SNR of a representative higher-196 

density and a lower-density array (left and right, respectively; same arrays as in (D)). (I) Time course 197 

of LFP SNR (top), peak-to-peak amplitude in high activity states (middle) and RMS in low activity states 198 

(bottom) across the entire session (bin width 60 s, step 30 s; amplitude and RMS determined within the 199 

same bins) recorded with the lower-density array in (D). Note the same deflections in LFP noise and 200 

SNR as in the spike-filtered signal in (E). (J) Distribution of LFP SNR values obtained from electrodes 201 

in higher-density and lower-density recordings (top and bottom, respectively). 202 

 203 

To determine whether single units could be isolated from the population (multi-unit) spiking activity 204 

(Fig. 3A), we sorted the thresholded waveforms. Distinct waveform clusters representing well-isolated 205 

single units were separated from noise (Fig. 3B, C) with little to no loss of spikes around the detection 206 

threshold (false negatives, Fig. 3D; less than 5 % of spikes in 74 % of units), no contamination by spikes 207 

violating the refractory period (false positives, Fig. 3E; less than 1 % of spikes in all units), stable firing 208 

rates throughout the recording session (Fig. 3F) and little to no mixing of spikes between different 209 

clusters (Fig. 3G). Following this procedure, single units could be isolated on the majority of electrodes 210 

in the example lower-density array (Fig. 3H), with two or more single units present on multiple 211 

channels. Across all analyzed recordings, single units were rarely picked up by the higher-density arrays 212 

(2 % of channels) but frequently isolated on the lower-density arrays (62 % of channels; p < 0.001, 213 

Fisher's exact test higher-density vs. lower-density arrays). On lower-density array electrodes with 214 

sortable spikes, we recorded on average 1.6 single units per electrode. 215 

2.1 Neuronal representation for numbers in human working memory 22



 216 

Fig 3. Isolation of single units from intraoperative microelectrode recordings. (A) High-pass filtered 217 

extracellular voltage signals from selected electrodes of the same array (P10; 1 s traces). (B) Principal 218 

component decomposition of thresholded waveforms recorded on an individual channel showing two 219 

distinct waveform clusters (yellow, green) separated from noise (gray). (C) Waveforms of the single 220 

units isolated by PCA in (B). (D) Distribution of waveform negative peak (trough) voltages for the two 221 

example units with gaussian fits and the selected detection threshold. (E) Distribution of inter-spike-222 

intervals (ISI) for the two example units together with spike train autocorrelograms (insets). The 223 

refractory period (ISI < 1 ms) is marked in red. (F) Firing rates of the two example units across the 224 

entire recording session, normalized to a unit's session-averaged activity. (G) Distribution of the 225 

percentage of spikes per unit that are assigned to different waveform clusters and thus considered 226 

outliers (n = 57 sorted units in all recordings). (H) Average single unit waveforms recorded from a 227 

lower-density microelectrode array. Bands indicate standard deviation across waveforms. Channels 228 

with multi-unit activity, but no well-isolated single units, are black. (I) Distribution of channels with 229 
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well-isolated activity of one or more single units recorded from higher-density and lower-density arrays 230 

(top and bottom, respectively). 231 

 232 

While single neurons represent the brain's elementary processing units, it is increasingly recognized 233 

that temporal coordination and synchronization of neuronal activity across distances is crucial in 234 

particular for higher cognitive functions 29. Given their planar, grid-like configuration with well-defined 235 

spatial relationships between individual electrodes, MEAs are ideally suited to investigate the lateral 236 

propagation of activity in cortical networks. Several studies with chronic MEA recordings have reported 237 

waves of oscillatory brain activity that travel across the non-human primate and human cortex 30-33 and 238 

could reflect higher-order organization of neuronal processing in space and time 34. Examination of 239 

oscillatory beta activity (20 ± 1.5 Hz) in a higher-density recording showed LFP peaks temporally 240 

shifted across neighboring electrodes with ordered progression of activity from one side of the array to 241 

the other (top to bottom in Fig. 4A). At each timepoint, LFP phases across the array could be 242 

approximated by a linear plane with non-zero slope aligned to the direction of activity propagation, in 243 

agreement with the notion of a travelling wave. We extracted and characterized such travelling waves 244 

in 500 ms epochs following presentation of visual stimuli (sample numbers, see Fig. 5) for both theta 245 

(6 - 9 Hz) and beta LFP bands (15 - 35 Hz; Fig. 4B-E). Waves travelled in preferred directions 246 

(p < 0.001 in theta and beta, Hodges-Ajne test for nonuniformity) that were frequency-band-specific 247 

(Fig. 4B). A second modal direction almost opposing the dominant primary direction suggested a spatial 248 

propagation axis (Fig. 4B), in line with intracranial EEG and ECoG recordings 35-37 and during ictal 249 

discharges in patients with epileptic seizures 38,39. With increasing oscillatory frequency, travelling 250 

waves were detected less often (Fig. 4C) and showed higher propagation velocities (theta mean 251 

0.57 m/s, beta mean 2.40 m/s; Fig. 4D), again matching data from chronic MEA recordings (e.g. in non-252 

human primate prefrontal cortex 30). Spatial phase gradients fit the plane model well in both frequency 253 

bands (measured by Phase-Gradient Directionality, PGD; theta mean 0.72, beta mean 0.62; Fig. 4E). 254 

For comparison, we conducted the same analysis in a lower-density recording (Fig. 4F-J). In this 255 

participant, beta waves dominated (Fig. 4H) with steeper phase gradient slopes indicating slower 256 

propagation speeds (theta mean 0.23 m/s, beta mean 0.96 m/s; Fig. 4I). Overall, travelling waves were 257 

again reliably detected (PGD theta mean 0.72, beta mean 0.71; Fig. 4J) and obeyed the same regularities 258 

as in the higher-density recording. 259 
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 260 

Fig 4. Propagation of waves of oscillatory activity across microelectrode arrays. (A) Example 261 

travelling wave recorded on a higher-density array. Top: peaks of LFP beta activity (20 ± 1.5 Hz) are 262 

temporally shifted across neighboring electrodes, illustrating the propagation of neural activity. 263 

Middle: demeaned LFP activity (amplitude) across the array at four example timepoints. Bottom: phase 264 

gradient across the array per timepoint. The arrow indicates the direction of wave propagation (from 265 

top to bottom). Inset: linear plane fitted to the phase gradient across the array at one example timepoint. 266 
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(B-E) Distribution of travelling wave (TW) directions (B), count per frequency bin (C), speed (D) and 267 

plane model goodness-of-fit (PGD, E) in the theta (6 - 9 Hz, left) and beta (15 - 35 Hz, right) band in 268 

500 ms epochs following the presentation of visual stimuli (sample numbers, see Fig. 5). Insets in (D) 269 

and (E) show frequency-resolved speed and PGD, respectively. p-values in (B) are given for Hodges-270 

Ajne test for nonuniformity. (F-J) Same layout for travelling waves recorded on a lower-density array. 271 

TW, travelling waves; PGD, phase gradient directionality. 272 

 273 

In sum, our neurophysiological signal analysis showed that acquisition of multi-channel extracellular 274 

neuronal activity via intracortically implanted MEAs is feasible in the setting of awake brain surgery 275 

with its tight clinical and procedural constraints. Mesoscale network (LFP) activity for studying both 276 

local and propagating neuronal oscillations was obtained in high quality in every recording, while the 277 

extent of microscale spiking activity and yield of single units depended on the array configuration and 278 

favored the use of MEAs with increased electrode spacing. 279 

 280 

Probing higher cognitive functions in awake brain surgery 281 

In parallel to neuronal data acquisition, we administered a task to the participants to probe the human 282 

number sense, a higher-level cognitive function of the parietal and (lateral) prefrontal association cortex 283 

that enables us to represent and manipulate abstract numerical categories 40. The frontoparietal cortex 284 

has undergone disproportionate expansion in human evolutionary history, but is hardly ever targeted in 285 

single unit studies with DBS or epilepsy patients. 286 

All six patients with recordings from either higher-density or lower-density arrays (Figs. 2 and 3) 287 

performed a delayed-match-to-sample task requiring them to memorize a visually presented sample 288 

number and compare it to a subsequently presented test number (Fig. 5A). Stimuli were presented either 289 

in nonsymbolic notation (sets of dots, numerosities) or in symbolic notation (Arabic numerals), 290 

allowing us to investigate the neuronal coding of and mapping between 'non-verbal' number, which 291 

animals have access to, and 'verbal' number, which is unique to humans. In half of the nonsymbolic 292 

trials, dot diameters were selected at random. In the other half, dot density and total occupied area were 293 

equated across stimuli. This visual variation in the presented images ensured that subjects processed the 294 

numerical information contained in the stimuli and that low-level, non-numerical visual features could 295 

not systematically influence task performance 41. 296 

Four patients performed well in all conditions, whereas two patients (P07 and P09, higher-density 297 

arrays) did not exceed chance level in the nonsymbolic (dot) trials and were excluded from further 298 

analysis. There was only a small reduction in intra-operative response accuracy compared with pre-299 

operative training levels (p = 0.04, one-tailed t-test; Fig. 5B) and a small increase in intra-operative 300 
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response times (p = 0.23, one-tailed t-test per participant; p < 0.001, one-tailed Wilcoxon test with 301 

pooled trials; Fig. 5C). Following a brief 'warm-up' period, all patients maintained high performance 302 

levels throughout the recording session and completed between 200 and 300 trials (Fig. 5D). 303 

The patients' task performance was qualitatively very similar during pre-operative training and intra-304 

operative recording and not distorted (compare Fig. 5E, F with Fig. 5G, H). Errors were more frequent 305 

during surgery, in nonsymbolic trials and for larger numbers (psetting = 0.02, pnotation = 0.003, 306 

pnumber = 0.01, 3-factorial ANOVA; Fig. 5E, G). Behavioral tuning functions (Fig. 5F, H) showed that 307 

participants correctly matched sample and test stimuli in particular for small numbers (peak of each 308 

curve), while accuracy dropped with increasing number. In non-match trials, the percentage of errors 309 

depended on the numerical distance between sample and test (distance effect; fewer errors for larger 310 

distances) and on the absolute magnitudes of the compared numbers (size effect; fewer errors for small 311 

numbers). Together, these results show that all key behavioral signatures of numerical cognition were 312 

captured by the task administered to the participants. 313 
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 314 

Fig 5. Preoperative and intraoperative cognitive performance in patients undergoing awake brain 315 

surgery. (A) Delayed-match-to-number task. Participants memorized the number of the sample 316 

stimulus and compared it to a subsequently presented test number. Trials were presented either in 317 

nonsymbolic notation (sets of dots, numerosities) or in symbolic notation (Arabic numerals). 318 

(B) Preoperative and intraoperative task performance (n = 4 participants; one-tailed t-test). 319 

(C) Preoperative and intraoperative response times in match trials on a per-participant basis (left) and 320 

pooled across trials (right) (one-tailed t-tests). (D) Time courses of intraoperative task performance 321 

across sessions. (E) Percentage of errors during preoperative behavioral testing plotted as a function 322 

of sample number and stimulus notation. Inset: performance pooled across small numbers (2-4) and 323 
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large numbers (6-8). Error bars indicate SEM across participants. Dashed lines mark single-subject 324 

data for P10 (see Figs. 6, 7) (F) Preoperative behavioral tuning functions for trials with numbers 325 

presented in nonsymbolic and symbolic notation (top and bottom, respectively). Performance is shown 326 

for all sample-test-combinations. The peak of each curve represents the percentage of correct match 327 

trials, and other data points mark the percentage of errors in non-match trials. Error bars indicate 328 

SEM across participants. (G) Same layout as in (E) for intraoperative testing. (H) Same layout as in 329 

(F) for intraoperative testing 330 

 331 

Human neuronal coding of number at the micro- and mesoscale level 332 

Extracellular recordings in the non-human primate frontoparietal cortex suggest that single units tuned 333 

to individual numerosities give rise to numerical cognitive abilities 41-43. The human neuronal code for 334 

number in these brain areas, however, is not known. A recent study found single neurons responsive to 335 

Arabic numerals in the inferior posterior parietal cortex of two participants implanted for the 336 

development of a motor brain-computer-interface, but did not investigate nonsymbolic number 337 

representations 44. Leveraging the flexibility in array placement and high-quality data obtained with 338 

MEA recordings from open craniotomies, we illustrate here a potential application of this method by 339 

exploring - in parietal cortex (inferior parietal lobule, IPL) of an example participant (P10) - the 340 

neuronal correlates of the human number sense at the single-neuron and neuronal network level. 341 

In nonsymbolic trials, an example single unit strongly increased its firing rate after presentation of the 342 

sample stimulus (Fig. 6A, left). The increase was graded and a function of sample numerosity with peak 343 

activity for 7 and 8 dots. This unit's firing rates were smaller and more transient in trials with symbolic 344 

number, but showed a similar graded response (Fig. 6A, right). Average firing rates in the 500 ms epoch 345 

following sample presentation confirmed significant tuning to nonsymbolic number, but failed to reach 346 

significance in symbolic trials due to the distinct temporal activity profile (Fig. 6B). Thus, this single 347 

unit carried information (w2 percent explained variance) about sample notation and numerosity 348 

(Fig. 6C). Similar responses were found in a different example single unit recorded on a neighboring 349 

electrode (Fig. 6D-F). An example multi-unit measured on a different electrode of the same array was 350 

tuned to nonsymbolic number 1 (Fig. 6G, left). This unit also showed a congruent response in trials 351 

with symbolic numbers, albeit with distinct dynamics and a more categorical coding of small versus 352 

large numbers (Fig. 6G, right and Fig. 6H, I). 353 

To provide a population-wide perspective on number coding, we trained a linear discriminant analysis 354 

(LDA) decoder to separate small from large numerosities using the entire spiking activity recorded 355 

across the array (Fig. 6J-L). In trials with nonsymbolic number, decoding accuracy was high and peaked 356 

(86 %) after sample presentation, matching the single unit responses. Cross-temporal training and 357 

decoding showed a dynamically evolving code across the memory delay with reduced off-diagonal 358 
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accuracy (Fig. 6J). In trials with symbolic number, decoding was less accurate (62 % peak) and only 359 

possible in the first half of the memory delay, again matching single unit responses (Fig. 6K). The 360 

results of cross-notation decoding (training on nonsymbolic number, testing on symbolic number) were 361 

qualitatively similar with decoding accuracy bounded by the weaker coding of symbolic number 362 

compared to nonsymbolic number (Fig. 6L). Furthermore, to investigate the difference between 363 

nonsymbolic and symbolic number coding, we trained a decoder to separate all 6 numbers (chance level 364 

16.7 %) with the dimensionality used for decoding systematically manipulated (Fig. S2A, B). We found 365 

the decoding accuracy for nonsymbolic number peaked with one dimension while decoding accuracy 366 

for symbolic number peaked with two dimensions (Fig. S2C, D). The difference can be understood with 367 

the geometrical structure used to represent numbers in the neuronal population, with nonsymbolic 368 

numbers represented on a line, signifying magnitude and symbolic numbers each represented more 369 

idiosyncratically (Fig. S2E, F). 370 
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Fig 6. Single unit and neuronal population coding of nonsymbolic and symbolic number. (A) Spike 372 

raster plots and spike-density histograms (smoothed using a 150 ms Gaussian window) for an example 373 

single unit recorded in the inferior parietal lobe. Trials are sorted by sample numerosity and by stimulus 374 

notation (left: nonsymbolic, right: symbolic). Sample presentation is highlighted. (B) Firing rate of the 375 

neuron in (A) in the 500 ms epoch following presentation of nonsymbolic and symbolic sample 376 

numerosities (left and right, respectively; one-factorial ANOVA). (C) Sliding-window  w2 percent 377 

explained variance (two-factorial ANOVA) quantifying the information about sample number and 378 

notation as well as their interaction contained in the firing rate of the neuron in (A) in correct trials. 379 

Dashed line marks the significance threshold (p = 0.01; shuffle distribution). (D-F) Same layout as in 380 

(A-C) for a different single unit recorded on a neighboring channel on the same microelectrode array. 381 

(G-I) Same layout as in (A-C) for a multi-unit recorded on a neighboring channel on the same 382 

microelectrode array. (J) Cross-temporal LDA decoding of nonsymbolic number (small, i.e. 2-4, versus 383 

large, i.e. 6-8) in the 1000 ms memory epoch following sample presentation using spiking activity 384 

(multi-units) on all channels of the microelectrode array. Sample presentation is highlighted. (K) Same 385 

layout as in (J) for symbolic number. (L) Same layout as in (J) for cross-notation decoding. The decoder 386 

was trained in trials with nonsymbolic numerosities and tested in trials with symbolic numerosities. 387 

 388 

We then directly compared the microscale neuronal activity elicited during the task with mesoscale 389 

network responses. At the same electrode on which the number-tuned single unit shown in Fig. 6A-C 390 

was recorded, LFP power varied strongly with sample number and notation (and their interaction) in 391 

particular in the gamma band (45 - 100 Hz;  w2 percent explained variance; Fig. 7A). However, in 392 

contrast to the early changes in spiking activity, sample selectivity measured by LFPs increased only 393 

150 ms after sample offset (compare e.g. Fig. 7A left with Fig. 6A left). In the 500 ms epoch following 394 

sample number presentation, gamma power increased monotonically with numerosity in nonsymbolic 395 

trials, but did not vary with symbolic number (p < 0.001 and p = 0.46, respectively, one-factorial 396 

ANOVA; Fig. 7B top). On two neighboring channels (same electrodes on which units shown in 397 

Fig. 6D-F and Fig. 6G-I were recorded) a qualitatively similar pattern was found (p < 0.001 and 398 

p = 0.02, respectively, one-factorial ANOVA; Fig. 7C, D top), albeit with a clear spatial gradient. Beta 399 

responses, in contrast, were spatially more uniform, underscoring the local nature of gamma activity 400 

and the potentially distinct functional reach of the analyzed frequency bands (Fig. 7B-D bottom). Of 401 

note, while not all units in Fig. 6 were tuned to the same preferred numerosity, LFP power scaled 402 

uniformly with numerosity across electrodes (compare Fig. 6G left with Fig. 7D top; Fig. S3). 403 

Numerosity-responsive electrodes were spatially clustered with overlap of sites selected using LFP 404 

activity and sites selected using (multi-unit) spiking activity (Fig. S3). Analysis of propagating 405 

oscillatory activity across the array also showed that, at equal strength, travelling waves were faster for 406 

larger numerosities (Fig. 7E).  407 
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 408 

Fig 7. Local and propagating oscillatory neuronal activity during number coding. (A)  Sliding-409 

window  w2 percent explained variance (two-factorial ANOVA) quantifying the information about 410 

sample number (left) and notation (middle) as well as their interaction (right) contained in the LFP 411 

power spectrum of an example single channel on a lower-density array (same channel as in Fig. 6A-C) 412 

in correct trials. Sample presentation is highlighted. (B) LFP power in the gamma (45 - 100 Hz, top) 413 

and beta (15 - 35 Hz, bottom) band in the 500 ms epoch following sample number presentation as a 414 

function of sample number in nonsymbolic and symbolic notation. Same channel as in (A). p-values are 415 

given for one-factorial ANOVA. (C) Same layout as in (B) for a neighboring single channel. (D) Same 416 

layout as in (C) for a neighboring single channel. (E) Speed (top) and goodness-of-fit (PGD, bottom) 417 

of LFP beta band travelling waves propagating across the array in the 500 ms epoch following sample 418 

number presentation for small (2-4) and large (6-8) numbers in nonsymbolic and symbolic notation. p-419 

values are given for one-factorial ANOVA. 420 

 421 

Our proof-of-concept results suggest that, first, the human parietal cortex harbors single units that are 422 

tuned to number, establishing a previously missing link to the non-human primate animal model. 423 

Second, at the single-neuron level, nonsymbolic set sizes are coded with graded and continuous 424 

responses, displaying no sign of a discontinuity in activity that might signal the presence of different 425 
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neuronal representations for small and large numerosities. A well-studied behavioral signature of the 426 

approximate (nonsymbolic) number system, subitizing denotes the accurate apprehension of small 427 

numbers of items at a glance (evidenced by a disproportionate increase in errors for larger numerosities 428 

in nonsymbolic, but not symbolic notation; single-subject data for P10 [dashed lines] in Fig. 5E, G) and 429 

is thought to indicate different representational systems for small and large quantities 45. In our example 430 

participant, we found no evidence for subitizing at the neuronal level. Our findings therefore rather 431 

argue that the representation of small and large quantities emerges from a single system 46. Third, 432 

symbolic numbers are coded with distinct temporal dynamics and more categorical responses than 433 

nonsymbolic quantities, in line with recent findings in the human MTL 6. However, the number code 434 

partially generalizes across notations with number-congruent responses for nonsymbolic and symbolic 435 

stimuli. Fourth, spiking activity and oscillatory activity reflect distinct aspects of numerical information 436 

processing in the local microcircuit, with LFPs possibly capturing in particular the network's load-437 

dependent activity state.  438 

2.1 Neuronal representation for numbers in human working memory 34



Discussion 439 

We found that intracortically implanted MEAs are suitable for acute recordings of human brain activity 440 

at both meso- and microscale resolution (Figs. 2-4). All arrays acquired LFPs (synaptic network 441 

activity) with high fidelity. Increasing the interelectrode spacing also allowed us to record responses 442 

from populations of single units. The devices can be used in awake surgeries with large open 443 

craniotomies, providing broad access to the cortex (Fig. 1) in patients who achieve close to normal 444 

levels of cognitive performance (Fig. 5). We illustrated a potential application by exploring the neuronal 445 

correlates of human numerical cognition in parietal cortex (Figs. 6, 7), a brain region that is typically 446 

inaccessible in DBS or epilepsy surgery, i.e. in procedures that so far have produced the vast majority 447 

of intracranial data tapping into the neuronal underpinnings of human cognitive functions. 448 

We believe the comparative ease with which MEA recordings can be introduced into the operating room 449 

and incorporated into established neurosurgical procedures to be their greatest advantage. Positioning 450 

of the array and implantation can be completed within ten minutes. After insertion, the arrays 'float' on 451 

cortex. No extra manipulators or electrode holders are required 12,13. The arrays readily follow brain 452 

movements, yielding stable recordings without the need for additional mechanical stabilization 9,10. 453 

Slight shifts of the skull in awake participants and above all vertical displacements of the cortex during 454 

brain pulsations pose a major challenge when externally secured probes are used that occupy a different 455 

spatial reference frame than the tissue they record from, necessitating elaborate post-acquisition motion 456 

correction 12,13. Furthermore, penetrating MEAs are robust, have a well-documented safety profile and 457 

are used with equipment that has been validated for sterilization and re-use. There is no risk of shank 458 

breakage, no inadvertent deposition of electrode material in brain tissue, and no need to perform 459 

piotomies to allow entry of the device into cortex as with more delicate (e.g. Neuropixels) probes 12,13. 460 

Good grounding could be reliably achieved either by anchoring the pedestal to the skull or by 461 

establishing a strong connection to the head frame. Both configurations were effective in our experience 462 

and sufficient to reduce electrical hum and noise to levels that enable high-quality extracellular 463 

recordings despite an environment full of potential sources of interference. We did not find it necessary 464 

to turn off suction, lighting, warming blankets or any other piece of medical equipment during 465 

recording. 466 

The arrays' grid-like electrode arrangement allows for dense sampling of neuronal activity in the 467 

horizontal plane, i.e. from a patch of cortex. There is rapidly mounting interest in the mechanisms by 468 

which propagating neuronal activity, e.g. in form or travelling waves (Fig. 4), mediates intercortical 469 

information transfer 30-33,35-37. In contrast to microwire bundles with their irregularly placed electrode 470 

tips or linear probes that record from one single cortical column, MEAs with their well-defined planar 471 

geometry are ideally suited to address such questions. Spatial coverage may be extended even further 472 

by the addition of ECoG grids, which can be placed directly on top of MEAs, or intracranial stereo EEG 473 

leads 47-49. Lastly, using MEAs in open craniotomy surgeries where the implanted tissue is resected (as 474 
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in our participants) opens up the possibility of complementing the in vivo recordings with in vitro 475 

physiological or histological analyses to explore structural-functional relationships in neural circuit 476 

organization 50. 477 

MEAs with increased interelectrode spacing (25 channels) recorded on average more than one well-478 

isolated single unit per channel (Fig. 3). Per patient and recording session, this yield is similar to semi-479 

chronic recordings in epilepsy patients (2 to 3 neurons per microwire bundle with up to 10 bundles 480 

implanted per patient 2,6). Acute DBS recordings from prefrontal cortex (10 to 20 neurons per participant 481 
9,10) or midbrain structures (fewer than 10 neurons per participant 11,51) yield less. Efforts are currently 482 

underway to establish acute intracranial recordings with high-density linear probes (Neuropixels), 483 

which have been reported to pick up between several tens of neurons in open craniotomies 13 to a few 484 

hundred units in DBS burr holes 12. Critical technical challenges are still to be met, but these probes 485 

could eventually provide a valuable addition to the armamentarium of intraoperative recording devices 486 

from which the neurophysiologist and neurosurgeon can chose depending on the particular research 487 

question and clinical setting. 488 

The arrays' geometrical configuration was a crucial determinant of spiking activity SNR (Fig. 2). This 489 

is likely a consequence of the electrodes' comparatively large footprint (thickness 180 - 200 µm near 490 

the base), the main disadvantage of the MEAs used in this study. Lower-density arrays produce less 491 

cortical trauma, thereby increasing the chances of measuring single unit activity shortly after array 492 

insertion. Our histological analyses showed microhemorrhages in some 26,27, but not all implantations 493 

of standard 96 channel arrays. Cortical neuronal 'stunning' might therefore be an important reason for 494 

the very low single unit yield in higher-density arrays. Fittingly, unit activity in our recordings only 495 

appeared after several minutes and continued to develop until data acquisition began when the patient 496 

was fully awake, a time period significantly longer than recently reported for thinner linear probes 12,13. 497 

A second limitation of the described setup is the difficulty in precisely controlling pneumatic array 498 

insertion. Whether the inserter wand is stabilized by a dedicated holder or manually (we preferred the 499 

latter to expedite implantation), the inherent variability in inserter positioning will significantly affect 500 

the forces that the electrode pad experiences during implantation, much unlike micromanipulator-501 

controlled implantations of e.g. linear probes. Imperfect alignment of the inserter with the array could 502 

disproportionately impact implantations of higher-density arrays and in older patients 26, where optimal 503 

forces are required to overcome the increased resistance to insertion from the pial meninges and brain 504 

tissue. We found it best to place the inserter into direct contact with the array, applying very gentle 505 

downward pressure to eliminate dead space between the electrode tips and cortical surface (Fig. 1). This 506 

approach resulted in complete array insertions and reproduceable signals for both higher-density and 507 

lower-density arrays (Fig. 2). 508 

High-volume recordings are necessary to accelerate progress in our understanding of the neuronal basis 509 

of human brain functions. Awake surgeries for tumor resection are performed at many medical centers. 510 
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We have shown here that these procedures are as suitable for acquiring cellular resolution data from the 511 

human brain as DBS or epilepsy surgeries. As any other probe in the expanding palette of multichannel 512 

recording devices 12,13, intracortical MEAs do not promise a fail-safe or turn-key solution. However, the 513 

technology is more mature and more lenient in the intraoperative setting where clinical constraints 514 

considerably limit options for optimizing the recording setup and neuronal signal quality. Once 515 

mastered, it can also be effectively put to use in chronic (e.g. BCI) applications where MEAs represent 516 

the gold-standard for intracranial sensors. Human single-unit recordings are multidisciplinary 517 

endeavors, for which all stakeholders must advance beyond their comfort zones. The methods we 518 

describe here can stimulate productive collaborations between neuroscientists and clinicians and propel 519 

forward the exploration of the unique neural computations performed by the human brain. 520 

Limitations of the study 521 

For ethical reasons, invasive human recordings are necessarily confined to brain areas with potential 522 

pathological changes. We did not systematically assess array placement in relation to the tumor. But 523 

given our surgical planning procedure with intraoperative MRI-guided neuronavigation and inspection 524 

of the cortical and vascular anatomy prior to implantation, we are confident that the tumor was distant 525 

enough from the recording site in all cases. This notion is confirmed by the absence of tumor cell 526 

infiltration into the tissue surrounding the electrodes in our histological analyses (Fig. 1). Although we 527 

did not randomize the implanted array type per patient (we performed consecutive implantations with 528 

the higher-density array before switching to the lower-density array), we do not think it likely that the 529 

surgical team's experience influenced our results. We did not observe a gradual improvement in 530 

(spiking) signal quality across the implantations. Instead, there was a disruptive increase in unit activity 531 

when we changed from the 96-channel to the 25-channel array. Continued efforts are warranted, in any 532 

case, to increase the currently small sample sizes and to further explore the effect of varying surgical 533 

expertise, implantation sites and array geometries on the quality of intraoperatively acquired 534 

extracellular neuronal signals.  535 
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 555 
Fig. S1. Example electrical artefacts during intraoperative recording. (A, B) Single large-amplitude 556 

electrode 'pop' with prolonged voltage settling time in a lower-density array recording. Note the 557 

voltage scale and compare to subsequent panels. Two representative channels are highlighted in (B) 558 

together with their location on the MEA grid (inset). (C, D) Line noise (50 Hz) and its harmonics in 559 

the same recording as in (A, B). (E, F) Contamination of the ground in a higher-density array 560 

recording by frontal facial and ocular muscle activity leading to intermittent slow artefacts. 561 

  562 
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 563 
Fig. S2. Dimensionality of number coding. (A) cross-temporal decoding for nonsymbolic number (2, 564 

3, 4, 6, 7 and 8) with decoder’s dimensionality controlled. (B) same as (A), but for symbolic number 565 

(C) Peak decoding accuracy (smoothed with Gaussian filter with sigma of 100ms) for nonsymbolic 566 

number using with different dimensionalities. Error bars: stardard deviation of mean. Red lines: 567 

significant difference between the decoding accuracy using different number of dimensions (p < 0.01, 568 

with Bonferroni correction). (D) same as (C), but for symbolic number. (E) the representational 569 

geometry of nonsymbolic numbers during the time window of peak accuracy (500 ms - 800 ms). 570 

(F)  same as (E), but for nonsymbolic numbers during 800 ms – 1100 ms. 571 

  572 
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 573 

 574 

 575 
 576 
Fig. S3. Spatial clustering of numerosity representations. (A, B, C) P values of one-factorial 577 

ANOVA quantifying the degree of numerosity-selectivity per electrode site in the 500 ms epoch 578 

following sample number presentation (nonsymbolic trials) using either beta or gamma LFP power 579 

(A, B) or multi-unit spiking activity (C). (D, E, F) Preferred numerosity at the selective electrode sites 580 

(p < 0.05) determined by highest power (D, E) or firing rate (F) averaged per numerosity across the 581 

500 ms epoch following sample number presentation. 582 

.  583 
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Table 1. Study participants. 584 

  585 

ID Sex Age Tumor 
location 

Procedure State Array location Channels Spikes Single units 
(Multi units) 

Behavior Notes 

P01 F 68 right frontal histology anesthetized inferior parietal cortex 96     

P02 M 54 right parietal histology anesthetized inferior parietal cortex 96     

P03 M 62 right parietal histology anesthetized inferior parietal cortex 96     

P04 M 56 left frontal setup testing 
and recording 

anesthetized middle frontal gyrus 96 no 0 (0)   

P05 F 75 left central setup testing 
and recording 

anesthetized superior frontal gyrus 96 no 0 (0)   

            

P06 M 57 left parietal recording awake angular/supramarginal gyrus 96 (yes) 7 (5) number task  

P07 M 73 left parietal recording awake angular /supramarginal gyrus 96 no 0 (0) number task performance non-symbolic trials ¯ 

P08 F 55 left parietal recording awake inferior parietal cortex 96    no data acquisition 
bad ground 

P09 M 51 left fronto-
parietal 

recording awake middle frontal gyrus 96 no 0 (0) number task performance non-symbolic trials ¯ 

            

P10 M 32 left temporal recording awake supramarginal/angular gyrus 25 yes 32 (25) number task  

P11 M 67 left frontal recording awake supramarginal/angular gyrus 25 yes 18 (14) number task  

P12 M 71 left insular recording awake angular/supramarginal gyrus 25    no data acquisition 
intracerebral hemorrhage 
(unrelated to implantation) 

P13 F 59 left central recording awake supramarginal/postcentral gyrus 25 yes N/A (N/A) number task spiking activity as in P10 and P11 
prior to sudden SNR drop  
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STAR Methods 586 

RESOURCE AVAILABILITY  587 

Materials availability  588 

This study did not generate new unique reagents.  589 

 590 

Data and code availability  591 

• All data reported in this paper will be shared by the lead contact upon request. 592 

• This paper does not report original code. 593 

• Any additional information required to reanalyze the data reported in this paper is available 594 

from the lead contact upon request. 595 

 596 

EXPERIMENTAL MODEL AND STUDY PARTICIPANTS  597 

We included 13 participants in this study with intracerebral tumors (mainly glioblastoma) referred to 598 

our department for surgical resection (Table 1). All study procedures were conducted in accordance 599 

with the Declaration of Helsinki guidelines and approved by institutional review board (IRB) of the 600 

Technical University of Munich (TUM) School of Medicine (528/15 S). Participants were enrolled after 601 

giving informed consent. The scientific aims of this study had no influence on the decision to operate. 602 

With the exception of array implantation, the course of the surgery was not altered. 603 

 604 

METHOD DETAILS 605 

Multielectrode arrays and implantation procedure 606 

Per participant, one Neuroport IrOx planar multielectrode array (Blackrock Neurotech) was implanted. 607 

In nine patients, we implanted the standard array with 96 wired (active) electrodes on a 10x10 grid 608 

(1.5 mm electrode length, interelectrode spacing 400 µm). In four patients, we implanted a custom array 609 

with 25 channels, which was produced by removal of every second row and column from the standard 610 

array (interelectrode spacing 800 µm; Fig. 2c). The modifications were performed by the array 611 

manufacturer (Blackrock Neurotech; purchase orders for custom arrays are accepted). The array's 612 

pedestal was first anchored to the skull adjacent to the craniotomy. The array was then positioned on 613 

the cortical surface of the to-be-implanted gyrus guided by MRI-neuronavigation (Brainlab, Germany). 614 

Care was taken to avoid prominent vascular structures, which in some cases prompted us to deviate 615 

from the preoperatively determined implantation site by a few millimeters. References wires were 616 

inserted under the dura. 617 
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The array was implanted pneumatically following the manufacturer's guidelines (Blackrock Neurotech). 618 

We found that introducing a dedicated external wand holder was inconvenient, and that positioning of 619 

the holder unnecessarily prolonged the implantation procedure. We therefore secured the wand 620 

manually such that it touched the array's dorsal pad and brought the electrode tips into contact with the 621 

pia. Insertion was performed with a single pulse (20 psi, pulse width 3.5 ms). We did not systematically 622 

explore different insertion pressure or pulse width settings. The array was then covered with saline 623 

irrigated strips and left to settle. Anesthesia was discontinued in patients planned for awake tumor 624 

resection. 625 

All equipment in contact with the patient (inserter wand, trigger, tubing, headstages, cabling) was re-626 

sterilized (Steris V-Pro) and used in multiple surgeries. 627 

In all participants, the implantation site was chosen to lie within the resection area surrounding the 628 

tumor. In some cases, however, intraoperative evaluation determined that the implanted tissue could 629 

not be safely resected, so that the array was removed from the brain tissue prior to closure of the dura 630 

and the craniotomy. In three participants (P01, P02 and P03), the resected implantation region was 631 

formalin-fixed with the array in situ and processed further for histological analysis (hematoxylin eosin 632 

staining). 633 

Cortical surfaces were reconstructed from individual participants' structural MRI using BrainSuite 52. 634 

The implantation site was marked manually, guided by intraoperative neuronavigation data and 635 

photographic documentation. Individual MRI scans were then normalized to the MNI-152 template in 636 

SPM12 (Wellcome Center Human Neuroimaging). The macroanatomical cortical area corresponding 637 

to the implantation site was determined with the JuBrain SPM anatomy toolbox (Forschungszentrum 638 

Jülich). 639 

 640 

Neurophysiological recordings 641 

We recorded intraoperative neuronal data in eight awake participants. All eight participants underwent 642 

the same procedures before, during and after recordings. Extracellular voltage signals were acquired 643 

using either analog patient cable headstages in combination with a front-end amplifier (P04, P05, P06, 644 

P07 and P09) or digital Cereplex E128 headstages connected to digital hubs (P10, P11 and P13) as part 645 

of a 128-channel NSP system (NeuroPort Biopotential Signal Processing System, Blackrock 646 

Neurotech). Settings for signal amplification, filtering and digitization were identical in both setups 647 

(high-pass 0.3 Hz, low-pass 7.5 kHz, sampling rate 30 kHz, 16-bit resolution). 648 

We did not find it necessary to switch between the two reference wires, both of which provided high-649 

quality reference signals in all cases. However, particular attention was paid to achieving a strong 650 

ground connection via the pedestal. Long skull screws (6 mm) in combination with intermittent 651 
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irrigation of the pedestal's base where it contacted the skull produced the best results. Impedances were 652 

checked after array implantation and in most surgeries were initially higher than the upper bound of the 653 

normal range (80 kW for IrOx electrodes), but continued to normalize over the course of several tens of 654 

minutes. We attributed this to improving electrical conductivity at the pedestal-skull interface. 655 

Additional ground connections were not necessary and could even contaminate signals if placed badly 656 

(e.g. subdermal needles in the vicinity of musculature). 657 

 658 

Behavioral task and stimuli 659 

Six participants performed a delayed-match-to-number task during neuronal recording. MonkeyLogic 660 

2 (NIMH) running on a dedicated PC was used for experimental control and behavioral data acquisition. 661 

Behavioral time stamps were transmitted to the NSP system for parallel logging of neuronal data and 662 

behavioral events. 663 

We familiarized participants with the task ahead of the surgery and allowed them to complete multiple 664 

training trials. Participants viewed a 12" monitor positioned 40 - 50 cm in front of them. They were 665 

instructed to maintain eye fixation on a central white dot and pressed a button on a hand-held device to 666 

initiate a trial. Stimuli were presented on a centrally placed gray circular background subtending approx. 667 

9,4 ° of visual angle. Following a 500 ms pre-sample period, a 150 ms sample stimulus was shown. In 668 

nonsymbolic trials, 2, 3, 4, 6, 7 or 8 randomly arranged black dots specified the corresponding 669 

numerosity. In symbolic trials, black Arabic numerals (Arial, 40 - 56 pt) were shown. The participants 670 

were required to memorize the sample number for 1,000 ms and compare it to the number of dots (in 671 

nonsymbolic trials) or the Arabic numeral (in symbolic trials) presented in a 1,000 ms test stimulus. If 672 

the quantities matched (50 % of trials), participants released the button (correct Match trial). If the 673 

quantities were different (50 % of trials), the participants continued to push the button until the matching 674 

quantity was presented in the subsequent image (correct Non-match trial). Match and non-match trials 675 

and nonsymbolic and symbolic trials were pseudo-randomly intermixed. New stimuli were generated 676 

for each participant and recording. 677 

 678 

Behavioral performance 679 

Behavioral tuning functions were used to describe the percentage of trials (y axis) for which a test 680 

stimulus (x axis, units of numerical distance to sample number) was judged as being equal in number 681 

to the sample. A numerical distance of 0 denotes match trials; the data point represents the percentage 682 

of correct trials. As the numerical distance increases, there is less confusion of the test with the sample 683 

number; the data points represent the percentage of error trials. Tuning curves were calculated 684 

separately for trials with nonsymbolic stimuli and for trials with symbolic stimuli. 685 
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 686 

Spiking activity and single unit quality metrics 687 

Raw signals were filtered (250 Hz high-pass, 4-pole Butterworth), and spike waveforms were manually 688 

separated from noise using Offline Sorter (Plexon). Signal-to-noise ratio (SNR) was calculated as 689 

!"# = 20 ∗ ()*!"(
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) 690 

where Vpp is the mean peak-to-peak spike amplitude of a given channel and VRMS is the root-mean-691 

square (RMS) voltage 692 
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 693 

with xn being individual voltage values (Fig. 2D top). Spike SNR was calculated across the entire 694 

recording session (Fig. 2D bottom) or in sliding windows (Fig. 2E; 60 s bins, 30 s steps). 695 

Thresholded waveforms were manually sorted into clusters of single units (Offline Sorter). We 696 

estimated the rate of false negatives (missed spikes) by fitting a gaussian to the distribution of spike 697 

troughs (Fig. 3D). Autocorrelograms (Fig. 3E) were calculated by shifting a unit's spike train in steps 698 

of 1 ms over a range of 1 to 25 ms. To determine the percentage of outlier spikes (Fig. 3G) 53, each 699 

spike was considered as a point on a 2D plane spanned by the first two principal components that were 700 

used for spike sorting. For each spike, the Mahalanobis distance to the corresponding cluster's average 701 

waveform was calculated. A chi-square distribution was then fitted to the distribution of distances 54. If 702 

the likelihood of a given spike to belong to this distribution was lower than a fixed threshold (the inverse 703 

of the total number of spikes in the given cluster), it was considered an outlier spike. 704 

 705 

Local field potentials and quality metrics 706 

Data was processed using the FieldTrip toolbox 55. Raw signals were filtered (1.5 Hz high-pass, 1-pole 707 

Butterworth; 250 Hz low-pass, 3-pole Butterworth), and line noise was removed (2-pole Butterworth 708 

band-stop filters of ± 0.2 Hz at 50 Hz and harmonics). LFP traces were then visually inspected for large-709 

amplitude artefacts, which were excluded from further analysis. 710 

Spectral transformation was performed with the additive superlet method 56. SNR was calculated in 711 

sliding windows (60 s bins, 30 s steps) and then averaged across windows for the session-SNR (Fig. 2H 712 

bottom) or presented as time-resolved data (Fig. 2I). For each bin and channel, states of high and low 713 

LFP activity were identified and used for signal and noise estimators, respectively (Fig. 2H top) 57,58. 714 

High and low activity states were derived from the smoothed LFP amplitude envelope (100 ms 715 
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averaging window) obtained through complex Hilbert transform. Any timepoints of the smoothed 716 

envelope that fell outside of three standard deviations of its distribution were marked as artefacts and 717 

automatically assigned to the noise intervals. The mean of the smoothed envelope, excluding artefact 718 

timepoints, served as a detection threshold for high activity states. Thus, epochs of the smoothed 719 

envelope surpassing the threshold for at least 400 ms were considered states of high activity, whereas 720 

all others counted as low activity states 57. SNR was then calculated as 721 

!"# = 20 ∗ ()*!" 2
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where NHigh and NLow are the number of high or low activity states, respectively, PP (peak-to-peak 723 

amplitude) is the difference between the highest and lowest voltage reading during a given high activity 724 

state and RMS is 725 
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 726 

with xn being individual voltage values of an interval of low activity. 727 

The Power-Spectral-Density (PSD) was calculated using Welch’s method. Specifically, across five 728 

minutes of the recording (0:30 to 5:30 min), modified periodograms in 3-s bins (smoothed using a 729 

Hamming window) with 50 % overlap were obtained by Fast Fourier transform (FFT) and averaged 59. 730 

 731 

Travelling waves 732 

We assumed the simplest form of travelling waves, a planar wave with linear phase gradient 33. First, 733 

zero-phase bandpass filters (± 1.5 Hz) were applied for each frequency of interest (theta: 6 to 9 Hz; 734 

beta: 15 to 35 Hz, in steps of 1 Hz) and every channel. We then applied the Hilbert transform (Hlb) to 735 

the resulting signal (V) to obtain the instantaneous phase j(x,y,t) of each time point (t) and channel 736 

position (x,y)	737 

,(5, 1, 7) + 9:(;[,(1, 7, 5)]) = >(1, 7, 5)?9:(;,=,>) 738 

Instantaneous phases were unwrapped and de-noised 60. Next, a plane model was fit to the data using 739 

linear regression. The plane was modelled as 740 

@(5, 1, 7) = ;;(5)1 + ;=(5)7 + @?(5) 741 

With bx(t) and by(t) being the slope of the plane in the x-direction and y-direction at time t, respectively, 742 

and jc(t) the constant phase shift at time t. The model’s goodness-of-fit was expressed by the Phase-743 
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Gradient Directionality (PGD) 33. PGD is the Pearson correlation between the predicted and actual phase 744 

and is given by 745 

ABC(5) =
∑9
)-&((@(5, 19 , 79) − @(5))(@F(5, 19 , 79) − @FG(5)))

H∑9
)-&(@(5, 19 , 79) − @(5))(∑9

)-&(@F(5, 19 , 79) − @FG(5))(
 746 

with @ being the average and @F  the predicted phase. 747 

When zero fell outside the 99th percentile of at least one of the coefficients’ bx or by confidence intervals 748 

and PGD was bigger than 0.5, a moment in time was considered for travelling wave-like activity 33. The 749 

direction 60 and speed 33 of the travelling wave-like activity were then calculated as 750 

I9J?K59)L(5) = >JK5>L(
;=(5)
;;(5)

) 751 

MN??I(5) =
O(5)

H;;(5)( +	;=(5)(
 752 

with w(t) being the instantaneous angular velocity. 753 

A travelling wave epoch was defined by non-zero slopes in the phase gradient with a PGD > 0.5 for a 754 

minimum length of 5 ms and a maximal average change in direction of 3 deg/ms. Polar distributions 755 

(10° bins) that showed a second peak reaching 25 % or more of the distribution’s modal value and that 756 

significantly differed from uniformity (Hodges-Ajne test) were considered bidirectional.  757 

 758 

Neuronal information 759 

To quantify the information about sample number and notation that was carried by a neuron’s spiking 760 

rate, we used the w2 percent explained variance measure 42. w2 reflects how much of the variance in a 761 

neuron’s firing rate can be explained by a given factor. It was calculated in sliding windows (100 ms 762 

bins, 20 ms steps) using 763 

O( 	= 	
!!@ABCDE − IQ ∗ 4!R

!!FB>GH +4!R
 764 

where the individual terms are derived from a two-way categorical ANOVA: SSGroups denotes the sum-765 

of-squares between groups (numbers), SSTotal the total sum-of-squares, df the degrees of freedom, and 766 

MSE the mean squared error. The number of trials in each group was balanced. Balancing was 767 

accomplished by stratifying the number of trials in each group to a common value: A random subset of 768 

trials was drawn (equal to the minimum trial number across groups) and the statistic was calculated. 769 

This process was repeated 25 times, and the overall statistic was taken to be the mean of the stratified 770 

values. Significance thresholds were determined by randomly shuffling the association between spiking 771 
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rates and trial type (number and notation) during the pre-sample epoch (500 ms). This process was 772 

repeated 1,000 times, and the significance threshold was set to the 99th percentile of the cumulative 773 

distribution (p < 0.01). 774 

For task information contained in LFPs, we calculated w2 in sliding windows (5 ms bins, 0.25 ms steps, 775 

1 Hz bins, 1 Hz steps) using spectral power derived as described above. 776 

 777 

Linear discriminant analysis 778 

Unsorted (multi-unit) spikes were aggregated into firing rates using Gaussian windows with 50 ms 779 

sigma and 50 ms step size. Trials were grouped for small numbers (2, 3, 4) and large numbers (6, 7, 8). 780 

A procedure of 7-fold cross validation with 7 repetitions was used, resulting in 49 training and testing 781 

set pairs. At every time step, an LDA decoder (Scikit-learn package in Python) was trained on the 782 

activity of the current time step in the training set and tested on all the time steps in the testing set in 783 

order to investigate how well the code generalizes across different timesteps. Decoding accuracy is 784 

given as the average across test trials. LDA finds the component that maximizes the Mahalanobis 785 

distance between the centroids of small and large number classes. The algorithm assumes equal within-786 

class covariance in different classes. Shrinkage of the empirical covariance matrix was applied by 787 

averaging the empirical covariance matrix with a diagonal matrix, discounting the spurious covariation 788 

between units. The amount of shrinkage was determined by the Ledoit-Wolf lemma 61. 789 

Dimensionality controlled version of LDA decoding was done by projecting data on the top n 790 

dimensions that preserves the Mahalanobis distance and finding the closest class centroid (all classes 791 

were used without grouping) to the test population response in this subspace. Peak accuracy was found 792 

by first smoothing the cross-temporal decoding accuracy matrix with Gaussian filter (100ms, or 2 time 793 

steps sigma) then finding the highest accuracy value. This prevents transient noise from dominating the 794 

result. Repeated measure T test was done over 150 repetitions of 7-fold cross validation between all 795 

pairs of peak accuracy with different dimensions (with Bonferroni correction). 796 

 797 

QUANTIFICATION AND STATISTICAL ANALYSIS 798 

All data analysis was performed with MATLAB (Mathworks) and Python. 799 

  800 
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KEY RESOURCES TABLE 801 

REAGENT or RESOURCE SOURCE IDENTIFIER 

   

Software and algorithms 

MATLAB MathWorks RRID: SCR_001622 

Python Programming Language Python website RRID: SCR_008394 

MonkeyLogic 2 NIMH N/A 

Offline Sorter Plexon RRID: SCR_000012 

FieldTrip toolbox FieldTrip website RRID: SCR_004849 

BrainSuite BrainSuite website RRID: SCR_006623 

SPM SPM website RRID: SCR_007037 

JuBrain SPM anatomy toolbox fz-juelich website N/A 

   

Other 

Microelectrode arrays Blackrock Neurotech N/A 

  802 
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Introduction 44 

For decades, the dominant approach to understanding neural systems has been to 45 
characterize the role and contributions of individual neurons. In a recent paradigm shift, 46 
the concept of high-dimensional activity spaces that represent cognitive and other 47 
variables at the level of neuronal populations has taken the center stage and sidelined the 48 
single-neuron perspective (1, 2). These population representations capture multi-neuron 49 
activity in different behavioral task conditions in the form of geometrical structures (3, 50 
4). Representational geometry provides a complete description of the information 51 
encoded by and processed in a neuronal population. It does not, however, account for 52 
how individual neurons – the nuts and bolts of brain processing – give rise to the 53 
representations and the operations performed on them (5) because there is no direct 54 
connection between informational representation and biological implementation at the 55 
cellular and circuit level. 56 

In constructing representational geometries, the choice of coordinate system, that is the 57 
set of components that capture the population activity, is arbitrary. The question then 58 
arises what the most meaningful coordinate system is to represent the data. In principal 59 
component analysis (PCA), a widely used method for dimensionality reduction, the 60 
principal components (PCs) capture the neuronal activity's variance, but they are not 61 
designed to yield biologically interpretable aspects of the representational geometry. 62 
Identifying coordinate systems that are rooted in biology is particularly relevant in 63 
association cortices where neurons often have mixed-selective responses that are not 64 
easily interpreted as the representation of any single stimulus or task variable alone (3, 65 
6). Neuronal signals in association cortices also show complex temporal dynamics and 66 
task-dependent modulations that reflect distinct sensory and memory processing stages 67 
(7–9). During working memory, for example, behaviorally relevant target items are 68 
maintained in online storage and must be protected against interfering distractors (8, 9). 69 
However, depending on which coordinate system is used to express the representational 70 
geometry, the same task-related neuronal activity could be interpreted in one of two 71 
ways: either as components representing the target in each task epoch individually, 72 
suggesting a memory mechanism built on sequential relay of target information among 73 
components (10), or, alternatively, as components that represent the target across task 74 
epochs, suggesting a memory mechanism of continuous representation of target 75 
information by the same components (11). 76 

The biological implementation of representations points to how components are accessed 77 
and information is communicated. Unlike the units in neuronal network models, in vivo 78 
neurons are subject to anatomical and physiological constraints. There are approximately 79 
1010 neurons in the human brain and 109 in a hypothetical functional module such as the 80 
dorsolateral prefrontal cortex (PFC) (12, 13). A pyramidal cortical neuron has on the 81 
order of 104 dendritic spines (14). Thus, given the disproportion between the low number 82 
of possible connections and the large number of potentially informative neurons, a 83 
neuron downstream of the PFC can only 'read out' from a small fraction of neurons in 84 
this region. That is, it cannot access arbitrary components of the representational 85 
geometry. Instead, it would be more efficient and biologically plausible to read out 86 
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components that a few neurons predominantly contribute to, that is the components with 87 
a sparse neuronal implementation. 88 

Here, we present a framework that exploits the structure in the representational 89 
geometry's neuronal implementation. We show that this approach yields unbiased 90 
components of population activity that retain links to individual neurons. We performed 91 
data dimensionality reduction on extracellular multi-channel recordings from the non-92 
human primate PFC by leveraging sparsity constraints in order to identify components 93 
that are contributed mainly by small subpopulations of strongly coding neurons (sparse 94 
component analysis, SCA) (15, 16). We found that the activities on these components 95 
nontrivially matched the working memory task sequence performed by the animals, 96 
revealing separate sensory and memory components including a previously hidden 97 
component, namely the recovery of memory content after distraction. Notably, each 98 
component was made up of non-overlapping subpopulations of neurons with distinct 99 
electrophysiological properties and temporal dynamics. Finally, neuronal network 100 
modelling showed that recurrent connectivity as in the PFC favors such sparse 101 
implementations over non-structured Gaussian implementations. The framework and 102 
findings presented here bridge the gap between the single-neuron doctrine and the 103 
neuronal population doctrine (1, 2) and establish the perspective of neuronal 104 
implementation as an important complement to representational geometry. 105 

Results  106 

Different neuronal implementations may underlie the same representational 107 
geometry 108 

Representational geometry abstracts the information coded by a population of neurons 109 
from their individual tuning profiles (5). It specifies the pairwise distances between task-110 
related collective neuronal responses, but no longer reflects the exact pattern of firing 111 
rates. This approach defines a stimulus-representing subspace. To illustrate, the 112 
representations for two stimuli A and B in PC space separate, rotate and collapse back to 113 
the origin (Fig. 1a). 114 

The same stimulus-representing subspace can be defined with arbitrary sets of 115 
components. Components can be chosen to capture specific aspects of the representation, 116 
e.g., to continuously distinguish between stimuli (Fig. 1b), or to distinguish between 117 
stimuli at different time points (Fig. 1c). Note that in the former example, the 118 
components align with the PCs, while in the latter they do not. Various studies have 119 
followed this approach, selecting the components e.g. such that they express 120 
representations sequentially (17) or such that they each correspond to a particular task 121 
variable of interest (18, 19). 122 

Neuronal activity can be reconstructed by the weighted sum of components. Every 123 
neuron has a set of weights quantifying its relation to the different components, i.e. its 124 
loadings on the components. The loadings of neurons on the PCs visualize their 125 
positions in implementation space (Fig. 1d-f), where the loadings along any axis 126 
correspond to a component in representation space with the same orientation (Fig. 1a-c). 127 
The structure in the implementation space, i.e., the distribution of loadings across 128 
neurons, can be exploited to identify a unique, non-arbitrary set of components that 129 
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emphasizes biological plausibility of stimulus coding over enforcing possibly unjustified 130 
priors. 131 

Representational geometry is invariant to the rotation of neuronal coordinates (20). 132 
Different neuronal implementations may therefore underlie the same representational 133 
geometry. We first consider the scenario of a Gaussian (dense) distribution of loadings 134 
(Fig. 1d), where the standardized moments (e.g., skewness and kurtosis) are constant, 135 
meaning there are no differences in these distributional statistics across axis orientations. 136 
We define the sparsity index (SI; Fig. 1d, top inset) to denote the sparsity of the 137 
implementation along a given axis. SI is proportional to a distribution's kurtosis. If SI is 138 
constant across axis orientations, neurons do not preferentially align to any axes. 139 

Next, we consider a sparse distribution (Fig. 1e). Most neurons lie around the origin of 140 
the coordinate system. However, because SI is not constant (Fig. 1e, top inset), we can 141 
find the sparse components that strongly coding neurons align to. In the present case, 142 
these sparse axes correspond to the components in representational space that code the 143 
difference between stimulus A and B continuously (with one of the components 144 
reversing between epochs; compare Fig. 1e with Fig. 1b). Importantly, sparse 145 
distributions can exist for arbitrary axis orientations. For example, strongly coding 146 
neurons could align to the components that sequentially represent the stimulus 147 
information at time point 1 and time point 2 (compare Fig. 1f with Fig. 1c). 148 

Although both scenarios are characterized by sparse neuronal implementations, we note 149 
that they have fundamentally different implications for readout, lending particular 150 
importance to the positioning of sparse axes orientations. Continuous readout (Fig. 1b 151 
and e, component 1) is stable, but not optimized for either time point 1 or time point 2, 152 
whereas sequential readouts (Fig. 1c and 1f) are more precise at the respective time 153 
points, but not stable across time points. 154 

In summary, the perspective of neuronal implementation offers a way to connect 155 
representational geometries to their cellular constituents, revealing mechanistic insights 156 
into how a neural system encodes, processes and relays information. 157 
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 158 

Fig. 1. Different neuronal implementations of the same representational geometry 159 

(a) Representational geometry for two trials with stimuli A and B on the plane specified 160 
by stimulus PC1 and PC2. Time runs along the individual trajectories. (b) Left: example 161 
pair of components that express the representational geometry (magenta arrows). Right: 162 
activities on the corresponding components and standard deviation (s.d.) across 163 
components as a measure of amount of information carried by them. Components are 164 
aligned with the PCs. (c) Same layout as in (b) for a non-aligned pair of components. (d-165 
f) Neuronal implementation underlying the representational geometry in (a-c), specified 166 
by the distribution of neuronal loadings on the stimulus PCs. Insets: sparsity index (SI) 167 
of all axis orientations in the space spanned by PC1 and PC2. Axes with high SI (sparse 168 
axes, magenta arrows) in (e) and (f) correspond to the components 1 and 2 in (b) and 169 
(c), respectively. 170 

The neuronal implementation of working memory 171 

With this framework, we now examine neuronal implementation of working memory, a 172 
core cognitive function for online maintenance and manipulation of information in the 173 
absence of sensory inputs. Extracellular multi-channel recordings were performed in the 174 
lateral PFC of two monkeys trained on a delayed-match-to-numerosity task, requiring 175 
them to memorize the number of dots (i.e., numerosity) in a visually presented sample 176 
and resist an interfering distracting numerosity (9) (Fig. 2a). A total of 467 single units 177 
recorded across 78 sessions were included in the analysis. Spike rates were binned, 178 

2.2 Neuronal implementation of representational geometry in prefrontal cortex 61



averaged across conditions of the same type and demixed into their constituent parts 179 
(Fig. 2b) (21). Because the task design was balanced (i.e., all sample-distractor 180 
combinations were included), the different task variables were statistically independent 181 
of each other. Demixing therefore allowed to isolate and analyze signal components that 182 
would otherwise be overshadowed by signals that dominate the raw firing rates. Across 183 
neurons, the neuronal activities coding for trial time, sample numerosity, distractor 184 
numerosity and the sample-distractor interaction accounted for 72.7 %, 8.7 %, 5.8 % and 185 
12.9 % of the total variance, respectively (Fig. 2b).  186 

We first focused on the representation of the sample numerosity throughout the trial, the 187 
crucial function for completing the task (Fig. 2c). In PC space, the representations of 188 
different numerosities (1 and 4 visualized here) started to separate, marking an increase 189 
of the information during sample presentation. Then the representations rotated and 190 
returned to the origin. Similar representational changes have been reported previously 191 
(10, 22, 23). 192 

The distribution of loadings of individual neurons onto the first three PCs was highly 193 
non-Gaussian (p < 0.001; Henze-Zirkler multivariate normality test; Fig. 2d). 194 
Accordingly, the sparsity index (SI) was not uniform across all axis orientations 195 
(Fig. 2d). Using sparse component analysis (SCA) that identifies components with 196 
sparse distributions of neuronal loadings (sparse components, SCs), we found three SCs 197 
that optimally decomposed the sample numerosities' representational geometry. The SCs 198 
displayed temporally well-defined active periods that matched the task structure and 199 
tiled the duration of a trial (Fig. 2e). Intuitively, they correspond to components for 200 
sensory encoding, memory maintenance and memory recovery following distraction, in 201 
accord with the scenario of sequential representations (cp. to Fig. 1c and f). 202 

To control for the possibility that noise in non-sparse implementations is mistaken for 203 
structure by SCA, we created substitute datasets with random Gaussian implementations 204 
(i.e., Gaussian distributions of neuronal loadings) while keeping the representational 205 
geometry intact and then systematically compared the original SCs with the substitute 206 
SCs (example substitute SCs in Fig. 2f). First, the sparsity parameter b (fit to the 207 
distribution of loadings on the SCs) was smaller for all three original SCs than for the 208 
substitutes (p < 0.001 for all three SCs; permutation test with n = 3×1000 permutations; 209 
Fig. 2g), confirming the presence of structure in the implementation. Second, the 210 
activities on the SCs showed temporally restricted sample representations with shorter 211 
spread (p < 0.002; permutation test with n = 1000 permutations; same as for Fig. 2i-k; 212 
Fig. 2h), less temporal overlap with other SCs (p < 0.003; Fig. 2i), and less reversal of 213 
sample numerosity tuning (p < 0.030; Fig. 2j) than the substitutes, suggesting that the 214 
observed SC activity was more sequential than to be expected with a random 215 
implementation. Third and finally, the SCs were closer to orthogonal than the substitutes 216 
(p < 0.019; Fig. 2k), demonstrating that the observed implementation is more efficient 217 
than a random implementation. 218 

In summary, the neuronal implementation of the sample numerosities' representational 219 
geometry was structured and sparse. The activities on the sparse components 220 
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demonstrated sequential rather than continuous coding of working memory content, 221 
indicating that the change of behavioral demands in the course of the trial triggers a 222 
switching of informative subpopulations. 223 

 224 

Fig. 2. The neuronal implementation of working memory 225 

(a) Delayed-match-to-numerosity task with distractors. (b) Demixing procedure 226 
separating the activity of each neuron into the parts coding time, sample numerosity, 227 
distractor numerosity and sample-distractor interaction. The sample coding part is used 228 
for the following analyses. Top: percentage of explained variance for each part. 229 
(c) Representational geometry for sample numerosities 1 and 4 in PC space, averaged 230 
across trials of the same condition. (d) Loadings of all recorded neurons on the top three 231 
PCs (black dots) including distributions projected onto the planes formed by PC pairs 232 
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(gray dots). Sparse axes (magenta arrows; determined by SCA) have high SI. Inset: 233 
surface plot of SI for all axes in the space. (e) Activity of the three identified sparse 234 
components (SCs), averaged across trials for each sample numerosity condition (top; 235 
numbers indicate sample numerosity) and relative information across conditions 236 
measured as standard deviation (s.d.). (f) SCs of an example substitute dataset with non-237 
structured Gaussian implementation. (g) Sparsity b of the neuronal loadings on the SCs 238 
(fit to generalized normal distribution) for the original data and the substitute datasets 239 
(permutation test with n = 3×1000 permutations). (h-k) Activity measures for the SCs of 240 
the original data and the substitute datasets (permutation test with n = 1000 241 
permutations). 242 

The effect of distraction on sample numerosity representations 243 

The lack of a component that continuously represented the behaviorally relevant sample 244 
numerosity throughout the trial was unexpected. We therefore investigated the influence 245 
of distraction on sample number coding. 246 

First, we applied SCA to the demixed distractor coding part of the data (Fig. 3a, top). 247 
Two SCs were obtained that were sequentially active during presentation and 248 
maintenance of the distractor numerosity, respectively (Fig. 3a, bottom). These 249 
components resembled the sensory and memory sample coding SCs (cp. to Fig. 2e), 250 
suggesting that target and distracting information initially occupied similar resources 251 
despite their distinct behavioral relevance. Supporting this hypothesis, we found strongly 252 
overlapping neuronal loadings between sample SCs and distractor SCs (cosine 253 
similarity; 0.69 and 0.57 for the sensory and memory components, respectively; Fig. 3b) 254 
with displacement of sample information by distractor information as the trial evolved 255 
(Fig. S1a, top and middle). However, in contrast to the sample sensory and memory 256 
components, the sample recovery SC was unique and did not share loadings with any 257 
other SC (Fig. 3b). Furthermore, the sample recovery SC was not influenced by 258 
distractor information and carried sample information until test numerosity presentation 259 
(Fig. S1a, bottom). To correctly complete a trial, more activity in the sample sensory and 260 
recovery SCs was required when the trial contained a distractor than when a trial without 261 
a distractor was presented (Fig. S1b). Conversely, distractors led to reduced sample 262 
activity in the memory component. 263 

Second, we applied SCA to the sample-distractor interaction part of the data. One SC 264 
was identified. Its activity was most pronounced when the sample and distractor 265 
numerosity were the same (Fig. S2). The neuronal loadings on this SC did not overlap 266 
with the loadings on sample or distractor SCs (Fig. 3b), suggesting that the boost in 267 
numerosity information was generated by a dedicated subpopulation responding to a 268 
repeated presentation of the same number, instead of changing the activity of the sample 269 
representing neurons. 270 

Together, these results indicate a (partially) shared capacity for sample and distractor 271 
representations during the sensory input and subsequent memory delay stages. The 272 
invasion of distractor information forced the recruitment of an extra component, the 273 
recovery component, to maintain sample information in working memory. 274 
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So far, all analyses were performed on separated (demixed) representations. We next 275 
investigated whether sample and distractor information could be equally disentangled 276 
using SCA alone without demixing the numerosity coding signal (Fig. 3c). SCA 277 
performed on firing rates averaged across the second memory delay recovered two 278 
sparse components that each selectively captured sample and distractor information 279 
(Fig. 3d). The corresponding representational geometry was grid-like with clearly 280 
factorized sample and distractor information that each aligned well to one SC (Fig. 3e). 281 
Notably, this alignment was non-trivial and not enforced by our analytical method, 282 
arguing that the PFC spontaneously disentangles target and distractor representations in 283 
working memory. The underlying implementation showed clear sparse structure in the 284 
neuronal loadings onto these components (Fig. 3f). 285 

For comparison, PCA, which is insensitive to the neuronal implementation, was unable 286 
to recover factorized components (Fig. 3g). The grid-like geometry was still largely 287 
preserved, but it did not align with the PCs (Fig. 3h). In contrast to SCA, PCA did not 288 
identify the components with the sparsest loadings (Fig. 3i). 289 
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 290 

Fig. 3. The effect of distraction on sample representations 291 

(a) Top: the demixed distractor representing part used in the analysis. Bottom: 292 
distractor numerosity sparse components (SCs). Numbers indicate distractor 293 
numerosity. (b) Cosine similarity between loadings of sample numerosity SCs (blue), 294 
distractor numerosity SCs (red) and the sample-distractor interaction SC (green). 295 
(c) Activity of the two SCs identified using firing rates averaged across the second 296 
memory delay for all sample-distractor combinations without demixing the stimulus 297 
presentations. (d) Representational geometry in SC space. Blue and red colors indicate 298 
sample and distractor numerosity, respectively. (e) Neuronal loadings on the 2 SCs. 299 
Dots: joint distribution in SC space. Histograms: marginal distribution of neuronal 300 
loadings on SC1 and SC2. Inset: SI for all axes. (f-h) Same layout as in (c-e) but for 301 
PCs. Magenta arrows in (H) indicate sparse axes. 302 

Subpopulations of neurons dominate working memory representations 303 
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Next, we investigated whether the implementation was sparse enough to be able to 304 
reliably reconstruct the population-level sample representation using only a small 305 
fraction of neurons. We performed cross-temporal linear discriminant analysis (LDA) to 306 
decode sample numerosity at a given time point in the trial using training data from a 307 
different time point (Fig. 4). Decoding accuracy therefore quantifies the degree to which 308 
the representation is transferable. With four numerosities, chance level accuracy is 25 %. 309 
Using the entire population of 467 recorded neurons, we found a highly dynamic code 310 
with good within-epoch transfer, but very little generalization across epochs, in 311 
particular from the first to the second memory delay (Fig. 4a). In line with our previous 312 
results, this finding suggests that working memory representations are non-uniform and 313 
that distinct, complementary processes are required to protect behaviorally relevant 314 
information from interference. 315 

We selected the neurons that contributed most to the previously identified SCs (loading 316 
on the SC larger than two standard deviations; Fig. 4b). 36, 28 and 28 single neurons 317 
passed the criterion for the sensory, memory and recovery SC, respectively. Although 318 
each subpopulation comprised only 6 to 8 % of the entire recorded population, these 319 
'dominant neurons' explained 88 %, 82 % and 87 % of their respective component's 320 
variance (sum of squares of dominant neurons' loadings over sum of squares of all 321 
neurons' loadings). Overlapping membership in two subpopulations was very rare (no 322 
more than three neurons in any SC pair; Fig. 4b). 323 

Cross-temporal LDA using only the dominant neurons showed a very similar sample 324 
numerosity decoding pattern as with the entire population (Fig. 4c, cp. with Fig. 4a), 325 
confirming that the decoder previously relied mainly on this small subset of neurons. 326 
The sensory subpopulation contributed to decoding in particular during the sample and 327 
test numerosity presentation, but showed very little activity in the memory epochs 328 
(Fig. 4d, top). The memory subpopulation dominated in the first delay, but surprisingly 329 
was not involved in sample coding during the second delay (Fig. 4d, middle). Instead, 330 
after distraction, the recovery subpopulation was exclusively responsible for carrying 331 
sample information (Fig. 4d, bottom). This suggests that these neurons crucially 332 
contribute to shielding working memory information from interference (see also Fig. 333 
S1). 334 
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 335 

Fig. 4. Subpopulations of neurons dominating working memory coding 336 

(a) Accuracy of cross-temporal linear discriminant analysis (LDA) decoding of sample 337 
numerosity using all recorded neurons (y axis: training, x axis: testing). (b) Neuronal 338 
loadings on the three identified sample numerosity SCs. Colored dots indicate the 339 
'dominant' neurons selected in each SC (cut-off: two s.d.). The percentage of variance 340 
explained within each SC is given for each subpopulation. (c) Accuracy of cross-341 
temporal LDA decoding of sample numerosity using only the dominant neurons. 342 
Compare to (a). (d) Sample numerosity decoding accuracy using the dominant 343 
subpopulations of each SC. Same color scale in (a), (c) and (d). 344 

Subpopulation-specific electrophysiological properties 345 

Above, we identified dominant neurons based on their stimulus selectivity. We now 346 
investigated whether their different roles in representing sample information were 347 
possibly mirrored by distinct electrophysiological properties. 348 

First, we calculated the across-trial similarity (Pearson correlation) between each 349 
neuron's activity at different time points in the fixation period in order to derive the 350 
intrinsic time scale, a measure considered to index a neuron's ability to maintain memory 351 
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traces (24). Representative neurons from all three subpopulations are shown (Fig. 5a). 352 
The example recovery neuron had a significantly larger spread from the diagonal than 353 
the sensory and memory neuron, i.e., its activity in distant time points was more strongly 354 
correlated, thus signifying a longer time constant (Fig. 5a, bottom panel). For each 355 
subpopulation, an exponential decay was fitted to the mean correlation coefficient across 356 
neurons (Fig. 5b). The recovery subpopulation had the largest time constant t (165 ms, 357 
127 ms, and 338 ms for sensory, memory and recovery neurons, respectively). The 358 
distribution of t values in the recovery population also stood out from the distributions 359 
observed in subsampled subpopulations of PFC neurons, whereas the sensory and 360 
memory neurons’ distributions were not significantly different (p = 0.874, p = 0.455, 361 
p = 0.002 for sensory, memory and recovery subpopulations, respectively; KL-362 
divergence with bootstraps; Fig. 5c). 363 

Next, we investigated spike train statistics using the inter-spike intervals (ISI) measured 364 
during the neurons' entire recording lifetime. The coefficient of variation (CV) measures 365 
the irregularity of a spike train (Fig. 5d). CVs of all recorded neurons were larger than 1 366 
(i.e., more irregular than a Poisson process) with a gradual increase of spiking 367 
irregularity across the sensory, memory and recovery subpopulations. CVs in the 368 
recovery neuron population were significantly larger than in the sensory subpopulation 369 
(p = 0.030, two-tailed t-Test; Fig. 5d). The local variation (LV) measures local ISI 370 
differences and complements CV, which is a global measure. LVs in all dominant 371 
neurons were smaller than 1 (i.e., less local variation than a Poisson process) and 372 
significantly lower than in the non-coding PFC population (p < 0.001, two-tailed t-Tests; 373 
Fig. 5e). 374 

Notably, these distinct electrophysiological properties were not involved in the original 375 
selection of subpopulations and therefore lend support to the notion that the 376 
implementation structure carries biological meaning. 377 
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 378 

Fig. 5. Subpopulation-specific electrophysiological properties 379 

(a) Between-timepoint Pearson correlations of the trial-to-trial fluctuation of firing rates 380 
in the fixation epoch for the three dominant subpopulations. (b) Auto-correlograms 381 
obtained by averaging across diagonal offsets in (a). Auto-correlograms of individual 382 
neurons are given (single lines) together with the subpopulation average and the fitted 383 
exponential decay (black dots and line, respectively). (c) Distribution of fitted decay 384 
constants of individual neurons in each dominant subpopulation. Inset: Kullback-Leibler 385 
divergence (DKL) between the distribution of each subpopulation and the whole 386 
population (null distribution for significance testing created with n = 1000 bootstraps 387 
from the whole population). (d) Coefficient of variation (CV) of inter-spike intervals 388 
(ISI) of the dominant subpopulations and the non-dominant other neurons (two-tailed t-389 
Test). Left: example spike trains for different CVs. (e) Same layout as in (d) for the local 390 
variation (LV) of ISI. 391 

Subpopulation-specific temporal dynamics and representation of context 392 

There was no perceptual cue in the working memory task specifying the difference 393 
between sample and distractor. This forced the animals to internally keep track of a 394 
trial's temporal evolution. To investigate whether temporal dynamics and context played 395 
a role in supporting the subpopulation-specific stimulus representations, we next 396 
analyzed the temporal part of the demixed signal and visualized condition-averaged 397 
activity trajectories in each of the dominant subpopulations (Fig. 6a). 398 

In the sensory subpopulation, the trajectory followed a periodic, quasi-circular course 399 
(Fig. 6a, top panel). The first and second memory epochs overlapped almost entirely. 400 
This indicates that the sensory neurons did not distinguish between the time periods after 401 
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sample and after distractor presentation. The trajectory of the memory subpopulation 402 
was less periodic, but intertwined in the first and second memory epochs (Fig. 6a, 403 
middle panel). In contrast, the trajectory of the recovery subpopulation was less 404 
intertwined, with most time points distinguishable from each other, especially the first 405 
and second memory epochs, signifying a better representation of the contextual 406 
difference following sample and distractor presentation (Fig. 6a, bottom panel). 407 

Overlap of the memory epochs in the sensory and memory subpopulations could be due 408 
to the limitations of a linear projection and the emphasis of PCA on global structure. We 409 
therefore performed non-linear embedding using t-SNE (Fig. 6b). This analysis revealed 410 
comparable structures as the linear projection, with the first and second memory epochs 411 
separated only in the recovery neuron subpopulation. 412 

To further investigate the temporal evolution of neuronal activity, we measured the 413 
Euclidean distances between individual time points in each subpopulation (full space; 414 
Fig. 6c). All distance matrices displayed a strong diagonal, reflecting the fact that close-415 
by time points were represented similarly. Notably, there were also strong offset 416 
diagonals in the sensory subpopulation, meaning that activity in these neurons repeated 417 
with a cycle of about 1.5 s. Furthermore, activity in the sensory and memory epochs 418 
differed most in this subpopulation. These patterns were present, albeit weaker, in the 419 
memory subpopulation, but absent in the recovery neurons. We quantified periodicity for 420 
each neuron by computing the relative power of 1/1.5 s (0.67 Hz) activity and its 421 
harmonics normalized to the power of the full frequency spectrum (Fig. 6d). Compared 422 
to randomly sampled subpopulations of PFC neurons, the sensory subpopulation and the 423 
recovery subpopulation showed significantly different (higher and lower, respectively) 424 
periodicity (p < 0.001, p = 0.051, p = 0.043 for sensory, memory and recovery 425 
subpopulations, respectively; KL-divergence with bootstraps; Fig. 6d inset). 426 

Neuronal activity is not static and temporally independent. Instead, firing rates at every 427 
time point depend on previous time points. To characterize the dynamical properties of 428 
the recorded PFC population in more detail, we used the measure of tangling (25). 429 
Tangling measures the extent to which the velocity (direction and speed) of a given state 430 
on a trajectory diverges from the velocity of its neighboring states (Fig. 6e), reflecting 431 
the level of unpredictability and instability (chaos) in the system. High tangling means a 432 
small disturbance in the current state would lead to large changes in the next state 433 
(difference of derivatives of neighboring points). The instability or inability to determine 434 
the next state from the current state (i.e., high tangling) indicates that other neuronal 435 
populations or external stimuli may drive the trajectory. Consequently, tangling was 436 
increased following the onset and offset of sensory input in all three subpopulations. 437 
Tangling was highest, however, in the sensory subpopulation and lowest in the recovery 438 
subpopulation (sensory vs. memory, p < 0.001; memory vs. recovery, p = 0.013; two-439 
tailed t-Test across all trial time points; Fig. 6f). 440 

In summary, these results suggest that the subpopulation of recovery neurons keeps a 441 
record of time and temporal context, which could contribute to these neurons' ability to 442 
separate sample and distracting information. In contrast, the sensory subpopulation - and 443 
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the memory subpopulation to a lesser degree - is characterized by its strong input-driven 444 
temporal dynamics, which is consistent with these neurons' passive representation of 445 
numerosity regardless of it being behaviorally relevant (sample) or irrelevant 446 
(distractor). 447 

 448 

Fig. 6. Subpopulation-specific temporal dynamics 449 

(a) Temporal part of the demixed neuronal activity, averaged across conditions, of each 450 
dominant subpopulation projected onto their respective top two PCs. Time runs along 451 
the individual trajectories (bin width 50 ms). First and second memory delay are marked 452 
in blue and red, respectively. (b) Full signal averaged within each condition and 453 
embedded in 2D t-SNE space. Bins as in (a). (c) Euclidean distances between timepoints 454 
on the trajectory in (a) of each subpopulation. (d) Distribution of periodicity (relative 455 
power of 1/1.5 Hz and harmonics) of individual neurons in each subpopulation. Inset: 456 
Kullback-Leibler divergence (DKL) between the distribution of each subpopulation and 457 
the whole population (null distribution for significance testing created with n = 1000 458 
bootstraps from the whole population). (e) Example timepoints on the trajectory of the 459 
sensory subpopulation with high and low tangling. (f) Time resolved tangling of the 460 
trajectory of each subpopulation. 461 

Recurrent connectivity favors sparse implementations 462 

The implementation underlying the temporal evolution of neuronal representations is not 463 
arbitrary, but must be derived from the dynamical system of constituent neurons and 464 
their anatomical connectivity pattern. The PFC is a highly recurrent, rather than purely 465 
feed-forward, brain region (26). If biological structure and resource efficiency indeed 466 
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favor sparse implementations, these should be better captured by recurrently connected 467 
networks than non-structured Gaussian implementations. 468 

To address this hypothesis, we constructed a recurrent neural network model (RNN) to 469 
reproduce the target (to-be-fitted) firing rate sequences of each sample-distractor 470 
combination (Fig. 7a). The model consists of 467 neurons (to match the recorded 471 
population) receiving inputs of stimulus information according to the task structure. The 472 
model learns the recurrent connectivity ! among the neurons. ! summarizes the 473 
influence of the current time point's firing rates r on the firing rates of the next time 474 
point. An indicator vector n (one non-zero entry) represents the sample and distractor 475 
numerosity, activating the numerosity-specific input in I to the entire neuronal 476 
population. To reflect the absence of an explicit visual cue that differentiates between 477 
sample and distractor in the task design, sample and distractor numerosity share the same 478 
input channel (I, n). The contextual difference is left for the model to resolve. The 479 
intercept term b captures the baseline activity of each neuron. 480 

We first trained the model on the original dataset and visualized the trajectory of the 481 
output averaged across all conditions (Fig. 7b). The model reproduced the original 482 
dataset well, capturing 85.7 % of total variance. Next, we created substitute datasets with 483 
altered implementations of numerosity representations (xsample + xdistractor + xSD interaction) 484 
for the model to fit. The temporal part of the demixed data was unchanged. Three 485 
different implementations were created: first, a non-structured Gaussian distribution of 486 
neuronal loadings and no alignment to any components (cp. Fig. 1d); second, a 487 
distribution with the same degree of sparsity as the original data, but with sparse axes 488 
randomly rotated to align to other components (cp. Fig. 1e); third, a substitute with the 489 
same sparse distribution of neuronal loadings as in the original data (cp. Fig. 1f). 490 

The model captured an increasing proportion of variance of the full signal across the 491 
three substitutes (p < 0.001; one-way ANOVA; Fig. 7c). The absolute differences in 492 
explained variance were comparatively small (left axis), but remarkable in relation to the 493 
variance of the manipulated signal (right axis) and given that the representational 494 
geometry was unchanged and identical for all substitutes (cp. Fig. 1). A comparable 495 
result was obtained for the explained variance of the numerosity coding part (p < 0.001; 496 
one-way ANOVA; Fig. 7d). 497 

Taken together, these results demonstrate that sparse implementations of working 498 
memory representations are favored by recurrent circuits, the characteristic wiring motif 499 
of association cortices such as the PFC. 500 
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 501 

Fig. 7. Recurrent neural network modeling 502 

(a) RNN model governing equation and structure. Magenta and green arrows indicate 503 
numerosity-specific inputs and connectivity weights to be trained, respectively. 504 
(b) Model fit (solid trajectory) to original data (dots) averaged across all conditions. 505 
(c) Percentage of variance of the full signal explained by the model for non-structured 506 
Gaussian implementations of numerosity representations (left bar), sparse 507 
implementations with random orientations of sparse axes (middle bar) and sparse 508 
implementations with the same orientation of sparse axes as in the original data (right 509 
bar). Left and right axis show explained variance relative to the full signal and to the 510 
manipulated signal, respectively (one-way ANOVA across substitutes). (d) Same layout 511 
as in (c) for the percentage of variance of the numerosity signal explained by the model. 512 
  513 
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Discussion  514 

We presented a framework to examine the contributions of individual neurons to 515 
population-level responses in representation space and to utilize its implementation 516 
structure. We identified heavy-tailed, i.e., sparse distributions of neuronal loadings on 517 
components that captured disentangled and sequential memory representations including 518 
the recovery of memory content after distraction. The switching of working memory 519 
components circumvented interference. These components could be traced to small 520 
subpopulations of neurons with distinct electrophysiological properties and temporal 521 
dynamics. Modelling showed that such sparse implementations with sequentially active 522 
components are supported by recurrently connected networks. 523 

Bridging population activity and neuronal implementation 524 

Population-level activity and representational geometry were previously studied without 525 
forming direct links to individual neurons (3–5, 27). However, while single-neuron 526 
selectivity measures have the advantage of being more easily connected to biological 527 
properties such as cell type, receptor expression and axonal projection targets, they are 528 
typically chosen based on intuition and past experience and only partially or indirectly 529 
reflect the full representational space (9, 28). 530 

Our sparse component analysis (SCA) framework (Fig.1) combines the advantages of 531 
both perspectives. It builds on representational geometry for a comprehensive account of 532 
the data and then links the relevant coding dimensions in the activity space to 533 
populations of strongly contributing neurons, which allows relating the population-wide 534 
activity patterns to tangible physiological measures. 535 

Implementation reveals biologically relevant dimensions in activity space 536 

Without respecting implementation, selecting components in activity space for further 537 
analysis is arbitrary. It is often done post-hoc after visualizing the top PCs, or by relying 538 
on the heuristics of 'what should be coded' in the system (3, 17, 18). This approach 539 
becomes problematic when the dimensionality is too high or when too many variables 540 
are involved. 541 

By exploiting neuronal implementation, SCA identifies activity components in an un-542 
biased and non-arbitrary way. SCA can therefore capture a more complete set of 543 
stimulus-associated variables (dimensions), most notably the temporal modulation of 544 
stimulus coding. This reduces bias otherwise introduced by selecting specific time 545 
windows, across which neuronal activity is averaged, and acknowledges the role of 546 
different response dynamics for information coding (19, 29). Furthermore, incorporating 547 
temporal modulation renders analyses more robust to noise (30), which is usually 548 
Gaussian and could hide the structure in implementation. 549 

The implementation's sparse structure is a result of biological constraints regarding the 550 
connections among individual neurons. The approximately 104 dendritic spines on each 551 
cortical neuron (14) define an upper limit for the number of neurons it could read out 552 
from. The 109 neurons in a cortical region such as human PFC (12, 13), and even sub-553 
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modules with one to two magnitudes fewer neurons, therefore cannot be reached 554 
directly. The addition of one connection step would allow reaching the majority of PFC 555 
neurons, but at the cost of producing a layer of 104 to 105 neurons that are dedicated 556 
exclusively to feeding the single hypothetical downstream neuron. This is prohibitively 557 
inefficient. In such polysynaptic chains, it is more likely that meaningful representations 558 
have already emerged in intermediate layers as a result of direct connections from the 559 
source region. This notion is also in line with the high dimensionality and non-linear 560 
mixed selectivity characteristic of PFC, which allow for direct linear readout of complex 561 
representations without further computations (6). 562 

Neurons share inputs and have local recurrent connections, which are particularly 563 
pronounced in association cortices such as the PFC (26), resulting in more similar firing 564 
patterns among neurons within cortical regions. Consequently, neurons might display 565 
activity that is weakly correlated to some components of the representational geometry 566 
even though they do not participate in the readout. This emphasizes the importance of 567 
truncating neurons with weak loadings and enforcing sparsity constraints for estimating 568 
potential readout connections (Fig.  4) and motivates the use of dynamical systems 569 
modelling to validate correlative measures (Fig. 7). 570 

Working memory persistence without neuronal persistence 571 

Applied to working memory maintenance in the face of distraction, our framework 572 
uncovered an unexpected sequential representation of numerosity information across 573 
multiple task epochs (Fig. 2). This result was neither encouraged nor guaranteed by 574 
SCA. This suggests that the readout of memory content from the PFC is optimized for 575 
accuracy in each behavioral context rather than optimized for stability across time 576 
periods. The distractor occupied the same resources as the sample numerosity with 577 
regard to the sensory and memory component (Fig. 3), forcing behaviorally relevant 578 
information to be shifted to the recovery component following distraction. Thus, 579 
working memory content was maintained by distinct mechanisms before and after 580 
interference (Fig. 4). 581 

The subpopulation of recovery neurons was characterized by electrophysiological 582 
properties that set these neurons apart from the other populations and could render them 583 
particularly suited to working memory storage. Their longer intrinsic timescales (Fig. 5) 584 
suggest more stable memory retention (24, 31). These neurons also distinguished 585 
between sample and distractor contexts, which is crucial for determining what 586 
information to keep and what information to discard (Fig. 6). The contextual signal was 587 
additively mixed with the numerosity coding signal in these neurons, but might still act 588 
as gain modulation for numerosity information given the neuronal input-output non-589 
linearity (32). 590 

Representing memory content by sequentially active subpopulations is advantageous. 591 
With relay of information, a result of locally feed-forward connectivity, a network can 592 
maintain multiple inputs from previous time points and show more resistance to noise 593 
(33). Furthermore, the PFC might be non-linearly mixing context and memory 594 
representations in all possible ways, expanding dimensionality to enable flexible readout 595 
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(6). Extensive training could have strengthened the non-linear mixture of second 596 
memory epoch context and sample numerosity representations that was most important 597 
in the current task, with the PFC retaining other mixtures (e.g. the component coding for 598 
sample numerosity in the first memory epoch) for other behavioral demands. In this 599 
view, the subpopulation of memory neurons could function as a more passive short-term 600 
memory storage oblivious to the behavioral relevance of the memorized information. 601 

Introducing distraction into the memory delay unmasked the crucial role of recovery 602 
neurons for working memory maintenance, which would have been hidden in simpler 603 
tasks. This highlights the importance of including richer temporal structure, multiple 604 
processing stages and behavioral perturbation into cognitive task designs to enable 605 
dissection of higher-order brain functions in finer detail and sampling from the full 606 
spectrum of underlying mechanisms. 607 

Alternative implementation structures 608 

We focused here on detecting sparse structure in the representational geometry's 609 
neuronal implementation, which is linked to the standardized moment of kurtosis. 610 
Consequently, the loading distributions have both positive and negative heavy tails. 611 
Reading out a given sparse component thus requires both excitatory and inhibitory 612 
connections. However, long-range corticocortical projections are mainly excitatory. This 613 
means that other selection criteria that capture non-symmetrical structure such as the 614 
standardized moment of skewness should also be explored (34, 35). 615 

Structure could be in the form of disjointed cell clusters (28) or a mixture of Gaussians 616 
(32). However, if present, these structures would not dissect the representational 617 
geometry, as they do not have a one-to-one relation to the dimensions in the activity 618 
space. Our neuronal implementation followed a unimodal Laplace distribution (Fig. 2g) 619 
instead of a multimodal distribution. 620 

Structure can also be investigated when there are no prior assumptions about the 621 
underlying distributions of neuronal loadings. For example, given that neuronal firing is 622 
energy-consuming and non-negative, possibly encouraging neurons to align to the 623 
dimensions of the representational geometry that have shorter ranges of variation, non-624 
uniform distributions of the number of selective neurons across different dimensions can 625 
arise (36). However, because all neurons are counted equally, structure probed non-626 
parametrically could potentially be clouded by the large number of weakly coding (non-627 
dominant) neurons and thus difficult to detect, in particular in PFC (3). 628 

Relation of SCA to other linear dimensionality reduction methods 629 

Different linear dimensionality reduction methods based on L2 reconstruction loss will 630 
yield comparable representational geometries, but they will not find the same projections 631 
of the representational geometry, i.e., the same components or the same coordinate 632 
system in which the data is expressed. The principle components of PCA are 633 
conveniently orthogonal and ranked by variance (37), but usually neither correspond to 634 
task-related components nor align to the activity of individual neurons (38). Truncating 635 
the smaller PCs provides denoised signal as a preprocessing step for independent 636 
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component analysis (ICA) that can infer the independent sources in the signal space (39). 637 
Its most common form, fastICA, enforces sparsity constraints on the activity of the 638 
components, reflecting an assumption about the activity (40). In contrast, in SCA the 639 
sparsity constraint is on the neuronal implementation, i.e., the potential readout weights 640 
corresponding to the mixing matrix in ICA, reflecting an assumption about the 641 
connectivity. 642 

Neuronal representations must be communicated. Information that cannot be accessed by 643 
other neurons does not exist. In order to understand complex neural systems such as the 644 
PFC where we lack clear priors about the signal sources, it is paramount to exploit the 645 
circuit and wiring motifs that underlie the observed activity patterns. 646 

  647 
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Materials and Methods 648 

Subjects 649 

Two adult male rhesus monkeys (Macaca mulatta, 12 and 13 years old) were used for this 650 
study. All experimental procedures were in accordance with the guidelines for animal 651 
experimentation approved by the national authority, the Regierungspräsidium Tübingen. 652 
A detailed description is provided elsewhere (8, 9). Monkeys were implanted with two 653 
right-hemispheric recording chambers centered over the principal sulcus of the lateral 654 
prefrontal cortex (PFC) and the ventral intraparietal area (VIP) in the fundus of the 655 
intraparietal sulcus. This study reports on the PFC data. 656 

Task and stimuli  657 

The animals grabbed a bar to initiate a trial and maintained eye fixation (ISCAN, Woburn, 658 
MA) within 1.75°of visual angle of a central white dot. Stimuli were presented on a 659 
centrally placed gray circular background subtending 5.4° of visual angle. Following a 660 
500 ms pre-sample (pure fixation) period, a 500 ms sample stimulus containing 1 to 4 dots 661 
was shown. The monkeys had to memorize the sample numerosity for 2,500 ms and 662 
compare it to the number of dots (1 to 4) presented in a 1,000 ms test stimulus. Test stimuli 663 
were marked by a red ring surrounding the background circle. If the numerosities matched 664 
(50 % of trials), the animals released the bar (correct Match trial). If the numerosities were 665 
different (50 % of trials), the animals continued to hold the bar until the matching number 666 
was presented in the subsequent image (correct Non-match trial). Match and non-match 667 
trials were pseudo-randomly intermixed. Correct trials were rewarded with a drop of water. 668 
In 80 % of trials, a 500 ms interfering numerosity of equal numerical range was presented 669 
between the sample and test stimulus. The interfering numerosity was independent from 670 
either the sample or test numerosity and therefore not useful for solving the task. In 20 % 671 
of trials, a 500 ms gray background circle without dots was presented instead of an 672 
interfering stimulus, i.e., trial length remained constant (control condition, blank). Trials 673 
with and without interfering numerosities were pseudo-randomly intermixed. Stimulus 674 
presentation was balanced: a given sample was followed by all interfering numerosities 675 
with equal frequency, and vice versa. Throughout the monkeys’ training on the distractor 676 
task, there was never a condition where a stimulus appearing at the time of the distractor 677 
was task-relevant.  678 

Low-level, non-numerical visual features could not systematically influence task 679 
performance (9, 41):in half of the trials, dot diameters were selected at random. In the 680 
other half, dot density and total occupied area were equated across stimuli. CORTEX 681 
software (NIMH, Bethesda, MD) was used for experimental control and behavioral data 682 
acquisition. New stimuli were generated before each recording session to ensure that the 683 
animals did not memorize stimulus sequences.  684 

Electrophysiology  685 

Up to eight 1 MΩ glass-insulated tungsten electrodes (Alpha Omega, Israel) per chamber 686 
and session were acutely inserted through an intact dura with 1 mm spacing. Single units 687 
were recorded at random; no attempt was made to preselect for particular response 688 
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properties (9). Signal amplification, filtering, and digitalization were accomplished with 689 
the MAP system (Plexon, Dallas, TX). Waveform separation was performed offline 690 
(Plexon Offline Sorter). 691 

Data analysis tools 692 

Data analysis was performed with Python using custom scripts based on packages NumPy, 693 
SciPy, sci-kit learn, TensorFlow2, PyTorch, Matplotlib and Plotly. 694 

Preprocessing 695 

Single units were included in the analysis if they were recorded in at least 4 correct trials 696 
of each task condition (meaning each unique sample and distractor numerosity 697 
combination). This resulted in 467 neurons across 78 sessions recorded in the PFC. Trials 698 
without distractors were not included in the analyses unless specified otherwise. 699 

Unless specified otherwise, the firing rates were binned in a Gaussian window with sigma 700 
of 50 ms and step of 100 ms, aligned to the start of the fixation period. The data were then 701 
organized into a neuron-by-condition-by-timepoint tensor. Each tensor entry was 702 
normalized by the standard deviation across trials (within each condition). 703 

Demixing 704 

Given the independence of the task variables sample numerosity (s), distractor numerosity 705 
(d) and trial time (t), the neuronal activity can be directly factorized into parts for each 706 
variable and their interaction: 707 

" = "̅ + "!& + ""& + "̅# + "̅"! + "̅#! + "̅"# + "̅"#!	 (1) 708 

Because the stimulus response is also modulated by time, each part was grouped together 709 
with its interaction with time (21): 710 

"!$%& = "!& (2) 711 

""'%()& = ""& + "̅"! (3) 712 

"#$"!*'+!,* = "̅# + "̅#! (4) 713 

""#	$.!&*'+!$,. = "̅"# + "̅"#! (5) 714 

Visualization of representation and implementation space 715 

For a data matrix / where each column vector " is the demixed activity of a neuron, the 716 
singular value decomposition was taken: 717 

/ = 0Σ2/ (6) 718 

where 0  and 2  are unitary matrices and Σ is a diagonal matrix with ordered singular 719 
values. The first 4  columns of 0Σ  are the PCs that were used to visualize the 720 
representational geometry. The first n columns of 2Σ are loadings on the PCs that were 721 
used to visualize the implementation space. 722 
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Within this subspace an arbitrary component can be specified with 0Σ6:,2 (6:,2 being a 723 

column vector from a unitary matrix 6), with the orientation of this component given by 724 
6:,2. The loadings on this component will be the first row of (0Σ6)3	/ = 6/2/, that is 725 

6:,2
/2/ . This way, the loadings are visualized with the same orientation 6:,2 . in 726 

implementation space as their corresponding component in representation space. The 727 
sparsity index of the neuronal loadings on component	0Σ6:,2 is then: 728 

7896:,2: =
;<=>?@A@96:,2

/2/:

3
(7) 729 

;<=>?@A@(C) = ⟨(C − C&)4⟩ ⟨(C − C&)5⟩⁄ 5 (8) 730 

Sparse component analysis 731 

Following the formulation of sparse coding (15, 16, 42), sparse component analysis (SCA) 732 
reduces the dimensionality of the dataset and extracts the unique components by enforcing 733 
a sparse penalty on neuronal loadings: 734 

I?@@ = J/ −K<6LLL⃗ 	N6LLL⃗
/

7

$82

J

9*,:&.$;"

+ OK‖N6LLL⃗ ‖2

7

$82

+ QK‖N6LLL⃗ ‖5
5

7

$82

(9) 735 

SℎU=U	‖<6LLL⃗ ‖ = 1 736 

The loss function is defined as the sum of the reconstruction loss and the regularizations. 737 
Data / is organized as a n firing instances by p neurons matrix. / is then approximated 738 
by ; firing activity vectors <L⃗  and their corresponding neuronal loadings N⃗. Parameter O 739 
controls the strength of L1-regularization that encourages sparsity of the loadings. 740 
Parameters O and ; were determined by a cross-validated grid search. Q was set at 0.01 to 741 
smooth the loss landscape and make the result stable across random initializations. 742 

Substitute data for SCA 743 

Substitute data were created for the demixed sample coding part / of the data (Fig. 2). For 744 
the singular value decomposition / = 0Σ2/, 0Σ specifies the representational geometry 745 
(see above). Operations were performed on 2 only. 746 

A random unitary matrix V with the size of the number of neurons was drawn from a Haar 747 
distribution. The original matrix 2 was replaced with 2< = 2V. 2′ is also a unitary matrix, 748 
meaning that this manipulation will not change the geometries but will rotate them to 749 
random axes. In other words, it will linearly combine the loadings including those on the 750 
components with very low variance, which will render the substitute distribution of 751 
loadings on the sample numerosity components close to Gaussian. The substitute data is 752 
then: 753 

/< = 0Σ2</ = /V (10) 754 

Measures of sparse component activity 755 

2.2 Neuronal implementation of representational geometry in prefrontal cortex 81



<6LLL⃗  in SCA specifies the activity of the sparse component i. The following measures of the 756 
set of <6LLL⃗  were compared between the original dataset and its substitutes (n = 1000). 757 

Spread of representation. The standard deviation of <6LLL⃗  across different numerosity 758 
conditions k at each time point was used to define the relative (normalized) information at 759 
that time point. Specifically, each <6LLL⃗  was first reshaped into a condition-by-timepoint 760 
matrix Y$. Then the information in component A at time point t is given by: 761 

Z$,! = [〈(Y7,!
$ − 〈Y7,!

$ 〉7)5〉7 (11) 762 

The skewness of the information across time points was calculated for each component 763 
and averaged across components as follows: 764 

7;US$ = 〈(Z$,! − Z6,!^̂ ^̂ )=〉!/〈(Z$,! − Z6,!^̂ ^̂ )5〉!
=/5 (12) 765 

Positively skewed Z indicates a long tail in the distribution of information across time 766 
points, corresponding to few time points having high information. Conversely, a smaller 767 
or even negative skewness implies there are more high information timepoints than low 768 
information time points, making the high information more spread out across time points. 769 
We define the spread of representation as the negative skewness: 770 

7`=Uab = −⟨7;US$⟩$ (13) 771 

Overlap of active periods. The dot product of the information of every pair of components 772 
i and j was taken and averaged across pairs: 773 

cNU=da` = eZ$,!Z?,!
/ f (14) 774 

Maximum tuning reversal. A given component A may show changes of tuning to sample 775 

numerosities during the course of a trial. Its tuning at time > is specified by Y:,!
$ . For each 776 

component A, the dot product similarity of tunings between timepoint pairs was specified 777 

in the non-diagonal entries in g$ = Y$
/
Y$, where the diagonal entries are the strength of 778 

the tuning at each time point. g$  was then normalized to the strongest tuning: g$
<
=779 

g$/max9g$:. The most negative entry in g$
<
 was then the degree of reversal in this 780 

component. VUNU=@ad$ = −min9g$
<
:. It would reach the maximum of 1 when tuning at 781 

a given time point is the complete reversal of the strongest tuning. It would be close to 0 782 
when the tuning does not reverse. The maximum tuning reversal is then the largest reversal 783 
in a set of SCs: 784 

la"	><4A4m	=UNU=@ad = max
@
VUNU=@ad$ = max

@
[−min o

Y$
/
Y$

max9Y$/Y$:
p] (15) 785 

Component similarity. Let 0"+'  be the concatenation of activity <L⃗ $  and 2"+'  the 786 
concatenation of loadings N⃗$ of the sparse component i. The data matrix can be expressed 787 
as / = 0"+'2"+'/ + r. r denotes the noise term. Then it follows 0"+'3 (/ − r) = 2"+'/ . The 788 
pseudoinverse 0"+'3  can be viewed as a linear transform of the original data. Since all the 789 
activities <L⃗  have unit length, larger loadings would be required to express an arbitrary 790 
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geometry when the activities are correlated, meaning lower efficiency. The component 791 
similarity is measured by the product of the singular values of 0"+' . Formally, if the 792 
singular value decomposition gives 0"+' = 0Σ2/, then 793 

7AsAda=A>t =uΣ$,$
$

(16) 794 

The similarity can also be viewed as the determinant of the transformation matrix from 795 
arbitrary orthogonal bases to the bases of 0"+'. 796 

Numerosity information in different components 797 

The standard deviation Z$,!  for all time points t specifies the evolution of normalized 798 

information within this component. But since <L⃗ $  in component i has unit length, this 799 
measure does not allow for direct comparisons between components (see above). To allow 800 
for such comparisons (Fig. S1), the norm of N6LLL⃗  is therefore applied to Z$,!  as a scaling 801 
factor: 802 

84v?=sa>A?4 = ‖N6LLL⃗ ‖Z$,! (17) 803 

Linear discriminant analysis decoding 804 

Neurons recorded in different sessions were stitched together. To account for the different 805 
number of trials recorded per neuron, a criterion was set to ensure there were at least 1.5 806 
times more trials than neurons. This resulted in 228 neurons with at least 385 trials each. 807 
Removing incorrect trials and selecting the minimum number of trials recorded per 808 
condition and neuron left 118 trials per neuron. Trials of the same condition were then 809 
randomly selected for each repetition of the analysis. 810 

Multi-class linear discriminant analysis (LDA; sci-kit learn package) was used for 811 
decoding because of its advantageous property of accounting for data covariance. LDA 812 
assumes the same covariance in every class. It finds the projection that preserves the 813 
Mahalanobis distance between classes and predicts the label of a new data point by its 814 
Mahalanobis distance to the class centroid. Shrinkage of the measured covariance matrix 815 
was performed by averaging with a diagonal matrix. The strength of shrinkage was 816 
determined following the Ledoit-Wolf lemma (43). 817 

Decoding accuracy, i.e., the ratio of correctly predicted trials, was averaged across 7 818 
repetitions of 7-fold cross-validation. 819 

Spike train statistics 820 

Firing rates were binned in a Gaussian window with sigma of 12.5 ms and step of 25 ms. 821 

Correlation, autocorrelation and intrinsic timescales were determined as described 822 
elsewhere (24). The firing rate of each neuron 4 at timepoint > of trial A is expressed as 823 
".,$,!. The Pearson correlation between timepoints >1 and >2 is then:	 824 
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=.(>1, >2) =
xy".,$,!2 − e".,$,!2f$z y".,$,!5 − e".,$,!5f$z{$

xy".,$,!2 − e".,$,!2f$z
5
{
$
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xy".,$,!5 − e".,$,!5f$z{$

2/5
(18) 825 

Autocorrelation is defined as:	 826 

|g.(Δ>) = ⟨=.(>0, >0 + Δ>)⟩!A (19) 827 

To account for the refractoriness and adaptation at small time lags, fitting started at the 828 
time lag where the autocorrelation function had dropped most strongly. Neurons with the 829 
strongest drop after 400 ms were discarded (6 neurons). The autocorrelation was then 830 
fitted with an exponential decay: 831 

|g(Δ>) = |[exp(−Δ> Ä⁄ ) + Å] (20) 832 

Parameters |  and Å  were constrained in [0,1]  and Ä  was constrained from 10 ms to 833 
2000 ms. The autocorrelation function of 8 neurons could not be fitted. The neurons with 834 
Ä fitted below 20 ms (20 neurons) or above 1600 ms (25 neurons) were excluded because 835 
of the biologically unrealistic fit. This left 408 neurons. Very few neurons were excluded 836 
in the dominant subpopulations (2, 2, and 1 neurons for the sensory, memory and recovery 837 
subpopulation, respectively). 838 

The inter-spike intervals (ISI) were determined for the entire session. The coefficient of 839 
variation (CV) measures the global variation of a neuron's ISI and is defined as: 840 

g2 = @. b. (878)/⟨878⟩ (21) 841 

In contrast to CV, local variation (LV) measures the local ISI change (44). It is defined as: 842 

I2 =
3

4 − 1
K(878$ − 878$32)5/(878$ + 878$32)5
.B2

$82

(22) 843 

CV and LV are both expected to be 1 for spiking activity following a Poisson process. CV 844 
and LV would be 0 for perfectly regular firing and larger than 1 for more irregular firing 845 
than by a Poisson process. 846 

Kullback-Leibler divergence 847 

KL divergence measures the difference between two distributions. For the analyses of 848 
intrinsic time scales and periodicity, KL divergence was calculated between the 849 
distribution of statistic "  for the entire population 6 and that of sub-samples É (either 850 
dominant subpopulations or bootstrap subsamples). It is given by: 851 

ÑCD(6‖É) = −K6(x) ⋅ log	 É(x)/6(x)
E

(23) 852 

To create the null distribution of ÑCD, 27 neurons (comparable to the number of neurons 853 
in the dominant subpopulations after exclusion of neurons in which no autocorrelation 854 
function could be fitted) were randomly sampled from the PFC population 1000 times. 855 
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Temporal dynamics 856 

Periodicity. The Fourier transform of the demixed temporal part of the firing rate of each 857 
neuron is given by: 858 

67Ñ(v) = Ñâä("!$%&(>)) (24) 859 

Then, the periodicity was defined as the ratio between the power of the harmonics of 860 
1/1.5 Hz (reflecting the onset of visual input at regular spacing of 1.5 s) and the power of 861 
all frequencies: 862 

6U=A?bAãA>t = K 67Ñ(A
2

3
)

$∈G!
/K67Ñ(v)

9

(25) 863 

Tangling. Tangling reflects the smoothness and stability of the flow field around the 864 
vicinity of state "! on a trajectory (25). It is given by: 865 

É(>) = max
!"

‖Ċ! − Ċ!"‖
H

‖C! − C!"‖5 + r
(26) 866 

It specifies the maximum difference between the derivative at state "! and the derivative 867 
at other states C!", normalized by their Euclidean distance. A small constant r was added 868 
to avoid numerical error when the two states were too close. 869 

Recurrent neural network 870 

A recurrent neural network (RNN) model was implemented using the PyTorch neural 871 
network module. The model has the formulation: 872 

ç(@, b, > + 1) = é(!ç(@, b, >) + 8è(@, b, >) + ê) (27) 873 

ç  is the firing rate of units in the condition of sample numerosity @  and distractor 874 
numerosity b  at time point > . é  is the non-linear activation function, chosen to be a 875 
rectified linear unit (ReLu) to respect the biological characteristics of non-negative firing 876 
rates with high upper limits. ! is the within-population connectivity matrix. 8 is the input 877 
matrix with the dimensions of 467 (total number of units) by 4 (number of numerosities). 878 
A column 8:,'  is the input to the units when numerosity a  is being presented. è is an 879 

indicator vector with the entry è' corresponding to the presented numerosity being 1 and 880 
all other entries being 0. ê is the intercept. !, 8 and ê are the parameters to be trained. 881 
Formally, è as a function of trial type specified by @ and b and time point > is defined by: 882 

è(@, b, >) = ë(@) ⋅ sa@;[A.K,2)(>) +ë(b) ⋅ sa@;[5,5.K)(>) (28) 883 

SℎU=U									ë(") = íì{2}("), ì{5}("), ì{=}("), ì{4}(")î
/
 884 

sa@;O(>) = ìO(> ∗ 0.1) 885 

ìO(") ≔ ó
1, " ∈ |
0, " ∉ |

 886 
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ë maps a numerosity to the corresponding one-hot vector. sa@;O(>) indicates the time 887 
(0.1 s steps) when the corresponding stimulus is presented. ìO(") is an ancillary indicator 888 
function to define ë and sa@;. 889 

The model was trained to produce the whole sequence of firing rates ç(@, b, >) in order to 890 
match the target data C",#,!, given the initial firing rate in the fixation period ç(@, b, 0) and 891 

the input è(@, b, >). The loss function is defined as: 892 

I?@@(!, 8, ê) = Kíç(@, b, >) − C",#,!î
H
+ ö‖!‖2 + ö‖8‖2

",#,!

(29) 893 

ç(@, b, >A) = C",#,!# (õú) 894 

The coefficient ö controls the strength of regularization and was determined by a grid 895 
search with cross validation. 896 

The prediction of the later timepoints relies on the quality of the prediction of the early 897 
timepoints. If the training was done only by giving the first timepoint, convergence would 898 
be difficult to achieve and learning heavily biased towards reproducing early timepoints 899 
in the data. To overcome this possible instability, the model was trained in a recursive 900 
fashion by first using every timepoint as the initial firing rate, training the model to predict 901 
the following timepoints and gradually increasing the number of timepoints the model 902 
needs to predict. As such, at each iteration A, the temporal sequence "",#,! was reorganized 903 

into ä − A chunks of length A + 1, eC",#,!# , … , C",#,!#3$f, >A ∈ ⟨1,… , ä − A⟩, with the first 904 

firing rate in each chunk as initial firing rate and the rest as target to be fit by the model. 905 

Variance explained by RNN 906 

The variance explained by the model was determined by the difference between the 907 
model's predicted trajectory and the trajectory of the original data normalized to the 908 
difference between a reference trajectory (constant activity set to the first entry of the 909 
fixation period) and the trajectory of the original data: 910 

û2 = 1 −Kíç(@, b, >) − C",#,!î
H

",#,!

/KíC",#,!# − C",#,!î
H

",#,!

(31) 911 

The normalized EV (Fig. 7c, right axis) was defined as the difference between a 912 
substitute’s EV and the original data’s EV, divided by the percentage of the manipulated 913 
variance (numerosity coding signal, 27.4 %; cp. Fig. 2b). EV for the numerosity signal 914 
(Fig. 7d) was calculated by replacing both ç(@, b, >)  and C",#,!  with their demixed 915 

numerosity representing parts. 916 

Substitute data for RNN 917 

In order not to distort the strong connection between sample and distractor numerosity 918 
coding (e.g., Fig. 3b, Fig. S1), the loadings of these two parts of the data and their 919 
interaction were shuffled together to create three types of substitute datasets. The RNN 920 
model was then trained on the substitutes. 921 
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Gaussian distribution of loadings. The Gaussian substitutes were created as described for 922 
SCA, except for that singular value decomposition was performed on /"'%()& +923 

/#$"!*'+!,* + /"#_$.!&*'+!$,. = /')) − /! = 0Σ2/. 924 

Sparse distribution with random alignment. For ; dimensions of the numerosity coding 925 
part of the data (determined by cross validation), a ; × ; unitary matrix V was randomly 926 
drawn from a Haar distribution and combined with an identity matrix 8 to create V< =927 

yV 0
0 8

z. Then, 2< = 2V′ was substituted for 2. This leaves the sparse structure in the 928 

original ;  dimensional numerosity representing subspace intact, but rotates the sparse 929 
structure in 2:,2:7 to random orientations. 930 

Sparse distribution with original alignment. The rows of 2:,2:7, i.e., the neuronal identities, 931 

were permuted by substituting 2< = (2(&*%;!&,2:7 , 2:,732:() for 2.  932 
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Supplementary Figures 1080 

 1081 

Fig. S1. The effect of distraction on sample numerosity sparse components 1082 

(a) Information (standard deviation across conditions) about sample numerosity, distractor numerosity and 1083 
their interaction in each of the three sample numerosity sparse components (SCs) in trials with a distractor. 1084 
(b) Sample numerosity information as in (a) for the three SCs in trials with and without a distractor. Shaded 1085 
area indicates [2.5 %, 97.5 %] confidence interval. Black dots indicate timepoints with significant 1086 
differences (p < 0.00125, bootstrap).  1087 
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 1088 

Fig. S2. Sample-distractor interaction sparse component 1089 

SCA performed on the demixed sample-distractor interaction part of the data identified one component that 1090 
optimally reconstructed the data using cross-validation. The activity of this SC is shown for all sample-1091 
distractor combinations. 1092 

 1093 
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Chapter 3

General Discussion

In this thesis, I investigated higher cognition in higher-order brain regions with single-neuron
resolution in primates performing tasks that involve complex temporal coordination and
integration. I explored the population-level description of how the network of neurons is
organized to represent task variables, offering insights into the neural mechanism underlying
higher cognition.

In the first manuscript, I examined working memory representations of number stimuli
in humans undergoing brain surgery. The intra-operative intracranial micro-electrode array
recording allowed access to a broader range of brain regions, including the parietal association
cortex. Capitalizing on the methodological advancements, I probed the population-level
neural coding for the working memory maintenance of numbers in the parietal association
cortex and discovered distinct representations for numbers in symbolic and nonsymbolic
formats.

In the second manuscript, I furthered the investigation with a more complex temporal
structure of the behavioral task and expanded coverage of single units. By considering the
temporal modulation of multiple task variables represented in the population, I unveiled
sparse structures in the neuronal implementation of representations. Such sparse neuronal im-
plementations have often been observed in lower sensory systems but have not been reported
in the prefrontal cortex (PFC). Leveraging the sparse structure, I identified biologically mean-
ingful components of the representations that can be directly communicated to downstream
neurons. Corroborating the physiological roots of these components, each component was
linked to a small subpopulation of neurons, and it was found that these subpopulations have
distinct physiological properties and temporal dynamics. These characteristics underlie their
capacity to actively maintain working memory while resisting distraction. Lastly, using an
artificial neural network model, I demonstrated that sparse implementation of the observed
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temporally modulated working memory representations is preferred in recurrently connected
neuronal populations such as the prefrontal cortex.

In the following sections, I will discuss the implications of these results in more details.

3.1 Symbolic and nonsymbolic number representations

In the first manuscript, I was able to target numerical cognition in symbolic format (Arabic
numbers) that is unique to humans. Behaviorally, subjects showed less confusion between
adjacent numbers (such as 2 and 3 or 5 and 6) in symbolic form and overall better performance
in these trials. This effect was reflected in the recorded neuronal activity. The neuronal
responses showed differences between symbolic and nonsymbolic trials, implying that the
format was coded in the brain. Furthermore, neuronal representation for individual symbolic
numbers emerged later than nonsymbolic numbers, suggesting additional processing was
required for symbolic numbers. Finally, symbolic numbers required higher dimensionality
in neuronal representation, allowing each number to be coded more idiosyncratically and
reducing confusion with adjacent numbers.

The characteristics of the neuronal representation for numbers in symbolic and nonsym-
bolic support the direct involvement of the parietal association cortex in higher cognition:

1. Number format was represented. It is in line with the role of higher-order cortices that
process not only the external stimuli but also cognitive variables such as task rules and
trial types for executive control (Miller and Cohen, 2001).

2. Higher temporal integration functions necessitate a transition of neuronal representa-
tions from maintaining sensory input to adopting a format that supports motor output
planning (Fuster, 2001). In the current task, a correct behavioral response depends on
accurately remembering the exact number, irrespective of its magnitude (confusion
with adjacent or distant numbers is equally incorrect). The observed idiosyncratic
neuronal representations of symbolic numbers later in the delay period are suitable for
subsequent motor planning.

3. From the perspective of mixed selectivity, the representation of symbolic numbers
observed in the current study can be interpreted as non-linearly mixing magnitude with
other number properties, such as parity or prime factors (Rigotti et al., 2013; Bernardi
et al., 2020). A higher-dimensional geometry of neuronal representation allows for
linearly reading out any number arbitrarily, thus providing flexible motor output for
any number. In contrast, a low-dimensional magnitude code enables generalization to
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unseen numbers and favors readout for very small and very large numbers (boundary
effect). We observed better behavioral responses when subjects were memorizing small
numbers, which is consistent with previous research reporting a Weber-Fechner law for
the variability of number cognition in both behavior and neuronal tunings (Nieder and
Miller, 2003). The neuronal representation of numbers in the parietal association cortex
strikes a balance between extreme low-dimensional and high-dimensional scenarios,
optimizing both flexibility and generalizability, consistent with previous reports in
other higher-order cortices (Bernardi et al., 2020).

4. Lastly, there are additional meanings of symbolic numbers - instead of quantity, it
could signify order (Nieder, Diester, and Tudusciuc, 2006; Nieder and Dehaene, 2009).
In daily life, number can also be used as a label (nominal number). The polysemy of
symbolic number is typical for higher cognition, requiring integrating information of
various modalities. The need to represent the many aspects of symbolic numbers may
also underlie their higher dimensionality of neuronal representation than nonsymbolic
numbers.

My results for the dimensionality of number coding presented here were limited by the
relatively small pool of sampled neurons. It could lead to underestimation of dimensionality.
Certain aspects of number coding in working memory may be carried out by small subsets of
neurons that are not easily captured with the small sample size. This motivated me to further
investigate the questions of population coding for working memory in the second manuscript
where more neurons were recorded.

3.2 Neuronal organization in population coding

In the second manuscript, I sought to bridge the gap between the population and single
neuron doctrines (Saxena and Cunningham, 2019) by exploiting the structures in the neuronal
implementation of working memory. The division of these two perspectives stems from our
heuristics of the principle of neuronal organization in a local network that can be epitomized
by the fundamental debate of grandmother cell vs. distributed coding in high level visual
processing (Gross, 2002; Quiroga et al., 2008). The grandmother cell concept suggests that
one neuron in the inferotemporal cortex (IT) responds to only one specific face, such as
someone’s grandmother. This means the stimuli coded in the neuronal population can be fully
reflected in the response of certain single neurons. Conversely, distributed coding posits that
the perception of any face is represented by the whole population, with single neurons not
tuned to specific faces, therefore meaningful representations only arise at the population level.
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While some IT neurons tuned to specific individuals’ faces have been reported (Quiroga
et al., 2005), it is impossible to prove the grandmother cell proposition, which would require
sampling all neurons and all possible faces. Instead of specific faces, it is common to find
individual neurons preferentially tuned to certain canonical facial features, such as gender,
age, and hair length (Higgins et al., 2021; Freiwald, Tsao, and Livingstone, 2009), which
could lead to sparse neuronal representations of faces (Quiroga et al., 2008).

Between the extremes of grandmother cell and distributed population coding, functions
could be traced to subsets of neurons in a population, with a population vector indicating the
contribution of each neuron. In the second manuscript, dominant subpopulations of neurons
with high contributions to working memory components were selected, and they exhibited
distinct single-neuron physiological properties. This physiological heterogeneity of neurons
in the population may underlie their functional segregation, further supporting the division
between dominant subpopulations and the elemental roles of the corresponding components.
However, it is not clear whether the dominant neurons and non-dominant neurons for one
working memory component are strictly disparate. On one hand, it is possible that only the
"dominant" neurons participate in the computation involved with this component, as the non-
dominant neurons of a certain component may only show correlation to the corresponding
component due to recurrence and local inhibition in the PFC population; on the other hand,
the observed distribution of neuronal loading was sparse but continuous, with no absolute
criterion for counting a neuron as dominant.

Instead of assigning a subset of neurons to each function, neuronal organization for
population coding can be understood as a hierarchical local network with differently ranked
roles for each neuron. For example, it has been shown that the count of hippocampal place
cells exhibits an exponential decay distribution over their place field size, with fewer cells
having large place fields (Zhang et al., 2023). This exponential decay is the hallmark of
hierarchy, where less frequent occurrence signifies a higher rank (Zipf’s law) (Sharpee, 2019;
Zhou, Smith, and Sharpee, 2018). Neurons with large place fields are thus higher ranked in
the network. They are connected to a larger number of other place cells and have overlapping
place fields with them. These neurons represent the coarse location, while neurons with small
place fields represent the fine-grained location.

Such neuronal organization is optimal for encoding both physical space and abstract
variable space, as well as for updating the network to adapt to new experiences, such as
adding new small place fields to the network as the animal becomes more familiar with the
space (Zhang et al., 2023). This concept can be extended to PFC working memory neurons.
In my study, the observed neuronal loadings on working memory components followed a
Laplace distribution, which is a combination of two exponential distributions on the positive
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and negative sides. This distribution of neuronal loadings supports a hierarchical organization
in which a small fraction of dominant coding neurons are responsible for fundamental and
general computations of working memory representations. The majority of neurons with
small absolute loadings were not simply silent but were responsible for computations in other
specific contexts or scenarios not optimally probed by our behavioral task.

The question then arises whether this principle of hierarchical organization for population
coding is ubiquitous across the brain. The isocortex is built by repeating structures (Wang,
2020). It is reasonable that local hierarchies underlie the macro-scale hierarchical orga-
nization across the brain. However, neuronal representations in higher-order cortices are
often assumed to be distributed (Rigotti et al., 2013; Bernardi et al., 2020). Higher-order
cortices have different physiological and network properties and functions that may make the
hierarchical or sparse organization not easily reflected in experiments. First, in experiments
regarding visual perception, subjects are usually confronted with a large number of visual
stimuli, such as faces, probing the possible stimuli that neurons may best respond to. Neurons
in higher-order cortices usually respond to more abstract task variables that are not simply
stimulus-driven. The number of those variables that can be probed in a single experiment
is limited, due to the repetition required for training and the time needed for complex task
structures. We can only access a small fraction of the full task variable space, making it
harder to "hit" the variables neurons optimally respond to. Second, temporal integration of
both information maintenance and action planning is a key function of higher-order cortices.
Neuronal activity usually shows complex temporal modulation instead of simply following
stimulus presentation. Yet, temporally modulated neuronal activity is typically averaged in
a pre-selected time window (usually during the delay period) when constructing the neural
subspace (Murray et al., 2017; Parthasarathy et al., 2017; Bernardi et al., 2020). This may
cause the analysis to miss variables with specific temporal modulation that neurons prefer.

3.3 Factorization of neuronal representations

The presence of the aforementioned organizing principles often results in inhomogeneity
across the variables represented, meaning that not all aspects of the task variable space are
equally represented in the neuronal population. Understanding which specific aspects are
implemented differently by neurons can provide insights into the detailed operations within
the brain. Neuronal populations, especially in higher-order cortices, tend to concentrate most
of their activity variability in a low-dimensional latent space where task variables can be
factorized (Bernardi et al., 2020). In this space, neurons preferentially represent disentangled
factors that satisfy compositionality, meaning that these factors can be treated more or less
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independently and the order of applying them does not matter, such as the color and size
of an object (Higgins et al., 2021). This concept of disentangled factors allows for a more
efficient and flexible representation of the task variable space, ultimately contributing to the
brain’s ability to process and adapt to complex information.

My results first highlighted the disentangled sample and distractor number memory in
distinct subpopulations. This factorization is crucial because it demonstrates that animals
have learned to treat the two stimuli as separate variables, rather than repeated or sequential
samplings of one variable. Interestingly, animals also internally formed the distractor
representation, even though the distractor number is not relevant to the behavioral output
in the current task. This finding suggests that animals spontaneously create factorized
representations of input without requiring reinforcement. Such a mechanism may underlie
their ability to quickly generalize to new environments and task settings, such as an n-back
working memory task.

Moreover, the temporal modulation of sample number memory was factorized into
representations in different task periods. At first glance, this may seem counter-intuitive. If
we were to treat the representations in PFC as serving only the memory maintenance function,
we would expect a single sustained representation throughout the entire delay. However,
the factorized temporal modulation of working memory representations indicates that the
observed PFC representations support more complex functions than mere maintenance. One
possibility is that this temporally factorized representation results from temporal integration
with action planning. As new information appears and a new task period begins, organisms
might need to update their contingent action plans (Ehrlich and Murray, 2022). Consequently,
the significance and output contingency of past sensory input may change in new task periods.
In other words, the same past sensory input could correspond to different variables in different
contexts, making it beneficial for its representation to be factorized in various task periods. In
contrast, the neuronal representation of sample number during the first delay and the neuronal
representation of distractor number during the second delay largely overlap, indicating that
the PFC treats them as the same cognitive variable, even if they correspond to two separate
external stimuli.

Additionally, neuronal disentanglement of task variables in the brain may reflect energy-
efficient coding. This efficiency can be attributed to the geometry formed by the combination
of variables. For variables that are independently and uniformly distributed within a range, the
resulting geometry features corners and edges at the extreme values of these variables. The
neural state space also has a corner and edges at neurons’ low firing states, constrained by the
non-negativity of neuronal firing rates. Optimal use of neuronal firings (reducing the highest
firing rate needed) occurs when individual neurons code each independent variable rather
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than their linear mixture, fitting the geometry of variables to the boundaries of the neural
state space (Whittington et al., 2022). In this context, the disentanglement of sample and
distractor number representations at the second delay may stem from the grid-like geometry
of their combination. Intriguingly, the neuronal factorization of sample representation in
different task periods might also arise from the geometry of its temporal modulation in state
space. The trajectory exhibited a sharp turn at the transition of task periods. To efficiently
implement this geometry, the turning point should be situated at the corner of the neural state
space, corresponding to the scenario when individual neurons contribute the trajectory either
before or after the turning point.

3.4 Temporal dynamics of working memory

To factorize memory representations in different task periods, it is necessary to first recognize
and register the temporal structure of the task. This temporal organization ability may be
central to PFC functions (Fuster, 2001). The majority of the neuronal activity’s variability
I observed was explained by the factor of trial time, irrespective of number stimuli. This
could form the basis of how the PFC registers task structure in order to modulate memory
representations. Due to the non-linearity of the input-output relationship in neurons, their
sensitivity to small perturbations varies depending on the general activity level (Dubreuil
et al., 2022). The trial time signal, which determines the general activity level of neurons,
can act as a gating mechanism for the memory signal that is much smaller in scale.

Notably, trial time was represented differently in the three dominant subpopulations.
The sensory and memory subpopulations represent trial time periodically, corresponding
to the periodic sensory input. Consequently, these two subpopulations followed a temporal
structure that is more input-driven. They represented the most recent sensory input regardless
of whether it was the sample or distractor number. The trial time signal in recovery subpopu-
lation, on the other hand, could discriminate between the first and the second delays. This
subpopulation only represented sample number at the second delay and ignored distractor
number. These results support the function of trial time related activity in modulating and
controlling the memory activity.

The question then arises: where does the trial time signal come from? Naturally, trial
time could be computed based on the decaying trace of sensory input and the accumulating
expectation for reward. However, a more intricate representation that involves certain mental
construction of the trial structure requires further computation in the local circuitry. The
analysis of tangling showed that the trial time activity in the recovery subpopulation could
be maintained locally, while the trial time activity in sensory and memory subpopulations
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relied on external input. This suggests that the recovery subpopulation may be responsible
for internally constructing the trial structure. In this case, the three subpopulations were
not solely responsible for different factorized aspects of memory representation, but also
belonged to different functional hierarchies, with the recovery subpopulation being more
involved in providing control signals. Nevertheless, the current results do not exclude the
possibility that other subpopulations could feed different trial time signals to these three
dominant memory subpopulations.

3.5 Active information maintenance

The manuscripts in this thesis have portrayed the sequential representation of working
memory across task periods in higher-order cortices, with a possible contextual control signal
in the recovery subpopulation to resist distraction. In this section, I will clarify its relation
and differences with similar working memory theories.

Working memory maintenance is often thought to be implemented through persistent
neuronal activity, which stems from the early discovery of neurons that persistently fire in the
delay period (Fuster, 2001). This persistent activity in the absence of sensory input can be
modeled by the dynamics of local networks, e.g., the bi-stable states of local circuits (Camperi
and Wang, 1998; Brunel and Wang, 2001), and further generalized to continuous variables
with a bump attractor model (Wimmer et al., 2014). In this perspective, network dynamics
possess several stable fixed points that allow memory to persist, and maintaining memory
means keeping neural states stable (Murray et al., 2017). Stable fixed points usually result
from symmetric connections. In contrast, an asymmetrically connected network can also
maintain memory by relaying it through different network states. This approach may have
better resistance to distraction (Orhan and Pitkow, 2020) but requires a fixed delay until
readout (Murray et al., 2017). Memory representations in my results were stable within
each task period and sequential across periods. This could be due to the combination of the
behavioral task and the natural environment. In a natural environment, an organism might not
know how long it needs to hold relevant information, so employing stable fixed points should
be the default strategy. In our task setting, the animals were trained on a task with a fixed
time structure and had to resist distracting stimuli. Therefore, a coarse-grained sequential
representation changing only at the transition to a new task period may be more suitable.
However, as discussed in previous sections, the sequential representation is not necessarily
responsible for maintenance but rather for temporal organization and flexible behavioral
output.
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Furthermore, it has been proposed that instead of persistent activity, neural systems
use intermittent bursts of activity for the maintenance of information during working mem-
ory (Buschman and Miller, 2022). Maintaining information during activity-silent periods
requires changes in synaptic weight. The sequential representation observed in my current
study does not prove or exclude such a possibility. Resolving this debate would require a
new methodology with more microscopic specificity.

Working memory is the active, rather than passive, maintenance of behaviorally relevant
information, which includes the ability to resist distraction. It is often conceived in the form
of filtering out distractions, involving specific types of inter-neurons in local circuitry and
specific neuromodulators such as dopamine (Brunel and Wang, 2001; Wang, 2020; Ott, Jacob,
and Nieder, 2014). In my study, the distractor was not selectively suppressed but coexisted
with sample information in the PFC. Although the recovery subpopulation did not represent
the distractor, it also did not hold sample information from the beginning. This presents an
unconventional mechanism for resolving working memory tasks with distractors: instead
of filtering out distractions, it maintains both sample and distractor information in different
information channels and uses the information according to the behavioral context. These
results provided a fresh perspective for examining the dorsolateral PFC neuronal population
in greater detail, as opposed to previous descriptions that assume the entire population serves
a single functional purpose.

3.6 Interpreting sparsity constraint

The primary analyses in my second manuscript were inspired by the anatomical observation
that cortical neurons have significantly fewer dendritic spines (approximately 104) than the
total number of neurons (approximately 109) in an upstream area, such as the dorsolateral
PFC (Herculano-Houzel et al., 2015; Courchesne et al., 2011; Eyal et al., 2018). This
discrepancy limits the number of neurons in the dorsolateral PFC that can directly project
to each downstream neuron. To uncover the information communicated by the dorsolat-
eral PFC and identify the neurons responsible for this communication, I employed sparse
component analysis (SCA), a methodology that capitalizes on the statistical principle that
non-Gaussianity, such as sparsity, leads to identifiable components (Hyvärinen and Oja,
2000; Ganguli and Sompolinsky, 2012). Although several sparsity-based methods share
mathematical similarities with the methodology used in my study, their motivations and
implications differ substantially.

The most common configuration of independent component analysis (ICA) also utilizes
sparsity, but its motivation is to find the sparse source signals from mixed observations (Hy-
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varinen, 1999). Capitalizing on the central limit theorem, which states that a mixture of
independent random variables tends towards a Gaussian distribution, ICA identifies non-
Gaussianity as a signature of independent sources before mixing. Consequently, sparsity
is maximized for the inferred source signal, such as a picture or an audio sequence. In
my study, the equivalent task would be finding the latent source with maximally sparse
activity underlying the recorded neuronal activity. This approach does not encourage sparse
loadings/mixing vectors, in contrast to the motivation of sparse component analysis (SCA).

To interpret the analyses in my study within the ICA framework, the population vector
specifying the activity across neurons in one condition-timepoint combination should be
viewed as the observed "signal vector." In this context, SCA in my study could be understood
as finding the independent population vectors that were mixed in each condition-timepoint
combination. Preprocessing the data to construct a low-dimensional subspace would be
necessary; otherwise, the resulting independent population vectors would trivially be indicator
vectors, each with one active neuron. Varimax rotation after principal component analysis
(PCA) is conceptually similar to this "population vector ICA." It aims to enforce unique
solutions and is commonly applied to improve the interpretability of factors (Kaiser, 1958;
Rohe and Zeng, 2020). Unlike ICA, which is usually applied after preprocessing with
principal component truncation and whitening, SCA here retains the covariance structure
and finds the SCs directly, so the result is not limited by pre-selection of the subspace.

Dictionary learning or sparse coding is another method that utilizes sparsity (Kreutz-
Delgado et al., 2003; Olshausen and Field, 1996). However, dictionary learning typically
learns an overcomplete or complete set of factors, while in SCA, the dimensionality is
significantly reduced. This difference is related to the fact that dictionary learning is usually
applied to a vast set of natural image data, where one designs the tuning of hypothetical
neurons to make it energy-efficient by having sparse activity. In contrast, SCA is applied to
the activity of neurons to find what signal they might be communicating, given the sparsity
of synapses, not necessarily leading to less activity in the components.

The mathematical formulation of SCA in my study is most similar to sparse principal
component analysis (SPCA) (Zou, Hastie, and Tibshirani, 2006). SPCA requires the factors
to be linear projections of the original data, thus only utilizing the covariance among neurons
and ignoring the exact activity information. In contrast, SCA could potentially capture factors
that are not within the linear span of neuronal activity. This aspect may render SCA more
suitable for uncovering the latent factors with complex temporal modulations that are not
directly reflected in the recorded neuronal activity.

Sparsity-based methods are useful for optimally compressing and representing a wide
range of sensory input. These methods are commonly used as a model of the "design
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principle" of efficient coding in sensory systems (Ganguli and Sompolinsky, 2012). In my
study, the method was applied to neural recordings during a working memory task with a
limited set of sensory stimuli and a focus on temporal modulation. The identified components
represent activity patterns that reflect computations in distinct neuronal ensembles, rather
than a compressed representation of sensory inputs.

The sparsity constraint is often applied to the weight matrix as an engineering approach for
feature/channel selection and addressing the mathematically ill-posed problem arising from
high-dimension, low-sample-size data – a common issue in neural imaging studies (Haufe
et al., 2014). The physiological meaning of the neural signal determines the implications of a
sparse prior on the weights. In extracellular recordings, where recorded units relate directly
to single neurons, the sparsity constraint on decoding weights corresponds to the sparsity of
connections from recorded neurons to downstream neurons, resulting in activity patterns com-
municable by the local circuit. For imaging modalities such as functional magnetic resonance
imaging (fMRI) and electroencephalography (EEG), the sparsity constraint across voxels
or channels does not reflect any macroscale physiological characteristics of the brain and is
primarily applied for engineering purposes, with limited physiological implications (Haufe
et al., 2014; Friston et al., 2008).

Data interpretation in multivariate analyses can be categorized into two classes: for-
ward/encoding models that generate data from latent processes, and backward/decoding
models that extract information from data. Forward/encoding models have been suggested
to be more stable and precise when interpreting weight matrices (Haufe et al., 2014). In
my study, I formulated SCA as an encoding model instead of analyzing the weights of a
linear discriminant analysis decoder. This approach presents a limitation when linking the
discovered neuronal implementation to potential readout weights, as sparse encoding weights
do not always result in sparse readout weights. An additional condition of orthogonality
of activity components in the whitened space must be satisfied, which was observed in
my analyses. The distinction between encoding sparsity and decoding sparsity should be
carefully considered when applying the current approach in future research.

3.7 Outlook

Understanding the neural mechanisms underlying higher cognition has been an ongoing
challenge since Descartes’ time. In this thesis, I have delved into the complexities of the
brain’s representation of task variables with single-neuron resolution in primates performing
working memory tasks. In the following paragraphs, I will discuss future research directions
and potential avenues to build upon the findings presented in this thesis.
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One key area of focus should be the executive control function, which guides the ac-
tive maintenance of behaviorally relevant information and resists distractions. My results
demonstrate that task-structure related temporal dynamics in population activity can be
used as a control signal. However, it is still unclear how this control signal is generated
and communicated to memory-representing neurons. To understand the executive control
function in higher cognition, future research needs to investigate how neuronal ensembles ex-
hibiting control signals interact with other neurons in the local network and how higher-order
cortices interact with other brain regions. This will require simultaneous recording of large
populations of neurons and computational modeling of these populations to infer possible
connection patterns.

Memory maintenance is only the tip of the iceberg of higher cognition. The complex
neuronal representations in higher-order cortices need to be considered within a broader
context - how organisms interact with their environment - in order to fully reveal their
functional significance. Evidence has shown that the PFC can be compared to the recurrent
neural network in a reinforcement learning agent, responsible for registering past actions,
rewards, and most importantly, the current latent state of the task (Botvinick et al., 2019;
Wang et al., 2018). A similar view posits that the persistent activity in the PFC encodes the
transition probability of latent states, with the PFC’s anatomy being suitable for Bayesian
belief updating (Parr et al., 2020). Trial time encoding units and sequential memory coding
units, akin to the neurons described in this thesis, can be found in deep reinforcement
learning agents performing working memory tasks (Lin and Richards, 2021). Therefore, to
appropriately probe the higher cognition functions that are closely intertwined with learning,
investigations of both behavior and neural signatures, should extend beyond well-trained
stages of a task, focusing on the entire task acquisition and even the generalization to new
tasks (Bernklau, 2022).

Experiments need to encompass a wider range of task variables. Current experimental
designs for investigating higher cognition probe a limited space of cognitive variables. Ex-
panding the dimensionality of the task variable space may help identify the latent variables
neurons optimally respond to and discover the population implementation structure more ac-
curately (Stringer et al., 2019). In sensory-driven systems, this can be achieved by increasing
the number of stimuli. For higher cognition, possible approaches are to introduce multi-
task settings, apply randomized behavioral perturbations, and record spontaneous behaviors
instead of only investigating a limited set of heavily trained behaviors.

Models and statistical tools need to adjust accordingly. First, rather than averaging neu-
ronal activity across trials, methods based on general linear models that allow for spontaneous
timing of events are more suitable (Aoi, Mante, and Pillow, 2020). Second, when considering
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spontaneous behaviors, it is crucial to extract causality information from numerous aspects
that are only quasi-experimentally controlled (Marinescu, Lawlor, and Kording, 2018). Third,
brain models need updating to accommodate the possible compositionality of functions
across multiple tasks (Yang et al., 2019) and account for the rich influence of the natural
environment in shaping behavior (Molano-Mazón et al., 2023).

Future neuronal implementation analyses could benefit from large-scale simultaneous
recordings, such as two-photon calcium imaging, which allows tracking neurons across
multiple sessions. My study used single units aggregated from various sessions in the
well-trained stage. Neuronal implementation could be more accurately identified with
simultaneous large-scale neural recordings that preserve noise correlation and allow tracking
neurons across sessions. Additionally, investigating the stability of neuronal implementation
at various time scales could help disentangle subpopulations of neurons that exhibit similar
activity in one learning stage and further unveil the dynamics of neuronal organization.

Finally, theories and analyses should focus on physiological principles of the brain.
Descartes correctly posited the preservation of retinotopy in the brain based on nerve connec-
tions (see Introduction). Similarly, based on the physiological property of sparse neuronal
connections, distinct subpopulations for memory representation were identified in this thesis,
updating the intuition that memory is continuously maintained in one population. Generally,
our heuristics of possible cognitive variables are often biased by subjective introspection
of mental processes. Uncovering a more accurate description of the mind requires building
theories upon the physical characteristics of its material essence - the brain (Cornman, 1968).
Distilled from various aspects of physiology, several "first principles" have been proposed to
guide a systemic understanding of the brain (Chen et al., 2023). This thesis touches on sparse
coding, but more inspiration can be found in, for example, criticality of dynamical systems
that could underlie PFC’s neuronal activity enabling diverse output, and neural plasticity rules
such as Hebbian learning that could be crucial in explaining temporal integration functions.
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