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München, den 01-08-2023



Erstgutachter: Prof. Dr. Til Birnstiel

Zweitgutachter: Prof. Dr. Judit Szulágyi
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Zusammenfassung

Feinkörniger Staub ist der grundlegende Baustein von terrestrischen Planeten wie der Erde, die
um junge Sterne entstehen. Gleichzeitig beeinflusst der Staub astronomische Beobachtungen, da
er den Hauptbeitrag zur Opazität in den Gasscheiben leistet, die entstehende Sterne umgeben
(sog. protoplanetare Scheiben). Daher sind genaue Modelle der Verteilung und Bewegung von
Staub in protoplanetaren Scheiben von entscheidender Bedeutung für das Verständnis der An-
fangsbedingungen der Planetenentstehung und für die Interpretation astronomischer Beobach-
tungen von jungen Planeten- und Sternensystemen. Dieses Thema ist besonders relevant, da
neueste astronomischen Beobachtungen protoplanetarer Scheiben neue Maßstäbe in Bezug auf
Auflösung und Empfindlichkeit setzen und dadurch unser derzeitiges Verständnis und unsere
Modelle infrage stellen.
In dieser Arbeit präsentiere ich ein neuartiges und in sich konsistentes Modell der turbulen-
ten Durchmischung von Staub. Das Modell bestätigt detaillierte Vorhersagen, wobei Nachteile
früherer Modelle hinsichtlich der Drehimpulserhaltung, der uneindeutigen Definition der durch-
mischten Größe und Auswirkungen der Bahndynamik wegfallen. Somit verbessern wir die
Beschreibung der Bewegung von Staub in turbulenten protoplanetaren Scheiben maßgeblich. An-
schließend zeige ich auf, wie turbulente Durchmischung von Staub und andere Transportphänomene
im frühen Sonnensystem, den Mangel an beständigen Kohlenstoffverbindungen, im inneren
Bereich des heutigen Sonnensystems erklären kann. Im Folgenden konzentriert sich die Ar-
beit auf die dreidimensionale Verteilung des Staubs in protoplanetaren Scheiben in Gegenwart
eines Riesenplaneten. Mithilfe von hydrodynamischen Zwei-Fluid-Simulationen (Gas + Staub)
finden wir, dass ein Planet die Staubverteilung in protoplanetaren Scheiben stark beeinflusst.
Wir beschreiben beobachtbare Merkmale in synthetischen Radiowellenbeobachtungen, die es er-
lauben, auf die Anwesenheit eines unentdeckten Riesenplaneten in einer protoplanetaren Scheibe
zu schließen. Schließlich untersuchen wir die Verwirbelung von Staub durch einen Riesenplan-
eten, zusätzlich zur Durchmischung durch turbulentes Gas. Wir konzentrieren uns dabei auf
deren kombinierte Wirkung auf die dreidimensionale Verteilung des Staubs und untersuchen
Merkmale, die mit Radiowellenbeobachtungen einer protoplanetarer Scheibe beobachtbar sind
und Rückschlüsse auf die Anwesenheit eines noch unentdeckten Planeten erlauben. Diese Arbeit
bietet neue Einblicke in die Dynamik von Staub in turbulenten protoplanetaren Scheiben und
liefert eine Erklärung für den Mangel an beständigen Kohlenstoffverbindungen im inneren Son-
nensystem. Außerdem beschreiben wir mögliche beobachtbare Merkmale von noch unentdeckten
Riesenplaneten in Radiowellenbeobachtungen von protoplanetaren Scheiben.
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Abstract

Fine-grained dust is the fundamental building block of terrestrial planets, like Earth, that form
around young stars. At the same time, the dust distribution in the gaseous disks around form-
ing stars, so-called protoplanetary disks, influences astronomical observations, because dust is
the main contributor to the opacity in protoplanetary disks. Therefore, accurate models of the
distribution and dynamics of dust are critical to understanding the initial stages of planet forma-
tion and interpreting astronomical observations of forming planetary and stellar systems. This
is particularly relevant because recent astronomical observations of protoplanetary disks have
reached new heights in terms of resolution and sensitivity, challenging our current understanding
and models.
In this thesis, I introduce a novel and self-consistent turbulent dust transport model based on a
density-weighted mean-field theory that also captures non-local transport effects. The model im-
proves upon the limitations of earlier models related to the conservation of angular momentum,
the ambiguous nature of the transported quantity, and the transport effects of orbital dynam-
ics. We therefore provide an improved description of dust dynamics in turbulent protoplanetary
disks. Subsequently, I present how turbulent dust dynamics and transport in the early Solar
System can explain the lack of refractory carbon in the inner Solar System today. The thesis
then focuses on the three-dimensional dust distribution in protoplanetary disks in the presence
of an embedded giant planet. With the help of radiative two-fluid (gas+dust) hydrodynamic
simulations, we find that a planet significantly influences the dust distribution in protoplanetary
disks. We identify observational signatures in synthetic radio continuum observations that hint
at the potential presence of a yet undetected giant planet in a protoplanetary disk. Finally,
we investigate dust stirring by a giant planet in addition to dust mixing caused by turbulent
gas. We focus on the combined effects on the three-dimensional dust morphology and study
observable effects of turbulent and planetary dust stirring in radio continuum observations of
protoplanetary disks with an embedded planet. Our work provides novel insights into turbulent
dust dynamics in protoplanetary disks and offers an explanation for the lack of refractory carbon
in the inner Solar System. We also describe observational signatures of giant planets in proto-
planetary disks that help with the interpretation of continuum observations. These results help
guide astronomers toward the detection of forming and yet unobserved planets in protoplanetary
disks.
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Chapter 1

Introduction

Humans have probably always been fascinated with the origins of our world. But it was not
until the 18th century that the nebular hypothesis was proposed (Laplace, 1798), which today
is regarded as the predecessor of state-of-the-art models that describe the origin of planets, like
Earth. More recently, a plethora of new observations has led to renewed interest in the origins
and formation of planets and has catapulted the field to the forefront of modern astrophysics.
Current models predict the formation of planets to be closely connected to the formation of stars
in a complex interplay with their galactic environment in cold, dense regions of the galaxy (e.g.
McKee & Ostriker, 2007; Pineda et al., 2022). In a simplified picture, the standard process starts
with a ”blob”, also called a core, of gas and fine dust grains, which exists in isolation within a
star-forming region of the galaxy. The core then gravitationally contracts to form a young star
that is surrounded by a rotationally supported disk of gas and dust. Within the disk, planets
form from the bottom up, starting with dust grains sticking together to form centimeter-sized
pebbles, which then form kilometer-sized bodies called planetesimals. The planetesimals then
grow further to become rocky planets like Earth or attract a thick gaseous envelope to form a
gas planet like Jupiter (see e.g. Evans, 1999, for a review). Despite significant progress in our
understanding of the origins of worlds over the past 250 years, new questions have emerged, and
many aspects remain unknown. This introductory section aims to provide a brief overview of
the science of planet formation before the subsequent three chapters provide insights into the
actual theory and current challenges.

Today, we understand that the interactions between stars, planets, and disks are complex and
take place over a relatively brief period of time (less than ten million years). However, processes
within this period set the fundamental properties of stars and planets that then endure for bil-
lions of years (Andrews, 2020). The brief period during which planets form is studied in modern
research, both observationally and theoretically. Astronomical observations, from the ground
and from space, provide detailed insights into structures, physical conditions, environmental
dependencies, evolutionary behavior, and statistical properties of entire populations of planets
outside the Solar System, so-called exoplanets. Observations have revealed a wealth of infor-
mation on the birth and evolution of planet-forming disks and on the diversity of exoplanets.
On the other hand, theoretical models provide a framework for interpreting observational data
and making predictions. These models range from simple analytical descriptions to complex
numerical simulations. They incorporate a range of physical and chemical processes to predict
the formation and evolution of planets. By comparing theoretical model predictions with obser-
vational data, our understanding of planet formation can be tested and refined. This interplay
between observations and models is particularly important in the field of planet formation be-
cause nascent planets are notoriously difficult to observe. Therefore, models must be used to
infer properties of forming planets from indirect observations.
Insights gained from the aforementioned scientific approach have revealed that the path to planet
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Figure 1.1: Depiction of the evolutionary stages of the star and planet formation process. (image
credit: Persson, 2014a)

formation begins in the interstellar medium (ISM), i.e., the matter that exists between the stars
in the galaxy consisting of gas and dust. Observations reveal that the ISM exhibits inhomoge-
neous structures across a wide range of density and velocity scales, which can seed the star and
planet formation process when massive structures, of the order of „ 107Md

1, become gravita-
tionally bound. These massive structures inherit a high level of turbulence from the ISM which,
in combination with self-gravity, causes their fragmentation into giant molecular clouds (GMCs)
with scales of tens of parsec2 and smaller dense clumps on pc-scales within the GMCs. Some
of the densest regions created by turbulence become self-gravitating cores, which are structures
on sub-parsec scales (ă 105 au3). Some cores gravitationally collapse and are then referred
to as prestellar cores because only they eventually form protostars. They can be regarded as
the initial condition for the subsequent protostellar evolution (see e.g. the review by McKee &
Ostriker, 2007).
As a prestellar core collapses, potential energy is released and transformed into kinetic energy of
the gas, which in turn increases the thermal pressure of the gas and prevents further contraction.
Further contraction is only possible when there is sufficient cooling and energy is released into
the surrounding environment. A prestellar core also inherits some angular momentum. As a
result of angular momentum conservation, it begins to rotate faster as it collapses and flattens
into a disk. During this process, the majority of the mass accumulates in the center of the
disk. After about „ 105 years of evolution, the disk only contains a fraction of the mass of the
central protostar and is then called protoplanetary. At this time, the young stellar system is
still surrounded by an extended gaseous envelope, but after about 5 ˆ 105 years, the envelope
dissipates, and only the protostar surrounded by its protostellar disk remains. The protostar

1Solar mass, 1 Md “ 1.98847 ˆ 1033 g
2Parsec, 1 pc = 3.0857 ˆ 1016 m
3Astronomical unit, 1 au = 1.4960 ˆ 1011 m, approximate distance from Earth to the Sun
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Figure 1.2: Cumulative number of confirmed exoplanets from 1995 to March 2023 (data source:
exoplanet.eu)

at the center of the disk continues to contract until density and temperature are sufficiently
high to initiate nuclear hydrogen burning. At this point, the energy created by nuclear fusion
contributes to halting gravitational contraction, allowing the star to settle into a quasi-steady
state. This point in evolution is regarded as the beginning of the life of the star. Figure 1.1
shows sketches of the most important stages of the formation process of a planet-hosting stellar
system, which begins with a prestellar core in the first panel at the top left and ends with a
mature planetary system at the bottom left.
Protoplanetary disks, which form around the young stars, serve as the material reservoirs and
birthplaces of planets. They determine the initial conditions and thus, the outcomes of planet
formation processes. Planetary properties, like occurrence rates, masses, formation pathways,
orbital architectures, and compositions, ultimately depend on the physical properties of their
natal protoplanetary disks (see e.g. Andrews, 2020, for a detailed review). Thus, understanding
disk properties and evolution is equally important to understanding the planet formation process
itself.
The outcome of the planet formation process can be studied in the population of detected (exo-
)planets. Beyond the Solar System, this has only become technically possible within the last
three decades. As of March 2023, 5076 exoplanets have been detected and their number is ex-
pected to continue growing. In Figure 1.2, we show the cumulative detections of exoplanets as
a function of time, starting in 1995.
Ultimately, the goal of planet formation theory is to connect protoplanetary disks and their
properties to the observed exoplanet population and explain how such a diverse population of
planets forms from rotating disks of gas and dust while being fully consistent with the increasing
number of observational constraints.

This thesis focuses on the distribution and dynamics of dust in the context of planet formation

exoplanet.eu
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in protoplanetary disks. Dust is an important component of protoplanetary disks because it is
the material from which all rocky bodies in planetary systems are formed (e.g., planetesimals,
terrestrial planets, rocky cores of giant planets). Moreover, it contributes significantly to the
continuum opacity of protoplanetary disks. Thus, the distribution of dust sensitively shapes the
appearance of protoplanetary disks in astronomical observations. Understanding dust dynamics
is crucial for understanding dust distribution, which in turn provides an important link between
astronomical observations and the physical (and chemical) conditions present in protoplanetary
disks. These conditions ultimately govern the formation of planets.
The goal of this thesis is to create a better understanding of the connection between dust dy-
namics and astronomical observations. The following chapters 2, 3, and 4 provide an overview of
the current understanding of protoplanetary disks both from an observational and a theoretical
point of view. Chapter 5 then introduces a novel turbulent dust transport model which describes
the redistribution of dust in turbulent protoplanetary disks. Chapter 6 provides an explanation
for the lack of refractory carbon in the inner Solar System in terms of dust transport in the
protosolar disk. Chapter 7 studies the three-dimensional dust distribution in a protoplanetary
disk with an embedded giant planet and links the presence of a planet to distinct observational
signatures in radio-continuum observations. Chapter 8 continues the discussion from Chapter 7,
and introduces subgrid turbulent dust transport to the model as introduced in Chapter 5. The
thesis concludes with a summary and outlook in Chapter 9.



Chapter 2

Observational Constraints

Before reviewing the theory of disk evolution in Chapter 3 and planet formation in Chapter 4,
we provide an overview of astronomical observations that provide insight into the initial and
boundary conditions for the subsequent theory. In this chapter, we first discuss the historical
classification of young stellar objects in Sec. 2.1, then focus on protoplanetary disk observations
in Sec. 2.2, followed by exoplanet observations in Sec. 2.3 and finally address some constraints
from the Solar System in Sec. 2.4.

2.1 Young Stellar Objects

The closest large star-forming regions to the Solar System, in which we observe star formation,
are Ophiuchus (d„120 pc), Taurus (d„150 pc) and Orion (d„410 pc). However, at these
distances, typical protoplanetary disks span less than 1 arcsec on the sky, making spatially
resolving prestellar objects challenging (for comparison, the full moon subtends about 1860
arcsec). Historically, most observational insight regarding the star formation process has come
from studying the spectral energy distribution (SED) in unresolved observations. The SED is the
distribution of flux as a function of frequency ν or wavelength λ. Young stellar objects (YSOs)
are then classified into four different classes based on the slope of the SED in the infrared region
of the spectrum. Coincidentally, the slope correlates with the evolutionary stages of YSOs
(Adams et al., 1987). The four classes are defined as follows:

• Class 0. The SED peaks in the far infrared (ą 25µm) or mm-range, with no flux detected
in the near-infrared („ 0.7µm ´ 5µm).

• Class I. The SED between near- and mid-infrared wavelengths is approximately flat or
rising.

• Class II. The SED drops noticeably between near- and mid-infrared wavelengths.

• Class III. The SED is effectively produced by a black body, coming from the stellar
photosphere.

The shape of the SED in the different classes is illustrated in Figure 2.1.
Nowadays, Class 0 objects are identified as the least evolved, featuring a dense, optically thick
envelope surrounding the protostar (see Figure 1.1). At this stage, near-infrared radiation from
the central region is obscured by the envelope. A potential rotationally supported disk is thus
undetectable at this stage. Only Class I objects provide direct observational evidence of disks.
For this class, some radiation reaches us relatively unprocessed from the central region and is
detectable at shorter wavelengths. Older Class II objects have largely accreted their envelopes,
and their SEDs combine the protostellar spectrum and radiation from the surrounding disk
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Figure 2.1: SED classification of young stellar objects based on their infrared excess. (image
credit: Persson, 2014b)

at longer wavelengths. Finally, Class III objects are pre-main sequence stars that have nearly
accreted all their circumstellar material.

2.2 Observations of Protoplanetary Disks

After having discussed the characteristics of unresolved observations of YSOs, we focus on
resolved observations of protoplanetary disks in this section. For this, we loosely follow the
content and structure of the review by Andrews (2020).

2.2.1 Observational Fundamentals

The first direct observational evidence of disks surrounding young stars came from a Hubble
Space Telescope (HST) observation of the Orion nebula in the early 1990s (O’dell et al., 1993).
However, beyond confirming their existence, HST’s short wavelength capabilities are not well
suited to probe the detailed disk structure because protoplanetary disks tend to be highly opaque
at short wavelengths. Protoplanetary disks are relatively cool (ă 100 K) such that their thermal
emission peaks at long wavelengths in the (sub-)millimeter range of the spectrum. Therefore,
the combination of small sizes (ă 1 arcsec) and cool temperatures favor radio interferometry as
the preferred observational tool to probe thermal emissions. Resolved disk observations at these
wavelengths have only become possible at scale after the commissioning of the Atacama Large
Millimeter Array (ALMA) in 2011, which has since made a great contribution to the research
of young stellar systems.
Besides thermal continuum emission, there are two more observational tracers suitable for study-
ing the structure of protoplanetary disks: Scattered light and spectral line emission. Both con-
tinuum emission and scattered light are sensitive to the physical state and distribution of solids
in the disks. On the other hand, spectral line emissions trace the distribution of certain gas
molecules. In Figure 2.2, we show three observations of the same disk, each using a different
tracer, such that the appearance of the disk is vastly different between the observations. As each
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a

scattered light

b

thermal continuum

c

spectral line emission

Figure 2.2: Morphologies of the TW Hya disk observed in (a) scattered light λ “ 1.6 µm,
(b) thermal continuum λ “ 0.9 mm and (c) spectral line emission of the CO J=3-2 rotational
transition. All three images show the disk at the same scale. (image credit: Andrews, 2020)

tracer is sensitive to different disk components and physical conditions, they each trace different
regions in a disk. Figure 2.3 shows a schematic illustration of a protoplanetary disk, highlight-
ing the locations where each tracer commonly originates. In summary, the most important
properties of each tracer are as follows:

• Scattered Light. Small („ µm-sized) dust grains suspended in the gas reflect and scatter
the radiation emitted by the central star. The details of the scattering and absorption pro-
cess depend on the locations, sizes, shapes, and composition of the dust grains. Scattered
light is typically observed at relatively small (compared to thermal emission) near-infrared
wavelengths („ 0.7 ´ 2.2 µm), which has the advantage that disks can be observed at
high resolution due to a favorable diffraction limit. One difficulty in observing scattered
light emissions is that the central star also emits efficiently at these wavelengths and can
outshine the emission of the disk, especially at small heliocentric distances. In Figure 2.3,
the main emission region is indicated with yellow color around the disk atmosphere on the
r.h.s of the illustration.

• Continuum Emission. Solids in the disk predominantly emit thermal radiation in the
range between λ „ 1 µm ´ 1 cm. Thus, radio observations are well suited to observing
continuum emissions. In Figure 2.3, the main emission region is indicated with purple color
close to the disk midplane on the r.h.s. of the illustration. In the absence of scattering
effects and assuming homogeneous temperature, the observed continuum emission intensity
at frequency ν is described by the solution to the radiative transfer equation

Iν “ BνpTdqp1 ´ e´τν q (2.1)

where BνpTdq is the Planck function as a function of frequency ν, dust temperature Td,
and optical depth τν . The dimensionless optical depth τν is defined as the integral along
the line of sight of the density-weighted absorption opacity κν :

τν “

ż

ρdκνds (2.2)

Thermal emission can be optically thick and then does not leave the emission region unhin-
dered due to the relatively large opacity provided by the dust grains at these wavelengths.
If the dust emission is optical thick (τν " 1), the observed intensity Iν is solely a function
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Figure 2.3: Illustration of the density and temperature structure of a protoplanetary disk. On
the l.h.s., the black dots illustrate dust grains of different sizes with ice coatings beyond the snow
line (dashed line). On the r.h.s, the lower part indicates the main emission regions of different
wavelengths, with the main emission region of the thermal continuum emission in purple and
scattered light in yellow. The upper part shows emission regions of some simple molecules.
(image credit: Miotello et al., 2022)

of the dust temperature Td:
Iν “ BνpTdq (2.3)

For optically thin emission (τν ! 1), the equation

Iν “ BνpTdqΣdκν (2.4)

holds, assuming the opacity is constant along the line of sight and Σd “
ş

ρdds is the
dust surface density. Eq. 2.4 predicts that the observed intensity Iν is both a function
of the dust temperature Td and the surface density Σd in addition to the opacity κν ,
which is a material property. The spectral dependency of Eq. 2.4 is mainly determined
by the physical properties of the solid particles1 via the opacity (see Sec. 2.2.2). In
practice, difficulties arise when inferring material properties due to degenerate parameters.
Moreover, the applicability of the optically thin approximation (Eq. 2.4) is limited because
large areas of protoplanetary disks can be optically thick.

• Spectral Line Emission. The bulk of the mass of a protoplanetary disk comes from
molecular hydrogen (H2). But, the H2 molecule does not emit efficiently due to a lack
of an electric dipole moment. Thus, the bulk of a disk is essentially invisible and there
is no direct probe of its bulk mass reservoir. Instead, measurements rely on (sub-)mm

1Throughout this work, we use the term particle to refer to any solid constituent present in the gaseous
environment of the ISM or protoplanetary disks. Their sizes can range anywhere from micron-sized dust grains
to mm/cm-sized pebbles. They are distinct from subatomic particles common in other (astro-)physical subfields.
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rotational transitions of rare tracer molecules. The upper part on the r.h.s. of Figure 2.3
illustrates the emission regions of simple molecules. Spectral line emissions can be used to
probe the density and temperature structure of a disk. Moreover, spectrally resolved line
emissions can be used to tomographically reconstruct the disk velocity field.

The three traces listed above have been used to observationally constrain various properties of
protoplanetary disks. However, each of these tracers is subject to different limitations. Thus, it
can become necessary to combine multiple tracers to obtain a complete picture. In the following
section, we summarize a few of the derived properties.

2.2.2 Disk Properties

Protoplanetary disks are highly dynamic systems. Their kinematics is dominated by orbital mo-
tions (Armitage, 2011), and their detailed structure affected by magnetic fields (Turner et al.,
2014), viscous transport (Lynden-Bell & Pringle, 1974, see also Sec. 3.3), pressure forces (Wei-
denschilling, 1977b), self-gravity (Toomre, 1964) and winds (Ercolano & Pascucci, 2017). In
Chapter 3, we will discuss some of these processes in more detail. Regarding the composition, it
is usually assumed that the material delivered to protoplanetary disks is similar to the precursor
material in the diffuse ISM and therefore has similar properties. Specifically, it consists of 99
% (by mass) gas and 1 % dust. The dust component in the ISM generally consists of small
grains with sizes À 1 µm (Mathis et al., 1977) and composed of silicates, graphite, and large
organic molecules like polycyclic aromatic hydrocarbons (PAH) (Draine, 2003). In dense and
cold regions of protoplanetary disks, gas molecules can freeze out onto the surfaces of these dust
grains, covering them in ices (Bergin & Tafalla, 2007).
Due to the number of processes and properties involved, it is very difficult to fully characterize
a protoplanetary disk. Usually, only a few fundamental properties must suffice.

Mass

The key characteristic of a protoplanetary disk is probably the distribution of mass, i.e., its den-
sity structure. But, even though insight into the detailed density structure is more desirable, the
large-scale observational surveys still focus on the total disk mass because only a few disks have
been spatially resolved. The total disk mass offers a fundamental constraint on disk evolution
and on the mass reservoir from which planets can form.
As previously mentioned, a direct measurement of the total gas mass is difficult, whereas measur-
ing the total dust mass is somewhat simpler (but also not easy). Although dust only contributes
1 % to the total disk mass budget, it is an important tracer for its total mass. In the optically
thin limit, Eq. 2.4 provides a relationship between intensity Iν and dust surface density Σd.
Given an appropriate disk averaged temperature T̄d and dust opacity κ̄v, the intensity can be
integrated to provide the observed flux Fν as a function of the total dust mass Md (Hildebrand,
1983; Miotello et al., 2022)

Fν “ κ̄νBνpT̄dqd´2Md (2.5)

where d is the distance between the disk and the observer. However, mass estimates derived with
Eq. 2.5 are intrinsically uncertain because they rely on estimates of the mean dust temperature
T̄d and opacity κ̄ν . Furthermore, estimates using Eq. 2.5 are only considered lower bounds,
because some parts of the continuum emission can be optically thick. Assuming the dust mass
is known, the total disk mass can then be inferred by assuming an appropriate dust-to-gas ratio.
Typically, a value of 1 %, as prevalent in the ISM, is assumed (e.g. Bergin et al., 2013).
Compared to dust mass estimates based on continuum emissions, gas mass estimates based
on spectral line observations are less common because the approach is observationally more
challenging. A standard spectral line tracer is carbon monoxide (CO) and its isotopologues.
Similarly to dust-mass estimates, a CO abundance must be assumed to infer the total gas mass
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Figure 2.4: Gas mass estimates of a number of protoplanetary disks in the Lupus star-forming
region using CO lines. Blue points indicate detections with associated error bars, and gray
triangles indicate upper limits. The lower mass limit of the disk from which it is believed
the Solar System formed, is indicated with MMSN (stands for Minimum Mass Solar Nebula,
compare to Sec. 2.4.1). Figure adapted from Ansdell et al. (2016).

from CO-based observations, which complicates the task (see e.g. Miotello et al., 2017). Besides
CO, other molecules are also frequently used as gas mass tracers (e.g., hydrogen deuteride HD).
Generally, there is a high uncertainty in the disk mass determination both via gas and dust
observations. In Figure 2.4 we show CO line gas mass estimates by Ansdell et al. (2016) of disks
in the Lupus star-forming region. Most measurements result in a total gas mass in the range
between 0.1 and 10 MJ which is considered low compared to the expected mass of the disk from
which it is believed the Solar System has formed (Á 10MJ , also see Sec. 2.4.1).
For comparison, in Figure 2.5, we show the cumulative distribution of dust mass estimates of
star-forming regions of different ages from Dra̧żkowska et al. (2022). This is comparable to
plotting the distribution of a single population at different evolutionary stages, as indicated by
the gray time arrow in Figure 2.5. The median dust mass of Class 0 objects is approximately
a few hundred Earth masses. The dust mass decreases rapidly towards older Class I and Class
III disks. It is expected that a significant fraction of the dust either is to the central star or
becomes bound in larger gravitationally bound objects within the first million years of disk
evolution (Dra̧żkowska et al., 2022). If dust is incorporated in large bodies, it is effectively
hidden from observations because bodies that are larger than the observed wavelength become
increasingly less efficient in their thermal emission (for a given mass of solids), making it difficult
for observers to detect.

Size

Defining a physical disk size is not straightforward because most disks just taper off with increas-
ing radius with no clear boundary. A practical approach is thus to define an effective disk size
R, as the radius that encircles a fixed fraction of the total luminosity. Using this approach, and
defining R such that it encircles 90 % of the luminosity, resolved mm-continuum measurements
have estimated the size of approximately 200 disks to R « 10 ´ 500 au (Tripathi et al., 2017;
Andrews et al., 2018a; Hendler et al., 2020).
Interestingly, CO-line emission extends to 100 ´ 500 au (Ansdell et al., 2018), suggesting that
the CO emission of individual targets stretches about twice as far as the continuum emission.
The apparent size difference between continuum emission and spectral line emission is evident
in the disk shown in Figure 2.2.
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Figure 2.5: Cumulative distribution of the dust mass around young stellar objects of different
ages. The typical ages of the samples are indicated. There is a clear evolutionary trend from
large to low dust masses. (image credit: Dra̧żkowska et al., 2022)

Density

In principle, spatially resolved disk observations can constrain the surface density profile of a
disk. Gas surface density profiles Σg offer important insights into how angular momentum is
transported throughout a disk (see Sec. 3), if and where planets can form (see Sec. 4) and how
they will evolve. Likewise, the dust surface density profile Σd provides insight into the earliest
stages of planet formation, and processes such as dust growth (see Chapter 4). A crude estimate
suggests a radial dependence of the form Σd9r´1 with values of Σd „ 0.001´1 g/cm2 in regions
between 50 and 100 au (Andrews, 2020) with gas surface densities Σg roughly two orders of
magnitude above that. See also Section 2.4.1 for constraints coming from the Solar System.

Lifetimes

The lifetime of a protoplanetary disk sets a strict upper limit to the timescale in which the
formation of (gaseous) planets can operate. Large observational studies of nearby star-forming
regions have found that the infrared excess in the SED of YSOs, which hints at the existence of
a disk, disappears on a timescale of only a few million years (see e.g. the review by Hillenbrand,
2005). While the total lifetime of individual disks can vary, there seems to be an upper limit of
„ 10 Myr (e.g., Mamajek et al. (2004)). The typical lifetime of a disk is likely shorter and of
the order 2-5 Myr Fedele et al. (2010).

Dust Size Distribution

The small fraction of dust (by mass) contained in protoplanetary disks is the dominant con-
tributor to the continuum absorption opacity κν . The dust opacity is a pure material property
and generally has the highest value at infrared wavelengths and decreases towards longer wave-
lengths. The opacity can be influenced by various dust properties like composition (Henning
& Stognienko, 1996), shape (Bertrang & Wolf, 2017), refractive indices (Boudet et al., 2005),
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and the size distribution (Birnstiel, 2011), and thus influence observables. For simplicity, the
wavelength dependency of the opacity is commonly approximated with a power law of the form
κν9νβ where the power law exponent β encodes the material properties (the parameter β can
also be frequency dependent). Given this consideration, the wavelength dependence of the flux
Fν can be related to the material dependent parameter β as Fν9να where α “ β`2 is called the
spectral index. Multiwavelength observations can directly constrain the spectral index, which in
turn sets a lower bound for the largest observed dust particle size amax in the dust size distri-
bution (Draine, 2006).
In practice, measurements find α « 2 ´ 3 in the λ « 2 ´ 3 mm range (e.g, Ansdell et al., 2018),
which, depending on the model, indicates amax „ 10 cm (Birnstiel et al., 2018). This is an
indication that dust grains have grown significantly since their origin in the ISM. There is also
evidence that particle growth happens as early as in Class 0 objects (Galametz et al., 2019). See
also the discussion in Sec. 4.3, for a theoretical view on dust growth in protoplanetary disks.
For a typical dust size distribution, one finds an absorption opacity at radio wavelengths of
λ “ 1 mm of κλ“1mm „ 3 cm2{g (Birnstiel et al., 2018). Eq. 2.2 then predicts that the disk
transitions from optically thick to thin (τν “ 1) at a dust surface density of Σd „ 0.3 g{cm2,
which for typical disks is located at around 10 au (see e.g., Eq. 2.7). Therefore, such a disk
is optically thick to mm-emission in the inner region and optically thin beyond 10 au. The
transition radius moves further out for emissions at smaller wavelengths.

2.2.3 Substructures

Since the progress in observational technology (interferometry, adaptive optics) allows for high-
resolution radio observations of protoplanetary disks, the field has experienced a paradigm shift
away from the simple picture of smooth, symmetrical disks with monotonically decreasing sur-
face density profiles. By now, telescopes like ALMA, and also the Very Large Telescope (VLT),
have revealed that protoplanetary disks are much more complex and show structures that appear
in most disks on effectively all scales down to the resolution limit „ 1´5 au (Zhang et al., 2016;
Garufi et al., 2018; Andrews et al., 2018b; Andrews, 2020). The observations of substructures
have led to novel insights about disk and planet formation processes and challenged previous
theories. Figure 2.6 shows a gallery of ALMA continuum observations showing disks with sub-
structures. In the remainder of this section, we will provide a brief overview of the different
substructure morphologies, and in Sec. 4.6 we will discuss potential physical origins. Substruc-
tures are traditionally grouped into four categories based on their morphology:

• Ring/Cavity. The disk shows a primary narrow ring (usually peaking at tens of au from
the central star) outside a depleted cavity.

• Rings/Gaps. Refers to concentric, axisymmetric alternations of intensity peaks (rings)
and valleys (gaps). This morphology is the most frequent in all observed disks. In Figure
2.6, AS 209 (fifth row, third column) is a prime example of a disk with gaps and rings.
Many other disks in Figure 2.6 also show rings and gaps.

• Arcs. Non-axisymmetric substructures that span a range of azimuth. The lower right
panel of Figure 2.6 shows an observation of HD 163296 with an arc at the 8 o’clock
position.

• Spirals. While large spiral patterns are more common in scattered light observations,
there are only three known sources that exhibit spirals in the mm continuum (Pérez et al.,
2016; Huang et al., 2018; Andrews, 2020). The three are IM Lup, Elias 27 and WaOph 6
(see Figure 2.6). Observed spirals have a variety of pitch angles, ranging from very open
to tightly wound spirals.
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The boundaries between categories are not well-defined. A single disk can contain substructures
of multiple morphological types. A known problem with the observational study of substructures
is the observational bias towards larger, brighter disks. An unbiased census is highly desirable,
but not yet available (Andrews, 2020).
Besides observations and classification, the interpretation of substructures is another relatively
new challenge. Interestingly, most of the observed substructures can be interpreted as a sign
of the presence of embedded planets in the disk. However, other processes have been proposed
which do not include planets. We will discuss possible explanations from a theory point of view
in Sec. 4.6.
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Figure 2.6: Overview of ALMA continuum emission observations as part of the Disk Substruc-
tures at High Angular Resolution Project (DSHARP). Substructures are ubiquitous. The beam
size is shown in the lower-left corner. The bar in the lower-right corner represents a distance of
10 au. (image credit: Andrews et al., 2018b)
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2.3 Exoplanets

In the previous sections, we discussed observations of young stellar objects and protoplanetary
disks. While protoplanetary disks are the birthplaces of planets and thus provide the initial and
boundary conditions for planet formation, the diverse population of mature planets represents
the outcome. A complete theory of planet formation must thus be consistent with both. In this
section, we will focus on the observational constraints gained from the planet population outside
the Solar System, i.e., from exoplanets. We first introduce the typical classification and briefly
review the basic concepts behind the detection of exoplanets in Sec. 2.3.1. In Sec. 2.3.2, we then
provide an overview of a number of trends that can be inferred from the exoplanet population
as a whole.

2.3.1 Classification and Detection

When constraining planet formation theories, of course, the planets of the Solar System must
also be considered. However, we must keep in mind that, even though our Solar System provides
very detailed insights, it is not necessarily representative of the planet formation process and
only constitutes one specific outcome around one particular star. We will specifically discuss
Solar System constraints in Sec. 2.4.
Planets outside the Solar System had long been theorized but had not been observationally
confirmed until 1993 (Wolszczan & Frail, 1992), mainly due to technical limitations. A specific
detection method had already been proposed in 1952 (Struve, 1952). Even though the field of
exoplanet observations is relatively young, large-scale observational campaigns carried out in the
last three decades have been incredibly productive at detecting exoplanets. As of March 2023,
5076 exoplanets have been confirmed2.
It is now common practice to classify these exoplanets based on their masses. The upper end of
the mass scale is occupied by giant planets, with an upper limit at 13 Jupiter masses (beyond
this limit, objects are considered brown dwarfs). There exist two subtypes of giant planets,
which are distinguished based on the composition of their atmospheres. The thick atmospheres
of gas giant planets consist of hydrogen and helium, similar to the atmospheres of Jupiter and
Saturn. On the other hand, the atmospheres of ice giant planets are mainly composed of elements
heavier than hydrogen and helium, such as oxygen, carbon, nitrogen, and sulfur. In the Solar
System, Uranus and Neptune are considered ice giants. An exoplanet with mass below Uranus
(0.046 MJ

3, 14.5 M‘
4) and Neptune (0.054 MJ , 17.1 M‘), but above Earth is either called a

sub-Neptune or a super-Earth. While the two types are not strictly distinguished by mass, a
sub-Neptune is generally larger than a super-Earth, with the border commonly drawn at around
1.75 Earth radii. Correspondingly, sub-Earths are exoplanets less massive than Earth. Below
that, the lower end of the planetary mass spectrum is not well-defined.
Sometimes, exoplanet nomenclature is additionally based on other characteristics, such as orbital
characteristics. For example, a hot Jupiter is an exoplanet class with a mass similar to Jupiter,
but with a smaller orbital semi-major axis (À 0.5 au, compared to 5.2 au in the case of Jupiter).
Hot Jupiters derive their name from their hot atmospheres, which they have obtained as a result
of their proximity to the star.
There are too many detection methods to comprehensively review within the framework of this
thesis. Some methods are also more theoretical than practical. Below, we review only the basics
of the four most productive methods:

• Radial Velocity. The radial velocity method is an indirect method that measures the
radial velocity variations of a star caused by the gravitational pull of an orbiting planet.

2According to exoplanet.eu
3Jupiter mass, 1 MJ = 1.898 ˆ 1027 kg
4Earth mass, 1 M‘ = 5.972 ˆ 1024 kg

exoplanet.eu
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This method favors the detection of massive planets on small orbits. It can constrain both
the mass and orbital period of an exoplanet. But, it must be combined with other methods
to infer additional planetary properties. Most of the early detections were made using this
method, including the detection of the first exoplanet around a solar-type star (Mayor &
Queloz, 1995).

• (Primary) Transit Photometry. Measures a dip in the brightness of a star when a
planet passes in between the star and the observer. The method can directly constrain the
orbital period, size, and inclination of an exoplanet. Additional data or models must be
used to infer the mass or other characteristics. The transit method allows many stars to
be surveyed at once. Notably, the Kepler space telescope has contributed more than 2600
detections using the transit method on its ten-year mission (Narang et al., 2018).

• Direct Imaging. As the name suggests, this method detects exoplanets by directly
observing their infrared emission (see e.g. Bowler, 2016, for a review). This approach is
challenging because of the brightness contrast between the faint planet and its nearby host
star. Thus, coronagraphs are often used as a helpful tool to block parts of the radiation
of the star. The first directly imaged planets were reported in 2008 (Kalas et al., 2008;
Marois et al., 2008). This method is particularly sensitive towards massive (ą 1MJup)
planets at large orbital distances Á 10 au. It is thus complementary to the previously
mentioned methods.

• Gravitational Microlensing. This method is another indirect method and uses concepts
of general relativity, specifically, the fact that light from a background star gets warped
and bent by the mass of a planet passing in front of it. The great strength of this method
lies in its ability to detect low-mass planets. Furthermore, it is currently the only method
capable of detecting ice giant planets until thirty-meter-class telescopes become available
in a few years (Kane, 2011).

It is important to keep in mind that the most productive detection methods (radial velocity
and transit) are biased toward detecting large/massive planets at short distances from their
star. In Figure 2.7, we plot the mass of 2230 exoplanets as a function of their semi-major axis
(only the exoplanets with a known mass and semi-major axis are shown). The exoplanets are
color-coded based on their detection method. In Figure 2.7, it is apparent that most planets
cluster towards the upper left corner of the plot. Even though this could in fact be a real feature,
observational bias must be accounted for when analyzing the data. Furthermore, because every
detection method has a distinct operational window within the mass-semi-major-axis space,
several methods must be combined to generate a complete picture of the exoplanet population.
Figure 2.7 also suggests that gas giants (Á 0.1MJ) cluster at two distinct locations. There is a
population of hot Jupiters at small orbital distances (ă 0.1 au) and a population of cold Jupiters
that cluster between „ 1 and 5 au. Interestingly, our Jupiter lies just at the edge of the latter
cluster, while Saturn falls into a relatively empty region of the plot. The ice giants Uranus and
Neptune also fall within an empty region of the plot. In principle, this can be interpreted as
a result of the uniqueness of the Solar System, but it is more likely that Solar System analogs
are outside the detection limits of even the most advanced observational capabilities. This
also explains the lack of planets towards the bottom of Figure 2.7. This region is presumably
strongly impacted by current detection limits. For example, exoplanet analogs of Mercury and
Mars currently lie beyond these limits.
Despite the large number of observed exoplanets, only a handful of young exoplanets (ă 10 Myr)
have been detected. The prime example of a system containing young exoplanets is the system
PDS 70, which is „ 5.4 Myr old, with its planets PDS 70 b and c (Müller et al., 2018; Keppler
et al., 2018). Such young exoplanets can provide direct observational evidence of the planet
formation process and put constraints on the planet formation timescales. Unfortunately, they
are extremely difficult to observe.



2.3 Exoplanets 17

10−2 10−1 100 101 102 103 104

Semi-major Axis (au)

10−4

10−3

10−2

10−1

100

101

P
la

n
et

M
as

s
(M

J
)

Me

VE

M

J

S

U N

2230/5076 Exoplanets

Primary Transit (1058)
Radial Velocity (879)
Imaging (43)
Microlensing (193)
Other (57)

Figure 2.7: Planet mass as a function of the semi-major axis of 2230 exoplanets with known mass
and semi-major axis out of 5076 confirmed exoplanets as of March 2023. The different colors
indicate different detection methods; transit (blue), radial velocity (orange), direct imaging
(green), and microlensing (red). The dashed contours outline the 68 % confidence regions of the
corresponding kernel density estimates. The letters indicate the planets of the Solar System. In
the legend, the numbers in brackets indicate the number of plotted planets for each detection
method. The exoplanets not plotted have a yet unknown mass and/or semi-major axis. Data
source: exoplanet.eu

2.3.2 Demographics

The large number of detected exoplanets has created the possibility for statistical analysis of
the exoplanet population as a whole, which is called exoplanet demographics. Ultimately, the
goal of exoplanet demographics is to find the distribution function of exoplanets as a function
of all the parameters that impact planet formation. These parameters can include but are not
limited to, e.g., planet mass, planet radius, orbital properties, properties of the host star (e.g.,
temperature, luminosity, metallicity), or properties of the galactic environment (see e.g. Gaudi
et al., 2021, for a review on the challenges of exoplanet demograpics). The distribution function
then serves as the ground truth that planet formation theories must reproduce. By comparing
the exoplanet distribution to the prediction of current planet formation theory, we can both test
and refine the theory (see e.g. the review by Dra̧żkowska et al., 2022). Even though we are still
a long way from finding a complete distribution, a few trends have emerged.
Based on statistics gathered from the Kepler data, it was concluded that on average every star
in the galaxy hosts one or more planets at an orbital distance between 0.5 and 10 au (Cassan
et al., 2012). That does not mean that every star has indeed a planet. In fact, only 50-60 % of
stars are estimated to host at least one planet (Mulders, 2018; He et al., 2019, 2021), pointing
to the conclusion that multi-planet systems are common.
There are a number of peculiarities in the observed exoplanet population. For example, there

exoplanet.eu
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seems to be a bimodality in the radius distribution between super-Earths and sub-Neptunes
(Fulton et al., 2017; Owen & Wu, 2017). The so-called Fulton gap is located roughly between
1.5 and 2 Earth radii. Moreover, giant planets are more frequently found around metal-rich and
more massive stars, whereas, low-mass planets are more frequent around low-mass stars (Santos
et al., 2004; Fischer & Valenti, 2005; Fulton et al., 2021), suggesting that stellar metallicity is a
key constraint for the planet formation process.
Among all the types of exoplanets, super-Earths and sub-Neptunes are the most frequent in the
galaxy (Fressin et al., 2013; Petigura et al., 2013). Interestingly, these classes do not exist in
the Solar System. In this context, it is also important to distinguish between the observational
detection frequency, which is intrinsically biased, and the physical occurrence rate. The latter
denotes the average number of planets per star after bias corrections. Planets smaller than
Neptune have an estimated occurrence rate in the range 140-200 % for sun-like stars (Mulders,
2018; Kunimoto & Matthews, 2020). Overall, smaller planets are more common than larger
planets, and the occurrence rate falls off rapidly with increasing planetary size beyond about
three Earth radii (Youdin, 2011b; Howard et al., 2012; Mulders et al., 2015). Giant planets are
found only around about 10-20 % of stars (Cumming et al., 2008; Mayor et al., 2011; Petigura
et al., 2018), mostly at orbital distances beyond 1 au (Fulton et al., 2021). Even though hot
Jupiters have been detected frequently in transit surveys (in Figure 2.6 they appear roughly
as numerous as cold Jupiters), they are expected only to represent 0.5-1 % of the giant planet
population (Wright et al., 2012; Howard et al., 2012) and are clearly overrepresented in Figure
2.6. It is estimated that giant planets are most common around 1-10 au (Fulton et al., 2021)
and become increasingly rare beyond 10 au (Vigan et al., 2021). Fulton et al. (2021) estimate
an occurrence rate of giant planets (ą 0.1MJup) at orbital distances between 0.3 and 30 au of
34 %.
After having discussed the exoplanet population as a whole, we consider the Solar System as a
specific outcome of planet formation in the next section.

2.4 Solar System Constraints

Compared to the Solar System, our knowledge of individual exoplanetary systems is meager. In
many cases, only a few orbital properties of the planets are known, and the power of exoplanet
science is more statistical in nature originating from the large number and diversity of known
systems as discussed in Sec. 2.3.2. Constraints on the theory of planet formation from the Solar
System are much more detailed. Space missions to all the planets of the Solar System have
provided detailed information on the surface, and sometimes also on the interior structure, of
the planets, satellites, and minor bodies in the Solar System.
In total, the Solar System has eight planets, two gas giants (Jupiter and Saturn), two ice giants
(Uranus and Neptune), and four terrestrial planets with a rocky surface (Mars, Earth, Venus,
and Mercury). Besides, there are a number of dwarf planets like Pluto, Eris, Haumea, and
others. The list of dwarf planets will likely grow due to new discoveries in the future. The total
mass of the planets is almost negligible compared to the mass of the Sun and only contributes
about 0.13 % to the total mass of the Solar System.

2.4.1 Minimum Mass Solar Nebula

Our knowledge about the disk from which the Solar System’s planets formed is limited. However,
from the mass and composition of the planets, a lower mass limit of the protosolar disk can be
derived. This limit is called the Minimum Mass Solar Nebula (MMSN) (Weidenschilling, 1977b)
and provides an explicit gas surface density profile. The most common profile is provided by
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Hayashi (1981):
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Integrating the above expression to 30 au, i.e., the orbit of Neptune, gives a total mass of 0.01Md.
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The discontinuity at 2.7 au is due to the presence of icy material beyond the water snow line
(the snow line is the location beyond which water vapor freezes out onto dust grains). Even
though the Minimum Mass Solar Nebula has been widely used in modeling the protosolar disk,
it should be regarded only as an order of magnitude guide that provides an approximate lower
limit for the amount of mass that was available to form the Solar System planets. As we will
discuss in chapters 3 and 4, both the gas and solids distribution are likely to have evolved over
time.

2.4.2 Minor Bodies in the Solar System

In addition to the planets, the Solar System contains a wealth of minor bodies: asteroids, comets,
and Kuiper belt objects. The total mass of these objects is small, e.g., the combined mass of
Kuiper belt objects on the order of 0.1 M‘ (Chiang et al., 2007). However, their distribution
provides important insights into the early history of the Solar System. An interesting property is
that the Solar System is, in fact, dynamically full, which means that most locations where small
bodies could orbit stably for billions of years are populated (Armitage, 2010). Much of what
we know about the formation of planets relies on theories aiming to reproduce the distribution
of large and small bodies in the Solar System. A review of the dynamical history of the Solar
System is beyond the scope of this thesis, and we refer to Chambers (2004) and Raymond et al.
(2014) for a review. In chapter 4, we summarize the current understanding of planet formation
in general.
Besides physical properties, much of what we know about the early history of the Solar System
comes from studying the chemical nature of Solar System objects. We thus focus on chemical
and compositional constraints in the remaining sections of this chapter.

2.4.3 Meteorites and Astrochemistry

The Solar System uniquely provides the opportunity for studying relatively primordial material
in laboratories in the form of meteorites. Meteorites are rocks that have fallen to the surface of
Earth from outer space. The most primitive meteorites, called chondrites, originate in asteroids
or comets that never became hot enough to melt and are thus undifferentiated. They preserve
the state they obtained during their formation and allow insights into the earliest history of the
Solar System.
Most meteorites contain spherical inclusions, so-called chondrules of about 1 mm in size. The
composition of chondrules suggests that they are made of primitive dust that was strongly heated
above its melting temperature within the protosolar disk, and then rapidly cooled (Scott & Krot,
2014). Some theories predict chondrules to have formed in situ, which requires the thermal pro-
cessing of material over large regions of the protosolar disk. Possible sources of such heating
are hydrodynamic shocks or collisions. Alternatively, chondrules might have been heated very
close to the young Sun and then transported outward to be incorporated into the parent bodies
of meteorites. Additionally, there is evidence of a second origin of chondrules as a result of
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planetary collisions, i.e., much later in time when the disk has already dissipated (Krot et al.,
2005).
Overall, theories on the exact origin of chondrules and the nature of the heating events respon-
sible for their formation are plentiful, but none of them is yet fully satisfying (e.g. Jones et al.,
2000; Ciesla, 2005; Scott, 2007).
Meteorites also contain calcium aluminium rich inclusions (CAIs) which are very refractory
compounds, similar in size to chondrules and with an equally elusive formation history. Inter-
estingly, the ages of CAIs can be calculated from the abundance of lead isotopes formed by the
decay of long-lived uranium isotopes. According to these isotopes, CAIs are the oldest Solar
System materials we have found, thus, their age is considered synonymous with the age of the
Solar System as a whole which is estimated to be 4567.3 ˘ 0.16 Myr (Connelly et al., 2017).
Connelly et al. (2017) predict that chondrules formed simultaneously with CAIs and then con-
tinued to form for at least „ 4 Myr, a time when the first planetesimals and the parent bodies of
meteorites are expected to have formed (see Sec. 4.3 for a discussion on the formation of plan-
etesimals). Overall, the timescale constraints for the protosolar disk coming from the analysis
of meteorites are in good agreement with the observed lifetimes of protoplanetary disks.
Unlike chondrites, terrestrial planets are differentiated bodies with dense iron-rich cores and
low-density silicate-rich mantles. Specifically, Earth’s mantle is highly depleted in siderophile
(iron-loving) elements compared to silicates. Interestingly, the rocky objects in the Solar System
seem to be made up of a different mixture of major rock-forming elements (Drake & Righter,
2002) with a clear correlation to their distance from the Sun (Gradie & Tedesco, 1982), which
hints at a heterogeneous presolar disk. We will discuss these findings in more detail for the
specific example of carbonaceous material in sections 2.4.4 and 2.4.5. These two sections also
serve as the foundation for the study on refractory carbon in the Solar System in Chapter 6.

2.4.4 Case Study 1: Refractory Carbonaceous Material

The rocky bodies in the Solar System, i.e., rocky planets, cores of gas giant planets, and small
bodies, have formed from solid material inherited from the interstellar medium (ISM). This
material had been delivered to the protosolar disk during the infall process in the early phase of
star and disk formation before it was available to be incorporated into the rocky Solar System
objects and their parent bodies. Therefore, the composition of rocky bodies in the Solar System
today is linked to the composition of the refractory material available during their formation and
the physical/chemical alteration processes which have acted on the bodies since their formation.
Without any processing, the composition of the rocky bodies in the Solar System should be
identical to the composition of the refractory material present in the ISM. Focusing specifically
on carbon, we expect about 50 % of the carbon in the ISM to be bound in solid form, i.e.,
dust, and thus to be potentially refractory (Zubko et al., 2004). Relative to silicon, the solid
component of the ISM has a carbon-to-silicon elemental abundance ratio of C/Si „ 6 (Bergin
et al., 2015). However, the primary form and morphology of the solid carbonaceous material
remain uncertain. Suggested components include amorphous carbon or hydrocarbon grains
and/or aromatic and aliphatic compounds. Gail & Trieloff (2017) summarized the available
information on the interstellar carbonaceous material and constructed a representative model
which consists of 60 % organic material containing large amounts of H, O, and N atoms, 10 % of
pure carbon dust in amorphous form, 20 % of more moderately volatile materials which include
aromatic and aliphatic compounds and 10 % other components.
The solid interstellar carbonaceous material which has not been incorporated into Solar System
bodies after the infall onto the early solar disk has likely been accreted by the Sun. This is also
the case for the volatile components, which have not been accreted by gas-giant planets or have
not been lost due to dissipation. The solar photosphere shows a comparable carbon-to-silicon
abundance ratio to that of the ISM, with a value of C/Si „ 8 (Bergin et al., 2015; Grevesse
et al., 2010). The similarity to the value in the ISM suggests that the reported C/Si ratio is



2.4 Solar System Constraints 21

100 101 102

r (AU)

10−5

10−4

10−3

10−2

10−1

100

ca
rb

on
fr

ac
tio

n
f c

Sun

BSE

bulk Earth

carbonaceous chondrites

ordinary chondrites
enstatite chondrites.

Halley67P ISM dust
ISM gas

Figure 2.8: Carbon abundance fc, i.e., the mass fraction of refractory carbon, in some Solar Sys-
tem bodies and their heliocentric distance. In horizontal axes, the width of the boxes represents
the expected formation regions of individual objects. For chondrites, the vertical height of the
boxes represents the spread in measured values within individual classes. For the other objects,
the vertical height represents uncertainties in the expected carbon fraction. For bulk Earth, we
show estimates based on detailed geochemical modeling in dark gray and possible upper bounds
in light gray. Further, we show estimates for bulk silicate Earth (BSE), i.e., Earth’s mantle
and crust without the core, and two comets, 67P/Churyumov-Gerasimenko and 1P/Halley. For
comparison, values of the Sun and the ISM are added. See section 2.4.5 for further explanations.

somewhat universal in the solar neighborhood, and thus also in the solid material that was
available at the beginning of planet/planetesimal formation in the Solar System. Therefore, one
would expect to find all the components which are at least moderately refractory in planetesimals
and subsequently also in the rocky components of the Solar System, except in regions where high
temperatures or radiation lead to the destruction of the refractory compounds. This is typically
only the case in the inner disk region (À 0.5 au Alessio & Woolum, 2005) or in the directly
illuminated disk atmosphere. However, measurements of the carbon abundance in rocky Solar
System objects reveal a significant depletion in carbon compared to the solid components in the
ISM. The carbon content in the bulk silicate Earth (BSE), that is the Earth’s mantle and crust
without the core, is with a C/Si ratio of 1.1 ¨10´3 more than three orders of magnitude depleted
compared to ISM and solar values (Bergin et al., 2015). Even if one considers additional carbon
to be incorporated in Earth’s core, the entire planet is depleted in carbon by several orders
of magnitude (Allegre et al., 2001; Li et al., 2021). There is also evidence that ISM material
has survived unprocessed to be incorporated into meteorites originating in the asteroid belt
(Alexander et al., 2017). However, the amount of refractory carbon relative to silicon in these
meteorites is also decreased by 1–2 orders of magnitude compared to what is available in the
ISM. This is the case even in the least processed and most primitive meteorites, the carbonaceous
chondrites (Geiss, 1987; Bergin et al., 2015). Beyond the asteroid belt, where comets are expected
to have formed, the C/Si ratio is comparable to that in the ISM. There is a clear radial gradient
in the Solar System, with the inner Solar System being depleted in refractory carbon relative to
silicon (see e.g., Figure 2 in Bergin et al. (2015) or Fig. 2.8 in this work).
This trend does not only exist in the Solar System but is also observed in systems of polluted
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white dwarfs. Analysis of the spectra of white dwarfs gives insight into elemental abundances of
their atmosphere, and due to the strong gravity, heavy elements are not expected to be present
there. Therefore, the observed traces of heavy elements in the atmosphere can be explained
by tidally disrupted, carbon-depleted rocky objects that are accreted by the star (Jura, 2006).
Based on spectral analysis, Xu et al. (2014) report the elemental composition of extrasolar
rocky planetesimals, based on traces in the atmospheres of polluted white dwarfs, to resemble,
to zeroth order, the composition of bulk Earth (also see section 2.4.5).
In a more extended study, Xu et al. (2019) confirm their previous results and report the detailed
elemental composition of 19 polluted white dwarf atmospheres and a carbon mass fraction in the
range between „ 3 ¨10´4 and „ 10´1 in their samples. Overall, this points to the conclusion that
the mechanism, responsible for refractory carbon destruction, might be universal and not unique
to the Solar System. Furthermore, the depletion mechanism must be active before planetesimal
formation or the formation of the parent bodies of current Solar System objects, to explain the
observed carbon depletion. It is likely that this mechanism is either a thermally-induced (e.g.,
pyrolysis, oxidation, evaporation/sublimation) or a photo-induced (e.g., photochemical) process
(or a combination of both). Both options have been studied extensively.
Depletion via pyrolysis (thermal decomposition without oxidation) and oxidation has recently
been studied by Gail & Trieloff (2017) who studied refractory carbon destruction by short-period
flash heating events. Li et al. (2021) suggest sublimation to be responsible for the observed
carbon depletion. As for the photo-induced mechanisms, Lee et al. (2010) studied the erosion
of carbon grains via hot oxygen atoms in the UV-illuminated region of the early solar disk.
Refractory carbon aggregates are also turned into more volatile compounds if they react with
oxygen-bearing species, such as OH or free atomic O (Finocchi et al., 1997; Gail, 2001; Wehrstedt
& Gail, 2002). Siebenmorgen & Heymann (2012) and Siebenmorgen & Krügel (2010) studied
the destruction of polycyclic aromatic hydrocarbons (PAHs) by X-ray and extreme ultraviolet
(EUV) photons. Additionally, refractory carbon grains are directly photochemically destroyed
by FUV photons via photolysis (Alata et al., 2014, 2015; Anderson et al., 2017).
While early studies had pointed to the conclusion that photo-induced processes can explain the
observed carbon deficiencies in the Solar System, Klarmann et al. (2018) found that radial and
vertical transport of carbon grains in the disk constitutes an obstacle to photo-induced refractory
carbon depletion when explaining Solar System abundances.

2.4.5 Case Study 2: Carbon on Earth

The carbon content in the bulk silicate Earth (BSE), that is Earth’s mantle and crust without
the core, is more than three orders of magnitude depleted compared to ISM and solar values
(see compilations in e.g. Lee et al., 2010; Bergin et al., 2015). The mass fraction of carbon in
the BSE is estimated to be p1.4˘ 0.4q ¨ 10´4 (Hirschmann, 2018), but the carbon content in the
core is not known exactly. We summarize estimates for Earth in Table 2.1.
Earth’s core is less dense than pure iron, thus, it must contain lighter elements. If the density
difference is fully compensated with carbon alone, Li et al. (2021) estimate the carbon mass
fraction in the core to be less than 5.0 %. However, this estimate is very generous as the
core contains significant amounts of other lighter elements (e.g., sulfur, silicon, oxygen). More
realistic estimates yield a carbon mass fraction of „ 0.5 ´ 1 % (e.g. Allegre et al., 2001; Wood
et al., 2013).
For bulk Earth, i.e., including the core, Allegre et al. (2001) arrive at a carbon mass fraction of
0.17 % up to 0.39 %. Li et al. (2021) argue for a more realistic upper bound of p0.4 ˘ 0.2q %
by mass for bulk Earth. The upper bound of Li et al. (2021) is higher than, and thus consistent
with, geochemical estimates of 0.053˘0.021 % by mass (Marty, 2012) and the results of Fischer
et al. (2020) who estimate a range of 0.037-0.074 % by mass for the carbon mass fraction of bulk
Earth. On the other hand, the mass fraction of silicon in the BSE is about 21 % (Li et al., 2021).
Considering the BSE carbon mass fraction of 0.014 % quoted above, this value is in agreement
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with Bergin et al. (2015) who estimate a C/Si atomic ratio in the BSE of p0.11 ˘ 0.04q atomic
percent.
Silicon is less abundant in Earth’s core than in the mantle and the crust. Wade & Wood (2005)
estimate a mass fraction of 5-7 %. Combining the estimates of Li et al. (2021) and Wade & Wood
(2005), we estimate the silicon mass fraction of the bulk Earth at 15.9 ´ 16.5 %. This result
is also in rough agreement with Allegre et al. (2001) who estimate the bulk Earth silicon mass
fraction as 17.1 ˘ 0.1 %. We use the former range and the carbon mass fraction from Li et al.
(2021) to calculate an upper bound for the C/Si atomic ratio in the bulk Earth of 5.7 ´ 5.9 %.
This value is more than 50 times larger compared to the BSE because of the large amounts of
carbon which are possibly present in Earth’s core. We also calculate the C/Si atomic ratio in the
bulk Earth using the lower estimate of the carbon mass fraction of Fischer et al. (2020) which
yields a range of 0.53 ´ 1.1 atomic percent. This value is only five to ten times larger than in
the BSE. These results are summarized in Table 2.1.
Overall, even in the most optimistic case, bulk Earth is depleted in carbon by almost two orders
of magnitude with respect to silicates, compared to the ISM. Combined with estimates on
chondrites and comets (see Fig. 2.8), there exists a clear trend of decreasing carbon abundance
towards the inner region of the Solar System. In Chapter 6, we will provide a possible explanation
for this trend.

Table 2.1: Overview of the carbon and silicon abundances on Earth, as described in section
2.4.5. Listed are literature values for the bulk silicate Earth (BSE), Earth’s core and bulk Earth.
The last column lists the carbon fraction fc, the fundamental quantity which we evolved in this
work.

C (wt%) Si (wt%) C/Si (at.%) fc
BSE 0.014 ˘ 0.004a 21b 0.11 ˘ 0.04c p8 ˘ 1q ¨ 10´5

Earth’s core „ 0.5 ´ 1d 5 ´ 7e 16.7 ´ 23.4 p1.1 ´ 1.6q ¨ 10´2

Bulk Earth ă 0.4 ˘ 0.2b 15.9 ´ 16.5 ă p5.7 ´ 5.9q ă p4.0 ´ 4.1q ¨ 10´3

0.037 ´ 0.074f 0.53 ´ 1.1 p3.7 ´ 7.7q ¨ 10´4

Sources: aHirschmann (2018), bLi et al. (2021), cBergin et al. (2015), dWade & Wood (2005),
eWood et al. (2013), fFischer et al. (2020)
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Chapter 3

Protoplanetary Disk Theory

After the previous chapter focused on observational constraints, this chapter summarizes the
theoretical concepts and the physics of protoplanetary disks. Classical protoplanetary disk
theory, which can be traced back to the early 1970s (e.g. Safronov, 1972), mainly focuses on
the description of rotationally supported disks surrounding protostars, which have formed as a
result of angular momentum conservation in a collapsing molecular cloud. Many of the concepts
summarized here are not only applicable to protoplanetary disks but have been derived to
describe accretion disks in general (for a review see e.g. Frank et al., 2002).
It is not a simple task to derive explicit analytical descriptions of protoplanetary disks. General
equilibrium solutions require solving for a steady state of the coupled magnetohydrodynamic
equations and Poisson’s equation. And even if such a solution exists, its dynamical stability
is not guaranteed (Papaloizou & Pringle, 1984). However, some explicit analytical descriptions
exist for simplified cases of axisymmetric, unmagnetized, inviscid, and low-mass disks, for which
the central star dominates the gravitational field everywhere in the disk. These simple disks are
well described with the time-dependent Euler equations (see e.g. Shu, 1992), which in Cartesian
coordinates take the form

Bρg
Bt

`
B

Bxj

`

ρguj
˘

“ 0 (3.1)

B

Bt
pρguiq `

B

Bxj

`

ρguiuj
˘

`
B

Bxi
p “ ρggi (3.2)

where we have used the Einstein summation convention. Eq. 3.1 is the continuity equation that
ensures the conservation of mass and describes the time evolution of the gas volume density ρg.
The quantity ui is the gas velocity along dimension i “ 1, 2, 3. Eq. 3.2 describes the dynamics
of the gas momentum per unit volume ρgui. While the first and second terms in Eq. 3.2 account
for the local change and advection of momentum respectively, the third and fourth terms are
contributions by the gradient pressure force and gravitational force respectively. Specifically,
p is the gas thermal pressure and gi is the gravitational acceleration along dimension i. In a
low-mass disk, the gravitational acceleration is approximately spherically symmetric and points
towards the central star with a magnitude g = GM˚{r2, where G is the gravitational constant,
M˚ is the mass of the star, and r is the distance to the star.
The system of two equations (Eqs. 3.1 and 3.2) is not yet closed (there are more unknowns than
equations). To close the system, one must define an equation of state and, depending on the
functional form of the equation of state, introduce an additional equation that describes the
dynamics of the internal energy of the gas. For applications in protoplanetary disks, a simple,
locally isothermal equation of state is often assumed, which eliminates the need for an additional
internal energy equation. The locally isothermal equation of state reads

p “ ρgc
2
s (3.3)
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where cs is the isothermal speed of sound, which is considered a constant model parameter. The
sound speed is related to the gas temperature T as

cs “

d

kBT

mµ
(3.4)

where kB is the Boltzmann constant and mµ is the mean mass of a gas molecule. Physically, a
locally isothermal equation of state assumes the gas temperature is constant at all times, which
is equivalent to an infinitely small relaxation time towards the local thermodynamic equilibrium
temperature. In many cases, this is a reasonable approximation in protoplanetary disks.
After the pressure term in Eq. 3.2 is replaced with Eq. 3.3, the system of two equations is closed
and can be solved.

3.1 Hydrostatic Equilibrium Solution

Equilibrium solutions to the Euler equations (Eqs. 3.1 and 3.2) are found by requiring the
time derivatives to vanish. When considering the static vertical equilibrium structure of a
protoplanetary disk, one even solves for a static solution which requires the velocities and time
derivatives to vanish. A static solution trivially satisfies the continuity equation (Eq. 3.1).
Solving for a static solution in the momentum equation (Eq. 3.2), the first two terms on the
l.h.s. vanish, and we are left with the terms accounting for the gradient pressure force and the
gravitational force. In a vertical static equilibrium, the latter two must balance exactly in the
vertical direction (along the z-axis):

Bp

Bz
“ ρggz (3.5)

We restrict our analysis to regions close to the disk midplane where the z-component of the
stellar gravitational field can be approximated as

gz “ ´Ω2
Kz (3.6)

where z is the distance to the disk midplane and ΩK is the Keplerian angular velocity which is
defined as ΩK “

a

GM˚{r3.
Assuming the sound speed is vertically constant, Eq. 3.5 simplifies and describes the vertical gas
density structure:

c2s
Bρg
Bz

“ ´Ω2
Kz (3.7)

Integration of Eq. 3.7 leads to the gas volume density as a function of the distance to the disk
midplane

ρg “ ρg,0 exp

ˆ

´
z2

2h2g

˙

(3.8)

where ρg,0 is a constant, and we have defined the vertical gas pressure scale height hg as the
ratio between the sound speed and the Keplerian angular velocity

hg ”
cs
ΩK

. (3.9)

The surface density Σg is then defined as the integral of the volume density along the z-axis

Σg “

ż `8

´8

ρgdz (3.10)
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and is related to the constant ρg,0 in Eq. 3.8 as

ρg,0 “
Σg

?
2πhg

(3.11)

In contrast to the vertical profile, the radial gas density profile can only be derived by first
identifying the nature of radial angular momentum transport or from observational constraints.
However, given a temperature and density structure, the orbital velocity uϕ can be determined.
The velocity profile can be derived from the radial component of the gas momentum equation
(Eq. 3.2) in cylindrical coordinates:

B

Bt
pρgurq ` ∇ ¨ pρguruq “ ´

B

Br
p `

1

r
ρgu

2
ϕ ´ ρgΩ

2
Kr (3.12)

where u “ urer ` uϕeϕ ` uzez is the three-dimensional velocity vector, and we have used the
Del operator, which in cylindrical coordinates reads

∇ “ er
B

Br
` eϕ

1

r

B

Bϕ
` ez

B

Bz
(3.13)

where ei are the unit vectors along the coordinate axes.
The l.h.s. of Eq. 3.12 contains the terms that model the temporal change in local radial mo-
mentum and advection of radial momentum. The first term on the r.h.s. is a contribution by
the pressure gradient force, and the second term is the centrifugal force arising from the trans-
formation to cylindrical coordinates. The third term on the r.h.s. is the gravitational force in
radial direction.
One typically considers stationary (Bx¨y{Bt “ 0) and axisymmetric (Bx¨y{Bϕ “ 0) solutions to
Eq. 3.12 in vertical and radial hydrostatic equilibrium (uz “ ur “ 0), such that there is no
advection in the radial or vertical directions. The only non-zero velocity component in this
solution is the orbital velocity uϕ. With the aforementioned assumptions, Eq. 3.12 simplifies to

u2ϕ “ Ω2
Kr2 `

r

ρg

Bp

Br
(3.14)

which implies that the orbital velocity uϕ is equal to the Keplerian velocity uK “ ΩKr (hence the
definition of the Keplerian angular velocity ΩK) and modified by the radial pressure gradient.
Technically speaking, the static solution is not fully static but allows for orbital motion along
the azimuthal direction.
In smooth disks, the gas pressure typically decreases with increasing radius, such that the pres-
sure gradient term is negative and the gas orbits with a sub-Keplerian velocity (uϕ ă ΩKr).
When considering solely the flow of gas, this difference is mostly negligible and only becomes
important when also considering the dynamics of solid bodies within the disk (for more details,
see Sec.4.2). The most important insight from this discussion is that a protoplanetary disk in
equilibrium shows differential rotation, i.e., the orbital angular velocity Ω “ uϕ{r changes with
orbital distance r to the central star, which contrasts with, for example, the solid body rotation
of a rigid object.
It is also worth noting that we find the equation for angular momentum ρgr

2Ω in conserva-
tion form by considering the ϕ-component of the momentum equation (Eq. 3.2) in cylindrical
coordinates and multiplying it with radius r:

B

Bt
pρgr

2Ωq ` ∇ ¨ pρgr
2Ωuq “ 0 (3.15)



28 3. Protoplanetary Disk Theory

The above equation implies that angular momentum is conserved globally and, for radially static
and azimuthally symmetric disks, also locally. The latter implies that there is no redistribution
of angular momentum in addition to no redistribution of mass in the static equilibrium solution.
In reality, protoplanetary disks are not static, but because angular momentum transport is a
slow process, the equilibrium solution discussed in this section serves as a good approximation
in many cases.

3.2 Alpha Disk Theory

Astronomical observations show that protoplanetary disks have a limited lifetime of a few mil-
lion years, which is in contradiction with the static disk model discussed in the previous section.
Thus, more realistic models must take into account the temporal evolution of protoplanetary
disks. A popular idea to explain the observed disk lifetimes is to consider the radial accretion
of the disk material onto the newly formed central star. Radial accretion can be regarded as an
extension to the picture of a static disk, which does not allow for radial transport.
Allowing for accretion, protoplanetary disk theory can borrow concepts from general astrophys-
ical accretion disk theory, with its main ideas originating in the pioneering work of Shakura &
Sunyaev (1973). The key concept behind this theory is to have a disk that is somehow turbulent.
The turbulence then drives the redistribution of mass and angular momentum within the disk,
a concept which is known as α-disk theory.
The physical idea behind this is that two neighboring sheets of gas will interact due to the mixing
effects of turbulence. The bi-directional exchange of matter (in radial direction) between two
neighboring sheets in a differentially rotating disk will accelerate the outer sheet and decelerate
the inner sheet, a process that transports angular momentum outwards. At the same time, due
to angular momentum conservation, matter must be transported inwards.
Even though the exact origin or even the existence of such turbulence is still a topic of current
research (see section 3.5 for a discussion), the turbulent α-disk model developed by Shakura &
Sunyaev (1973) has been incredibly successful in advancing protoplanetary disk theory beyond
the static model.
In their seminal work, Shakura & Sunyaev (1973) made the physically reasonable assumption
that, whatever the source of the underlying turbulence is, the r-ϕ-component of the stress ten-
sor σr,ϕ is proportional to the local gas pressure p with a dimensionless proportionality constant
denoted α1 such that σr,ϕ „ ´αp.
Using Eq. 3.3 and Eq. 3.9, the above expression can be rewritten to read σr,ϕ “ ´αρgcshgΩ.
And since in quasi Keplerian rotation the relation rBΩ{Br “ ´3{2Ω holds, the stress can be
written as

σr,ϕ “ ρgνr
BΩ

Br
(3.16)

where a factor 2{3 has been absorbed by the α-parameter, and we have defined an effective
viscosity ν2 called the turbulent viscosity as

ν ” αcshg (3.17)

The quantity ν is called the effective viscosity (sometimes also turbulent viscosity) because
Eq. 3.16 is identical to the r-ϕ-component of the viscous stress tensor in cylindrical coordinates.
Thus, the main takeaway from α-disk theory is that it predicts the turbulent gas in a proto-
planetary disk to behave like a viscous fluid with viscosity parametrized by a dimensionless α

1Note that the symbol ”α” is also used in this thesis to denote the spectral index (see Sec. 2.2.2). However,
the corresponding meaning should be evident from the context.

2The symbol ”ν” is also used in this thesis to denote the frequency (see Sec. 2.2.1). However, the corresponding
meaning should be evident from the context.
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parameter. In the following section, we will discuss how such a viscous disk evolves.

3.3 Viscous Disk Evolution

The classical mathematical framework that describes the evolution of a viscous accretion disk
was first derived by Lynden-Bell & Pringle (1974). In this framework, the viscous stress tensor
σij is added to Eq. 3.2, such that the new momentum equation reads (e.g. Balbus & Papaloizou,
1999)

B

Bt
pρguiq `

B

Bxj

`

ρguiuj ´ σij
˘

`
B

Bxi
p “ ρggi (3.18)

In Cartesian coordinates, the full viscous stress tensor reads (e.g. Shu, 1992)

σij “ ρgν

ˆ

Bui
Bxj

`
Buj
Bxi

´
2

3
δij∇ ¨ u

˙

(3.19)

where δij is the Kronecker delta. The Bui{Bxj term of the viscous stress tensor is called
shear tensor and acts upon velocity gradients.
In an axisymmetric disk, and assuming the orbital velocity is constant in the vertical direction
(which is a valid approximation close to the disk midplane), the only non-zero components of the
viscous stress tensor in Eq. 3.19 are the r-ϕ and ϕ-r-components which arise due to the velocity
shear of the differential rotation in the radial direction of the disk. In cylindrical coordinates,
these components indeed take the form of Eq. 3.16, as expected (e.g. Stoll et al., 2017).
It is now advantageous to transform Eq. 3.18 to cylindrical coordinates. The ϕ-component then
takes the following form (assuming axisymmetry and vertical hydrostatic equilibrium):

B

Bt
pρuϕq `

1

r

B

Br

ˆ

rρguruϕ ´ ρgνr
BΩ

Br

˙

“ ´ρg
uruϕ
r

(3.20)

Note, the pressure gradient and gravitational acceleration vanish from the ϕ-momentum equa-
tion, but a new geometrical source term appears on the r.h.s due to the transformation to
cylindrical coordinates.
When rewriting Eq. 3.20 in terms of angular momentum ρgΩr

2 instead of linear momentum,
the geometric source term disappears. We also integrate the entire equation along the z-axis to
replace the volume density ρg with the surface density Σg to find the equation that describes
the viscous transport of angular momentum per unit surface area:

B

Bt
pΣgr

2Ωq `
1

r

B

Br

ˆ

Σgr
3Ωur ´ Σgνr

3 BΩ

Br

˙

“ 0 (3.21)

The above equation has the form of a conservation law in cylindrical coordinates, indicating
that angular momentum Σgr

2Ω in a viscous disk is globally conserved. We now recognize the
r-ϕ-component from Eq. 3.16 in the transport term inside the brackets of Eq. 3.21, indicating
that this term is indeed responsible for angular momentum transport in the radial direction.
Importantly, in contrast to the static equilibrium solution discussed in Sec. 3.1, a viscous
disk, and specifically Eq. 3.21, allow for a stationary solution with non-vanishing radial velocity
ur ‰ 0, i.e., an accreting disk solution as intended.
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3.3.1 Stationary Viscous Disk Solution

We are now interested in stationary solutions to Eq. 3.21. Assuming quasi-Keplerian rotation,
the radial profile of the orbital angular velocity Ω is known:

Ω «

c

GM˚

r3
(3.22)

Solving for a stationary solution in which the time derivative in Eq. 3.21 vanishes, we find the
radial velocity as

ur “ ´
3

Σgr1{2

B

Br

´

νΣgr
1{2

¯

(3.23)

and the corresponding mass accretion rate 9M ” ´2πrΣgur as

9M “ 6πr1{2 B

Br

´

νΣgr
1{2

¯

. (3.24)

Requiring the mass accretion rate to be constant in space and time ( 9M=constant), it follows
from Eq. 3.24 that νΣg=constant must hold. Plugging this into Eq. 3.23, the radial velocity of
the gas follows:

ur “ ´
3

2

ν

r
(3.25)

From Eq. 3.24, it also follows that the stationary mass accretion rate

9M “ 3πΣgν (3.26)

is directly proportional to the viscosity ν and is thus ultimately parametrized by the Shakura
and Sunyaev α-parameter via Eq. 3.17. Note that in the stationary case, the radial flux of
angular momentum is also constant.
Using typical numbers (r “ 1 au, T “ 300 K, M˚ “ Md, α “ 10´2), Eq. 3.25 predicts a
radial gas velocity of ur “ ´54 cm{s. This is much smaller than the local Keplerian velocity
(uK “ 2.97 ˆ 106 cm{s) or the sound speed (cs “ 1.04 ˆ 105 cm{s).
Similarly, using a typical value for the gas surface density (Σg “ 103 g{cm3), a typical value of

the gas accretion rate is 9M “ 8 ˆ 10´8 Mdyr
´1. Typically, protoplanetary disks have accretion

rates ranging from 10´9 to 10´7 Mdyr
´1 (Alexander et al., 2014).

3.3.2 Surface Density Evolution

A more realistic protoplanetary disk is neither static nor stationary, and its accretion rate will
vary. We thus drop the stationary assumption and use the vertically integrated continuity
equation in cylindrical coordinates

BΣg

Bt
`

1

r

B

Br

`

rΣgur
˘

“ 0 (3.27)

to rewrite Eq. 3.21 and obtain a generalized mass accretion formula for viscous disks (Lynden-
Bell & Pringle, 1974; Balbus & Papaloizou, 1999):

rΣgur “ ´3r1{2 B

Br
pνΣgr

2Ωq (3.28)
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We then plug Eq. 3.28 back into Eq. 3.27 yielding the dynamical equation describing the viscous
evolution of the surface density (Lynden-Bell & Pringle, 1974)

BΣg

Bt
“

3

r

B

Br

ˆ

r1{2 B

Br
pνr1{2Σgq

˙

(3.29)

The above equation is formally a diffusion equation for the surface density Σg in which the
strength of the diffusion is regulated by the viscosity ν. Eq. 3.29 predicts a viscously spreading
disk in which mass is transported inward and angular momentum is transported outward.
For Eq. 3.29 to be applicable, the functional form of the viscosity ν must be defined. Assuming
νprq9rγ , there exists an explicit self-similar solution to Eq. 3.29 (Lynden-Bell & Pringle, 1974)

Σgpr̃, θq “
C

3πν1r̃γ
θ´p5{2´γq{p2´γq exp

ˆ

´
r̃2´γ

θ

˙

(3.30)

where r̃ ” r{r1, ν1 ” νpr1q, θ ” t{ts `1 and ts ” r21{p3p2´γq2ν1q. Figure 3.1 shows the solution
in Eq. 3.30 for θ “ 1, 2, 4, 8. The solution describes a disk with decreasing surface density in
the inner disk due to accretion. At the same time, the radial extent of the disk increases due to
viscous spreading.

Figure 3.1: Self similar solution to the surface density evolution equation (Eq. 3.29). The initial
surface density follows a disk profile Σg9r´1 at small radii before cutting off exponentially
beyond r “ r1. Plotted are the curves described by Eq. 3.30 at times θ “ 1, 2, 4, 8. image credit:
Armitage (2010).

3.4 Temperature Structure

In this section, we briefly summarize a simple description of the equilibrium temperature struc-
ture of a protoplanetary disk. In thermal equilibrium, the disk temperature is set by a balance
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of cooling and heating processes and determines the vertical hydrostatic density structure that
was discussed in Sec. 3.1. There are two main sources of heating in a protoplanetary disk:
Irradiation by the central star and accretion heat. In the absence of heat sources, a disk would
cool down to the equilibrium temperature of the surrounding interstellar space, which can be as
low as 10 K (Schnee et al., 2009).
In this section, we will mainly discuss the temperature of the gas but note that gas opacities in
protoplanetary disks are almost entirely dominated by lines that cover only a small fraction of
the spectrum. Dust opacities on the other hand cover the entire spectrum and therefore trap
radiation much more effectively. Thus, the thermal energy balance is mostly governed by the
dust. In principle, gas and dust temperature can decouple, but in this section, we will assume
that collisions are frequent enough for heat to be efficiently exchanged between dust and gas
such that the gas quickly adjust itself to the dust temperature. Using this assumption, we can
limit ourselves to calculating the dust temperature and simply set the gas temperature equal to
the dust temperature. This is generally a good approximation for dense regions of protoplane-
tary disks. In regions where this approximation breaks down, complex radiative transfer models
must be used to calculate the gas and dust temperatures individually (see e.g. Woitke et al.,
2009), however, this is beyond the scope of this introductory section.
We first consider the process of disk heating by irradiation from the central star. At the rel-
atively short wavelengths where stars emit most of their energy, protoplanetary disks are very
optically thick and stellar photons are absorbed in the surface layers. Thus, a volume element in
the disk can only be penetrated by stellar photons if it has a clear line of sight to the star. Based
on a geometrical argument, it is clear that a disk must be flared for its entire surface to have
a direct line of sight to the star. A flared disk is a disk for which the surface height increases
faster with radius than linear. In other words, hs{r must be an increasing function of radius,
where hs is the height of the absorbing surface. If at radius r the angle between the disk surface
and the path of incoming stellar photons is ϕ, the flux onto the disk surface is approximately

Firr « ϕ
L˚

4πr2
(3.31)

where L˚ is the luminosity of the star. The above equation holds because the flaring angle ϕ is
generally small ϕ » 0.05 (Chiang & Goldreich, 1997).
The rate of heating by stellar irradiation is then

Qirr
` “ ϕ

L˚

2πr2
(3.32)

where the factor two comes from the two sides of the disk.
Assuming the rate of cooling is given by blackbody radiation,

Q´ “ 2σSBT
4
disk (3.33)

where σSB is the Stefan-Boltzmann constant, and exactly balances stellar heating, the disk
temperature profile becomes

T irr
disk “

ˆ

ϕL˚

4πσSB

˙1{4

r´1{2 (3.34)

assuming the flaring index ϕ is constant.
Via Eq. 3.4., Eq. 3.34 also predicts the radial profile of the sound speed cs9r´1{4, and via Eq. 3.9
also the radial profile of the gas scale height hg9r5{4 (assuming the disk temperature is vertically
constant).
In addition to stellar radiation, friction in the form of viscosity can also lead to the production
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of heat. In a viscous disk, the total heating rate per unit area is (e.g. Bitsch et al., 2013)

Qvisc
` “

9

4
ΣgνΩ

2
K (3.35)

We can rewrite this in terms of the accretion rate

Qvisc
` “

3

4π
9MΩ2

K (3.36)

This shows that the amount of heat released is proportional to the amount of matter that is
accreted. Assuming the disk radiates away all the viscous heat via its surface, the heating in
Eq. 3.36 must be balanced by cooling in Eq. 3.33. This gives

T visc
disk “

ˆ

3

8πσSB
9MΩ2

K

˙1{4

(3.37)

In a stationary disk, this profile is with T9r´3{4 steeper compared to the temperature due to
irradiation (Eq. 3.34). Combining the two sources of heating, as Q´ “ Qirr

` ` Qvisc
` , gives the

temperature profile of stationary and irradiated viscous disks:

Tdisk “

ˆ

3

8πσSB
9MΩ2

K `
ϕL˚

4πσSBr2

˙1{4

(3.38)

Since for viscous heating, the disk temperature drops more steeply than for irradiation, the disk
temperature is dominated by viscous heating at small radii, and by irradiation at large radii.

3.5 Protoplanetary Disk Turbulence

The Shakura and Sunayev α-description provides a useful parametrization for protoplanetary
disk viscosity but leaves questions regarding the strength and origin of the underlying turbulence
unanswered.
The strength of disk turbulence can be constrained observationally mainly by three distinct
methods. The most direct approach is measuring the turbulent broadening of molecular emis-
sion lines. Using this method, it was possible for Flaherty et al. (2015, 2017, 2018) and Teague
et al. (2016, 2018b) to constrain the strength of turbulence to α À 10´4 ´ 10´3 in the outer
regions of the disks of TW Hya, HD 163296, MWC 480 and V4046 Sgr. Only in DM Tau,
significantly higher levels of α « 10´1 were observed (Flaherty et al., 2020).
The second approach to constrain the strength of turbulence is via its effect on the diffusion of
dust grains. Measuring the vertical extent of the particle layer in continuum observations, Pinte
et al. (2016) found α « 3 ¨ 10´4 in HL Tau. Focusing instead on diffusion in radial direction in
a number of sources, Dullemond et al. (2018) found α ă 5 ¨ 10´4.
Besides observing turbulent line broadening and grain diffusion, the third approach is to measure
disk spreading as a function of disk age as predicted by the viscous disk evolution (see Sec. 3.3).
Observing CO emissions in Lupus, Trapman et al. (2020) estimate α „ 10´4 ´ 10´3. Explicit
results based on dust continuum disk sizes also exist in the literature, but Rosotti et al. (2019)
point out that current dust continuum observations are not sensitive enough to detect viscous
disk spreading. They state that the outer disk radius in such studies is influenced by opacity
rather than the actual physical disk size.
Altogether, Lesur et al. (2022) interpret the existing measurements of the strength of disk tur-
bulence as being consistent with α „ 10´4. However, they also point out that a certain level
of caution is warranted when interpreting the above results. For example, it is inaccurate to
strictly equate the values of α measured from turbulence broadening and dust diffusion, to the
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value of α inferred from angular momentum transport as done in classical alpha disk theory
(see Sec. 3.2). The two former methods both assume the turbulent alpha parameter to be
proportional to the turbulent velocity dispersion squared α9δu2. However, classical alpha disk
theory defines α as a measure of the efficiency of angular momentum transport and thus should
be proportional to the correlation of radial and azimuthal turbulent velocities α9δurδuϕ (e.g.
Balbus & Hawley, 1998). Thus, the two definitions are only consistent if the turbulent velocity
dispersion squared is equal to the turbulent r-ϕ-velocity correlation, which is not necessarily the
case3. In principle, a disk can be highly turbulent (i.e., have large δu2), while either transporting
angular momentum outward (α ą 0), inward (α ă 0), or not at all (α “ 0). See, e.g., Lesur
et al. (2022) for a more detailed discussion.
More generally, it is worth noting at this point that a viscous theory with a traceless stress
tensor, in the form of Eq. 3.19, does not model a turbulent velocity dispersion and only models
the off-diagonal velocity correlations of the Reynolds stress responsible for angular momentum
transport as a function of the local velocity shear. As a result, depending on the characteristics
of the underlying turbulence, a local viscous theory, as discussed in Sec. 3.3, might not be
appropriate to describe the turbulent stresses present in a disk (Balbus & Papaloizou, 1999). In
Chapter 5, we will continue this discussion and also derive a turbulence model that describes
the on-diagonal components of the Reynolds stress.
Further complications arise with the assessment of the strength of disk turbulence when com-
pared to detailed hydrodynamic disk models. Such models do not seem to be consistent with
the assumption of a globally constant α-parameter. Most recent models predict the strength
of turbulence to change across different vertical layers of a disk (see e.g. the review by Lesur
et al., 2022) and potentially vary in radial direction too (e.g. Kretke & Lin, 2007). Depending
on the nature of the underlying turbulence, the viscous stress might also be highly anisotropic
(Stoll et al., 2017). Hence, these findings point to the conclusion that a single α value is not
sufficient to fully describe disk turbulence.
Despite the α-model clearly having limitations, it retains its popularity because it is effective
without specifying the nature of the underlying turbulence. This is especially important because
possible origins and properties of physical mechanisms leading to disk turbulence are still a topic
of current research.
Supported by the increasing computational capabilities, a growing subfield within the proto-
planetary disk community is concerned with the nature and origin of disk turbulence. In the
remainder of this section, we will summarize a few of the most probable candidates believed to
be responsible for disk turbulence.
Several (magneto) hydrodynamical instabilities exist in protoplanetary disks, which can be po-
tential sources of turbulence. A general distinction is made between turbulence of magnetohy-
drodynamic origin and purely hydrodynamic turbulence. The poster child of the former is the
magnetorotational instability (MRI) (Balbus & Hawley, 1991) which can become active if partly
ionized gas, that is in (quasi) Keplerian rotation, couples to a magnetic field. However, more
recent studies show that in large portions of a typical protoplanetary disk, non-ideal MHD effects
heavily suppress the MRI (e.g. Bai & Stone, 2013; Lesur et al., 2022). Popular alternatives are
purely hydrodynamic instabilities like the vertical shear instability (VSI) (Arlt & Urpin, 2004;
Nelson et al., 2013), the convective overstability (Klahr & Hubbard, 2014; Lyra, 2014) and the
zombie vortex instability (Barranco & Marcus, 2005; Lesur & Latter, 2016). Which of these
mechanisms operate depends on the detailed disk structure.
Interestingly, Barraza-Alfaro et al. (2021) recently argued that a small value of α, as measured by
turbulent line broadening, does not necessarily exclude strong turbulence generated by the VSI.
Because the molecular emission region of 12CO is relatively thin (Paneque-Carreño et al., 2023),

3To account for the inconsistency in the definition of α, we will define a parameter δ in Sec. 5.2.2 to parametrize
the turbulent velocity dispersion δu2 and use α strictly to parametrize the effectiveness of turbulent transport as
introduced in Sec. 3.2.
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observed line broadening is only sensitive to velocity fluctuations on physical scales smaller than
the emission layer. Therefore, the large-scale vertical motions caused by the VSI are not de-
tected. In the study of Barraza-Alfaro et al. (2021), the amplitudes of the large-scale motions are
about one order of magnitude larger than what is predicted by measurements of line broadening.
Lastly, we also want to mention that assuming turbulence is the only mechanism transporting
angular momentum, measured values of α (both observationally and in hydrodynamic simula-
tions), are not necessarily consistent with the observed mass accretion rates of YSOs (Mulders
et al., 2017; Rafikov, 2017). The values of α predicted for hydrodynamic turbulence are generally
too small and consequently not enough angular momentum is transported for turbulent viscosity
to be the sole explanation of the observed mass accretion rates in YSOs (Lesur et al., 2022).
It is thus suggested that other mechanisms (e.g., disk winds) also contribute to the angular
momentum transport in addition to turbulence.
Another argument against the pure viscous disk evolution comes from the observed disk disper-
sal time. The viscous disk evolution model predicts protoplanetary disks to indefinitely expand
and become progressively fainter (Armitage, 2010). However, observations hint at a relatively
short dispersal time of only „ 10 % of the total disk lifetime (Andrews, 2020).
Finally, we want to reiterate the cautionary remark by Lesur et al. (2022) who highlight that the
viscous disk model should not be regarded as a replacement for the direct numerical modeling
of hydrodynamic turbulence and that real protoplanetary disks are essentially inviscid. It is
only due to computational limitations that there is currently no better alternative to the viscous
disk model for large-scale, long-term global simulations of protoplanetary disks. All the caveats
presented in this section must be kept in mind if one is discussing protoplanetary disks within
the framework of α disk theory and viscous disk evolution.
Building upon the contents of this chapter, we will focus on the formation of planets from disk
material in the next chapter.
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Chapter 4

Planet Formation Theory

4.1 Introduction

Planets are made from protoplanetary disk material, and therefore, a newly formed disk with
all its physical and chemical properties, as discussed in Chapter 3, can be regarded as the initial
condition for planet formation. The understanding of planet formation has improved dramat-
ically in recent years and has evolved significantly from classical theories (e.g. Safronov, 1972;
Goldreich & Ward, 1973), also owing to insights gained from observations (see e.g. the review
by Dra̧żkowska et al., 2022). As a result, current planet formation theory has become extremely
complex and, at the same time, is closely interlinked with the similarly complex protoplanetary
disk theory (discussed in Chapter 3). Therefore, in this chapter, we refrain from providing a
comprehensive discussion of the problem and only provide a summary of the key aspects of
planet formation. Wherever possible, we refer to the literature for a more detailed discussion.
In this chapter, we start by providing the theoretical foundations that describe the dynamics of
dust particles in a gaseous environment, in Sec. 4.2. In the subsequent section, we then provide
an overview of the evolution of solids from dust to fully formed planets. Because this growth
process covers size scales across twelve orders of magnitude, it is conceptually useful to divide it
into three main stages: Firstly, in Sec. 4.3 we summarize how dust grains grow to planetesimals,
which are bodies that are massive enough to be gravitationally bound and are between 100 m
and „ 100 km in size (Armitage, 2010). In Sec. 4.4, we then describe the formation of terrestrial
planets from planetesimals, and in Sec. 4.5, we discuss the formation of giant planets. We also
want to highlight the caveat that the theory presented in this chapter is not yet complete and
that the study of planet formation is an active field of research.

4.2 Dust Dynamics

The dust component in protoplanetary disks is particularly relevant for planet formation be-
cause it is the micron-sized grains, inherited from the ISM, that all rocky bodies in planetary
systems grow from. Moreover, dust grains provide the bulk of the opacity, which is relevant for
astronomical observations (Armitage, 2010), and they host chemical surface reactions that can
be important, for example, for the formation of complex molecules (Henning & Semenov, 2013).
Ignoring gravity, dust dynamics is dominated by aerodynamic drag, by which it is coupled to
the motion of the gas. This is in contrast to the dynamics of the gas, which is dominated by
pressure forces. The degree of aerodynamic coupling between dust and gas in protoplanetary
disks is characterized by the stopping time ts, which is the characteristic time in which rel-
ative velocities between dust and gas decay due to drag. Assuming spherical dust grains of
size a and constant solid density ρ‚, the stopping time ts can be expressed as (Whipple, 1972;
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Weidenschilling, 1977a)

ts “

c

π

8

aρ‚

csρg
(4.1)

The strength of the dust-gas coupling increases as the stopping time decreases. Thus, Eq. 4.1
indicates that small dust grains are more tightly coupled than large grains and that the coupling
is stronger in a high-gas-density environment compared to a low-density environment. In the
theoretical limit where ts Ñ 0, dust grains are perfectly coupled to the gas and their motion is
identical to that of the gas. Strictly speaking, Eq. 4.1 is only valid as long as dust grains are
smaller than the mean free path of individual gas molecules. This is generally the case for dust
grains in typical protoplanetary disk environments.
In the protoplanetary disk community, it is customary to define a dimensionless Stokes number
as the stopping time normalized by the Keplerian angular frequency:

St “ tsΩK (4.2)

The force per unit volume exerted by aerodynamic drag acting on dust is proportional to the
relative velocity between dust and gas (vi ´ ui):

fdrag
i “ ´

ρd
ts

pvi ´ uiq (4.3)

Naturally, the gas experiences an equal force in the opposite direction, the so-called back reaction.
However, as long as the local dust density ρd is small compared to the local gas density ρg, the
back reaction can in most cases be neglected. However, the local dust density ρd can increase
with respect to the gas density ρg if specific transport mechanisms lead to the local accumulation
of dust. We will discuss dust transport mechanisms in the following sections.

4.2.1 Radial Drift

Dust grains do not experience the same pressure force as the gas which has important conse-
quences for their radial transport in a protoplanetary disk (Weidenschilling, 1977a; Nakagawa
et al., 1986). In Sec. 3.1 we discussed that due to the radial pressure support, the orbital ve-
locity of the gas is slightly sub-Keplerian. Dust, on the other hand, does not have that pressure
support and, in an unperturbed state, does orbit with Keplerian velocity. The resulting differ-
ence in azimuthal velocity (vϕ ´ uϕ) results in an exchange of angular momentum between the
dust and the gas via the drag force (Eq. 4.3), transporting dust grains in the radial direction.
This phenomenon is called radial drift. Effects of radial drift can most easily be quantified by
rewriting Eq. 3.14 to read

uϕ “ vKp1 ´ ηq1{2 (4.4)

where vK is the Keplerian orbital velocity, and we have defined η “ ´prΩ2
Kρgq´1Bp{Br to

parametrize the deviation of the gas orbital velocity uϕ from Keplerian orbital velocity vK . The
radial velocity of the dust can then be expressed as (see e.g. Takeuchi & Lin, 2002, for a detailed
derivation)

vr “
ur ´ ηStvK
1 ` St2

(4.5)

which for small dust grains (St ! 1) simplifies to

vr « ur ´ ηStvK (4.6)

In smooth protoplanetary disks, the η-parameter is generally positive leading to a radially
inward-directed contribution by the second term on the r.h.s. of Eq. 4.6. Also note that this
contribution to the radial dust velocity is proportional to the Stokes number, thus, different size
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dust grains drift at different speeds.
From Eq. 4.5, it follows that radial drift is most efficient for St “ 1, which is typically the case
for mm to cm size pebbles at r „ 10 ´ 100 au (Takeuchi & Lin, 2002). Depending on the disk
properties, the timescale of radial drift can be very short, on the order of 10s of local orbital
periods. This fast radial drift poses a fundamental constraint on planet formation theories be-
cause growth must occur on timescales faster than particles are lost to the central star via radial
drift (Takeuchi & Lin, 2005).
A solution to this problem is relaxing the smooth disk condition. In smooth disks, the gas
pressure typically decreases with increasing radius, resulting in sub-Keplerian orbits and inward
dust particle drift. In a structured disk, local gas pressure maxima can be present. Such a
local pressure maximum has radially increasing pressure on one side, leading to super-Keplerian
rotation of the gas in a certain disk region, causing radial outward drift of the dust (Whipple,
1972). As a result, dust particles can accumulate at the location of a gas pressure maximum
where drift velocities converge. Besides disarming the radial drift problem, the presence of gas
pressure maxima can also explain the substructures observed in mm- continuum observations.
But of course, the formation of gas pressure maxima must then be explained too. We will do
this in Sec. 4.6.

4.2.2 Vertical Settling

Aerodynamic drag is also important for understanding the vertical dust distribution. We first
ignore the effects of potential turbulence (we will discuss this in Chapter 5) and consider the
vertical settling of dust grains in a laminar disk. Dust particles suspended in the gaseous
environment above the disk midplane experience a vertical gravitational acceleration of the form
of Eq. 3.6 and get accelerated towards the midplane. If the aerodynamic coupling is strong, the
gravitational force is quickly balanced by the counteracting drag as the particles settle toward
the midplane. From an exact balance between the gravity (Eq. 3.6) and drag (Eq. 4.3), and
rearranging terms, the vertical dust settling velocity is found (Dubrulle et al., 1995)

vsett “ ´tsΩ
2
Kz (4.7)

which is the characteristic velocity of dust grains that settle towards the disk midplane. Like
the radial drift velocity, the vertical settling velocity also depends on the size of the dust grains
via the stopping time ts. Furthermore, it is important to note that Eq. 4.7 is only valid if the
time it takes a dust particle to reach terminal velocity is small compared to the total time it
takes to settle towards the midplane. This is strictly true only for small particles (St ! 1) and
is otherwise referred to as the terminal velocity approximation.
The combined prediction based on the discussion on radial drift and vertical settling is that
smooth disks should exhibit negative particle density gradients both in the radial and vertical
direction, such that the largest concentrations are found closest to the central star (Andrews,
2020). However, this picture is not supported by observations. In section 4.6, we discuss appro-
priate extensions to these fundamental parts of the theory.
Usually at this point, the vertical dust equilibrium distribution is discussed. However, we will
postpone this discussion to Chapter 5 where we will establish a more detailed theoretical foun-
dation for doing the discussion justice.

4.3 Dust Growth and Planetesimal Formation

So far in this chapter, we have discussed how dust grains interact with the surrounding gas.
But of course, dust grains can also interact with each other, especially when individual particles
move relative to each other and collide. In protoplanetary disks, relative velocities and thus
collisions are driven by vertical and radial transport, differential coupling to turbulent eddies
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in the gas, and Brownian motion (random motion caused by the thermal motion of the gas).
Consequent collision rates can be calculated using the closed-form expressions for the relative
velocities of particles, derived by Ormel & Cuzzi (2007). In contrast to dispersed molecular
clouds, only in protoplanetary disks is the particle concentration large enough for collisions to
become evolutionary relevant. When colliding, small dust grains stick together because of their
large surface-to-mass ratio and intermolecular binding forces (e.g., van der Waals forces, hydro-
gen bonds), forming larger aggregates (Güttler et al., 2010).
The growth from sub-µm sized particles, originally delivered from the ISM to a newly formed
protoplanetary disk, to larger aggregates is the first stage of planet formation. Particle-particle
collisions and the effective sticking of small dust aggregates lead to fast growth to centimeter
size within less than 1000 years in the inner regions of protoplanetary disks (Birnstiel et al.,
2011). Early models of planet formation predicted km-sized planetesimals to grow from succes-
sive particle-particle sticking collisions (Weidenschilling, 1997). However, these models do not
capture the full picture. As particles approach St “ 1, they quickly drift inward and are lost to
the star before they can grow significantly beyond centimeters in size. This phenomenon is called
the drift barrier. In addition to that, growing dust grains eventually aerodynamically decouple
from the gas, which increases their relative velocities, ultimately leading to disruptive collisions
and preventing growth beyond a certain size. This growth limit is called the fragmentation
barrier. In standard protoplanetary disk models, the fragmentation barrier limits the dust grain
size to about „ 0.1´10 cm (Birnstiel et al., 2012; Blum et al., 2017). In general, growth barriers
pose a large obstacle to the formation of gravitationally bound planetesimals solely via sticking
collisions.
In classical planet formation theories, a theoretical solution to the growth problem exists. It was
proposed that when dust particles efficiently sediment towards the protoplanetary disk midplane,
their concentration becomes large enough to become gravitationally unstable, leading to the
fragmentation of the disk into gravitationally bound planetesimals (Safronov, 1972; Goldreich &
Ward, 1973). However, Weidenschilling (1980) showed the development of the Kelvin-Helmholtz
instability introduces self-excited turbulence that prevents the dust layer from sedimenting ef-
fectively enough for self-gravity to set in.
A modern alternative is potentially found in the formation of planetesimal via the streaming in-
stability (Youdin & Goodman, 2005), which can produce gravitationally bound dust clumps as a
result of the complex interaction between gas and dust flows (Johansen et al., 2007). It is found
that the streaming instability leads to planetesimals of „ 100 km in size (Schäfer et al., 2017).
However, the streaming instability is not a one-size-fits-all solution as it sensitively depends on
local disk parameters and the local dust size distribution. Thus, a comprehensive theory of
planetesimal formation remains elusive and is subject to current research. Yet, the existence of
numerous minor bodies in the Solar System, e.g., in the Asteroid- and Kuiper Belt, suggests
planetesimal formation to be a robust concept even though its details are not yet clear.

4.4 Terrestrial Planet Formation

Once planetesimals have formed, the classical models predict their evolution to be mainly gov-
erned by their mutual gravitational interaction, such that their evolution reduces to a “simple”
N-body problem that produces planets as a result of planetesimal collisions. The gas, that is
still present in the disk at this time, acts to dampen the eccentricity and inclination of the plan-
etesimals. This concept is known as planetesimal accretion (see, e.g., the review by Lissauer,
1993).
Planetesimal accretion is dominated by gravitational dynamics. Supported by dynamical friction
and gravitational focusing, growth initially proceeds fast (so-called runaway growth, Safronov,
1972; Wetherill & Stewart, 1989), until the largest planetary embryos are massive enough to dy-
namically stir the remaining planetesimals. In this regime, the largest bodies grow faster than
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the smaller planetesimals (so-called oligarchic growth, Kokubo & Ida, 1998). But as they grow,
the efficiency of planetesimal accretion quickly drops and the formation of massive planetary
cores within a disk lifetime is difficult (Ida & Lin, 2004). Within about 1 Myr, planetesimal
accretion can produce a few hundred large bodies with masses on the order of 0.01M‘ to 0.1M‘

which are comparable to the mass of the Moon or Mercury but are not yet comparable to the
other terrestrial planets Venus, Earth, and Mars (Armitage, 2010).
A second, but not mutually exclusive paradigm is the pebble accretion scenario (Johansen &
Lambrechts, 2017; Ormel, 2017). While the planetesimal accretion scenario assumes that all the
available solids are present in the form of planetesimals, the pebble accretion scenario assumes
that most of the solids remain in the form of much smaller pebbles. Because pebbles are still
very much aerodynamically coupled to the gas, accretion is governed by gas drag in addition to
gravitational interactions, with drag supporting the dissipation of angular momentum as pebbles
spiral toward an accreting planetesimal. However, pebble accretion only becomes efficient for
planetesimals above „ 500 km in size (Dra̧żkowska et al., 2022). As mentioned earlier, planetes-
imals formed by the streaming instability are generally smaller (À 100 km). Thus, planetesimal
accretion is needed to overcome this gap (Liu et al., 2019). In the pebble accretion scenario, mass
growth is halted when the accreting protoplanet has become massive enough to open an annular
gap in the gas distribution of the protoplanetary disk along its orbit. When such a gap has
formed, pebble accretion is halted because pebbles are prevented from reaching the protoplanet
by an outward-pointing pressure gradient force at the outer edge of the gap. This mass limit is
called the pebble isolation mass (Lambrechts & Johansen, 2014; Bitsch et al., 2018; Ataiee et al.,
2018). Lambrechts & Johansen (2014) predict a pebble isolation mass, where pebble accretion
is halted, for a realistic set of parameters, of 25 M‘. This limit is much lower than the mass
of, e.g., Saturn (95M‘) or Jupiter (318M‘). Additional processes are necessary to grow such
giant planets.

4.5 Giant Planet Formation

So far, we have only discussed the formation of solid bodies, i.e., rocky planets and planetary
embryos, but not yet the formation of planets with an extended gaseous envelope like the gas
giant planets. When massive enough, rocky planetary embryos, which have formed via e.g.,
pebble accretion, start to accrete gas from their surrounding disk, forming a gaseous planetary
envelope. This concept is often called the core accretion scenario (Bodenheimer & Pollack,
1986). For low-mass planetary cores, the accreted gaseous envelope is in hydrostatic equilibrium
and grows by contraction via cooling and the release of energy into the surrounding disk envi-
ronment (Stevenson, 1982; Pollack et al., 1996; Rafikov, 2006). At this point, the gas accretion
rate increases with the mass of the planetary embryo but is limited by the amount of cooling
of the envelope. Once a critical mass is reached „ 10M‘ (Pollack et al., 1996), the hydrostatic
forces can no longer support the inward pull of gravity and the planet starts to accrete large
amounts of gas in a rapid runaway process limited only by the supply of gas by the surrounding
disk (Pollack et al., 1996; Ayliffe et al., 2012). Because the cooling time of a gaseous envelope
can be comparable to the disk lifetime itself („ 1Myr), it represents an obstacle to the onset of
runaway accretion and the formation of giant planets. However, it seems to be consistent with
the formation of less massive gaseous planets like Uranus and Neptune (D’Angelo & Lissauer,
2018).
If a planet reaches the runaway growth phase, the phase typically lasts for only „ 105 years
before it is terminated when the supply of gas is exhausted as a result of the dissipation of the
disk itself, or as a consequence of the planet opening an annular gap along its orbital radius
(Armitage, 2010). In Fig. 4.1, we show an illustration by Lin et al. (2018) depicting the possible
formation pathway of Jupiter via pebble accretion and subsequent core accretion.
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Nowadays, the core accretion scenario is considered the main mode of giant planet formation
(D’Angelo & Lissauer, 2018). However, it is worth mentioning that besides core accretion, it is
theorized that gravitational instability followed by disk fragmentation, akin to the formation of
stellar cores within molecular clouds, also leads to self-gravitating newly formed giant planets in
protoplanetary disks (Toomre, 1964). Planet formation via this so-called disk instability scenario
has the benefit that it avoids the need for a long hierarchical growth chain. However, it has
been found that the disk instability scenario is expected to favor massive objects such as brown
dwarfs or low-mass stellar companions rather than planetary mass objects (Kratter & Lodato,
2016; D’Angelo & Lissauer, 2018). But, the process has not yet been ruled out as a formation
route for gas giant planets far away from their host star (D’Angelo & Lissauer, 2018).
Nonetheless, both scenarios of giant planet formation require further development and refine-
ment, guided by the increasing amount of astronomical data.
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Figure 4.1: Illustrated overview of the gas giant planet formation process via pebble accretion
and subsequent runaway gas accretion as a possible formation pathway of Jupiter. The figure
is to be read starting from the 3 o’clock position, evolving in a counter-clockwise direction,
with each sector representing a different temporal snapshot. In the first panel, a planetesimal
(brown), i.e., a gravitationally bound core, has formed, e.g., via the streaming instability, and
evolves in a gaseous environment (gray). The planetesimal begins to accrete pebbles (black) as
they drift radially inward due to aerodynamic drag, increasing the mass of the accreting body.
After „ 400 kyr, the core starts to accrete a gaseous envelope (blue) which grows by cooling and
contracting. Once the envelope mass is roughly comparable to the mass of the core, runaway
accretion is triggered, leading to rapid gas accretion and growth to a giant planet. Figure credit:
Lin et al. (2018).

4.6 Origins of Disk Substructures

At this point, we have mentioned disk substructures several times. For example, in Chapter 2,
we have established that they are regularly observed and in Chapter 3 we have discussed that
they are an essential ingredient to resolve the radial drift problem. After having provided a
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theoretical overview of disk evolution and planet formation, we are now well-equipped to dis-
cuss the physical origins of disk substructures, with a special focus on their relation to planet
formation.
Since (optically thin) mm-continuum observations trace the dust surface density Σd in pro-
toplanetary disks, it is obvious to focus on processes that locally accumulate and/or disperse
dust. Promising candidates that have been suggested are condensation fronts, so-called snow-
lines, which are potentially associated with the emergence of substructures in the dust surface
density. Snowlines are locations within a disk where potential icy mantles of particles sub-
limate as particles move across, e.g., as a result of radial drift. Because sublimation causes
mass loss in the solids, the dust surface density is depleted just inside the snowline (Stammler
et al., 2017). Moreover, gas that has been liberated by sublimation can diffuse outward and
re-condense (Stevenson & Lunine, 1988), where it might increase the dust surface density Σd

just outside the snowline. Thirdly, the presence or absence of ices can affect collision outcomes
of particle-particle collisions, changing the particle size distribution which ultimately affects the
effective drift speed of the particle population (Pinilla et al., 2017). If particles more easily frag-
ment and thus become smaller after crossing the snowline, their drift speed decreases, leading to
a traffic jam-like increase of Σd (Birnstiel et al., 2010). However, substructures associated with
snowlines are expected to occur at special locations and be axisymmetric. Thus, by themselves,
snowlines can not explain the diversity of observed substructures.
Fluid mechanical processes can produce a more diverse set of disk structures. For example, an
axisymmetric gas pressure maximum can emerge at the edge of a dead zone which is a region
where MRI turbulence is suppressed in an otherwise MRI active disk (Regály et al., 2012). Vor-
tices can emerge as a result of hydrodynamic instabilities, attract and concentrate dust particles
(Klahr & Bodenheimer, 2006), and also imprint rings and gaps in the dust surface density dis-
tribution (Surville et al., 2016).
In sufficiently massive disks, self-gravity can trigger gravitational instability, leading to large-
scale spiral patterns (Toomre, 1964; Boss, 1997). The pressure peaks of a spiral can concentrate
pebbles and accelerate planetesimal growth (Rice et al., 2004). Other processes are driven by the
complex gas-particle coupling and produce substructures via, e.g., a viscous feedback instability
(Dullemond & Penzlin, 2018). Overall, there is a wide variety of fluid mechanical processes that
can lead to the formation of disk substructures and the local accumulation of solids, ultimately
providing the initial conditions for planetesimal formation.
The last and probably most intriguing category of mechanisms to create disk substructure is
the tidal interaction with embedded nascent planets. A sufficiently massive planet can generate
spiral shocks that transfer angular momentum and repel gas and dust away from its orbit (Lin
& Papaloizou, 1979, 1986; Goldreich & Tremaine, 1980; Dipierro et al., 2016). The resulting
perturbation clears an annular gap in the gas and dust surface density with a width and depth
that depends on the mass of the planet, and the local hydrodynamical structure of the disk
(Kley & Nelson, 2012; Crida et al., 2006; Szulágyi, 2017; Zhang & Zhu, 2020; Ziampras et al.,
2020). A gas pressure maximum that is created outside this gap can efficiently trap drifting
pebbles (Rice et al., 2006; Paardekooper & Mellema, 2006; Zhu et al., 2012). However, except
in the case of PDS 70 (Keppler et al., 2018; Isella et al., 2019; Haffert et al., 2019; Christiaens
et al., 2019), no substructure has unambiguously been linked to the presence of a planet. The
presence of planets can in most cases only be inferred indirectly (e.g. Zhang et al., 2018). Despite
a lack of observational confirmation, an explanation by forming planets persists, mainly because
planet formation seems to be a very robust process as suggested by the numerous observations
of mature exoplanets (see Sec. 2.3).
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4.7 Summary

The main takeaway from this chapter is that planet formation is a complicated process and a
model that self-consistently explains all aspects of planet formation (dust growth, planetesimal
formation, growth of planetary embryos, gas accretion), and convincingly connects dust and gas
distributions to fully evolved planetary systems, does not yet exist. The major inconsistency in
the present models is likely the lack of a convincing model that bridges the gap between dust and
planetesimals (Dra̧żkowska et al., 2022). Fortunately, observations of ubiquitous substructures
have somewhat mitigated the problem. Theory predicts that substructure forming processes can
halt and/or slow the radial drift of pebbles and thus relax the constraint on the planetesimal
formation timescale. Local dust accumulations also provide more favorable conditions for the
onset of planetesimal formation, for example, via streaming instability. Currently, significant
progress is being made towards a fully self-consistent theory of planet formation, especially
thanks to the guidance of increasingly available observational data on protoplanetary disks and
mature exoplanets. However, with a few exceptions, direct observational evidence of forming
planets is still missing and theorists must rely on indirect evidence.
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Abstract

Turbulence in protoplanetary disks, when present, plays a critical role in transporting dust parti-
cles embedded in the gaseous disk component. When using a field description of dust dynamics,
a diffusion approach is traditionally used to model this turbulent dust transport. However, it has
been shown that classical turbulent diffusion models are not fully self-consistent. Several short-
comings exist, including the ambiguous nature of the diffused quantity and the nonconservation
of angular momentum. Orbital effects are also neglected without an explicit prescription. In
response to these inconsistencies, we present a novel Eulerian turbulent dust transport model for
isotropic and homogeneous turbulence on the basis of a mean-field theory. Our model is based
on density-weighted averaging applied to the pressureless fluid equations and uses appropriate
turbulence closures. Our model yields novel dynamic equations for the turbulent dust mass flux
and recovers existing turbulent transport models in special limiting cases, thus providing a more
general and self-consistent description of turbulent particle transport. Importantly, our model
ensures the conservation of global angular and linear momentum unconditionally and implicitly
accounts for the effects of orbital dynamics in protoplanetary disks. Furthermore, our model
correctly describes the vertical settling-diffusion equilibrium solutions for both small and large
particles. Hence, this work presents a generalized Eulerian turbulent dust transport model, es-
tablishing a comprehensive framework for more detailed studies of turbulent dust transport in
protoplanetary disks.
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5.1 Introduction

Protoplanetary disks are believed to exhibit turbulence, driving the redistribution of angular
momentum and accretion. Observational constraints on the typical strength of disk turbulence
suggest a dimensionless α-parameter (Shakura & Sunyaev, 1973) of 10´4-10´3 (Lesur et al.,
2022). However, the exact nature and origin of disk turbulence remain unclear. Potential
sources include (magneto) hydrodynamic instabilities such as the magnetorotational instability
(MRI) (Balbus & Hawley, 1991), which can occur if partly ionized gas in quasi-Keplerian ro-
tation couples to a magnetic field. Purely hydrodynamic instabilities include the vertical shear
instability (VSI) (Arlt & Urpin, 2004; Nelson et al., 2013), the convective overstability (Klahr &
Hubbard, 2014; Lyra, 2014) and the zombie vortex instability (Barranco & Marcus, 2005; Lesur
& Latter, 2016). The specific operating mechanism depends on the disk structure.
In addition to driving accretion, turbulence also poses an obstacle to the initial stages of planet
formation, specifically dust growth and planetesimal formation. In particular, dust grains within
protoplanetary disks are aerodynamically coupled to turbulent gas flows, which influences dust
growth (Voelk et al., 1980; Ormel & Cuzzi, 2007; Birnstiel et al., 2010), the dust distribution
(Fromang & Papaloizou, 2006), and dust transport (Cuzzi et al., 1993; Youdin & Lithwick,
2007; Carballido et al., 2010; Zhu et al., 2015). Turbulence also prevents dust grains from effi-
ciently clumping together (Umurhan et al., 2020; Chen & Lin, 2020; Gole et al., 2020) to form
planetesimals through mechanisms like the streaming instability (Johansen et al., 2007) because
turbulence acts to diffuse particle concentrations (Goodman & Pindor, 2000; Youdin & Good-
man, 2005).
With the Atacama Large Millimeter/submillimeter Array (ALMA) enabling spatially resolved
observations of the dust distribution in protoplanetary disks, it has become essential for numer-
ical disk models to incorporate dust physics in addition to gas in order to constrain the physical
processes observed in these disks.
While the Navier-Stokes equations effectively describe gas dynamics in such models, no sin-
gle mathematical tool similarly dominates the description of dust dynamics. Among others,
two major approaches to dust modeling in protoplanetary disks are the Lagrangian description
(Youdin & Johansen, 2007; Charnoz et al., 2011; Yang & Johansen, 2016; Mignone et al., 2019),
which describes individual dust particle motion, and the Eulerian or fluid approach (Johansen
& Klahr, 2005; Paardekooper & Mellema, 2006; Meheut et al., 2012; Beńıtez-Llambay et al.,
2019; Huang & Bai, 2022), which describes the collective particle behavior.
Regardless of the approach, solving particle dynamics in protoplanetary disks numerically is
especially challenging due to the wide range of spatial and temporal scales involved, particularly
in the presence of turbulence. To capture the entire physics of the problem, all relevant length
scales must be resolved, which can be computationally demanding and often impossible with
current computational capabilities. Further, the detailed nature and origin of turbulence in
these disks, if present, is often unknown. Therefore, hydrodynamic dust models are frequently
extended with specific phenomenological models that describe the effects of turbulence rather
than self-consistently modeling the turbulence itself.
For example, stochastic turbulence models add random fluctuations to the velocities of the gas
and dust particles, simulating turbulent mixing and transport. These stochastic models are often
used in Lagrangian dust models, allowing accurate modeling of the complex interactions between
gas and dust in the presence of turbulence. In contrast, Eulerian turbulence models typically
introduce a diffusion term to the dust continuity equation to account for turbulent transport
effects (Cuzzi et al., 1993; Goodman & Pindor, 2000; Dullemond & Penzlin, 2018; Weber et al.,
2019, and Sec. 5.2.4). However, the classical diffusion approach has a few inconsistencies. Specif-
ically, the approach does not necessarily conserve angular momentum (Tominaga et al., 2019;
Weber et al., 2019), and there is no consensus on whether the quantity diffused by turbulence
is either the absolute dust density (e.g. Cuzzi et al., 1993) or the dust concentration relative to
gas (e.g. Dubrulle et al., 1995). Furthermore, the classical diffusion model must be explicitly
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adapted for applications in Keplerian disks because orbital effects can reduce the strength of
diffusivity (Youdin & Lithwick, 2007), an effect that is not captured by such diffusion models.
The aforementioned inconsistencies can be problematic because accurately capturing the physics
of turbulent transport is crucial for interpreting observations of protoplanetary disks and their
dust distributions, and consequently, for improving our understanding of planet formation.
Recently, two ways have been proposed to resolve the issue concerning the non-conservation
of angular momentum. One of which is to introduce correction terms to the dust momentum
equation (Tominaga et al., 2019), while making sure not to violate Galilean invariance in the
process (Huang & Bai, 2022). A second solution was proposed by Klahr & Schreiber (2021),
who modeled turbulent transport with a pressure-like term.
Motivated by the general inconsistencies, we remain agnostic to the specific source of turbulence
in this chapter and derive a novel self-consistent Eulerian turbulence model that conserves an-
gular momentum, resolves the question of the fundamental transport quantity, and intrinsically
incorporates orbital effects. We recover the previous turbulence models as special limiting cases
of our novel turbulent transport model. As such, our approach removes the tension which is
currently present in the turbulent transport modeling of particles in protoplanetary disks and
provides a novel framework for understanding the complex interplay between turbulence and
particle dynamics in protoplanetary disks.
The outline of this chapter is as follows. We first review relevant theoretical background in
Sec. 5.2, including a brief review of current Eulerian turbulent diffusion models. On the basis of
the introduced theory, we derive a novel turbulent transport model in Sec. 5.3, and then discuss
its applications to dust modeling in turbulent protoplanetary disks in Sec. 5.4. In Sec. 5.5, we
study the effects of turbulent transport on harmonic perturbations in the absence of external
forces and also in the presence of orbital effects. Lastly, in Sec. 5.7, we summarize our findings.

5.2 Theoretical Background

We start this section by comparing models of dust via Lagrangian and Eulerian descriptions
in Sec. 5.2.1. Then, Sec. 5.2.2 introduces statistical characteristics of turbulence and defines
important turbulent transport quantities, such as the diffusion coefficient and the correlation
time. We review a stochastic Lagrangian turbulent dust transport model and the classical
Eulerian gradient diffusion model in Sec. 5.2.3 and Sec. 5.2.4 respectively. Therein, we also
discuss the limitations of applying the latter model to turbulent dust transport in protoplanetary
disks. In Sec. 5.2.5, we introduce the concept of mean-field theory, and briefly review recent
work on turbulent dust transport by Tominaga et al. (2019), Huang & Bai (2022), and Klahr &
Schreiber (2021) in Sec. 5.2.6. Finally, Sec. 5.2.7 discusses the turbulent particle dispersion as
described by the Hinze-Tchen formalism.

5.2.1 Lagrangian and Eulerian Dust Modeling

This section presents two prevalent mathematical descriptions for modeling dust dynamics in
protoplanetary disks, namely the Lagrangian and Eulerian descriptions.
Lagrangian models trace the motion of individual dust particles as they interact with the gas and
potentially other dust particles in the disk. The particle trajectories are described by ordinary
differential equations, which fully capture the discrete nature of dust particles. Assuming a
purely deterministic trajectory, the equations of motion are most effectively described by a
Newtonian formalism:

dxi
dt

“ vi (5.1)

dvi
dt

“ ´
1

ts

`

vi ´ ui
˘

` gi (5.2)
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The above equations describe the rate of change of the particle position xi and velocity vi. The
r.h.s. of Eq. 5.2 contains the drag force and the gravitational acceleration gi. Because the drag
force term contains the gas velocity ui, gas dynamics must be known and solved concurrently
with particle dynamics.
A downside to the Lagrangian approach is its computational cost, which scales with the number
of particles in the model. Typically, numerical models include a significantly smaller number of
particles than the physical particle count in protoplanetary disks, representing these particles
as super particles (e.g. Youdin & Lithwick, 2007; Zsom & Dullemond, 2008; Wafflard-Fernandez
& Baruteau, 2020). An additional challenge is balancing the large computational demands of
regions with high particle density against the limited resolution in low-density areas.
Conversely, when individual particle trajectories are irrelevant to a specific problem, and a
field description of fundamental flow properties is appropriate (e.g., in terms of mass flux and
concentrations), the Eulerian continuum approach can be a suitable alternative. This method
constructs fluid elements containing a sufficient number of particles to allow volume-averaged
quantities like temperature, density, and velocity to statistically describe each fluid element.
Nonetheless, the fluid elements must be small relative to the characteristic lengths scale of the
system. Usually, a grid best represents these fluid elements, subdividing the domain of interest
into individual cells.
Assuming an appropriate grid exists, the dust phase of a protoplanetary disk can be described
by continuum equations analogous to the gas’s Navier-Stokes equations. Typically, a set of
Euler-like equations in the limit of vanishing particle dispersion describes a pressureless fluid,
an appropriate approximation for particles well-coupled to the gas (St ! 1).
For brevity, we will discuss a single-sized particle population, although the approach can be
readily generalized (see e.g. Beńıtez-Llambay et al., 2019). In conservation form, the pressureless
fluid equations read:

Bρd
Bt

`
B

Bxj

`

ρdvj
˘

“ 0 (5.3)

B

Bt
pρdviq `

B

Bxj

`

ρdvivj
˘

“ ´
ρd
ts

`

vi ´ ui
˘

` ρdgi (5.4)

The pressureless equations are derived from the conservation of mass and momentum, respec-
tively (e.g. Fan & Chao, 1998). The r.h.s. of Eq. 5.4 models the momentum exchange through
aerodynamic interactions of the particles with the gas and gravity. Because the particle disper-
sion vanishes, there is no need for an additional particle energy equation.
In both the Lagrangian and the Eulerian descriptions, particles couple to gas motion via the
drag term. If the gas flow is turbulent, the particles couple to the turbulent flow through this
term, making additional turbulence models for dust redundant (assuming the turbulent flow
in gas is fully characterized). However, the nature of turbulence in protoplanetary disks often
remains unknown or requires very large temporal and spatial resolution to fully capture (e.g.
Manger et al., 2020). The following sections will discuss the profound impact of turbulence on
both gas and dust dynamics.

5.2.2 Statistical Characteristics of Turbulence

There exists no universal turbulence model for protoplanetary disks. Therefore, turbulent fluc-
tuations are typically characterized statistically and compared against specific models, experi-
ments, and observations.
In our statistical analysis, we follow Fan & Chao (1998) and use a Lagrangian tracer that follows
the turbulent dynamics of a gas fluid parcel. We simplify by assuming isotropic and homoge-
neous turbulence, which allows us to describe the turbulent displacement of the fluid parcel
along a single dimension. Given the initial position of the fluid parcel x “ 0 at time t “ 0 and
assuming the turbulent velocity fluctuation u1 is known at all times, the position at times t ą 0
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can be evaluated as:

xptq “

ż t

0
u1pt1qdt1 (5.5)

The averaged squared displacement x2 of a fluid parcel subject to statistically steady turbulence,
is related to the autocorrelation function of the turbulent velocity fluctuations as (Taylor, 1920)

x2ptq “ 2

ż t

0
dt1

ż t1

0
dτ u1pτqu1p0q (5.6)

Here, the overbar signifies a statistical ensemble average. We then define the diffusion coefficient
D as the averaged growth rate of the squared displacement over long times (e.g. Fan & Chao,
1998):

D ”
1

2

dx2

dt
(5.7)

In a purely diffusive process, Eq. 5.7 approaches a constant value.
According to the Wiener-Kinchin theorem, the energy spectrum of turbulent fluctuations in
frequency space Êgpωq is related to the autocorrelation function of the turbulent velocity fluc-
tuations via its Fourier transform:

Êgpωq “
1

2π

ż 8

´8

dt1 u1pt1qu1p0qeiωt
1

(5.8)

The above equation suggests that in statistically steady turbulence, the energy spectrum is an
even function of frequency Êgpωq “ Êgp´ωq (e.g. Zhu et al., 2015). The gas diffusion coefficient
Dg is then expressed as the integral over the autocorrelation function (e.g. Youdin & Lithwick,
2007):

Dg “

ż 8

0
dt1 u1pt1qu1p0q (5.9a)

“

ż 8

0
dt1

ż 8

´8

dω Êgpωqe´iωt1

(5.9b)

“ π

ż 8

´8

dω Êgpωqδpωq (5.9c)

“ πÊgp0q (5.9d)

The second line (Eq. 5.9b) follows from Eq. 5.8. The third line, i.e., Eq. 5.9c, introduces the
delta distribution as the Fourier transformation of a constant and makes use of the fact that the
energy spectrum Êgpωq is an even function to extend the lower integration boundary to ´8.
This shows that the diffusion coefficient Dg is proportional to the energy spectrum at ω “ 0.
We introduce the correlation time of turbulence tcorr:

tcorr ”

ż 8

0
dt1 u

1pt1qu1p0q

u12
(5.10)

Here, u12 “ u1p0qu1p0q is the square of the mean turbulent velocity dispersion.
With the correlation time tcorr and the diffusion coefficient Dg as the two important statistical
characteristics of turbulence, we use Eq. 5.9a to connect these two quantities with the turbulent
velocity dispersion:

Dg “ u12 tcorr (5.11)
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These definitions apply for any form of the energy spectrum Êpωq, provided the turbulence is
statistically steady, homogeneous, and isotropic.
We also define a characteristic eddy length of the turbulence

leddy ”

b

u12 tcorr (5.12)

and the diffusion timescale

tdiff „
l2

Dg
(5.13)

which describes the time for a fluid parcel to diffuse across a distance l.
In the literature, it is common to relate the gas diffusion coefficient Dg to the particle diffusion
coefficient Dd via the dimensionless Schmidt number (e.g. Cuzzi et al., 1993):

Sc ”
Dg

Dd
(5.14)

In the absence of external forces, Sc “ 1 holds, making the diffusion of dust indistinguishable
from that of gas (Youdin & Lithwick, 2007). Hereafter, we will use D to represent both Dg and
Dd when a distinction is not required.
Some studies define the Schmidt number differently, as Schydro “ ν{Dg, the ratio between the
kinematic viscosity ν, and Dg (e.g. Johansen & Klahr, 2005; Carballido et al., 2006). Thus,
Schydro quantifies the relative effectiveness of angular momentum transport (associated with
ν) and mixing processes (associated with Dg). The two parameters ν and Dg have the same
dimensions and both arise from the same turbulence and are therefore closely related but not
necessarily equal (see e.g. Pavlyuchenkov & Dullemond, 2007). Consequently, Schydro represents
a related, albeit not necessarily equivalent, quantity to our definition. In this chapter, we adopt
the definition of the Schmidt number as given in Eq. 5.14, consistent with the convention in
Cuzzi et al. (1993) and Youdin & Lithwick (2007).
When studying protoplanetary disks, turbulent diffusion is sometimes parametrized using a
dimensionless diffusivity parameter δ:

δ “
D

cshg
(5.15)

The definition in Eq. 5.15 is analogous to the dimensionless α-parameter (see Eq. 5.84) intro-
duced by Shakura & Sunyaev (1973). However, while δ parametrizes the level of turbulent
diffusion, the α parameter is most commonly used to describe the efficiency of angular momen-
tum transport in a disk. For Schydro “ 1, we find δ “ α.

5.2.3 Stochastic Lagrangian Formalism

In the context of turbulent dust dynamics, a Lagrangian description can incorporate a stochastic
forcing term into Eq. 5.2, such that the turbulent velocity fluctuation readily fulfills the desired
turbulence statistics as discussed in Sec. 5.2.2.
When applying a stochastic Lagrangian turbulence model, the gas velocity u is typically decom-
posed into a mean-field contribution ū and a turbulent fluctuation δu such that u “ ū`δu. The
Lagrangian velocity equation for the dust, in one dimension, then becomes:

dv

dt
“ ´

1

ts

`

v ´ ū
˘

` g `
1

ts
δu (5.16)
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The r.h.s. of Eq. 5.16 includes terms for drag and gravity, with ū signifying the laminar gas
velocity (e.g. Charnoz et al., 2011). The last term represents the acceleration of dust via the
turbulent gas velocity field δu.
As mentioned in Sec. 5.2.2, isotropic and homogeneous turbulence can be statistically charac-
terized using two parameters, namely the diffusion coefficient D and the correlation time tcorr.
Consequently, a desirable stochastic turbulence model should also be parametrized by these two
quantities. We adopt the model from Ormel & Liu (2018) that explicitly defines the stochastic
forcing term. Below, we review their formalism in one dimension, but it can readily be extended
to higher dimensions. In addition to Eq. 5.1 and Eq. 5.16, the model incorporates an equation
for the turbulent velocity field and a stochastic differential equation:

δu “

c

D

tcorr
ζt (5.17a)

dζt “ ´
ζt
tcorr

dt `

c

2

tcorr
dWt (5.17b)

Equation 5.17a contains the turbulent velocity dispersion, parametrized by the diffusion coeffi-
cient and the correlation time

?
δu2 “

a

D{tcorr, as suggested by Eq. 5.11, and a dimensionless
stochastic variable ζt. The dynamics of the stochastic variable ζt is governed by Eq. 5.17b which
formally describes an Ornstein–Uhlenbeck process (Uhlenbeck & Ornstein, 1930), where Wt de-

notes the Wiener process. The differential of the Wiener process is dWt “
?
dtN p0, 1q, where

N p0, 1q is the normal distribution with zero mean and unit variance. Hence, ζt “ 0 and ζ2t “ 1
hold. While ζt-values are correlated for timescales shorter than tcorr, they become uncorrelated
and normally distributed for longer timescales.
In essence, this model incorporates turbulence as an additional stochastic forcing term in the
velocity equation. Being a specific turbulence model, it may not necessarily correspond to actual
turbulent processes in protoplanetary disks. However, it has proven immensely useful, because
the model is parametrized by only two parameters (D, tcorr) and has the desired statistical
characteristics of turbulence as discussed in Sec. 5.2.2.
In the strong coupling approximation, where the stopping time ts is small, Ormel & Liu (2018)
show that the system of equations can be represented by a single stochastic differential equation:

dx “ vdt `
?
2DdWt (5.18)

This equation is frequently used to model Lagrangian dust transport in turbulent protoplanetary
disks (e.g. Ciesla, 2010; Zsom et al., 2011; Charnoz et al., 2011; Krijt & Ciesla, 2016).
It is crucial to note that the model as presented in this chapter is strictly applicable only in an
unstratified gas background. For variations in gas density, additional corrections are necessary,
as detailed in Ormel & Liu (2018).
Overall, the stochastic model of Ormel & Liu (2018) provides a versatile Lagrangian turbulence
model, enabling the simulation of dust dynamics in turbulent environments. In the following
sections, we will turn to the Eulerian description.

5.2.4 Gradient Diffusion and its Limitations

In this section, we review the gradient diffusion model, as an example of an Eulerian turbulent
transport model. Gradient diffusion is probably the most popular model employed to describe
turbulent dust transport in protoplanetary disks.
We will start by introducing the concept of a gradient diffusion flux in Sec. 5.2.4 and then
proceed to highlight several limitations inherent to the gradient diffusion model. Specifically, in
Sec. 5.2.4, we will highlight that there appears to be no clear consensus on the functional form of
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the diffused quantity. In Sec. 5.2.4 we will discuss the predictions and limitations of the gradient
diffusion model regarding the vertical settling-diffusion equilibrium solution in protoplanetary
disks before we will illustrate issues regarding momentum conservation in Sec. 5.2.4. Lastly, in
Sec. 5.2.4, we will review how the model must be explicitly adapted to incorporate the effects of
orbital dynamics in disks.

Introducing a Gradient Diffusion Flux

When relying on an Eulerian description, i.e., describing the dust component in a turbulent pro-
toplanetary disk as a continuous fluid, Reynolds averaging techniques are typically employed to
incorporate turbulent transport effects into the equations describing dust dynamics (Champney
& Cuzzi, 1990; Cuzzi et al., 1993). This approach introduces an additional turbulent transport
flux Ji to the dust continuity equation

Bρd
Bt

`
B

Bxj

`

ρdvj
˘

“ ´
B

Bxj

`

Jj
˘

(5.19)

but does not simultaneously predict its functional form.
As discussed in Sec. 5.2.2, random turbulent displacements in homogeneous and isotropic turbu-
lence behave diffusively. Unsurprisingly, diffusion approaches have been successful in describing
the functional form of the turbulent mass flux Ji. The most common approach involves the
gradient diffusion hypothesis, which assumes the turbulent mass flux Ji to be proportional to
the gradient of the particle density, (e.g. Cuzzi et al., 1993; Goodman & Pindor, 2000; Schrapler
& Henning, 2004; Shariff & Cuzzi, 2011)

Ji “ ´D
B

Bxi
ρd (5.20)

With this functional form, the continuity equation takes the form of an advection-diffusion
equation.
In applications involving a nonuniform gaseous background density, the turbulent mass flux from
Eq. 5.20 is often modified to account for gradients in the gas density:

Ji “ ´Dρg
B

Bxi

ρd
ρg

(5.21)

This alteration is usually motivated by the heuristic good mixing condition, which states that
both particle and gas distributions evolve towards a common maximum entropy distribution
in which the spatial gradient of the particle concentration vanishes ρd{ρg “ constant (see e.g.
Charnoz et al., 2011, for a more detailed discussion).
Consequently, the following advection-diffusion equation is predominantly employed to model
the turbulent mass transport of particles in protoplanetary disks (e.g. Dubrulle et al., 1995;
Takeuchi & Lin, 2002; Dullemond & Dominik, 2004; Schrapler & Henning, 2004; Fromang &
Papaloizou, 2006; Ciesla, 2009; Dullemond & Penzlin, 2018).

Bρd
Bt

`
B

Bxj

`

ρdvj
˘

“
B

Bxj

„

Dρg
B

Bxi

ˆ

ρd
ρg

˙ȷ

(5.22)

Despite the success of the gradient diffusion model in modeling turbulent particle transport in
protoplanetary disks, it has certain inherent limitations, which we will discuss in the following
sections.
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The Diffused Quantity

The protoplanetary disk community seems not to have reached a consensus on the functional
form of the quantity diffused by turbulence. More rigorous mathematical derivations typically
result in a diffusion flux, in which the absolute particle density ρd is the diffused quantity (e.g.
Cuzzi et al., 1993; Laibe et al., 2020). However, this appears to be inconsistent with the good
mixing condition in the small particle limit.
In contrast, heuristic arguments favor the functional form expressed in Eq. 5.21 which assumes
the dust-to-gas ratio ρd{ρg to be the diffused quantity, which additionally accounts for gradients
in the gas density (e.g. Dubrulle et al., 1995; Charnoz et al., 2011). Although the latter quantity
appears to be the more favorable choice, a self-consistent model supporting this choice is yet to
be definitively established. To date, we only know of Riols & Lesur (2018) who have proposed
a mathematically coherent argument on the basis of Reynolds averages and assuming strongly
coupled particles and small dust concentrations.

Vertical Settling-Diffusion Equilibrium

We now explore the use of the gradient diffusion model in the form of Eq. 5.22 to describe
the vertical steady-state structure of a protoplanetary disk. For this, we assume a vertically
isothermal gaseous background with a vertical hydrostatic equilibrium profile as given by Eq. 3.8.
Additionally, we assume the background gas to exhibit isotropic, homogeneous turbulence and
a constant diffusion coefficient D. In a steady state, the particle component in this background
is in a vertical settling-diffusion equilibrium, typically found by using the terminal velocity
approximation (Eq. 4.7).
Substituting Eq. 4.7 into Eq. 5.22, and assuming a steady state such that the time derivative
vanishes, we find the following one-dimensional differential equation:

B

Bz

ˆ

ln
ρd
ρg

˙

“ ´
Ω2ts
D

z (5.23)

Further assuming the vertical gas density profile follows the Gaussian profile of Eq. 3.8 with
scale height hg, integration of Eq. 5.23 yields (Fromang & Nelson, 2009):

ρd “ ρd,0 exp

„

´
Ωts,mid

δ

ˆ

exp

ˆ

z2

2h2g

˙

´ 1

˙

´
z2

2h2g

ȷ

(5.24)

Here, ts,mid denotes the stopping time evaluated at the disk midplane, and we have used Eq. 5.15
to simplify the expression.
The above solution relies on the terminal velocity approximation, which neglects inertial acceler-
ations, and thus is only applicable for St ! 1, a regime where drag forces are dominant (Youdin
& Goodman, 2005). For small particles, with St ! 1 at the disk midplane, this condition is
fulfilled everywhere in the disk except the disk atmosphere where even the Stokes number of
the smallest particles exceeds unity (St Á 1) due to the exponential stratification of the gas
background. For large particles (St ą 1), this condition is not fulfilled anywhere and Eq. 5.24
technically speaking not applicable.
As Laibe et al. (2020) noted, an analytical model predicting the transition from drag-dominant
to gravity-dominant dynamics in turbulent protoplanetary disks does not currently exist.

Momentum Conservation

Incorporating a diffusion flux in the continuity equation as described by Eq. 5.22 may violate
the conservation of linear and angular momentum (Goodman & Pindor, 2000; Weber et al.,
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2019; Tominaga et al., 2019). This non-conservation can be problematic, especially since accu-
rate accounting of angular momentum is key for mass transport in accretion disks. Moreover,
Tominaga et al. (2019) showed that the non-conservation non-physically changes the properties
of the secular gravitational instability (e.g. Youdin, 2011a).
Here, we follow Weber et al. (2019) to illustrate the non-conservation of linear momentum by
combining the velocity equation of a particle fluid

Bvi
Bt

`
B

Bxj
pvivjq “

1

ts
pui ´ viq (5.25)

and the continuity equation including the turbulent mass flux (Eq. 5.19) to write the particle
momentum equation in conservation form:

B

Bt
pρdviq `

B

Bxj
pρdvivjq “

ρd
ts

pui ´ viq ´ vi
B

Bxj
Jj (5.26)

The first term on the r.h.s models the acceleration due to aerodynamic drag and exchanges
momentum between the gas and particle fluid. The second term, associated with turbulent
mass transport, generally cannot be expressed as a divergence term. As such, it can contribute
to the non-conservation of dust momentum ρdvi.
We want to stress here that the non-conservation of the dust momentum in Eq. 5.26 by itself is
not necessarily a problem. Often, the effect of the last term on the r.h.s. of Eq. 5.26 is regarded as
coming from the turbulent gas-particle interaction. The problem only arises if one considers the
full system of dust and gas. In the full system, momentum is expected to be conserved, but, there
is generally no term analogous to the last term in Eq. 5.26, in the gas momentum equations
that would model the back reaction of the turbulent gas-particle interaction. Consequently,
momentum in the full system is not necessarily conserved.
To prevent this issue, Goodman & Pindor (2000) introduce an artificial term to the particle
momentum equation. For demonstrative purposes, we follow their approach here and add a
term of the form

... ´ Jj
Bvi
Bxj

(5.27)

to the r.h.s. of Eq. 5.26 such that the momentum equation can be rewritten as

B

Bt
pρdviq `

B

Bxj

`

ρdvivj ` viJj
˘

“
ρd
ts

pui ´ viq (5.28)

Now, the diffusion flux is included in the divergence term on the l.h.s., which means the particle
momentum is globally conserved even in the presence of a turbulent mass flux. However, as
mentioned before, while it is expected that momentum is conserved in the whole system, there
is no clear reason why momentum should be conserved within the dust fluid and cannot be
exchanged with the gas. The naive addition of this artificial term (Eq. 5.27) is unproblematic
only if the term equals zero. This condition is met if the velocity gradient in the direction of
the turbulent mass transport, or equivalently the dot product between the turbulent mass flux
Ji and the gradient of the velocity Bvi{Bxj , vanishes.
Conversely, the approach of adding a diffusion flux to the continuity equation, as in Eq. 5.22,
can violate momentum conservation if diffusive transport occurs in the direction of a non-zero
velocity gradient, specifically wherever Bvi{Bxj ‰ 0. This is in agreement with the analysis
of Tominaga et al. (2019), who show the non-conservation of angular momentum for diffusive
particle transport in the radial direction of a protoplanetary disk, where a radial velocity gradient
exists due to the Keplerian shear Bvϕ{Br ‰ 0.
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Orbital Effects

In their seminal work, Youdin & Lithwick (2007) studied the diffusion of particles in Keplerian
gas disks subjected to isotropic and homogeneous turbulence. They showed that orbital effects
led to a decline in the strength of particle diffusion for large particles (St Á 1) with increasing
Stokes number. Consequently, they revised the Schmidt number (Eq. 5.14) for diffusion in disks
as follows:

ScYL „ 1 ` St2 (5.29)

and also the radial particle diffusion coefficient

DYL
d,r „

D

1 ` St2
(5.30)

where D is the diffusion coefficient parametrized by the product of turbulent velocity dispersion
squared and correlation time (Eq. 5.11).
Such orbital effects are not captured by the gradient diffusion model and must be parametrized
explicitly.
We highlight that the presence of, for example, a planet in a protoplanetary disk can introduce
complexity to the orbital effects, potentially rendering an explicit parametrization inaccurate.
After illustrating the limitations of the classical gradient diffusion model, we introduce a for-
malism that enables the derivation of improved turbulent transport models in the following
section.

5.2.5 Reynolds-Averaged Mean-Flow Equations

The Reynolds-averaged Navier-Stokes (RANS, Reynolds O., 1895) approach is a widely used
technique in fluid dynamics to model turbulent gas, focusing on large-scale average behavior of
hydrodynamic quantities rather than their instantaneous values on small scales.
Our discussion follows the work of Cuzzi et al. (1993), applying the RANS technique to the mass
(Eq. 5.3) and momentum (Eq. 5.4) conservation equations that govern dust particle dynamics
in protoplanetary disks. The resulting system of mean-flow equations describes the particle
dynamics in a turbulent environment. However, without additional modeling, the system is not
closed, meaning that the total number of independent variables exceeds the total number of
independent equations, and explicit closure models are required.
We focus on the statistically averaged behavior of the instantaneous particle density ρdpxj , tq and
the velocity vipxj , tq, which depend on the spatial variables xj“1,2,3 and time t. We decompose
these variables into averaged and fluctuating components:

ρd “ ρ̄d ` ρ1
d (5.31)

vi “ v̄i ` v1
i (5.32)

Here, the overbar¯denotes the Reynolds average and the prime 1 denotes short-term fluctuations.
This decomposition is possible as long as the characteristic length scales and timescales of
fluctuations are small compared to those of the mean values.
The averages of the fluctuating components vanish:

ρ1
d “ 0, v1

i “ 0 (5.33)

We interpret the average here primarily as a statistical ensemble average, although it can be
equivalent to the time average under the ergodic hypothesis.
Next, we apply the Reynolds decomposition to the instantaneous mass conservation equation
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(Eq. 5.3), decomposing both density and velocity into mean and fluctuating components:

Bρ̄d
Bt

`
Bρ1

d

Bt
`

B

Bxj

`

ρ̄dv̄j ` ρ̄dv
1
j ` ρ1

dv̄j ` ρ1
dv

1
j

˘

“ 0 (5.34)

The averaging operator commutes with time and space derivatives, and already averaged quan-
tities are considered constant. After applying the averaging operator to Eq. 5.34, the equation
becomes:

Bρ̄d
Bt

`
B

Bxj

´

ρ̄dv̄j ` ρ1
dv

1
j

¯

“ 0 (5.35)

This equation describes the dynamics of the mean particle density ρ̄d. Besides a mean advection
flux ρ̄dv̄j , the equation contains a new quantity, the mean turbulent mass flux ρ1

dv
1
j , which

can be interpreted as a mean particle mass flux driven by turbulence. The explicit form of this
correlation term is unknown without further modeling, a condition known as the closure problem
(see e.g. Fox, 2003, for more details on the closure problem).
The two flux components in Eq. 5.35 have independent dynamics, requiring additional equations
to describe their evolution. To find these equations, we apply the Reynolds decomposition and
averaging procedure to the momentum conservation equation (Eq. 5.4), yet ignoring gravity for
simplicity, yielding:

B

Bt

`

ρ̄dv̄i
˘

`
B

Bt

´

ρ1
dv

1
i

¯

`
B

Bxj

´

ρ̄dv̄iv̄j ` ρ1
dv

1
iv̄j ` v̄iρ1

dv
1
j ` ρdv

1
iv

1
j

loomoon

i

` ρ1
dv

1
iv

1
j

loomoon

ii

¯

“

ρ̄d
ūi ´ v̄i

ts
`

ρ1
du

1
i ´ ρ1

dv
1
i

ts
looooomooooon

iii

(5.36)

Besides the mean turbulent mass flux ρ1
dv

1
i, three more terms (i, ii, and iii) contain unknown

correlations. In the following section, we illustrate how a gradient diffusion approach can be
used to close the system of Reynolds averaged mean flow equations via the approach of Huang
& Bai (2022).

5.2.6 Recent Work

The primary issue with the gradient diffusion model, as discussed in Sec. 5.2.4, in the context
of disk modeling, is probably its failure to conserve angular momentum (Tominaga et al., 2019).
Recently, two solutions to this problem have been proposed. We will briefly summarize these
below.

The Approach of Tominaga et al. (2019) and Huang & Bai (2022)

The first approach, proposed by Tominaga et al. (2019) and further refined by Huang & Bai
(2022), is based on the Reynolds decomposition formalism by Cuzzi et al. (1993). They argue
that the term iii in Eq. 5.36 vanishes for small, well-coupled particles (St ! 1). Similarly, the
triple correlation term ii is typically argued to vanish as long as turbulent fluctuations are small
(e.g. Blackman & Field, 2003). The term i in Eq. 5.36 represents turbulent particle stresses,
analogous to the Reynolds stress in the gas. The on-diagonal elements of the term i represent
the effect of a particle pressure, similar to a thermal pressure in the gas (Dobrovolskis et al.,
1999).
Shariff & Cuzzi (2011) and Tominaga et al. (2019) here use a closure relation of the form

v1
iv

1
j “ δijc

2
d (5.37)
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to express the turbulent Reynolds stress in terms of a scalar particle velocity dispersion cd. Here
δij is the Kronecker delta. For small particles, Huang & Bai (2022) argue the squared dispersion
c2d vanishes based on an argument by Garaud et al. (2004), implying that all three terms, i, ii
and iii in Eq. 5.36 can be neglected for tightly coupled particles. The mean momentum equation
then reads:

B

Bt

`

ρ̄dv̄i
˘

`
B

Bt

´

ρ1
dv

1
i

¯

loooomoooon

I

`
B

Bxj

´

ρ̄dv̄iv̄j ` ρ1
dv

1
iv̄j ` v̄iρ1

dv
1
j

loooooooomoooooooon

II

¯

“
ρ̄d
ts

pūi ´ v̄iq (5.38)

Except for terms I and II, Eq. 5.38 is equivalent to the instantaneous momentum equation
(Eq. 5.4), with instantaneous variables replaced by their averages. Cuzzi et al. (1993) and
Tominaga et al. (2019) further neglect the term I assuming it is small compared to the term
to its left, yet offer no argument for this assumption. Huang & Bai (2022), however, point out
that the removal of term I in Eq. 5.38 would violate Galilean invariance, and therefore the term
should be kept. In their work, Huang & Bai (2022) call the combined contribution of terms I
and II the momentum correction that arises as a result of turbulent particle transport.
The remaining unknown correlation in Eq. 5.38 is ρ1

dv
1
i, generally does not vanish and therefore

requires a closure relation. The simplest approach employs a gradient diffusion hypothesis (GDH)
which assumes turbulent mass flux is proportional to the gradient of the mean particle density
(see e.g. Cuzzi et al., 1993; Tominaga et al., 2019; Huang & Bai, 2022):

ρ1
dv

1
i “ ´D

B

Bxi
ρ̄d (5.39)

As a result, the set of Reynolds averaged mean-flow equations is closed. Ignoring the momen-
tum corrections (terms I and II), the equations recover the classical gradient diffusion model
(Sec. 5.2.4).
The presented extension to the classical gradient diffusion model, based on robust mathematical
foundations like Reynolds averages, indeed conserves total angular momentum (Tominaga et al.,
2019; Huang & Bai, 2022). However, it does not resolve the other complications inherent to the
gradient diffusion closure in Eq. 5.39.
For illustrative purposes, we employ Eq. 5.39 and Eq. 5.35, rewriting the time derivative in term
I of Eq. 5.38 using averaged quantities:

B

Bt

´

ρ1
dv

1
i

¯

“ D
B

Bxj

B

Bxi
ρ̄dv̄j ´ D2 B2

Bx2j

B

Bxi
ρ̄d (5.40)

Assuming the diffusion coefficientD to be constant, it can be moved inside the spatial derivatives
and the entire r.h.s. of Eq. 5.40 becomes a divergence, confirming the conservation of mean
particle momentum in Eq. 5.38. However, the second term on the r.h.s. of Eq. 5.40 may introduce
nonphysical accelerations, an issue illustrated via the following one-dimensional example.
Consider a static mean advection flow (v “ ū “ 0) with a small harmonic perturbation atop
a constant particle density background ρ̄dpxq “ ρd,0p1 ` A sinpkxqq, where A ! 1 and k´1

characterizes the perturbation’s length scale. Substituting this into Eq. 5.40, and subsequently
into Eq. 5.38, the force term acting on the particle fluid is inversely proportional to the lengths
scale of the perturbation to the third power:

B

Bt

`

ρ̄dv
˘

9k3 (5.41)

Consequently the diffusion time (Eq. 5.13) scales as tdiff9k´2, as expected of a diffusive solu-
tion. However, for small-scale perturbations (k Ñ 8), the force acting on the dust fluid becomes
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arbitrarily large and thus the diffusion timescale tdiff arbitrarily small. This is inconsistent with
the physical reality that the dust fluid can react to gas turbulence only on timescales similar to
or larger than the stopping time ts. Therefore, the gradient diffusion closure (Eq. 5.39) proves
to be non-physical on small scales, smoothing out perturbations too quickly1.
This consideration can become important, e.g., when studying planetesimal formation via the
gravitational collapse of small-scale particle overdensities. For instance, Umurhan et al. (2020)
showed that gradient diffusion suppresses the smallest modes of the streaming instability. In
Sec. 5.5, we will discuss deviations from the strictly diffusive behavior at small scales that resolve
this issue.

The Approach of Klahr & Schreiber (2021)

Klahr & Schreiber (2021) do not employ Reynolds averages or the gradient diffusion hypoth-
esis. Instead, they assume a settling-diffusion equilibrium ansatz, similar to the derivation of
Brownian motion by Einstein (1905). Their dynamical equations read:

Bρd
Bt

`
B

Bxj

`

ρdvj
˘

“ 0 (5.42)

B

Bt
pρdviq `

B

Bxj

ˆ

ρdvivj `
1

3

D

ts
ρdδij

˙

“ ´
ρd
ts

`

vi ´ ui
˘

` ρdgi (5.43)

In these equations, the dust velocity vi represents the sum of the advection and diffusion veloc-
ities. Interestingly, these equations do not contain an explicit diffusion term, instead turbulent
transport is modeled via a pressure-like term in the momentum equation. The equations con-
serve angular momentum and are significantly simpler than the previous model.
As we will demonstrate in Sec. 5.5, the characteristic turbulent transport timescale in this model
is limited from below by the stopping time ts. However, in the small-particle limit (ts Ñ 0),
the particle pressure diverges and the expression must be modified (see Sec. 5.4.4 and Klahr &
Schreiber, 2021, for a more detailed discussion).

5.2.7 The Hinze-Tchen Model

In this section, we briefly review the Hinze-Tchen model, which describes the mixing of particles
embedded in turbulent gas in the absence of external forces (see e.g., Youdin & Lithwick (2007)
or Fan & Chao (1998) for a more detailed review of the Hinze-Tchen model).
The diffusion coefficient D is defined as the time derivative of the mean squared displacement in
the limit of t Ñ 8 (Eq. 5.7). Hinze and Tchen studied the time derivative of the mean squared
displacement at arbitrary times t

Dgptq “

ż t

0
dt1 u1pt1qu1p0q (5.44)

where we define Dg to be the time-dependent diffusion coefficient.
In homogeneous and steady turbulence, the Hinze-Tchen model predicts the time-dependent
diffusion coefficient in gas to read,

Dgptq “ Dg

`

1 ´ e´t{tcorr
˘

(5.45)

1Further complications arise when solving the mean flow equations numerically. We have found the third-order
spatial derivatives of the dust density, in Eq. 5.40, to be challenging to accurately compute when scales in the
dust density become comparable to the computational grid.
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where Dg is the diffusion coefficient in the limit t Ñ 8 as defined in Eq. 5.7.
The motion of particles embedded in the turbulent fluctuations of the gas is described by a
Langevin equation

dv1

dt
“ ´

v1 ´ u1

ts
(5.46)

Assuming the particles are small compared to the smallest turbulence wavelength and are always
trapped inside the same turbulent eddy, the turbulent particle velocity dispersion is related to
the turbulent velocity dispersion of the gas as (Fan & Chao, 1998)

v12 “
tcorr

tcorr ` ts
u12 (5.47)

For small particles (ts ! tcorr), the Hinze-Tchen model predicts the turbulent particle velocity

dispersion to be equal to the dispersion in the gas v12 « u12. For large particles (ts " tcorr), the
turbulent particle dispersion scales inversely to the stopping time 9t´1

s .
We define the turbulence time tt as

tt ” tcorr ` ts (5.48)

and combine Eq. 5.47 with Eq. 5.11 to write the squared particle velocity dispersion as

v12 “
Dg

tt
(5.49)

Equivalently to Eq. 5.45, the Hinze-Tchen model also predicts a time dependent diffusion coef-
ficient Ddptq for particles embedded in the turbulent gas:

Ddptq “
Dg

t2s ´ t2corr

„

t2s

´

1 ´ e´t{ts
¯

´ t2corr

´

1 ´ e´t{tcorr
¯

ȷ

(5.50)

The time-dependent particle diffusion coefficient approaches Dg on timescales t " maxpts, tcorrq
after which it is identical to the diffusion coefficient in the gas.

Interestingly, the Hinze-Tchen model reveals that although the turbulent particle dispersion v12

relies on the particle-gas coupling via the stopping time ts (Eq. 5.49), the particle diffusion
coefficient on long timescales (and in the absence of external forces) remains independent of the
stopping time, and consequently, the particle size (Eq. 5.50). The latter is equal to the diffusion
coefficient of the gasDdpt Ñ 8q “ Dg. This outcome, albeit somewhat counterintuitive, signifies
that large particles weakly coupled to turbulent gas fluctuations do not diffuse less efficiently
than the gas.
The physical reasoning for this result is as follows (Youdin & Lithwick, 2007): For small particles
well-coupled to the turbulent gas fluctuation, the motion of dust is identical to the motion of the
gas and the equality Dd “ Dg is straightforward. In contrast, large particles (ts " tcorr) show a

decrease in their squared turbulent velocity dispersion v12 with an increase in the stopping time
v129t´1

s . Simultaneously, the particle mean-free path lmfp increases with the stopping time ts
(lmfp “ v1ts). As such, these effects cancel out, leading to Dd “ Dg for large particles as well.

5.3 The Turbulent Particle Pressure Model

After having introduced the necessary theoretical background, we now transition to the main
focus of this chapter. In this section, we present the derivation of a novel Eulerian turbulent
dust transport model, starting with the introduction of Favre averaged mean flow equations of
dust dynamics (Sec. 5.3.1) and appropriate turbulence closures (Sec. 5.3.2).
The advantage of Favre averaging over Reynolds averaging is that it removes the turbulent flux
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term from the continuity equation and reduces the number of terms in the averaged momentum
equation by a factor of two2.

5.3.1 Favre-Averaged Mean-Flow Equations

The Favre average is a density-weighted average (Favre, 1965), and we denote it by a tilde ˜:

ṽi ”
ρdvi
ρ̄d

(5.51)

We define new fluctuations with respect to the Favre average

vi “ ṽi ` v2
i (5.52)

and note that the fluctuations v2
i do not necessarily vanish when applying the averaging operator:

v2
i ‰ 0 (5.53)

in contrast to the fluctuations with respect to the Reynolds average (see Eq. 5.33). Only the
density-weighted fluctuations vanish under applying the averaging operator

ρdv
2
i “ 0 (5.54)

as can be seen by replacing v2
i with Eq. 5.52 and using the definition in Eq. 5.51.

Relating the Reynolds-averaged and Favre-averaged velocities using the aforementioned defini-
tions, we obtain:

ṽi “ v̄i ` v˚
i (5.55)

where we have defined the turbulent transport velocity as

v˚
i “

ρ1
dv

1
i

ρ̄d
(5.56)

Next, we decompose the pressureless fluid equations and average them using the Favre decom-
position, yielding a Favre-averaged continuity equation:

Bρ̄d
Bt

`
B

Bxj

`

ρ̄dṽj
˘

“ 0 (5.57)

Compared to the Reynolds averaging procedure, Favre averaging indeed eliminates the turbulent
flux term from the mass conservation equation above.
In the case of the momentum equation, we only decompose the velocity, not the density. For the
interfluid term ρ1

du
1
i, we perform a Reynolds decomposition instead of a Favre decomposition,

as a Favre average would be ill-defined. Making sure not to mix Favre averaged and Reynolds

2In their work, Champney & Cuzzi (1990) studied particle turbulent transport using Favre averages, but
they considered the elimination of the turbulent flux a major drawback of this method. They argued that the
eliminated term is the key feature of compressible two-phase flows, further emphasizing that turbulence should
cause mixing irrespective of a vanishing mean velocity. The authors abandoned the approach, adopting Reynolds
averages instead. As far as we know, Favre averaging has not been used again to study turbulent particle transport
in protoplanetary disks. Importantly, the method presented in this chapter allows for turbulent transport and
mixing, even in the absence of mean velocity.
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averaged quantities, the decomposed momentum equation reads

B

Bt

`

ρdṽi
˘

`
B

Bt

`

ρdv
2
i

˘

`
B

Bxj

´

ρdṽiṽj ` ρdṽiv
2
j ` ρdv

2
i ṽj ` ρdv

2
i v

2
j

¯

“

1

ts

´

ρ̄dūi ` ρ̄du
1
i ` ρ1

dūi ` ρ1
du

1
i

¯

´
1

ts

´

ρdṽi ` ρdv
2
i

¯

(5.58)

to which we then apply the averaging operator:

B

Bt

`

ρ̄dṽi
˘

`
B

Bxj

´

ρ̄dṽiṽj ` ρdv
2
i v

2
j

¯

“
ρ̄d
ts

`

ūi ´ ṽi
˘

`
1

ts
ρ1
du

1
i (5.59)

In this equation, there is one unknown correlation containing dust quantities on the l.h.s. and
one unknown interfluid correlation on the r.h.s., both requiring explicit modeling. It is now
apparent that the Favre-averaged momentum equation (Eq. 5.59) is much simpler than the
Reynolds-averaged momentum equation (Eq. 5.36).

5.3.2 Turbulence Closures

A gradient diffusion closure, as discussed in Sec. 5.2.6, cannot be employed for the Favre-averaged
equations, because the turbulent mass flux does not appear explicitly in the mean-flow equa-
tions(Champney & Cuzzi, 1990). Consequently, the unknown correlations in Eq. 5.59 must be
modeled explicitly.
We first consider the turbulent pressure tensor Pd,ij ” ρdv

2
i v

2
j , a symmetric rank two tensor,

containing correlations of density-weighted velocity fluctuations. Assuming isotropic and homo-
geneous turbulence, we follow Youdin & Lithwick (2007) and Shariff & Cuzzi (2011), and assume

the turbulent pressure tensor to be proportional to the identity matrix Pd,ij “ 1
3ρdv

22
i δij .

Using the definitions from Eqs. 5.32, 5.52 and 5.56, we rewrite the on-diagonal elements of the
turbulent pressure tensor as the sum of three terms

ρdv
22
i “ ρ̄dv

12
i ´ ρ̄dv

˚2
i ` ρ1

dv
12
i (5.60)

The third term on the r.h.s. of Eq. 5.60 is a triple correlation term, which, based on prevalent
arguments in fluid dynamics, is either small or vanishes entirely (see e.g. Blackman & Field,
2003, for an overview of these arguments). For instance, one could apply Gaussian statistics to
show that correlations of odd numbers vanish (as elaborated by Lesieur, 1997).
The second term on the r.h.s. of Eq. 5.60 is generally smaller than the first term because tur-
bulent transport, driven by turbulent velocity dispersion, cannot exceed the velocity dispersion

itself, namely v˚2
i ! v12

i . As such, the term is also negligible. Consequently, the on-diagonal
elements of the turbulent pressure tensor are well-approximated by the product of mean particle
density and the time-averaged velocity fluctuation squared:

Pd,ii «
1

3
ρ̄dv

12
i (5.61)

We then apply the Hinze-Tchen model (Hinze, 1959; Tchen, 1947), and specifically use Eq. 5.49,
to arrive at the explicit closure relation

ρdv
22
i “ ρ̄d

D

tt
(5.62)

in which the turbulent pressure tensor is proportional to the ratio of the diffusion coefficient D
and the turbulence time tt.
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An important caveat is that the velocity v2
i in Eq. 5.62 is measured in a fixed Eulerian frame,

while the Hinze-Tchen formalism is formulated in terms of Lagrangian velocities. Therefore, the
equality in Eq. 5.62 holds strictly only when the distance travelled by a particle during a corre-
lation time tcorr is small compared to the scale of the system itself because at this point Eulerian
and Lagrangian statistics are equivalent (Biferale et al., 1995). Fortunately, this requirement is
already implicitly satisfied by performing the Reynolds/Favre decomposition (see Sec. 5.2.5).
Next, we define the squared turbulent particle velocity dispersion explicitly as

c2d ”
D

tt
(5.63)

and focus on the interfluid correlation ρ1
du

1
i that appears in the Favre-averaged momentum

equation (Eq. 5.59). In the short correlation time limit (tcorr ! ts), particles are loosely coupled
to turbulent fluctuations in the gas, and many turbulent eddies pass over an individual particle
within one stopping time ts. Consequently, in this limit, we expect particle fluid fluctuations to
be entirely uncorrelated to turbulent fluctuations in the gas. Thus, the averaging operator in
the second-order interfluid correlations acts independently on each quantity, i.e.,

ρ1
du

1
i “ ρ1

d ¨ u1
i (5.64)

where the r.h.s. is by definition zero (Eq. 5.33).
In the short stopping time limit (ts ! tcorr), the interfluid correlation does not vanish, and we
expect particles to perfectly couple to the turbulent fluctuations in the gas. Therefore, in this
limit, the relation v1

i “ u1
i holds (Cuzzi et al., 1993), yielding ρ1

du
1
i “ ρ̄dv

˚
i .

We propose a simple closure relation, linearly connecting the two asymptotic cases of the inter-
fluid correlation:

ρ1
du

1
i “

tcorr
tt

ρ̄dv
˚
i (5.65)

The closure relation in Eq. 5.65 has the expected asymptotic properties, namely, ρ1
du

1
i » 0 for

tcorr ! ts and ρ1
du

1
i » ρ̄dv

˚
i for ts ! tcorr.

The set of mass and momentum equations using the new closure relations (given by Eq. 5.62
and Eq. 5.65) read:

Bρ̄d
Bt

`
B

Bxj

`

ρ̄dṽi
˘

“ 0 (5.57)

B

Bt

`

ρ̄dṽi
˘

`
B

Bxj

ˆ

ρ̄dṽiṽj `
1

3
ρ̄dc

2
dδij

˙

“ ´
1

ts
ρ̄d

`

v̄i ´ ūi
˘

´
1

tt
ρ̄dv

˚
i (5.66)

In the system above, Eq. 5.57 represents the mass-conservation equation without source terms,
indicating that a local change in mean density ρ̄d is only governed by the divergence of the total
mass flux ρ̄dṽi. The dynamics of the total mass flux are described by Eq. 5.66, containing the
turbulent pressure term ρ̄dc

2
d that drives the dust momentum transport.

The right-hand side of Eq. 5.66 contains two dissipative terms. The first arises from aerodynamic
drag between the particles and the gas fluid, acting on a timescale equal to the stopping time
ts. Note how the drag term acts on the mean velocities v̄i and ūi, respectively, and not on the
Favre-averaged velocities (ṽi, ũi). The second dissipative term dampens the transport effects
caused by the turbulent particle velocity dispersion on a timescale tt, which is generally longer
than the stopping time (tt ě ts). Only when ts " tcorr, the timescales are almost identical
(tt » tcorr). On timescales significantly shorter than tt, the turbulent pressure term is the only
relevant term for particle dynamics, a regime known as the ballistic regime (Taylor, 1920, in
contrast to the diffusive regime on long timescales).
It is crucial to note that the system of Eq. 5.57 and Eq. 5.66 includes three different mean
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particle velocities, the ensemble-averaged velocity v̄i, the turbulent transport velocity v˚
i , and

the density-weighted mean velocity ṽi. While these velocities are related via Eq. 5.55, there are
more variables than equations, and the system in its most general form is not yet closed. We
will address this issue in the following section.

5.3.3 Three-Equation Formalism

After highlighting that the system in the form of Eq. 5.57 and Eq. 5.66 is not yet closed, we
address this issue in this section.
We focus on the momentum equation and use Eq. 5.55 to rewrite the first term of Eq. 5.66

B

Bt

`

ρ̄dṽi
˘

“
B

Bt

`

ρ̄dv̄i
˘

`
B

Bt

`

ρ̄dv
˚
i

˘

(5.67)

and recognize that the local rate of change of the total momentum ρ̄dṽi can be written as
the sum of the local rate of change of the mean momentum ρ̄dv̄i and the mean turbulent flux
ρ̄dv

˚
i . Motivated by this insight, we aim to decompose Eq. 5.66 into two separate (but coupled)

momentum equations, each describing the dynamics of either the mean momentum ρ̄dv̄i or the
mean turbulent flux ρ̄dv

˚
i . In other words, we aim to find two equations

B

Bt

`

ρ̄dv̄i
˘

“ ... (5.68)

and
B

Bt

`

ρ̄dv
˚
i

˘

“ ... (5.69)

such that the sum of Eq. 5.68 and Eq. 5.69 equals Eq. 5.66.
To find these equations, we consider two special cases. The first case is the limit of vanishing
turbulence (D Ñ 0). In this limit, v˚

i “ 0 holds, thus Bρ̄dv
˚
i {Bt “ 0, and Eq. 5.66 can be written

as
B

Bt

`

ρ̄dv̄i
˘

`
B

Bxj

`

ρ̄dv̄iv̄j
˘

“ ´
1

ts
ρ̄d

`

v̄i ´ ūi
˘

(5.70)

Thus, we find an expression for Eq. 5.68 in this special limit.
We compare this to a second case in which turbulence is present (D ‰ 0) and the mean gas
velocity is zero (ū “ 0). Additionally, we assume the stopping time to be short (ts ! t) such
that in this case v̄i “ 0 holds, thus Bρ̄dv̄i{Bt “ 0, and Eq. 5.66 simplifies to

B

Bt

`

ρ̄dv
˚
i

˘

`
B

Bxj

ˆ

ρ̄dv
˚
i v

˚
j ` δij

1

3
ρ̄dc

2
d

˙

“ ´
1

tt
ρ̄dv

˚
i (5.71)

Thus, we have found the functional form of Eq. 5.69 in this special case.
Next, we aim to find the appropriate expressions for a general case. As mentioned above, we also
require the sum of Eq. 5.68 and Eq. 5.69 to equal Eq. 5.66 for a general case. We note that the
sum of Eq. 5.70 and Eq. 5.71 does not equal Eq. 5.66 but is missing two terms: B{Bxjpρ̄dv̄iv

˚
j q

and B{Bxjpρ̄dv
˚
i v̄jq. These terms vanish in the two aforementioned special cases, thus, we cannot

yet assign them unambiguously to either Eq. 5.70 or Eq. 5.71.
However, we argue that the only possibility to ensure that the sum of Eq. 5.70 and Eq. 5.71
is equal to Eq. 5.66, while at the same time ensuring Galilean invariance and momentum con-
servation of each equation individually, is to assign the term B{Bxjpρ̄dv̄iv

˚
j q to Eq. 5.70, and to

assign term B{Bxjpρ̄dv
˚
i v̄jq to Eq. 5.71.
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Consequently, the general form of the two decomposed momentum equations is the following:

B

Bt

`

ρ̄dv̄i
˘

`
B

Bxj

´

ρ̄dv̄i ¨
`

v̄j ` v˚
j

˘

¯

“ ´
1

ts
ρ̄d

`

v̄i ´ ūi
˘

(5.72)

B

Bt

`

ρ̄dv
˚
i

˘

`
B

Bxj

ˆ

ρ̄dv
˚
i ¨

`

v̄j ` v˚
j

˘

` δij
1

3
ρ̄dc

2
d

˙

“ ´
1

tt
ρ̄dv

˚
i (5.73)

It is straightforward to show that the sum of Eq. 5.72 and Eq. 5.73 is indeed equal to Eq. 5.66.
Moreover, both transport terms can be written as a divergence, and thus do not contribute
to the non-conservation of momentum. Note, Eq. 5.72 and Eq. 5.73 both have a dissipative
term on their right-hand side. Thus, neither equation by itself is momentum-conserving. When
we discuss the turbulent gas equations in Sec. 5.4.1, we will show that both dissipative terms
also appear in the gas momentum equations (with opposite sign), thus ensuring momentum
conservation in the full system.
Including the continuity equation in the following form

Bρ̄d
Bt

`
B

Bxj

´

ρ̄d
`

v̄j ` v˚
j

˘

¯

“ 0, (5.74)

the system of Eq. 5.72, Eq. 5.73 and Eq. 5.74 now represents a closed system.
In this three-equation formalism, Eq. 5.72 describes the dynamics of the mean particle momentum
ρ̄dv̄i. It contains the explicit drag term, and in the presence of external forces, would also contain
a gravity term. In contrast, Eq. 5.73 describes the dynamics of the turbulent mass flux ρ̄dv

˚
i .

It includes a turbulent pressure term that drives turbulent transport via a pressure gradient
force with the turbulent speed cd. The dissipative term on the r.h.s. of Eq. 5.73 reestablishes
equilibrium flow over a timescale tt.
It is now apparent that the turbulent particle pressure model, as formulated above, permits
non-equilibrium turbulent particle transport via an additional transport equation (Eq. 5.73), in
other words, it allows for non-local transport effects.
In the following section, we will discuss the properties of the turbulent particle pressure model
and compare it to the classical diffusion approaches.

5.4 Applications

After deriving a novel model for turbulent particle transport, we study its applications. First,
to simple illustrative examples in Sec. 5.4.2, and then to protoplanetary disks in Sec. 5.4.3. For
this, we first need to explicitly consider the turbulent gas background, which we will discuss in
Sec. 5.4.1.

5.4.1 Including Turbulent Gas Dynamics

In this discussion of gas dynamics, we consider a locally isothermal gas fluid in local thermody-
namical equilibrium (LTE), modeled by the set of locally isothermal Euler equations, given by
(in the absence of external forces)

Bρg
Bt

`
B

Bxj

`

ρguj
˘

“ 0 (5.75)

B

Bt
pρduiq `

B

Bxj

`

ρguivj
˘

`
B

Bxi

`

ρgc
2
s

˘

“ ´
ρd
ts

`

ui ´ vi
˘

(5.76)
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These equations are the continuity equation (Eq. 5.75) and the momentum equations (Eq. 5.76).
They neglect the effects of molecular viscosity, which is a valid assumption for turbulent pro-
toplanetary disks (Shu, 1992). The locally isothermal equation of state eliminates the need for
an energy equation, simplifying the analysis. The term on the r.h.s of Eq. 5.76 describes the
exchange of momentum with the dust via aerodynamic drag, i.e., the back reaction.
Analogous to the procedure in Sec. 5.3.1, we formulate a set of mean-flow equations from
Eqs. 5.75 and 5.76 using Favre-averages:

Bρ̄g
Bt

`
B

Bxj

`

ρ̄gũi
˘

“ 0 (5.77)

B

Bt

`

ρ̄gũi
˘

`
B

Bxj

´

ρ̄gũiũj ` ρgu2
i u

2
j

loomoon

I

¯

`
B

Bxi

`

ρgc
2
s

˘

“ ´
ρ̄d
ts

´

ūi ´ ṽi

¯

´
1

ts
ρ1
du

1
i

loomoon

II

(5.78)

Notably, the averaged continuity equation (Eq. 5.77) is formally equivalent to the instantaneous
continuity equation (Eq. 5.75) with the instantaneous variables replaced by the averaged vari-
ables (ρg, ui Ñ ρ̄g, ũi). The source terms on the r.h.s. of Eq. 5.78 are identical to the source term
of Eq. 5.59 (multiplied by ´1), indicating that, even though momentum is exchanged between
the gas and the dust, momentum is globally conserved.
Adopting the same closure approach as for dust, we use the closure relation of Eq. 5.65 for term
II in Eq. 5.78 and recognize the turbulent pressure tensor Pg,ij “ ρgu2

i u
2
j in term I. We further

decompose the turbulent pressure tensor into a traceless and an isotropic tensor

Pg,ij “ Rij ` ptδij (5.79)

Here, the isotropic turbulent pressure pt is defined as

pt “ ρgu22 (5.80)

and the traceless Reynolds tensor as

Rij “ ρgu2
i u

2
j ´ ptδij . (5.81)

Incorporating these definitions, we rewrite the mean-flow gas momentum equation as follows:

B

Bt

`

ρ̄gũi
˘

`
B

Bxj

`

ρ̄gũiũj ` Rij

˘

`
B

Bxi

`

ρ̄gc
2
s ` pt

˘

“ ´
ρ̄d
ts

`

ūi ´ v̄i
˘

`
1

tt
ρ̄dv

˚
i (5.82)

Analogous to Sec. 5.3.2, we could now use the Hinze-Tchen formalism and Eq. 5.11 to rewrite
the isotropic turbulent pressure pt in terms of the diffusion coefficient D and the correlation
time tcorr. However, assuming subsonic turbulence as prevalent in protoplanetary disks (Hughes
et al., 2011; Guilloteau et al., 2012; Flaherty et al., 2015, 2018; Teague et al., 2016), the turbu-
lent pressure is vanishingly small compared to the thermal pressure pt ! ρ̄gc

2
s. Consequently,

we safely neglect the isotropic turbulent pressure in Eq. 5.78 (ρ̄gc
2
s ` pt « ρ̄gc

2
s).

Next, we need to specify a turbulence model for the Reynolds tensor Rij . Among the numerous
models available in fluid dynamics literature, the eddy viscosity model, also known as the Boussi-
nesq hypothesis (see e.g. Champney & Cuzzi, 1990), is frequently used in the protoplanetary disk
community. This model treats turbulent stresses in gas as an effective turbulent viscosity. The
viscous stress tensor in Cartesian coordinates reads (e.g. Shu, 1992)

Rij “ ρgν

ˆ

Bui
Bxj

`
Buj
Bxi

´
2

3
δij∇ ¨ u

˙

(5.83)
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and is parametrized by the turbulent viscosity ν, typically parametrized using the α-description
of Shakura & Sunyaev (1973):

ν “ αcshg (5.84)

We then use the gradient diffusion hypothesis to close the last remaining unknown correlation
term. Specifically, we write

ρ1
gu

1
i “ ´D

B

Bxi
ρg (5.85)

such that we can use Eq. 5.85 and the relation between the turbulent mass flux and the Favre
average (analogous to Eq. 5.55 and Eq. 5.56 for dust), to write the mean gas velocity ūi as
follows:

ūi “ ũi ´
D

ρg

B

Bxi
ρg. (5.86)

Plugging Eq. 5.86 into Eq. 5.82, we rewrite the mean-flow equation of the gas momentum as
follows:

B

Bt

`

ρ̄gũi
˘

`
B

Bxj

`

ρ̄gũiũj ` σij
˘

`
B

Bxi

`

ρ̄gc
2
s

˘

“ ´
ρ̄d
ts

`

ũi ´ v̄i
˘

`
1

tt
ρ̄dv

˚
i ´

D

ts

ρ̄d
ρ̄g

B

Bxi
ρ̄g (5.87)

The above equation now only contains one explicit gas velocity variable (ũi).
The full two-fluid system of equations (gas+dust) then reads

Bρ̄g
Bt

`
B

Bxj

`

ρ̄gũi
˘

“ 0 (5.77)

B

Bt

`

ρ̄gũi
˘

`
B

Bxj

`

ρ̄gũiũj ` σij
˘

`
B

Bxi

`

ρ̄gc
2
s

˘

“ ´
ρ̄d
ts

`

ũi ´ v̄i
˘

`
1

tt
ρ̄dv

˚
i ´

D

ts

ρ̄d
ρ̄g

B

Bxi
ρ̄g (5.87)

Bρ̄d
Bt

`
B

Bxj

´

ρ̄d
`

v̄j ` v˚
j

˘

¯

“ 0 (5.74)

B

Bt

`

ρ̄dv̄i
˘

`
B

Bxj

´

ρ̄dv̄i ¨
`

v̄j ` v˚
j

˘

¯

“ ´
1

ts
ρ̄d

`

v̄i ´ ũi
˘

`
D

ts

ρ̄d
ρ̄g

B

Bxi
ρ̄g (5.88a)

B

Bt

`

ρ̄dv
˚
i

˘

`
B

Bxj

ˆ

ρ̄dv
˚
i ¨

`

v̄j ` v˚
j

˘

` δij
1

3
ρ̄dc

2
d

˙

“ ´
1

tt
ρ̄dv

˚
i (5.88b)

and consists of a total of eleven equations describing the dynamics of eleven unknowns (ρ̄g, ρ̄d,
ũi“1,2,3, v̄i“1,2,3, v

˚
i“1,2,3) and, thus, is a closed system of equations.

The equations for gas are the continuity equation (Eq. 5.77) and the momentum equations
(Eq. 5.87) which now looks like the Navier-Stokes equation with three additional terms account-
ing for the interaction with the dust. The dust continuity equation (Eq. 5.74) contains two mass
flux, the mean mass flux ρ̄dv̄i, and the turbulent mass flux ρ̄dv

˚
i , that govern the local change

of the mean gas density ρ̄d. The equation describing the dynamics of the mean mass flux ρ̄dv̄i
(Eq. 5.88a) looks like the pressureless momentum equation with which we started in Eq. 5.4, but
with the instantaneous velocity vi replaced by the mean velocity v̄. However, it contains a new
transport term on the left-hand side and a new term accounting for turbulent flows of the gas on
the right-hand side. From the transport term ρ̄dv̄i ¨

`

v̄j ` v˚
j q in Eq. 5.88a, it becomes apparent

that turbulence can transport mean momentum via the turbulent velocity component v˚
j , which

is the key distinction compared to the classical gradient diffusion model. Lastly, Eq. 5.88b is
a new additional momentum equation that describes the dynamics of the turbulent mass flux
ρ̄dv

˚
i . It contains the turbulent pressure term ρ̄dc

2
d that drives the turbulent transport, and a

term ´ρ̄dv
˚
i {tt that acts to dissipate any directed turbulent transport. Note, in Eq. 5.88a, we

used Eq. 5.86 to rewrite the gas velocity in the drag term, which is different from Eq. 5.72.
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External forces, when present, would appear in Eq. 5.87 and in Eq. 5.88a.
The two-fluid system above is Galilean invariant, and it conserves total momentum (angular
and linear) globally.

5.4.2 Turbulent Particle Transport Beyond Diffusion

Before we discuss the system in the presence of gravity, we discuss a simple example in the
absence of external forces that illustrates the main difference between the turbulent particle
pressure model and gradient diffusion.
We consider a dust distribution in a static gas background (ũi “ 0) and a small dust-to-gas
ratio (ρd{ρg ! 1) such that the static equilibrium in gas is not affected by the motion of the
dust. Further, we consider a quasi-steady state of the dust in force balance, such that the source
terms in Eq. 5.88a and in Eq. 5.88b respectively cancel each other.
The conditions for force balance in Eq. 5.88a is

ρ̄dv̄i “ D
ρ̄d
ρ̄g

B

Bxi
ρ̄g (5.89)

This result illustrates that the dust couples to the advection flow of the gas such that we find
a mean dust flow against the mean turbulent gas flow v̄i “ ūi “ ´u˚

i , where the last equality
follows from ũi “ 0.
The condition for force balance in Eq. 5.88b reads (assuming a constant diffusion coefficient D)

ρ̄dv
˚
i “ ´D

B

Bxi
ρ̄d ´ Dρ̄d

B

Bxi
ln t´1

t (5.90)

The Eq. 5.90 describes the turbulent dust mass flux. In the first term on the r.h.s, we immediately
recognize the gradient diffusion flux from Eq. 5.39. The second term on the r.h.s. is a novel
contribution, predicting directed turbulent transport in the direction of increasing values of tt

3.
We use Eq. 5.55 to combine the equilibrium flux from Eq. 5.89 and that from Eq. 5.90 to arrive
at the total dust mass flux:

ρ̄dṽi “ ´Dρg
B

Bxi

ρ̄d
ρ̄g

´ Dρ̄d
B

Bxi
ln t´1

t (5.91)

Note, the first term on the r.h.s. now contains the gradient of the dust-to-gas ratio.
We conclude that the first term of the turbulent transport flux ρ̄dv

˚
i in Eq. 5.90 is given solely by

the absolute gradient of the dust density. Thus, any derivation considering the particle distri-
bution in isolation will arrive at this functional form of the turbulent transport term. However,
in this quasi-steady state, the dust couples to the flow of the gas via the explicit drag term,
introducing another transport term in the direction of gas density gradients (see Eq. 5.89). The
combination of these two effects results in directed transport against gradients of dust-to-gas ra-
tio, as predicted by Eq. 5.91. Note, in a uniform background (ρg “ const., tt “ const.), Eq. 5.91
simplifies to the classical gradient diffusion flux of Eq. 5.39.
Interestingly, in a non-uniform background, there is a novel transport term arising from gradients
of tt in Eq. 5.91, that is not predicted by any of the gradient diffusion transport models. There-
fore, we now aim to confirm this prediction by means of a direct comparison to the Lagrangian
turbulence model introduced in Sec. 5.2.3. Specifically, we perform a numerical experiment
and study the turbulent spreading of a population of dust grains in a nonuniform, but static
(ūi “ v̄i “ 0) gas background.
We set up a numerical experiment such that the gas density in the background is constant, to

3Defining an entropy in the dust fluid as s ” lnDt´1
t , the second term in Eq. 5.90 can also be interpreted

transport across an entropy gradient.
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eliminate possible contributions from the first term on the r.h.s. of Eq. 5.91. However, we still
allow the stopping time ts to vary in space, e.g., via variations in the speed of sound. Note,
we do not discuss the possible physical feasibility of such a setup here since our experiment is
purely numerical in nature.
In our first fiducial example, we set the correlation time and the stopping time to constant
values (tcorr “ 0.01 and ts “ ts,0 “ 1 in arbitrary units) such that the stopping time ts is long
compared to the correlation time tcorr and consequently tt » ts, and the background is modeled
to be uniform. Further, we set the diffusion coefficient to a constant value of D “ 10´3 and
numerically solve the stochastic equations of motion (Eqs. 5.1, 5.16, 5.17a, and 5.17b) for a
number of N “ 2 ¨ 103 particles, initially at rest at x “ 0, with an explicit Euler scheme and a
numerical timestep ∆t “ 0.01 ¨ tcorr.
Because the stopping time ts is constant in this first setup, we do not expect a systematic drift,
only symmetric diffusive spreading of the particle population. We confirm this by showing the
temporal evolution of the particles in the reference setup in the upper subplot of Fig. 5.1. In the
figure, gray background colors show, for each time t, the normalized kernel density estimate of
the particle positions in x-t-space. The solid red line shows the mean of the distribution xxy at
each point in time, and the red-shaded region covers the region within one standard deviation
of the mean value. Over time, the distribution diffusively spreads but remains centered around
x “ 0. This is the expected effect of random turbulent motions of particles in a uniform back-
ground (Visser, 1997).
In our second example, we allow the stopping time ts to vary depending on the particle position,
to model the motion of particles through a nonuniform gas background. We choose the stopping
time to exponentially increase towards increasing values of x as ts “ ts,0 expp3xq, such that if
the solution indeed follows Eq. 5.90, the expected systematic drift velocity is independent of x.
We show the solution with the varying stopping time in the lower subplot of Fig. 5.1 where we
plot the mean particle position with a solid blue line and shade the region within one standard
deviation in blue color. We find the width of the particle distribution to spread diffusively, as
in the example with a uniform background, but the mean of the distribution xxy drift towards
increasing values of the turbulent timescale tt » ts with a systematic and constant velocity
v “ D∇ ln ts. The mean of the particle distribution coincides with the green dashed line, which
represents the prediction of Eq. 5.90.
We conclude that, in a nonuniform gas background with isotropic and homogeneous turbulence
(D “ const., tcorr “ const.), and for large particles such that tt » ts, there exists systematic
transport of particles towards increasing values of the stopping time ts as described by Eq. 5.90.
In other words, in this regime, the turbulent flux is non-Fickian, an effect that is not captured
by classical gradient diffusion models.
In the following section, we focus on applications of the model to protoplanetary disks.

5.4.3 The Vertical Steady-State Disk Profile Revisited

In this section, we apply the turbulent particle pressure model to find an analytical solution
for the vertical equilibrium profile of a protoplanetary disk. For this, we solve the system
of equations along dimension z under the influence of the vertical component of the stellar
gravitational field gz “ ´Ω2z. For the system to be static, the time derivatives and also the
velocities vanish ṽz “ ũz “ 0. Note that a static solution only requires the Favre-averaged
velocities to vanish, such that the net flux is zero (ρ̄dṽz “ 0) and the mean and turbulent fluxes
cancel each other out (ρ̄dv̄z ` ρ̄dv

˚
z “ 0), but it does not necessarily require v̄z or v˚

z to vanish.
The particle mass conservation equation is then fulfilled trivially, and the system of particle
equations that we must solve is

0 “ ´
1

ts
ρ̄dv̄z `

D

ts

ρ̄d
ρ̄g

B

Bz
ρ̄g ´ ρ̄dΩ

2z (5.92a)
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Figure 5.1: Space-time plot of the evolution of N “ 2 ¨ 103 individual (Lagrangian) particles,
governed by the stochastic equation of motion (Eqs. 5.16, 5.17a, 5.17b) in the absence of external
forces. The gray background colors represent the normalized kernel density estimation of the
particle distribution in x-t-space. All the particles are initially at rest at x “ 0. The solid lines
show, for each time t, the mean of the distribution xxy , the colored shaded region covers a region
within one standard deviation of the mean value. The correlation time is kept small compared
to the stopping time (tcorr “ 0.01q. Top: Particles move through a uniform gas background such
that the stopping time of the particles is constant in space ts,0 “ 1 (in arbitrary units). The
diffusively spreading distribution remains centered around x “ 0. Bottom: The particles move
through a nonuniform gas background in which the stopping time ts increases exponentially in
positive x-direction. As a result, the entire distribution drifts with a systematic and constant
velocity v “ D∇ ln ts towards increasing values of the stopping time (green dashed line) as
predicted by Eq. 5.91. The mean of the distribution xxy is shown with a solid blue line and
follows the green dashed line. For a visual comparison, the mean and standard deviation of the
example in a uniform background is plotted with red dashed lines also in the bottom subplot.
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B

Bz

ˆ

D

tt
ρ̄d

˙

“ ´
1

tt
ρ̄dv

˚
z (5.92b)

From ṽz “ 0 and Eq. 5.55, it follows that v̄z “ ´v˚
z . Without yet making use of the fact that tcorr

and D are constant, we reduce the system of Eq. 5.92a and Eq. 5.92b to the following partial
differential equation, which describes the vertical dust equilibrium profile of a protoplanetary
disk:

B

Bz

„

ln

ˆ

D

tt

ρd
ρg

˙ȷ

“ ´
Ω2ts
D

z (5.93)

Assuming that the vertical profile of the gas background is Gaussian with scale height hg, the
solution to Eq. 5.93 becomes

ρdpzq “ ρd,0

„

1 `
ts,mid

tcorr
exp

ˆ

z2

2h2g

˙ȷ

¨ exp

„

´
Ωts,mid

δ

ˆ

exp

ˆ

z2

2h2g

˙

´ 1

˙

´
z2

2h2g

ȷ

(5.94)

where ts,mid is the stopping time evaluated at the disk midplane.
For subsonic turbulence (D{tcorr ! c2s), we find the difference between Eq. 5.94 and Eq. 5.24
to be vanishingly small. For a turbulent velocity dispersion, which is comparable to the sound
speed (u12 “ D{tcorr Á c2s), we find the novel factor 1 ` ts{tcorr in Eq. 5.94 to locally increase
the dust density in regions where the stopping time is comparable or larger than the correlation
time. This increase is due to the transition from drag dominated to inertia-dominated dust
dynamics in the disk atmosphere.
In Fig. 5.2, we plot the vertical profile of the dust-to-gas ratio calculated with Eq. 5.94 and a
Gaussian gas profile with scale height h2g “ pc2s `D{tcorrq{Ω2 in solid lines for different values of
the diffusivity δ and tcorrΩ “ 1, and Stmid “ 0.1. For comparison, we also calculate the profile
with Eq. 5.24 in dashed lines.
The different values of the diffusivity correspond to a turbulent velocity dispersion u12{c2s “

0.01, 0.1, 1, 10. The two solutions differ only when the turbulent velocity dispersion approaches
the speed of sound u12 Á c2s, in regions where dust grains decouple from turbulent eddies. For
subsonic turbulence u12 ! c2s, which is expected in protoplanetary disks, the two solutions are
indistinguishable.
Focusing on subsonic turbulence, in the limit of small particles pSt Ñ 0q, the vertical scale
height of the dust hd approaches the scale height of the gas (hd Ñ hg) and thus fulfills the good
mixing condition.
Close to the disk midplane (z ! hg), the vertical static equilibrium profile (Eq. 5.94) is approx-
imately Gaussian. We Taylor expand Eq. 5.94 up to the second order in z, and write for small
values of z (z ! hg) the ratio of the scale heights as:

h2d
h2g

«
δ

δ ` St
(5.95)

where we have assumed subsonic turbulence D{tcorr ! c2s, which is equivalent to the relation
δ ! Ωtcorr. We highlight that the correlation time tcorr does not appear in Eq. 5.95 as a result
of assuming subsonic turbulence.
To our knowledge, we present for the first time, a self-consistent derivation of the vertical settling-
diffusion equilibrium profile that correctly captures the small and large particle limits, without
the use of a heuristic argument.
Next, we derive an effective vertical diffusion coefficient Deff

d,z analogous to Carballido et al.

(2011). We assume the dust scale height to be small compared to the gas scale height (hd ! hg),
such that the dust settles into a thin region close to the midplane in which the gas density is
basically constant in the vertical direction. From Eq. 5.86, it then follows that ūz “ 0 and, we
can safely neglect the interactions of the dust with the gas via the explicit drag term that would



5.4 Applications 71

−4 −2 0 2 4
z/hg

10−6

10−5

10−4

10−3

10−2

10−1

100

d
u

st
-t

o-
ga

s
ra

ti
o

(ρ
d
/ρ

g
)

δ = 10−2

δ = 10−1
δ = 100

δ = 101

Figure 5.2: Vertical steady-state profile of the dust-to-gas ratio. The solid lines represent Eq. 5.94
for Stmid “ 0.1 and tcorrΩ “ 1, and different values of the diffusivity δ. The vertical gas
profile is assumed Gaussian and the surface density ratio is 1:100. The dashed lines follow the
gradient diffusion solution of Eq. 5.24. The different values of the diffusivity correspond to
u12{c2s “ 0.01, 0.1, 1, 10 where u12 “ D{tcorr represents the squared turbulent velocity dispersion.
The two solutions differ only when the turbulent velocity dispersion approaches the speed of
sound u12 Á c2s, in regions where dust grains decouple from turbulent eddies. For subsonic
turbulence u12 ! c2s, the two solutions are indistinguishable.

be present in a nonuniform gas background. From the condition hd ! hg and Eq. 5.95, it follows
that

h2d
h2g

“
δ

St
(5.96)

We then set the diffusion timescale tdiff (Eq. 5.13) across the dust scale height, i.e. tdiff “ h2d{Deff
d,z,

equal to the vertical settling time tsett. To estimate the settling time, we note that large particles
(St " 1) undergo damped vertical oscillation with a settling time tsett “ St{Ω. Tightly coupled
particles (St ! 1) obtain terminal velocity and settle in a time tsett “ 1{ΩSt. Combining these
two results gives (Youdin & Lithwick, 2007):

tsett «
St

Ω
`

1

ΩSt
(5.97)

Combining Eq. 5.96 and Eq. 5.97 to calculate an effective diffusion coefficient gives

Deff
d,z “

D

1 ` St2
(5.98)

in agreement with Carballido et al. (2011) and Youdin & Lithwick (2007).
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Figure 5.3: This figure illustrates the turbulent decay of a harmonic perturbation to the dust
density ρd, as analyzed in the linear perturbation analysis in Sec. 5.5, in arbitrary units. The
perturbation is characterized by its amplitude δρ0, which is small compared to the background,
δρ0 ! ρd,0. Its wavenumber k is related to the wavelength of the perturbation as λ “ 2πk´1.
The blue line represents the initial state of the perturbation, while the gray lines represent
the decaying solutions at every half e-folding time, τe. An effective diffusion coefficient Deff

can be calculated as the inverse of the product of the e-folding time τe, and the square of the
perturbation’s wavenumber, Deff “ τ´1

e k´2. An effective diffusion coefficient can be calculated
for any decaying perturbation, but only in a purely diffusive solution Deff is independent of the
wavenumber k.

5.4.4 Large Grains Limit

In the limit of large grains (ts " tcorr), the two momentum equations, Eq. 5.88a and Eq. 5.88b,
can be combined to one equation which reads

B

Bt

`

ρ̄dṽi
˘

`
B

Bxj

ˆ

ρ̄dṽiṽj `
1

3

D

ts
ρ̄dδij

˙

“ ´
1

ts
ρ̄d

`

ṽi ´ ūi
˘

`
D

ts

ρ̄d
ρ̄g

B

Bxi
ρ̄g. (5.99)

In general, Eq. 5.88a and Eq. 5.88b can always be combined to give Eq. 5.66, but only in this
limit of large grains, the two velocities v̄i and v˚

i can be eliminated and Eq. 5.99 can be written
in terms of ṽi only. Consequently, a second dust momentum equation is not needed anymore for
the system of Eq. 5.57 and Eq. 5.99 to be closed, and the system of equations is simplified.
In a uniform gas background (ρg “ const.), the second term on the r.h.s of Eq. 5.99 vanishes
and the equation is formally identical to Eq. 5.43. Therefore, the model of Klahr & Schreiber
(2021), can be interpreted as the large-grain limit of our more general model.

5.5 Linear Perturbation Analysis

We perform a linear perturbation analysis to investigate the linear dynamics of our novel tur-
bulent transport model and to identify key characteristics of the turbulent transport model
derived in this work. We first study a one-dimensional problem in Sec. 5.5.1, before we focus on
a two-dimensional and axisymmetric disk in Sec. 5.5.3.
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Figure 5.4: Decay rates ´iωpkq of harmonic perturbations in one dimension in the absence of
external forces, i.e., the solution to the dispersion relation in Eq. 5.107. Shown here is a case
tcorr ! ts such that tt « ts. Left: Shows the real part of the decay rates (Rer´iωpkqs) normalized
by the factor Dk2, such that diffusive solutions are represented by lines with slope zero. The
black solid lines represent the two exact solutions of Eq. 5.108. The gray solid line represents the
third exact solution in Eq. 5.110. For k2 " k2c , there exists no diffusive solution. The gray dotted
line traces the diffusive solution (Eq. 5.111) that coincides with the exact solution on small scales
(k2 ! k2c ). The gray dash-dotted line represents the solution in Eq. 5.114. Right: Imaginary
part of the decay rate (Imr´iωs) normalized by a factor cdk. A non-zero value represents a
traveling wave solution, and a zero-slope line represents solutions traveling at the same speed.
The black solid lines show the exact solutions to Eq. 5.107. The gray dot-dashed line follows the
two analytic solutions of Eq. 5.114, valid for k2 " k2c . For small wave numbers (k2 ! k2c ), these
solutions are not travelling (Imriωs “ 0), as predicted by the explicit solutions in Eq. 5.112 and
Eq. 5.113.
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5.5.1 One Dimension Without External Forces

We model dust in a turbulent and uniform gaseous background (with constant ρ̄g) in one di-
mension along the x-axis. We assume the gas to be static (ũ “ 0). From Eq. 5.86, it then
follows that ū “ 0 and consequently u˚ “ 0. As always in this work, we assume the turbulence
to be characterized by a constant diffusion coefficient D and constant correlation time tcorr.
We describe the dust fluid using the linearized forms of Eq. 5.57 and Eq. 5.66 and assume the
dust-to-gas ratio to be small ρ̄d{ρ̄g ! 1, such that the dust does not affect the gas. We will
introduce small harmonic perturbations to the linearized dust density and velocity equations on
top of a static background distribution.
The set of linearized equations is as follows:

Bρ̄d
Bt

` ρ̄d
B

Bx
pv̄ ` v˚q “ 0 (5.100)

Bv̄

Bt
“ ´

v̄

ts
´

D

ttρ̄d

Bρ̄d
Bx

(5.101)

Bv˚

Bt
“ ´

v˚

tt
(5.102)

We describe the perturbed dust density as ρ̄d “ ρ̄d,0 ` δρd, where the perturbation δρd is small
compared to the background ρ̄d,0. This perturbation to the dust density is illustrated in Fig.
5.3. We also introduce a perturbation to the turbulent transport velocity v˚ “ δv˚ and to the
mean velocity v̄ “ δv̄. The perturbations are harmonic and have the form

δρd “ δρ0e
ipωt`kxq (5.103)

δv̄ “ δv̄0e
ipωt`kxq (5.104)

δv˚ “ δv˚
0e

ipωt`kxq (5.105)

where ω is the frequency and k is the wavenumber of the perturbations.
Plugging in the perturbed quantities into the linearized equations, and considering at most first-
order terms, we find the following equations that we represent as a three-dimensional matrix
equation as follows:

iω

¨

˝

δρd
δv̄
δv˚

˛

‚“

¨

˝

0 ´ikρ̄d,0 ´ikρ̄d,0
0 ´t´1

s 0
´ik D

ttρ̄d,0
0 ´t´1

t

˛

‚

¨

˝

δρd
δv̄
δv˚

˛

‚ (5.106)

The dispersion relation of the equation above reads
´

iω
`

iω ` t´1
t

˘

` Dk2t´1
t

¯

piω ` t´1
s q “ 0 (5.107)

which has two symmetric solutions

iω1,2 “ ´
1

2tt

˜

1 ˘

d

1 ´ 4
k2

k2c

¸

(5.108)

where we have defined the characteristic wavenumber kc as

k2c ” D´1t´1
t (5.109)
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and a third solution
iω3 “ ´t´1

s (5.110)

A solution to the dispersion relation iω is called the growth rate of the perturbation. Conversely,
´iω is called the decay rate. In Fig. 5.4, we plot the decay rates ´iωpkq, i.e., the solutions to
Eq. 5.107, as solid lines for the special case tcorr ! ts.

Dynamics on Large Scales (small wave numbers k2 ! k2c)

We analytically study the growth rates on large scales, i.e., small wave numbers k2 ! k2c , where
the three solutions to the dispersion relation in Eq. 5.107 are real-valued and negative and can
be approximated by

iω1 “ ´Dk2 (5.111)

iω2 “ ´t´1
t (5.112)

iω3 “ ´t´1
s (5.113)

The three growth rates represent decaying solutions because they are all real-valued and negative.
We plot these approximate solutions as gray discontinuous lines as a function of the wave number
k in Fig. 5.4 on top of the exact solutions.

Dynamics on Small Scales (large wave numbers k2 " k2c)

On small spatial scales, i.e., for large wave numbers, the first two solutions to the dispersion
relation in Eq. 5.107 can be approximated by

iω1,2 “ ´
1

2tt
˘ ikcd (5.114)

We plot the above growth rate as a gray dot-dashed line as a function of the wave number k
in Fig. 5.4. It coincides with the exact solution (black line) for k2 " k2c . The imaginary part
of Eq. 5.114 indicates that the eigensolutions are traveling waves that propagate at speed cd “
a

D{tt. The speed of propagation is identical to the value of the turbulent particle dispersion
(Eq. 5.63). This traveling wave solution was first discussed in Klahr & Schreiber (2021), but
their model predicts a non-physical supersonic wave speed for short stopping times ts ă D{c2s
and thus must be modified in their model. In this model, the propagation speed cd does never
exceed the turbulent gas velocities, even for short stopping times (see Eq. 5.63).
We write the real parts of the eigensolutions that correspond to the first two eigenvalues in
Eq. 5.114 explicitly as

Repδρdq “ ˘δv˚
0

ρ̄d,0
D

cospkx ˘ kcdtqe
´t{2tt (5.115)

Repδv˚q “ δv˚
0 cospkx ˘ kcdtqe

´t{2tt (5.116)

Repδv̄q “ 0 (5.117)

These expressions indeed describe waves traveling at speed cd and decaying on a timescale
τ “ 2tt. The third solution to the dispersion relation in Eq. 5.107 has the same form on small
scales as on large scales, and decays on a timescale equal to the stopping time without an
oscillating imaginary component:

iω3 “ ´t´1
s (5.118)

Physical Interpretation of Turbulent Dust Transport in 1D

On large scales (k2 ! k2c ), the first eigenvalue in Eq. 5.111 represents a non-oscillating pertur-
bation that decays on an e-folding time τ1 “ D´1k´2, which is equivalent to a diffusive decay
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characterized by diffusion coefficient D. The corresponding eigensolutions (δv˚, δρd) to this
eigenvalue fulfill the relation

ρ̄d,0δv
˚ “ ´ikDδρd (5.119)

Using Eq. 5.103, this expression can be rewritten as

ρ̄dδv
˚ “ ´D

B

Bx
ρ̄d (5.120)

It is apparent that Eq. 5.120 represents the gradient diffusion equilibrium flux under force bal-
ance (compare to Eq. 5.90) and thus confirms the diffusive nature of this eigensolution.
The second and third eigensolutions corresponding to the eigenvalues in Eq. 5.112 and in
Eq. 5.113, do not fulfill the force balance given by Eq. 5.90. Instead, the eigensolutions represent
perturbations that evolve towards restoring the force balance on an e-folding time τ2 “ tt and
τ3 “ ts, respectively.
To summarize, on large scales (k2 ! k2c ), we have found three characteristic solutions. The
first solution represents a diffusive decay of a perturbation under force balance on a timescale
τ1 “ D´1k´2. The other two solutions represent the decay of an out-of-equilibrium perturba-
tion.
On large scales (k2 ! k2c ), the decay of the out-of-equilibrium perturbation is much faster
than the diffusive decay of the first solution because, according to Eq. 5.109, on large scales,
tt ! D´1k´2, and also ts ! D´1k´2, hold. This indicates that the long-time evolution of large-
scale perturbations is dominated by diffusive processes.
On small scales (k2 " k2c ), the decay rates either follow the decaying wave solution of Eq. 5.114
or the decaying non-traveling solution of Eq. 5.118, which are both independent of the wavenum-
ber k, indicating that on small scales, there exists no diffusive solution.
This property of our turbulent pressure model is distinctly different from a gradient diffusion
model, in which diffusive solutions, per definition, exist on all scales (see Sec. 5.5.2).
From a physics point of view, a diffusive solution does not exist on small scales because mo-
mentum cannot be transferred from the turbulent gas to the dust on timescales smaller than tt
(or vice versa). A purely diffusive solution would require perturbation to decay on a timescale
τ “ D´1k´2 which is per definition smaller than tt for wave numbers larger than kc.
We conclude that small-scale perturbations (for wave numbers k2 " k2c ) in this model survive
for longer than a purely diffusive evolution would predict, due to the finite coupling of the dust
to turbulence.
In Sec. 5.6.3, we will illustrate the difference between the gradient diffusion model and the
pressure-driven turbulent transport model (in the case tcorr ! ts) in an example of a decaying
Gaussian perturbation.
Lastly, we aim to provide an intuitive explanation for the traveling wave solution, which is
somewhat unexpected to occur in the originally pressureless dust fluid. This behavior mirrors a
sound wave in gas because particles in a high-density region spread out towards an equilibrium
distribution, driven by turbulent mixing, similar to how gas molecules in a high-pressure region
spread due to thermal pressure. In our model, turbulent dust fluxes carry momentum and thus
have inertia. The inertia of the dust particles causes the particles to overshoot their equilibrium
distribution, creating another overdensity. This process then restarts and can be described as a
wave. Ultimately, the wave solution is a result of turbulence-driven rarefaction and consequent
compression from inertia. Further investigations should confirm if these traveling waves are
physical or just artifacts of the Reynolds/Favre averaging process.

5.5.2 Gradient Diffusion in One Dimension

For completeness, we also present the linear perturbation analysis and the corresponding decay
rates for the gradient diffusion model (see also Weber et al., 2019, for a more extended discus-



5.5 Linear Perturbation Analysis 77

sion). Specifically, we analyze the mass equation in Eq. 5.22 and the pressureless momentum
equation (Eq. 5.4). The linearized system in its matrix representation reads:

iω

ˆ

δρd
δv

˙

“

ˆ

´Dk2 ´ikρd,0
0 ´t´1

s

˙ ˆ

δρd
δv

˙

(5.121)

This system has the following dispersion relation:

pDk2 ` iωqpt´1
s ` iωq “ 0 (5.122)

The dispersion relation has the following two solutions that describe monotonically decaying
perturbations:

iω1 “ ´t´1
s (5.123)

iω2 “ ´Dk2 (5.124)

The set of eigenstates of the linearized system in Eq. 5.121 that belongs to the growth rate in
Eq. 5.123 is:

Repδv1q “ δv0 cospkxqe´t{ts (5.125)

Repδρ1q “ δv0
kρd,0

Dk2 ´ t´1
s

sinpkxqe´t{ts (5.126)

The above eigenstates represent solutions that exponentially decay on a timescale ts due to drag.
The set of eigenstates that belong to the growth rate in Eq. 5.124 is:

Repδv2q “ 0 (5.127)

Repδρ2q “ δρ0 cospkxqe´Dk2t (5.128)

The second set of eigenstates represents a diffusive solution that decays on a timescale D´1k´2.
We plot the decay rates of the solutions in Eq. 5.123 and Eq. 5.124 in Fig. 5.5. Compared to
the decay rates of the turbulent pressure model illustrated in Fig. 5.4, the diffusive solution also
exists on small spatial scales (k ą kc).

5.5.3 Axisymmetric Keplerian Disk

After considering the one-dimensional case in the absence of external forces, we now consider
a two-dimensional and axisymmetric Keplerian disk in the presence of gravity. We follow a
dust fluid parcel along its orbit and use the linearized local shearing box approximation to
describe its dynamics (Goldreich & Lynden-Bell, 1965; Youdin, 2011a). For this, we integrate
the dynamical equations, i.e., Eq. 5.74, Eq. 5.88a, and Eq. 5.88b, along the vertical axis and
rewrite the dynamical equations in local variables r “ r0p1 ` xq such that x ! 1, and in terms
of the dust surface density Σ̄d and the two velocity components v̄r, v

˚
r and v̄ϕ, v

˚
ϕ. The five

linearized equations of the axisymmetric system are as follows:

BΣ̄d

Bt
` Σ̄d

B

Bx
pv˚

r ` v̄rq “ 0 (5.129)

Bv̄r
Bt

´ 2Ωpv˚
ϕ ` v̄ϕq “ ´

v̄r
ts

(5.130)

Bv̄ϕ
Bt

`
1

2
Ωpv˚

r ` v̄rq “ ´
v̄ϕ
ts

(5.131)
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Figure 5.5: The figure illustrates the decay rates ´iω that characterize the decay of a harmonic
perturbation in one dimension in the gradient diffusion model (i.e., solutions to Eq. 5.122).
The horizontal line corresponds to Eq. 5.124, and the line with a negative slope corresponds
to Eq. 5.123. Left: Shows the normalized negative real part (´Reriωs), i.e., the decay rate of
harmonic perturbations, as a function of the wavenumber k. The solutions are normalized by
the factor Dk2, such that a line with zero slope represents a diffusive solution. Right: This shows
the imaginary part of the solution (Imriωs) to the dispersion relation, as given by Eq. 5.122.
Both solutions of the gradient diffusion model have a vanishing imaginary part.

Bv˚
r

Bt
“ ´

v˚
r

tt
´

D

ttΣ̄d

B

Bx
Σ̄d (5.132)

Bv˚
ϕ

Bt
“ ´

v˚
ϕ

tt
(5.133)

We introduce small perturbations, analogous to Eqs. 5.103-5.105, in the radial direction to the
dust surface density Σ̄d “ Σ̄d,o ` δΣd and the radial and azimuthal components of the velocities
(v̄r “ δv̄r, v

˚
r “ δv˚

r , v̄ϕ “ v̄ϕ,0 ` δvϕ, v
˚
ϕ “ δvϕ). The azimuthal component of the mean velocity

describes the Keplerian shear v̄ϕ,0 “ Ωr0p1 ´ 3
2xq.

We plug in the harmonic perturbations to the linearized equations and consider only first-order
terms. The system in matrix notation reads

iω

¨

˚

˚

˚

˝

δΣ̄d

δv̄r
δv̄ϕ
δv˚

r
δv˚

ϕ

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

0 ´ikΣ̄d,0 0 ´ikΣ̄d,0 0
0 ´t´1

s 2Ω 0 2Ω
0 ´Ω{2 ´t´1

s ´Ω{2 0
´ ikD

ttΣ̄d
0 0 ´t´1

t 0

0 0 0 0 ´t´1
t

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˝

δΣ̄d

δv̄r
δv̄ϕ
δv˚

r
δv˚

ϕ

˛

‹

‹

‹

‚

(5.134)

The fifth-order dispersion relation in Eq. 5.134 is too complex to study analytically. Therefore,
we determine its solutions numerically. In Fig. 5.6, we plot the decay rates of the eigensolutions
to the system in Eq. 5.134 as black solid lines for values of St “ 10 and tcorrΩ “ 1.
Next, we study the dispersion relation in two limiting cases: large scales (in Sec. 5.5.3) and small
scales (in Sec. 5.5.3).
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Figure 5.6: We illustrate the decay rates ´iωpkq of harmonic perturbation to the dust density in a
two-dimensional, axisymmetric Keplerian disk. Shown is the numerical solution to the dispersion
relation of Eq. 5.134 for Ωtcorr “ 1 and St “ 10. Left: Shows the real part of the decay rates
(Rer´iωs), normalized by the factor Dk2, such that diffusive solutions are represented by lines
with slope zero. The black solid lines represent the exact solutions. The gray dashed lines
represent the solution given by ´iω “ p2ttq

´1 as in Eq. 5.136. The gray dotted line represents
a diffusive solution ´iω “ Dk2. Note, how the actual diffusive solution (horizontal black line)
decays a factor 100 slower than expected due to the effects of epicyclic oscillations and the factor
1{p1 ` t2tΩ

2q reducing the effective diffusivity in radial direction (Eq. 5.140). Right: Imaginary
part of the normalized decay rate (Imr´iωs). The black solid lines represent the exact solutions
and are normalized by a factor Ω´1 such that the epicyclic frequency represents a horizontal line
at Imr´iωsΩ´1 “ ˘1. The blue solid line represents the same solution but is normalized by a
factor cdk such that a horizontal line represents wave solutions traveling at speed cd.
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Dynamics on Small Scales (large wave numbers)

On small scales, i.e., for large wave numbers k2 " k2c p1`St2q, we identify four traveling solutions
with a constant decay rate (see Sec. 5.5.3 for an explanation of why there is an additional factor
1 ` St2). The first two solutions decay on a timescale equal to the stopping time ts:

Reriω1,2s “ ´t´1
s (5.135)

The third and the fourth solutions decay on a timescale equal to 2tt:

Reriω3,4s “ ´p2ttq
´1 (5.136)

The fifth and final solution is a non-traveling solution and decays on a timescale equal to tt:

iω5 “ ´t´1
t (5.137)

For comparison with the exact solution across all scales, we illustrate the decay rates of the
limiting solutions, as discussed here, on the l.h.s of Fig. 5.6. For ts " tcorr, Eq. 5.135 and
Eq. 5.136 are indistinguishable. Therefore, only two parallel lines appear in the lower right
corner of the left subplot in Fig. 5.6.
Notably, there exists no diffusive solution on small scales (k2 " k2c p1`St2q) akin to the behavior
in one dimension as discussed in Sec. 5.5.1. Assuming tt “ Ω´1, a disk aspect ratio of hg{r “ 0.05
and a diffusivity δ “ 10´3, as appropriate for turbulent protoplanetary disks, the wave number
kc corresponds to a length scale 2πk´1

c „ 0.2hg, i.e., 20 percent of the gas scale height. This is

comparable to the vertical scale height of a dust disk with Stmid “ 0.025 (hd{hg „
a

δ{St „ 0.2).

Dynamics on Large Scales (small wave numbers)

On large scales, i.e., for small wave numbers (k2 ! k2c p1`St2q), we find not five, but four decay
rates that are independent of the wavenumber k. Two of them decay again on a timescale equal
to the stopping time:

Reriω1,2s “ ´t´1
s (5.138)

Another pair decays on a constant timescale equal to tt:

Reriω3,4s “ ´t´1
t (5.139)

For ts " tcorr, the solution in Eq. 5.138 is indistinguishable from the solution in Eq. 5.139.
Therefore, the four solutions are represented by only a single sloped line in the upper left corner
of the left subplot of Fig. 5.6.
The fifth solution that we find on large scales is a diffusive solution akin to Eq. 5.111 in one
dimension and is therefore distinctly different from the other four:

iω5 “ ´
Dk2

1 ` St2
(5.140)

The decay rate in Eq. 5.140 is proportional to 9k2 and thus has the properties of a diffusive
solution. Notably, compared to the diffusive solution in one dimension, the decay rate is modified
by an additional factor 1{p1`St2q, i.e., the solution decays more slowly for Stokes numbers above
unity, where it scales as St´2. This is also the reason the transition from small-scale behavior
to large-scale behavior occurs at a wavenumber k “ kc

?
1 ` St2, which is a factor of

?
1 ` St2

above the characteristic wavenumber kc (i.e., at smaller scales for St ą 1).
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Based on the result in Eq. 5.140, we define the effective radial dust diffusion coefficient as

Deff
d,r “

D

1 ` St2
(5.141)

where D is the diffusion coefficient, calculated using the values of the correlation time tcorr
and the squared turbulent velocity dispersion u12, as in Eq. 5.11. Here, the effective radial dust
diffusion coefficient Deff

d,r is the actual measure of the strength of turbulent dust diffusion in radial
direction. Interestingly, the strength of turbulent diffusion is independent of the correlation time
tcorr. As such, this result is in agreement with Eq. 5.30 and confirms the findings of Youdin &
Lithwick (2007).
In Fig. 5.7, we plot the numerically determined diffusive solution of the dispersion relation of
Eq. 5.134 as a function of the Stokes number (black line). In Fig. 5.7, we also plot the exact
result of Youdin & Lithwick (2007) regarding radial turbulent transport in an axisymmetric disk
(their Eq. 37). For small Stokes numbers (St ! 1), our solution is identical to that of Youdin
& Lithwick (2007). For large Stokes numbers (St " 1), our solution and the detailed formula
of Youdin & Lithwick (2007) have the same scaling (9St´2) but deviate by a constant factor of
an order of unity.

Physical Interpretation

We provide a physical explanation for the reduced strength of radial diffusion in a two-dimensional
disk by reiterating the explanation by Youdin & Lithwick (2007).
We consider the case ts " tcorr and St " 1 so that particles decouple from the turbulent motion
and also the orbital motion of gas. In a Keplerian disk, these loosely coupled particles undergo
epicyclic oscillations with frequency Ω and length scale lepi “

?
u12{Ω. As the particles undergo

epicyclic oscillations, they receive short uncorrelated kicks of duration tcorr. An individual par-
ticle receives a number of N “ 1{ptcorrΩq velocity kicks of magnitude vkick „

?
u12{ptsΩq during

an orbital oscillation. Interpreting this as a random walk, the total change in the velocity of
a particle during an orbital time is δv „ vkick

?
N „

?
u12tcorr{ts, which moves the particle a

distance of δr „ δvΩ´1 every orbital period. A random walk with step size δr every orbital
period gives a diffusion coefficient Deff

d,r „ δr2Ω „ D{St2 as in Eq. 5.141. For the last equality,

we have taken D “ u12tcorr as in Eq. 5.11.

5.6 Numerical Tests

In this section, we will summarize the numerical tests that we conducted. These tests support
the findings we made from the linear perturbation analysis presented in Sec. 5.5.

5.6.1 Eigenstates in One Dimension

We first compare the decaying eigensolutions in one dimension between the gradient diffusion
model and the turbulent pressure model. For the gradient diffusion model, we found two sets
of eigenstates. The first set consists of Eq. 5.125 and Eq. 5.126. The second set consists of
Eq. 5.127 and Eq. 5.128. For the turbulent pressure model, the eigenstates are identical on large
scales. However, on small scales (k " kc), traveling wave solutions exist, described by Eq. 5.115
and Eq. 5.116.
We plot these eigenstates as a function of time in Fig. 5.8 in black solid lines. In the first
two columns, we show each set of eigenstates on large spatial scales (k “ 0.1kc). In the third
column, we show the eigenstates on small spatial scales (k “ 10kc). The upper sub-plots
show the normalized density perturbation and the lower sub-plots show the normalized velocity
perturbation.
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Figure 5.7: Effective radial diffusion coefficient Deff
d,r as a function of Stokes number in a two-

dimensional Keplerian disk (as described by Eq. 5.141). We set k2{k2c “ 0.01. The vertical dotted
gray line represents the transition at St „ 1 below which the effective diffusion is constant. The
solid gray line represents the solution of Youdin & Lithwick (2007) (their Eq. 37). Ignoring
corrections of order unity, our results describing turbulent transport in radial direction are
consistent with the results of Youdin & Lithwick (2007).

We use the Jupiter code to numerically confirm the analytic solutions. For this, we assume
tcorr ! ts such that tt « ts. We set the parameters to ts “ ρd,0 “ 1, D “ 4 and δρ0 “ δṽ0 “ 10´3

(in code units) and show the solutions in Fig. 5.8 at a fixed location x “ π{4k. In Fig. 5.8,
the blue circles represent the numerical solution of the gradient diffusion model, whereas the
red circles represent the turbulent pressure model. At large scales (k “ 0.1kc), the two models
are identical and both show an exponential decay. On small scales (k “ 10kc), their behavior
is distinctly different. Note that we do not show the diffusion solution of the gradient diffusion
model on small scales. This solution decays 800 times faster than the eigenstates of the turbulent
pressure model shown in the third column of Fig. 5.8.

5.6.2 Decaying Gaussian Perturbation in One Dimension

After considering harmonic perturbations, we further illustrate the decay of a one-dimensional
Gaussian perturbation similar to the one presented in Huang & Bai (2022) and illustrate the
difference between the gradient diffusion model and the turbulent pressure model. We use the
Jupiter code to calculate the solution numerically.
We set up a static one-dimensional isothermal viscous gas background with a constant density
in the absence of external forces (g “ 0). We describe the dust density by a Gaussian centered
around x “ 0, scaled such that the dust-to-gas ratio is 0.01 at x “ 0.
In the first example, the Gaussian has a standard deviation σ “ 0.5k´1

c at t “ 0 and amplitude
0.9, and we allow it to diffusively spread over time. We keep all other relevant parameters con-
stant (stopping time ts “ 0.2, sound speed cs “ 2, gas viscosity ν “ 0.2, dust diffusion coefficient
D “ 0.2). We set Nx “ 1000 and x “ r´2, 2s. We also assume the correlation time to be small,
such that tt “ ts and the turbulent pressure model is described by Eq. 5.57 and Eq. 5.99. We
do not include a turbulent pressure in the gas. The gradient diffusion model is described by
Eq. 5.22 and Eq. 5.4.
The characteristic property of this example is that the standard deviation of the Gaussian is
smaller than the inverse of the characteristic wavenumber (σkc “ 0.5). We plot the solution to
this setup in the first row of Fig. 5.9. The gradient diffusion model is plotted in gray dashed
lines, the turbulent pressure model is either in red or blue solid lines. We show the solution at
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Figure 5.8: Density (upper row) and velocity (lower row) eigenstates versus time of the one-
dimensional perturbation analysis. Plotted are analytical results (black lines) and numerical
results of the gradient diffusion model (blue circles) and the turbulent pressure model (red
circles) at x “ π{4k (first, second column) and x “ 0 (third column) with ts “ ρd,0 “ 1, D “ 4
and δρ0 “ δv0 “ 10´3 (in code units). The left column shows the exponential decay of the
solution on a timescale ts. The middle column shows the diffusive solution, i.e., the exponential
decay on a timescale D´1k´2 on a large spatial scale (k “ 0.1kc). Both models are identical on
this scale. The right column visualizes the difference between the two diffusion models on a small
spatial scale (k “ 10kc). While the gradient diffusion model is static and decays monotonically
and exponentially on a timescale ts, the turbulent pressure model propagates wave-like with
speed cd and decays on a timescale 2ts. Note, for readability, the diffusion solution of the
gradient diffusion model is not plotted in the right column. It decays on a timescale 800 times
shorter on this small spatial scale compared to the turbulent pressure model.
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four different points in time (t{ts “ 0, 0.2, 0.6, 1.0).
In the second example, we increase the standard deviation of the Gaussian to σ “ 10k´1

c , and
set the stopping time to ts “ 0.1, the dust diffusion coefficient to D “ 0.1, the gas viscosity to
ν “ 0.2, and the sound speed to cs “ 2. We set Nx “ 1000 and x “ r´20, 20s. The charac-
teristic property of this example is that the standard deviation is larger than the inverse of the
characteristic wavenumber (σkc “ 10). We plot the solution to this setup in the second row of
Fig. 5.9. We show the solution at four different points in time (t{ts “ 0, 5, 15, 25).
In both examples, the gradient diffusion model leaves the dust velocity (second column), the
gas density (third column), and the gas velocity (fourth column) at their initial value of zero.
That is because the gradient diffusion model describes turbulent transport as pure mass dif-
fusion and thus is not associated with an explicit velocity. On the other hand, the turbulent
pressure model disturbs the dust velocity as well as the gas density and velocity. This is because
turbulent transport in the dust is associated with a dust momentum, thus changing the dust
velocity. Due to the conservation of momentum, the gas reacts to the turbulent redistribution
of the dust.
In the top left subplot showing the dust density evolution of the first example, there is also a
distinct difference between the gradient diffusion model (gray) and the turbulent pressure model
(red). This is because, in this example, the scale of the Gaussian perturbation is smaller than the
inverse of the characteristic wave number (σkc “ 0.5). At these small scales, the perturbation
in the turbulent pressure model decays slower than in the gradient diffusion model, as discussed
in Sec. 5.5.1.
In the bottom left subplot showing the dust density evolution of the second example, the differ-
ence between the two models is small. For a vanishing dust-to-gas ratio, the two models would
be indistinguishable. However, due to the conservation of momentum in the turbulent pressure
model, the gas reacts to the spreading of the dust (as seen in the third column of Fig. 5.9).
Consequently, the changing gas density and velocity field influence the dust distribution via
the drag interaction. Such an interaction is absent in the gradient diffusion model. Because
the dust-to-gas ratio is small (0.01), the difference in the dust density distribution between the
models is small.

5.6.3 Radial Dust Spreading in a Two-Dimensional Axisymmetric Disk

We aim to numerically confirm the result of the two-dimensional linear perturbation analysis in
Sec. 5.5.3 using the Jupiter code. Specifically, the decrease in the effective strength of diffusion
for St ą 1, as predicted by Eq. 5.141. For this purpose, we study the diffusive spreading
of an (initially infinitesimally thin) axisymmetric ring in a two-dimensional Keplerian disk in
cylindrical coordinates. We compare the gradient diffusion model with the turbulent pressure
model derived in this work.
Weber et al. (2019) derived an analytic solution of the diffusive spreading of a δ-distribution,
which is given by the following equation:

ρdpr, tq “
mr0
2Dt

exp

ˆ

´
r2 ` r20
4Dt

˙

I0

ˆ

rr0
2Dt

˙

(5.142)

Here, I0 is the modified Bessel function of the first kind of order 0.
In our test setup, we assume the dust density to be small compared to the gas density (ρd ! ρg)
and the gas density to be constant in time and space. We set up the gas background to orbit with
Keplerian velocity, such that there is no radial drift of the dust. When we set up the gradient
diffusion model, we also set the radial dust velocity to zero. For the turbulent pressure model,
the initial radial dust velocity depends on the local dust density profile and follows Eq. 5.91.
For both models, we set D “ 10´4, m “ 2 ¨ 10´3, r0 “ 1, Nr “ 1000, and r “ r0.1, 2.5s. For the
turbulent pressure model, we assume tcorr ! ts for simplicity, such that dust dynamics according
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ṽ
/c

d

0 ts
5 ts
15 ts
25 ts

−100 −50 0 50 100
kcx

−20

−10

0

10

10
4
·(
ρ̄
g
/ρ̄

g
,0
−

1)
gradient
diffusion

−100 −50 0 50 100
kcx

−10

−5

0

5

10

10
4
·ũ
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Figure 5.9: Illustrative comparison between the gradient diffusion model (gray dashed lines)
and the turbulent pressure model (red/blue solid lines). We apply the models to describe the
one-dimensional diffusive spreading of an initially Gaussian dust distribution with an initially
constant gas background. The top row shows the decay of a small-scale Gaussian with standard
deviation σ “ 0.5k´1

c , and the bottom row shows the decay of a large-scale Gaussian with
standard deviation σ “ 10k´1

c (see Sec. 5.6.2 for more details). The main difference between the
two models is that, in the turbulent pressure model, turbulent dust transport is associated with
momentum and thus velocity (see second column). In the gradient diffusion model, diffusion
does not affect the dust velocity. Moreover, due to momentum conservation in the turbulent
pressure model, the gas reacts to the turbulent transport of the dust. In the first column, the
turbulent spreading of the dust density is significantly slower for the turbulent pressure model
at small scales (upper row) compared to the gradient diffusion model, as expected based on
the discussion in Sec. 5.5.1. On the other hand, at large scales (bottom row), the dust density
distribution between the two models is almost identical. The small difference that is present
arises from the fact that momentum conservation in the turbulent pressure model redistributes
the gas (as illustrated in the third column), which again has an influence on the dust via the
drag interaction. Such an interaction is absent in the gradient diffusion model. Note, for a
vanishing dust-to-gas ratio, the two models would be indistinguishable at large scales and over
long times.
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turbulent pressure modelgradient diffusion gradient diffusion turbulent pressure model

Figure 5.10: Comparison of the radial spreading of an axisymmetric dust ring in cylindrical
coordinates between two different diffusion models and at two different Stokes numbers. We
set m “ 2 ¨ 10´3, r0 “ 1 and D “ 10´4 in code units. In blue color, we show the gradient
diffusion model. In red color, we show the turbulent pressure model. The solid lines represent
the analytic prediction of Eq. 5.142, and the circles represent the numerical solution. The two
sub-panels on the l.h.s. show the two models for well-coupled dust (St “ 0.01) for which the two
solutions agree. The two sub-panels on the r.h.s. show the two models for moderately coupled
dust (St “ 2). Orbital effects reduce the effective diffusivity by a factor 1{p1 ` St2q “ 5 in the
turbulent pressure model, and the spreading proceeds slower.

to the turbulent pressure model is described by Eq. 5.57 and Eq. 5.99. The gradient diffusion
model is described by Eq. 5.22 and Eq. 5.4.
In Fig. 5.10, we illustrate the diffusive spreading of the two models for well-coupled dust grains
with St “ 0.01 (left) and moderately coupled dust grains St “ 2 (right). The analytical solution
of Eq. 5.142 is drawn as solid lines and the numerical solution as circles. For the analytical
solution in the case of the turbulent pressure model, we scale the diffusion coefficient with a
factor p1 ` St2q´1, to match the expected behavior predicted in Sec. 5.5.3. We initialize all the
distributions at t “ 50.
For well-coupled grains, the solution predicted by the turbulent pressure model is identical to
the solution predicted by gradient diffusion. For moderately coupled grains (St “ 2), the radial
diffusive spreading proceeds slower compared to the gradient diffusion model. The effective
diffusivity is reduced by a factor of 5 as expected from the predicted 1{p1 ` St2q behavior.

5.7 Discussion and Summary

In this work, we derive a novel dust turbulent transport model based on a density-weighted
mean-field theory and appropriate turbulence closures. The main contribution of this work is a
set of mean-field equations that describe the dynamics of dust in protoplanetary disks exhibiting
homogeneous and isotropic turbulence. The model is characterized by two parameters, namely
the diffusion coefficient D and the correlation time tcorr.
In this chapter, we review the popular gradient diffusion approach, for describing the turbulent
transport of dust in protoplanetary disks, in Sec. 5.2.4, and highlight the fact that classical
gradient diffusion does not guarantee angular momentum conservation in disks. Further, there
seems to be no clear consensus on whether the diffused quantity is the absolute dust density ρd
or the dust concentration relative to gas ρd{ρg. Moreover, orbital effects, that have the poten-
tial to reduce the effective strength of diffusion, are not self-consistently captured. Given these
limitations, we argue that there is a need for improved transport models that accurately capture
the physics of turbulent dust transport in protoplanetary disks.
The model in its most general form describes the averaged dust dynamics with a set of 1`3`3 “ 7
partial differential equations (Eqs. 5.72, 5.73 and 5.74). Applying the same averaging approach
to the locally isothermal gas equations, we combine them with another set of 1`3 “ 4 equations
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(Eqs. 5.77 and 5.87) to describe the full two-fluid system (gas+dust) in three dimensions with
a set of eleven coupled partial differential equations. With Eqs. 5.10 and 5.11, our mean-field
approach provides a method for calibrating the two model parameters for a specific example of
turbulence.
Compared to previous models, our model introduces a novel momentum conservation equation
that describes the dynamics of the turbulent dust mass flux ρ̄dv

˚
i , and is thus capable of captur-

ing non-local turbulent transport effects. In essence, the turbulent dust transport is driven by
a turbulent pressure and dissipated by a drag-like term, and as such, the model fully conserves
global angular and linear momentum. In the dynamic equilibrium between the driving and dis-
sipating forces, we recover the gradient diffusion model of Huang & Bai (2022). In the limit of
large particles ts " tcorr (or equivalently short correlation times) and a uniform gas background
(ρg “ const., cs “ const.), our dynamical equations are identical to the momentum-conserving
model of Klahr & Schreiber (2021).
We show in Sec. 5.4.2 that in a balance between the driving and dissipative terms, we recover
the classical gradient diffusion solution, with the diffused quantity being the absolute dust den-
sity ρd. However, we further argue that turbulent dust transport should not be considered in
isolation. We find that in a nonuniform and static gas background (∇ρg ‰ 0 and ũ “ 0), dust to
couple to a mean flow in the gas via the explicit drag term, introducing an additional transport
flux to the dust. Consequently, our formalism shows self-consistently that the turbulent dust
mass flux in a static gas background (ũ “ 0) is ultimately governed by the gradient of the dust
concentration ρd{ρg.
Furthermore, for large dust particles (ts " tcorr), we find novel turbulent transport flux towards
gradients of the stopping time which have not been predicted by previous Eulerian gradient dif-
fusion models. We confirm this by means of a numerical experiment, comparing to the stochastic
Lagrangian turbulence model of Ormel & Cuzzi (2007).
In the absence of orbital effects and in a steady-state gas background, the total turbulent equi-
librium dust flux reads

ρ̄dṽi “ ´Dρg
B

Bxi

ρ̄d
ρ̄g

´ Dρ̄d
B

Bxi
ln t´1

t (5.91)

which contains both the gradient diffusion flux and the novel flux contribution. We stress that
Eq. 5.91 is only valid in equilibrium, i.e., under force balance.
Applying our novel turbulent transport model to study the dust distribution in protoplanetary
disks in Sec. 5.4.3, we recover the vertical steady-state profile of Fromang & Nelson (2009) in the
limit of subsonic turbulence u12 ! c2s. Formally, we extend the validity of the solution to large
grains (St Á 1) because in our derivation, we do not invoke the terminal velocity approximation,
which in the aforementioned work limited the validity of the solution to small particles (St ! 1).
Consequently, we self-consistently reproduce the small particle scaling (h2d{h2g “ 1 for St ! 1)

and the large particle scaling (h2d{h2g “ δ{St for St " 1) of the vertical dust scale height without
the need for heuristic arguments.
In Sec. 5.5, we study the decay of small perturbations to the dust density due to turbulent
mixing. We find the turbulent time tt “ ts ` tcorr, to set a lower limit on the decay timescale.
For small dust grains (ts ! tcorr) this lower limit is equal to the correlation time tt « tcorr, which
can, depending on the nature of the underlying turbulence, be comparable to the orbital time.
For large grains (ts " tcorr), the lower limit to the decay time is equal to the stopping time ts,
which can be larger than the orbital timescales for St ą 1.
Small-scale perturbations, with a wave number k larger than the characteristic wavenumber
kc “ 1{

?
Dtt decay slower (by a factor k2{k2c ) than a diffusive solution would predict. For values

appropriate for protoplanetary disks (St “ 0.025, δ “ 10´3), the characteristic wave number kc,
that is the threshold above which (meaning on larger wavenumbers and smaller physical scales)
diffusion is quenched, corresponds to a spatial length scale of 20 percent of the gas scale height
hg. At these small scales, perturbations still decay due to drag, but by a factor Dk2tt slower



88 5. A Generalized Mean-Field Theory of Turbulent Dust Transport

compared to gradient diffusion.
Umurhan et al. (2020) showed that gradient diffusion suppresses the smallest modes of the
streaming instability. Future work should explore, how the reduction of the strength of diffusion
at small scales that we predict affects this result.
In a protoplanetary disk, we find that orbital effects reduce the effective diffusivity of large grains
(St Á 1). Specifically, we find the strength of diffusion in both radial and vertical directions to
scale as 1{p1 ` St2q in agreement with the detailed analysis of Youdin & Lithwick (2007) (up
to order unity corrections). We emphasize that the effects of orbital dynamics are implicitly
captured by our model. We thus expect our model to appropriately capture orbital effects in
disk regions where the flow deviates from being purely Keplerian, such as in the vicinity of
orbiting planets.
Lastly, our model also offers advantages over classical gradient diffusion models in terms of
numerical implementation. Turbulent transport in our model is pressure-driven, allowing the
use of standard, locally isothermal fluid solvers to solve the hydrodynamic dust equations. This
removes the need to calculate second-order spatial derivatives of the dust density in the gradient
diffusion approach, which can be challenging numerically.
In conclusion, we present an improved general Eulerian model of turbulent dust transport in
protoplanetary disks. Our model improves upon several limitations of gradient diffusion models,
including the conservation of angular momentum, orbital effects, and the functional form of
the diffused quantity. By recovering earlier models in special limiting cases, we improve upon
the understanding of turbulent dust transport in protoplanetary disks. Future work should
extend this model to more complex scenarios like non-homogeneous or anisotropic turbulence
and explore their impact on dust transport in protoplanetary disks.
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Table 5.1: List of notations of Chapter 5.

Symbol Definition/ First use Description
Ω vϕ{r Orbital angular velocity

ΩK

a

GM˚{r3 Keplerian angular velocity
Σd, Σg Sec. 5.5.3 Dust, gas surface density
α Eq. 5.84 Shakura-Sunyaev parameter
δ Eq. 5.15 Dimensionless diffusivity
δij Eq. 5.37 Kronecker delta
ν Sec. 5.2.2 Viscosity
ζt Eq. 5.17b Stochastic variable
τ Eq. 5.6 Time-like integration variable
τe Fig. 5.3 E-folding time
ω Sec. 5.2.2 Angular frequency
iω Sec. 5.5.1 Growth rate
´iω Sec. 5.5.1 Decay rate

D Eq. 5.7 Diffusion coefficient
Deff

d Eq. 5.98 Effective dust diffusion coefficient
Dptq Eq. 5.44 Time-dependent diffusion coefficient

Êgpωq Eq. 5.8 Energy spectrum
Ji Eq. 5.20 Turbulent mass flux
Pij Eq. 5.79 Turbulent pressure tensor
Rij Eq. 5.81 Reynolds tensor
Sc Dd{Dg, Eq. 5.14 Schmidt number
Schydro ν{Dg, Sec. 5.2.2 Hydro Schmidt number
St tsΩ, Eq. 4.2 Stokes number
Wt Eq. 5.17b Wiener process

cd Eq. 5.63 Turbulent particle velocity dispersion
cs Eq. 3.4 Gas sound speed
gi Eq. 5.2 Gravitational acceleration
hg Eq. 3.9 Gas pressure scale height
hd Eq. 5.95 Dust scale height
k Eq. 5.103 Wave number
kc Eq. 5.109 Characteristic wave number
leddy Eq. 5.12 Eddy length
p Eq. 3.3 Thermal pressure
pt Eq. 5.80 Isotropic turbulent pressure
ts Eq. 4.1 Stopping time
tcorr Eq. 5.10 Correlation time of turbulence
tdiff Eq. 5.13 Diffusion timescale
tt ts ` tcorr, Eq. 5.48 Characteristic time of turbulence
ui Eq. 3.1 Instantaneous gas velocity
δu Eq. 5.17a Stochastic turbulent fluctuation
vi Eq. 5.1 Instantaneous dust velocity
v̄i Eq. 5.32 Reynolds-averaged dust velocity
ṽi Eq. 5.51 Favre-averaged dust velocity
v˚
i Eq. 5.56 Turbulent dust transport velocity
v1
i Eq. 5.32 Fluctuation w.r.t. to v̄
v2
i Eq. 5.52 Fluctuation w.r.t. to ṽ
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Table 5.1 – continued from previous page
Symbol Definition/ First use Description

vsett Eq. 4.7 Vertical settling velocity
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Carbon Depletion in the Early Solar
System

The content of this chapter was published in:

Binkert F., Birnstiel, T. (2023), Carbon depletion in the early Solar system, Monthly
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Abstract

Earth and other rocky objects in the inner Solar System are depleted in carbon compared to
objects in the outer Solar System, the Sun, or the ISM. It is believed that this is a result of
the selective removal of refractory carbon from primordial circumstellar material. In this work,
we study the irreversible release of carbon into the gaseous environment via photolysis and
pyrolysis of refractory carbonaceous material during the disk phase of the early Solar System.
We analytically solve the one-dimensional advection equation and derive an explicit expression
that describes the depletion of carbonaceous material in solids under the influence of radial
and vertical transport. We find both depletion mechanisms individually fail to reproduce Solar
System abundances under typical conditions. While radial transport only marginally restricts
photodecomposition, it is the inefficient vertical transport that limits carbon depletion under
these conditions. We show explicitly that an increase in the vertical mixing efficiency, and/or an
increase in the directly irradiated disk volume, favors carbon depletion. Thermal decomposition
requires a hot inner disk (ą 500 K) beyond 3 au to deplete the formation region of Earth and
chondrites. We find FU Ori-type outbursts can produce these conditions such that moderately
refractory compounds are depleted. However, such outbursts likely do not deplete the most
refractory carbonaceous compounds beyond the innermost disk region. Hence, the refractory
carbon abundance at 1 au typically does not reach terrestrial levels. Nevertheless, under specific
conditions, we find photolysis and pyrolysis combined can reproduce Solar System abundances.

6.1 Introduction

The background of this chapter was established in Sec. 2.4.5 and Sec. 2.4.4 in the context of
observational constraints of the Solar system. In this study, we build upon the work of Klarmann
et al. (2018) by developing an analytical model of refractory carbon depletion via photolysis to
show that the barriers imposed by grain transport are not insurmountable if the total dust mass
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(or the global dust-to-gas ratio) is low enough. Further, we extend our analytical model to
include the refractory carbon depletion via sublimation during FU Ori-type stellar luminosity
outbursts.

6.2 Model and dust transport

In this section, we present the details of our dust model, describe the stationary disk model
and introduce the equations that describe the transport of the dust components within the disk.
Further, we introduce the local carbon depletion timescale τc, which is used to describe the
timescale over which a given process depletes the disk of refractory carbon.

6.2.1 Dust Model

In Sec. 2.4.5 and Sec. 2.4.4, we have summarized the detailed accounting of the C/Si atomic
ratio and/or the individual elemental mass fractions of carbon and silicon obtained in remote
observations and/or direct measurements of objects in the Solar System. In the Solar System, it
is expected that all the solid bodies that are currently observed (i.e., planets, asteroids, comets,
etc.), have formed from solid refractory components that already existed in the early Solar
nebula. In the remainder of this study, we model the evolution of the early solid refractory com-
pounds (carbonaceous and non-carbonaceous) in a young prestellar disk, in conditions similar
to the early Solar System. Particularly, we model the refractory compounds as two distinct dust
grain populations, a non-carbonaceous component, and a carbonaceous component, of which we
further divide the latter into five individual carbonaceous compounds which all are subject to
photo- and thermal decomposition processes. We model the non-carbonaceous dust component
as silicate and assume, for simplicity, that every silicon atom in this component is locked up in
bare silicate

`

pMg,Feq2SiO4

˘

, similar to the dust model in Zubko et al. (2004). Meaning, for
every silicon atom, we add another six atoms, which together form the atomic composition of
the non-carbonaceous bare silicate dust compound. With this approach, the relative abundance
of atoms in pMg,Feq2SiO4 roughly agrees with relative abundances in the ISM (Zubko et al.,
2004).
In order to track the abundance of refractory carbon in dust conglomerates consisting of car-
bonaceous and non-carbonaceous components, we track the individual mass of each component,
i.e., Mc is the total mass of carbonaceous material and Ms is the total silicate mass in a con-
glomerate. We define the carbon fraction fc “ Mc{pMc `Msq to trace the carbon mass fraction
relative to the total refractory dust mass. In order to connect the carbon fraction fc to obser-
vational data, we convert the C/Si atomic ratios reported in Sec. 2.4.4 and Sec. 2.4.5, to carbon
fractions fc, assuming every silicon atom is locked up in bare silicate. The obtained carbon
fractions for Earth are listed in the last column of Table 2.1. In Fig. 2.8, we visualize the carbon
fractions of some Solar System bodies and the ISM. The data is based on the review of Bergin
et al. (2015) to which we have added the estimate for bulk Earth as discussed in Sec. 2.4.5. In
Fig. 2.8, the horizontal extent of the boxes corresponds to the heliocentric distances of the ex-
pected formation region of individual objects. We place the formation location of carbonaceous
chondrites at 1.5 ´ 2 au, the location of ordinary chondrites at 2.0 ´ 2.5 au and the location
of enstatite chondrites at 2.5 ´ 3.0 au (Morbidelli et al., 2012). The range of carbon fractions
in chondrites is based on the C/Si ratios from Bergin et al. (2015). For chondrites, the verti-
cal extent of the boxes in Fig. 2.8 represents the ranges of measurements of different samples
and not uncertainties. Unlike all the other boxes, which represent model and/or measurement
uncertainties. We place the origin of comet 67P/Churyumov-Gerasimenko (67P) in the Kuiper
belt (30 ´ 50 au) where, according to a long-standing hypothesis, Jupiter-family comets orig-
inate (Duncan & Levison, 1997). We highlight that this hypothesis has somewhat weakened
in recent years, and today it is also thought possible that Jupiter-family comets formed over
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a wider range of distances from the Sun (Altwegg et al., 2015). It is also possible that comet
1P/Halley (Halley) originates from regions beyond the Kuiper belt (Jewitt, 2002). Further, we
arrive at a carbon fraction fc “ 0.29 for the dust component of the ISM. This is close to the
carbon fraction fc “ 0.25 assumed in Klarmann et al. (2018), who use an identical definition of
the carbon fraction. The upper bound for Bulk Earth is fc “ 4.1 ¨ 10´3, less than two orders
of magnitude below ISM values. The estimated range based on geochemical modelling is in the
range fc “ 3.7 ´ 7.7 ¨ 10´4, roughly another order of magnitude lower.
After detailing the total amount of refractory carbonaceous material expected to be found in
presolar material, we now specify its composition. We divide the refractory carbonaceous com-
ponent into five distinct carbonaceous compounds with different decomposition properties. For
this, we follow the model of Gail & Trieloff (2017) and divide the carbonaceous components into
the moderately volatile aliphatic (3.0 % by mass) and aromatic compounds (3.0 % by mass), the
refractory hydrocarbon compounds Kerogen I (10.0 % by mass) and kerogen II (10.0 % by mass)
and a fifth component, amorphous carbon (3.0 % by mass). The mass fractions in brackets are
given relative to the total refractory dust mass and add up to 29 % by mass of carbonaceous
material. The relative abundances are thought to reflect our (limited) knowledge of the compo-
sition of cometary material and interplanetary dust particles (IDPs). In Fig. 6.2.1, we illustrate
the composition and relative abundance of the refractory dust components considered in our
model.

Carbonaceous component sublimationphotolysis

Silicate
(Mg,Fe)2SiO4
71 wt%

Moderately volatile organics
(aliphatic compounds), fc,i=1 = 3.0 wt%

Moderately volatile organics
(aromatic compounds), fc,i=2 = 3.0 wt%

Refractory organics
(Kerogen II), fc,i=3 = 10.0 wt%

Refractory organics
(Kerogen I), fc,i=4 = 10.0 wt%

Amorphous carbon
(C2), fc,i=5 = 3.0 wt%

Ta,i=1 = 19050 K
Ai=1 = 4.0 ·1013 s−1

Ta,i=2 = 24500 K
Ai=2 = 4.0 ·1013 s−1

Ta,i=3 = 24536 K
Ai=3 = 6.7 ·1012 s−1

Ta,i=4 = 27783 K
Ai=4 = 1.7 ·1014 s−1

Yph = 8.0 ·10−4

Figure 6.1: Refractory dust composition model (Note, for better visualization, the size of the
individual wedges of the carbonaceous components are all equal in size and not proportional to
their respective fractional abundance. Only their combined size accurately represents the total
initial fractional abundance of carbonaceous material (29 %). The yellow and blue boxes contain
the model parameters for photolysis and irreversible sublimation. Note that we do not consider
the sublimation of the amorphous carbon compound in this study.

6.2.2 Disk Model

With the goal of modeling the conditions in the early Solar System in mind, we assume a pre-
main-sequence star located at the center of a circumstellar disk. We adopt stellar parameters for
a Solar-mass pre-main-sequence star (M‹ “ 1Md) from Siess et al. (2000) at 1 Myr with a total
luminosity of L‹ “ 2.39Ld. We assume the FUV-luminosity to be LUV “ 0.01L˚, as proposed
by, e.g., Siebenmorgen & Krügel (2010). We describe the disk around the central star using
radial power-law dependencies for surface densities and temperature. The gas surface density
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follows a power law of the form

Σg “ Σg,0 ¨

ˆ

r

r0

˙´pg

(6.1)

where r0 “ 1 au and pg “ 1. We assume a total (gas) disk mass of Mg,tot “ 0.04Md up to
rout “ 200 au. This results in a gas surface density of Σg “ 283 g cm´2 at 1 au.
We assume the disk temperature to be set by external heating at all the heliocentric distances
which are relevant for this study (r Á 1 au), and to be vertically isothermal. The disk tempera-
ture is then proportional to the fourth root of the stellar luminosity L˚ (Eq. 3.34). We take the
flaring angle to be Φ “ 0.05. Thus, the disk temperature profile takes a power law form

T “ T0 ¨

ˆ

r

r0

˙´q

(6.2)

with T0 “ 231 K and q “ 1{2. Consequently, the vertical gas volume density follows the Gaussian
distribution in Eq. 3.8.
For the initial dust surface density, we also assume a power law profile,

Σd “ Σd,0 ¨

ˆ

r

r0

˙´pd

. (6.3)

where we set the power law index pd equal to 1.5 and Σd,0 “ 19.7g cm´2. This slope corresponds
to the equilibrium dust surface density in the fragmentation limit (Birnstiel et al., 2012) and
the prefactor to a dust mass accretion rate (in the fragmentation limit) of 10´5 M‘{yr. With
this profile, the dust-to-gas mass ratio is globally at 0.01, i.e., the canonical value expected in
the ISM. With the term dust we refer to any solid refractory disk component, which includes
carbonaceous components and non-carbonaceous components (e.g., silicates). In Table 6.1, we
summarize the fiducial disk parameters.
We divide the total dust population into six distinct refractory populations (i “ 0...5), according
to the dust model described in Sec. 6.2.1, with each population contributing with a mass-fraction
fc,i to the total dust surface density Σd such that

Σd “

5
ÿ

i“0

Σd,i (6.4)

and
Σd,i “ fc,iΣd (6.5)

are fulfilled. We consider the zeroth component (i “ 0) to be the silicate component and
components i “ 1...5 to be the carbonaceous compounds (see Fig. 6.2.1). From this, it follows
directly that the total carbon fraction fc, as introduced in Sec. 6.2.1, is the sum of the individual
mass fractions of components one to five

fc “

5
ÿ

i“1

fc,i (6.6)

and the mass fraction of silicates is
fs “ fc,0 (6.7)

Likewise, we denote the surface density of silicate grains with Σs.
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Table 6.1: Fiducial model parameters. Here, p.l.i. stands for power law index.

Quantity symbol value

Stellar luminosity L˚ 2.39 Ld

Stellar UV luminosity LUV 0.01 Ld

Total (gas) disk mass Mg,tot 0.04 Md

Gas surface density p.l.i. pg 1

Initial dust accretion rate 9Md 1 ˆ 10´5 M‘{yr
Dust surface density p.l.i. pd 1.5
Disk temperature at 1 au T0 231 K
Flaring angle Φ 0.05
Turbulence strength α 10´2

Fragmentation velocity vfrag 300 cm/s

6.2.3 Radial Dust Transport

In this section, we describe the radial transport of dust, which happens as a result of the loss
of angular momentum caused by the drag interaction with the gas. When considering dust
transport, we do not differentiate between the different dust compounds and assume all the
compounds to have the same size distribution and the same average solid density ρ‚ “ 3.0 g
cm´3. This allows us to transport the dust distribution as a whole, and is also closer to reality,
in which compounds are mixed within individual grains and do not exist as distinct populations.
Similar to Birnstiel et al. (2012), we assign the total dust mass to two grain sizes, small and large
grains, as a representation of a grain size distribution in coagulation-fragmentation equilibrium.
The small dust grains are well coupled to the gas, and we assume their radius to be as “ 0.1µm.
The large grains of radius a are generally only moderately coupled to the gas and thus subject
to radial drift. In our model, we assume that collisions between dust grains are frequent enough
that any radial transport happens at the drift speed of the large grains. We express the degree
of coupling via the dimensionless Stokes number St which we parametrize with a power law as:

St “ St0 ¨

ˆ

r

r0

˙s

. (6.8)

We find for grains in the fragmentation limit

St0 “ ff
mg

3αkB

v2f
T0

, s “ q (6.9)

where ff is a calibration factor of order unity (Birnstiel et al., 2012) and α is the dimensionless
turbulence parameter (Shakura & Sunyaev, 1973). With the parametrization of the Stokes
number as in Eq. 6.8, we write the radial drift velocity of the dust grains with Stokes number
St!1 as:

vr “ ´γSt
c2s
vk

(6.10)

With γ “ q{2 ` pg ` 3{2 being the modulus of the power-law exponent of the gas pressure
Pg “ ρgc

2
s. We also express the radial drift velocity in power-law form. Thus, we rewrite

Eq. 6.10 as

vr “ v0 ¨

ˆ

r

r0

˙l

(6.11)



96 6. Carbon Depletion in the Early Solar System

with v0 “ ´γSt0c
2
s,0{vk,0 and l “ s ´ q ` 1{2

Transport equations

Ultimately, we aim to find the radial distribution of the dust surface density (of carbonaceous
and non-carbonaceous grains). We describe its evolution with a one-dimensional radial advection
equation without diffusion and a source term that models the depletion of refractory carbon
compounds

BΣd

Bt
`

1

r

B

Br
prΣdvrq “ ´ 9Σd (6.12)

Using Eq. 6.4, we rewrite Eq. 6.12 as the sum of six individual equations

BΣd

Bt
“

5
ÿ

i“0

BΣd,i

Bt
(6.13)

of which each summand has the general form

BΣd,i

Bt
`

1

r

B

Br
prΣd,ivrq “ ´ 9Σd,i (6.14)

In our models, we assume that silicate grains do not decompose and that their surface density
is conserved. Thus, we write 9Σd,i“0 “ 0. For all the carbonaceous components (i “ 1..5) we

will discuss the explicit form of the source terms 9Σd,i in the following sections. Throughout this
work, we use the subscript c to refer to the sum of all the carbonaceous components (i ą 0)
and the subscript s to refer to the silicate component (i “ 0). Note that because we model the
radial transport of the dust as one population, the radial drift velocity vr is identical for each
component.

6.2.4 Carbon Depletion Timescale

We assume that a carbonaceous compound, as introduced in Sec. 6.2.1, can be gradually decom-
posed by a yet unspecified carbon-depletion mechanism. We define the time td to be the time
it takes for a carbonaceous grain of radius a to be completely decomposed by this mechanism.
The efficiency of the mechanism can have a radial power-law dependence, thus, we define

td “ td,0 ¨

ˆ

r

r0

˙b

(6.15)

where td,0 is the time it takes to decompose a carbon grain of size a at radius r0 in the disk.
Further, we define the carbon depletion timescale,

τc “
Σc

9Σc

(6.16)

which describes the characteristic carbon depletion time of the disk and is the ratio between the
surface density of all the carbonaceous compounds Σc and its depletion rate 9Σc. Assuming the
entire dust disk consists only of grains of size a, and the arbitrary carbon depletion mechanism
is active throughout the entire disk, all the carbonaceous material will be destroyed within time
td and we find 9Σc “ Σc{td. Thus, in this simple case, the carbon depletion timescale is equal
to the destruction time of a single grain τc “ td. However, it is possible that a given depletion
mechanism is only active in certain layers of the disk, or the mechanism is only efficient in a
certain fraction of the grain size distribution (or both). Therefore, we assume a given depletion
mechanism is active only in a fraction Σ˚

c of the total surface density Σc. This increases the
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carbon depletion timescale τc, which is now generally larger than the time it takes to decompose
a single grain td because Σ˚

c ď Σc. Thus, we write the carbon depletion timescale as

τc “
Σc

Σ˚
c

td (6.17)

where Σ˚
c is the carbon surface density in which depletion is active. From the definition of the

carbon fraction, we find Σc “ fcΣd, and if we assume for now that the vertical mixing timescale
(tmix “ 1{αΩ) is small compared to the destruction time tmix ! td, the carbon fraction fc is
vertically uniform and Σ˚

c “ fcΣ
˚
d holds (compare to Sec. 6.3.3 where this assumption is lifted).

Thus, we write the carbon depletion timescale as

τc “
Σd

Σ˚
d

td (6.18)

Depending on the detailed physics of the depletion mechanism, it is possible that the destruction
time is better described by an exponential law, rather than a power-law

t1
d “ t1

d,0 expp´tdq (6.19)

where td is the generic power law as defined in Eq. 6.15. Irrespective of the detailed functional
dependence of td, the considerations in this section still hold.
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Figure 6.2: The black dashed line plots the height at which 0.1 µm sized grains decouple (zdec)
as calculated with Eq. 6.22. The blue lines represent the τ “ 1-surface at zτ . The dashed blue
line is calculated using the analytical approximation, i.e., Eq. 6.21, that does not consider the
decoupling of grains at large z. The solid blue line does include the effects of grains decoupling
and is the numerical solution to Eq. 6.67. The yellow line represents the solution to Eq. 6.31
which includes the effects of photon forward scattering. Thus, FUV photons penetrate deeper
than the τ “ 1-surface. The background colors illustrate the gas volume density ρg, as in Eq. 3.8.



98 6. Carbon Depletion in the Early Solar System

z1

0

Figure 6.3: Vertical profile of the disk above the midplane. Silicate grains are plotted in gray
color, and carbon grains in black. Large grains are confined to the midplane region. Small
grains which are produced in collisions in the high-density region around the midplane are lifted
to higher disk layers by turbulence. Above z1, the grains reach the UV-irradiated exposed
layer where carbon grains are destroyed by photolysis while silicate grains are unaffected. The
longer the carbon grains spend in the exposed layer, the more carbon grains are destroyed and
the carbon fraction drops. The residence time tres is the total time the small grains spend in
the exposed layer before settling toward the midplane where they collide and coagulate with
other grains. During one of these mixing cycles, carbon depletion can become inefficient if the
local carbon fraction in the exposed layer drops due to efficient carbon grain destruction. This
is indicated by a gradient in the number of carbon grains which, in the sketch, move in the
exposed layer from left to right. If z1 moves closer to the midplane tres takes up a larger fraction
of the total mixing time tmix. At the same time, the surface density contained in the exposed
layer Σ˚ takes up a larger fraction of the total dust surface density Σd.

6.3 Photodecomposition

In this section, we consider the photodecomposition of refractory carbon. Specifically, we study
the effects of photolysis via stellar UV radiation.

6.3.1 The Exposed Layer

The far ultraviolet-flux (FUV) coming from the central disk region is largely unaffected by gas in
the disk, but is mainly attenuated by small dust grains. Thus, the disk layers containing dust are
generally very optically thick at FUV-wavelengths. Thus, potential photo-induced carbon deple-
tion by FUV-photons can only be active in the layers of the disk in which stellar FUV-photons
penetrate. Following Klarmann et al. (2018), we call this the exposed layer (Siebenmorgen &
Krügel (2010) call this layer the extinction layer). The exposed layer extends vertically from
height z “ z1 to z “ 8 and contains the dust surface density Σ˚

d . Our goal in this section is to
quantify Σ˚

d and z1. In a first approach, we assume all the stellar FUV photons to be absorbed in
the region where the optical depth is smaller than unity, i.e., we ignore the effects of scattering.
Further, we assume that the FUV flux has the form of a step function, where it is not attenuated
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above z1 and zero below. This is a reasonable approximation because the bulk of the photons
is absorbed close to z1 due to the steep exponential increase of the dust density ρdpzq. Then,
the height z1 is equal to the height at which the (radial) optical path has optical depth τ “ 1.
Due to the flaring of the disk, a radial optical depth τ “ 1 corresponds to a vertical optical
depth of τz “ Φ, where Φ is the flaring angle of the disk. This is nicely illustrated in Fig. 5 of
Siebenmorgen & Krügel (2010).
For the sake of simplicity, we assume a single dust grain size as to be the dominant contrib-
utor to the opacity at FUV-wavelengths. This assumption is reasonable because for a given
wavelength λ, grains smaller than a “ λ{2π are in the Rayleigh regime of scattering where the
absorption of photons is a by-mass effect, meaning the grain size dominating the mass budget
also dominates the opacity. In a coagulation-fragmentation equilibrium, larger grains generally
contribute more to the total dust mass. Hence, in the Rayleigh regime, larger grains contribute
most to the opacity. On the other hand, the opacity for grains larger than a “ λ{2π, in the
geometrical optics limit, is calculated as the ratio between the geometrical cross-section σ and
the mass of a grain m as κ “ σ{m “ 3{p4ρ‚aq. Here, ρ‚ is the solid density of a dust grain.
Hence, in the geometrical optics limit, small grains contribute more to the opacity. To conclude,
in this simple argument, the grain size that dominates the opacity is the size in between the two
scattering regimes with an optical size of unity, i.e., the grains with size as “ λ{2π and opacity
κ0 “ 3{p4ρ‚asq. For λ “ 0.6µm and ρ‚ “ 3gcm´3, we find as „ 0.1µm and κ0 „ 2.5 ¨ 104cm2g´1

for the opacity. The surface density contained in the exposed layer in the disk is

Σ˚
d “ 2Φ{κ0 (6.20)

or equivalently Σ˚
d “ 8Φ{3ρ‚as. The factor two in Eq. 6.20 comes from the two sides of the disk.

As for z1, i.e., the lower edge of the exposed layer, an exact explicit expression cannot be found.
But because we define the lower boundary of the exposed layer to be the location at which the
radial optical depth equals unity z1 “ zτ . In Appendix 6.A, we derive the implicit Eq. 6.67
that we solve numerically to find z1 in all our quantitative analyses. In addition to that, in
Appendix 6.A, we derive an explicit, but approximate, expression for zτ under the assumption
that the opacity dominating dust grains are perfectly coupled to the gas:

zτ
hg

»

d

2 ln
fďasΣdκ0
2
?
πΦ

´
1

5
(6.21)

It is straightforward to see that zτ , in units of the gas scale height hg, is farther away from
the midplane if the flaring angle Φ is small because a larger fraction of the photon path lies
inside the disk atmosphere. In addition to that, zτ lies farther away from the midplane if the
surface density of small dust grains (fďasΣd) is large and if the opacity κ0 is large. For the
fiducial parameters, we obtain zτ,0 “ 4.6 hg,0. Interestingly, zτ is quite insensitive to changes
of parameters because the density ρdpzq changes rapidly with z. Decreasing the argument in
the natural logarithm in Eq. 6.21 by a factor of 10, e.g., by decreasing the total dust surface
density Σd, results in zτ,0 “ 4.1hg,0, which is a decrease of only eleven percent. In the top panel
of Fig. 6.2, we show the radial dependence of the solution to Eq. 6.21 using our fiducial model
parameters (dashed blue line). We want to highlight that Eq. 6.21 is only accurate to first-order,
if zτ ą hg, and assumes small grains are perfectly coupled to the gas. For more accurate results,
one should use higher-order terms, as in Eq. 6.62, or use a numerical approach. For our fiducial
set of parameters, the solution lies well above the gas scale height hg. To evaluate whether the
well-coupling condition is fulfilled, we also plot the location at which the opacity-dominating
dust grains decouple from the gas

zdec
hg

“

d

2 ln
2αΣg

πρ‚a
(6.22)
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We derive the above equation in Appendix 6.A by finding the height at which the local Stokes
number is equal to the turbulent alpha-parameter α. In Fig. 6.2, we plot zdec calculated with
Eq. 6.22 in black color with a dashed line. The solution to Eq. 6.21 crosses zdec, i.e., the height at
which we find the opacity dominating dust grains to decouple. Therefore, we expect the solution
of Eq. 6.21 to deviate slightly from the exact result for our fiducial choice of parameters. This
difference becomes apparent when comparing the dashed and solid blue lines in Fig. 6.2. If the
decoupling of small grains were negligible, the two solutions would be identical. Nonetheless,
Eq. 6.21 serves as a valuable tool in the qualitative analysis of our results. For all the quantitative
results, we use the exact numerical solution for zτ , as found by solving Eq. 6.65. We show this
solution in Fig. 6.2 with a solid blue line. Indeed, we find the approximate solution to be about
ten percent above the exact solution because it does not account for grain decoupling. Further,
we stress here that setting z1 “ zτ is not always a good approximation, as photons can reach
deeper layers when scattering such that z1 ă zτ . We briefly investigate the effects of forward
scattering in Sec. 6.3.4.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
z (hg)

101

102

t
(Ω
−

1
)

zdeczτ=1z1

tres(z)

tres(z) - w/ dec.

td · exp(−τ(z))

Figure 6.4: Residence times tres of 0.1 µm sized dust grains at different heights z above the
midplane are calculated at 100 au in units of the inverse of the Keplerian frequency Ω´1. The
orange line shows the residence time calculated with Eq. 6.27. Due to grains decoupling, the
residence time sharply decreases above about three gas scale heights. We indicate the height at
which grains decouple zdec, as calculated with Eq. 6.22, with the black vertical dotted line. The
blue line shows the approximate phg{zq´2 dependency of the residence time, as introduced in
Eq. 6.80. The solid gray line represents the grain destruction time td multiplied by an exponential
factor that accounts for the attenuation of the FUV field in the optically thick region of the disk.
The blue vertical dotted line indicates the height of the τ “ 1 surface as determined by solving
Eq. 6.67. The yellow dotted lines indicate the location of the solution to Eq. 6.31, i.e., the
location where the gray and orange lines intersect.

6.3.2 Photolysis

In this section, we discuss photolysis as a specific example of a carbon depletion mechanism,
which was also discussed in previous studies (e.g. Klarmann et al., 2018; Anderson et al., 2017).
Similarly, we use the term photolysis to refer to the photon-induced release of small hydrocar-
bons from the surface of a carbonaceous grain (as opposed to the photodissociation of a single
molecule). When considering photolysis, Alata et al. (2014, 2015) found methane to be the
C-bearing product of the highest yield. Therefore, we will only focus on this product here. The
photolysis rate of C-bearing grains in a FUV field is RUV “ σYphFUV. Here, RUV describes the
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Figure 6.5: Photolysis depletion timescale as a function of radius. The red line shows the
unrestricted depletion timescale τphc as defined in Eq. 6.24. At 1 au, it has a value of 40 kyr.
The blue line shows the depletion timescale limited by vertical transport at the optical surface
of FUV-photons as calculated with Eq. 6.26. It is significantly larger, with a value of 2.6 Myr
at 1 au. The yellow line shows the resulting depletion timescale when FUV photons are allowed
to penetrate the disk beyond the τ “ 1-surface due to forward scattering. It has a value of 695
kyr at 1 au.

number of C-atoms with mass mc released per unit time from a single grain where σ “ a2π is
the geometric cross-section of the carbon grain, Yph is the yield of the photolysis reaction per
incoming photon („ 8 ˆ 10´4) and FUV is the local FUV flux (rFUVs “ cm´2s´1). The time it
takes to destroy a single carbon grain of radius a and mass m via photolysis is

tph “
m

mcRUV
“

4

3

aρc
mcYphFUV

(6.23)

and the depletion timescale, as introduced in Eq. 6.17, for unrestricted photolysis is

τphc “
Σd

Σ˚
d

tph (6.24)

By unrestricted, we refer to the simplified assumption that the carbon fraction is vertically
constant. This assumption only holds if carbon in the exposed layer is depleted on a much
shorter timescale than the vertical mixing timescale of the disk. In reality, carbon depletion can
be restricted by inefficient vertical mixing when the carbon fraction is significantly lower in the
exposed layer compared to the rest of the disk. Therefore, the unrestricted carbon depletion
timescale in Eq. 6.24 does only represent a lower limit.
Combining Eq. 6.20, Eq. 6.23 with Eq. 6.24, we find

τphc “
Σd

2mcYphΦFUV
(6.25)

where we have used κ0 “ 3{p4ρ‚aq. Thus, photolysis, when not limited by other mechanisms
such as transport, is more efficient in disks with a large flaring angle Φ and regions with a large
UV flux FUV. It is also more efficient where the dust surface density Σd is small. Interestingly,
in Eq. 6.25 the opacity cancels out and Eq. 6.25 is independent of the amount of surface density
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contained in the exposed layer. In our fiducial model, the unrestricted depletion timescale at 1
au is τc,0 “ 40 kyr which is short compared to the typical disk lifetimes („Myr).

6.3.3 Vertical Transport

The carbon-depletion efficiency can be limited by vertical transport when the stellar FUV pho-
tons do not penetrate the entire disk because the carbon grains must be vertically transported
from the disk midplane to the exposed layer. To be specific, the carbon depletion process becomes
inefficient if the local carbon fraction fc in the irradiated exposed layer becomes significantly
smaller than the average carbon fraction below the exposed layer. This is the case whenever
carbon grains in the exposed layer are destroyed faster than they are recycled through collisions
and vertical transport with the rest of the grains in the lower dense disk layers. In this situation,
the carbon grain destruction time td is not a limiting factor to the depletion timescale anymore,
as suggested by Eq. 6.18. In such a situation, decreasing the carbon grain destruction time td
does not decrease the depletion timescale τc because any carbon that reaches the exposed layer
is destroyed anyway. In other words, there is a lower limit to the carbon depletion timescale τc,
below which Eq. 6.18 is not valid anymore. This limit is reached if the grain destruction time
td becomes equal to the typical time a grain spends in the exposed layer before it gets recycled
through vertical transport and collisions in the lower disk layers. We call this time the residence
time tres. Hence, if tres ą td, carbon depletion is residence-time-limited and the smallest possible
depletion timescale is

τ resc “
Σd

Σ˚
d

tres. (6.26)

In Fig. 6.3, we present a sketch of a mixing cycle of small dust grains between the disk midplane
and the exposed layer where we illustrate the residence time as a fraction of the full mixing
cycle. In Appendix 6.B, we derive an expression for the residence time tres taking into account
the random turbulent motions of a grain in the disk, which we model as a stochastic Ornstein-
Uhlenbeck process (Uhlenbeck & Ornstein, 1930). For readability, we only report the results in
this section and refer the reader to Appendix 6.B for the full derivation. We find the residence
time of a particle at height z can be calculated with an integral over the complementary error
function and a dimensionless variable χ as

trespzq “
1

2

ż tmix

0
erfc

`

χpz, tq
˘

dt (6.27)

The dimensionless variable χ is time-dependent and defined as

χpz, tq “
z ´ z̄ptq
?
2υptq

(6.28)

where we integrate up to the mixing time tmix “ 1{αΩ and define a time-dependent mean z̄ptq “

ze´ηt. Further, we define the time-dependent variance of the stochastic Ornstein-Uhlenbeck
process υ2ptq “

Dd
η

`

1 ´ e´2ηt
˘

and the rate η as

η “ StpzqΩ `
Dd

h2g
(6.29)

In Fig. 6.4, we plot the z-dependence of Eq. 6.27 in orange color. The residence time tres has a
shallow negative slope above the midplane up to the point at which dust grains decouple from
the gas (zdec). Beyond this point, the residence time drops off sharply. When approaching
the midplane, the residence time approaches half the mixing time and at for z “ 0 we find
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tres “ tmix{2. This makes sense if one considers the mixing time to be the time a grain performs
a full mixing cycle. Since the residence time only considers one side of the disk (z ą 0), at z “ 0
it must be equal to half a mixing time.

6.3.4 Photon Scattering

In this section, we further investigate residence-time-limited carbon depletion, i.e., tres ą tph at
the τ “ 1-surface, and study what happens when we include the effects of photon scattering (see
also Klarmann et al., 2018). FUV-photons do not only penetrate the disk down to the τ “ 1-
surface, but penetrate optically thicker regions due to forward scattering (Van Zadelhoff et al.,
2003). Consequently, the lower edge of the exposed layer z1 is lower than the τ “ 1-surface
and the FUV field extends deeper into the disk. Below the τ “ 1-surface, with increasing
optical depth, the UV-field is exponentially attenuated FUVpzq9 exp

`

´ τpzq
˘

. Hence, at a
given radius, the lifetime of a carbon grain tph that is exposed to UV radiation, increases by a
factor exp

`

´ τpzq
˘

. In Fig. 6.4, we plot the vertical dependence, i.e., the exponential increase
towards the midplane, of the lifetime of a grain td in gray color. At the same time, the surface
density that is exposed to UV photons is larger by a factor τpzq, and we adapt the definition in
Eq. 6.20 when considering forward scattering to read

Σ˚
d “ τpzq2Φ{κ0. (6.30)

Thus, below the τ “ 1-surface, the unrestricted depletion timescale τphc pzq increases with de-
creasing distance to the midplane. In fact, it increases faster with decreasing distance than the
residence-time-limited depletion timescale τ resc pzq. Thus, we find the effective depletion timescale
by solving

τ resc pz1q “ τphc pz1q (6.31)

for z1 where now, z1 ă zτ holds. Then, all the grains above z1 are destroyed faster than their
residence time at z1. Hence, when considering forward scattering in the residence-time-limited
case, we consider z1, to be the lower boundary of the exposed layer. In Fig. 6.2, we visualize
the location of z1 as a function of radius in our fiducial model (in yellow color). Throughout the
entire disk, it lies less than half a gas scale height (0.5hg) lower than the τ “ 1-surface without
forward scattering.
In Fig. 6.5 we visualize the depletion timescales (as a function of radius) for three different
models with increasing levels of sophistication. First, the red line shows the unrestricted carbon
depletion timescale at the τ “ 1-surface, calculated with Eq. 6.24. It is 41 kyr at 1 au. The blue
line shows the depletion timescale limited by vertical transport, i.e., the residence time limit, as
calculated with Eq. 6.26. It is 2.6 Myr at 1 au. The yellow line shows the depletion timescale
under the consideration of forward scattering, as calculated with Eq. 6.31. It has a value of 695
kyr at 1 au.

6.3.5 Analytical Solution of the Carbon Fraction

In Appendix 6.C, we derive an analytical solution describing the carbon fraction as a function
of radius and time fcpr, tq, as described by the transport equations in Sec. 6.2.3. In this section,
we only summarize the most important results. In the derivation, we study the movement of
individual grains subject to radial drift at radial velocity vr. Assuming we find grains at radius
r in the disk at a time t ą 0, and knowing the radial dependence of vr from Eq. 6.11, we infer
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Figure 6.6: Carbon fraction fc as a function of radius at different times over 106 years is depicted,
using the fiducial model parameters. The gray boxes represent the estimated carbon fraction
on Earth, meteorites and comets and are the same as in Fig. 2.8. Upper row: Carbon fraction
without radial transport using Eq. 6.84 and Eq. 6.36. Lower row: Full model including radial
transport using Eq. 6.36 and Eq. 6.33. The gray dashed line represents the carbon fraction
at t Ñ 8. Left: Photolysis without constraints by vertical transport, for which the depletion
timescale is calculated using Eq. 6.25. At 1 au we find τphc pzτ q “ 40 kyr. Middle: Smallest
possible carbon fraction if vertical transport is considered and the depletion is only active above
the τ “ 1-surface. The depletion timescale is calculated using Eq. 6.26 which results in a value of
τ resc pzτ q “ 2.6 Myr at 1 au. Right: Same as the middle panels, but including forward scattering.
The depletion timescale is calculated using Eq. 6.31 which results in a value of τ effc pz1q “ 695
kyr at 1 au.
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the initial radial position r1 of the grains at time t “ 0

r1pr, tq “

$

&

%

r ¨ exp
`

´ v0
r0
t
˘

if l “ 1
´

r1´l ` pl ´ 1qr´l
0 v0t

¯1{p1´lq
else

(6.32)

where time t is the time when the grains are at radius r. Knowing the initial radius r1pr, tq of
grains at radius r at time t, we calculate the surface density ratio fΣ “ Σc{Σs at radius r at
time t as

fΣpr, tq “

$

’

’

&

’

’

%

fΣpr1, 0q ¨

ˆ

r1

r

˙

r0
τc,0v0

if β “ 0

fΣpr1, 0q ¨ exp

ˆ

r0
τc,0v0β

„

´

r1

r0

¯β
´

´

r
r0

¯β
ȷ˙

else

(6.33)

where

τc,0 “
Σc,0

9Σc,0

(6.34)

is the carbon depletion timescale at r “ r0 and the power-law index β is defined as β “

pd ´b´ l`1. Here, we require pd “ l`1 because only then Σdprq is time independent (assuming
Σd " Σc) and retains a power-law form, which is a requirement for our analytical analysis.
Consequently, the carbon depletion timescale τc,0 is also time-independent. This becomes clear
if we rewrite Eq. 6.34 using Eq. 6.18. The carbon depletion timescale then becomes

τc,0 “
Σd,0

Σ˚
d

td,0 (6.35)

and is a function of time-independent quantities only. From the equation above, one finds the
carbon depletion timescale to be inversely proportional to the fraction of surface density in
which the depletion mechanism is active Σd,0{Σ˚

d and directly proportional to the carbon grain
destruction time td. Ultimately, the carbon fraction fc as a function of radius and time is

fcpr, tq “

ˆ

1 `

´

fΣpr, tq
¯´1

˙´1

(6.36)

or whenever Σs " Σc holds, the carbon fraction is

fcpr, tq « fΣpr, tq (6.37)

From our set of governing equations (Eq. 6.32, Eq. 6.33, and Eq. 6.36), it becomes clear that
the evolution of the carbon fraction fc at a given radius r is mainly driven by the dimensionless
quantity τcvr{r which is the product of the carbon depletion timescale and the radial drift
velocity normalized by the radius. Carbon depletion at a given radius will be more efficient the
smaller this quantity is. The quantity τcvr{r is small if the destruction mechanism is active in
a large fraction of the disk surface density, i.e., Σ˚

d{Σd is large, if the carbon grain destruction
time td is small or if the radial drift velocity vr is small. In order to apply the analytical model,
we must define Σ˚

d and td, which we will do in the following sections.

6.3.6 Connection to the Analytical Solution

Up to this point, we have introduced all the necessary ingredients to evaluate the time evolution
of the carbon fraction fc. We plug in the relevant depletion timescale τc,0 and the power law index
b. For photolysis, unrestricted by vertical transport and without considering forward scattering,

we use Eq. 6.25 and evaluate it at r0=1 au to find τphc,0. Because FUV 9r´2 we immediately find
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the power-law index b “ 2. On the other hand, if depletion is limited by vertical transport,
we generally do not find an explicit expression for τ resc,0 and b. Moreover, the carbon depletion
timescale τ resc does not necessarily have power-law dependence in r. Therefore, we approximate
it with a power law as

τ resc pr, zq « τ resc,0 pzq ¨

ˆ

r

r0

˙b´3{2

(6.38)

and find the corresponding values at a given height z for τ resc,0 and b in a least-square fit. When
combining photolysis and vertical transport in the disk, we calculate an effective depletion
timescale at every radius r. In cases when we do not consider forward scattering, we calculate
the effective depletion timescale at the τ “ 1-surface

τ effc pr, zτ q “ max
“

τ resc pr, zτ q, τphc pr, zτ q
‰

. (6.39)

When we consider forward scattering, and we find z1 with Eq. 6.31, the effective depletion
timescale is

τ effc pr, z1q “ τ resc pr, z1q “ τphc pr, z1q. (6.40)

6.4 Thermal Decomposition (Pyrolysis / Irreversible Sublima-
tion)

The second carbon depletion mechanism we study, in addition to photolysis, is the process
of pyrolysis (this process is sometimes also referred to as the irreversible sublimation of the
carbonaceous material) which is one of the prime suspects for depleting the inner protosolar disk
of its refractory carbon (Li et al., 2021; Van ’t Hoff et al., 2020; Gail & Trieloff, 2017; Nakano
et al., 2003). While sublimation is a physical change of state that does not involve chemical
alterations, pyrolysis is a thermal decomposition process that transforms a solid into a gas via the
decomposition of larger organic molecules into smaller molecules (e.g., CO, CO2, CH4 or hexane,
toluene, phenol, heptane) and as such is generally irreversible. The pyrolysis temperatures of
large organic molecules are typically much higher than the sublimation temperatures of the
volatile, newly produced molecules. Thus, the products directly enter the gas phase. In this
section, we consider the soot line (Kress et al., 2010) to be the outer edge of a region within which
thermally driven irreversible sublimation, i.e., the combined effect of breaking down molecular
bonds within large organic molecules and the consequent release of small molecules into the gas
phase, irreversibly destroys carbonaceous material.

6.4.1 Depletion Timescales

Similarly to Sec. 6.3.2, in this section, we define a depletion time t1
d for irreversible sublimation

by describing the sublimation process as a first-order reaction process, i.e., the reaction rate
is proportional to the local volume density of carbonaceous material in the disk, using kinetic
theory. Thermogravimetric laboratory experiments on kerogen, a terrestrial analog to interstel-
lar carbonaceous material, show that the rate coefficient ki of irreversible sublimation is best
described by an Arrhenius-law equation (Chyba et al., 1990)

ki “ Aie
´Ei,a{RT (6.41)

where ki is the rate, Ai is the exponential prefactor, Ei,a is the activation energy and T is
the temperature of the carbonaceous material. Due to the expected chemical analogy of the
carbonaceous material and the terrestrial kerogen, we also adopt this theory to describe the
sublimation of carbonaceous material in our dust compounds in the presolar disk. During the
heating of kerogen, various volatile organic compounds are released, for which Oba et al. (2002)
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measured activation energies Ea and prefactors A. For photolysis, limited laboratory data do
not allow us to differentiate between different carbonaceous compounds. For pyrolysis, more
laboratory data exists. However, for simplicity, we describe the sublimation process of each of
our five carbonaceous compounds with only a single rate law, as in Eq. 6.41. A more detailed
analysis would not be justified given the uncertainty in the exact composition of the presolar
material. In Fig. 6.2.1, we list the prefactors Ai and activation energies Ea,i for four carbonaceous
components (i=1...4, see Sec. 6.4.1 for i “ 5). Further, we assume that the internal temperature
of a dust grain is uniform, and the decomposition process follows Eq. 6.41 uniformly inside the
grain volume (as opposed to e.g., evaporation which is a surface process). Patisson et al. (2000)
confirm this uniformity, and as such the validity of our first-order approach, for carbonaceous
grains which are comparable in size and on temperature variation timescales that are much
shorter than what we consider in this work. Moreover, we assume the dust grains to be in thermal
equilibrium with their gaseous environment at all times. Assuming a vertically isothermal disk,
dust grains only encounter different thermal environments via radial movements, and Stammler
et al. (2017) argue that the radial motion of dust grains is slow enough that the instantaneous
adaption of the grain temperature to the ambient temperature is well justified. Therefore, we
write the destruction time of an individual grain of compound i at disk temperature T as

tsubd,i “ A´1
i eEi,a{RT (6.42)

Because in our model, the disk is vertically isothermal, at every radius, sublimation is active
throughout the entire vertical column of the disk. Thus, the depletion timescale is equal to the
time it takes to deplete an individual grain, i.e.

τ subc,i “ tsubd,i (6.43)

The Case of Amorphous Carbon

Compared to the other carbonaceous compounds considered in our model, amorphous carbon is
more refractory. Also, it mainly consists of atomic carbon, without additional O, N, or S, which
prevents it from being thermally decomposed into small hydrocarbons like the more volatile
kerogen compounds at low temperatures. Instead, only at temperatures above „ 1500 K, it
vaporizes via the release of chain molecules (mainly C1...C5) where the molecules readily react
with oxygen (Duschl et al., 1996). However, in protoplanetary disk environments, the amorphous
carbon is eroded by chemical reaction with OH molecules, at temperatures below its sublimation
temperature („ 1200 K). Thus, amorphous carbon can be destroyed by a combustion process
before it sublimates (Duschl et al., 1996; Gail, 2001; Gail & Trieloff, 2017). To model this
thermochemical decomposition, a complex chemical model of the gas phase is required and is
beyond the scope of this work. In a steady state, the temperature required for the oxidation of
amorphous carbon via OH is only reached well at the midplane within Earth’s orbit, a region
that is not relevant to this chapter. Alternatively, Anderson et al. (2017) and Klarmann et al.
(2018) studied the effects of carbon depletion via oxidation in the hot disk atmosphere, but it
was found to not significantly contribute to the carbon depletion in the inner Solar System.

6.4.2 Analytical solution of the carbon fraction

Based on the consideration in the previous section, and considering only the irreversible sub-
limation to affect the abundance of refractory carbonaceous material in the disk, we find the
source term for the ith carbonaceous compound (i “ 1..4) in Eq. 6.14 to read

9Σd,i “ Σd,iAi exp

ˆ

´
Ei,a

RT prq

˙

(6.44)
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In Appendix 6.D, we derive the solution to Eq. 6.14 with the source term of the form (6.44) to
model effects of irreversible sublimation. The solution to Eq. 6.14 for i “ 1...4 reads

Σd,ipr, tq “ Σd,ipr
1, t1q

´ r

r1

¯´pl`1q

¨

exp

"

r0
v0

AiRT0

qEi,a

„

exp

ˆ

´
Ei,a

RT0

´ r

r0

¯q
˙

´ exp

ˆ

´
Ei,a

RT0

´ r1

r0

¯q
˙ȷ* (6.45)

By plugging the solution of Eq. 6.45 into Eq. 6.4), we find the solution to the total dust surface
density Σdpr, tq. By using Eq. 6.5 and Eq. 6.6, we find the carbon fraction as a function of radius
and time fcpr, tq. We discuss these results in Sec. 6.5.2. In Sec. 6.5.4, we combine the results of
irreversible sublimation with photolysis to study the combined effects of the carbon depletion
mechanisms.

6.5 Results

Here we present the results of our analysis. In Sec. 6.5.1, we first present the effect of photolysis
on the abundance of carbonaceous material in our disk model and discuss the influence of model
parameters on the results. In Sec. 6.5.2, we report the results when considering the effects of
sublimation. In Sec. 6.5.4, we combine photolysis and sublimation.

6.5.1 Photolysis

Depletion Timescales

In our fiducial model, the depletion timescale of unrestricted photolysis in the exposed layer
above z “ zτ , i.e., without including restrictions by vertical transport, as calculated with

Eq. 6.25, has a value of τphc “ 40 kyr at 1 au and is proportional to r0.5. The radial pro-
file of the unrestricted depletion timescale is plotted in Fig. 6.5 in yellow color. When vertical
transport is included, i.e., the depletion timescale is calculated with Eq. 6.26 at z “ zτ , the
depletion timescale follows the blue line in Fig. 6.5. This profile is not strictly a power law,
thus, as described in Sec. 6.3.6, we approximate it with a power law of the form of Eq. 6.38.
We find the proportionality factor of the depletion timescale to be equal to τ resc,0 “ 2.57 Myr
and the power-law exponent to have a value of 0.22. When considering the limiting effects of
vertical transport, the depletion timescale is almost two orders of magnitude larger compared
to the unrestricted case. This is because, even though the exposed layer gets depleted in carbon
quite quickly, it cannot be replenished efficiently with undepleted material from the midplane
by vertical mixing. This supports the findings of Klarmann et al. (2018) who found that vertical
dust transport reduces the efficacy of carbon depletion. We also find the slope of τ resc pzτ q to be

shallower than the slope of τphc pzτ q, meaning the carbon depletion efficacy does not drop as much
at larger distances from the star as compared to the unrestricted model. In a third model, we
also include the effects of photon forward scattering. When considering forward scattering, UV
photons penetrate deeper into the disk than the τ “ 1-surface, and we calculate the depletion
timescale at height z1 with Eq. 6.40. Because z1 lies below the τ “ 1-surface, the relevant resi-
dence time is larger than without scattering trespz1q ą trespzτ q and grains spend more time in the
exposed layer before being mixed back into the deeper layers of the disk. An increased residence
time alone would result in less efficient carbon depletion. But as a result of forward scattering,
a larger fraction of the surface density is exposed to stellar radiation. With decreasing height z,
the inverse of the exposed surface density fraction (Σd{Σ˚

d) in Eq. 6.26 decreases faster than the
residence time (tres) increases. Therefore, the carbon depletion timescale with scattering (yellow
line in Fig. 6.5) is overall smaller than the depletion timescale without scattering (blue line in
Fig. 6.5). We find the power-law approximation to have a value of τ resc,0 pz1q “ 695 kyr, almost



6.5 Results 109

four times smaller than without scattering, but still more than an order of magnitude larger
than for unrestricted photolysis. Its dependence on r is steeper than without scattering, 9r0.31.
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Figure 6.7: Carbon fraction fc as a function of radius at different times over 106 years, with dust
surface density Σd reduced by a factor of five compared to the fiducial model (including radial
and vertical transport). left: Carbon fraction as a function of radius and time for residence-
time-limited depletion without forward scattering, i.e., the depletion timescale is calculated using
Eq. 6.26 which results in a value of τ resc pzτ q “ 617 kyr at 1 au. right: Same as the left panel but
including forward scattering. The depletion timescale is calculated using Eq. 6.31 which results
in a value of τ effc pz1q “ 158 kyr at 1 au.

Photolysis without Radial Transport

We plug the three different depletion timescales, as reported in the previous Sec. 6.5.1, into the
analytical evolution equations of the carbon fraction fc in Eq. 6.36. We first consider cases with-
out radial transport, i.e., we use Eq. 6.84 to calculate the surface density ratio fΣ in Eq. 6.36.
In the upper row of Fig. 6.6, we plot, in the first panel, the carbon fraction fc as a function
of disk radius at different times for photolysis without restrictions by vertical transport using

τphc,0 “ 40 kyr. In the second panel, we show the case in which the depletion is limited by vertical
transport and τ resc,0 “ 2.6 Myr, i.e., without scattering. In the third panel, we show the case with
scattering and τ resc,0 “ 695 kyr. The gray boxes in the background of each sub-panel in Fig. 6.6
represent the estimated carbon fractions of Solar System objects, as discussed in Sec. 6.2.1. We
confirm the results of Klarmann et al. (2018) by showing that unrestricted photolysis (without
restrictions by radial or vertical transport) depletes the inner disk of carbon to values of almost
10´4 at 1 au within ă 300 kyr. The outer disk shows carbon depletion by more than a factor
of ten within the same time, such that Solar System values can be reproduced within a few
hundred thousand years. We also find that vertical transport significantly reduces the carbon
depletion efficacy because the carbon fraction in the exposed layer drops and vertical transport
cannot efficiently replenish these layers with undepleted material from lower disk layers. As a
result, the carbon fraction, in the second panel of Fig. 6.6, is barely reduced. Within 1 Myr,
values below 10´1 are not reached anywhere in the disk. This result represents a lower limit not
only for photolysis with vertical transport included but more generally for any photo-induced
carbon depletion mechanism that is active in the FUV-irradiated layer of the disk.
Further, we find that including forward scattering improves the carbon depletion efficacy, but it
does not sufficiently decrease the depletion timescale such that levels required to reproduce Solar
System abundances are not reached. After 1 Myr, the carbon fraction at 1 au is just slightly
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below fc “ 10´1.

Photolysis with Vertical and Radial Transport

Next, we also include the effects of radial transport. Including radial transport does not change
the depletion timescale τc in our models, but exposes grains to different environments with
different depletion timescales as they radially drift inward. Because the depletion timescales in
all the three cases presented in Fig. 6.5 have a positive radial gradient, including radial transport
decreases the overall carbon depletion efficacy. This is because, at early times, grains experience
environments with a lower depletion timescale at larger radial distances. This is not the case if
radial transport is ignored and grains are exposed to the same depletion environment at all times.
In the lower row of Fig. 6.6, we show the results of the full model, i.e., calculating the carbon
fraction using Eqs. 6.32, 6.33, and 6.36. When radial transport is included, the carbon fraction
fc does not decrease indefinitely but eventually reaches a steady state. We indicate the steady-
state solution with the gray dashed line in every sub-panel in the lower row of Fig. 6.6. The
steady-state solution is the minimal possible carbon fraction when the dust disk is continuously
replenished by undepleted material via the outer disk boundary. In all three solutions presented
in the lower row of Fig. 6.6, the carbon fraction at 1 Myr is still far away from the steady-
state solution throughout most of the disk because radial drift is relatively slow compared to
the depletion timescale. At 200 au the radial drift timescale (r{vr) is „ 6.5 Myr. Overall, in
our models, the influence of radial drift is significantly smaller than the restrictions by vertical
transport. However, this is only true as long as the steady-state solution is not reached. At later
times, the solutions with and without radial transport will diverge significantly. This divergence
will only become relevant once the system approaches the drift timescale (r{vr) of the grains
at the outer disk boundary. In our models, this timescale is much larger than the timescale on
which we expect planetesimal formation to occur. However, when radial transport is included in
our fiducial model with scattering, the carbon fraction must come very close to the steady-state
solution to successfully reproduce Solar System abundances. This happens on a timescale of a
few Myr.

Overcoming Dust Transport

In the previous section, we have shown that inefficient vertical transport is the main limiting
factor in photo-induced carbon depletion via photolysis because the typical time a grain spends
in the exposed layer, per mixing cycle (its residence time), is long compared to the time it takes
to destroy an individual grain. In this section, we will study the properties of our analytical
model to understand under which circumstances the carbon depletion timescale can be decreased
sufficiently to reproduce carbon fractions fc as measured in the Solar System. It is not straight-
forward to understand how model parameters influence the carbon depletion timescale τ resc as
presented in Eq. 6.31, due to its implicit form. Therefore, we derive an explicit (but only ap-
proximate) expression of the depletion timescale. This allows us to understand the influence of
individual parameters on our results. Later, we will confirm our findings by comparing them with
the exact result. We plug the explicit approximation of the residence time as derived in Eq. 6.81
into the definition of the depletion timescale in Eq. 6.26, and obtain an explicit expression of
the carbon depletion timescale in the residence time limit, i.e., with vertical transport:

τ resc »
Σdκ0
2ΦαΩ

¨

˜
d

2 ln
fďasΣdκ0
2
?
πΦ

´
1

5

¸´2

(6.46)

In the above expression, fďas « pamax{asq´0.5 is the mass fraction of grains below or equal to
size as which we derive in Appendix 6.A. The quantity amax is the upper limit of the grain



6.5 Results 111

size distribution and, in the fragmentation limit, is estimated using Eq. 6.8 and Eq. 6.9. In the
fragmentation limit, amax is inversely proportional to the turbulent alpha parameter amax9α´1.
Equation 6.46 approximates the depletion timescale when limited by vertical transport, but
without taking into account the effects of forward scattering. However, the results in Eq. 6.46
do serve as a good estimate of an upper limit for the solution which includes scattering. In our
fiducial model, using Eq. 6.46, we find τ resc pzτ q “ 3.6 Myr at 1 au without decoupling of dust
grains. For comparison, we calculated a value of 2.6 Myr with grain decoupling in 6.3.4. The
lower value arises from the fact that more weakly coupled grains have a smaller residence tres
(see Fig. 6.4).
Due to the explicit nature of Eq. 6.46, we understand its dependence on model parameters.
From the first factor in Eq. 6.46, we find that four parameters influence the depletion timescale
(Σd, κ0,Φ, α), plus the Keplerian frequency Ω, but the latter is not influenced by the choice
of model parameters. In Eq. 6.46, the dust surface density (Σd) also appears in the argument
of the natural logarithm (ln) in addition to the linear dependence of the first factor. Overall,
both contributions counterbalance each other due to the negative exponent in the second fac-
tor. However, the argument of the natural logarithm is generally much larger than unity, and,
thus, its argument contributes less than linear to the overall depletion timescale. Therefore,
a decrease in the dust surface density also decreases the depletion timescale because a lower
dust surface density decreases the optical depth of the disk, which increases the surface density
fraction contained in the exposed layer. The same scaling argument holds for changes in the
opacity κ0 or the flaring angle Φ. A smaller opacity similarly decreases the optical depth of
the disk and thus increases the carbon depletion efficacy. A larger flaring angle allows stellar
photons to arrive at a steeper angle and thus penetrate deeper into the disk. On the other
hand, the turbulence parameter (α) does only appear in the first factor, but not explicitly in the
argument of the natural logarithm. However, it implicitly acts on fďa1 via the maximum grain
size in the fragmentation limit amax. The maximum grain size is proportional to α´1. Thus,
fďa19α0.5 and consequently, the turbulence parameter contributes slightly more than linear to
the depletion timescale because more turbulence increases the efficiency of vertical transport
and, at the same time, increases the number of small grains in the disk because large grains
fragment more frequently. To conclude, we find carbon depletion to be favored by a low dust
surface density, low opacity, high flaring angles, and high turbulence. Moreover, it is favored by
a large mass fraction in small grains, but to a lesser degree than the other factors because fďa1
only appears in the argument of the natural logarithm.
In our fiducial model, the turbulence parameter is already large, and the constraints on the
flaring angle and the opacity are relatively tight in our model. The dust surface density Σd,
on the other hand, is not well constrained. Decreasing the dust surface density by a factor of
five compared to the fiducial model reduces the approximate depletion timescale at 1 au, as
calculated with Eq. 6.46, from 3.6 Myr to 860 kyr. The exact result that also considers grain
decoupling decreases from 2.6 Myr to 617 kyr. In both cases, the decrease is a factor of 4.2,
while the latter values are lower because the residence times of more weakly coupled grains are
generally smaller (see Fig. 6.4). We plot the evolution of the carbon fraction in the disk with the
decreased depletion timescale (without forward scattering) in the left panel of Fig. 6.7. With a
decreased dust surface density, the carbon fraction reaches levels of 10´2 at 1 au within 1 Myr
which is a depletion by almost a factor of 30. To compare, in the fiducial model, the carbon
fraction was only decreased by a factor of 1.5.
When including forward scattering, and solving Eq. 6.31, we do not provide an explicit ex-
pression. However, the functional dependence of the depletion timescale will be expanded to
include the stellar UV-flux. Forward scattering further decreases the depletion timescale at 1
au to 87 kyr. We show the evolution of the carbon fraction with scattering in the right panel of
Fig. 6.7. For comparison, the depletion timescale for photolysis unrestricted by vertical trans-
port is also smaller with lower dust surface density, with a value of 13 kyr at 1 au. The lower
dust surface density allows the carbon fractions in our model to reach levels comparable to Solar
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System abundances within a time of „ 7 ˆ 105 years, even when radial and vertical transport
is included. The same is true for a decrease in the opacity or an increase in the turbulence
or flaring angle. Or a change in all parameters which results in a combined decrease in the
depletion timescale by a factor of eight compared to the fiducial model.

6.5.2 Irreversible Sublimation

In this section, we study the effects of irreversible sublimation on the carbon fraction fc, as
introduced in Sec. 6.4. We first ignore contributions from photodecomposition processes. In
Fig. 6.8, we display the carbon fraction fc as a function of radius at various times, assuming
that the refractory carbonaceous material is continuously decomposed by irreversible sublimation
according to Eq. 6.44. Note, Fig. 6.8 only shows the radial range between 0.1 and 5 au, and
plots the carbon fraction fc at earlier times compared to the previous figures in which we showed
the results of photolysis. This is because the inner disk is depleted significantly faster due to
the exponential dependence on temperature. The upper row of Fig. 6.8 shows the evolution
of the carbon fraction in the absence of radial drift. At each point in time, one can identify
multiple distinct steps in the radial profile of the carbon fraction fc. These steps correspond
to the soot lines of the individual carbonaceous compounds in our model (see Fig. 6.2.1). The
carbon fraction reaches a floor value at fc “ 0.03 when only the amorphous carbon compound
is left. In the absence of radial drift, these soot lines continuously move outward because the
depletion timescale is finite everywhere in the disk. At 1 Myr, all the carbonaceous compounds,
except the amorphous carbon, have completely sublimated in the disk region within 0.3 au from
the star.
In the bottom row of Fig. 6.8, we include the effects of radial drift. The main difference compared
to the no-drift situation is the fact that a steady-state distribution exists, which in our model
is reached between 10 kyr and 100 kyr. After that, the carbon fraction profile does not change
anymore and the individual soot lines are stationary because the inward drift of the dust exactly
cancels the outward motion of the soot line. Due to the exponential dependence of the depletion
timescale on temperature, the transition region in which an individual compound is only partially
sublimated is very narrow (fractions of an au). Thus, the radial gradient in the disk is more
the result of the different sublimation temperatures of the individual compounds, rather than
a product of the radial variation in the depletion timescale of an individual compound. This
property is distinctly different from photolysis, where the shallow radial slope of the depletion
timescale is responsible for the global radial carbon fraction gradient in the disk. Overall, we
find irreversible sublimation in our passively heated steady-state disk model to only deplete the
innermost disk region. Furthermore, it decreases the carbon fraction by at most a factor of ten
due to the presence of a highly refractory amorphous carbon compound, which only decomposes
at temperatures ą 1000 K. The carbon fraction in the colder disk regions, where Earth or the
chondrites are found, is not depleted. The lowest level that the inner disk can be depleted to by
irreversible sublimation is strictly set by the abundance of amorphous carbon (f5 “ 0.03). The
detailed composition of the carbonaceous material in the ISM is highly uncertain. However, the
adopted value of 3 % is close to the value of 4.2% reported in Fomenkova et al. (1994) for in situ
measurements in the coma of comet Halley (however, the latter value is reported as a number
fraction of measured dust grains rather than a mass fraction). In order to reach values relevant
for bulk Earth with irreversible sublimation alone, the abundance of amorphous carbon must be
a factor ten lower, i.e., as low as f4 À 0.4 %.
In our model, the steady state soot line is located at a heliocentric distance of about r „ 0.25
au, which corresponds to a temperature of about „ 450 K in our passively heated, thermal
equilibrium disk (see lower panel of Fig. 6.8). The inclusion of viscous disk heating in our model
could move the soot line radially outward as a result of the increased disk temperature. However,
at 1 au, we find the disk surface temperature to be dominated by viscous heating only if the mass
accretion rate is larger than „ 2.7 ¨ 10´7Md{yr. In our disk model with α “ 10´2, the accretion
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Figure 6.8: Carbon fraction fc as a function of radius at different times under the assumption
that irreversible sublimation is the sole contributor to the decomposition of refractory carbon.
The upper panel shows the carbon fraction profile in the absence of radial drift. The individual
soot lines continuously move outward, such that the region within about 0.3 au only consists
of amorphous carbon after about 1 Myr. The bottom panel shows the same situation but
including radial drift. At a time between 10 kyr and 100 kyr the outward motion of the soot
lines is counterbalanced by the inward drift of the dust and a steady state forms. The gray
boxes indicate the carbon fraction as found in chondrites.
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rate at 1 au is lower, with a value of „ 3.5 ¨ 10´8Md{yr. Hence, the soot line does stay within
Earth’s orbit even with the contribution of viscous heating. For comparison, Li et al. (2021)
show that the soot line in their model moves outward to about 1 au with α “ 10´3 when viscous
dissipation does contribute to the local heating of the disk. Thus, in a steady-state disk model
with viscous heating, the disk region out to Earth’s orbit might get depleted. But only by a
factor of ten because the remaining amorphous carbon compounds survive up to temperatures of
over 1200 K before the OH abundance level in the disk rises to levels sufficient for the amorphous
carbon to oxidize (Gail & Trieloff, 2017; Gail, 2001; Finocchi et al., 1997). Such temperatures
are only reached well within Earth’s orbit. Thus, with an amorphous carbon abundance above
0.4 %, we fail to explain the two to three orders of magnitude depletion required to reproduce
the carbon fraction of bulk Earth. Analogous arguments hold for the depletion of parent bodies
of chondrites.

6.5.3 FU Ori-type Outbursts

In the previous section, we have shown that it is difficult to explain the carbon depletion of
Earth and chondrites via irreversible sublimation in a steady-state disk. In this section, we
briefly study the effects of transient luminosity outbursts and irreversible sublimation on the
carbon fraction. In the Solar System, there is considerable evidence that short-lasting and fre-
quent temperature increases happened during the formation of chondrules (see e.g. Ciesla, 2005,
for a review). Additional evidence against a steady state scenario during the early phases of
planet formation comes from FU Orionis-type objects, which are a class of objects containing
a pre-main sequence star and show sudden increases in luminosity over a short period of time
(Herbig, 1966; Hartmann & Kenyon, 1996). We do not aim to imply a connection between
the formation of chondrules and FU Ori-type outbursts here, but both phenomena suggest a
highly variable disk environment in the early formation phase of solids. Even though it is not
clear if the early Solar System has undergone any FU Ori-type outbursts, there are reasons to
believe that frequent outbursts are common in the early phase of stellar evolution (Hartmann
& Kenyon, 1996). Thus, in this section, we study the particular effects FU Ori-type outbursts
on the destruction of carbonaceous material. While the underlying triggering mechanism of FU
Ori-type outbursts is not well understood, the typical luminosity increase by a factor of 102´103

within a timescale of a year to a decade that lasts about a century (Hartmann & Kenyon, 1996)
is thought to be the result of a burst of the accretion rate in the inner disk region (r ă 1 au,
Zhu et al., 2007). Even though no object has been observed to have undergone multiple such
outbursts, statistical arguments lead to the conclusion that they are repetitive, and an object
undergoes at least ten outbursts, assuming that all (low-mass) young stars have FU Ori-type
outbursts (Hartmann & Kenyon, 1996), i.e., one every „ 105 years (Peña et al., 2019).
In our model, we assume the disk to undergo episodic accretion events which last for 100 years
and recur with a period of 100 kyr. We also assume that the region of increased accretion during
an outburst is confined to the innermost disk region (r ! 1 au) which we do not explicitly model.
We only model the disk outside the region of increased accretion, where we take into account
passive heating via the increased accretion luminosity of the innermost disk. In FU Ori-type
objects, the transition between the active and passive region is derived to lie anywhere between
5 Rd and „ 0.5 ´ 1 au (Audard et al., 2014) which is consistent with our model assumption.
Further, we assume the passive portion of the disk to be heated instantly during outbursts
and follows the temperature profile as in Eq. 3.34 where the stellar luminosity L˚ is replaced
by the accretion luminosity Lacc of the inner disk. We set Lacc “ 500L˚. Consequently, the
resulting disk temperature during an outburst increases by a factor Tburst « 4.7 ¨ T . Alterna-
tively, we find the disk temperature during the outbursts to shift radially by a factor „ 22.4
like Tburstprq « T pr{22.4q, i.e., the steady-state soot line moves from „ 0.25 au to „ 5.6 au
during an outburst. Naturally, any other sublimation line does moves by the same factor. This
is also roughly consistent when comparing the results of Cieza et al. (2016), who observed the
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Figure 6.9: Radial shift of the soot line as a result of an FU Ori-type outburst. Plotted is
the carbon fraction fc as a function of radius for three different turbulent alphas. The dashed
lines show the steady states in cases without outbursts and a state in which the luminosity is
continuously increased by a factor 100. The light blue line shows the carbon fraction after a
100-year-long outburst. The purple line shows the carbon fraction 100 kyr after an outburst
when the dust had time to radially drift inward. The red line shows the time-averaged carbon
fraction at every radius, assuming the outburst happens every 100 kyr.
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water-snow line in the outbursting system V883 Ori at a distance of 42 au, to the location of
the steady state snow line in the early Solar System, which is expected around „ 3 au (Martin
& Livio, 2012).
In Fig. 6.9, we show the radial shift of the soot line during one of our model outbursts in disks
with a different turbulent alpha. The two dashed lines in each subplot indicate the steady-state
carbon fraction fc. The inner profile corresponds to the steady-state in the absence of any
outburst, while the outer line corresponds to a steady state in a disk with 500 times increased
luminosity. As mentioned above, the profile shifts to the outer disk by a factor of about 22.4.
The light-blue solid line shows the carbon fraction at the end of an outburst episode of 100
years, i.e., the expected duration of an FU Ori-type outburst. We label this with t “ 0. The
purple line shows the carbon fraction at 100 kyr after the end of an outburst when the dust had
time to radially drift inward. The drift speed follows Eq. 6.11 and is inversely proportional to
the alpha parameter. During the relatively short outburst duration of 100 years, the soot-line
moves outward by a considerable distance due to the short sublimation timescales (see Eq. 6.41).
From the steady-state location at „ 0.25 au, it moves out to „ 5.6 au. For α “ 10´2, the dust
grains are so small that they barely drift inward in the 100 kyr time period between outbursts,
i.e., one outburst every 100 kyr is enough to permanently shift the soot line from „ 0.25 au to
„ 5 au and the region within 5 au remains permanently depleted. For α “ 10´3, the grains drift
fast enough to just reach 1 au, while for α “ 4 ¨ 10´4 they reach the inner steady state radius
slightly before the next outburst.
Assuming a mechanism would continuously produce planetesimals at a given radius r, the pro-
duced planetesimals would show a different carbon fraction fc depending on whether the soot
line was inside or outside their formation radius. We further assume the planetesimals are pro-
duced over an extended period of time and calculate the average carbon fraction of the entire
population of planetesimals that has formed at a given radius and plot their average carbon
fraction in red color in Fig. 6.9. Interestingly, for α „ 10´3, the time-averaged carbon fraction
(red line) distributes the carbon more evenly in the system and does not show its step-like char-
acter.
Note that, as a result of the different drift velocities, the location of the steady-state soot lines
also changes for different values of α. However, as a result of the exponential dependence on
temperature in Eq. 6.41, the radial change is small.

6.5.4 Photolysis, Sublimation, and Outbursts Combined

In Sec. 6.5.1, we showed that photolysis is residence-time-limited in our models. And in
Sec. 6.5.1, we showed with Eq. 6.46 that, in the residence time limit, the carbon depletion
timescale τ resc is independent of the incident radiation flux and consequently also of the under-
lying stellar luminosity. Therefore, we conclude that at least to first order, carbon depletion
via photolysis is not altered by an increase in luminosity during FU Ori-type outburst. The
same is true for any photo-induced process that is active in the UV-irradiated layers of the disk
(e.g., oxidation). Nonetheless, we combine the results on stellar outbursts with the results of
photolysis in Sec. 6.5.1 and study the combined effects of two depletion mechanisms of irre-
versible sublimation and photolysis. In Fig. 6.10, we show the combined effects of photolysis
and time-averaged irreversible sublimation with the fiducial dust-to-gas ratio (left subplot) and
reduced by a factor of five (right subplot). We find the characteristic step-like shape at the soot
lines beyond 4 au as a result of FU Ori-type outbursts. Thus, at every time, there is a decrease
by a factor of ten in the inner disk compared to the outer disk. In the inner disk, photolysis
further decomposes the refractory amorphous compounds. In the fiducial model, the carbon
fraction reaches levels of carbonaceous chondrites within 1 Myr, but not the levels of the more
depleted chondrites or of Earth. On the r.h.s. of Fig. 6.10, the initial dust surface density Σd is
reduced by a factor of five, which decreases the photolysis depletion timescale by a factor of 4.2



6.6 Discussion 117

(as described in Sec. 6.5.1). As a result, photolysis depletes the inner disk more efficiently and
the carbon fraction fc reproduces Solar System values of chondrites and bulk Earth within 700
kyr.
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Figure 6.10: Evolution of the carbon fraction fc under the influence of the combined effects of
photolysis and time-averaged irreversible sublimation including FU Ori-type outbursts, with the
fiducial dust surface density (left) and reduced by a factor of five (right). In the fiducial case,
the carbon fraction does not reproduce the observed values for the inner Solar System within 1
Myr. On the other hand, when the dust-to-gas ratio is reduced by a factor of five, the observed
Solar System values are reached within about 7 ¨ 105 years.

6.6 Discussion

6.6.1 Bouncing Collisions and Photolysis

In this section, we consider the effect of bouncing collisions, which can alter the size distribution
of the solid disk material(Blum, 2010), on the depletion timescale in the case of photolysis.
Throughout this work, we have assumed the dust size distribution to be in a coagulation-
fragmentation equilibrium in which the surface area of solids is dominated by the smallest
grains. Bouncing collisions, rather than fragmenting collisions, reduce the number of small
grains in the size distribution. We first assume bouncing and fragmenting collisions to coexist
in a way that the net effect of bouncing is a reduction in the number of small grains, but
fragmentation still replenishes small grains efficiently enough so that they are still the dominant
contributor to the UV-opacity at the τ “ 1-surface. The removal of small grains moves the τ “ 1-
surface closer to the midplane. If photolysis is still residence-time-limited, bouncing increases
the carbon depletion timescale, i.e., photolysis becomes less efficient because the residence time
tres increases with a shift of the τ “ 1-surface towards the midplane (see Eq. 6.26 and Fig. 6.4).
Photolysis becoming less efficient when bouncing is considered is also apparent when considering
Eq. 6.46. As long as the smallest grains dominate the opacity at the τ “ 1-surface, the inclusion
of bouncing decreases the mass fraction fďa1 in Eq. 6.46, and the remaining parameters remain
unchanged. Because the depletion time τ resc scales with the logarithm of the mass fraction fďa1 ,
a change in the mass fraction fďa1 , typically only has a small effect on the depletion time of
photolysis.
We further consider a more extreme example in which fragmentation does not replenish small
grains efficiently, such that the smallest grains are no longer the main contributor to the UV-
opacity at the optical surface and instead, the surface area is dominated by the largest particles
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at the bouncing barrier. As a result, the residence time tres increases, but as we show in Sec. 6.3.3,
it always stays smaller than half the mixing time tmix, i.e., it increases by at most a factor five.
The destruction time tph, on the other hand, scales with the radius of the opacity dominating
grain population (Eq. 6.23). Thus, if the bouncing barrier is located at a large enough grain
size, photolysis will no longer be residence time limited because tph ą tres. For an illustrative
example, we assume the grains to grow until the bouncing barrier at size aB. Then, the grain
destruction time of a grain in the exposed layer is

tph,B “
m

mcRUV
“

4

3

aBρ‚

mcYphFUV
(6.47)

For simplicity, we assume, the size aB of grains at the bouncing barrier, to be equal to the grains
at the (hypothetical) fragmentation barrier, i.e., the only grain size we consider is

aB “
2

3π

ffmgv
2
f

αkB

Σg

T
(6.48)

Then, the depletion time for bouncing tph,B scales with radius like the inverse of the Keplerian
frequency

tph,B “ tph,B,0

ˆ

r

r0

˙2´pg`q

(6.49)

with proportionality factor

tph,B,0 “
8

9π

ffmgρcv
2
fΣg,0

αkBmcYphFUV,0T0
(6.50)

In our fiducial model, we find tph,B “ 76.6 Ω´1 which is equal to 12.6 yr at 1 au. The residence
time is always smaller than half the mixing time, which in our fiducial model at 1 au is equal
to 50 Ω´1. Thus, tres ą tph,B and photolysis is not limited by vertical transport in this example
and the effective depletion timescale is

τc,B “
Σd,0

Σ˚
d

td,B (6.51)

which does simplify to

τphc,B “
Σd

2mcYphΦFUV
(6.52)

by plugging in Eq. 6.47 and using Σ˚
d “ κ´1

0 “ 4ρ‚aB{3. Equation 6.52 is identical to the
unrestricted carbon depletion timescale (Eq. 6.25) in a coagulation-fragmentation distribution,

i.e. τph,Bc “ 40 kyr.
To conclude, if bouncing does not heavily deplete the number of small grains, it does decrease
the efficiency of photolysis. But, if it decreases the number density of small grains enough for
large grains to become the dominant contributor to the FUV-opacity at the optical surface, it
significantly decreases the depletion timescale of photolysis. The validity of this simple argument
should be evaluated in a more detailed study.

6.6.2 Choice of Model Parameters

Dust Surface Density Σd

We showed that the carbon depletion timescale is sensitive to the dust surface density Σd and
thus, indirectly also to the total dust mass contained in the disk. Hence, the carbon depletion
efficacy is larger in less massive disks. However, the total dust mass in the early Solar disk is
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bound from below because there must be enough solid material in the inner disk to form the
rocky objects in the Solar System. In our fiducial model, the total dust mass contained in the
disk up to 200 au is 131 M‘. Lenz et al. (2020) have constrained the parameter space for the
Solar nebula and propose a lower bound for the total mass of planetesimals at 76 M‘. If all the
dust is converted into planetesimals, the initial global dust disk cannot be less massive than 76
M‘, i.e., the dust surface density can, at most, be reduced by a factor of 1.7 compared to our
fiducial model. A reduction by a factor of 1.7 in the dust surface density alone cannot reproduce
the carbon abundance in the Solar System within 1 Myr.
Dust traps, on the other hand, can locally decrease the dust surface density also in more massive
disks. A dust trap caused by a Jupiter-mass planet can decrease the dust surface density inside
the orbit of the planet by a factor of 10 (Dra̧żkowska et al., 2019). The local decrease does not
contradict Lenz et al. (2020) who require a planetesimal mass of 0.1´8.77 M‘ in the inner Solar
nebula between 0.7 and 4 au. In our fiducial model, the total dust mass between 0.7 and 4 au is
18.5 M‘. Hence, a decrease only in the inner disk by a factor of 10 is consistent with constraints
on the inner Solar Nebula. As a result, a dust trap is likely required to reproduce the observed
carbon abundance in the inner Solar System. In other lower-mass protostellar systems, a dust
trap is not necessary to reproduce similar carbon depletion levels. Of course, while a dust trap
decreases the dust surface density in the inner disk, it increases the dust surface density at the
location of the dust trap, effectively switching off carbon depletion there. Thus, planetesimals
that form inside the dust traps are likely less depleted in carbon. Therefore, if planetesimals
mainly form in dust traps, carbon must be removed from the dust before it accumulates in the
trap.

Opacity κ

The depletion timescale τc sensitively depends on the UV-opacity of the disk atmosphere. Car-
bon depletion itself can reduce the opacity in the exposed layer by releasing solid material into
the gas. An effect that we do not take into account in our model. As carbonaceous material
initially contributes 29 % to the total dust mass, it contributes about the same amount to the
total opacity. Hence, the destruction of all the carbon would decrease the opacity in the exposed
layer by 29 %. Furthermore, there are large uncertainties in the exact opacity of the solid disk
material because it sensitively depends on the composition and the local size distribution of the
material (Birnstiel et al., 2018). We expect a detailed opacity treatment could easily introduce
corrections by a factor of a few compared to our crude model assumptions.

Turbulent Alpha Parameter α

We use a relatively large value for the turbulent alpha parameter (α “ 10´2), which we show
is needed for efficient carbon depletion in the exposed layer. Observationally, it is difficult to
directly infer the levels of turbulence in protoplanetary disks. However, measurements and mod-
eling of the widths of dust rings in mm-continuum observations consistently report relatively
strong levels of turbulence α{St Á 10´2 (Dullemond et al., 2018; Rosotti et al., 2020).

6.6.3 Other Carbon Depletion Mechanisms

In this work, we have only focused on photolysis and irreversible sublimation as refractory carbon
depletion mechanisms. There are other mechanisms that could potentially increase the carbon
depletion efficiency (e.g., photo-/thermochemically induced processes). However, they will likely
only further decrease the carbon fraction if they are active in the denser disk regions close to the
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midplane. Any photo-induced mechanism that is active in the UV-irradiated layers of the disk,
suffers from the same limitations as photolysis and will be residence-time-limited. As for thermal
decomposition mechanisms, irreversible sublimation is already very efficient in the inner disk,
but suffers from the problem that it does not decompose the amorphous carbon compounds.
Amorphous carbon only decomposes at temperatures beyond 1200 K when enough oxygen is
available for its oxidation (Gail & Trieloff, 2017). In our models, the 1200 K line only reaches
out to „ 0.85 au during an FU Ori-type outburst, which is well within the expected formation
region of the solid objects in the asteroid belt. Further, it is not clear whether oxidation is
efficient enough to significantly deplete the disk during short-lasting outbursts.

6.6.4 Timing of Planetesimal Formation

In Sec. 6.5.4 we showed that it is in principle possible to deplete the disk in a coagulation-
fragmentation equilibrium to values as observed in the Solar System. However, the coagulation-
fragmentation equilibrium will only persist as long as planetesimal formation has not yet com-
menced. Refractory carbon depletion by externally induced photo- and/or thermal decompo-
sition will likely cease to operate efficiently once the material is locked in planetesimals with
a small surface-to-mass ratio and very little internal mixing. Thus, planetesimals inherit the
local carbon fraction of the dust at their formation location in space and time. Depending on
the details of the planetesimal and/or planet formation process, Solar System objects are built
from planetesimals formed over an extended period of time at different locations in space. The
resulting carbon fraction of the body will then be an average over all the planetesimals the
body has formed from. The timing and location of planetesimal formation is therefore critical
(Lichtenberg et al., 2021). Further decomposition of refractory compounds as a result of internal
heating processes after the incorporation of the material into planetesimals is also possible, but
beyond the scope of this project (see e.g. Lichtenberg & Krijt, 2021).

Radial Turbulent Diffusion

In Sec. 6.3.3, we have discussed the effects of vertical transport as a result of turbulent mixing.
However, turbulence also causes radial dust transport in addition to radial drift. In our simplified
model, we have ignored the effects of radial turbulent mixing. Turbulent diffusion, which is most
effective at large values of α, is capable of mixing carbon-rich material from outside the soot line
to the inner disk and replenishing the inner disk after a FU Ori-type outburst even when radial
drift is slow. With a simple timescale argument, we expect replenishment via radial diffusion
to become relevant in the region between 1 au and 5 au when the radial component of the
turbulent alpha is larger than „ 6 ¨ 10´3. Hence, the results in the first subplot of Fig. 6.9
are only reasonable if the underlying turbulent mixing is anisotropic, something that could be
expected, for example, from hydrodynamic turbulence caused by vertical shear instability (Stoll
et al., 2017).

6.7 Summary

In this work, we build upon the model of Klarmann et al. (2018) and study the depletion of
refractory carbon in the solid material of the early Solar System by means of an analytical model
of the young Solar disk. In Sec. 2.4.4, we provide an overview of the problem and, in Sec. 2.4.5,
we estimate Bulk Earth to be depleted in carbon by at least two orders of magnitude (by mass)
when comparing to the ISM. Based on detailed models, bulk Earth could even be depleted
by almost three orders of magnitude (see Table 2.1). We expect solid refractory carbonaceous
material to be selectively decomposed and lost to the gas phase, i.e., it is destroyed, in the time
between the infall of interstellar material and the formation of the parent bodies of today’s rocky
Solar System objects (terrestrial planets, asteroids, etc.), i.e., within the first 106 years of Solar
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System formation.
In Sec. 6.2.1, we introduce a compositional model of the solid material that was delivered to the
early Solar System based on literature values (see illustration in Fig. 6.2.1) and illustrate how
it is radially distributed among today’s Solar System bodies in Fig. 2.8. We aim to reproduce
current Solar System abundances via the selective removal of carbonaceous material in the early
Solar disk by photo-induced and/or thermally-induced decomposition processes.
In Sec. 6.3.2, we study photolysis as a specific example of a photo-induced carbon decomposition
mechanism that is active in the UV-irradiated exposed layer of the disk atmosphere. We derive
an analytical solution that describes the decreasing carbon fraction fcpr, tq as a function of
heliocentric radius r and time t (see Eq. 6.32, Eq. 6.33 and Eq. 6.36) and identify a characteristic
carbon depletion timescale τc (see Eq. 6.16). In our most detailed model, which considers both
radial and vertical transport of the solid material, as well as photon forward scattering, we find
the carbon depletion timescale by solving Eq. 6.30 which results in a value of τ resc “ 695kyr at 1
au. That is a value too large to reproduce Solar System abundances within the disk lifetime (see
the third column of Fig. 6.6). While radial transport mainly determines the steady-state solution
on long timescales (gray dashed lines in Fig. 6.7 and Fig. 6.10), it only marginally influences our
result on the timescales relevant for our problem (in contrast to the model in Klarmann et al.,
2018). It is only the inefficient vertical transport that limits the carbon depletion in our model
because the UV-irradiated exposed layers of the disk are depleted in carbon faster than they can
be replenished by vertical mixing (see the sketch in Fig. 6.3). This limitation does not only hold
for the specific example of photolysis but for any photo-induced carbon depletion mechanism
which is active in the UV-irradiated exposed layers of the disk.
In Appendix 6.B and Eq. 6.46, we explicitly show that the carbon depletion timescale τ resc can
either be increased by decreasing the vertical mixing timescale tmix “ 1{αΩ or increasing the
extent of the exposed layer. Thus, to first order, the depletion timescale is directly proportional
to the total dust surface density Σd and the dust opacity at UV wavelengths κ0, and inversely
proportional to the disk flaring angle Φ. Furthermore, there is a minor (higher-order) dependency
on the mass fraction of small grains relative to large grains fďas . We find no other parameters
to influence the carbon depletion timescale τ resc in our model, this includes the stellar UV flux
FUV. Furthermore, we find a combined change by a factor of order ten compared to our fiducial
values (see Table 6.1) in any of the main parameters (α Ò,Σd Ó, κ0 Ó,Φ Ò) in a direction that
decreases the depletion timescale τ resc , does reproduce Solar System abundances via photolysis,
even when considering radial and vertical dust transport. In Sec. 6.6.2, we discuss our choice
of initial parameters and find them to be only weakly constrained such that, even though a
combined change by a factor of ten is not well justified, it is entirely plausible based on our
current limited understanding.
The second depletion mechanism that we study is the thermally induced irreversible sublimation
(pyrolysis) of carbonaceous material (see Sec. 6.4). We describe the evolution of the carbon
fraction fcpr, tq under the influence of irreversible sublimation in a kinetic approach with Eq. 6.45
and different thermal decomposition parameters for each carbonaceous compound (see Eq. 6.42
and Fig. 6.2.1). We find a steady state to form within 104 years when the outward radial motion
of the soot line is balanced by inward drift, such that static soot lines, corresponding to the
different carbonaceous compounds, in a radial range between 0.25 au and 0.5 au, divide the disk
into a depleted and an undepleted region (see Fig. 6.8). As a result of the disk temperature
profile, the region, where we expect Earth and chondrite parent bodies to have formed („ 1 ´ 3
au), remains entirely undepleted. Further, the carbon fraction in the depleted region only
decreases to a floor value of fc “ 0.03 i.e., an order of magnitude above Earth’s abundance,
which corresponds to the abundance of highly refractory amorphous carbon compound. This
compound does not thermally decompose at temperatures below „ 1200 K (see Sec. 6.4.1). The
initial abundance of amorphous carbon in our model is only constrained by a single source,
based on in situ measurements on comet Halley. Thus, the general abundance in the material
that was delivered to the early Solar System could very well be much lower, decreasing the
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resulting floor value. Otherwise, the amorphous carbon must be decomposed by other means
to reproduce Earth’s carbon abundance. Moreover, increased disk temperatures are required to
shift the soot lines of the less refractory carbonaceous compounds radially outward such that
disk regions beyond 1 au are depleted. We expect viscous heating to not sufficiently increase the
disk temperature to also affect the formation region of chondrites. Therefore, we additionally
study the effects of frequent and short-lived stellar luminosity outbursts (FU Ori-type outbursts)
on the location of the soot lines in Sec. 6.5.3. We find that in our fiducial setup, one outburst
every 100 kyr is enough to permanently move the soot lines from the range between „ 0.25´0.5
au to „ 4.5´ 10 au even when radial drift acts to replenish the inner disk in between individual
outbursts (see Fig. 6.9). The soot lines only return to their original steady state location if the
radial drift speed is large enough, which is the case for α À 4 ¨ 10´4. A further complication
arises for α Á 6 ¨ 10´3 and isotropic turbulence, for which we expect radial diffusion to replenish
the inner disk in between individual outbursts. In our analytical approach, we do not include
the effects of radial turbulent diffusion. Nonetheless, there is a range around α « 10´3 in which
neither radial drift nor turbulent diffusion can efficiently replenish the disk to the inside of 4.5
au in between stellar outbursts. In conclusion, a reproduction of Solar System abundances via
irreversible sublimation requires high temperatures (ą 500 K) that move the soot lines beyond
the formation region of the parent bodies of the rocky objects of the inner Solar System (ą 3
au), in combination with a low abundance of the most refractory carbonaceous compounds
(fc ă 0.4%). If these temperatures are reached only temporarily like in FU Ori-type outbursts,
the turbulent alpha parameter must be on the order of 10´3 such that the inner disk regions are
not replenished by radial drift or diffusion.
Another class of depletion mechanisms that can be active in the disk midplane (and thus not
suffering from vertical transport restrictions like photolysis) are thermally induced chemical
decomposition processes. However, the most promising example, oxidation via OH, only becomes
efficient at midplane temperatures ą 1200 K, and thus, is not relevant in the formation region
of Earth or chondrites.
In Sec. 6.5.4, we find the combined effects of photolysis, irreversible sublimation and FU Ori-type
outbursts to reproduce Solar System abundances within 700 kyr when the depletion timescale
of photolysis is decreased by a factor of five compared to our fiducial model. Specifically, we
achieve this by decreasing the dust surface density Σd by a factor of five (see Fig. 6.10).
In Sec. 6.6.1, we argue that, if large dust grains become the dominant contributor to the UV-
opacity as a result of bouncing, the carbon depletion timescale of photolysis can become as

low as τph,Bc “ 40 kyr. However, the effects of bouncing collisions are beyond the scope of this
chapter.
Even though our fiducial setup does not reproduce carbon abundances of the Solar System,
we demonstrate that, under specific but plausible conditions, photo- and/or thermally induced
decomposition processes of carbonaceous material in the disk phase of the early Solar System,
do reproduce carbon abundances that are observed today.
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Table 6.2: List of notations of Chapter 6

symbol description [cgs unit]

Σc Surface density of carbonaceous material [g cm´2]
Σ˚ Surface density in the exposed layer, Eq. 6.20 [g cm´2]
9Σc Destruction rate of carbonaceous material [g cm´2s´1]
Σd Dust surface density, Eq. 6.3 [g cm´2]
9Σd Destruction rate of the i-th dust compound [g cm´2s´1]
9Σd Dust destruction rate [g cm´2s´1]
Σg Gas surface density, Eq. 6.1 [g cm´2]
Σs Surface density of silicate material [g cm´2]
Φ Disk flaring angle [rad]
Ω Keplerian angular frequency [s´1]
α Dimensionless turbulence parameter [1]
β Power-law exponent defined in Eq. 6.117 [1]
γ Modulus of the power-law exponent of the gas pressure [1]
η Settling rate as defined in Eq. 6.70 [s´1]
κ Opacity [cm2g´2]
κ0 UV-opacity [cm2g´2]
λ Wavelength [cm]
ρg Gas volume density, Eq. 3.8 [g cm´3]
σ Geometrical cross-section [cm2]
τ Optical depth in radial direction [1]
τc Carbon depletion timescale, Eq. 6.16 [s]

τphc Unrestricted photolysis carbon depletion timescale, Eq. (6.24) [s]
τ resc Residence time limited carbon depletion timescale, Eq. (6.26) [s]
τ effc Effective carbon depletion timescale, Eq. 6.39 [s]
τ subc Sublimation depletion timescale, Eq. 6.43 [s]
τz Vertical optical depth [1]
υ Standard deviation (variance) of Eq. 6.71 [cm]
χ Dimensionless vertical coordinate defined in Eq. 6.28 [1]
A Exponential prefactor in the Arrhenius law [s´1]
B Dimensionless constant defined in Eq. 6.104 [1]
C 1, C2 Integration constants [g cm´2]
Dd Dust diffusivity [cm2 s´1]
Ea Activation energy of sublimation [erg]
FUV FUV flux [cm´2s´1]
L˚ Stellar luminosity [erg s´1]
LUV Stellar UV luminosity [erg s´1]
M˚ Stellar mass [g]
Mc Total mass of carbonaceous material [g]
9Md Dust mass accretion rate [g s´1]
Ms Total silicate mass [g]
9Ms Non-carbon grains mass accretion rate [g s´1]
Mg,tot Total gas mass [g]
N Normal distribution
Pg Gas pressure [dyn cm´2]
R Gas constant [erg K´1mol´1]
RUV Photolysis rate [s´1]
St Stokes number, Eq. 6.8 [1]
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Table 6.2 – continued from previous page
symbol description [cgs unit]

T Disk temperature, Eq. 6.2 [K]
Tburst Elevated disk temperature during an FU Ori-type outburst [K]
Wt Wiener process
Yph Photolysis yield [1]
a Dust grain radius [cm]
aB Dust grain radius at the bouncing barrier, Eq. 6.48 [cm]
as Radius of opacity dominating small grains [cm]
b P.l.i. of the carbon grain destruction time td [1]
bres Fit parameter power law index of the residence time [1]
cs Isothermal sound speed [cm s´1]
f Probability density function
fΣ Surface density ratio, Eq. 6.33 [1]
fc Carbon fraction [1]
ff Fragmentation limit calibration factor [1]
fs Silicate mass fraction [1]
fďas Mass fraction of grains smaller or equal to as
fěz Dust surface density fraction above height z
hg Vertical gas scale height [cm]
k Rate of sublimation, Eq. 6.41 [s´1]
kB Boltzmann constant [cm2 g s´2 K´1]
l P.l.i. of the radial drift velocity vr [1]
m Mass of a dust grain [g]
mc Mass of a carbon atom [g]
mg Mean weight of a gas molecule [g]
ρ‚ Dust grain solid density [g cm´3]
pd Dust surface density p.l.i., Eq. 6.3 [1]
pg Gas surface density p.l.i., Eq. 6.1 [1]
q Gas temperature p.l.i., Eq. 6.2 [1]
r Radial coordinate (distance from the star) [cm]
r1 Position of a drifting grain at t “ t1, Eq. 6.32 [cm]
r2 Integration variable [cm]
r0 Reference radius (1 au) [cm]
rout Outer edge of the disk [cm]
s Stokes number p.l.i., Eq. 6.8 [1]
t Time [s]
t1 Initial time [s]
td Carbon grain destruction time, Eq. 6.15 [s]
tph Photolysis destruction time, Eq. 6.23 [s]
tph,B Photolysis destruction time for bouncing, Eq. 6.47 [s]
tres Residence time, Eq. 6.27 [s]
tmix Mixing time [s]
tsubd Sublimation destruction time, Eq. 6.42 [s]
vf Fragmentation velocity [cm s´1]
vr Radial drift velocity, Eq. 6.10 [cm s´1]
x Dimensionless radial coordinate [1]
z Vertical coordinate (distance above the midplane) [cm]
z1 Lower boundary of the exposed layer [cm]
zτ Height of the τ “ 1-surface, Eq. 6.21 [cm]
zdec Height at which dust grains decouple, Eq. 6.22 [cm]
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Table 6.2 – continued from previous page
symbol description [cgs unit]

r.s0 Arbitrary quantity r.s evaluated at the reference radius r0
r.si Arbitrary quantity r.s describing the i-the dust compound
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Appendices

6.A Derivation of the Location of the Optical Surface

In this section, we derive an analytical (but approximate) expression of the location of the
τ “ 1-surface of stellar FUV photons. That is, we solve the following equation

1 “ τpr, zq (6.53)

We first use the disk flaring angle Φ and a geometric argument to convert the optical depth in
the radial direction (τ) to the optical depth in the vertical direction (τz):

τ “
1

Φ
τz (6.54)

To compute the optical depth at height z along an optical path in the vertical direction, we
assume grains of size a1 at the geometrical optics limit dominate the FUV opacity κ0. Then we
integrate along the vertical axis from z1 “ zτ to z1 “ 8, to calculate the value of the vertical
optical depth at height z

τzpzq “ κ0

ż 8

z
ρa1dz

1 (6.55)

where ρa1 is the local volume density of dust grains of size a1 or smaller. The integral on the
right-hand side of Eq. 6.55 is the fraction of surface density of grains smaller or equal to a1 above
height z, which we set equal to fďa1fězΣd. Here, fďa1 is the mass fraction of grains of size a1
or smaller. Assuming a grain size distribution between amin and amax that follows a power-law
as n9a´p we calculate fďa1 with

fďa1 “
a´p`4
max ´ a´p`4

min

a´p`4
1 ´ a´p`4

min

«

ˆ

amax

a1

˙´p`4

(6.56)

where we have assumed amin ! a1 ă amax. We set p “ 3.5.
The expression fěz stands for the dust surface density fraction in the layers between z and
z “ 8. We first assume that the vertical dust distribution is Gaussian, i.e., grains do not
decouple from the gas in the upper disk layers. Then we calculate the dust surface density
fraction in the layers between z and z “ 8 as

fěz “
1

2
erfc

ˆ

z
?
2hd

˙

(6.57)

Assuming the grains smaller or equal to a1 are well coupled to the gas, their vertical distribution
is Gaussian with a scale height equal to the gas scale height hd „ hg. The factor 1{2 in Eq. 6.57
comes from the fact that we only consider one side of the disk. We define a new dimensionless
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variable X :“ z{p
?
2hdq and rewrite Eq. 6.53, with the definitions made above:

1 “
κ0
Φ
fďa1fězτΣd “

κ0
2Φ

fďa1Σderfc
`

X
˘

(6.58)

This equation can easily be solved numerically, however, we will now make some approxima-
tions to obtain an explicit expression. For X " 1, the complementary error function can be
approximated using its asymptotic expansion

erfc
`

X
˘

«
e´X2

?
πX

(6.59)

We replace the complementary error function in Eq. 6.58 with this approximation and define a
function

gpXq :“
κ0

2
?
πΦ

fďa1Σde
´X2

(6.60)

Then Eq. 6.58 becomes
X ´ gpXq “ 0. (6.61)

This equation is still not solvable explicitly. Therefore, we Taylor expand gpXq about X “ X0

to second order. We find the most accurate results across a large range of parameters if we chose
X0 such that gpX0q “ 1. Then, X2

0 can be written as

X2
0 “ ln

fďa1Σdκ0
2
?
πΦ

. (6.62)

The Taylor expansion of Eq. (6.61) and solving the quadratic equation in X gives us the following
results for X:

X “
2X0 ` 1

2X
´2
0 ´

b

2X´1
0 ´ X´2

0 ` 3
2X

´4
0

2 ´ X´2
0

(6.63)

For X0 " 1, we simplify the above equation to

X » X0 ´
1

5
(6.64)

where we chose the subtrahend such that it minimizes the error in the range between 3 and
5 times the gas pressure scale height hg. In terms of zτ and model parameters, Eq. (6.64) is
equivalent to

zτ
hd

»

d

2 ln
fďa1Σdκ0
2
?
πΦ

´
1

5
(6.65)

In the derivation up to now, we have not considered the effects of dust grains decoupling from
the gas at large z. Next, we also consider the effects of decoupling in the upper disk layers when
calculating the τ “ 1-surface. In that case, the vertical dust density profile does not follow a
Gaussian anymore. In the upper disk layers, the dust density drops off more steeply than a
Gaussian profile. We consider the effects of decoupling by calculating f 1

ěz with the following
integral (Fromang & Nelson, 2009):

f 1
ěz “

f0
2

ż 8

z
exp

„

´
Stmid

α

ˆ

exp

ˆ

z2

2h2g

˙

´ 1

˙

´
z2

2h2g

ȷ

dz (6.66)
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where f0 is a normalization constant such that f 1
ě0 “ 1{2. Similar to the case without decoupling

in Eq. 6.58, the solution to equation

1 “
κ0
Φ
fďa1f

1
ězΣd (6.67)

will provide height of the τ “ 1-surface when also considering decoupling. In Fig. 6.2, we plot
the radial dependence of the solution to Eq. 6.67 in our fiducial model with the solid blue line.
Due to the effects of decoupling, the τ “ 1-surface lies lower than when decoupling is ignored.
To evaluate when the effects of decoupling become important, we evaluate at which height small
grains decouple from the gas. The gas density drops away exponentially at large z, as shown
in Eq. 3.8. Hence, there is a height zdec above which the gas density is low enough for even
the smallest dust grains to decouple from the gas. We consider a grain to be decoupled if the
local Stokes number of a grain is equal or smaller than the turbulent α-parameter: Stpzdecq » α.
Solving for zdec provides an upper limit, above which Eq. 6.65 is only accurate if one does not
consider the decoupling of dust grains. The explicit expression for zdec is the following:

zdec
hg

“

d

2 ln
2αΣg

πρ‚a
(6.68)

The height above which small grains decouple, calculated with Eq. 6.68 is shown in the top
panel of Fig. 6.2 in black color. Studying Eq. 6.68, it becomes clear that larger particles with
a larger solid density are more weakly coupled to the gas and therefore decouple at smaller
z{hg. On the other hand, particles decouple at larger z{hg if the gas surface density Σg or the
alpha turbulence parameter α are large. We find that the solution to Eq. 6.65 deviates from the
solution to Eq. 6.67 when zτ Á zdec and decoupling becomes important. In Fig. 6.2, zdec lies
close to the solution of Eq. 6.65 which is the reason the solution of Eq. 6.65 and Eq. 6.67 deviate
slightly in our fiducial model. Nonetheless, Eq. 6.65 provides valuable scaling relations for our
analysis. However, we use the exact numerical solution of Eq. 6.67 in all our quantitative results.

6.B Derivation of the Residence Time

In this section, we derive an expression to calculate the residence time, i.e., the time a grain
spends in the exposed layer before being mixed back into the denser disk regions closer to the
midplane. We model vertical motions of dust particles in the strong coupling approximation
with a stochastic equation of motion (e.g. Ciesla, 2010; Ormel & Liu, 2018)

dz “ ´ηzdt `
a

2DddWt (6.69)

where Dd is the dust diffusivity and Wt denotes a Wiener process. We define the dust diffusivity
as Dd “ αcshg. The differential of the Wiener process is dWt “

?
dtN p0, 1q where N p0, 1q is

the normal distribution with zero mean and unit variance. The effective velocity term ηz is the
sum of the vertical settling velocity at height z and a correction accounting for the gas density
gradient

η “ StΩ `
Dd

h2g
(6.70)

For z ! zdec the correction term is generally much larger than the settling term. Hence, η »

Dd{h2g in these regions.
If we assume η is independent of z (e.g., by approximating Stpzq „ Stpzt“0q), Eq. 6.69 denotes
an Ornstein-Uhlenbeck process (Uhlenbeck & Ornstein, 1930) for which the probability density
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function f as a function of z is a time-dependent Gaussian

fpz, tq “
1

a

2πυ2ptq
exp

ˆ

pz ´ z̄ptqq2

2υ2ptq

˙

(6.71)

with mean z̄ptq “ zt“0e
´ηt and variance υ2ptq “

Dd
η

`

1 ´ e´2ηt
˘

where zt“0 is the location of the

particle at time t “ 0.
We now assume that z1 is the lower boundary of the exposed layer in the disk. Then for every
t ą 0, the following integral

Pěz1ptq “

ż 8

z1

fpz, tqdz (6.72)

is the probability of finding a particle that had started at z “ zt“0 at t “ 0 above z1 at time
t ą 0. For an ensemble of N particles, all starting at z “ zt“0 at t “ 0, the average number of
particles in the active layer above zt“0 at time t ą 0 then becomes NPěz1ptq. The number of
particles outside the exposed layer is Np1´Pěz1ptqq. In the time interval pt, t`dtq, the particles
in the exposed layer spend a time of dt in the exposed layer. The particles outside the active
layer spend a total time 0 in the exposed layer during that interval. Thus, the average time
spent in the active layer in the time interval pt, t ` dtq across the entire ensemble is

xdtresy “
NPěz1ptq ¨ dt ` Np1 ´ Pěz1ptqq ¨ 0

N
(6.73)

Here, x¨y denotes the ensemble average. The above equation simplifies to

xdtresy “ Pěz1ptqdt (6.74)

In order to calculate the total time spent in the active layer across all times t, we integrate
Eq. 6.74 from t “ 0 to t “ 8

ż 8

0
Pěz1ptqdt (6.75)

However, this integral does generally not converge. This is not a problem because we are not
interested in the total time spent in the active layer across all times t but only up to the point
when the ensemble equalizes its carbon fraction in collisions, typically in the dense midplane
regions. This typically happens within one mixing time tmix. Thus, we define the residence time
as the integral between 0 and tmix

xtresy “

ż tmix

0
Pěz1ptqdt (6.76)

One might choose a different value for the upper limit of the integral. However, the above
integral is very insensitive to the exact choice of its upper limit as long as the upper limit is
larger than „ tmix{2. Next, we assume the ergodic hypothesis to be true. Then, the ensemble-
averaged residence time xtresy is equal to the time-averaged residence time tres i.e., the average
time a single particle spends, in the active layer above z1, before it is recycled through collisions
under the condition that it reaches height z1 at least once before the recycling happens. The
residence time tres is then defined as

tres “

ż tmix

0
Pěz1ptqdt (6.77)
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By defining a dimensionless variable

χptq “
z1 ´ z̄ptq
?
2υptq

(6.78)

we rewrite Eq. 6.77 as an integral over the complementary error function

tres “
1

2

ż tmix

0
erfc

`

χptq
˘

dt (6.79)

where tmix “ 1{αΩ, z̄ptq “ z1e
´ηt is the time-dependent mean and υ2ptq “

Dd
η

`

1 ´ e´2ηt
˘

is the

time-dependent variance.
Unless otherwise stated, we will use Eq. 6.79 in our analysis to calculate the residence time.
However, due to its implicit form, we cannot gain much insight into the dependence on model
parameters from Eq. 6.79. Therefore, we now aim to find an explicit, but approximate, expression
of the residence time which we will use to study how the residence time depends on the chosen
model parameters. This will be useful because the residence time is a limiting factor in the
efficiency of the photolysis of carbonaceous material.
First, we assume dust grains to be perfectly coupled to the gas. Then, their residence time
follows the green colored line in Fig. 6.4 and Dd{h2g " StΩ holds. Thus, the first term in

Eq. 6.70 does not contribute, and we approximate Eq. 6.70 with η » Dd{h2g. Furthermore, in
this perfectly coupled case, we approximate the residence time in Eq. 6.79 for z " hg as

tres »

´hg
z

¯2
tmix (6.80)

We plot this dependence in blue in Fig. 6.4. This is the same expression as the definition of
the residence time in Klarmann et al. (2018) (see their equation (6)). However, in comparison
to Eq. 6.27, Eq. 6.80 is divergent for z Ñ 0. Further, we assume the lower edge of the exposed
layer to be identical to the τ=1-surface (z1 „ zτ ), which holds in the absence of photon forward
scattering. Then we plug Eq. 6.21 into Eq. 6.80 and find a rough scaling relation between the
residence time of perfectly coupled grains and the model parameters

tres »

˜
d

2 ln
fďa1Σdκ0
2
?
πΦ

´
1

5

¸´2

α´1Ω´1. (6.81)

In a residence-time-limited case, i.e., when τ resc is larger than the unrestricted depletion time,
we know from Eq. 6.26, carbon depletion is more efficient if tres is small. The residence time,
as expressed in Eq. 6.81, becomes small if the ratio inside the logarithm is large. However, this
ratio is generally larger than unity and, because it is inside the natural logarithm, its impact
on the residence time is small. The residence time is more sensitive to the alpha turbulence
parameter, to which it is inversely proportional. It becomes clear that the residence time can be
most efficiently decreased, and consequently carbon depletion increased, if the alpha parameter
is increased.
In Fig. 6.4, we plot the z-dependence of the residence time. There, Eq. 6.80 is plotted in blue.
The exact solution to Eq. 6.27, for perfectly coupled grains (η “ Dd{h2g), is plotted in green.
The exact and the approximate solutions agree well for z " hg. Using our fiducial parameters,
Eq. 6.80 overestimates the residence time for z ă 3hg. In Fig. 6.4, we also plot the exact
solution of the residence time for grains that decouple at large z in orange color. It clearly
deviates above zdec which is indicated by the vertical dashed black line. When including the
effects of decoupling, the residence time becomes more than an order of magnitude smaller for
z ą zdec than without considering the decoupling. The dashed orange vertical line shows the
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location of the exposed layer. It is clearly below zdec. By choosing appropriate parameters, we
could push z1, as calculated with Eq. 6.21, to larger z, beyond zdec where the residence time
becomes very low. However, when considering decoupling, it becomes very difficult to push z1
beyond zres (at least by choosing physically plausible parameters). At heights close to zdec, grains
settle vertically so efficiently that only a few grains are diffused beyond zdec. Hence, the dust
density in layers beyond zdec is so low that these layers remain optically thin, and consequently
z1 ă zdec holds. Thus, the no-decoupling assumption in the derivation of Eq. 6.81 is generally
justified.

6.C Derivation of the Analytical Solution of the Carbon Frac-
tion

In this section, we derive the solutions given by Eq. 6.32, Eq. 6.33, and Eq. 6.36 as discussed in
Sec. 6.3.5 based on the radial transport equations presented in Sec. 6.2.3.

Solution without Radial Transport (vr “ 0)

First, we derive the solution to Eq. 6.14 without radial transport, i.e., by setting vr “ 0. For
the silicate component (i “ 0), the solution is simply

Σspr, tq “ Σspr, t1q (6.82)

where t1 is an arbitrary time with t1 ă t, most commonly identified as the initial time t1 “ 0. Due
to the absence of a mechanism that depletes silicate in our model, the silicate surface density
remains constant in the absence of radial transport. Assuming the carbon depletion timescale
for all the carbonaceous components is identical (τc,i “ τc), the solution to Eq. 6.14 summed up
over all the carbonaceous components is

Σcpr, tq “ Σcpr, t
1q exp

´

´
t ´ t1

τc

´ r

r0

¯pd´b¯

(6.83)

where we have assumed Σc ! Σs. The surface density ratio fΣ between carbon and silicate
grains then becomes

fΣpr, tq “
Σcpr, tq

Σspr, tq
“ fΣpr, t1q ¨ exp

´

´
t ´ t1

τc

´ r

r0

¯pd´b¯

(6.84)

and the carbon fraction fc as a function of radius and time is

fcpr, tq “

ˆ

1 `

´

fΣpr, tq
¯´1

˙´1

(6.85)

Steady State

The steady-state solution of the silicate components in Eq. 6.14 can be found by setting dΣs{dt “

0. Thus, rΣsvr “ const. and we identify the constant as 9Ms{2π. Hence, the steady-state solution
of the silicate component in Eq. 6.14 is:

Σs “
9Ms

2πr0|v0|

ˆ

r

r0

˙´pl`1q

(6.86)

Hence, pd “ l ` 1 “ s ´ q ` 3{2. In the fragmentation limit (s=q), we find pd “ 3{2.
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Grain Trajectory

We now aim to solve Eq. 6.14 for the carbonaceous components, including radial transport.
For this, we first follow a trajectory of an arbitrary grain in the disk, moving at radial velocity
described by Eq. 6.11. We rewrite Eq. 6.11 as

v0dt “

ˆ

r

r0

˙´l

dr (6.87)

and assume a grain to start at radius r1 at time t1 ě 0 and radially drift towards rptq where the
grain arrives at time t ą t1. We integrate Eq. 6.87 from r1 to r

ż t

t1

v0dt “

ż r

r1

ˆ

r2

r0

˙´l

dr2 (6.88)

where r2 is the integration variable, and solve for r1 to find the initial radius as a function of
the grain position r at time t. For l ‰ 1 we find

r1pr, t, t1q “

´

r1´l ´ p1 ´ lqr´l
0 v0pt ´ t1q

¯1{p1´lq
. (6.89)

Note that this equation has a physical solution for all times t only if l ă 1 (assuming v0 ă 0). For
l ą 1, there is a maximum time tmax for any given r and t1 at which the initial radius diverges
r1 “ 8:

tmaxpr, t1q “ t1 `
r1´lrl0

p1 ´ lqv0
(6.90)

meaning, grains can drift from an infinite distance to radius r in a finite amount of time. This
solution can still be physical if the disk itself is finite. The solution to Eq. 6.88 for l “ 1 is:

r1pr, tq “ r ¨ exp
`

´
v0
r0

pt ´ t1q
˘

(6.91)

We want to highlight that for most cases, it is sufficient to choose t1 “ 0 which simplifies the
solution. However, carrying on with t1 will allow us to apply this solution to problems that are
piece-wise defined by power-law dependencies instead of a single, global power law.

Characteristic Equations

For the next steps in the derivation, it is convenient to introduce the dimensionless variable
x “ r{r0 such that Eq. 6.14, summed over all the carbonaceous components, becomes

BΣc

Bt
`

1

xr0

B

Bx
pxΣcvrq “ 9Σc (6.92)

Following the approach in Birnstiel & Andrews (2014) appendix A, we solve the partial dif-
ferential equation (PDE) in Eq. 6.92 with the method of characteristics. Along characteristic
trajectories, the PDE simplifies to a system of ordinary differential equations (ODE) which we
solve analytically. The three characteristic equations of Eq. 6.92 are:

dt

ds
“ 1 (6.93)

dx

ds
“

vr
r0

(6.94)
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dΣc

ds
“ ´

Σc

xr0

Bpvrxq

Bx
` 9Σc (6.95)

Homogeneous Solution

The homogeneous solution ( 9Σc “ 0) of Eq. 6.92 can be found by using dpvrxq “ Bpvrxq{Bx ¨ dx
and rewriting Eq. 6.95 as

dΣc

Σc
“ ´

1

xr0
dpvrxq

ds

dx
(6.96)

and using Eq. 6.94 to write the above expression as

dΣc

Σc
“ ´

dpvrxq

vrx
(6.97)

which is equivalent to
d lnΣc “ ´d lnpvrxq. (6.98)

From Eq. 6.98, we see that the solution is Σc91{pvrxq and thus:

Σcpr, tq “ Σcpr
1, t1q

vrpr1qr1

vrprqr
(6.99)

With using definition in Eq. 6.11, this simplifies to:

Σc,hom.pr, t, t
1q “ Σcpr

1, t1q ¨

ˆ

r1

r

˙l`1

(6.100)

where r1 is the initial radius of the particle at time t1 as found in Eq. 6.89. Coincidentally, this
is also the general form of the solution to the silicate component in Eq. (6.14)

Σspr, t, t1q “ Σspr1, t1q ¨

ˆ

r1

r

˙l`1

(6.101)

Inhomogeneous Solution

We continue with Eq. 6.95 to find the inhomogeneous solution and rewrite the equation as

dlnΣc “ ´
1

xr0

´

x
Bvr
Bx

` vr

¯

ds `
9Σc

Σc
ds

“ ´

´

l
v0
r0

xl´1 `
v0
r0

xl´1 ` xpd´b{τc,0

¯

ds

(6.102)

Case I (l ´ 1 “ pd ´ b)
First, we consider the case when l ´ 1 “ pd ´ b, this is equivalent to an (initial) steady-state
surface density distribution. In this case, we can rewrite Eq. 6.102 as

dlnΣc “ ´xl´1 v0
r0

´

l ` 1 `
r0

v0τc,0

¯

ds

“ ´x´1
´

l ` 1 `
r0

v0τc,0

¯

dx
(6.103)
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where we have used the relation ds “ pr0{v0qx´ldx in the second line. With defining

B “ l ` 1 `
r0

v0τc,0
(6.104)

we rewrite Eq. 6.103 as
dlnΣc “ ´B dlnx (6.105)

The solution to Eq. 6.105 is:

Σcpr, tq “ C 1 ¨

ˆ

r

r0

˙´B

(6.106)

where C 1 is a constant (in r) that can depend on time t. We require Σcpr, t “ t1q “ Σcpr
1, t1q

because r “ r1pt “ t1q. Hence, C 1 “ Σcpr
1, t1qpr0{r1q´B and the solution to the inhomogeneous

equation for l ´ 1 “ pd ´ b is:

Σcpr, tq “ Σc

`

r1pr, t, t1q, t1
˘

¨

ˆ

r

r1pr, t, t1q

˙´B

(6.107)

Combining Eq. 6.107 and Eq. 6.101, we can also find the solution for the surface density ratio

fΣpr, tq “
Σcpr, tq

Σdpr, tq
“ fΣ

`

r1pr, t, t1q, t1
˘

¨

ˆ

r

r1pr, t, t1q

˙´
r0

v0τc,0

(6.108)

from which the carbon fraction fc follows directly from Eq. 6.85.

Case II (l´ 1 ‰ pd ´ b) We start again with Eq. 6.102 and use the relation ds “ pr0{v0qx´ldx
to write the equation as following:

dlnΣc “ ´

´

l ` 1 `
r0

v0τc,0
xpd´b´l`1

¯

dlnx (6.109)

We now substitute x “ exppx̃q (x ą 0 holds) and define β :“ pd ´ b ´ l ` 1 and find

dlnΣc

dx̃
“ ´pl ` 1q ´

r0
v0τc,0

exp
`

x̃β
˘

(6.110)

The solution to Eq. 6.110 can be identified as

lnΣc “ ´pl ` 1qx̃ ´
r0

v0τc,0β
exp

`

x̃β
˘

` lnC2 (6.111)

where C2 is a (yet unidentified) constant which can depend on t. Then we substitute back by
using x̃ “ lnx and find

lnΣc “ ln
´

x´pl`1q
¯

´
r0

v0τc,0β
xβ ` lnC2 (6.112)

which we solve for Σc by applying the exponential function

Σc “ x´pl`1q exp
´

´
r0

v0τc,0β
xβ

¯

¨ C2 (6.113)

Next, we evaluate this equation at r “ r1 and t “ t1 to find an expression for the constant C2:

C2 “ Σcpr
1, t1q

´r0
r1

¯´pl`1q

exp

ˆ

r0
v0τc,0β

´ r1

r0

¯β
˙

(6.114)
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inserting Eq. 6.114 back into Eq. 6.113 leads to the inhomogeneous solution for the surface
density Σc:

Σcpr, tq “ Σcpr
1, t1q

´ r

r1

¯´pl`1q

exp

ˆ

r0
v0τc,0β

„

´ r1

r0

¯β
´

´ r

r0

¯β
ȷ˙

(6.115)

And from this, we can also find the solution for the surface density ratio:

fΣpr, tq “
Σcpr, tq

Σspr, tq

“ fΣpr1, t1q ¨ exp

ˆ

r0
v0τc,0β

„

´ r1

r0

¯β
´

´ r

r0

¯β
ȷ˙ (6.116)

where
l “ s ´ q ` 1{2

β “ pd ´ b ´ l ` 1 “ pd ´ b ´ s ` q ` 1{2 (6.117)

Note; by taking the limit v0 Ñ 0 in Eq. 6.116 we obtain Eq. 6.84, i.e., the solution without
radial transport. The same is true for taking the limit v0 Ñ 0 of Eq. 6.108.

6.D Derivation of the Analytical Solution for Irreversible Sub-
limation

In this section, we derive the analytical solution to the carbon fraction considering the carbon
depletion via irreversible sublimation, analogous to Sec. 6.C, but with a source term that follows
an exponential law rather than a power law.

Steady-State Solution

First, we search for the steady state solution of Eq. 6.14 with a source term of the form as in
Eq. 6.44. I.e., the equation we want to solve is

BΣd,i

Bt
`

1

r

B

Br
prΣd,ivrq “ ´Σd,iAi exp

ˆ

´
Ea,i

RT prq

˙

(6.118)

In the steady state, we require the time derivative to vanish. With using the dimensionless
radius x “ r{r0, the steady state condition becomes

B

Bx
pxΣd,ivrq “ ´Σd,ir0xAi exp

ˆ

´
Ea,i

RT0
xq

˙

(6.119)

By defining gpxq “ xΣd,ivr, we rewrite the equation above to read

B

Bx
pln gq “

r0
v0

Aix
´l exp

ˆ

´
Ea,i

RT0
xq

˙

(6.120)

Case I (1 ´ q ´ l “ 0)
If we assume 1 ´ q ´ l “ 0, the above equation can easily be integrated:

ln gpxq “ ´
r0
v0q

AiRT0

Ea,i
exp

ˆ

´
Ea,i

RT0
xq

˙

` const. (6.121)
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Hence,

rΣd,ivr “ exp

„

´
r0
v0q

AiRT0

Ea,i
exp

ˆ

´
Ea,i

RT prq

˙ȷ

¨ const. (6.122)

We require Σd,i “ const. as T0 Ñ 0, thus,

Σd,ipr, tq “ Σd,ipr, t
1q exp

„

´
r0
v0q

AiRT0

Ea,i
exp

ˆ

´
Ea,i

RT prq

˙ȷ

(6.123)

which results in the steady-state surface density ratio

fΣd,i
pr, tq “ fΣd,i

pr1, t1q exp

„

´
r0
v0q

AiRT0

Ea,i
exp

ˆ

´
Ea,i

RT prq

˙ȷ

(6.124)

Inhomogeneous Solution

In the next step, we search for the inhomogeneous solution of Eq. 6.118. We use dimensionless
radius x “ r{r0 and the characteristic equations:

dt

ds
“ 1 (6.125)

Bx

Bs
“

vr
r0

(6.126)

BΣd,ipsq

Bs
“ ´

Σd,i

xr0

Bpvrxq

Bx
´ ΣcAi exp

ˆ

´
Ea,i

RT pxq

˙

(6.127)

With the equations above, we find
ds “ dx ¨ r0{vr (6.128)

and thus

dlnΣd,i “ ´

„

pl ` 1q `
r0
v0

x´l`1Ai exp

ˆ

´
Ea,i

RT0
xq

˙ȷ

d lnx (6.129)

which we rewrite to

dlnΣc “ ´

„

pl ` 1q
1

x
`

r0
v0

x´lAi exp

ˆ

´
Ea,i

RT0
xq

˙ȷ

dx (6.130)

We define a variable x̃ “ xq and write the equations in terms of x̃:

dlnΣc “ ´pl ` 1qx̃´1{qdx̃ ´
r0
v0

x̃p1´q´lq{qAi exp

ˆ

´
Ea,i

RT0
x̃

˙

dx̃ (6.131)

Case I (1 ´ q ´ l “ 0)
Then the equation simplifies to:

dlnΣd,i “ ´pl ` 1qx´1dx ´
r0
v0

Ai

q
exp

ˆ

´
Ea,i

RT0
x̃

˙

dx̃ (6.132)

which can be integrated to give:

lnΣd,i “ ´pl ` 1q lnx `
r0
v0

AiRT0

qEa,i
exp

ˆ

´
Ea,i

RT0
xq

˙

` const. (6.133)
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and then

Σd,ipx, tq “ C 1 ¨ x´pl`1q exp

„

r0
v0

AiRT0

qEa,i
exp

ˆ

´
Ea,i

RT0
xq

˙ȷ

(6.134)

Next, we evaluate the above equation at r “ r1 and t “ t1 to find an expression for the constant
C 1:

C 1 “ Σd,ipr
1, t1q ¨

´ r1

r0

¯l`1
exp

„

´
r0
v0

AiRT0

qEa,i
exp

ˆ

´
Ea,i

RT0

´ r1

r0

¯q
˙ȷ

(6.135)

which leads to the full solution

Σd,ipr, tq “ Σd,ipr
1, t1q

´ r

r1

¯´pl`1q

¨

exp

"

r0
v0

AiRT0

qEa,i

„

exp

ˆ

´
Ea,i

RT0

´ r

r0

¯q
˙

´ exp

ˆ

´
Ea,i

RT0

´ r1

r0

¯q
˙ȷ* (6.136)

and also the solution of the surface density ratio:

fΣd,i
pr, tq “ fΣd,i

pr1, t1q¨

exp

"

r0
v0

AiRT0

qEa,i

„

exp

ˆ

´
Ea,i

RT0

´ r

r0

¯q
˙

´ exp

ˆ

´
Ea,i

RT0

´ r1

r0

¯q
˙ȷ*

(6.137)



Chapter 7

Three-dimensional Grid-Based
Gas-Dust Simulations of
Protoplanetary Disks with an
Embedded Planet

The content of this chapter was published in:

Binkert F., Szulágyi, J., Birnstiel, T. (2021), First 3D grid-based gas-dust sim-
ulations of circumstellar discs with an embedded planet1, Monthly Notices of the
Royal Astronomical Society, Volume 506, Issue 4, April 2023, Pages 5969-5988

Abstract

Substructures are ubiquitous in high-resolution (sub-)millimeter continuum observations of pro-
toplanetary disks. They are possibly caused by forming planets embedded in their disk. To inves-
tigate the relation between observed substructures and young planets, we perform novel three-
dimensional two-fluid (gas+1-mm-dust) hydrodynamic simulations of protoplanetary disks with
embedded planets (Neptune-, Saturn-, Jupiter-, 5 Jupiter-mass) at different orbital distances
from the star (5.2 au, 30 au, 50 au). We turn these simulations into synthetic (sub-)millimeter
ALMA images. We find that all but the Neptune-mass planet open annular gaps in both the gas
and the dust component of the disk. We find that the temporal evolution of the dust density
distribution is distinctly different from the gas’. For example, the planets cause a significant
vertical stirring of the dust in the protoplanetary disk, which opposes the vertical settling. This
creates a thicker dust disk than disks without a planet. We find that this effect greatly influences
the dust masses derived from the synthetic ALMA images. Comparing the dust disk masses in
the 3D simulations to the ones derived from the 2D ALMA synthetic images, we find the former
to be a factor of a few (up to 10) larger, pointing to the conclusion that real disks might be
significantly more massive than previously thought, based on ALMA continuum images using
the optically thin assumption and equation. Finally, we analyze the synthetic ALMA images

1This work is a continuation of my Master’s thesis (Binkert, 2019) which can be accessed here. Within the
framework of my Master’s thesis, I developed and tested the hydrodynamic dust solver and developed numerical
scripts for post-processing simulations used in this chapter. Within the framework of my doctorate, I improved
the design of the study, carried out all the hydrodynamical simulations shown in this chapter, and performed the
data analysis and interpretation of the results.

https://github.com/binkertf/Masters_Thesis
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and provide an empirical relationship between the planet mass and the width of the gap in the
ALMA images, including the effects of the beam size.

7.1 Introduction

Substantial theoretical work on the interaction between young planets and their host protoplan-
etary disk has been carried out over the past decades. Both analytical and numerical approaches
have led to an improved understanding of the problem (e.g. Goldreich & Tremaine, 1980; Lin
& Papaloizou, 1986; Tanaka et al., 2002; Paardekooper & Mellema, 2004, 2006; de Val-Borro
et al., 2006; Kley & Nelson, 2012). Today, it is widely accepted that a young planet embedded
in a protoplanetary disk can open one or even multiple annular gaps and/or rings in the gaseous
and dusty components of the disk (e.g. Dong et al., 2015b; Picogna & Kley, 2015; Jin et al.,
2016; Fedele et al., 2017; Bae et al., 2017). However, it is still up for debate whether the annu-
lar structures, seen in scattered light and mm-continuum observations of protoplanetary disks,
are indeed of planetary origin or if they have formed via other processes, e.g., dust pile-up at
condensation fronts (Zhang et al., 2015), dead zones (Ruge et al., 2016) or large-scale vortices
(Barge et al., 2017). However, the planetary hypothesis is plausible because planets are found
to be common around stars. Yet, it remains difficult to directly observe young planets embed-
ded in the host protoplanetary disk. Only a few planetary candidates still embedded in their
protoplanetary disk have been observed, e.g., PDS 70 b, c (Müller et al., 2018; Keppler et al.,
2018). Therefore, studies have focused on observable disk substructures to indirectly probe the
properties of the unseen planet population and to establish a link between observations and
planet formation theory. Current efforts mainly focus on near-IR scattered light images (Dong
et al., 2015b; Avenhaus et al., 2018; Szulágyi et al., 2019), (sub-)mm dust thermal continuum
images (Zhang et al., 2018; Szulágyi et al., 2018), or molecular line channel maps which trace
the gas kinematics (Perez et al., 2015; Pinte et al., 2018; Teague et al., 2018a).
The planetary gaps in disks exist due to the exchange of angular momentum between a planet
and the surrounding disk. The radial distribution of the disk material adjusts due to the grav-
itational transfer of angular momentum, i.e., via gravitational torques from the inner part of
the disk to the planet and from the planet to the outer part of the disk(Goldreich & Tremaine,
1980; Lin & Papaloizou, 1984). Hence, disk material is radially pushed away from the planet.
In gas, a gap opens if the gravitational torques win over the counterbalancing viscous torques.
In addition to these two torques, the gas near the planet also feels a torque due to pressure
due to the non-axisymmetric nature of the planetary wakes (Crida et al., 2006). In a steady
state, viscous torques, gravitational torques caused by the planet, and torques due to pressure
all balance each other. Hence, gap opening in gas does, in addition to its dependence on the
planetary mass, depend on disk properties such as temperature (Crida et al., 2006; Szulágyi,
2017; Zhang & Zhu, 2020; Ziampras et al., 2020) and turbulent viscosity (Lin & Papaloizou,
1993). In other words, gap opening is more efficient, i.e. leads to deeper and wider gaps, for
more massive planets in low viscosity gas with a larger Mach number (Crida et al., 2006).
In addition to gas, protoplanetary disks consist of about 1 % of their mass of solid material.
In early phases, most of the solid material is present in the form of dust, i.e., solid grains of
sizes ranging from below microns up to a few centimeters. These particles are suspended in the
mass-dominating gaseous component of the disk and are coupled to the gas via aerodynamic
drag forces. Drag forces and gravitational forces of the central star cause the dust grains to
radially drift and vertically settle. In addition to these two transport mechanisms, dust grains
experience turbulent diffusion due to their coupling to the gas’ turbulent motion. Turbulent
diffusion smooths out gradients in the local dust-to-gas ratio and, thus, can counteract radial
drift or vertical settling. The result is a finite vertical thickness of the dust layer and the absence
of sharp features in the dust distribution. Generally, turbulent diffusion is the dominant process
for small dust grains, whereas radial drift and vertical settling are more dominant for large dust
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grains. (Dubrulle et al., 1995; Youdin & Lithwick, 2007)
Due to its different nature, gap opening in the dust is somewhat different from gap opening in
gas. Dipierro et al. (2016) differentiate two mechanisms. Small dust particles, which strongly
couple to the gas, move along with the gas and therefore show similar gap-opening characteris-
tics as the gas. Larger dust grains, however, decouple from the gas and drift in the direction of
the disk pressure gradient. If a planet has already opened a gap in the gas, weakly coupled dust
grains accumulate at the pressure maxima located at the gap edges. The result is a depletion of
larger dust grains in the gap region due to radial drift (Paardekooper & Mellema, 2004, 2006;
Fouchet et al., 2007, 2010). However, the presence of a gap in the gas is not a necessary condition
for gap opening in dust. For low-mass planets, a gap can be present in the dust only (Dipierro
& Laibe, 2017). Similar to the case in gas, gap opening in dust also occurs when gravitational
torques push away dust from the planetary orbit. However, unlike in gas, viscous torques are
not present in the dust when it is treated as a pressureless inviscid fluid. In a disk without a
planet, the aerodynamic drag torque acting on dust particles due to the interaction with the
gas is in general negative, resulting in a radial inward drift (Nakagawa et al., 1986). When a
planet is present, gravitational torques also contribute. In the inner disk (inside the planetary
orbital radius), gravity and aerodynamic torques add up and lead to an inward drift of the dust.
In the outer disk, the two torques counteract each other. Hence, if the gravity torque is strong
enough, i.e., the planet is massive enough, it can prevent dust from drifting from the outer disk
to the inner disk and a gap opens in the dust without the need for a pressure bump in the gas
(Johansen et al., 2009). Therefore, gap opening in dust depends, besides on the mass of the
planet, on the degree of coupling between dust and gas, and also on the size of the dust particles.
This has been shown in various numerical studies (e.g. Paardekooper & Mellema, 2004, 2006;
Fouchet et al., 2007, 2010; Rosotti et al., 2016).
Planetary gaps and rings are predicted to be detectable in (sub-)mm continuum observations us-
ing the latest generation of radio interferometers such as the Atacama Large Millimeter/submillimeter
Array (ALMA) (e.g. Pinilla et al., 2012; Gonzalez et al., 2012, 2015; Pineda et al., 2019).
More recently, high-resolution ALMA observations have indeed revealed a multitude of sub-
structures such as gaps, rings, spirals, and large-scale asymmetries in protoplanetary disks, e.g.,
Van Der Marel et al. (2013); ALMA Partnership et al. (2015); Andrews et al. (2018b). Even
though the planetary origin of the observed features is still being debated, and young planets re-
main difficult to detect, the observed substructures can be used to indirectly probe the properties
of the unseen population of forming planets. Continuum observations at (sub-)mm-wavelength
most efficiently probe the thermal emission of mm-sized dust grains (Draine, 2006) coming from
the cold midplane region of a protoplanetary disk. In this region, even low-mass giant planets
can cause substructures in mm-sized dust. Typically, the lower mass limit for a planet to open a
gap in 1 mm-sized dust is on the order of a Neptune-mass (e.g Paardekooper & Mellema, 2006;
Fouchet et al., 2007)
A lot of work has been put into making observational planet-disk-interaction predictions for
ALMA based on hydrodynamic models (e.g. Gonzalez et al., 2012; Ruge et al., 2016; Szulágyi
et al., 2018; Zhang et al., 2018; Isella & Turner, 2018; Dipierro et al., 2018). In these mod-
els, an accurate dynamic and thermal treatment of the dust component in the disk is crucial
to produce realistic observational predictions in (sub-)mm continuum observations. Moreover,
radiative transfer methods are necessary to create synthetic ALMA images because there is no
one-to-one relation between hydrodynamic features and observed features. Thermal emissions
are dependent on a combination of density, temperature, and optical properties of the emitting
region. An accurate computational treatment of all these quantities is therefore crucial for mak-
ing accurate observational predictions. However, most studies compromise on physical accuracy
in favor of computational efficiency.
In this work, we aim to improve upon some shortcomings of previous studies and create physi-
cally accurate observational predictions for planet-induced substructures in protoplanetary disks.
Rather than using a particle-based approach for the dust component in the hydrodynamical mod-
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els, we use a grid-based approach for both the gas and dust components. A grid-based approach
does not suffer from a lack of resolution in low-density regions. Moreover, we perform global
hydrodynamical simulations in three dimensions instead of two dimensions because planet-disk
interaction is inherently a three-dimensional problem. We also avoid the common isothermal
assumption in gas and include heating (adiabatic heating, viscous heating, stellar irradiation)
and cooling processes (adiabatic, and radiative cooling) in our thermal simulations. To our
knowledge, no global three-dimensional grid-based dust and gas planet-disk-interaction simula-
tions have yet been published. We carry out a total of 12 hydrodynamic simulations using two
fluids (gas + mm-sized dust) in which we embed a planet in the disk. We use different plane-
tary parameters (mass, orbital radius) in each simulation and produce synthetic mm-continuum
observations for ALMA with realistic beam sizes from the hydrodynamical models. This allows
us to study the observable disk features in the mm-continuum induced by the planets. We de-
rive an empirical formula that relates the planet mass to the width of the observed gaps. We
also compare total dust masses derived from the synthetic observations to the actual total dust
masses present in the disk.
In Sec. 7.2, we describe our methods. The results are presented in Sec. 7.3. In Sec. 7.4 we
include a short discussion before we conclude the chapter in Sec. 7.5.

7.2 Methods

We carry out three-dimensional thermal two-fluid (gas+dust) hydrodynamic simulations of pro-
toplanetary disks with an embedded planet. We use the grid-based code Jupiter (Szulágyi
et al., 2016) and implement a pressureless solver to solve the dynamics of a dust fluid (assumed
mm-sized grains) in addition to the gas fluid. We then processed the hydrodynamic simulation
outputs with RADMC-3D (Dullemond et al., 2012), a wavelength-dependent radiative transfer
tool, to obtain intensity images on a given wavelength. In a second step, we used the Common
Astronomy Software Applications package (CASA) (Mcmullin et al., 2007) to create the final syn-
thetic mm-continuum images of the protoplanetary disks with an embedded giant planet for the
Atacama Large Millimeter/submillimeter Array (ALMA). In Sec. 7.2.1 we present the physical
models of the gas and dust components and introduce the interaction terms, which also include
the back-reaction from dust onto the gas. We also introduce the treatment of radiation and
cooling/heating mechanisms for the two fluids. In Sec. 7.2.2 we describe the numerical methods
used to solve the hydrodynamic equations introduced in Sec. 7.2.1. The details of our sets of
thermal hydrodynamic simulations are presented in Sec. 7.2.3. To conclude the method section,
we present the two post-processing steps in Sec. 7.2.4.

7.2.1 Physical Model

Gas and Radiation

We use the radiative hydrodynamics code Jupiter as presented in Szulágyi et al. (2016) to
solve the hydrodynamic equations of the gas and radiation components in three dimensions on
a spherical grid. In addition to the mass, momentum, and energy equations (see equations (1)
to (3) in Szulágyi et al., 2016), we describe the gas with an equation of state of an ideal gas. It
relates the gas pressure pg to the internal energy density of the gas eg as

pg “ pγ ´ 1qeg (7.1)

with γ “ 1.43 being the adiabatic index. The energy equation describes the time evolution of
the total energy of the gas per unit volume Eg as the sum of radiation energy per unit volume
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erad, the internal energy per unit volume eg and the kinetic energy per unit volume of the gas

Eg “ erad ` eg `
1

2
ρgu

2 (7.2)

where ρg is the density and u is the three-dimensional velocity vector of the gas. The fourth
equation which governs the dynamics is the radiation equation (see Eq. 4 in Szulágyi et al.,
2016). It describes the dynamics of the radiation energy erad and contains the flux-limited
diffusion approximation with the two-temperature approach (e.g. Commerçon et al., 2011).
The central star is assumed to be solar-like with radius R‹ “ Rd, mass M‹ “ Md and surface
temperature T “ 5780 K.

Dust

In this work, we model a single dust size species of size a as an additional pressureless fluid
that has its distinct dynamics described by Eq. 5.3 and Eq. 5.4. Due to the ALMA continuum
images we wanted to create, we chose the grain size to be 1 mm.
In our models, these particles have Stokes number in the range 9 ¨ 10´3 ă St ă 7 ¨ 10´2 in
the disk midplane before inserting the planet. After the insertion of the planet, this range will
become much broader due to the density fluctuation in gas. Moreover, in the disk regions above
and below the midplane where the gas density drops off, the particles are less coupled and the
Stokes numbers are generally larger than in the midplane.
For the grain composition, we assume a fractional abundance of 70 % silicate of solid density
3.5 g/cm3 and 30 % refractory carbon of solid density 1.8 g/cm3 (Zubko et al., 1996; Li &
Greenberg, 1997) which results in a solid density of the dust grains of ρ‚ = 3 g/cm3.
The Stokes number, as defined in Eq. 4.2, is used to parametrize the drag force fdrag which is
responsible for the exchange of momentum between gas and dust (Weidenschilling, 1977a). The
drag contributions to the gas and the dust fluid are symmetric and also depend on the relative
velocity between the two fluids v ´ u (Eq. 4.3)

Planet

The embedded planet is modeled solely via its gravitational potential as a point mass:

Uppx, y, zq “
GMp

a

px ´ xpq2 ` py ´ ypq2 ` pz ´ zpq2 ` r2s
(7.3)

whereG is the gravitational constant,Mp is the mass of the planet, pxp, yp, zpq are the coordinates
of the planet in Cartesian coordinates. rs is a smoothing length to avoid singularities in the
potential at the location of the planet. We set the smoothing length to the length of one cell
diagonal of the computational grid (see Sec. 7.2.3).

7.2.2 Numerical Method

The main computational tool which we use to solve the hydrodynamic equations is the Jupiter
code. It was originally developed by F. Masset and J. Szulágyi. For this study, we added a
numerical dust solver to solve for a second (pressureless) fluid (dust) and its interaction with the
gas. The Jupiter code is a three-dimensional Godunov-type code that solves the hydrodynamic
equations on a grid using Riemann solvers. Even though the Jupiter code has nested mesh
capability, it is not used in this study, so the planet vicinity is unresolved. The radiative module
of the code applies a flux-limited diffusion approximation with the two-temperature approach
as described in Szulágyi et al. (2016) and Szulágyi et al. (2018). We include thermal processes
in the gas such as adiabatic heating/cooling, viscous heating, and radiative cooling, as well as
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stellar irradiation. For both, the gas and the dust, we use an operator splitting method to solve
advection terms separately from the source terms. When solving the pressureless equations,
we apply the method described by LeVeque (2004) which was also used by Paardekooper &
Mellema (2006) to run two-fluid (gas+dust) simulations of protoplanetary disks. As in other
Riemann solvers (Toro, 2009), the analytic solution to the Riemann problem of the system of
Eq. 5.3 and Eq. 5.4 is the basis of the numerical method. The solution to the Riemann problem
for a pressureless fluid is significantly different from the solution in gas, which includes pressure
(Bouchut et al., 2003; LeVeque, 2004). It consists of a single wave moving from the Riemann
interface at speed

v̂ “

?
ρLvL `

?
ρRvR

?
ρL `

?
ρR

(7.4)

where ρL and vL are the density and velocity on the left-hand side of the Riemann interface and
ρR and vR are the density and velocity on the right-hand side of the interface. The Riemann
fluxes are determined based on the sign of v̂ at every interface according to the following scheme:

Fint “

$

’

&

’

%

FL if v̂ ą 0
1
2

`

FL ` FR

˘

if v̂ “ 0

FR if v̂ ă 0

(7.5)

Following LeVeque (2004), we add correction terms to the interface flux to achieve second-order
accuracy on smooth solutions and apply the minmod flux-limiter to avoid spurious oscillations
around discontinuities (LeVeque, 2002).
In the numerical source step, we deal with the interaction between dust and gas. Following the
operator splitting scheme, the two equations which we solve are:

Bu

Bt
“ ´

1

ρg
fdrag (7.6)

and
Bv

Bt
“

1

ρd
fdrag (7.7)

with definitions of the drag force fdrag as in Eq. 4.3. We find the solutions to Eq. 7.6 and Eq. 7.7
using an implicit finite difference scheme as described in Beńıtez-Llambay et al. (2019). The
scheme leads to an update formula for the velocities u and v as in Stone (1997) and their Eq. 6
and Eq. 7. The velocities are updated in the source step along with the other source terms
(gravitational and fictitious force terms). The implementation of the dust solver was tested2

against analytic Riemann solutions, as suggested in (LeVeque, 2004) and compared to previous
two-fluid studies (e.g. Paardekooper & Mellema, 2006). Further, we modified the opacity κpT, ρgq

used in Szulágyi et al. (2016). In the one-fluid code, the opacity is calculated based on the local
gas density ρg, assuming a dust-gas mixture with a locally constant dust-to-gas ratio ϵ “ 0.01.
In the two-fluid simulations, we reduce the opacity where the dust-to-gas ratio is smaller and
increase the opacity where the dust-to-gas ratio is larger. We computed the local two-fluid
opacity κ2f based on the local dust density ρd and gas density ρg as

κ2fpT, ρg, ρdq “ κ
´

T, 0.01ρg ` 0.99
ρd
ϵ

¯

(7.8)

where ϵ “ 0.01 is the dust-to-gas ratio assumed in the one-fluid dust-gas-mixture.

2Tests were performed within the framework of my master’s thesis at ETH Zürich. The thesis can be found
here.

https://github.com/binkertf/Masters_Thesis
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7.2.3 Hydrodynamic Simulation Setup

Disk Setup and Simulation Domain

We set up a disk with a gas surface density following a power law as

Σgprq “ Σg,0 ¨

ˆ

r

au

˙´1{2

(7.9)

where Σg,0 = 80g/cm2 is the gas surface density at 1 au. This disk contains a total gas mass of „

0.05 Md („52 Mjup) between 1 au and 120 au. With this disk setup, the Toomre Q parameter,
which is a criterion for disk instability (Toomre, 1964), remains well above Q ą 1.7 in all
our simulations. Hence, it can be expected that the disk self-gravity is negligible. Humphries
& Nayakshin (2018, 2019) have conducted three-dimensional global (SPH) disk simulations,
including a planet in situations where gravitational instability is important.
We use a constant kinematic viscosity ν = 3.15¨1015cm2/s. Assuming an isothermal disk with
aspect ratio H = 0.05, this is equivalent to a Shakura & Sunyaev α-parameter of α = 4.0¨10´3

at 50 au from a solar-mass star or α = 5.2¨10´3 at 30 au or α = 1.2¨10´2 at 5.2 au respectively
(Shakura & Sunyaev, 1973). We note here that our disk is not isothermal and that the aspect
ratio varies depending on the local heating and cooling conditions, ranging between 0.025 and
0.05.
In addition to the gas fluid, we initialize a dust fluid that represents a single dust size species of
1 mm-sized dust particles. Initially, the dust-to-gas mass ratio is 0.01 everywhere, but during
the disk evolution, this ratio changes from location to location.
The computational grid is set up identically to Szulágyi et al. (2016), meaning we solve the
hydrodynamic equations on a spherical grid (r, ϕ, θ) centered on the star. The frame of reference
is co-rotating with the planet which orbits at distance rp with Keplerian angular frequency

ΩK “
`

GpM˚ ` Mpq{r3p
˘1{2

where M˚ “ Md is the mass of the central star. Hence, the planet
always remains fixed on the grid. To save computational costs, we do not simulate the entire
disk between 1 au and 120 au in every simulation, but only the range between 0.4rp to 2.4rp. In
the case of a planet orbiting at rp = 50 au, this corresponds to a range between 20 au and 120 au.
In the azimuthal direction, the simulation covers the full range from ϕmin “ ´π to ϕmax “ π.
The opening angle of the grid is set to θ0 “ 7.4˝. We assume the disk to be symmetric about the
midplane and constrain the simulation to polar angles between θmin “ π{2´ θ0 and θmax “ π{2
to further save computational time. Our grid consists of Nr “ 215 radial, Nϕ “ 680 azimuthal
and Nθ “ 20 polar cells , which creates roughly cubical grid-cells. Any further increase in
resolution would increase the computational cost for this study by an unreasonable amount.

Initial/Boundary Conditions and Simulation Procedure

We initialize the gas disk with a constant aspect ratio H “ hg{r “ 0.05 and the 1-mm sized
dust so that the dust-to-gas ratio is uniformly at 0.01. This all of course evolves during the
simulation, as the disk evolves. Before we introduce the planet to the disk, we evolve the disk
without the planet and only 2 cells in the azimuthal direction (since the disk without the planet
is azimuthally symmetric) for 150 planetary orbits. This allows the system to reach thermal
equilibrium and the 1 mm-sized dust to settle vertically to reach a quasi-steady state. Then,
we divide the 2 azimuthal cells into 680 cells and introduce the planet. We increase the mass
of the planet over the following 100 orbits until it reaches its final mass so as not to introduce
unwanted perturbations. We then evolve the system for another 100 orbits to arrive at a total of
200 planetary orbits. The boundary conditions for the gas are identical to Szulágyi et al. (2016).
In detail, at the radial boundaries, the density and energy were extrapolated based on the initial
slope and the value in the adjacent active cell. At the radial boundaries, the radial, and polar
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simulation rp Mp Σg,t“0pr “ rpq

(au) (Mjup) (g/cm2)

m5au1nep 5.2 0.05 35
m5au1sat 5.2 0.3 35
m5au1jup 5.2 1 35
m5au5jup 5.2 5 35
m30au1nep 30 0.05 15
m30au1sat 30 0.3 15
m30au1jup 30 1.0 15
m30au5jup 30 5.0 15
m50au1nep 50 0.05 11
m50au1sat 50 0.3 11
m50au1jup 50 1.0 11
m50au5jup 50 5.0 11

Table 7.2.1: This table provides an overview of the 12 hydrodynamic simulations which we
carried out and the parameters used. We varied the planetary orbital radius rp between 5.2 au
and 50 au and the planetary mass Mp between Neptune mass (0.05 Mjup) and 5 Jupiter masses,
as shown in the second and third column. The last column shows the initial gas surface density
Σg,t“0 at the location of the planet.

velocity components in the ghost cells were set equal to the value in the adjacent active cell, i.e.,
symmetric boundary conditions. The azimuthal velocity component was extrapolated based on
the local Keplerian velocity and the value in the adjacent active cell. In the polar direction,
we used reflective, i.e., antisymmetric, boundary conditions. At the upper polar boundary, the
temperature in the ghost cells was fixed at 3K which accounts for the radiative cooling of the
disk to outer space. We used periodic boundary conditions in the azimuthal direction. For
the dust fluid, at the radial boundaries, we also used antisymmetric boundary conditions for
the radial velocity component. This prevents the inflow and outflow of dust in the simulation
domain. The density and the other velocity components have symmetric boundary conditions
at the radial boundaries. The boundaries condition in the azimuthal and polar direction were
set equal to the boundary conditions in gas, except for the dust density at the polar boundary
opposite to the midplane. There, the dust density was set to a floor value. The floor value
corresponds to about one mm-sized dust grain per computational cell.

Simulation Sets

We carry out a set of twelve radiative hydrodynamic simulations, which are summarized in Table
7.2.1. We choose four different planetary masses (5 Mjup, 1 Mjup, 0.3 Mjup, 0.05 Mjup, the latter
two are equivalent to the mass of Saturn and the mass of Neptune respectively) which we place
at three different radii (5.2 au, 30 au, and 50 au). After injecting a planet, we evolve each
simulation for 200 planetary orbits as described in Sec. 7.2.3.

7.2.4 Post-Processing

For each of the hydrodynamic simulations, we created synthetic ALMA mm-continuum obser-
vations. As in Szulágyi et al. (2018), we process our models with RADMC-3D (v0.41), a radiative
transfer tool developed by Dullemond et al. (2012) and the Common Astronomy Software Ap-
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plications package3 (CASA). In the first step, we compute the dust temperature with a thermal
Monte Carlo approach using RADMC-3D which assumes that the dust is in radiative equilibrium
with the radiation field. Then, we perform ray-tracing with RADMC-3D to generate intensity
images of our disk models at different wavelengths and create synthetic ALMA images of the
disks using CASA.

RADMC-3D

Not only the density distribution in the disk has a large impact on the mm-continuum observa-
tions but also the temperature structure. We determine the dust temperature in the disk using
the mctherm task of RADMC-3D which performs a thermal Monte Carlo simulation. As in the
hydrodynamic simulations, we assume the radiation source to be a solar-like star of mass 1 M‘,
radius 1 R‘ and temperature Teff = 5780K. The radiation field of the star is represented by
2.1 ¨109 photon packages which are emitted isotropically before they travel through the disk and
are scattered, absorbed, and re-emitted along their path by dust grains until they eventually
leave the model. The temperature computed in this process is the equilibrium temperature of
the dust in the radiation field of the central star. In our setup, the dust does not acquire thermal
energy from the gas.
Even though the hydrodynamic simulations are radiative, the radiation is treated in a wavelength-
independent way. To obtain wavelength-dependent intensity images of our disk models, we apply
the RADMC-3D image task for which we also set scattering to be isotropic. The Python pipeline
used to convert the Jupiter code output files is based on Szulágyi et al. (2018). We set up
the radiative transfer with the same stellar source as in the thermal Monte Carlo simulation
to be consistent throughout our hydrodynamic simulations and post-processing steps. For the
dust temperature, we use the temperature determined in the previous thermal Monte Carlo
simulation, which is not necessarily equal to the gas temperature. The opacity table provided
to RADMC-3D is identical to the one used in Szulágyi et al. (2018) and is based on a dust mixture
of 70 % silicate and 30 % carbon. It was computed considering Mie theory using the BHMIE
code of Bohren & Huffman (1984) assuming a dust grain size distribution of 0.1 µm and 1 cm
with a power-law index of 3.5. The size of the intensity image is set to 1000 ˆ 1000 pixels and
the distance between the observer and the disk is assumed to be 100 parsec which is similar to
the distance to the closest star-forming regions.

Synthetic ALMA Observations

We process the intensity images as generated byRADMC-3D with CASA and create synthetic ALMA
observations using the simobserve and simanalyze tasks. Furthermore, we use ALMA cycle
7 array configurations which have baselines ranging from 0.16 km to 16.2 km and allow us to
explore different beam sizes. For each antenna configuration, we create observations at different
wavelength bands to explore the optimal observing setups. The channel bandwidth of our
continuum observations is 7.4GHz. The integration time is chosen to be 300s per pointing with
a total integration time of 3h. We add thermal noise to the synthesized images using the tsys-atm
parameter which constructs an atmospheric profile at the ALMA site at an altitude of 5000 m,
atmospheric pressure of 650mBar, and 20 % relative humidity. The precipitable water vapor is
set to 0.475 mm and the ambient temperature is 269K.

7.3 Results

In the following section, we present the results of our three-dimensional two-fluid hydrodynamic
simulations. This is followed by the results of the synthetic observations for ALMA. Analysis

3casa.nrao.edu

casa.nrao.edu
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Figure 7.2.1: The figure shows the normalized gas surface density distribution in logarithmic
scale of our 12 hydrodynamic two-fluid simulations of a protoplanetary disk with an embedded
planet at 200 planetary orbits in a face-on view. In each panel, the columns show simulations
with planets orbiting at different radii, rp = 5 au, 30 au, 50 au. Each row shows the disk
containing a planet with different mass (Mp = 5 Mjup, 1 Mjup, 1 Msat, 1 Mnep). The mass of
the planet is indicated in the upper right corner of each subplot. The x and y coordinates are
normalized with the planetary orbital radius rp.
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Figure 7.2.2: The figure shows the normalized surface density distribution of 1 mm-sized dust in
logarithmic scale of our 12 hydrodynamic two-fluid (gas+dust) simulations of a protoplanetary
disk with an embedded planet at 200 planetary orbits in a face-on view. In each panel, the
columns show simulations with planets orbiting at different radii, rp = 5 au, 30 au, 50 au. Each
row shows the disk containing a planet with different mass (Mp = 5 Mjup, 1 Mjup, 1 Msat, 1
Mnep). The mass of the planet is indicated in the upper right corner of each subplot. The x and
y coordinates are normalized with the planetary orbital radius rp.
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Figure 7.2.3: The azimuthally averaged surface density in gas (top row) and 1 mm-sized dust
(bottom row) of our 12 hydrodynamic simulations are shown here. Each panel shows profiles of
4 identical disks, each containing a planet of different mass (Mp = 5 Mjup, 1 Mjup, 1 Msat, 1
Mnep). From left to right, the panels show planets orbiting at different radii, rp = 5 au, 30 au,
50 au. The location of the planet is indicated with a dashed vertical line.
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Figure 7.2.4: Temporal evolution of the azimuthally averaged surface density profile in gas (top)
and dust (bottom) in our m50au1up simulation containing a 1 Jupiter-mass planet orbiting at
rp = 50 au over the period of 200 planetary orbits. Plotted are the surface density profiles after
every 20 orbits.
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Figure 7.2.5: Here we show the normalized vertical distribution of the azimuthally averaged gas
volume density of our 12 hydrodynamic two-fluid simulations of a protoplanetary disk with an
embedded planet at 200 planetary orbits in a side-on view. The opening angles of the disks
are enlarged for better visualization, i.e., the aspect ratio of the disk is plotted larger. In the
left panel, we show the surface density in gas, in the right panel we show the surface density in
1 mm-sized dust. In each panel, the columns show simulations with planets orbiting at different
radii, rp = 5 au, 30 au, 50 au. Each row shows the disk containing a planet with different mass
(Mp = 5 Mjup, 1 Mjup, 1 Msat, 1 Mnep). The mass of the planet is indicated in the upper left
corner of each subplot.
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Figure 7.2.6: Here we show the normalized vertical distribution of the azimuthally averaged
volume density of our 12 hydrodynamic two-fluid simulations of a protoplanetary disk with an
embedded planet at 200 planetary orbits in a side-on view. The opening angle of the disks is
enlarged for better visualization, i.e., the aspect ratio of the disk is plotted larger. In the left
panel, we show the surface density in gas, in the right panel we show the surface density in 1
mm-sized dust. In each panel, the columns show simulations with planets orbiting at different
radii, rp = 5 au, 30 au, 50 au. Each row shows the disk containing a planet with different mass
(Mp = 5 Mjup, 1 Mjup, 1 Msat, 1 Mnep). The mass of the planet is indicated in the upper left
corner of each subplot.
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Figure 7.2.7: Example of the gap width ∆ as defined in Eq. 7.12. Shown is the azimuthally aver-
aged intensity profile computed using the CASA output. We identify rout and rin as the location
of the local maxima in the intensity profile. This particular figure shows the intensity profile of
the simulation m30au1sat observed in ALMA band 9 (400-500µm) with antenna configuration
C43-8.

and discussion of the results will be presented in the next section.

7.3.1 Hydrodynamic Simulations

We run a set of twelve three-dimensional two-fluid (gas + 1 mm-sized dust) hydrodynamic
simulations of a protoplanetary disk with an embedded planet. We place a planet of four different
masses in an orbit at three different semi-major axes. In this section, we present the resulting
effects that the planets have on the gas and dust distribution on their hosting protoplanetary
disk.

Surface Density

In Fig. 7.2.1 we plot the vertically integrated volume density, i.e., the surface density, of the gas
component at 200 planetary orbits. In Fig. 7.2.2 we show the corresponding surface density in
1 mm-sized dust. The figures show the surface density in Cartesian coordinates, even though
the computations are carried out on a spherical grid, with the star located at the center of each
sub-panel and the planet at the three-o’clock position, orbiting in a counterclockwise direction.
In both Fig. 7.2.1 and Fig. 7.2.2, the columns show the simulations containing planets with
different semi-major axis (rp = 5 au, 30 au, 50 au). At these orbital radii, a period of 200
planetary orbits is equivalent to „ 2.4 kyr, „ 33 kyr or „ 71 kyr respectively. The four rows
show the simulations containing a planet with mass Mp = 5 Mjup, 1 Mjup, 1 Msat, 1 MNep. The
color map of the figures has a logarithmic scale and is normalized so that we can use the same
color map for all the sub-panels in gas and dust respectively. In both, the gas and the dust disk,
the planet creates distinctive disk morphologies. While for planets masses Mp ě 1Msat, a gap
is seen in the gas, a gap is seen in dust also when Mp “ 1Mnep.
In Fig. 7.2.3 we show the azimuthally averaged surface density profiles in gas (top row) and
dust (bottom row). From left to right, we plot the surface density profiles with the planet at
rp = 5.2 au, 30 au, and 50 au at 200 planetary orbits.
Across our simulations, we vary the planet mass from 1 Mnep « 0.05 Mjup to 5 Mjup. Similar
to Paardekooper & Mellema (2006), we find that the Mp = 1 Mnep planet does only open a
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gap in 1 mm sized dust, but not in gas. The Neptune-mass planet is able to disturb the gas
surface density by producing distinct spiral waves. However, the gravitational torque caused
by the planet is not large enough to overcome the viscous effects in the gas. The gap which
is opened by the 1 Mnep in the dust is very shallow. Increasing the planet mass decreases the
gas surface density in the vicinity of the planetary orbital radius because gravitational torques
increase and push the gas away from the planetary orbit. As expected, the depth and width of
the gap increase with the mass of the planet. We find that the depth of the dust gap is generally
deeper than the depth in gas.
At the outer edge of the dust gap, a density enhancement forms which coincides with a pressure
maximum in gas. From both sides of the pressure maximum, dust drifts towards it. Hence,
dust in the outer disk which drifts inwards gets trapped at this location, steadily increasing the
local dust density. We show this effect in Fig. 7.2.4 where we plot the temporal evolution of
the azimuthally averaged surface density distribution in gas (top) and dust (bottom) for every
20 orbits in the case of the 1 Jupiter-mass planet orbiting at 50 au. The dust enhancement at
the outer edge of the gap also becomes broader with time and moves outward following the gas
pressure maximum. The dust enhancement is generally broader for more massive planets. The
maximum dust density remains roughly constant for different planetary masses for Mp ě 1 Msat.
As shown in Fig. 7.2.4, we find that the width of the gas gap quickly approaches a quasi-steady
state. The depth of the gas gap increases monotonically over time and the width of the gap
approaches its final value after about 100 orbits when the planet reaches its final mass. The gas
disk still continues to evolve viscously, and we expect a true steady-state to be reached in the
gas after one viscous timescale tvis “ x2{ν (e.g. Lynden-Bell & Pringle, 1974). Over the length
scale of a gas gap with width ∆gas “ 0.5 ¨ rp “ 0.5 ¨ x, the viscous timescale in our simulations
is „ 2 ¨ 103 orbital timescales at 5.2 au. However, Kanagawa et al. (2017) find that the width
of the gas gap does change only about 10 % after 0.1 ¨ tvis which is equivalent to „ 200 orbital
timescales at 5.2 au. On the other hand, the gap profile in dust evolves continuously and the
features in the 1 mm-sized dust disk change over time. Interestingly, the depth of the dust gap
in our m50au1jup simulation does reach a maximum already after about 120 orbits, after which
the depth decreases again. We find this behavior in all our simulations with Mp ě 1 Mjup. In
some cases, a pressure maximum also forms in the inner disk, e.g., in the m30au1sat simulation.
In that case, a dust density enhancement also forms in the inner disk because the 1 mm-sized
dust drifts towards the pressure maximum at this location as well.
Intermediate mass planets (Mp = 1 Msat, 1 Mjup) show the distinct W-shaped dust surface
density profile as found in previous studies, e.g., by Dipierro et al. (2016). There exists a
substantial amount of dust in the co-orbital region of the planet, which also causes a peak in
the surface density profile in Fig. 7.2.3 at the location of the planet. Since for these masses,
a gap is also opened in the gas, drag is reduced due to the low gas density and there exists a
region around the orbital radius of the planet where the effects of radial drift are smaller, and
dust can temporarily accumulate. We find that the 1 mm-sized dust remains in the co-orbital
region of the planet as long as 1 " St. If the gas density in the co-orbital regions decreases
enough for the Stokes number to reach about order unity, dust is removed from the co-orbital
region and the entire gap empties out. The onset of this process can also be seen in Fig. 7.2.4
where dust in the co-orbital region is stable until about 120 planetary orbits. At that point, the
depth of the gap edges reaches a temporary maximum (largest depth). After that, dust from
the co-orbital region is lost and fills the edges of the gap. The gap depth only grows again after
all the dust from the co-orbital region is lost. This effect can be seen in all our simulations.
However, it happens sooner in simulations containing a more massive planet or planets orbiting
at smaller semi-major axes where dynamical timescales are smaller. We also expect the onset
of this process to occur sooner, the flux of dust through the gap to be increased and the peaks
in the gap profile to be smoothed if dust turbulent diffusion is included (see e.g. Zhu et al.,
2012; Weber et al., 2018, for a comparison with and without diffusion in 2D). The outer edge
of the planet also acts as a barrier for 1 mm-sized dust particles drifting inwards (Rice et al.,
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2006). Hence, without diffusion, there is no inward drift from the outer part of the disk to
the co-orbital region. While, for the Saturn-mass simulations, the dust is evenly distributed
along the co-orbital radius, there are dust enhancements just before and after the location of
the planet (around the Lagrange points L4 and L5) in the 1 Jupiter-mass simulations. This is
also consistent with earlier work in 2D, e.g., Zhang et al. (2018).
For Mp “ 5Mjup, the dust surface density at the location of the planet is much lower than
in the other simulations because dust in the co-orbital region is lost. The gap region in these
simulations still contains dust, but it is not confined to the co-orbital radius. Instead, it is more
evenly distributed across the gap, but at very low densities. Looking at the temporal evolution
of these simulations, we find that the 5 Mjup simulations also produce distinct co-orbital dust
accumulation features early in the simulations. However, dust originally trapped in this region
vanishes after about 150 planetary orbits and is therefore not seen in Fig. 7.2.2 and Fig. 7.2.3
where we plot a snapshot of the density distributions at 200 planetary orbits. We would like
to highlight again that the dust disk has a more complex temporal evolution than the gas disk
without any sort of steady state. Hence, the dust disk morphologies heavily depend on the age
of the simulated systems. We expect the simulations containing a lower mass planet to also lose
its dust from the co-orbital region at later times (ą 200 orbits). Moreover, for Mp = 5 Mjup,
we find the mass of the planet to be large enough to make the disk slightly eccentric, leading to
non-axisymmetric gap structures (Kley & Dirksen, 2006; Szulágyi, 2017).
At Mp = 5 Mjup the surface density profile in gas (see Fig. 7.2.3) also has a W-shape. However,
its origin is different from the situation explained above. Even though the dips adjacent to the
planetary orbital radius become significantly deeper with the increase of the planetary mass
from 1 Mjup to 5 Mjup, the surface density at the orbital radius only decreases slightly. This
is because gas efficiently accumulates in the planet’s circumplanetary disk. With the azimuthal
averaging, the gas in the potential well contributes to the surface density profile at the planetary
orbital radius even though, away from the planet, the gap is much deeper.
When comparing the gap at different orbital distances, we find that the depth of the gap at
200 planetary orbits increases with planetary orbital radius. One factor which favors gas gap
formation at large radii in our models, is the adoption of constant kinematic viscosity. This
becomes clear by studying the dimensionless P-parameter

P “
3

4

hg
RH

`
50

qR (7.10)

introduced by Crida et al. (2006) which measures the ability of a planet to carve a gap in gas.
The smaller this parameter, the easier it is to carve a gap. Here, q “ Mp{M˚ is the planet-to-star

mass ratio, RH “ rppq{3q1{3 is the Hill radius of the planet and R “ r2Ω{ν is the Reynolds
number. The first term on the r.h.s. of Eq. 7.10 scales as the aspect ratio hg{r and, for flared
disks, increases with radius. With constant kinematic viscosity, the second term on the r.h.s.
of Eq. 7.10 decreases as r´1{2 i.e., it contributes less at large radii. In our models, the decrease
of the second term dominates over the increase of the first term. Therefore, the P-parameter
decreases with radius and gap formation in gas is easier in the outer disk.
The outermost regions of the disk are depleted in dust. This is most noticeable for simulations
with planets at large radii and small planet mass, (e.g., m50au1nep in Fig. 7.2.2). The dust
depletion is due to radial inward drift of the 1 mm-sized dust and no replenishment through
the closed outer radial boundary. We expect the entire outer disk to empty out eventually and
drift inward to be trapped in a pressure maximum or at the inner boundary of our simulation
domain.
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Vertical Distribution

We also investigate the vertical distribution of the gas and dust components. In Fig. 7.2.5 we
plot the azimuthally averaged distributions of the volume density in gas. In Fig. 7.2.6 we plot
the azimuthally averaged distributions of the volume density in dust. Both figures are plotted
in a normalized logarithmic color scale. The layout of the sub-panels in both figures is identical
to Fig. 7.2.1 and Fig. 7.2.2, i.e., the planet mass decreases from top to bottom, and the orbital
distance increases from left to right.
Similarly to Fig. 7.2.1, the gap in the vertical gas distribution is noticeable in all the simulations
except in the Neptune-mass simulations. If a gap is present, it extends the full height of the
disk. For more massive planets, the gap is wider at larger altitudes. For 1 Mjup planets and
especially at 5 Mjup planets, an accumulation of gas at the center of the planetary potential is
visible where gas accumulates in the circumplanetary disk. However, since we underestimate
the gravitational potential at the location of the planet due to the smoothing length, we expect
this effect to be even more prominent in reality.
The azimuthally averaged vertical dust density distribution (Fig. 7.2.6) is very different from
the distribution in gas. This is mainly because dust is not pressure supported. The 1 mm-sized
particles, which are not perfectly coupled to the gas settle vertically. In a disk without a planet,
all the 1 mm-sized dust does settle onto the midplane because we do not include turbulent
diffusion in the simulations, which would counteract the settling at some point. In Fig. 7.2.6,
the effect of settling is seen most clearly in the outermost regions of the disks containing a low-
mass planet. There, the dust disk is very thin. Its thickness is not vanishingly small because
the computational cells at the midplane have a non-vanishing size.
Fig. 7.2.2 shows that vertical settling is counterbalanced by vertical stirring around the gap
edges, as predicted by Edgar & Quillen (2008). The vertical stirring is caused by the meridional
flows in the gas (Szulágyi et al., 2014; Fung & Chiang, 2016; Szulágyi & Garufi, 2021). In the
midplane where the mm-sized grains are most tightly coupled to the gas, they are dragged along
with the vertical upward flow of the gas until they reach a height at which the grains decouple
enough for them to settle toward the midplane again. The vertical stirring is not uniform along
the entire edge (in azimuthal direction) but it is strongest at the location where the planetary
wake meets the edge of the gap and decreases in strength further away from the planet. Due to
the differential rotation of the disk, the material at the gap edge has a different angular velocity
than the planet. Therefore, in the rest frame of the gap edge, the vertical stirring is periodic with
a period tstir » 2π{|ΩKprP q ´ ΩKpredgeq| where redge is the radius of the gap edge. Low-mass
planets, like the Neptune-mass planets, only disturb the dust vertically in regions close to the
orbit of the planet. The larger the planet’s mass, the thicker the dust disk becomes, and regions
farther away from the planetary orbit are affected. Similar effects were found by Fouchet et al.
(2010) in their 3D gas+dust simulations but using the smoothed particle hydrodynamics (SPH)
approach. In the simulations containing a larger mass planet, dust is present in a large vertical
fraction of the simulation domain, also far away from the planet and the midplane. We discuss
the effects of turbulent diffusion on the vertical dust distribution in Sec. 7.4.2.
In some panels in Fig. 7.2.6, the dust gets puffed up at the inner computational boundary. This
can be seen, for example, in the simulations containing a Neptune mass planet at 30 au and 50
au and is caused by direct stellar irradiation of the inner edge of the disk.

7.3.2 Synthetic ALMA Observations

In this section, we study the synthetic ALMA mm-continuum observations created with RADMC-

3D and CASA.
In Fig. 7.3.1, we show normalized mm-continuum maps for each of our 12 hydrodynamic
simulations in the same layout as in Fig. 7.2.1. For each simulation, we chose the observation
band and antenna configuration that produces the most detailed intensity map. In detail, this
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Figure 7.3.1: For each of our 12 hydrodynamic simulations, we show one synthetic ALMA
observation. Each image is normalized to its peak intensity, which is indicated in the upper-left
corner of each image. From left to right, we show the disk containing a planet at rp = 5 au,
30 au, 50 au. The rows show the disks with a planet of equal mass, Mp = 5 Mjup, 1 Mjup, 1
Msat, 1 Mnep. In each image, the mass of the planet is indicated in the upper right corner. The
central wavelength of the observation band is indicated in the upper-left corner. The beam size
is indicated in the lower-left corner.
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is antenna configuration C43-8 and ALMA band 9 („ 440 µm ) for simulations with rp = 5
au and ALMA band 6 („ 1300 µm ) for simulations with rp ě 30 au. The intensity maps are
normalized with the peak intensity. We place the value of the peak intensity in the upper left
corner of every individual map. The beam size is indicated with a white ellipse in the bottom
left corner of each map and the location of the planet is indicated with a white x.
The intensity maps containing Mp “ 5Mjup planets (first row in Fig. 7.3.1) all show a clear
gap with a wide outer ring and a narrower inner ring. At rp = 5 au the inner and outer rings
show asymmetric brightness distributions. The outer ring is brightest on the opposite side of
the planet whereas the inner ring is brightest about 45 degrees in front of the planet. This is the
location where the inner spiral arm meets the inner disk and stirs up the dust. The asymmetry
is further enhanced due to beam dilution, especially at rp = 5 au, where the beam is notably
large and elongated. At rp ě 30 au, the outer rings are more azimuthally symmetric. Generally,
the inner ring is brighter than the outer ring.
The outer ring in the simulation containing a Mp “ 5Mjup planet at rp = 50 au, shows two rings
separated by a depletion. The origin of this feature is most apparent in the vertical density
distribution in figure 7.2.7 where the outer disk exhibits a vertical notch at around 1.7 rp. This
notch can also be seen in the vertical distribution of the disks containing a Mp “ 5Mjup planet at
rp = 30 au and in the disk containing aMp “ 1Mjup planet at rp = 50 au. However, in both other
cases, the notch is not prominent enough to appear in the synthetic intensity map. One must be
careful when interpreting the inner ring. We found that in all the Mp “ 5Mjup maps, the inner
ring is caused by an accumulation of dust at the inner computational boundary rather than at a
gas pressure maximum. No matter where the inner boundary would lie, there would be naturally
a ring in the inner boundary, where dust accumulates, due to the mass-conservation simulations,
(i.e., we do not allow outflow). In the maps containing lower-mass planets (Mp ă 5Mjup), there
are maps with either one or two inner rings. If only one ring is present, it has a physical origin.
If there are two inner rings, (e.g., Jupiter mass, Saturn mass, and also Neptune mass at 50 au),
the outermost of the two inner rings is physical, and the innermost ring is an artifact.
In the second row of Fig. 7.3.1 we show the Mp “ 1Mjup planets which all produce two rings
in the disk. At rp = 5 au, the inner ring has an asymmetric azimuthal brightness profile with a
peak in front of the planet (in an anticlockwise direction). At this location, the inner planetary
wake meets the inner edge of the gap and stirs up dust above the midplane. Exposed to direct
stellar radiation, dust above the midplane is warmer and, hence, brighter in the intensity map.
The puffed-up dust disk at this location also casts a shadow on the outer disk and the outer
ring. Therefore, the outer ring is darker in the upper-right quadrant. Vertical stirring also occurs
when the outer planetary wake meets the outer edge of the gap. Similarly to the inner ring, the
outer ring is warmer and therefore brighter in the lower-right quadrant. As shown in Fig. 7.2.5,
stirring is much more effective at 5.2 au compared to 30 au and 50 au because the mm-sized
grains are more strongly coupled to the gas’ meridional flows due to the larger gas density closer
to the star. Therefore, at 30 au and 50 au less dust is stirred above the midplane which can cause
shadowing. Hence, asymmetries due to absorption and shadowing are much less pronounced at
larger orbital radii. Comparing the intensity map containing the Mp “ 1Mjup planet at 30 au
and 50 au it becomes apparent that the outer ring at 30 au is dimmer than at 50 au. This is
because the Saturn-mass planet is able to stir up more dust in the inner disk than when it orbits
at 50 au. Again, this is due to better coupling to the gas. The puffed-up inner edge of the gap
then casts a shadow over the vertically stirred dust at the outer ring. This shadow is slightly
larger in the upper-right quadrant, but generally, the brightness distribution is more symmetric
than with the planet at 5 au. When the Saturn-mass planet orbits at 50 au, the inner edge of the
gap casts a smaller shadow and the outer ring is brighter. Hence, even though the dust at the
location of the outer ring is similar in both cases, the emission of the outer ring is different due
to temperature differences as a result of the vertical structure of the disk. In all the Mp “ 1Mjup

maps, the inner ring is clearly separated from our inner computational boundary.
In the models containing the Mp “ 1Msat at rp = 5 au it is difficult to resolve the gap due
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to the combination of small gap width and large beam size. However, an asymmetry can be
seen in cases with more massive planets. Most prominent is the crescent-shaped asymmetry in
the lower-right quadrant due to the vertical stirring at the location where the outer planetary
wake meets the gap edge. The asymmetry arises because in the upper-right quadrant, the outer
edge of the gap lies in the shadow of the puffed-up inner edge section of the disk. Here, the
asymmetries are also less pronounced at 30 au and at 50 au compared to when the planet orbits
at 5 au because grains are less strongly coupled to the meridional flows. Similarly to the case
with Mp “ 1Mjup, the inner gap edge is less puffed up when the Saturn-mass planet orbits at 50
au than at 30 au. Therefore, the inner ring is less pronounced in the intensity map. For rp ě 30
au, the gap is clearly resolved. At rp = 30 au, there are two rings with roughly equal brightness.
At rp = 50 au, the ring to the inside of the gap is barely visible. Moreover, there is a third ring
right at the inner boundary of our computational domain caused by accumulating dust. Also,
faint emission from the disk outside the outer ring is visible.
As mentioned in Sec. 7.3.1, the Neptune mass planet barely opens a gap in the dust. There is
no gap in the gas and hence, no pressure bump in which dust can accumulate. The features
which we see in the disks containing a Neptune-mass planet are traces of the spiral wakes caused
by the planet. The spiral wakes stir up dust from the midplane which gets illuminated and
subsequently heated by the central star.

7.3.3 Gap-Widths in Gas

Before we present our results on gap width measurements in the synthetic ALMA intensity
maps, which we will do in the following section, we will present gap width measurements in
gas. For this, we measured the gap widths ∆g in the hydrodynamic gas density distribution.
These measurements allow us to better understand the results and enable direct comparison
with previous studies. Our approach for the gas gap measurements is identical to Zhang et al.
(2018). We find the following relation between the gas gap width ∆g and model parameters:

∆g “ 0.27

ˆ

Mp

M˚

˙0.21ˆ

hg
r

˙´0.30

α´0.15 (7.11)

Compared to Kanagawa et al. (2016), the gap-width in gas ∆g is, with a power law index 0.21,
less sensitive to the planet-to-star mass-ratio (0.5 in Kanagawa et al., 2016) but is in rough
agreement with Zhang et al. (2018) who find a similar value (0.26). The gap width in gas is
also less sensitive to hg{r and to α compared to Kanagawa et al. (2016). They find power law
indices ´0.75 and ´0.25 respectively. The difference to Kanagawa et al. (2016) is likely due to
our different definition of the gap width in gas. Our definition is identical to the definition in
Zhang et al. (2018) which is smaller for wide gaps. Nevertheless, our gap width in gas is more
sensitive to hg{r and α compared to what is found in Zhang et al. (2018). They find values
of ´0.05 and ´0.08 respectively. The differences likely arise due to a combination of 3-D and
radiative effects.

7.3.4 Gap Widths in Intensity Maps

We measure the widths of the gaps (∆) in azimuthally averaged intensity profiles (see Fig. 7.2.7).

Measuring Gap Widths

We first identify the gap caused by a planet around rp and then find the first local maximum
outside and inside the center of the gap. In the case of Neptune mass planets, which do not
open observable gaps, we do not measure a gap width. In all other cases, we fit a Gaussian
profile to the observed maxima and identify the radii at which the emission peaks as rout and
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Figure 7.3.2: This figure shows for each of our 12 models the contour z1prq of the surface where
the optical depth τ = 1. Each panel shows a vertical cut of the volume density in the dust at the
location of the planet (ϕ “ 0). In each panel we show the τ = 1 contour for three wavelengths:
350 µm , 870 µm , and 2100 µm respectively. At each radius, we integrate along the z-axis from
z = +8.
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Figure 7.3.3: Gap width measurements (∆) as defined in Eq. 7.12. In all our models which
contain a planet massive enough to open an observable gap, we show the gap width measured
in synthetic observations at different wavelengths. The vertical error bars correspond to the size
of the beam in the synthetic ALMA observation.

rin respectively. We then define the gap width ∆ as

∆ “
rout ´ rin

rout
. (7.12)

This has the advantage that it does not depend on rp. In some cases, we cannot identify a clear
gap in our synthetic images, but only a single ring located on the inside or on the outside of the
planetary orbital radius. In these cases, we assume the gap to be symmetric about the planetary
orbital radius rp, i.e.,

rout ´ rp “ rp ´ rin. (7.13)

If the ring is located to the inside of the planetary radius, we use Eq. 7.13 and express rout “

2rp ´rin which we then plug into the definition of the gap width (Eq. 7.12) and use the value for
rp which we know from the hydrodynamic simulations. If only an outer ring is visible, we use
rin “ 2rp ´ rout. Thus, we can always define a gap width ∆ even if only a single ring is visible
in the synthetic images.
For the gap width measurements, we use the locations of the local maximum of the intensity to
define a gap width instead of the locations of the edge at half of the peak value, as done by, e.g.,
Zhang et al. (2018). We found that the radial locations of the local maxima are less sensitive to
the size of the beam. Furthermore, our definition is independent of the emission at the bottom
of the gap which, for resolved gaps, can drop below the noise level. In Fig. 7.3.3, we show the
measured gap width ∆ for all our models containing a planet more massive than Neptune. For
each model, we measure the gap width (∆) at three different beam sizes. The vertical lines
represent the size of the corresponding beam. We list the average values of the measured gap
width in Table 7.3.1. We later use these values in the fitting procedure in Sec. 7.3.4.
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Figure 7.3.4: ∆ ´ K-relation and best fit using Eq. 7.17. The gray error bar in the upper left
corner shows the error in log K.

Fitting Gap Widths

We derive an empirical relationship between the gap width ∆, as measured from the intensity
profiles in continuum images, and the planet mass Mp similarly to what has been done in
previous studies (e.g. Kanagawa et al., 2016; Rosotti et al., 2016; Dong & Fung, 2017; Zhang
et al., 2018). While Kanagawa et al. (2016) focused on the planetary gaps in gas, Dong & Fung
(2017) focused on planet opened gaps in near-infrared scattered-light images. Zhang et al. (2018)
have previously studied the relationship between gap widths and planetary mass in continuum
intensity maps. Our aim for this section is to do the analysis, for the first time, based on three-
dimensional simulations, and to improve upon the previous approaches by providing a method
tailored towards observations rather than hydrodynamic simulations. Following previous studies,
we define a dimensionless parameterK which is proportional to the mass ratio between the planet
and the star Mp{M˚, and has a power-law dependence on the parameters HB and α as

K “
Mp

M˚

¨ Ha
B ¨ αb. (7.14)

The dimensionless parameter HB can be regarded as an aspect ratio H of the disk (H “ hg{r
and hg “ cs{Ω). We do not define HB in terms of hydrodynamic quantities in order to make
this approach more tailored toward real observations. Therefore, we define HB as

HB “

d

γkB
GM˚mµ

¨ rTB. (7.15)

Here, kB is the Boltzmann constant. The parameter HB is defined in a way that, for a vertically
isothermal disk of temperature TB at radius r, HB “ H holds. We determine the parameter
HB for a given disk by measuring the (azimuthally averaged) brightness temperature TB of the
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dust emission at distance r from the central star. We measure the brightness temperature TB

instead of the physical temperature T because, similar to the aspect ratio of the disk, we do not
have direct observational access to the physical temperature in images of marginally optically
thin regions. In optically thick regions, the brightness temperature is equal to the physical
temperature of the emitting material at the τ “ 1-surface. We choose r “ rout to be the radius
of the ring outside the planetary orbit rp where the dust emission is most optically thick and
the brightness temperature approaches the physical temperature of the emitting material.
The second dimensionless parameter in Eq. 7.14 is the Shakura and Sunyaev α-parameter of
turbulent viscosity (Shakura & Sunyaev, 1973). It is usually not directly measurable from mm-
continuum observations but requires additional modeling as done by, e.g., Pinte et al. (2016) for
HL Tau. Therefore, the value of the α-parameter usually assumed to be in the range of 10´3

to 10´2 for typical disks. The α-turbulence parameter is also not a predetermined quantity in
our radiative hydrodynamic simulations, where we have adopted a constant kinematic viscosity
instead of the alpha prescription typically used in isothermal hydrodynamic simulations. Here,
we estimate the α-parameters from the scale height hg of a Gaussian fit to the vertical gas density
in the initial hydrodynamic thermal equilibrium density field (without a planet) at the orbital
radius of the planet rp. We do that before the injection of the planet because in our radiative
disk, the vertical gas profile can deviate from a Gaussian depending on the local heating and
cooling in the gas. In addition to that, unlike in isothermal simulations, the local gas scale
height sensitively depends on the radius at which it is measured due to the perturbation of the
planet. We then use the kinematic viscosity ν to compute the α-parameter with the following
formula:

α “
ν

Ωh2g
(7.16)

We list the α-parameters for each model in the third column of Table 7.3.1.
In the next step, we find the best fitting parameters a and b in Eq. 7.14 which relate the
K-parameter to the gap width ∆ via the following relation

log∆ “ B ¨ ln
“

log
`

K{K0

˘‰

` logA (7.17)

where A, B and K0 are fitting coefficients. Here we highlight that we use the intensity profile of
the synthetic continuum intensity maps to find the fitting parameters a and b. This is in contrast
to the previous work of Kanagawa et al. (2016) and Zhang et al. (2018) which used the gas surface
density to calibrate their parameters. We do not use the gas surface density in the fitting process
here because we aim to produce a formula that is as independent as possible from hydrodynamic
quantities. In Eq. 7.17, log is the logarithm with base 10 and ln is the natural logarithm.
We chose a ln-dependence between log∆ and logK because we found it to be the functional
dependence that minimizes the fitting error out of any monotonic functional dependence we
tested (1st, 2nd order polynomial, exponential, root). The ln functional dependence is also
physically motivated because there exists a minimum planetary mass, which lies somewhere
between a Neptune mass and a Saturn mass, below which no planetary gap is opened in a disk
(e.g. Paardekooper & Mellema, 2006). The ln-dependence naturally provides a minimum value
for K below which a gap is not observable unlike the linear dependence used in previous studies.
In Eq. 7.17 the lower bound is reached when K “ K0.
In practice, we first find the best fitting coefficient K0 for the case when a “ b “ 0 using a least
square fit. We find K0 = 2.58 ¨ 10´4 which we fix at this value. It is equivalent to „5.2 Mnep

which lies below a Saturn-mass. We do not yet fix the coefficients A and B in this process.
In a second step, after fixing K0, we find the best fitting parameters a and b as defined in
Eq. 7.14. For this, we assign values to a and b and perform additional least square fits with A
and B as free parameters using the ∆´K relation in Eq. 7.17. We obtain a fitting error σ from
the sum of the square difference between the measured values of the gap width ∆ and the fit.
We then vary a and b to minimize σ. At the minimum σ, we find the optimal parameters a,
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b and the corresponding coefficients A and B. Our results are A = 0.61 and B = 0.12 and the
K-parameter is:

K “
Mp

M˚

¨ H0.086
B ¨ α´0.066 (7.18)

We list the values of logK for each of the models in the fifth column of Table 7.3.1. To compute
the uncertainty of the fitting in logK, we calculate the residual between each measurement and
the fitting curve. From the distribution, the lower bound is estimated by the 15.9 percentile, and
the upper bound by the 84.1 percentile. We find an uncertainty in logK of `0.02

´0.05. We indicate
this uncertainty with the gray error bar in the upper left corner of Fig. 7.3.4.
We can not immediately compare the relationship in gas in Eq. 7.11 with the observational
relationship in Eq. 7.17 because of the different functional dependence (linear vs. ln). However,
because close to logK “ ´2.36, the relation lnrlogpK{K0qs „ logpK{K0q holds, we can restrict
ourselves to this value of logK and compare the power-law exponents there. For example,
the parameter B provides the gap-width-dependence on the planet-to-star mass ratio, and the
product aB represents the dependence on HB or hg{r respectively. The product bB provides
the dependence on the α-parameter. The dependence on Mp{M˚ is weaker in the observed gaps
(B “ 0.12) than in gas (B “ 0.21). This is in agreement with Zhang et al. (2018), who also found
a weaker dependence for moderately coupled grains. The dependence on α is also weaker in our
observational relationship (bB “ ´0.008) compared to the dependence on gas (bB “ ´0.15). It
is also about a factor of two lower than for the moderately coupled large grains in Zhang et al.
(2018) (bB “ 0.016). The dependence on HB is weaker and has the opposite sign (aB “ 0.01)
than the dependence on hg{r in gas (aB “ ´0.3). Here, Zhang et al. (2018) find aB “ ´0.01 for
their moderately coupled large grains. Hence, the magnitude of our value of aB is in agreement
with previous work, but it has the opposite sign. This is a result of our definition of HB and the
fact that the brightness temperature TB is not always an accurate tracer of the gas temperature.
In our case, TB decreases faster with radius than the gas temperature, resulting in the opposite
sign in the power law exponent of HB (to be precise, rTB is a decreasing function of radius,
while in flared disks, rT is generally an increasing function of radius for T being the physical
gas temperature).
Eq. 7.17 can be solved for the planet-to-star mass ratio log

`

Mp{M˚

˘

from which we can directly
compute planet masses Mp from gap widths ∆ in ALMA observations:

log
`

Mp{M˚

˘

“ exp
“`

log∆ ´ logA
˘

{B
‰

` log
´

K0H
´a
B α´b

¯

(7.19)

Where A = 0.61, B = 0.12, K0 = 2.58 ¨ 10´4, a = 0.086, b = -0.066. We list the ratio Mp{M˚

found using Eq. 7.19 in the last column of Table 7.3.1. We find a standard deviation of 10.1 %
in the planet mass. Smaller deviations at smaller planet masses and larger deviations at larger
planet masses. The maximum deviation is 21.9 %. When comparing the mass ratios obtained
with Eq. 7.19, we generally find a good agreement with the mass ratio used in the hydrodynamic
simulations. We find a better agreement for low-mass planets and a worse agreement for high-
mass planets when compared to the actual value used in the simulation. This is likely due to
the fact that the slope of the fitting function decreases with increasing planet mass (see figure
7.3.4). Hence, small deviations in gap width measurements translate into larger mass deviations
in the high-mass range compared to the low-mass range.
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7.3.5 Disk Masses from Synthetic Observations

Accurate accounting of bulk dust masses of protoplanetary disks is essential to understanding
planet formation because it is the bulk reservoir of solid material from which terrestrial planets
and the cores of giant planets form. There has been some discrepancy because recent observa-
tional studies (e.g. Andrews et al., 2013; Cieza et al., 2019; Ansdell et al., 2016) reveal that the
total dust mass (Àcm sized grains) in Class II disks is low if one wants to explain the typical
exoplanet demographics as derived from results of the Kepler mission (e.g. Dong & Zhu, 2013).
The shortage of solid material could be explained if the dust grains grow to larger sizes before
the disk reaches the Class II stage. Larger grains remain hidden in the wavelength domains
to which ALMA is sensitive. However, in this work, we focus on another explanation for the
potential underestimation of the observed mass of the solid disk components.
Observationally, bulk dust masses are typically obtained by flux density measurements in (sub-
)millimeter surveys and using the optically thin approximation (and making assumptions about
opacity and temperature) (e.g. Tychoniec et al., 2020). Bulk dust masses can also be used as
a proxy for bulk gas masses by assuming a dust-to-gas ratio. This indirect probe of bulk gas
mass lends itself to the community because measuring bulk gas masses is difficult due to a lack
of direct bulk gas mass tracers (e.g. Bergin & Williams, 2017).
To probe dust masses, dust emissions are typically observed in (sub-)millimeter wavelengths.
The observed intensity of optically thin emissions coming from an isothermal region of dust de-
pends on the dust temperature Td and optical depth τ . The optical depth is in turn dependent
on the dust mass Md present along a line of sight and the opacity κ. As shown in Hildebrand
(1983), the total dust mass Md in an isothermal region can be estimated from optically thin
(sub-)millimeter emissions by measuring the flux density Fν and using the following relation:

Md “
Fνd

2

κνBνpTdq
(7.20)

Here, κν is the dust absorption opacity at the observed frequency ν, Bν is the Planck function
at the dust temperature Td and d is the distance between the emitting region and the observer.
It is generally not easy to determine the opacity κ and temperature Td of the emitting dust from
observations. Hence, this approach of determining dust masses involves some uncertainties.
However, we aim to apply this method here to investigate its validity and accuracy. As typically
done in the community, we first approximate the dust opacity by a power law,

κν “ κ0

ˆ

ν

ν0

˙β

(7.21)

(e.g. Draine, 2006) and use a simple parametrization as used by, e.g., Beckwith et al. (1990) or

Ansdell et al. (2016) with κ0 “ 10 cm2

g , ν0 “ 1000GHz and power-law index β “ 1. Furthermore,

we assume a characteristic disk temperature Tdust = 20 K as in Ansdell et al. (2016) for all
our models. Using Eq. 7.20, we compute the total dust mass Md from a synthetic image of
each of our models. For this, we use synthetic images obtained at a wavelength of λ = 870 µm
(ALMA band 7). We list the results of this dust mass estimate in Table 7.3.2 column 4. At this
wavelength, the dust opacity, computed using Eq. 7.21, is κν “ 3.45 cm2{g. For comparison,
we list the actual dust mass present in the corresponding hydrodynamic model in the first third
column of Table 7.3.2 and label it with Md,hydro. With this method, we recover, on average,
28.7 % of the total dust mass Md,hydro. The fraction is generally larger in models containing a
planet at 5.2 au and lower in models at 30 au and 50 au. One obvious reason for the deviation
is the fact that the crude assumptions for temperature Td and opacity κν are not perfectly
representative of our models. The opacity used in the radiative transfer step at λ = 870 µm
is with κν “ 10.2 cm2{g larger than what we assumed here. However, using a smaller opacity
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would lead to an overestimation of the recovered dust mass.
We compute a characteristic disk temperature T̄dust from the three-dimensional hydrodynamic
temperature grid for each model, to assess the validity of the assumption of the characteristic
temperature above. We compute T̄dust as a mass-weighted average temperature

T̄d “
1

Md,hydro

ÿ

i

md,iTd,i (7.22)

where we sum over all the computational cells. Here, md,i is the dust mass and Td,i is the dust
temperature in cell i. As found by Ballering & Eisner (2019), the radial extent of the disk has
a large impact on the mass averaged dust temperature T̄d and we find that smaller disks are
significantly warmer than larger disks. The characteristic dust temperatures are listed for each
disk model in Table 7.3.2 column 2. Except in m5au1nep, the characteristic dust temperatures
are larger than 20 K in all the models containing a planet at 5.2 au. In all other cases, the
characteristic temperature is smaller as the disk extends farther away from the star. Charac-
teristic temperatures below 20 K counteract the effect of the larger opacity used in our models
compared to the initially assumed value of κν “ 3.45 cm2{g.
We repeat the dust mass calculations using the more suitable temperature and opacity values
to compare with the crude estimates. We can only do this because we have the advantage over
real observations to have perfect knowledge of opacity and temperature in our computational
models. The results of this first improvement are listed in Table 7.3.2 column 5. On average,
we recover only 30.3 % of the total dust mass with this approach. The fact that we can not
significantly increase the recovered dust mass points to a weakness in the applied approach itself,
and we point out several difficulties here.
In the Rayleigh-Jeans tail of the Planck function, the sensitivity to changes in temperature in-
creases the closer the peak wavelength is to the observed wavelength. At Td = 3.3 K, the peak
of the Planck function is at the observed wavelength λ = 870 µm. Therefore, characteristic
temperatures close to 3.3 K introduce larger uncertainties in Eq. 7.20 than larger temperatures.
Consequently, dust mass estimates will be more accurate for disks with larger characteristic tem-
peratures and observations at longer wavelengths. Hence, dust mass estimates with T̄d „ 3.3K
rely on a very accurate estimation of the characteristic disk temperature. Generally, it is a
difficult task to assign a single characteristic temperature to a disk because disks have diverse
temperature profiles. Moreover, the assumption of optically thin emissions is not valid for large
regions in the models. At a wavelength of 870 µm, the emission becomes optically thick for
surface densities Σd ą 1{κν „ 0.1 g{cm2. In our initial conditions, this is the case in the inner
disk for r ă 64 au. Emissions at longer wavelengths are more optically thin (e.g. Liu, 2019; Zhu
et al., 2019). At a longer wavelength of 1300 µm, where we use κν “ 7.8 cm2{g, the optically
thick regions in the inner disk only reach up to r ă 39 au. As shown in Fig. 7.2.3, the surface
density can also increase by a factor of a few in the rings at the edges of the disk gaps when the
disks evolve away from their initial condition. Because optically thick emissions are independent
of surface density, they can lead to an underestimation of the bulk dust mass. Furthermore, the
temperature in large regions of the models is so low that the emission at the observed wave-
length is lost in the observational noise. Hence, dust in these regions remains undetected in the
synthetic observations which further decreases the recovered dust mass fraction.
We repeat the dust mass measurements at longer wavelengths of λ = 1300 µm (ALMA band 6)
and λ = 2100 µm (ALMA band 4) (using identical estimates for T̄d as before) and list the results
in Table 7.3.2 column 6 and 7. Longer wavelengths are more favorable here because, firstly, the
Planck function is less sensitive to temperature at longer wavelengths (in the Rayleigh-Jeans
tail). Secondly, emission at longer wavelengths are more optically thin and thirdly, the cold
outer regions of the disk emit at longer wavelengths. At λ = 1300 µm we recover, on average,
30.2 % of the total dust mass and at λ = 2100 µm we recover on average 33.7 % of the total
dust mass.
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In this section, we applied a typical method used in the observational community to measure
bulk dust masses by assuming optically thin emission and using Eq. 7.21. This allows us to
evaluate the typical assumption of dust opacity and temperature made in previous studies. We
showed a significant underestimation of the total dust mass, even under ideal conditions where
opacity and dust temperature are well known. The assumption of optically thin emission fails
in large fractions of the disk. Moreover, the signal-to-noise ratios in the ALMA bands used
here are not large enough to recover dust emissions from cold outer disk regions. Generally, the
characteristic disk temperature we find increases with the mass of the planet. This is because a
more massive planet stirs up more dust above the midplane which is then illuminated directly
by the central star. This also leads to a trend that we recover more dust mass from disks with
a low-mass planet. By assuming a constant Td = 20 K for all disks, we recover more dust from
the disks containing a planet at a smaller semi-major axis than at a larger semi-major axis.
By computing a characteristic dust temperature for every model individually, we see that the
disks with a planet at larger radii are generally colder than 20 K and we do not see a significant
difference in recovered disk mass for disks with planets at different radii anymore (Ballering &
Eisner, 2019). The dust contained in the hidden optically thick regions in the disk can poten-
tially account for the missing dust mass.
Photon scattering can be an additional reason for the underestimation of the total dust mass. It
decreases the maximum depth from which photons can escape and can make an optically thick
region look optically thin (e.g. Rybicki & Lightman, 1979). The reduction of emission due to
scattering is largely ignored in observations but can have an important impact (e.g. Zhu et al.,
2019).
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7.3.6 Optically Thin Dust and τ “ 1-Surfaces

In this section, we further explore the validity of the optically thin approximation and quantify
the mass fraction of optically thin emitting dust. In Fig. 7.3.2, we show a vertical cut of the
dust volume density at the location of the planet (ϕ “ 0) for each of our 12 hydrodynamical
models. Overplotted are the contours z1prq of the surfaces where the optical depth equals unity
(τ = 1) when integrated along the z-axis from z = +8 for three different wavelengths (350 µm
, 870 µm , 2100 µm ), i.e.:

τ “ κν

ż z1

8

ρddz (7.23)

All the areas below the contours are optically thick regions and hidden in face-on observations
at the corresponding wavelengths.
We computed the azimuthally averaged height z1 of the τ “ 1-surface at every radius and used it
to compute the total dust mass which is optically thinM τă1

d . The results at different wavelengths
are listed in columns 8 to 10 of Table 7.3.2. Assuming perfect knowledge of the emission Fν

and temperature Td, we would be able to also obtain these values using Eq. 7.20 as done in the
previous section. Similar to the previous section, the total optically thin dust mass is larger at
longer wavelengths and large radii because the dust is less optically thick at longer wavelengths
and larger radii.
Even at longer wavelengths, a large mass fraction of the disk remains optically thick in all the
models. Dust in optically thick layers of the disk remains hidden and cannot be recovered when
doing bulk mass estimates using the optically thin assumption. The optically thin disk regions
are mainly the gap regions and the outermost disk regions where the dust density has decreased
due to radial inward drift.

7.4 Discussion

7.4.1 Dust Temperature

The method with which we compute the gas temperature is different from the method with
which we compute the dust temperature. We compute the gas temperature self consistently
during the radiative hydrodynamics simulations based on local cooling and heating. The dust
temperature, on the other hand, we compute with RADMC-3D’s mctherm in a post-processing
step. The resulting mass-weighted averaged dust temperatures are are 25 % larger in the disks
containing a planet at 50 au, 40 % lower in the disks containing a planet at 30 au and 41 %
lower in the disks containing a planet at 5.2 au. To investigate the validity of our approach, we
ran supplementary computations with RADMC-3D’s mctherm and image tasks. In these test runs,
we added a second dust species consisting of small (1 µm sized) dust particles. We assumed
them to be well mixed with the gas with a local density ρsmall “ 10´4ρg, i.e., the global mass
ratio between the small and the 1 mm-sized grains is 0.01. For the small grains, we computed
an additional opacity table using Mie theory and the BHMIE code. In this two-species setup,
the upper disk layers are mainly filled with a small amount of µm-sized particles while the
midplane is dominated by the larger mm-sized grains as is expected in real disks. The resulting
dust temperature distribution of the mm-sized grains computed with the mctherm task using
this setup was similar to the one-species setup. However, the midplane dust temperature was
marginally larger due to more indirect radiation coming from the upper disk layers where the
small grains are. Even though this approach probably represents a more realistic disk, it did
not have any major effect on our results presented in this chapter.
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7.4.2 Caveats

There are some caveats regarding the assumptions used in our models. Firstly, we investigate
the observable disk features after 200 planetary orbits. i.e., a snapshot in time, we do not
follow a longer disk evolution. Dust-included simulations are continuously evolving, it is well
known that they could never reach steady-state, due to the nature of the dust-gas interaction.
Therefore, the disk sub-structures, and especially the gap widths, somewhat change with time
as mentioned in Sec. 7.3.1. Hence, the time of observation has a crucial impact on the resulting
observed gap width. However, we usually only know little about the time when planets formed
in disks. Zhang et al. (2018) have done some analytical estimates on how the gap width changes
with time. They estimate that for marginally coupled dust particles (St Á 10´2), the gap width
is proportional to Stˆ t. This means that particles will drift twice farther over twice the amount
of time. A detailed study that includes the change of the gap width over time is necessary to
fully investigate this behavior.
Secondly, we only include one dust fluid in our simulations which represents 1 mm-sized dust.
Also, it should be stressed that the empirical fit, found in Sec. 7.3.4, was derived based on only
one dust fluid. This limitation is due to the enormous computational time needed for multi-fluid
simulations of a global disk perturbed by a planet in three dimensions. Of course, in reality,
the dust consists of a distribution of grain sizes. Dust-continuum observations at a given wave-
length are most sensitive to emissions of a single particle size. However, larger and smaller sizes
also contribute (see e.g. Draine, 2006). The populations of larger/smaller particles are more
weakly/strongly coupled to the gas which will result in a different spatial distribution in the
disk. Hence, we expect slightly different intensity distributions (e.g. Dra̧żkowska et al., 2019).
Including additional dust particle sizes is planned for future studies when computers will be able
to handle such heavy computations in 3D.
Thirdly, we do not include turbulent diffusion in the dust. In the vertical direction, dust tur-
bulent diffusion is responsible for the mixing of dust particles and can counterbalance vertical
settling toward the midplane (Dubrulle et al., 1995). However, in this study, we focus on vertical
mixing by a planet. An estimate of the scale height of dust grains, when turbulent diffusion is
included, is given by Youdin & Lithwick, 2007:

hd « hg

d

α

α ` St

ˆ

1 ` St

1 ` 2St

˙

. (7.24)

where the Stokes number St is typically evaluated at the midplane. In our simulations, before
inserting the planet, the dust scale height calculated with Eq. 7.24 is „ 0.29 hg at 50 au which
is „2.0 times the vertical height of one grid cell. At 30 au „ 0.39 hg („2.4 grid cells) and at 5.2
au it is „ 0.80hg („3.8 grid cells). The vertical extent of intermediately coupled grains (St ă 1)
is typically not Gaussian but follows a flatter distribution with a sharp cut-off due to the grains
decoupling in the low gas density regions above the midplane (e.g. Fromang & Nelson, 2009).
This is because grains tend to decouple in the low gas density regions and vertical downward
settling becomes dominant over vertical upward diffusion. Hence, we expect only very few dust
grains above hd without additional stirring by a planet. Therefore, we expect dust which is
stirred up significantly above hd by a planet, to be only marginally affected by vertical diffusion
because its dynamics is dominated by planetary stirring and vertical settling.
The finite thickness of the midplane in the vertical dust distribution in our simulations due to
the finite size of the vertical grid spacing, is a crude representation of a flat distribution with a
sharp cutoff. However, as stated above, it is a factor 2 to 4 thinner than when including dust
turbulent diffusion.
We measured the ratio hd{hg in our simulations by fitting a Gaussian profile to the vertical
density profiles and found that Jupiter-mass planets and 5 Jupiter-mass planets, at all orbital
distances, are able to locally increase hd{hg to values larger than what is expected from Eq. 7.24
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i.e., by turbulent diffusion only. We expect this to also be possible for Saturn-mass planets
(and possibly below) if the magnitude of turbulent diffusion is decreased. In the case of the 5
Jupiter-mass planets, the peak value hd{hg is on average 0.75. In the case of the Jupiter-mass
planets, it is 0.84 and in the case of Saturn-mass planets, it is 0.23. In the case of Neptune-mass
planets, the vertical scale height is smaller than what we can resolve.
Studying the effects of dust turbulent diffusion will be a follow-up study to this project. Besides
its influence on the vertical distribution, we expect dust turbulent diffusion to also affect the
dust surface density distribution in a way that it smears out small-scale features, with a possible
impact on gap width measurements. We ran an additional simulation identical to m30au1jup
but with dust turbulent diffusion included as described in Appendix A of Weber et al. (2019).
There, we found a difference in gap width ∆ between the cases with and without dust turbulent
diffusion of 7 %.
Furthermore, in our setup, there is no thermal coupling between dust and gas. The temperature
of the gas as determined in the radiative hydrodynamics simulations is independent of the
dust temperature determined with the Monte Carlo approach. Thermal coupling is generally
strongest in regions where the gas density is large, and the dust temperature is low, which is
most likely the case in the midplane of the disk (e.g. Armitage, 2010; Vorobyov et al., 2020).
Moreover, in our hydrodynamical simulations, there were no magnetic fields included. This
could also heavily alter the dust and gas distributions.
We do not consider planetary migration in our simulations, even though gap-opening planets
can undergo type II migration. However, the migration timescales of type II migration are on
the order of the viscous timescale Dürmann & Kley (2015). As pointed out in Sec. 7.3.1, the
viscous timescale across the length scale of a gap is considerably larger than the duration of
our simulations. Hence, we do not expect type II migration to play a role. The Neptune-mass
planets in our models can undergo type I migration because they perturb the gas disk only a
little and do not open a gap in gas. However, the type I migration timescale of a Neptune-mass
planet is on the order of 100 times longer than the simulation time considered here Tanaka et al.
(2002). Therefore, we also expect type I migration to not change our results. A potentially
relevant effect is the rapid type III runaway migration (Masset & Papaloizou, 2003). This type
of planetary migration is especially relevant for the Saturn-mass planets in our models, which
are in the transition region between type I and type II migration. Masset & Papaloizou (2003)
found that for a disk with an aspect ratio of 0.05, which is approximately the case for our disk at
50 au, and kinematic viscosity identical to our value at 50 au, a Saturn-mass planet undergoes
type III migration if the Toomre Q is below a value of „ 10. At 50 au, we find Q „ 5. Hence, the
Saturn-mass planet at 50 au can potentially undergo type III migration. At 30 au, the Toomre
Q is larger, but at the same time, the aspect ratio is smaller. We expect type III migration to
be less likely for the Saturn-mass planet at 30 au. The Jupiter-mass planet at 50 au is close to
the transition region between type III and type II migration. If a planet indeed undergoes type
III migration, Masset & Papaloizou (2003) find different migration behavior depending on the
slope of the gas surface density. For shallow profiles, as in our case, they find a 50 % increase
of the planet’s semi-major axis, i.e., outward migration, within 50 orbital periods. This is much
shorter than the duration of our simulations.. Hence, we expect rapid type III migration to
affect the gap structure in the disk and should be taken into account in future studies.

7.5 Conclusions

Using three-dimensional two-fluid hydrodynamic simulations of protoplanetary disks with an
embedded planet, we investigate observable planetary features in synthetic (sub-)mm-continuum
ALMA images of the disks. We choose the grain size to be 1 mm within the hydrodynamic
simulations. The feedback of the dust onto the gas is included in our simulations. We specifically
investigate the gap widths caused by planets of different masses (Neptune-, Saturn-, Jupiter,



174
7. Grid-Based Gas-Dust Simulations of Protoplanetary Disks with an

Embedded Planet

5 Jupiter-mass) at different orbital distances to the central star (5.2 au, 30 au, 50 au). We
summarize our results in the following points.

• Except for the Neptune mass planets, the planets in our disk model open an annular gap
at their orbital radius in both the dust and the mm-sized dust. The Neptune mass-planet
cannot disturb the gas enough to open a gap in the gas. In the dust, the Neptune-mass
planets barely open a gap.

• The temporal evolution of the surface density profile in the dust is distinctly different
from the surface density profile in gas. Whereas gap widths in both gas and dust steadily
increase with time, the depth of the gap steadily increases with time only in the gas. The
depth of the gap in dust can also decrease again with time after an initial increase in depth.

• The planets cause significant vertical stirring of the dust which opposes the vertical settling.
This creates thicker dust disks than in disks without a planet. The amount of vertical
stirring depends on the mass and orbital radius of the planet. Large dust particles in the
upper layers of the disk potentially have observational consequences. We examine this
effect further in Chapter 8.

• We find multiple rings in the synthetic ALMA images which are caused by dust concen-
trations at the edges of the planetary gaps.

• We examined the relationship between the gap width as observed in ALMA images and
the planet mass. We fitted the results and created equations between the planetary mass
and the ALMA gap width, based on the planetary orbital radius, the disk turbulence, and
disk temperature. This relation can be used to constrain the planetary mass in future
ALMA observations of gaps in protoplanetary disks.

• We derived the disk mass from the hydrodynamical simulations and from the ALMA
mock images created from the same simulations (Table 7.3.2). We found a significant
difference between the disk masses in the two cases: Using the usual disk mass formula
with an optically thin dust emission assumption greatly underestimates the disk mass.
The discrepancy of a factor of a few highlights that protoplanetary disks might be several
(up to 10) times more massive than previously thought. This has a strong consequence
on planet formation, and disk processes, including chemistry. Further, we found that the
derived disk masses were generally larger in disks containing a low-mass planet, regardless
of the orbital distance between the star and the planet.



Chapter 8

Three-Dimensional Dust Stirring by
a Giant Planet Embedded in a
Protoplanetary Disk

The content of this chapter was published in:

Binkert F., Szulágyi, J., Birnstiel, T. (2023), Three-dimensional dust stirring by
a giant planet embedded in a protoplanetary disk, Monthly Notices of the Royal As-
tronomical Society, Volume 523, Issue 1, Pages 55-79

Abstract

The motion of solid particles embedded in gaseous protoplanetary disks is influenced by turbu-
lent fluctuations. Consequently, the dynamics of moderately to weakly coupled solids can be
distinctly different from the dynamics of the gas. Additionally, gravitational perturbations from
an embedded planet can further impact the dynamics of solids. In this work, we investigate
the combined effects of turbulent fluctuations and planetary dust stirring in a protoplanetary
disk on three-dimensional dust morphology and on synthetic ALMA continuum observations.
We carry out three-dimensional radiative two-fluid (gas+1-mm-dust) hydrodynamic simulations
in which we explicitly model the gravitational perturbation of a Jupiter-mass planet. We use
a new momentum-conserving turbulent transport model that introduces a turbulent pressure
to the pressureless dust fluid to capture the turbulent transport of dust. The model implicitly
captures the effects of orbital oscillations and reproduces the theoretically predicted vertical
settling-diffusion equilibrium. We find a Jupiter-mass planet to produce distinct and large-scale
three-dimensional flow structures in the mm-size dust, which vary strongly in space. We quan-
tify these effects by locally measuring an effective vertical diffusivity (equivalent alpha) and find
azimuthally averaged values in a range δeff „ 5 ¨ 10´3 ´ 2 ¨ 10´2 and local peaks at values of up
to δeff „ 3 ¨ 10´1. In synthetic ALMA continuum observations of inclined disks, we find effects
of turbulent transport to be observable, especially at disk edges, and effects of planetary dust
stirring in edge-on observations.

8.1 Introduction

Protoplanetary disks consist of only one percent dust by mass. Even though the other 99 per-
cent is gas, it is the small solid component in protoplanetary disks from which all rocky objects,
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such as rocky planets, form. Advanced radio interferometers, such as the Atacama Large Mil-
limeter/submillimeter Array (ALMA), are capable of detecting and resolving the faint thermal
emission of cold dust in protoplanetary disks. This provides direct insight into the earliest phase
of planet formation. Continuum observations of protoplanetary disks with ALMA have revealed
numerous substructures, such as gaps, rings, and asymmetries (see, e.g., the review by Andrews,
2020). Numerical studies predict a planet (or multiple planets) to be capable of producing many
of the observed disk features via its gravitational interaction with the surrounding protoplan-
etary disk (e.g., Wolf & D’Angelo, 2005; Gonzalez et al., 2012; Perez et al., 2015; Dong et al.,
2015b,a; Szulágyi et al., 2018, 2019; Weber et al., 2019). However, despite significant efforts,
only a few observed disk substructures have been successfully linked to the presence of a planet
(e.g., PDS 70b/c, Keppler et al., 2018; Isella et al., 2019; Haffert et al., 2019; Christiaens et al.,
2019).
Most theoretical and observational studies on disk substructures have focused on radial struc-
tures, favoring low-inclination disks because the radial structure is more readily observable (e.g.,
ALMA Partnership et al., 2015; Pinte et al., 2016; Jin et al., 2016; Dong et al., 2017; Szulágyi
et al., 2018; Dullemond et al., 2018; Ricci et al., 2018; Zhang et al., 2018; Andrews et al., 2018b;
Dipierro et al., 2018; Wafflard-Fernandez & Baruteau, 2020). Even though, it is difficult to
constrain the vertical extent of the millimeter continuum emission in low-inclination disks due
to their geometrically thin shape, the study of the vertical structure of more inclined and/or
edge-on disks offers additional opportunities to constrain disk properties.
The vertical extent of millimeter-sized dust grains, which are mainly probed with (sub-)millimeter
continuum observations, is set by a balance of vertical settling and mixing. While small, micron-
sized, dust grains are aerodynamically tightly coupled to their gaseous environment, the larger
dust grains tend to decouple from the gas and settle towards the disk midplane, forming a geo-
metrically thin midplane layer. However, these larger dust grains are still somewhat coupled to
their environment and react to fluctuations in the gas. Thus, turbulent flows have the potential
to counteract the vertical settling of moderately coupled dust grains, setting the vertical extent
of the dust disk. Even though protoplanetary disks are generally found to be turbulent (e.g.,
Hughes et al., 2011; Guilloteau et al., 2012; Pinte et al., 2016; Teague et al., 2016; Dullemond
et al., 2018), the driving mechanism of the turbulence is not yet fully understood despite the
study of promising candidates such as the magneto-rotational instability (e.g., Flock et al., 2015)
or purely hydrodynamic mechanisms such as the vertical shear instability (VSI) (e.g., Urpin,
2003; Nelson et al., 2013; Stoll & Kley, 2014; Schäfer et al., 2020). In addition to disk turbulence,
it has been shown that a planet, embedded in a protoplanetary disk, can be an additional source
of dust mixing (Binkert et al., 2021; Bi et al., 2021).
Due to the lack of full understanding regarding the origin of turbulence, the underlying driving
mechanisms are often disregarded when studying the dynamics of gas in protoplanetary disks
using hydrodynamical simulations. Instead, the net effects of the unspecified turbulence on gas
are parametrized with an effective turbulent viscosity (Shakura & Sunyaev, 1973; Lynden-Bell
& Pringle, 1974). On the other hand, the net effects of turbulent flows on dust have successfully
been modeled by using a gradient-diffusion hypothesis, which models the turbulent mixing of
dust grains in a turbulent environment (Cuzzi et al., 1993; Youdin & Lithwick, 2007; Carballido
et al., 2006, 2010; Zhu et al., 2015). The subsequent comparison between such hydrodynamical
models and the observed radial structure and/or the vertical extent of a protoplanetary disk
allows for the constraint of the effective viscosity and/or diffusivity in the observed disks (e.g.,
Pinte et al., 2016; Villenave et al., 2022).
Motivated by such comparisons, we build upon the results of Binkert et al. (2021); Szulágyi
et al. (2022), in which we studied observational disk features caused by a planet, using radia-
tive hydrodynamic two-fluid simulations (gas + millimeter-size dust). For the current work,
we expand the dust module of the Jupiter code (Szulágyi et al., 2014) by treating turbulent
transport as a pseudo pressure in the otherwise pressureless dust fluid, as discussed in Chap-
ter 5. Consequently, our approach ensures the conservation of angular and linear momentum



8.2 Method 177

in our simulations, a property that gradient diffusion approaches lack (Tominaga et al., 2019)
and is crucial to correctly capture the dynamics of dust and gas within a protoplanetary disk.
In the following work, we study the combined effects of turbulent mixing (parametrized by a
diffusivity) and planetary mixing of millimeter-sized dust, on the global, three-dimensional dust
distribution within a protoplanetary disk. Additionally, we study how turbulent stirring and
planetary stirring affect the observed millimeter-continuum flux in synthetic ALMA observations
of face-on and inclined disks.
The outline of this chapter is as follows. In Sec. 8.2, we describe the dynamical equations that
govern dust, gas, and radiation in our hydrodynamic models. We also describe how we create
synthetic ALMA continuum observations from these models. In Sec. 8.3, we present our results
and in Sec. 8.4, we discuss and summarize our results.

8.2 Method

We run global three-dimensional radiative two-fluid (gas+mm-sized dust) hydrodynamic sim-
ulations of protoplanetary disks with an embedded planet, to investigate the effect of plane-
tary stirring on the three-dimensional dust morphology in the presence of turbulent transport.
Further, we employ radiative transfer calculations to turn the hydrodynamic simulations into
synthetic continuum intensity maps, from which we generate synthetic ALMA observations to
study observational signatures of planetary stirring and/or background turbulence. This section
is structured as follows. We introduce the physical models of dust and turbulent transport in
Sec. 8.2.1, and the hydrodynamic model of the gas and the radiation component in Sec. 8.2.2.
In Sec. 8.2.3, we describe our simulation procedure and the numerical details. Sections 8.2.4
and 8.2.5 describe the post-processing steps. Namely, the radiative transfer calculations and the
subsequent generation of synthetic ALMA continuum observations, respectively.

8.2.1 Dust and Turbulent Transport Model

Turbulent gas in protoplanetary disks contains a wide range of excited length scales, down to
the molecular level. Dust grains embedded in these turbulent environments are aerodynamically
coupled to the gas motion and, depending on their properties can be excited on a similar range
of lengths scales. Thus, capturing the entire dynamics of the dust-gas interactions in numerical
hydrodynamic simulations would require spatial resolution down to the molecular dissipation
scale of turbulence. However, this is, with today’s computational resources, not possible in
global hydrodynamical simulations of protoplanetary disks, and, the smallest dynamical scales
remain unresolved. As a workaround, gradient diffusion models are generally adopted to model
the effects of unresolved small-scale gas motions on resolved large-scale dust flows (Cuzzi et al.,
1993; Fan & Chao, 1998).
The gaseous component is generally modeled as a viscous fluid for which diffusive processes of
unresolved turbulence are parametrized with an effective turbulent viscosity coefficient ν. Both
the diffusion coefficient in the dust D and ν have the same dimensionality and are related via
the dimensionless (hydrodynamic) Schmidt number Sc (Cuzzi et al., 1993):

Sc “
ν

D
(8.1)

Note, the hydrodynamic Schmidt number in this chapter is not identical to the Schmidt number
in Chapter 5 and defined in Eq. 5.14. The latter relates the diffusivity of the dust to the
diffusivity of the gas (and not the viscosity). See Sec. 5.2.2 for a more detailed discussion.
In Chapter 5 we derived a general turbulent transport model that we will now apply in this
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chapter. Specifically, we use the large grain limit described by the mass conservation equation

Bρd
Bt

` ∇ ¨ pρdvq “ 0 (5.57)

where we have removed the tilde above the velocity for ease of notation in this chapter. Note,
the velocity should still be regarded as being Favre-averaged. The momentum equation reads:

B

Bt
pρdvq ` ∇ ¨

ˆ

ρd v b v `
1

3
ρdc

2
d1

˙

“ ´ρd∇Φ ´
ρd
ts

pv ´ uq `
ρd
ρg

∇
´

ρgc
2
d

¯

(8.2)

Here the turbulent speed cd is defined as

c2d “
D

ts
(8.3)

Equation 8.2 is identical to Eq. 5.99 except that the turbulent speed c2d appears inside the spatial
derivative on the r.h.s. of Eq. 8.2. This is to ensure that Eq. 8.2 fulfills the vertical equilibrium
profile (Eq. 5.24) also for St ! 1. We refer to Binkert et al. (2023) for a heuristic derivation of
Eq. 8.2.

8.2.2 Gas and Radiation Model

The radiative gas model in this study is identical to the one used in Szulágyi et al. (2016),
Binkert et al. (2021), and Chapter 7. Particularly, we model the gas with an adiabatic equation
of state and a radiative transfer module to account for heating (adiabatic heating, viscous
heating, stellar irradiation) and cooling (adiabatic cooling, radiative cooling). The mass- and
momenta equations in conservation form are:

Bρg
Bt

` ∇ ¨ pρguq “ 0 (8.4)

B

Bt
pρguq ` ∇ ¨

ˆ

ρg u b u `
1

3
pg1

˙

“ ´ρg∇Φ ` ∇ ¨ ¯̄R ´
ρd
ts

pu ´ vq ´
ρd
ρg

∇
´

ρgc
2
d

¯

(8.5)

Here, ρg is the volume density of the gas, and u is its velocity vector. The gas pressure pg is
coupled to the internal energy of the gas ϵ via the adiabatic equation of state:

pg “ pγ ´ 1qϵ (8.6)

where γ “ 1.43 is the adiabatic index. The first term on the r.h.s. of the momentum Eq. 8.5
accounts for the change in momentum due to gravitational acceleration. The third term accounts
for the momentum exchange with the dust, i.e., the back reaction, due to aerodynamic drag.
Compared to the equation without dust turbulent dust transport in Chapter 7, it contains an
additional term on the r.h.s. to account for the drag interaction on the turbulent transport flux.
The source term exactly cancels with the corresponding source term in the dust momentum
equation, which ensures the conservation of momentum in the full system (gas+dust). It also
becomes apparent that turbulent transport, like the explicit drag, in this formulation, has a back
reaction from the dust onto the gas. The second term on the r.h.s. of the momentum equation
contains the Reynolds stress tensor ¯̄R, which is set equal to the viscous stress tensor as defined
in Eq. 5.83.
The third conservation equation that we solve is the energy equation that governs the evolution
of the total energy (internal and kinetic energy). We assume the thermal internal energy of the
dust fluid to be zero at all times, thus, the energy equation describes the total energy of the gas
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(E) only:

BE

Bt
` ∇ ¨

ˆ

`

pg1 ´ ¯̄R
˘

¨ u ` Eu

˙

“ ´ρgu ¨ ∇Φ ` S ´ ρgκP
`

BpT q ´ cϵrad
˘

(8.7)

In addition to the term that accounts for the advection of the total energy E, the l.h.s. of Eq. 8.7
also includes terms that contain the pressure pg and the stress tensor ¯̄R. These terms describe
the effects of adiabatic heating or cooling, and viscous heating. The first term on the r.h.s. of
Eq. 8.7 accounts for the work done by gravity, and the second term (S) is the contribution from
stellar heating. The last term on the r.h.s. of Eq. 8.7 accounts for radiative heating/cooling,
where BpT q describes the total emitted power of a blackbody at temperature T , κP is the Planck
opacity, and c the speed of light. There is radiative cooling if the gas radiates more energy than
it receives from the surrounding radiation field (BpT q ą cϵrad). The gas is radiatively heated if
it receives more energy from the radiation field than it emits (BpT q ă cϵrad). The gas is in local
thermodynamic equilibrium if the two terms balance each other, i.e., BpT q “ cϵrad (assuming
no other heating/cooling mechanisms are active). A fourth partial differential equation (PDE)
describes the rate of change of the radiative energy density ϵrad:

Bϵrad
Bt

“ ´∇ ¨ Frad ` ρgκP
`

BpT q ´ cϵrad
˘

(8.8)

where the second term on the r.h.s. of Eq. 8.8 is identical to the third term of Eq. 8.7 and
accounts for the contribution to the radiative energy from thermal emission and/or absorption
of the gas. The first term on the r.h.s. of Eq. 8.8 contains the radiative flux Frad, which we find
using the flux-limited diffusion approximation (see e.g. Szulágyi et al., 2016). Specifically, the
radiative flux can be expressed as

Frad “ ´
cλ

ρκR
∇ϵrad (8.9)

where λ is the flux limiter of Kley (1989), and κR is the Rosseland mean opacity. The latter is
a weighted average over frequency, defined as

κRpT, ρgq´1 “

ş

κ´1
ν pT, ρgq

BBνpT q

BT dν
ş

BBνpT q

BT dν
(8.10)

where κν is the frequency dependent absorption opacity. More details about the opacities used
here are given in Sec. 8.2.3.
Ultimately, we calculate the gas temperature Tg self-consistently with

Tg “ pγ ´ 1q
mµϵ

kBρg
. (8.11)

We do not calculate the dust temperature during the hydrodynamic simulations because the
thermal internal energy of the dust is assumed zero and consequently the dust temperature does
not impact the dynamics of the dust fluid. The presence of the dust only implicitly affects the
gas temperature via the opacity. Ultimately, the total system of coupled equations to solve for
the gas and radiation components are Eqs. 8.4, 8.5, 8.7 and 8.8 which are in turn coupled to
the dust Eq. 5.57 and Eq. 8.2 via the aerodynamic drag and turbulent transport terms. It is
important to highlight that, in contrast to the dust fluid, we have not introduced a turbulent
pressure term to the gas momentum Eq. 8.5, nor to the energy Eq. 8.7 under the assumption
that the term is small compared to the thermal pressure pg.
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8.2.3 Hydrodynamic Simulations

As this work is a continuation of Chapter 7, we base the set of hydrodynamic simulations carried
out in this chapter, on the set used in Chapter 7 and use identical setups and parameters but
with the addition of turbulent transport. In particular, we run three-dimensional radiative two-
fluid (gas+dust) hydrodynamic simulations of protoplanetary disks with an embedded planet.
The simulations are carried out with the grid-based code Jupiter (Szulágyi et al., 2016) which
solves the radiation and gas hydrodynamic equations, summarized in Sec. 8.2.2, and are fully
described in Szulágyi et al. (2016). We modified the dust-solver of the Jupiter code, intro-
duced in Binkert et al. (2021) and Chapter 7, to include the effects of turbulent transport on the
dust fluid as described in Sec. 8.2.1. As a result, we model the effects of subgrid turbulence on
the dust via a dynamical diffusion pressure that ensures the conservation of angular and linear
momentum in the system.
In our simulations, we fix the dust grain size at a “ 1 mm throughout this entire work. As a
result, the Stokes number, i.e., the degree of dust-gas coupling, freely changes depending on the
local hydrodynamic conditions.
Further, we set the Planck opacity equal to the Rosseland mean opacity κP “ κR in favor of a
shorter computational time. The difference between the two opacities is not large, and thus our
results are not affected by this approximation (Semenov et al., 2003; Bitsch et al., 2013). Hence-
forth, we drop the subscript R and only consider the frequency averaged gas opacity κpT, ρgq

that is a function of the local gas density and temperature.
At temperatures below 1500 K, we assume dust to be the dominant contributor to the opacity,
which is a valid approximation in the wavelength regime relevant for hydrodynamic heating and
cooling. Further, we assume the gas to be thermally coupled to the dust. Based on these two
assumptions, we calculate the frequency-dependent opacity κν of three dust compounds (silicate,
water ice, carbonaceous material) self-consistently with a version of the bhmie code of Bohren &
Huffman (1984). We then calculate a mass-weighted average of the individual Rosseland mean
opacities for a combined dust composition of 40 percent silicates, 40 percent water ice, and 20
percent carbonaceous material (Zubko et al., 1996; Draine, 2003; Warren & Brandt, 2008), and
a dust-to-gas ratio of ρd{ρg “ 0.01.
Above, 1500 K, the opacity κ includes gas opacities from Bell & Lin (1994). In detail, the imple-
mented opacity table accounts for the sublimation of water ice (170 K), carbonaceous material
(1500 K), and silicate (2000 K) respectively. Above 2000 K, only gas opacities contribute. We
refer to Szulágyi et al. (2019) for more details on the construction of the opacity table.
In our two-fluid setup, we modify the frequency averaged opacity κpT, ρgq compared to the one-
fluid setup in Szulágyi et al. (2018), such that for T ă 1500 K, it also includes the local dust
density ρd. The two-fluid opacity κ2f that we ultimately implemented is calculated as:

κ2fpT, ρg, ρdq “ κpT, 0.01ρg ` 99ρdq (8.12)

Note that for a local dust-to-gas ratio of 0.01, the two opacities are identical κ2f “ κ.
As a result of the above definition (Eq. 8.12), the dust-to-gas ratio is not fixed at one percent,
and regions with a large dust-to-gas ratio are more optically thick in our radiative simulations,
while regions with a small dust-to-gas ratio are more optically thin.
In computational cells which are directly irradiated by stellar irradiation, i.e., cells in the disk
surface, the opacity should not depend on the local gas temperature but on the temperature of
the star T˚. We thus set the opacity in these cells to a constant value of κ “ 3.5 cm2{g which is
consistent with T˚ “ 5780 K, i.e., a sun-like star (Bitsch et al., 2014).
Our model disk has a gas radial surface density profile Σg which follows a power law of the form

Σgprq “ 80 g{cm2 ¨

´ r

1 au

¯´1{2
(8.13)
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Initially, the dust follows an identical surface density profile but is scaled by a factor 0.01. Like
in Binkert et al. (2021) and Chapter 7, the surface density profile corresponds to a total dust
mass of „ 5 ¨ 10´4 Md within 120 au, which is comparable to the most massive disks in the
ALMA survey of Ansdell et al. (2016). In our models, the mm-sized particles experience Stokes
numbers in the range 9 ¨ 10´3 ă St ă 7 ¨ 10´2 in the disk midplane (before the insertion of the
planet).
Throughout our simulations, we keep the value of the kinematic viscosity constant at a value
which corresponds to ν “ 10´5r20Ω0 at a reference radius of r0 “ 50 au. This value corresponds to
a Shakura & Sunyaev α-parameter of α “ 4.0¨10´3 at r “ 50 au, assuming a vertically isothermal
disk with an aspect ratio ofH “ 0.05. We purposely set the viscosity at this relatively large value
to isolate the effects of planetary stirring and suppress other sources of resolved hydrodynamic
turbulence coming from, e.g., Rossby vortices at gap edges (Zhu et al., 2014) or the VSI (Flock
et al., 2017; Lin, 2019), which, unavoidably, would impact our simulations at lower prescribed
viscosity. Therefore, when studying the impact of different strengths of turbulent transport,
we solely change the diffusion coefficient D and keep the gas viscosity ν constant to isolate
the influence of turbulent transport. Throughout this work, we describe the ratio of the used
parameters ν and D with the dimensionless Schmidt number Sc as defined in Eq. 8.1. However,
we stress that in reality, it is the underlying turbulent viscosity that changes and governs the
strength of turbulent transport and that the Schmidt is expected to always be on the order of
unity (Cuzzi et al., 1993).
Like in Binkert et al. (2021) and Chapter 7, we assume the central star in our simulations
to emit a blackbody spectrum with a solar effective temperature Teff “ 5780 K and have a
mass and radius equal to the solar mass and solar radius, respectively (M˚ “ Md, R˚ “ Rd).
We solve the hydrodynamic equations in spherical coordinates in a rotating frame of reference.
Because we are interested in the vertical disk structure, we mainly focus on the radially most
extended disk domain presented in Binkert et al. (2021) and Chapter 7 where the vertical
extent of the disk is the largest. This domain covers the radial domain between 20 au and
119 au from the central star, with a planet orbiting on a circular orbit with a fixed radius
at rp “ 50 au. In azimuthal direction, we simulate the full 2π disk, while in polar direction,
we assume mirror symmetry about the midplane and include the domain between the disk
midplane and 0.13 rad above the midplane (corresponding to about three gas scale heights).
We keep the numerical resolution of our base grid identical to the one used in our previous
study, i.e. Nϕ ˆ Nr ˆ 2Nθ “ 680 ˆ 215 ˆ 40, linearly spaced along all dimensions. With this
resolution, we vertically sample a gas scale height hg with about eight numerical grid cells.
In selected simulations, we locally refine the numerical grid in a comoving region surrounding
the planet (ϕ “ r´1.1, 1.1s, r “ r0.5385, 1.4615s ¨ rp, θ “ rπ{2, π{2 ´ 0.116s) doubling the
resolution along each dimension, i.e., locally increasing the number of cells by a factor eight.
We summarize our simulation parameters in Table 8.2.1. In this chapter, we are ultimately
interested in observational features obtained from synthetic ALMA continuum observations,
which are resolution limited by the size of the beam which has a size of about 35 mas (see
Sec. 8.2.5). At 50 au from the central star, the vertical extent of a single grid cell of the base
grid in our simulations is equal to 0.32 au, which subtends an angle of „ 3.2 mas at a source-
observer distance of 100 pc. Thus, our vertical numerical resolution of the base grid samples the
beam about eleven times along one axis. The refined grid samples the beam about 22 times.
In Table 8.2.2, we compile a list of all the simulations that we ran for this study. As mentioned,
we mainly focus on the 50au-domain, for which we designate the simulation containing a Jupiter-
mass planet our fiducial simulation. We ran this configuration three times with different values
of the Schmidt numbers (Sc “ 1, 10, 100), i.e., changing the value of the diffusion coefficient D,
to study the influence of turbulent transport. We added a grid refinement patch to all three of
these simulations. In addition to that, we ran the three identical simulations, but without an
embedded planet. Furthermore, we ran simulations containing a more massive 5 Jupiter-mass
planet and a less massive Saturn-mass planet with Sc “ 1 in the 50au-domain. For comparison,
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Table 8.2.1: Overview of the physical disk parameters and the numerical grid parameters used
in the three-dimensional radiative hydrodynamic simulations.

Gas surface density Σg “ 80g{cm2 ¨

´

r
1 au

¯´1{2

Global dust-to-gas ratio 0.01
Stellar parameters Teff,˚ “ 5780K, M˚ “ 1 Md

R˚ “ 1 Rd

Base grid resolution Nϕ ˆ Nr ˆ 2Nθ “ 680 ˆ 215 ˆ 40
ϕ-domain 0 - 2π rad
θ-domain π{2 ´ 0.129 rad
r-domain ”50au” 20.0 au - 119 au
r-domain ”5au” 2.08 au - 12.4 au

Table 8.2.2: List of hydrodynamical simulations conducted in this study.

Model # r-Domain Planet Mass Mp Sc grid refinement

1 50au 1 MJup 1 ✓
2 50au 1 MJup 10 ✓
3 50au 1 MJup 100 ✓
4 50au no planet 1 ˆ

5 50au no planet 10 ˆ

6 50au no planet 100 ˆ

7 50au 5 MJup 1 ˆ

8 50au 1 MSat 1 ˆ

9 5au 5 MJup 1 ˆ

10 5au 1 MJup 1 ˆ

we also ran the Jupiter-mass and 5 Jupiter-mass planet in the 5au-domain with Sc “ 1.

Initial/boundary conditions and simulation procedure

We initialize the gas disk with a constant aspect ratio H “ hg{r “ 0.05, which then evolves
depending on the local heating/cooling in the simulations. We initialize the mm-sized dust with
a vertical profile equal to the vertical equilibrium distribution in Eq. 5.24. At each radius, the
vertically integrated dust-to-gas ratio, i.e., the surface density ratio, initially is equal to 0.01.
During the simulation, the distribution in the gas as well as the dust evolves according to the
local thermohydrodynamic conditions and the local dust-to-gas ratio evolves accordingly. Before
injecting the planetary gravitational potential, we first run the simulation with only 2 cells in the
azimuthal direction for a duration equivalent to 150 planetary orbits to reach the thermodynamic
equilibrium of the protoplanetary disk. We set the end of this run as t “ 0. Then, we split the
azimuthal domain into 680 cells and run the simulation up to t “ 200 ¨ 2πΩ´1

0 , 200 additional
planetary orbits, while we increase the planet’s potential to the desired value over the first 100
orbits as in Szulágyi et al. (2016). In the relevant simulations (see Table 8.2.2), we add the grid
refinement patch at t “ 200 ¨ 2πΩ´1

0 and run the simulation with the locally increased resolution

until t “ 220 ¨ 2πΩ´1
0 .

The boundary conditions in the gas fluid are identical to Szulágyi et al. (2016), Binkert et al.
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(2021) and Chapter 7. Particularly, this means symmetric boundary conditions in the vertical
direction, where also the gas density is exponentially tapered based on the local gas temperature
at the boundary opposite to the midplane. In Binkert et al. (2021) and Chapter 7, we imposed
antisymmetric radial boundaries for the radial dust velocity component, which ensured mass
conservation in the entire simulation domain. However, at the same time, it allowed dust
accumulations to form at the radial boundaries. When including turbulent transport, these dust
accumulations would diffuse back into the simulation domain. To prevent this, in this work,
we also chose symmetric boundary conditions for the radial velocity component, identical to
the boundary conditions of other two velocity components and the density. As a result, 3-8
percent of dust present in the domain is lost via the boundary during the entire evolution of our
simulations (the degree of mass lost scales with the mass of the planet).

8.2.4 Radiative Transfer

After the hydrodynamic simulations, but before post-processing, we exponentially taper the
dust density in the inner disk within a region r ă 0.5 ¨ rp, to decrease the impact of potential
dust accumulations at the inner computational boundary and/or artifacts caused by the inner
computational boundary.
The need for tapering arises because we do not have density-damping zones in our radiative hy-
drodynamic simulations. We find dust accumulations at the inner disk edge to build up during
the simulations as a result of the incident stellar radiation and the consequent large disk tem-
perature close to the inner disk edge. This is a result of the third term on the r.h.s. of Eq. 8.2.
These accumulations resulted in an increased optical depth that affects the radiative transfer
post-processing. Thus, we followed the approach of Speedie et al. (2022) and truncate the disk
in between hydrodynamic simulations and radiative transfer post-processing. We experimented
with different values of the truncation radius and found a value of 0.5 ¨ rp to be the optimal
tradeoff between decreasing the impact that these dust accumulations have on the synthetic
observations, and not interfering with the domain of scientific interest.
We then post-process our set of hydrodynamic simulations with the Monte-Carlo radiative trans-
fer code package radmc-3d (Dullemond et al., 2012) in order to create synthetic ALMA ob-
servations in band 7 at 0.87 mm. The opacity provided to code is based on a dust grain size
distribution of 0.1 µm and 1 cm with a power-law index of 3.5 (Pohl et al., 2017) assuming a
mixture of silicate (Draine, 2003) and carbon (Zubko et al., 1996) with a fractional abundance
of 70 percent and 30 percent, respectively. The absorption and scattering opacities as well as the
g parameter of anisotropy were calculated using the bhmie code of Bohren & Huffman (1984).
The Bruggeman mixing formula was used to determine the opacity of the mixture. The result-
ing absorption and scattering opacity at the wavelength of 0.87 mm are κabs=10.1 cm2/g and
κsca=10.2 cm2/g, respectively. This is comparable to the values in Birnstiel et al. (2018). Based
on these opacities and the dust surface densities, we expect the disk models to be marginally
optically thick at the observed wavelength.
The observed mm-continuum fluxes ultimately depend on the distribution of the dust density ρd
and temperature Td. However, unlike the gas temperature, the dust temperature is not directly
calculated in the hydrodynamic simulations.
In low-density disk regions, e.g., in the disk atmosphere, we expect nonradiative heating/cooling
effects to be small and thus the dust temperature to be close to the radiative equilibrium tem-
perature. Complex thermochemical models confirm that this is at least a valid first-order as-
sumption, as shown by e.g., Woitke et al. (2022) using ProDiMo models (Woitke et al., 2009).
Models capturing the full disk thermochemistry are desirable but beyond the scope of our current
work. In our work, we find the radiative equilibrium temperature using the thermal Monte Carlo
tool mctherm within radmc-3d. However, even in the outer disk, we find the disk midplane,
where we expect the majority of the observed thermal emission to come from, to be too dense
and consequently dust-gas collisions to be too frequent, to neglect nonradiative cooling/heating
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effects. Therefore, we refrain from setting the dust temperature equal to the radiative equilib-
rium temperature and, instead, set the dust temperature equal to the temperature calculated
in the radiative hydrodynamic simulations which also accounts for nonradiative cooling/heating
effects.
Based on the dust density and temperature distribution, we generate intensity maps at four
different inclinations (i “ 0˝, 60˝, 80˝, 90˝) with the image task including the fluxcons argu-
ment to assure flux conservation. We assume anisotropic scattering using the Henyey-Greenstein
approximation. The size of the intensity maps is 1000 ˆ 1000 pixels, and we assumed the disk
to be at a distance of 100 pc, about the distance to the closest star-forming region. In the 50au-
domain, this results in an angular resolution of 2.5 mas per pixel. In a subsequent step, the
resulting wavelength-dependent intensity maps are processed to simulate ALMA observations
(see Sec. 8.2.5).

8.2.5 Synthetic ALMA Continuum Observations

We study the observational signatures of a planet in a turbulent disk by generating synthetic
continuum observations from the intensity maps using the Common Astronomy Software Ap-
plications package casa (Mcmullin et al., 2007) to simulate ALMA observations. Particularly,
we create observations in band 7 at a wavelength of 0.87 mm (345 GHz) and use antenna con-
figuration C43-8, which provides sufficient resolution and signal-to-noise behavior to pick up
small-scale features on the scale of a few au. With a maximum baseline of 8.5 km, configuration
C43-8 allows for an angular resolution of up to 28 mas, which corresponds to a physical scale
of 2.8 au at a distance of 100 pc. However, configuration C43-8 in combination with band 7,
only has a maximum recoverable scale (MRS) of 410 mas (41 au), smaller than the planetary
orbital radius in our radially most extended simulation (50 au). Because we expect observational
features such as, e.g., rings on scales comparable to the planetary orbital radius, we also observe
the disk with the more compact configuration C43-5 as recommended by the ALMA proposer’s
guide. The additional configuration increases the MRS in our synthetic observations to 1.94”
(194 au), which covers the most relevant angular scales in our simulations.
We set the integration time in the more extended configuration to six hours, and, following
the ALMA proposer’s guide, set the integration time in the more compact configuration to
79 minutes. For each antenna configuration, we generate a measurement set (MS) with the
simobserve task contained in the CASA software package for which we set the channel band-
width to 7.4 GHz, add thermal noise with a random number seed of 1745, adopt a value of 0.475
mm precipitable water vapor, and set the ambient temperature to 269 K. We combine the two
measurements sets with the concat task, before using the simanalyze task to generate the final
combined intensity images by applying Briggs weighting to the visibility data (robust=0.5) and
setting the clean threshold to a value of 50 µJy/beam.

8.3 Results

In this section, we present our results by first qualitatively discussing the three-dimensional dust
morphology in the presence of turbulent transport and an embedded planet in Sec. 8.3.1. There,
we mainly focus on the simulation containing a Jupiter-mass planet orbiting on a circular orbit at
50 au from the central star and Schmidt number Sc “ 100. This particular example was chosen
because the flow pattern due to planetary mixing is best identified/studied in a background with
weak turbulent stirring. In section 8.3.2, we then quantify the level of planetary dust mixing
with an effective diffusivity before presenting the synthetic ALMA observations in Sec. 8.3.3.
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8.3.1 Three-dimensional Dust Morphology

In the first sub-panel of Fig. 8.3.1, we show the azimuthally averaged dust-to-gas ratio of the
50au simulation with Sc “ 100 at time-zero (before inserting the planet). turbulent transport
counteracts the vertical settling of the mm-sized dust grains such that, in the absence of resolved
turbulent flows and/or additional gravitational forcing, the vertical disk profile does settle in
an equilibrium distribution in which downward vertical settling is perfectly balanced by upward
turbulent transport. With the term downward, we refer to the direction towards the disk mid-
plane, and with upward the direction away from the disk midplane. Note that the gas in our
radiative simulations is not necessarily vertically isothermal and therefore, the vertical profile of
the dust-to-gas ratio does not necessarily follow the equilibrium profile of Eq. 5.24.
We slowly introduce the planetary potential to the protoplanetary disk. The embedded planet,
modeled via its gravitational potential, then becomes a source of additional dust mixing besides
the background level of turbulent transport (Binkert et al., 2021). In the second sub-panel of
Fig. 8.3.1, we show the azimuthally averaged dust-to-gas ratio of the simulation containing a
Jupiter-mass planet at 220 orbits (t = 220 2πΩ´1

p q in the 50au with Sc “ 100. The third and
fourth sub-panels show vertical cuts at ϕ “ ˘45˝ (the planet is located at ϕ “ 0˝). The vertical
distribution shows the characteristic vertical plume-like structures to the inside and outside the
planetary orbital radius at r “ rp that are a result of dust stirring caused by meridional flows
(Szulágyi et al., 2022). Planetary dust stirring in the absence of background turbulence was
previously reported in Binkert et al. (2021) and Bi et al. (2021) and further confirmed by Krapp
et al. (2021) in vertically isothermal simulations including turbulent transport. As opposed to
Bi et al. (2021), who report the vertically puffed up dust distribution to be roughly azimuthally
symmetric, we find an asymmetric distribution with respect to the planet, which becomes appar-
ent when comparing the third and fourth sub-panel of Fig. 8.3.1. We find the dust distribution
to be azimuthally more symmetric in simulations containing a less massive planet and/or more
strongly coupled dust.
Vertical flows in the gas, as part of a meridional circulation, have previously been found in
hydrodynamic simulations (Kley et al., 2001; Szulágyi et al., 2014; Fung & Chiang, 2016) and
have also been confirmed observationally (Teague et al., 2019). The existence of similar flow
structures in the solid disk component (Szulágyi et al., 2022) could have relevant consequences,
e.g., on dust grain chemistry as grains experience different chemical and physical environments,
or it is relevant for grain growth when flow structures influence the relative velocities of indi-
vidual dust grains. Further, large-scale dust flows could influence the three-dimensional disk
morphology and thus have observational consequences for continuum emissions, which directly
trace the spatial distribution of dust grains. To investigate the potential observational impacts
of planet-induced dust stirring, we further analyze the origin and spatial structure of the vertical
dust features in the remainder of this section.

We still focus on the simulation containing the Jupiter-mass planet with Sc “ 100 and exam-
ine the dust flow structure there, before generalizing our results to different sets of parameters.
We find distinct flow structures in the mm-sized dust, which are created by the planet and are
inherently three-dimensional and vary strongly in space. Thus, it is difficult to visualize them in
two-dimensional plots. We especially found cuts in the r-z-plane or azimuthal averages of density
distributions or velocity fields, e.g., like in Fig. 8.3.1, to poorly represent the underlying nature
of the dust distribution and flow structure. In order to improve upon previous explanations
and visualizations of planet-induced dust stirring, we show vertical cuts along a specific curve
(empirically determined) in r ´ ϕ space in Fig. 8.3.2. Specifically, we show the vertical dust
density distribution along two curves with the functional dependency

ripϕq

rp
“ sgnpϕqAi|ϕ|

b
i ` 1 (8.14)
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Figure 8.3.1: Dust-to-gas ratio in our fiducial simulation, containing a Jupiter-mass planet
orbiting at rp “ 50 au from the central star with reduced dust diffusivity compared to the
fiducial model (Sc “ 100). The first subplot shows the azimuthally averaged dust-to-gas ratio
at t “ 0, i.e., before injecting the planet potential. The second subplot shows the azimuthally
averaged dust-to-gas ratio at t “ 220 ¨ 2πΩ´1

0 . The third and fourth subplots show a vertical cut
at ϕ “ ´45˝ and ϕ “ `45˝. The gap region and the planetary stirring of dust can clearly be
identified.
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Figure 8.3.2: Visualization of how dust is delivered to the planetary region by the Keplerian
flow (bottom right plot), where it is lifted and then transported away from the planet on the
opposing side (upper right plot). Left: Dust surface density map of the simulation containing a
Jupiter-mass planet orbiting at 50 au. The dashed blue and white lines indicate the curves along
which we plot the vertical cuts on the r.h.s. Right: Vertical cuts along the blue (top) and white
(bottom) curves, which each cover the full azimuthal range of ˘π. The color map represents the
vertical distribution of the local dust-to-gas ratio ρd{ρg along these curves, with ϕ “ 0 being the
position of the planet and positive in the counterclockwise direction. The faint white streamlines
visualize the dust velocity components in the polar direction and parallel to the curve in the
co-rotation frame of the planet. Note that these streamlines represent the velocity field along
a two-dimensional surface and are not fully representative of the three-dimensional flow. For
better visualization, the vertical axes of the plots on the r.h.s. are stretched by a factor „ 4.5.
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where ϕ P p´π, πq. For the first curve, we chose A1 “ ´0.24 and b1 “ 0.35 for ϕ ě 0 and
A1 “ ´0.27 and b1 “ 0.35 for ϕ ď 0. For the second curve, we chose r2pϕq “ r1p´ϕq. These two
curves are represented by a white and blue dashed line respectively in the surface density plot
on the l.h.s of Fig. 8.3.2. The r.h.s plots in Fig. 8.3.2 represent the vertical cuts along these two
curves and show the dust-to-gas ratio. Moreover, we show the streamlines of the vertical and
parallel dust velocity components along the two curves in the co-rotating frame of the planet.
Note that these streamlines only represent the velocity field along a two-dimensional surface and
do not fully represent the three-dimensional flow. However, they nicely visualize the influence
of the planet on the dust flow.
Note that Eq. 8.14 is functionally similar to the spiral wake parametrization of Rafikov (2002),
who predict the functional form of planet-generated density waves in a gas disk. For a disk
with cs9r´1{4, equation (44) of Rafikov (2002) predicts a wake profile of r9ϕ0.8 (for ϕ ą 0) far
away from the planet, which is comparable to the profile of the spiral density wakes present in
the gas. The profile described by Eq. 8.14 is with r9ϕ0.35 more tightly wound and distinctly
different from the spiral wake in the gas (see also the discussion in section 8.3.2, and compare
to the tightly wound flow feature in Figure 8.3.3).
Along both, the blue and the white curve, the width of the background distribution narrows
as it approaches the location of the planet. In the upper sub-plot on the r.h.s of Fig. 8.3.1, a
wing-like structure is superimposed on the smooth background distribution. Such a feature is
absent in the lower subplot. It is these wing-like structures that are responsible for the vertical
features seen in Fig. 8.3.1. We find that the wing-like structures are caused by vertical flows in
the dust that are strongest at the location where the planetary spiral wake intersects with the
edge of the gap (ϕ „ ˘0.4). The wing-like features are asymmetric with respect to the planet,
with the feature associated with the inner gap edge being more extended in the polar direction.
Our simulations are strictly symmetric about the midplane. Therefore, the observed vertical
flows are not a direct result of the local gravitational field. Instead, we find the vertical dust
flows to be driven by the vertical roll-up motions of the gas in the wake of the planet. These
distinct flows in the gas in the presence of a planet were first reported in Szulágyi et al. (2014)
and Fung et al. (2015) and are part of the meridional circulation created by the planet. The
origin of the vertical upward motion in the gas can be understood by considering the gas flow in
the planet’s co-rotation frame. In such a frame, gas approaches the planet from two sides on a
horseshoe orbit. Away from the planet, this gas is vertically in hydrostatic equilibrium and thus
roughly flows with a columnar structure. As the column approaches the planet, it enters the
Hill sphere of the planet, where the flow components away from the midplane rapidly accelerate
vertically toward the disk midplane because the increased vertical gravity of the planet breaks
the vertical hydrostatic equilibrium. Thus, a portion of the gas flow on the horseshoe orbit has
lost significant potential energy as it arrives at the turn of the horseshoe (when the flow crosses
r “ rp and is closest to the planet) and thus has gained kinetic energy (e.g., see Figure 5 in
Fung et al. (2015) for a visualization of the gas flow structure at the horseshoe turn). After the
horseshoe turn, the fast-moving gas then radially moves away from the planetary orbital radius
close to the midplane. Fung et al. (2015) call this component of gas flow, which is pulled toward
the planet from high altitudes and continues radially at midplane, the transient horseshoe flow.
They call it transient because, due to the excess radial speed, the gas flow is no longer part of the
recurring horseshoe flow. Instead of following the horseshoe trajectory, the gas flow overshoots
and exits the horseshoe region, where it encounters the Keplerian flow that flows along quasi-
circular orbits outside the horseshoe region (unless it enters the planet’s Bondi sphere where it
becomes part of the atmospheric recycling flow (e.g., Ormel et al., 2015; Kuwahara et al., 2019).
The fast-moving radial flow enters the quasi-Keplerian flow field exactly where the streamlines
of the approaching Keplerian flow are bent toward the planet at Lindblad resonances. The result
is a convergence of the two flow components at close to 90 degrees (similar to the description in
Szulágyi et al. (2014)), which further increases the local gas pressure at this location. This local
non-equilibrium build-up of gas pressure decompresses in an upward direction via the vertical
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roll-up motion, discussed in (Szulágyi et al., 2014; Fung et al., 2015; Szulágyi et al., 2022). The
forced upward motion at the location of the convergence of the two flow components is also
the origin of the upward-directed part of the meridional circulation. In this work, we find that
the fast midplane gas flows which are deflected upwards drag along a substantial amount of
mm-sized dust causing the characteristic plumes on two opposing sides of the planet, which we
visualize in the upper right sub-plot of Fig. 8.3.2. Note how all the streamlines in this plot
originate in a region close to the planet at the midplane. I.e., dust that is lifted to regions above
the midplane, mainly originates from a region close to the midplane and the resulting effect is
the large-scale vertical planetary dust mixing. The fact that the strong vertical gas flows induced
by the embedded planet may also drag along substantial amounts of dust to high-altitude disk
regions was already hypothesized by Edgar & Quillen (2008). Vertically, the dust plumes extend
roughly a Hill radius „ rH , in agreement with the predicted scale for the gas (Fung et al., 2015).
Downstream, the component of the flow (gas and dust) which has been lifted vertically away
from the midplane is carried away from the azimuthal location of the planet by the differentially
rotating Keplerian disk flow. We find that away from these particular, spatially very localized,
upward gas motions, vertical stirring is not sustained, and the vertically lifted dust settles into
its vertical equilibrium distribution. If the dust grains are only marginally coupled, as is the
case in our fiducial simulation, they completely settle before they encounter the planet again
(see also Szulágyi et al., 2022). The result is a strong asymmetry in the distribution of the
mm-sized dust along the orbit of the embedded planet. After this qualitative description of the
relevant physics in the example shown in Fig. 8.3.2, we study the planetary dust stirring more
quantitatively in the next section.

8.3.2 Effective Diffusivity

In the previous Sec. 8.3.1, we have qualitatively described the vertical dust stirring by a planet
embedded in a protoplanetary disk. In this section, we aim to quantify the level of vertical
planetary stirring and how it is influenced by turbulent transport, by measuring an effective
diffusivity δeff .
Ultimately, we are interested in how planetary dust stirring is affected by different strengths of
dust turbulent transport. The straightforward approach to expose the planetary environment to
different levels of turbulent transport is to change the turbulent viscosity ν in the gas because
when keeping the Schmidt number at unity (see Eq. 8.1), a change in viscosity will also change
the strength of turbulent transport. However, as mentioned in Sec. 8.2.3, we found that lower
values of the gas viscosity give rise to additional sources of dust stirring, likely attributed to
the VSI and/or vortices at the gap edges generated by the Rossby wave instability. These
additional effects make it difficult to isolate and study the sole effects of planetary dust stirring.
Therefore, in this study, we keep the gas viscosity fixed at the relatively large fiducial value of
ν “ 10´5r20Ω0 in order to suppress additional sources of dust stirring. Nonetheless, we aim to
explore the effects of different levels of dust turbulent transport and thus alter the value of the
dust diffusion coefficient D while keeping the gas viscosity at the fiducial value the same. We
thus effectively change the value of the Schmidt number Sc (see Eq. 8.1). Besides our fiducial
setups, we ran additional simulations in which we decrease the dust diffusion coefficient by one
and two orders of magnitude, respectively, and leave the remaining parameters identical (see
Table 8.2.2). Thus, we ran simulations with different levels of dust turbulent transport in which
the Schmidt number, as defined in Eq. 8.1, takes values of Sc “ 1, 10, 100, such that lower levels
of dust turbulent transport are associated with a larger Schmidt number.
In Chapter 5, specifically in Eq. 5.24, we showed that, for a given (vertically isothermal) gas
distribution, the vertical extent of the dust depends on the ratio between the midplane Stokes
number Stmid and the dimensionless diffusion coefficient δ, i.e., the diffusivity. In our simulations,
we determine the midplane Stokes number Stmid and the gas scale height hg at every coordinate
(x, y) and approximate the local vertical dust density profile ρdpzq at this location with Eq. 5.24



190 8. Three-Dimensional Dust Stirring by a Giant Planet

1.0 0.5 0.0 0.5 1.0
 (rad)

0.6

0.8

1.0

1.2

1.4

r/r
p

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
r/rp

10 3

10 2

10 1

ef
f

t = 0

10 2 10 1

eff

1.0 0.5 0.0 0.5 1.0
 (rad)

0.6

0.8

1.0

1.2

1.4

r/r
p

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
r/rp

10 3

10 2

10 1

ef
f

t = 0

10 2 10 1

eff

1.0 0.5 0.0 0.5 1.0
 (rad)

0.6

0.8

1.0

1.2

1.4

r/r
p

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
r/rp

10 3

10 2

10 1

ef
f

t = 0

10 2 10 1

eff

Figure 8.3.3: This figure shows the effective vertical diffusivity δeff as found by fitting Eq. 5.24 at
every point in the x-y-plane in three simulations of the 50au-domain containing a Jupiter-mass
planet with decreasing strength of turbulent transport from left to right (Sc “ 1, 10, 100). Top:
Two-dimensional map of the effective vertical diffusivity δeff . For comparison, the white dots
follow the wake equation of Rafikov (2002) and matches well the spiral wake in gas. The middle
panels show a zoomed-in view of the region surrounding the planet with increased numerical
resolution. Bottom: The solid line traces the azimuthal average of the effective vertical diffusivity
δeff . The shaded regions show the one sigma deviation from the average value, and the dashed
line is the unperturbed average value at t “ 0.
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and determine an effective diffusivity δeffpx, yq by using a least square fit in log-space. We
stress here that the vertical dust density structure is strictly not in a vertical static equilibrium
wherever the flow is highly dynamic, e.g., in the planetary wakes. Nonetheless, our approach
allows us to quantify the level of vertical stirring with an effective diffusivity δeff .
We visualize our results in Fig. 8.3.3 where we show two-dimensional maps of the effective
diffusivity δeff in the upper row of each subplot. The sub-panels show, from left to right,
simulations with decreasing levels of turbulent transport. While the sub-panels of the left side
show the fiducial simulation, the parametrized dust diffusion coefficient is decreased by a factor
10 in the simulation shown in the sub-panels in the middle and decreased by a factor 100 in the
sub-panels on the right. All three columns show a simulation containing a Jupiter-mass planet
orbiting at 50 au.
The subplots in the second row of Fig. 8.3.3 show a zoomed-in view of the region surrounding
the planet with increased numerical resolution (doubled along each dimension). These effective
diffusivity maps trace the regions in which planetary dust stirring is strongest. We find two
maxima on opposite sides of the planet at the approximate location where the planetary spiral
wake intersects with the edge of the planetary gap, i.e., the location where overshooting horseshoe
flows and quasi-circular flows converge, as described in Sec. 8.3.1. There, the vertically stirred
dust is dragged along with the Keplerian flow and carried away from the planet in two opposing
directions on almost circular trajectories. The result is the formation of asymmetric features,
i.e., two spiral-like arms, originating at the location of the planet and fading as the dust settles
downstream. We note that these spiral arm features have a smaller pitch angle than the spiral
arms in the gas and tend to become almost circular away from the location of the planet.
For comparison, we trace the spirals in gas with the wake equation of Rafikov (2002) (their
equation 44) in the first row of Fig. 8.3.3 with white dots (we use their parameters ν “ 0.25 and
hp “ 0.07).
In addition to the azimuthal asymmetry due to the presence of the planet, we also find an
asymmetry with respect to the planet itself, with the effective diffusivity being larger in the
inner arm than in the outer arm. Apart from the distinct main feature, we find a background
distribution that traces spiral features in the outer disk, but with a significantly smaller contrast
than the main spiral.
In the third row of Fig. 8.3.3, we show the corresponding azimuthally averaged effective diffusivity
with a solid line and illustrate the one sigma deviations from the average value with the shaded
area as a measure of azimuthal variability. In the simulations containing a Jupiter-mass planet
with Sc “ 100 (right), we find two maxima in the azimuthally averaged effective diffusivity at
„ 0.85rp and „ 1.25rp with an average value of δeff „ 3¨10´2 and δeff „ 7¨10´3 respectively. The
azimuthal mean of the inner maximum is almost an order of magnitude above the initial value,
while the azimuthal mean of the outer maximum is about a factor of three above the initial value.
Locally, the effective diffusivity is increased by the planet by almost two orders of magnitude,
with values peaking above δeff ą 10´1. As the strength of the background turbulence increases
(decreasing Schmidt number), planetary features in the diffusivity maps become less prominent
and are swallowed by the background turbulent mixing. Also, the azimuthal variability decreases.
In our simulations with full turbulent transport (Sc “ 1, left), the diffusivity deviates only
marginally from the equilibrium value beyond the immediate planetary region.

Influence of the diffusion coefficient

We find the dust flow morphology to be weakly dependent on the level of background turbulence
(without changing the gas viscosity). The dust flow, which is the main driver of the planetary
dust stirring, only marginally influences the gas flow via the back reaction due to the dust-
to-gas ratio generally being below unity. At the same time, we find the flow structure in the
planet’s Hill sphere to be highly dynamic and far away from an equilibrium distribution, in
agreement with the findings of Krapp et al. (2021). Thus, the timescales responsible for the
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localized vertical stirring are significantly shorter than the diffusion timescales (also compared
to the viscous timescale). At the same time, the vertically extended dust flow that approaches
the planet is vertically compressed, along with the gas, as it approaches the Hill sphere due to
the increased vertical gravity. Thus, the bulk of the dust approaches the planet on a horseshoe
trajectory close to the midplane, regardless of the level of background turbulence.
As a result of the flow structure being largely independent of the level of background turbulence,
the columnar features visible in the dust density distribution can be drowned in the turbulent
background distribution if the background disk is thicker than the dust plumes created by the
planet. On the other hand, dust structures caused by planetary stirring become more prominent
if the level of background turbulence is small. Similarly, the plumes in the density distribution
become indistinguishable from the background distribution if their vertical extent decreases due
to e.g., weaker stirring by a less massive planet. Ultimately, whether the asymmetric features
due to planetary stirring stand out in the three-dimensional dust density distribution depends on
the relative strength of planetary stirring and background turbulence. The features are favored
in disks with low levels of background turbulence containing a massive planet.
In our simulations containing a Jupiter-mass planet or below, we find the extent of the vertical
dust plumes to be comparable to the planetary Hill radius rH . Only in the 5 Jupiter-mass case,
do we find it to be smaller, which is also the only case in which the Hill radius is significantly
larger than the disk scale height (rH » 2.4hg).

8.3.3 Synthetic Continuum Observations

A natural question that follows from the analysis in the previous sections is, what are the impacts
of the discussed dust stirring mechanisms, i.e., planetary stirring and turbulent transport on
astronomical observations. In this study, we focus on ALMA continuum observations, which
trace the thermal emission of the dust component in the disk, with the goal to analyze the effects
of turbulent transport and planetary dust stirring on continuum observations of protoplanetary
disks. To isolate the effect of turbulent transport, we first analyze intensity maps of smooth,
azimuthally symmetric disks (without an embedded planet) in Sec. 8.3.3, before we analyze disks
with an embedded Jupiter-mass planet in Sec. 8.3.3.

Synthetic observations of axisymmetric disks without planetary perturber

In Fig. 8.3.4 and Fig. 8.3.5, we show synthetic ALMA continuum observations of axisymmetric
protoplanetary disks (without an embedded planet) with different strengths of turbulent trans-
port (decreasing from top to bottom) and corresponding disks with an embedded Jupiter-mass
planet, respectively. We first focus on Fig. 8.3.4, where, from left to right, the inclination of the
disk increases from i “ 0˝ in the first column to i “ 90˝ in the fourth column. From top to
bottom, we decrease the strength of turbulent transport and show Schmidt numbers of 1, 10,
and 100 in the first, second, and third rows, respectively. In the fourth row, we show a disk
without prescribed turbulent transport, in which the dust is pressureless and has completely
settled.
In the face-on views of the disks in Fig. 8.3.4, the effects of turbulent transport are visible at
the inner and outer edges of the disks. With increasing strength of turbulent transport, the
outer edge of the disk diffuses radially outward and counteracts the radial inward drift. This is
especially apparent in the face-on view (i “ 0˝) and also, but to a lesser degree, in the inclined
disks (i ą 0˝). In the inner disk, stellar irradiation increases the disk temperature, which in
turn increases the turbulent pressure and its dependence on Eq. 8.3 and the gas sound speed in
Eq. 4.1). As a result, dust diffuses radially away from the hot inner edge of the disk, and is also
more extended vertically. Since the underlying temperature distribution is almost identical in
all the presented models in Fig. 8.3.4, the relative difference in the peak intensities between the
models, arises solely from the differences in the radial and vertical dust density distribution.
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Figure 8.3.4: Synthetic ALMA Band 7 (345 GHz) observations, obtained with the C43-8 + C43-
5 antennae configuration, demonstrating the observational influences of turbulent transport and
inclination i on axisymmetric disks (50au-domain). Each row shows the same disk at different
inclinations i “ 0˝, 60˝, 80˝, 90˝. From top to bottom, we show disks with decreasing strength of
turbulent transport, with the fourth row displaying a simulation without turbulent transport.
The color map is normalized to the peak intensity and stretched with a 0.8-power law. The
beam size is indicated in the lower-left corner of each subplot.
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Figure 8.3.5: Synthetic ALMA Band 7 (345 GHz) observations, obtained with the C43-8 + C43-
5 antennae configuration, demonstrating the observational influences of turbulent transport and
inclination on a disk with an embedded Jupiter-mass planet on a circular orbit at 50 au. Each
row shows the same disk at different inclinations i “ 0˝, 60˝, 80˝, 90˝. From top to bottom,
we show disks with decreasing strength of turbulent transport, with the fourth row displaying
a simulation without turbulent transport. The color map is normalized to the peak intensity
and stretched with a 0.8-power law. The beam size is indicated in the lower-left corner of each
subplot.
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Figure 8.3.6: Azimuthally averaged radial intensity profile of the face-on view (i “ 0˝) of the
synthetic ALMA observations of axisymmetric disks (left) and disks containing a Jupiter-mass
planet at 50 au (right) with different strength of turbulent transport (Sc “ 1, 10, 100). The
profiles were obtained from the synthetic observations presented in Fig. 8.3.4 and Fig. 8.3.5. The
gray dashed line represents the Planck function BνpT q evaluated at the midplane temperature
Tmid and ν “ 345 GHz (band 7).

Interestingly, differences in the vertical scale height are not apparent in any view besides the
edge-on view (i ą 90˝). We will study the edge-on case separately in Sec. 8.3.3. Derived from
the intensity maps, we show, in the left sub-plot of Fig. 8.3.6, the azimuthally averaged ra-
dial intensity profile of the face-on views (i “ 0˝). The differences at the disk edges become
apparent. On the other hand, the observed intensity away from the edges of the disk is very
similar between the presented models and is closely matching the blackbody emission shown by
the Planck function BνpT q evaluated at the disk midplane temperature Tmid and ν “ 345 GHz
(band 7).

Synthetic observations of disks with an embedded Jupiter-mass planet

In this section, we study the effects of an embedded Jupiter-mass planet on the observed contin-
uum emission of the same disks, as discussed in the previous Sec. 8.3.3. We present the synthetic
continuum observation of our models containing a Jupiter-mass planet on a circular orbit at 50
au (orbiting in a counterclockwise direction) in Fig. 8.3.5. Like in the previous section, we
present four models with varying strengths of turbulent transport (Sc = 1,10,100,8) at four dif-
ferent inclinations (i “ 0˝, 60˝, 80˝, 90˝). The images are oriented such that the planet is located
at the 9 o’clock position. In this subsection, we focus on the observational disk features caused
by the Jupiter-mass planet and aim to link them to the hydrodynamical models. When focusing
on the face-on views (i “ 0˝), we notice a wide ring outside the orbit of the planet. Like in the
no-planet case, the outer edge of the ring radially diffuses outward when turbulent transport is
active. In contrast, the inner edge of the outer ring, i.e., the edge facing the planet, seems to
be only marginally affected by turbulent transport and appears equally sharp at different levels
of turbulent transport. This is supported by the azimuthally averaged radial intensity profile in
the sub-plot on the right-hand-side of Fig. 8.3.6 where the gap width is slightly narrower only
for Sc “ 1.
Moreover, the radial intensity profile just outside the planetary gap is largely flat and does not
show the characteristic Gaussian peak which we would expect at the location of the local gas
pressure maximum. This indicates that the intensity map traces the dust temperature rather
than the dust density distribution, a sign of optically thick emission at the observed wavelength.
We confirm this by plotting the Planck function BνpT q to Fig. 8.3.6 evaluated at the midplane
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Figure 8.3.7: Visualization of the dependence of the optically thin dust mass M thin
d,i , obtained

with Eq. 8.15 and listed in Table 8.3.1, on the inclination i. The left-hand side shows the
values of axisymmetric disks, and the right-hand side shows the values of the disks containing a
Jupiter-mass planet at 50 au. The measured values roughly follow the cospiq-function, which is
represented by the solid gray line in the plots. See Sec. 8.3.3 for a discussion.

temperature Tmid and ν “ 345 GHz (band 7) which represents fully optically thick emissions
and roughly traces the observed intensity profiles.
In all four face-on views, we clearly identify the spiral wake of the planet, peaking in intensity
at about 60˝ behind the planet where the spiral arm emerges from the outer gap edge, i.e., the
location where shock heating contributes to a local increase in temperature. With this, we also
confirm Speedie et al. (2022) and ALMA’s potential to detect planetary spirals.
Next, we focus on the emission coming from within the main gap region. We find some emission
coming from the location of the planet itself, strongest in the Sc “ 1 case. However, because we
do not fully resolve the planetary potential well in our simulations, emission from the planet’s
vicinity should be followed up with mesh-refined future simulations, thus we will not comment
on it further. The second feature we find is emissions from along the co-rotation radius of the
planet, with the majority of the emission coming from the location of the two Lagrange points
L4 and L5. The population of co-rotating dust is azimuthally more equally distributed in sim-
ulations with increased strength of turbulent transport, but the radial extent seems insensitive
to the strength of turbulent transport. This is mainly because the strength of radial turbulent
transport is reduced in the gap region, where dust grains are only marginally coupled as a result
of angular momentum conservation and epicyclic oscillations. However, we remark that the
observational features within the planetary gap should be taken with a grain of salt because
marginally coupled dust grains tend to undergo crossing trajectories, an effect that we currently
fail to capture using the fluid approach for dust. However, it is worth noting that the existence
of a population of co-rotating dust grains is also predicted by three-dimensional particle-based
studies (Fouchet et al., 2007; Zhu et al., 2014). Nonetheless, we expect these features to be
transient and the planetary co-rotation region away from the two stable Lagrange points to
become depleted eventually if we ran the simulations for longer (e.g., Dong et al., 2018).
Similarly to the outer gap edge, the inner gap edge in the intensity maps is not greatly affected
by turbulent transport. Unlike in the outer disk, in the synthetic observations in Fig. 8.3.5, we
do not identify a prominent planetary spiral in the inner disk.
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Table 8.3.1: This table shows the optically thin dust masses of the synthetic ALMA observations
as calculated with Eq. 8.15. The upper half of the table shows values obtained from the axisym-
metric disk observations shown in Fig. 8.3.4. The bottom half shows the values obtained from
synthetic observations of disks with an embedded Jupiter-mass planet, as shown in Fig. 8.3.5.
For models with different strengths of turbulent transport, we list, in the third column of the
table, the actual dust mass present in the models in units of Earth masses (Md,hydro). The
last four columns list the optically thin dust mass retrieved from the observations at different
inclinations in units of Earth masses (M thin

d,i ). The measured optically thin disk dust masses are
significantly lower than the actual dust masses present in the disk and decrease with increasing
inclination. See Sec. 8.3.3 for a discussion.

model Md,hydro M thin
d,i“0˝ M thin

d,i“60˝ M thin
d,i“80˝ M thin

d,i“90˝

(M‘) (M‘) (M‘) (M‘) (M‘)

without planet Sc = 1 127 73.4 36.2 13.8 2.40
Sc = 10 123 65.9 32.2 12.1 1.64
Sc = 100 122 61.7 29.9 11.2 1.18
Sc = 8 119 60.1 32.9 12.0 0.34

with planet Sc = 1 127 49.0 28.1 12.1 3.08
Sc = 10 123 43.0 24.6 10.1 2.18
Sc = 100 121 42.2 24.0 9.61 1.69
Sc = 8 116 38.2 22.1 8.81 1.35

Optically thin dust masses derived from the ALMA mock images

From both sets of observations (without and with an embedded planet), we retrieve the optically
thin dust mass M thin

d , as routinely done in observational surveys of protoplanetary disks (e.g.,
Ansdell et al., 2016; Tychoniec et al., 2020). Here, we aim to study the influence of turbulent
transport, the presence of a planet and its inclination. From the observed fluxes Fν“345GHz

integrated over the entire disk, we calculate the optically thin dust mass as (Hildebrand, 1983)

M thin
d “

Fνd
2

κνBνpTdq
(8.15)

where d “ 100 pc is the distance to the source, κν “ 10.1cm2{g the absorption opacity (identical
to the one used in the radiative transfer calculation), and Bν the Planck function at the observed
frequency ν “ 345 GHz. We set the dust temperature Td equal to 7.9 K, the mass-averaged
midplane temperature in our models. We summarize our results in Table 8.3.1 and list the total
dust mass present in the model (Md,hydro) in the third column in units of Earth mass. In columns
four to seven of Table 8.3.1, we list the optically thin dust masses, calculated with Eq. 8.15, for
the 2ˆ16 synthetic observations presented above. As a result of the marginally optically thick
emission in the models, we find the optically thin dust mass M thin

d to underestimate the actual
dust mass by a factor of 1.7 to 3.0 for the face-on views. Further, we find the optically thin dust
mass M thin

d to generally decrease with decreasing strength of turbulent transport. This is mainly
because dust contained in dense optically thick regions diffuses into less dense optically thin disk
regions, which increases the observed flux from these regions. We also find the optically thin dust
mass M thin

d to decrease with increasing inclination i. Based on geometrical arguments, one can

show that the optically thin dust mass M thin
d , in an optically thick and geometrically thin disk,

decreases with increasing inclination like cospiq. In Fig. 8.3.7, we plot the normalized optically
thin disk dust masses M thin

d,i as a function of the inclination i. The gray line follows the cosine of
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Figure 8.3.8: Normalized and average minor axis profiles of axisymmetric disks (left) and disks
containing a Jupiter-mass planet (right) obtained from the synthetic observations of the 50au-
domain in edge-on view (i “ 90˝). The different colored profiles represent disks with different
strengths of turbulent transport. The dashed line indicates a Gaussian profile with FWHM
equivalent to the beam size in the synthetic observations.

the inclination (cospiq). The left subplot of Fig. 8.3.7 shows the normalized optically thin disk
dust masses of the disks without an embedded planet. The results agree well with the cosine
function, indicating that the disk aspect ratio is small, and the disk is mainly optically thick.
Only in the edge-on view (i “ 90˝), the measured dust masses lie above the cosine function.
This is because for very inclined disks, edge effects and the fact that the observed disk is not
perfectly geometrically thin become important. Overall, this is an important result, especially
for the dust-mass measurement in unresolved, optically thick disks in which the inclination can
not be determined. Due to inclination effects, the measured optically thin dust mass in inclined
disks is underestimated by a factor cospiq with respect to the face-on view.
In the right subplot of Fig. 8.3.7, we plot the optically thin dust masses of the disks containing
a Jupiter-mass planet. Like the dust masses in the disk without a planet, the normalized dust
masses in the disk with an embedded planet follow the cosine function. However, unlike in the
no-planet case, the results for inclined disks are shifted slightly above the cosine line. We expect
the difference to arise from optically thin dust in the gap region or a more vertically extended
disk structure caused by the planet stirring.

Synthetic observations of edge-on protoplanetary disks

In the previous sections, we have discussed how turbulent transport affects the inner and outer
edges of the disks, where sharp edges are radially smeared out, which has a direct impact on
optically thin dust masses. However, the effects of turbulent transport on the vertical extent of
the disk are hardly discernible in the disks with low inclinations (i ă 90˝). We now focus on the
edge-on observations (i “ 90˝) presented in Fig. 8.3.4 and Fig. 8.3.5 in which we aim to analyze
the effects of turbulent transport and planetary stirring in the vertical direction. Because the
effective diffusivity δeff is closely related to the vertical dust scale height hd, we aim to infer
the vertical extent of the disk from the edge-on observations and relate it to the strength of
vertical stirring (similar to the procedures presented in Villenave et al. (2020, 2022)). For this,
we first estimate the resolution required to resolve the dust scale height hd along the minor
axis of a disk in an edge-on view. Assuming the dust scale height is approximately Gaussian
with scale height hd, the FWHM, i.e., the beam size of the observing beam, must be smaller
than „ 2.355hd (to fully resolve the scale height, the beam should sample this value at least



8.3 Results 199

Table 8.3.2: Summary of the vertical disk thickness of the axisymmetric disks (upper half ) and
disks with a Jupiter-mass planet (lower half ) with different strengths of turbulent transport
(decreasing from top to bottom). The third column lists the measured deconvolved disk scale
heights (wm) of the underlying disk profile as measured in the edge-on view pi “ 90˝q of the
synthetic observations and are calculated with Eq. 8.17. The fourth column lists the correspond-
ing scale heights (wrt) measured directly after the radiative transfer calculation, i.e., before the
convolution with the ALMA beam and the addition of the thermal noise. The second to last
column lists the azimuthally averaged dust scale height (hd,80 au) measured in the underlying
hydrodynamic simulation at a heliocentric distance of 80 au. The last column lists the ratio of
the true underlying scale height with the hydrodynamic scale height (wrt{hd,80 au). The former
values are generally larger by a factor of a few.

Sc wm (au) wrt (au) hd,80 au (au) wrt
hd,80 au

without 1 2.96 2.99 1.20 2.49
planet 10 1.81 1.97 0.73 2.70

100 1.54 1.40 0.52 2.70
8 1.18 0.43 0.44 0.97

with 1 3.83 3.23 1.34 2.69
planet 10 2.27 2.17 0.80 2.97

100 2.00 1.55 0.55 2.98
8 1.92 1.19 0.45 2.70

twice). In the observations presented in Fig. 8.3.4 and Fig. 8.3.5, using the ALMA configuration
C43-8 concatenated with C43-5, the mean beam size is 35 mas. Therefore, based on this rough
estimate, at a distance of 100 pc, dust scale heights above hd Á 1.5 au can be properly resolved.
Assuming that the optical surface that we observe in the edge-on view lies at about 80 au from
the central star, this corresponds to a disk aspect ratio of hd{r “ 0.019. In our models, the gas
disk has an aspect ratio hg{r „ 0.05 at 80 au. We then use (Youdin & Lithwick, 2007)

h2d “
δ

St ` δ
h2g (8.16)

to obtain an approximate lower limit of the ratio between diffusivity δ and the Stokes number
St that are required for us to resolve the disk vertically. We find δ{St ą 0.14. At 80 au, the
midplane Stokes number in our models is Stmid „ 0.065. Hence, we expect the disk to be
resolved along its minor axis in the edge-on view if δ ą 9.1 ¨ 10´3. Therefore, we expect the disk
scale height in the models with Sc ď 10 to be properly resolved in ALMA observations. This
might be improved when a new generation of radio interferometers with even better angular
resolution becomes available. For example, ngVLA is expected to resolve sub-mas-scales (Selina
et al., 2018), i.e., an order of magnitude better compared to the capabilities of ALMA. Thus, as
long as the upper end of the dust size distribution remains comparable or smaller than ALMA
wavelengths, we expect to observe more optically thin emissions at a higher angular resolution
with ngVLA compared to ALMA. However, if the upper end of the dust size distribution extends
into the regime comparable to ngVLA wavelengths λobs. (6´300 mm compared to 0.3´3 mm for
ALMA), the advantage might only be marginal at best. This is because, assuming the observed
particle size is proportional to the observed wavelength, the scale height of the observed particles
scales inversely with the observed wavelength hd9λ´1

obs. and thus, the larger particles probed at
ngVLA wavelengths are more settled compared to the particles probed with ALMA.
In Fig. 8.3.8, we present the average brightness profiles (averaged along the central 0.5 as) along
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the minor axis of the synthetic edge-on disk observations without a planet (left) and with an
embedded Jupiter-mass planet (right). The dashed line corresponds to a Gaussian beam profile
with FWHM = 35 mas. We measure the scale height of the observed minor axis σm by fitting
a Gaussian to the profiles. Because the profiles have been convolved with the ALMA beam, we
have to deconvolve them to obtain the true scale height of the underlying profile wm. Assuming
the underlying profile is also Gaussian, the true scale height of the underlying minor axis profile
can be found using the formula

wm “

b

σ2
m ´ σ2

b (8.17)

where σb is the standard deviation of the beam. We list the values of the deconvolved scale height
wm in Table 8.3.2. Comparing them to the beam size (1.5 au), only the minor axis of the model
in which turbulent transport is strongest (Sc “ 1) and contains an embedded planet is sampled
by the beam at least twice. All the other models are vertically not well resolved. But, only the
model without prescribed turbulent transport (Sc “ 8) vertically extends less than one beam.
Nevertheless, we evaluate the influence of the convolution/deconvolution and also measure the
average FWHM of the minor axis profile in the output of the radiative transfer calculation
(FWHMrt) to estimate the actual underlying scale height with wrt “ FWHMrt{2.355. We list
the values of the estimated underlying scale heights wrt in the third column of Table 8.3.2. We
find the measured scale heights wm to agree well with the true underlying scale heights wrt if
they are comparable or larger than the beam size (1.5 au). However, the measured scale heights
wrt are larger by a factor of 2.49-2.98 compared to the hydrodynamical scale heights evaluated
at 80 au hd,80 au (obtained from the FWHM). We list the detailed value for each model in the
sixth column of Table 8.3.2. The difference between the two values is a result of the large optical
depths along the line of sight in the edge-on view.

8.4 Discussion, Summary, and Conclusion

8.4.1 Caveats

In this work, we incorporate a large amount of the relevant physics important for studying the
underlying problem. More specifically, we study the problem in three dimensions and model the
main thermodynamic processes that account for the heating and cooling of the protoplanetary
disk (radiative, viscous, adiabatic). Further, we model the dynamics of the gas and solid com-
ponents independently and let them interact via aerodynamic drag. In the solids, we include
a linear and angular momentum-conserving subgrid model for the turbulent stirring of dust
grains. The subsequent radiative transfer step accounts for the frequency-dependent interaction
between the protoplanetary disk material and radiation. Nonetheless, our approach can benefit
from a few improvements, of which some were already listed in section 4.2 of Binkert et al.
(2021). Among the most relevant is the fact that we use only a single dust grain size and do not
incorporate other grain sizes or the effects of grain growth. We aim to overcome this drawback
in a subsequent study.
We also highlight that the low mass-averaged midplane temperature of 7.9 K, as stated in
Sec. 8.3.3, is a result of efficient cooling via the disk surface to the 2.7 K background (i.e., the
cosmic microwave background). The background radiation in a molecular cloud is likely closer
to „ 10 K (e.g., Schnee et al., 2009). Thus, disks embedded in a molecular cloud core are likely
warmer and thus thicker and more strongly flared than the isolated disks considered in this
work.
Further, we keep the planet in our simulations on a fixed circular orbit. In reality, planets are
likely to undergo migration, an effect that we do not capture in this work. As outlined in Binkert
et al. (2021) and Chapter 7, especially the rapid type III migration could be of importance (Mas-
set & Papaloizou, 2003) and potentially affect the disk morphology (e.g., Weber et al., 2019).
Moreover, the presence of multiple planets could also affect the disk morphology.
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8.4.2 Summary

Using three-dimensional radiative two-fluid (gas + 1 mm size dust) hydrodynamic simulations
of protoplanetary disks with an embedded planet, we investigate planet-induced dust stirring in
a turbulent background. We model turbulent transport as a pressure-like term in the otherwise
pressureless dust fluid, as discussed in Chapter 5. This approach has the advantage that, as
opposed to adding the turbulent transport flux only to the mass conservation equation, fully
conserves linear and angular momentum, a vital property to study the protoplanetary disk prob-
lem. As a result of the angular momentum conservation, the turbulent transport model implicitly
captures the effects of in-plane epicyclic oscillations as predicted by Youdin & Lithwick (2007),
i.e., the weakening of dust turbulent transport in moderately coupled environments (St Á 1).
Due to the implicit nature, this is also the case if the flow deviates from being purely Keplerian,
e.g., inside the Hill sphere of an embedded planet. As a result, we also accurately capture the
turbulent redistribution of dust mass and angular momentum (i.e., the dust accretion behavior)
inside the planetary Hill sphere and a potential circumplanetary disk (CPD), in moderately
coupled environments of a gap-opening planet. A property that the gradient diffusion approach
does not have. Our model also correctly reproduces the dust distribution in the vertical equilib-
rium solution in both the strong-coupling limit (St ! 1) and the weak coupling limit (St " 1).
In practice, modeling the dust component as a fluid with non-zero pressure also simplifies the
numerical treatment because specialized pressureless solvers can be omitted and standard (gas)
fluid solvers can be used instead. Using this approach, we studied observational signatures of
planet-induced dust stirring and turbulent transport in synthetic ALMA (sub-)mm-continuum
observations. Our main findings are the following:

• In our three-dimensional radiative hydrodynamic simulations, we identify distinct flow
structures in the millimeter-size dust in the surroundings of a giant planet, which are
driven by the meridional circulation of the gas. These dust flow structures are inherently
three-dimensional, vary strongly in space, leading to disk asymmetries. We find these dis-
tinct flow structures to be only marginally affected by background turbulence.

• We quantify the planetary dust stirring by measuring an effective diffusivity δeff and find it
to vary strongly both radially and azimuthally, with two distinct maxima at two opposing
sides of the planet. We find the planetary mixing to produce azimuthally averaged values
in the range δeff „ 5 ¨ 10´3 ´ 2 ¨ 10´2 and local peaks with values up to δeff „ 3 ¨ 10´1

for a Jupiter-mass planet. The effective diffusivity scales with the planet mass and if the
diffusivity of the background turbulence is large enough in relation to the planet mass, i.e.,
the turbulent alpha is larger than the effective diffusivity (α ą δeff), the effect of planetary
stirring on the vertical dust scale height is drowned in the turbulent background.

• In our synthetic ALMA continuum observations, we find the angular resolution of ALMA
to only be sufficient to resolve the vertical structure of our model if turbulent transport is
relatively strong. We were unable to make the planetary-induced vertical dust structures
visible in the synthetic observations because we found the requirements on angular resolu-
tion and contrast/sensitivity to be too stringent for ALMA. In near face-on observations,
we confirm Speedie et al. (2022) and the capability of ALMA to detect planetary spirals,
at least the outer arm.

• We find the total disk mass observationally obtained from using the optically thin approx-
imation to be only weakly affected by the strength of turbulent transport. However, as a
result of the disks being marginally optically thick, the optically thin dust masses decrease
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with inclination i and is roughly proportional to cospiq.

• In an edge-on observation (i “ 90˝), the observed vertical disk scale height of the millimeter
continuum emission of the disk overestimates the underlying hydrodynamic scale height by
a factor of „ 2.5 ´ 3. Not accounting for this difference could result in an overestimation
of the vertical strength of turbulent transport in real observations.



Chapter 9

Summary and Outlook

In this thesis, we studied the dynamics and distribution of dust grains in protoplanetary disks
and their influence on astronomical observations. In recent years, astronomers have captured
images of protoplanetary disks at unprecedented resolutions, uncovering a wealth of details.
Since these observations often probe the distribution of dust, their interpretation requires ac-
curate models of dust dynamics beyond the capabilities of simple stationary and axisymmetric
analytical disk models. The models and results presented in this thesis allow for drawing more
accurate conclusions about the detailed physical conditions in protoplanetary disks and help
to constrain the initial and boundary conditions for planet formation. Moreover, our results
provide insights into the observational signatures of yet undetected forming planets. In detail,
our findings are the following:

• Motivated by limitations of earlier gradient diffusion models, we present in Chapter 5 a
novel model for dust turbulent transport in protoplanetary disks. We propose new dy-
namical equations that allow for non-local turbulent dust transport in a background of
homogeneous and isotropic turbulence. The presented model improves upon earlier mod-
els by conserving angular momentum, implicitly capturing orbital effects, and removing the
ambiguity of whether turbulence causes diffusion of either the absolute dust density or the
dust concentration. Furthermore, we recover earlier models in special limiting cases, set-
ting them into context and thus improving the understanding of turbulent dust dynamics
in protoplanetary disks. Future work should focus on generalizing the approach to more
realistic inhomogeneous and anisotropic turbulence. As elaborated in Sec. 3.5, detailed
models of turbulence beyond the α-disk model are highly desirable to advance the field.
Because of the complexity of realistic disk turbulence, we expect analytical approaches in
this direction to likely be futile. Thus, we propose a data-driven approach that makes
use of our mean-field formalism and infers model quantities like the turbulent pressure
tensor via statistical analysis of resolved (local) hydrodynamic simulations of turbulent
protoplanetary disks. Such an approach would allow for global simulations of protoplane-
tary disks with realistic physics of turbulence, while significantly reducing computational
requirements compared to fully resolved simulations.

• In Chapter 6, we use an analytical disk model incorporating dust dynamics to explain
the lack of refractory carbon in the inner regions of the Solar System today. We analyze
various decomposition mechanisms, such as photolysis and irreversible sublimation, and
constrain the conditions of the early solar disk which lead to depletion as observed today.
We present an explicit timescale for carbon depletion as a function of disk parameters. We
find the depletion timescale to be as short as τ effc “ 158 kyr at 1 au, which coincides with
the optimistic upper limit needed to reproduce today’s refractory carbon abundance with
the aforementioned mechanisms alone. However, we also find periodic stellar luminosity
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outbursts to further decrease the carbon mass fraction by a factor of ten in the inner
disk up to about four astronomical units and thus compensate for the inhibiting effects
of dust transport. In conclusion, we demonstrate that under certain conditions, photo-
and thermally-induced decomposition in combination with stellar luminosity outbursts in
the first million years of Solar System formation, can reproduce the carbon abundances
observed today. Future studies should build on our findings to improve our understanding
of the early evolution of the Solar System. We highlight the work of Vaikundaraman et al.
(2022), who study the depletion of carbonaceous material numerically, using a Monte
Carlo approach and additionally include dust evolution and explicit turbulent transport,
improving the physics of the model.

• In Chapter 7 and Chapter 8, we focus on observable signatures of a giant planet in mil-
limeter continuum observations of protoplanetary disks. In recent years, advanced radio
interferometers have revealed a wealth of substructures in protoplanetary disks. Such sub-
structures can potentially be explained by the presence of planets. However, so far only
very few planets have actually been linked to substructures in disks. The goal of our
work is to provide novel insights regarding the morphology of substructures caused by a
planet to better identify substructures that are indeed caused by a planet. We do this by
means of novel three-dimensional radiative two-fluid (gas + 1 mm size dust) hydrodynamic
simulations with an embedded giant planet, which have not been carried out to study pro-
toplanetary disks before. We then produce synthetic millimeter continuum observations of
our simulations that allow for the analysis of observable disk features caused by an unseen
giant planet.
Our first study, which we present in Chapter 7, reveals that planets above the mass of
Neptune, open up an annular gap in the dust distribution. We quantified the width of
the gap by establishing an empirical relation between the gap width and the planet mass,
helping to constrain the mass of a potential planet in observed protoplanetary disks. Fur-
thermore, we find that giant planets cause significant vertical dust stirring, lifting dust
far above the disk midplane, resulting in a thicker dust disk compared to disks without a
planet. Moreover, we point out that relying on the optically thin approximation for the
determination of disk masses can underestimate the total disk mass by a factor of a few
up to a factor of ten. This has important consequences for planet formation because the
total disk mass provides the mass reservoir from which planets can form.
For the study in Chapter 8, we combine the turbulent dust transport model presented
in Chapter 5 with the hydrodynamical simulations in Chapter 7, and we study the three-
dimensional dust morphology in protoplanetary disks under the influence of both turbulent
and planetary stirring. We find distinct flow structures caused by the presence of a planet,
revealing the three-dimensional nature of dust flows around a planet in protoplanetary
disks. We quantify the planet’s potential for dust stirring by measuring an effective diffu-
sivity. While we find the effective diffusivity to vary strongly in space, we find azimuthally
averaged values in a range δeff „ 5 ¨ 10´3 ´ 2 ¨ 10´2 for a Jupiter-mass planet. We also
investigated whether the increase of the dust disk thickness caused by either turbulence or
the planet is resolvable in millimeter continuum observations. We find an observable effect
only at the highest levels of turbulence α Á 4 ¨ 10´3, but not at lower values. Signatures
of planetary dust stirring were all below the resolution or sensitivity limits.
Overall, we provide detailed insights into the mechanism of planetary dust stirring and
possible observational consequences, helping to interpret astronomical observations. In
the future, our study should be extended to cover a larger parameter space. Furthermore,
the physical accuracy of the hydrodynamic simulations would benefit from incorporating
even more physics, like a realistic dust size distribution, more advanced temperature cal-
culation, or chemistry. However, considering the limitations set by the currently available
computational resources, improved methods are highly desirable when incorporating more
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Beńıtez-Llambay, P., Krapp, L., & Pessah, M. E. 2019, The Astrophysical Journal Supplement
Series, 241, 25

Bergin, E. A., Blake, G. A., Ciesla, F., Hirschmann, M. M., & Li, J. 2015, Proceedings of the
National Academy of Sciences of the United States of America, 112, 8965

Bergin, E. A., & Tafalla, M. 2007, Annual Review of Astronomy and Astrophysics, 45, 339

Bergin, E. A., & Williams, J. P. 2017, in Formation, Evolution, and Dynamics of Young Solar
Systems (Springer), 1–38

Bergin, E. A., Cleeves, L. I., Gorti, U., et al. 2013, Nature, 493, 644

Bertrang, G. H., & Wolf, S. 2017, Monthly Notices of the Royal Astronomical Society, 469, 2869

Bi, J., Lin, M.-K., & Dong, R. 2021, The Astrophysical Journal, 912, 107

Biferale, L., Crisanti, A., Vergassola, M., & Vulpiani, A. 1995, Physics of Fluids, 7, 2725

Binkert, F. 2019, Master’s thesis, ETH Zurich
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Lichtenberg, T., Dra̧żkowska, J., Schönbächler, M., Golabek, G. J., & Hands, T. O. 2021,
Science, 371, 365

Lichtenberg, T., & Krijt, S. 2021, The Astrophysical Journal Letters, 913, L20

Lin, D. N. C., & Papaloizou, J. 1979, Monthly Notices of the Royal Astronomical Society, 186,
799

Lin, D. N. C., & Papaloizou, J. 1986, The Astrophysical Journal, 309, 846

Lin, D. N. C., & Papaloizou, J. C. B. 1984, The Astrophysical Journal, 285, 818

—. 1993, in Protostars and Planets III, ed. E. Levy & J. Lunine (University of Arizona Press),
749

Lin, J. W., Lee, E. J., & Chiang, E. 2018, Monthly Notices of the Royal Astronomical Society,
480, 4338

Lin, M. K. 2019, Monthly Notices of the Royal Astronomical Society, 485, 5221

Lissauer, J. J. 1993, Annual Review of Astronomy and Astrophysics, 31, 129



216 BIBLIOGRAPHY

Liu, B., Ormel, C. W., & Johansen, A. 2019, Astronomy & Astrophysics, 624, A114

Liu, H. B. 2019, The Astrophysical Journal, 877, L22

Lynden-Bell, D., & Pringle, J. E. 1974, Monthly Notices of the Royal Astronomical Society, 168,
603

Lyra, W. 2014, Astrophysical Journal, 789, 1

Mamajek, E. E., Meyer, M. R., Hinz, P. M., et al. 2004, The Astrophysical Journal, 612, 496

Manger, N., Klahr, H., Kley, W., & Flock, M. 2020, Monthly Notices of the Royal Astronomical
Society, 499, 1841

Marois, C., Macintosh, B., Barman, T., et al. 2008, Science, 322, 1348

Martin, R. G., & Livio, M. 2012, Monthly Notices of the Royal Astronomical Society: Letters,
425, 1

Marty, B. 2012, Earth and Planetary Science Letters, 313-314, 56

Masset, F. S., & Papaloizou, J. C. B. 2003, The Astrophysical Journal, 588, 494

Mathis, J. S., Rumpl, W., & Nordsieck, K. H. 1977, The Astrophysical Journal, 217, 425

Mayor, M., & Queloz, D. 1995, Nature, 378, 355

Mayor, M., Marmier, M., Lovis, C., et al. 2011, eprint: arXiv:1109.2497

McKee, C. F., & Ostriker, E. C. 2007, Annual Review of Astronomy and Astrophysics, 45, 565

Mcmullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. 2007, Astronomical Data
Analysis Software and Systems XVI, 376, 127

Meheut, H., Meliani, Z., Varniere, P., & Benz, W. 2012, Astronomy and Astrophysics, 545, 1

Mignone, A., Flock, M., & Vaidya, B. 2019, The Astrophysical Journal Supplement Series, 244,
38

Miotello, A., Kamp, I., Birnstiel, T., Cleeves, L. I., & Kataoka, A. 2022, arXiv e-prints,
arXiv:2203.09818

Miotello, A., van Dishoeck, E. F., Williams, J. P., et al. 2017, Astronomy and Astrophysics, 599,
A113

Morbidelli, A., Lunine, J. I., O’Brien, D. P., Raymond, S. N., & Walsh, K. J. 2012, Annual
Review of Earth and Planetary Sciences, 40, 251

Mulders, G. D. 2018, Planet Populations as a Function of Stellar Properties, ed. H. J. Deeg &
J. A. Belmonte (Springer International Publishing AG), 153

Mulders, G. D., Pascucci, I., & Apai, D. 2015, Astrophysical Journal, 814, 130

Mulders, G. D., Pascucci, I., Manara, C. F., et al. 2017, The Astrophysical Journal, 847, 31

Müller, A., Keppler, M., Henning, T., et al. 2018, Astronomy & Astrophysics, 617, L2

Nakagawa, Y., Sekiya, M., & Hayashi, C. 1986, ICARUS, 67, 375



BIBLIOGRAPHY 217

Nakano, H., Kouchi, A., Tachibana, S., & Tsuchiyama, A. 2003, The Astrophysical Journal,
592, 1252

Narang, M., Manoj, P., Furlan, E., et al. 2018, The Astronomical Journal, 156, 221

Nelson, R. P., Gressel, O., & Umurhan, O. M. 2013, Monthly Notices of the Royal Astronomical
Society, 435, 2610

Oba, M., Mita, H., & Shimoyama, A. 2002, Geochemical Journal, 36, 51

O’dell, C. R., Wen, Z., & Hu, X. 1993, Astrophysical Journal, 410, 696

Ormel, C. W. 2017, The Emerging Paradigm of Pebble Accretion, ed. M. Pessah & G. Oliver
(Cham: Springer), 197–228

Ormel, C. W., & Cuzzi, J. N. 2007, Astronomy and Astrophysics, 466, 413

Ormel, C. W., & Liu, B. 2018, Astronomy and Astrophysics, 615, A178

Ormel, C. W., Shi, J. M., & Kuiper, R. 2015, Monthly Notices of the Royal Astronomical Society,
447, 3512

Owen, J. E., & Wu, Y. 2017, The Astrophysical Journal, 847, 29

Paardekooper, S.-J., & Mellema, G. 2004, Astronomy & Astrophysics, 425, L9–L12

—. 2006, Astronomy & Astrophysics, 453, 1129

Paneque-Carreño, T., Miotello, A., Van Dishoeck, E. F., et al. 2023, Astronomy and Astro-
physics, 669, 1

Papaloizou, J. C. B., & Pringle, J. E. 1984, Monthly Notices of the Royal Astronomical Society,
208, 721

Patisson, F., Lebas, E., Hanrot, F., Ablitzer, D., & Houzelot, J. L. 2000, Metallurgical and
Materials Transactions B: Process Metallurgy and Materials Processing Science, 31, 381

Pavlyuchenkov, Y., & Dullemond, C. P. 2007, Astronomy and Astrophysics, 471, 833

Peña, C. C., Naylor, T., & Morrell, S. 2019, Monthly Notices of the Royal Astronomical Society,
486, 4590
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