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Zusammenfassung

Obwohl das sogenannte kosmologische Standardmodell auf vielen physikalischen
Längenskalen erfolgreiche Vorhersagen macht, liefert es keine Erklärung für seine
beiden zentralen Bestandteile: Die (kalte) dunkle Materie und die dunkle Energie
(in Form einer kosmologischen Konstante). Dieses „dunkle Universum“, welches
über 95% des gesamten kosmischen Energiebudgets ausmacht, entzieht sich unserer
Kenntnis: Es ist nicht bekannt, aus welchen elementaren physikalischen Komponen-
ten es besteht.

Speziell bezüglich der dunklen Materie hat sich der Fokus in der näheren Vergan-
genheit verschoben, da nach Jahrzehnten intensiver teilchen- und astrophysikalischer
Suche keine Spur von den bisher favorisierten Kandidaten zu finden ist. Ultraleichte
Skalarteilchen stellen eine Alternative zu diesen Kandidaten dar, die durch ihre
reichhaltige astrophysikalische Phänomenologie interessante Möglichkeiten für ihre
potentielle Entdeckung liefern. Aufgrund ihrer extrem geringen Masse verhalten sie
sich auf astrophysikalischen Skalen nicht als individuelle Teilchen, sondern kollektiv
als Wellen. Dies resultiert in einer Vielzahl von Wellenphänomenen, wie etwa die Bil-
dung von Solitonen und Interferenzmustern oder auf kurzen Zeitskalen oszillierende
Dichtefluktuationen, die eher an quantenmechanische Effekte als an makroskopische
Strukturen erinnern.

Im Rahmen dieser Dissertation befasse ich mich mit kosmologischen Modellen, in
denen die dunkle Materie aus ebensolchen ultraleichten Bosonen besteht. Zu diesem
Zweck setze ich umfangreiche numerische Simulationen der kosmischen Strukturbil-
dung ein, die in der Lage sind, anhand der nicht-linearen Evolution von Strukturen
im Universum entscheidende physikalische Unterschiede zwischen diesem Modell
dunkler Materie und dem Standardmodell hervorzuheben. Als ein wichtiges Ziel
und Werkzeug der Dissertation habe ich dementsprechend das Programm AxiREPO
entwickelt, das die entsprechenden Bewegungsgleichungen ultraleichter dunklerMa-
terie numerisch löst und so Simulationen der erwarteten kosmischen Strukturbildung
berechnen kann.

Mithilfe dieses Programms habe ich große Simulationen ultraleichter und kalter
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dunkler Materie geplant, durchgeführt und analysiert. Hierbei wurden insbesondere
verschiedene Anfangsbedingungen verwendet, um sowohl den Einfluss von Unter-
schieden in den primordialen Dichtefluktuationen im Vergleich zu solchen, die von
der Dynamik der zu lösenden Bewegungsgleichungen herrühren, als auch verschie-
dene Werte für die Masse der ultraleichten Bosonen sowie die Berücksichtigung von
baryonischer Materie untersuchen und vergleichen zu können.

Die Dissertation ist wie folgt strukturiert: Kapitel 1 beginnt mit einer Einführung
in das aktuelle Standardmodell der Kosmologie mit besonderem Augenmerk auf
die empirischen Hinweise auf dunkle Materie und ihre verschiedenen Erklärungsan-
sätze. Kapitel 2 konzentriert sich auf das Modell der ultraleichten dunklen Materie
und stellt dieses detailliert vor, da es sich hierbei um das zentrale Thema der Arbeit
handelt. Darauf folgt in Kapitel 3 die Erläuterung der angewandten numerischen
Prinzipien und Methoden. Die wesentlichen Ergebnisse der Arbeit werden ab Kapi-
tel 4 vorgestellt. In diesem Kapitel werden zunächst Simulationen thematisiert, die
mit Anfangsbedingungen für kalte dunkle Materie berechnet wurden. Hierdurch
kann ein direkter Vergleich zwischen dem Einfluss der Dynamik kalter und ultra-
leichter Materie gezogen werden, und auf Grundlage des resultierenden Katalogs
von Strukturen aus dunkler Materie wird die Frage beantwortet, in welchem Zusam-
menhang die Massen eines Halos und des zugehörigen Solitons stehen. In Kapitel 5
wird mit vollständigen Simulationen ultraleichter dunkler Materie (inklusive der
entsprechenden Anfangsbedingungen) fortgefahren und zusammen mit den Er-
gebnissen des vorherigen Kapitels die Unterschiede von Anfangsbedingungen und
nicht-linearer Dynamik genauer beleuchtet. Darüber hinaus werden zum ersten Mal
die Halo-Massenfunktion ultraleichter dunkler Materie in Simulationen der vollstän-
digen Wellendynamik gemessen und die filamentären Strukturen, die sich in ihrer
Beschaffenheit stark von denen des Modells kalter dunkler Materie unterscheiden,
untersucht. Mit Kapitel 6 folgen schließlich Simulationen, die auch baryonische Ma-
terie berücksichtigen, und es werden erste Ergebnisse aus diesen präsentiert. Dabei
werden sowohl Unterschiede zu den Simulationen, die ausschließlich dunkle Materie
beinhalten, herausgestellt, als auch der Lyman-𝛼-Wald untersucht. Schließlich wird
in Kapitel 7 ein Fazit gezogen und ein Ausblick auf weitere Arbeiten auf Grundlage
der Ergebnisse dieser Dissertation sowie die (mögliche) weitere Entwicklung des
Feldes gegeben.



Summary

Although the so-called standardmodel of cosmology has been able tomake successful
predictions on many physical length scales, it does not provide an explanation for
its two central components: (Cold) dark matter and dark energy (in the form of a
cosmological constant). This “dark universe”, which makes upmore than 95% of the
total cosmic energy budget, still eludes our grasp: It is not known which elementary
physical components it is composed of.

Particularly with regard to dark matter, the focus has shifted in the recent past,
since there has been no trace of the candidates favored thus far even after decades of
intensive experimental and observational search using particle- and astrophysical
approaches. Ultra-light scalar particles represent an alternative to these candidates,
offering intriguing possibilities for their potential detection due to their rich astro-
physical phenomenology. Because of their extremely small masses, they do not
behave as individual particles, but collectively as waves. This results in a multitude
of wave phenomena, such as the formation of solitons and interference patterns or
transient, oscillating density fluctuations which are rather reminiscent of quantum-
mechanical effects than macroscopic structures.

In the course of this dissertation, I will consider cosmological models in which
dark matter is composed of exactly such ultra-light bosons. To this end, I employ
extensive numerical simulations of cosmic structure formation, which are capable
of discerning key physical differences between this model of dark matter and the
standard model by means of the non-linear evolution of structure in the universe.
As an important goal and tool within the dissertation, I developed the AxiREPO code,
which numerically solves the corresponding equations of motions for ultra-light
dark matter and can thus compute simulations of the expected formation of cosmic
structure.

Using this code, I designed, executed and analyzed large simulations of ultra-light
and cold dark matter. In particular, different initial conditions were used in order
to be able to study and compare both the influence of differences in the primordial
density fluctuations as opposed to those which originate due to the dynamics of
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the equations of motions, as well as different values for the masses of the ultra-light
bosons and accounting for baryonic matter.

The dissertation is structured as follows: Chapter 1 begins with an introduction
to the current standard model of cosmology, with special focus on the empirical
evidence for dark matter and the different proposals for its explanation. Chapter 2
is focused on the ultra-light dark matter model and presents this in detail, since
this is the central theme of this work. Subsequently following in chapter 3 is an
explanation of the numerical principles and methods used. The main results of this
work are presented starting with chapter 4. This chapter first discusses simulations
which were carried out with initial conditions for cold dark matter. In this way, it is
possible to draw a direct comparison between the impact of the dynamics of cold and
ultra-light dark matter, and based on the resulting catalog of dark matter structure,
the question about the relation between the masses of halos and their central solitons
is answered. This continues in chapter 5 with full simulations of ultra-light dark
matter (including the appropriate initial conditions), and together with the results
from the previous chapter, the differences between initial conditions and non-linear
dynamics is examined more closely. Further, the halo mass function of ultra-light
dark matter is measured for the first time in simulations making use of the full wave
dynamics, and the filamentary structures, which differ quite strikingly from those
in the cold dark matter model, are investigated. With chapter 6, simulations follow
which take baryonic matter into account, and first results from these are presented.
Thereby, both differences to the dark-matter only simulations are highlighted, and
the Lyman-𝛼 forest is studied. Finally, chapter 7 draws the conclusions, giving an
outlook on future work based on the foundations of this dissertation as well as the
(possible) future development of the field.



1Introduction

The “standard model of cosmology” of cold dark matter and a cosmological constant
(ΛCDM) has been extremely successful in describing a plethora of cosmological
observations across a broad range of physical scales (e. g. Frenk and White 2012;
Bull et al. 2016). However, it is in some sense a victim of its own success: Being
an empirical, phenomenological model at its core, ΛCDM does not provide any
answers to questions about the origins or nature of its eponymous components, the
cosmological constant Λ and cold dark matter (CDM). Simply put, although dark
energy and darkmatter (Λ and CDM) constitute a combined ≈ 95% of the universe’s
total energy budget, we do not actually know what they are. In other words, we
a lack micro-physical description of ΛCDM’s components – a more fundamental,
lower-level model. The situation is comparable to classical thermodynamics in its
phenomenological form, before its laws were recognized more fundamentally as a
manifestation of predictions from statistical mechanics. Thus, while ΛCDM provides
a very accurate and consistent description of what can be observed in the universe,
the enduring lack of any serious discrepancies also means that there are no hints
that could lead towards a true understanding of the nature of dark matter and dark
energy.

Remarkably, there is a similar and related problem in particle physics, which
features its own standard model. Like ΛCDM, the standard model of particle physics
is in excellent agreement with countless experiments performed over decades. In fact,
the problem here is arguably evenmore severe: Firstly, the standardmodel of particle
physics has been tested to much higher levels of precision than ΛCDM, which is just
now entering an “era of precision cosmology”, and secondly, contrary to ΛCDM, it
is known to be incomplete. Indeed, partially, it is none other than the establishment
and confirmation of ΛCDM itself which spells disaster for the standard model of
particle physics, which neither provides a suitable candidate for CDM, nor matches
the required value for the cosmological constant.1 Thus, we have another case of a

1Strictly speaking, there are possible dark matter candidates which do not require the existence of
new elementary particles. However, there are more areas where the standard model of particle
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model which does not tell the whole story, but whose wildly successful predictions
increasingly preclude avenues towards its unavoidably necessary extension. For
particle physics, this even goes so far as to elicit calls proclaiming a crisis of the entire
field. Hence, the question of the nature of dark matter is one of the most pressing and
crucial questions facing both cosmology and particle physics today, and its resolution
would provide one of the deepest insights into the fundamental laws of the cosmos.

For a long time, weakly interacting massive particles (WIMPs) have been the
favored dark matter candidates. Originally, these WIMPs were primarily in the form
of particles postulated in supersymmetry (SUSY), a generalization of the standard
model of particle physics, such as neutralinos, but more recently, other extensions to
the standard model, with particles participating in the weak interaction, have gained
prominence as well (e. g. Restrepo, Zapata, and Yaguna 2013; Fiaschi, Klasen, and
May 2019). However, the justification for WIMPs as a whole is dwindling as dark
matter detection experiments continue to constrain the viability of WIMP models.
As a consequence, the focus is increasingly shifting towards a broader, more diverse
range of dark matter candidates without any traces of detection.

On the astrophysical side, the perspective is rather different. CDM is a quite generic
model, leaving a lot of room for more concrete implementations as a particular
particle physics model, or even as a completely different substance not composed
of unknown elementary particles (such as primordial black holes). The reason
for this is that cosmological and astrophysical observations are often insensitive to
the specific details of a particle dark matter model as long as it behaves similarly
enough to CDM, with the only remnant of model-specific particle properties often
being a combined annihilation or self-interaction cross section. Thus, the question
here is more about the validity of the CDM model itself, or whether there are any
conflicts with observations which other models (which would in turn inform the
selection of viable particle candidates) would rectify. Although ΛCDM has been
very successful in making predictions and matching observations, especially on large
cosmological scales, there are a number of contentious small-scale tensions which
have been a matter of continuous debate. Unfortunately, since these are also exactly
the scales at which physical effects experienced by baryons become relevant, it has
proven difficult to disentangle the apparent discrepancies from baryonic physics,
leaving the implications of these tensions much less clear. Though it would be
justified to consequently conclude that CDM is, at least for the moment, sufficient as

physics is incomplete, such as the existence of massive neutrinos (another observation from
cosmology) and the coupling to gravity.
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a cosmological and astrophysical model of dark matter, such an attitude can offer no
directions that further the goal of understanding more properties, and ultimately, the
micro-physical nature, of dark matter. The main driver behind the investigation of
dark matter models alternative to CDM, common to the cosmological, astrophysical,
and particle physics perspective, is thus the long-standing lack of detection of CDM,
which, after decades, slowly seems to be turning the search for CDM into a dead
end.

One such promising dark matter candidate is in the form of ultra-light particles,
which in some sense form the opposite of the WIMP paradigm by positing that dark
matter does not behave as individual, heavy particles, but rather as (quantum)waves.
This dissertation specifically focuses on fuzzy dark matter (FDM), e. g. in the form
of axion-like particles (ALPs), as an example of (quantum-)wave dark matter, which
behaves similarly to CDM at large scales, but with different properties at galactic
scales due to wave effects arising from the extremely light particles’ large de Broglie
wavelengths. The goal of the project has been to implement and perform large
cosmological simulations of FDM (with and without baryons) using the moving-
mesh code AREPO (Springel 2010; Weinberger, Springel, and Pakmor 2020) in order
to study non-linear structure formation in such scenarios, and obtain predictions
about the behavior of small-scale structure and how it differs from the CDM model.

1.1 The ΛCDMmodel of cosmology

Asmentioned above, the ΛCDMmodel has become the standardmodel of cosmology
due to its great success in the description of many independent observations probing
a large range of length scales and times in cosmic history. Due to its status as
the standard, details about the model and the general cosmological paradigm are
presented in many review articles, such as Particle Data Group: Zyla et al. (2020),
where most of the statements made in this section can be found.

1.1.1 Friedmann–Lemaître–Robertson–Walker cosmology

ΛCDM is a concrete model within the general framework of cosmology, following
the cosmological principle which assumes that (at least on large enough scales), the
distribution of matter in the universe is homogenous and isotropic. This assumption
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directly implies that the space-time metric has the form of the FLRW metric

d𝑠2 = −𝑐2 d𝑡2 + 𝑎(𝑡)2(
1

1 − 𝑘𝑟2 d𝑟2 + 𝑟2(d𝜃2 + sin(𝜃)2 d𝜑2)) , (1.1)

where 𝑡, 𝑟, 𝜃 and 𝜑 are the (spherical) space-time coordinates, 𝑐 is the speed of light
(in vacuum), 𝑘 is the spatial curvature, and 𝑎(𝑡) is the scale factor, which determines
the expansion or contraction of the universe over time. By convention, 𝑎(𝑡0) = 1,
where 𝑡0 is the present age of the universe. The scale factor 𝑎(𝑡) is related to the
redshift 𝑧,

𝑧 =
1
𝑎 − 1 , (1.2)

since the observed wavelength of light 𝜆obs is reduced (in the visible part of the
electromagnetic spectrum: shifted towards red) compared to the wavelength 𝜆i at
the time of emission, behaving as 𝜆obs/𝜆i = 1 + 𝑧 as a distant emitter appears to
recede from the observer due to the expansion of space. The sign of the curvature
determines the topology of space-time:

• 𝑘 > 0: closed (hyperspherical),

• 𝑘 = 0: flat,

• 𝑘 < 0: open (hyperbolical).

What does this imply for the distribution of matter and energy in the universe?
Homogeneity and isotropy in the energy–momentum tensor (𝑇𝜇𝜈) impose the form

(𝑇𝜇𝜈) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜌𝑇(𝑡)𝑐2 0 0 0
0 𝑝𝑇(𝑡) 0 0
0 0 𝑝𝑇(𝑡) 0
0 0 0 𝑝𝑇(𝑡)

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (1.3)

which describes a perfect fluid with mass density 𝜌𝑇 and pressure 𝑝𝑇.
Now, this is clearly insufficient to describe the formation of structure as we can

observe it – in this rendition, the density is constant throughout space! As hinted
at above, this simplest description is only valid when taking a coarse view of the
universe, on very large cosmological scales. However, it is nevertheless illustrative to
understand global properties of the universe, such as its age, expansion history, or
curvature. Any applications aiming to study structure formation must work with a
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more general, perturbed form of eq. (1.1), which can take into account local variations
in the density field.

Applying the FLRWmetric and the energy–momentum for a perfect fluid, eqs. (1.1)
and (1.3), in Einstein’s field equations,

𝐺𝜇𝜈 + Λ𝑔𝜇𝜈 =
8𝜋𝐺
𝑐4 𝑇𝜇𝜈 , (1.4)

where 𝐺𝜇𝜈 = 𝑅𝜇𝜈 − 1
2𝑔𝜇𝜈𝑅 is the Einstein tensor (using the Ricci tensor (𝑅𝜇𝜈) and

the Ricci scalar 𝑅 = 𝑔𝜇𝜈𝑅𝜇𝜈), Λ is a cosmological constant, (𝑔𝜇𝜈) is the metric tensor,
and 𝐺 is the gravitational constant, results in the Friedmann equations

̇𝑎(𝑡)2 + 𝑘𝑐2

𝑎(𝑡)2 =
8𝜋𝐺

3 𝜌𝑇(𝑡) +
Λ𝑐2

3 (1.5)

̈𝑎(𝑡)
𝑎(𝑡) = −

4𝜋𝐺
3 (𝜌𝑇(𝑡) +

3𝑝𝑇(𝑡)
𝑐2 ) +

Λ𝑐2

3 . (1.6)

Due to the assumption of homogeneity and isotropy, the solution only depends on
the time variable 𝑡, while being constant across space. Introducing the Hubble pa-
rameter 𝐻(𝑡) = ̇𝑎(𝑡)/𝑎(𝑡) and subsuming the cosmological constant as an additional
component of a “total” density 𝜌 and pressure 𝑝,

𝜌(𝑡) = 𝜌𝑇(𝑡) +
Λ𝑐2

8𝜋𝐺⏟
=𝜌Λ

(1.7)

𝑝(𝑡) = 𝑝𝑇(𝑡) −
Λ𝑐4

8𝜋𝐺⏟
=𝑝Λ

(1.8)

yields the simpler versions

𝐻(𝑡)2 =
8𝜋𝐺

3 𝜌(𝑡) −
𝑘𝑐2

𝑎(𝑡)2 (1.9)

�̇�(𝑡) + 𝐻(𝑡)2 = −
4𝜋𝐺

3 (𝜌(𝑡) +
3𝑝(𝑡)

𝑐2 ) (1.10)

of eqs. (1.5) and (1.6). Additionally, taking the time derivative of eq. (1.9) and using
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eq. (1.10) to eliminate �̇�(𝑡) results in

̇𝜌(𝑡) = −3𝐻(𝑡)(𝜌(𝑡) +
𝑝(𝑡)
𝑐2 ) , (1.11)

which is also called the “third Friedmann equation”, energy conservation equation,
continuity equation, or fluid equation.2

Further, the density components 𝜌𝑖 are commonly expressed using the density
parameters Ω𝑖, which indicate their values as a fraction of the critical density

𝜌crit(𝑡) =
3𝐻(𝑡)2

8𝜋𝐺 (1.12)

such that

Ω𝑖(𝑡) =
𝜌𝑖(𝑡)

𝜌crit(𝑡) =
8𝜋𝐺𝜌𝑖(𝑡)
3𝐻(𝑡)2 . (1.13)

The physical significance of the critical density 𝜌crit is that a universe with this density,
𝜌 = 𝜌crit, is spatially flat, i. e. 𝑘 = 0. Correspondingly, it is useful to consider the
density parameter Ω of all components, since this is what determines the spatial
curvature:

Ω(𝑡) = Ωr(𝑡) + Ωm(𝑡) + ΩΛ(𝑡)

⎧{{
⎨{{⎩

< 1 ⇒ 𝑘 < 0
= 1 ⇒ 𝑘 = 0
> 1 ⇒ 𝑘 > 0

(1.14)

The present values of these parameters are indicated as Ω𝑖0 = Ω𝑖(𝑡0). One can even
go so far as to define a “density” and “pressure” associated with the curvature,

𝜌𝑘(𝑡) = −
3𝑘𝑐2

8𝜋𝐺𝑎(𝑡)2 Ω𝑘(𝑡) =
𝜌𝑘(𝑡)
𝜌crit

(1.15)

𝑝𝑘(𝑡) =
𝑘𝑐4

8𝜋𝐺𝑎(𝑡)2 , (1.16)

which formally look like ordinary contributions towards density and pressure in the
Friedmann equations, although this can be misleading in the sense that the curvature
is rather a consequence of the energy content of the universe, not a contribution
towards it. Dividing by 𝜌crit(𝑡) in eq. (1.9), another form of the first Friedmann

2This is a direct consequence of the fact that the energy–momentum tensor satisfies ∇𝜇𝑇𝜇𝜈 = 0, i. e.
its covariant divergence vanishes.
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equation is

1 = Ω(𝑡) + Ω𝑘(𝑡) = Ωr(𝑡) + Ωm(𝑡) + Ω𝑘(𝑡) + ΩΛ(𝑡) , (1.17)

i. e. the density parameters always sum to one!3

Different components of the total density are characterized by their equations of
state

𝑝𝑖 = 𝑤𝑖𝜌𝑖𝑐2 , (1.18)

which links pressure and density. The “original” density and pressure 𝜌𝑇 and 𝑝𝑇
(i. e. the contributions to the energy–momentum tensor (𝑇𝜇𝜈)) can be split into
(relativistic) radiation 𝜌r and (non-relativistic) matter 𝜌m, which have the following
equations of state:

𝑝r =
1
3𝜌r𝑐2 (𝑤r =

1
3) (1.19)

𝑝m = 0 (𝑤m= 0) (1.20)

A pressureless perfect fluid, which is used to model non-relativistic matter by approx-
imating 𝑝 ≪ 𝜌 as 𝑝 = 0, is also referred to as “dust”. Analogously, the cosmological
constant and curvature can also be viewed as fluid components using eqs. (1.7)
and (1.8), with corresponding equations of state:

𝑝Λ = −𝜌Λ𝑐2 (𝑤Λ = −1) (1.21)

𝑝𝑘 = −
1
3𝜌𝑘𝑐2 (𝑤𝑘 = −

1
3) (1.22)

Using eq. (1.11), the equation of state can instead be translated into the corre-

3Another way to view this is that the “curvature component” always combines with the total density
to give the critical density, 𝜌crit = 𝜌+𝜌𝑘. Similarly defining 𝑝crit = 𝑝+𝑝𝑘, the Friedmann equations
are

𝐻(𝑡)2 =
8𝜋𝐺

3 𝜌crit(𝑡)

�̇�(𝑡) + 𝐻(𝑡)2 = −
4𝜋𝐺

3 (𝜌crit(𝑡) +
3𝑝crit(𝑡)

𝑐2 ) .
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sponding density component’s scaling with the scale factor 𝑎(𝑡), giving4

𝜌𝑖(𝑡) = 𝜌𝑖0 𝑎(𝑡)−3(1+𝑤𝑖) Ω𝑖(𝑡) = Ω𝑖0(
𝐻0

𝐻(𝑡))
2
𝑎(𝑡)−3(1+𝑤𝑖) (1.23)

and thus
𝜌r(𝑡) = 𝜌r0𝑎(𝑡)−4 (1.24)

𝜌m(𝑡) = 𝜌m0𝑎(𝑡)−3 (1.25)
𝜌𝑘(𝑡) = 𝜌𝑘0𝑎(𝑡)−2 (1.26)
𝜌Λ(𝑡) = 𝜌Λ𝑎(𝑡)0 , (1.27)

with 𝜌𝑖0 = 𝜌𝑖(𝑡0). Strictly speaking, eq. (1.11) only holds for the total energy–momen-
tum tensor (𝑇𝜇𝜈), a priori making the relations above in eqs. (1.23) to (1.27) valid
only for single-component universes (although eq. (1.26) is always true). If there are
multiple components, such as 𝜌𝑇 = 𝜌r + 𝜌m, this requires the additional assumption
that a conservation equation like eq. (1.11) holds separately for each component, i. e.
there is no interaction between components and energy–momentum is separately
conserved for each:

̇𝜌𝑖(𝑡) = −3𝐻(𝑡)(𝜌𝑖(𝑡) +
𝑝𝑖(𝑡)
𝑐2 ) , (1.28)

With some slight foreshadowing, while this is valid in the late universe, where
different kinds of matter and radiation have “decoupled” from each other, all known
particles were in thermal equilibrium at the very high temperatures in the early
universe. As a consequence, for the time of Big Bang nucleosynthesis (BBN) and
earlier, interactions between and decoupling of different species must be taken into
account throughout the evolution.

Finally, using eqs. (1.23) to (1.27) and dividing by the values at 𝑡 = 𝑡0 in eq. (1.9),
the first Friedmann equation, can be expressed as

𝐻(𝑡)2

𝐻2
0

= Ωr0𝑎(𝑡)−4 + Ωm0𝑎(𝑡)−3 + Ω𝑘0𝑎(𝑡)−2 + ΩΛ0 (1.29)

with the present-day Hubble parameter (“Hubble constant”) 𝐻0 = 𝐻(𝑡0). 𝐻0 is

4Since 𝜌Λ and 𝜌𝑘 also obey an equation of state like eq. (1.18), their behavior is consistent with
energy conservation as in eq. (1.11), although their evolution with 𝑎(𝑡) already follows directly
from the definitions in eqs. (1.7) and (1.15).
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often expressed in terms of the quantity ℎ, with

𝐻0 = 100 ℎkms−1Mpc−1 . (1.30)

1.1.2 Definition and parameters of ΛCDM

As a concrete form of an FLRW cosmology, ΛCDM postulates that the universe and
all of the matter and energy within it are composed of the following properties and
constituents:

Flatness: ΛCDM sets 𝑘 = 0, or, equivalently, Ω0 = 1, modeling a flat universe with-
out spatial curvature. The effect of allowing for non-zero curvature has been
investigated using observational data, finding that this assumption appears to
be rather accurate.

Topology: Although not often discussed, the curvature only describes the local
geometry of the universe. Globally, even for the same curvature, it could
be finite or infinite, and have a non-trivial topology (periodic or multiply
connected). ΛCDM assumes the simplest, trivial topology.

Cosmological constant Λ: As seen in eq. (1.27), the cosmological constant can be
viewed as a contribution to the total energy density which does not change
with the scale factor. Since all the other components in the model decay as the
universe expands, it will be Λ-dominated (ΩΛ ≈ 1) at late times, which leads
to an exponentially accelerating expansion:

𝑎(𝑡) ∝ exp(𝐻0√ΩΛ0 𝑡) . (1.31)

As Λ contributes the majority to the universe’s energy budget today according
to observations (ΩΛ0 ≈ 0.7), the universe has recently started to enter the Λ-
dominated phase of accelerated expansion. Different variants of “dark energy”
beyond the simplest, in the form of the cosmological constant, have been
explored, e. g. in the form of a different equation of state with 𝑤 ≠ −1. However,
so far, measurements show very good agreement with Λ and 𝑤 = −1.

(Cold) dark matter: The motivation and evidence for dark matter is explained in
more detail in section 1.2. Current measurements set the contribution of dark
matter at Ωm ≈ 0.25, or roughly five times the amount of “known”, baryonic
matter. The fact that dark matter was non-relativistic (and thus behaving as
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“matter”) even relatively early during the evolution of the universe implies
that its velocity dispersion is very low at later times, making it “cold”. There is
no parameter setting the velocity dispersion of dark matter in ΛCDM, leaving
two potential interpretations for the meaning of “cold” in CDM:

1. ΛCDM does not specify the exact meaning of CDM, and encompasses any
kind of dark matter which is “cold enough” to have been non-relativistic
early on.

2. Assuming the extreme limiting case of zero velocity dispersion.

The first is a rather broad and vague definition, while the latter is an ideal-
ized assumption. In both cases, however, the definition is phenomenological:
ΛCDM does not make statements about the nature of dark matter apart from
its lack of interactions beyond gravity and its “cold” velocity dispersion.

For the purposes of structure formation on smaller scales, such as galaxies, the
velocity dispersion doesmake a difference, though (see section 1.5.1), adding at
least one parameter like the mass of a dark matter particle. Whether this is still
considered to be an “implementation detail” (like the masses and interactions
of standard model particles for baryons) in the larger ΛCDM framework or a
departure from the simplest six-parameter model (see below) is ultimately a
philosophical question.

Baryonic matter: This is the matter which (combined with photons, i. e. radiation)
actually represents the known laws of physics, and the matter every directly
observable object is made of: atoms, ions and molecules. (It should be noted
that “baryonic matter” in the context of cosmology, somewhat sloppily, refers to
all non-relativistic matter as described by the standardmodel of particle physics
– excluding neutrinos –, including leptons such as the electron.) Although
baryons are non-relativistic and, in that sense, behave the same as dark matter
on large scales, their interactions with photons until the time of decoupling
produce features in the form of baryon acoustic oscillations (BAO) which do
not occur with matter not coupled to photons at this time. When it comes to
the details of later structure formation, particularly galaxy formation, baryonic
physics beyond mere gravitational attraction (as in the case of dark matter)
also plays an extremely important role. Assuming independent conservation of
components, as in eq. (1.28), and the dust approximation (𝑝 = 0) is insufficient
in these cases.
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Photons: Just as for baryonicmatter, relativisticmatter, mainly in the formof photons,
is known to exist and can directly be measured. In fact, this is how almost
all information about the universe’s past and evolution reaches us, through
either the cosmic microwave background (CMB) or observations of objects in
the electromagnetic spectrum. Since the energy density of radiation has the
strongest dependence on the scale factor, see eq. (1.24), the early universe was
radiation-dominated, whereas it only contributes a negligible amount in the
later phases.

Neutrinos: The neutrinos are an unusual case: Although it has been determined
that they have non-zero masses (Nobel Prize 2015), the actual values must be
very small, making them relativistic, and thus contributing to “radiation”, in
the early universe. However, given the bounds on the neutrino masses, at least
some neutrino species have become non-relativistic (“matter”) by the present
day, making them a form of “hot dark matter”. While the details depend on
the values of the neutrino masses, these are not considered to be parameters of
ΛCDM. Alternately, one could consider the neutrinos to be massless in ΛCDM
(just as, technically, they are in the standard model of particle physics).

Density power spectrum: As explained above, a pure FLRW cosmology can only
describe the behavior of space-time on the largest scales. However, such a
homogenous and isotropic universe by definition has no structure. In order to
account for structure, even on the largest observable scales in the CMB or the
clustering of matter, local variations (anisotropies and inhomogeneities) in the
density field must be introduced. This raises the question of how matter and
energy were distributed in the very early universe. Although not an explicit
assumption, ΛCDM assumes that these early density variations are consistent
with inflation, which addresses a number of issues (such as the horizon, flat-
ness, and magnetic monopole problems). Specifically, the primordial density
fluctuations are assumed to be Gaussian and adiabatic, and can be described
by a power spectrum of the form

𝑃(𝑘) = 𝐴s𝑘𝑛s . (1.32)

Here, 𝐴s sets the amplitude of fluctuations, i. e. how strongly matter is clus-
tered in general, and 𝑛s determines the scale-dependence of this clustering.
Measurements show that 𝑛s is slightly smaller than 1, which is consistent with
nearly scale-invariant potential fluctuations predicted by inflationary models.
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In particular, the eponymous first two components (Λ and CDM) are the main
ingredients resulting in themodel’s non-trivial predictions, whereas even the simplest
observations demonstrate the presence of baryonic matter and radiation, which must
thus be included in any cosmological model. However, the cosmic density of these
components is not known a priori and can vary depending on the model, which also
has an impact on the curvature and geometry (flat, open, or closed) of the universe.

Given the above ingredients of ΛCDM, the following question arises: What quan-
tities need to be known to make predictions using this model? Since the Friedmann
equations are a first-order differential equation for the Hubble parameter 𝐻(𝑡), with
the evolution of the different fluid components, eq. (1.23), all determined once their
values at a single point in time is known, the set of density parameters, together with
the Hubble parameter, at one point in time is sufficient to solve the Friedmann equa-
tions. Two additional parameters come in to describe the initial density fluctuations.
To summarize, this results in the following set of possible parameters:

• Curvature 𝑘;

• Density parameters for CDM, baryonic matter, photons, neutrinos, and the
cosmological constant: Ωc0, Ωb0, Ω𝛾0, Ω𝜈0, ΩΛ0;

• Hubble “constant” 𝐻0;

• Power spectrum normalization and shape: 𝐴s and 𝑛s.

Further, the optical depth at reionization 𝜏 (or, equivalently, the time of reionization
𝑧ion) is usually included as an additional parameter, because it is needed to interpret
CMB measurements. Additionally, the first Friedmann equation can be used to elim-
inate one of the parameters of the set {𝐻0, Ω𝑖0}, and the curvature is fixed at 𝑘 = 0,
leaving us with 7 + 1 parameters. However, the components of radiation, although
technically parameters since their values must also be measured, are usually not
included because Ω𝛾0 can be measured directly from the temperature of the CMB,
which also determines Ω𝜈0 from standard particle physics interactions assuming a
value for the sum of the neutrino masses. This finally results in a set of six indepen-
dent parameters, as used by e. g. Planck and the Wilkinson Microwave Anisotropy
Probe (WMAP) (Planck Collaboration: Aghanim, Akrami, Ashdown, et al. 2020;
Hinshaw et al. 2013) to determine cosmological parameters from the CMB.

The details of inflation and BBN, although consistent with ΛCDM, even to the
extent that ΛCDM replicates some of their predictions as assumptions or is designed
to accommodate them, are not treated as a part of ΛCDM itself. In that sense, ΛCDM
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should be viewed more as a general framework, or, as noted before, a phenomeno-
logical description, rather than a complete model of the universe. The boundaries
of what is considered part of ΛCDM and what is separate, including the question
of which parameters are free and which are “fixed”, to be determined externally
within the frameworks of separate theories and simply adopted as given, can be
fuzzy. Another point of view could be that ΛCDM does not make statements about
the early universe at the time of BBN and earlier, providing only a description of the
subsequent evolution.

In this early regime, the “agnostic” view on the nature of (cold) dark matter also
becomes ill-defined. At extremely high temperatures in the very early universe, the
micro-physical details of the nature of darkmatter arewildlymodel-dependent. Even
for a very common class of darkmattermodels, WIMPswith a thermal freeze-out, the
fact that these particles would have been coupled to all other particle species at some
point introduces a substantial dependence on the WIMP’s mass and interactions,
particularly concerning decoupling and the transition from relativistic “radiation” to
non-relativistic “matter”. Othermodels, whichmight not even depend on elementary
particles, like primordial black holes (PBHs), have completely different implications
at these times.

1.2 Observational evidence for dark matter

As explained above, dark matter is a very important part of the current cosmological
model, being much more abundant than visible matter. It is worthwhile to take a
step back and consider the definition of dark matter. The degree to which ΛCDM
is well-defined can depend on the specific context and application of the model, as
demonstrated in section 1.1. Most generally, “dark matter” is simply a term denoting
a missing piece which is required to explain the formation of structures as they can
be observed today. It is necessary because simply assuming the entire matter content
to be baryonic is wildly inconsistent with observations due to the interactions with
radiation, from features in the CMB (the BAO) to the formation of structure (which
proceeds too slowly without dark matter) and the properties of galaxies.

As will be outlined below, observations have established the following properties
of dark matter:

• Behaves like (non-relativistic) matter, with the characteristic density scaling of
eq. (1.25), 𝜌 ∝ 𝑎−3;
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• (Reasonably) cold, i. e. it was also non-relativistic during the early universe,
before the epoch of recombination, and allows structures such as dwarf galaxies
to form;

• Negligible interactions with baryons beyond gravity.

However, while the obvious conclusion would be that there is in fact an additional,
invisible matter component which simply does not noticeably interact with thematter
we can observe (except gravitationally), it does not strictly imply that the physical
mechanism responsible for the properties of this observed phenomenon must be
a specific kind of object or particle, or even matter as we know it at all. As long
as they are compatible with the effective properties above, and do not contradict
observations, completely different explanations, such as a modification of established
laws of physics (like general relativity; see section 1.5.4), are just as valid. In this
sense, “dark matter” is merely a placeholder for an unknown, essential ingredient to
cosmic structure formation.5

1.2.1 The cosmic microwave background

Measurements of the CMB, e. g. using the Planck and WMAP satellites (Planck
Collaboration: Aghanim, Akrami, Ashdown, et al. 2020; Hinshaw et al. 2013), have
been immensely successful in gaining insight about cosmology and the evolution of
the universe. The most precise determinations of ΛCDM’s cosmological parameters
today are obtained using these measurements. Different parameters (such as the
various density components) have different impacts on the angular temperature
power spectrum of the CMB. In particular, changes in the dark matter and baryon
densities have different effects on the BAO peaks, allowing one to disentangle the
two matter components. Without a dark matter component, it would not be possible
to interpret the CMB measurements.

Figure 1.1 shows several measurements of the angular power spectrum of both
CMB temperature and polarization data, together with the fits to ΛCDM. While
the temperature power spectrum is already enough to mandate the existence of

5Somewhat puzzlingly, the debate about whether dark matter is actually “matter” made up of
some kind of particles or physical objects, tends to become quite heated at times. Faced with
a phenomenon which behaves like matter, and which is of the kind for which there is even
“precedent” among the known types of matter, such as neutrinos (which, in the form of hot dark
matter, are a tiny component of the dark matter today), it appears only natural to infer that it is in
fact a form of matter.
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Figure 1.1: Angular power spectrum measurements for temperature (TT), 𝐸-mode (EE) and
𝐵-mode (BB) polarization signals compiled from various observations. Dashed lines
show the ΛCDM fit to the Planck data (taken from Planck Collaboration: Aghanim,
Akrami, Arroja, et al. 2020).

dark matter, fig. 1.1 demonstrates the precision of available data, and the excellent
agreement of ΛCDM with the data even at this level of precision.

1.2.2 Large-scale structure and clustering of matter

The large-scale clustering of matter has been observed for a long time via galaxy
surveys, such as the second Center for Astrophysics Redshift Survey (CfA2 survey)
(Geller and Huchra 1989), 2-degree-Field Galaxy Redshift Survey (2dFGRS) (Pea-
cock et al. 2001), and Sloan Digital Sky Survey (SDSS) (Blanton et al. 2017). The
distribution of galaxies matches the “cosmic web” seen in numerical simulations of
structure formation with collisionless CDM. Baryonic matter behaves differently in
this regard because it is influenced by its interactions with photons until decoupling
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Figure 1.2: The distribution of galaxies in spectroscopic redshift surveys, such as the CfA2
survey, 2dFGRS, and SDSS, compared to mock catalogs from the numerical “Millennium
simulation” (taken from Springel, Frenk, and White 2006).

from the CMB. Before decoupling, baryonic density perturbations cannot condense
and instead oscillate due to these interactions (the BAO mentioned above). Dark
matter, however, is unaffected by the presence of radiation and its perturbations
can grow, providing a “potential well” for baryons to later fall into. This process of
non-linear structure formation, which can be studied using numerical simulations,
is consistent with the observed properties of structure, as illustrated in fig. 1.2.



1.2 Observational evidence for dark matter | 17

Figure 1.3: Expected and observed rotation curve of the Milky Way galaxy (taken from
Schneider 2015).

1.2.3 Velocity dispersions and galactic rotation curves

Historically, dynamical properties of luminous matter, particularly the velocity dis-
persions and orbital velocities of stars, were the first cases prompting the proposition
that many astronomical objects are much more massive than their visible compo-
nents suggest, indicating the presence of an additional “dark” component (Kapteyn
1922; Lundmark 1930). On larger scales, but with the same underlying principle,
observations of the velocities of galaxies within the Coma cluster (Zwicky 1933) led
to similar results, finding galaxies to have much larger velocities than expected from
the overall mass in the vicinity.

Later, more detailed and accurate spectroscopic measurements of the rotational
velocities of matter in spiral galaxies (Rubin and Ford 1970), e. g. using gas emission
line regions, allowed increasingly accurate mass determinations of galaxies, and thus
of their “mass-to-light ratios”, which indicated the presence of mass several times
higher than inferred from luminous stars and gas. For example, the rotation curve
of a galaxy may look as exemplified in fig. 1.3. The velocity in a circular orbit at a
distance 𝑟 from the center is

𝑣 = √𝐺𝑀(𝑟)
𝑟 , (1.33)
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where 𝑀(𝑟) is themass containedwithin a sphere of radius 𝑟. Sincemost of the visible
mass is concentrated within a galaxy’s center, one would expect 𝑀(𝑟) to be roughly
constant for large distances, which would result in the “Keplerian” dependence of
orbital velocities,

𝑣 ∝
1

√𝑟
(1.34)

for large 𝑟. However, as shown in fig. 1.3, the observed orbital velocity distribution
as a function of distance (rotation curve) is rather different: Away from the center, it
becomes flat, remaining constant even at large distances and towards the edge of the
galaxy.

Since there is no luminous matter that can be detected in the outskirts of galaxies,
this effect cannot be explained from observations in the electromagnetic spectrum
under the assumption that all matter is baryonic. Instead, a large fraction of the total
mass seems to be distributed in a halo throughout the galaxy, but in a form which
does not emit light or any other kind of radiation.

1.2.4 Galaxy clusters

Galaxy clusters are a very important probe of darkmatter because their masses can be
estimated in several different ways, confirming the presence of dark matter through
multiple independent approaches. As mentioned previously in section 1.2.3, one of
the early signs of dark matter came from the measurement of galaxy cluster masses
by applying the virial theorem to the velocity dispersions of their constituent galaxies
(Zwicky 1933). A secondmethodmakes use of the hot gas in the intracluster medium
(ICM). Due to the enormous masses of galaxy clusters, the matter contained within
them reaches very high velocity dispersions, and thus, high temperatures. At these
temperatures, the gas can actually be observed directly via its emission of X-rays.
In turn, measuring the emitted X-ray spectrum makes it possible to recover the gas
mass, temperature, and pressure, and finally, the cluster’s total mass distribution.
Once again, the baryon fraction of the total mass reveals that baryons do not make
up the cluster alone, with the majority of matter “missing” from direct observations.
Finally, measurements of gravitational lensing (discussed more in section 1.2.5) can
be used as yet another estimate of galaxy cluster masses, with all three methods
generally in reasonable agreement.

1.2.5 Gravitational lensing

Gravitational lensing is a very powerful tool since, in principle, it enables forming
direct conclusions about the distribution of mass. Crucially, as a purely gravitational
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Figure 1.4: Combined gravitational lensing, X-ray and optical map of the Bullet Clus-
ter (X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScI; Magel-
lan/U.Arizona/D.Clowe et al.; Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Ari-
zona/D.Clowe et al. 2016). Blue regions indicate the concentration of total mass as
inferred from gravitational lensing, while red regions show the X-ray emissions of cluster
gas.

effect, no matter can “hide” from it, so it will always include the full aggregation of
all matter components, yet remain undisturbed by interference from other physical
processes. A particularly striking example has been observed in the form of the
so-called Bullet Cluster (see fig. 1.4), which is the result of a recent merger. The
simultaneous measurement of X-ray flux and the impact of gravitational lensing
provide the means to obtain separate maps of the baryonic and total mass distribu-
tions. Figure 1.4 demonstrates that the X-ray-emitting cluster gas (in red), which
exhibits a bow shock as the gas from the progenitors collides, is lagging behind the
bulk of the matter (in blue), which appears to have simply passed through each
other unaffected. Indeed, the matter distribution coincides with the cluster galax-
ies, which have similarly passed each other in a collisionless manner (as expected).
However, the galaxies only make up a tiny fraction of a cluster’s total mass, implying
the presence of another “invisible”, pressure- and collisionless matter component.
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Figure 1.5: Freeze-out mechanism for WIMPs (taken from Jungman, Kamionkowski, and
Griest 1996).

1.3 Realizations of cold dark matter

CDM is a model concerned with what can be determined from astronomical obser-
vations. Naturally, these observations are not sensitive to many of the micro-physical
properties that dark matter itself may have. As these are the principal candidates
which have been investigated using experiments or astronomical observations, I will
give a brief overview of their motivations and properties.

1.3.1 Weakly interacting massive particles (WIMPs)

A central motivation for this class of dark matter candidates is the so-called “WIMP
miracle”: the observation that weakly interacting particles of masses around 1TeV –
which would be within reach to be detected at CERN’s Large Hadron Collider (LHC)
– surviving as a thermal relic from the early universe “automatically” result in the
correct density of dark matter observed today in the universe.

However, while SUSY is appealing because it would address several problems
with the standard model in addition to providing a dark matter candidate, no super-



1.3 Realizations of cold dark matter | 21

symmetric particles have been detected in experiments so far, and data from particle
accelerators such as the LHC at CERN are increasingly constraining the parameter
space for SUSY. This is a significant detriment to the viability of SUSY, since some
of the problems it was hoped to address are cases of parameter fine-tuning in the
standard model, which is rendered moot if the parameters of SUSY must themselves
be fine-tuned, particularly for supersymmetric particle masses > 1TeV.

1.3.2 Axions

Axions originate from a problem purely in the realm of particle physics, the strong
CP problem. This problem can be stated as follows: The strong interaction, in the form
of quantum chromodynamics (QCD), in principle allows for a term which violates
symmetry under the CP operation, which is a combined conjugation of charge and
spatial parity. However, in practice, experiments have determined that QCD does not
violate CP symmetry, or if it does, that the degree to which it does and the associated
parameter 𝜃QCD in the CP-violating term are extremely tiny. This is puzzling, because
an “accidental” symmetry or “fine-tuning” like this usually betrays the presence of a
deeper physical mechanism responsible for its origin.

Peccei and Quinn (1977) proposed a solution in the form of the Peccei–Quinn
mechanism. This mechanism effectively promotes the parameter 𝜃QCD to a new
pseudo-scalar particle, the axion, which is the pseudo-Nambu–Goldstone boson of a
spontaneously broken “Peccei–Quinn” U(1) symmetry. The presence of the axion
and the specific form of its interactions arising from the Peccei–Quinn mechanism
naturally cancel the CP-violating term of QCD.

While postulated to solve a problem in particle physics, the motivation for axions
is strengthened significantly by the fact that they also serve as a natural candidate
for CDM. Through the so-called misalignment mechanism, cold axion dark matter
could be produced in the early universe, which would have a particle mass in the
µeV to meV range (Marsh 2016).

1.3.3 Primordial black holes and other compact objects

Although dark matter does not seem to interact with visible matter (except gravi-
tationally), one could in principle imagine that it is still composed of “ordinary”,
baryonic matter, as long as this matter has assembled in a form which would make it
very difficult to detect in an astrophysical context. Neutron stars, “rogue” planets or
even just very faint stars, such as white or red dwarfs, all consist of baryonic matter,
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but do not emit any or very little light by themselves. Black holes, while not, strictly
speaking, baryonic, are nevertheless objects which are known to form (even as the
result of baryonic processes) and have been observed, similarly eliding the need
for a new, “exotic” kind of matter. Such massive astrophysical compact halo objects
(MACHOs), while still in principle interacting with other baryons, e. g. by absorbing
incoming light, would prove elusive due to their small sizes.

PBHs are a particular example of such MACHOs. They are black holes which
would have formed in the early universe, where sufficiently overdense regions could
collapse into black holes. This allows for potentially much smaller masses than black
holes which form as the result of stellar evolution.

Although evading detection via the electromagnetic spectrum, all MACHOs have
in common that they are susceptible to discovery by gravitational microlensing.
As MACHOs would have to be numerous to make up the missing dark matter,
they would often pass near observable stars, causing a transient change in their
brightness through lensing induced by their gravitational influence. This has been
used to establish strict bounds on the viability of these dark matter candidates. PBHs
additionally have a lower limit set on their available mass range because very light
black holes would evaporate via Hawking radiation.

1.4 “Small-scale challenges” to ΛCDM

There are a number of issues related to structure formation with CDM at small
scales, where the non-linear evolution of structure as predicted (e. g.) by numerical
simulations, is difficult to reconcile with observations. Conspicuously, these prob-
lems arise at the same scales where baryonic physics become significant. While this
could be a hint that these challenges are not actually problems with CDM, but rather
the lack of a complete understanding of the complicated baryonic physics, it is at
least rendering it very difficult to distinguish an incomplete description of baryons
from inconsistencies caused by the nature of dark matter. The extent to which these
challenges present a genuine threat to CDM and the cosmological paradigm as a
whole is likewise a matter of enduring debate, with some going so far as to proclaim
a “small-scale crisis” of ΛCDM (D’Onghia and Lake 2004; Viel et al. 2013; Nakama,
Chluba, and Kamionkowski 2017).

There have been a number of contentious points in this category, some of which
are considered to have been resolved over time. The ones that remain as the current
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focus of inquiry are mostly the following (Weinberg et al. 2015; Del Popolo and Le
Delliou 2017; Bullock and Boylan-Kolchin 2017):

The cusp–core problem: This problemdealswith the subject of halo density profiles.
Numerical simulations of structure formation with ΛCDM predict that dark
matter halos follow the Navarro–Frenk–White (NFW) density profile, which
is “cuspy”, i. e. steeply rising, towards the center. Some observations of dwarf
galaxies, however, seem to indicate a flat, constant-density “core” at the centers
of their halos instead. Unfortunately, neither the actually predicted density
profiles of halos when including baryons and baryonic physics such as feedback
processes, nor the observed density profiles themselves are settled facts.

The missing satellites/dwarf galaxies problem: The equations of CDM structure
are scale-free, with the result that CDM will collapse and fragment into halos
even on the smallest scales. This brings about an “explosion” of low-mass
halos, which become ever more abundant as their masses decrease. Since halos
of a certain size are usually expected to form galaxies, the number smaller
(dwarf) galaxies predicted in this manner vastly outstrips those which have
been observed, e. g. as satellite galaxies of the MilkyWay. While the most direct
solution would be to suppress the formation of smaller halos, as is the case in
some other dark matter models (such as warm dark matter (WDM)), it could
also be that galaxy formation becomes less efficient in these smaller halos.

The “too-big-to-fail” problem: Somewhat related to the previous problem, there is
another mass range where ΛCDM predicts more halos than can be matched
to observed galaxies in the local universe. Halos with masses around 1010 𝑀⊙
should be practically guaranteed to form stars (they are “too big to fail” to
do so), but observations show an underabundance of galaxies which would
reside in such halos. However, since the number of observed galaxies (e. g. the
“classical dwarf” satellites of the Milky Way) is actually compatible with the
number of the most massive sub-halos in simulations, another way to view
the problem is that there is a mismatch between the central densities in the
simulations and observations. This takes the issue in a similar direction as the
core–cusp problem, once again raising the issue of the density distribution in
the inner parts of halos.

The plane of satellites problem: While less clearly related to the model of dark
matter on its own, it has been observed that the Milky Way’s satellite galaxies
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lie in a plane, which would be a rare occurrence and difficult to explain using
structure formation with ΛCDM. On the other hand, this arrangement of the
galaxies seems to be a transient “coincidence” occurring only for a short time
in their orbits, and with the countless possible histories every halo and galaxy
can undergo, it might simply be a statistical outlier. The problem then turns
into the question of how to quantify the “rareness” of what is seen in the local
universe, and what degree of statistical deviation would be cause for concern.

It is evident that for each of these claimed problems, legitimate counterpoints have
been raised that have the potential to resolve the problem without appealing to an
overhaul of the cosmological paradigm. As it stands, individually, none of them
appear to unveil any fundamental, irreconcilable flaws with CDM. Yet, they should
not be dismissed prematurely, either, and remain open questions.

1.5 “Alternative” dark matter models

In part due to the small-scale challenges confronting ΛCDM, but also increasingly
because of the persistent lack of CDM detection (particularly WIMPs), a number
of alternative models with different implications at smaller scales have arisen. As
for CDM, these models are really broader categories which operate on the level of
what can be observed astronomically, but which behave in the same manner on such
astronomical scales. For each of these classes of dark matter, there exist again several
possible micro-physical implementations. However, the origin of these models can
also be viewed to proceed in a “bottom-up” fashion: Given a newly-proposed (e. g.)
dark matter particle, if this is found to behave differently from CDM (but coinciding
on large scales to preserve agreement with established observational facts), it might
create a new class in the form of an “astrophysical” dark matter model. In fact,
usually a concrete dark matter model would be investigated first, and only then be
classified depending on its behavior on astronomical scales.

1.5.1 Warm dark matter

The term WDM refers to matter which is a “middle ground” between CDM, such
as WIMPs, and hot dark matter, such as neutrinos. Although WDM is also non-
relativistic matter, it has a non-zero velocity dispersion (contrary to CDM). This leads
to a cut-off in the matter power spectrum on small scales, preventing small-scale
structure formation. In particular, this suppresses the formation of dark matter halos
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Figure 1.6: Density slice through the same dark matter filament at 𝑧 = 7 in numerical
simulations with different types of dark matter: CDM, a version similar to WDM, and
FDM. CDM displays fragmentation into halos down to the smallest scales, while WDM
and FDM (here labeled “BECDM”) show caustics. FDM additionally has coherent
interference patterns modulating the caustic structures (taken from Mocz et al. 2020).

below a certain mass threshold, potentially addressing the missing satellites problem.
Figure 1.6 is a visualization of the effect this has on the formation of halos in the
“cosmic web”.

The archetypal example of a specific WDM model are sterile neutrinos, whose
masses are in the keV range (Boyarsky et al. 2019). Apart from theirWDMproperties,
they have strong motivation from particle physics as an explanation of neutrino
masses. Since neutrinos are massless in the standard model of particle physics,
the confirmation of non-zero (albeit small) neutrino masses requires an extension
of the standard model, and sterile neutrinos in the keV mass range are one of the
mechanisms which would result in massive neutrinos compatible with experimental
data.
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1.5.2 Self-interacting dark matter

From the particle physics perspective, it is very difficult to construct a model whose
particles do not have some degree of self-interaction. However, the question iswhether
these interactions are strong enough to be relevant in the dark matter regime. Self-
interacting dark matter (SIDM) is a dark matter model which assumes the presence
of dark matter self-interactions to the extent that they have observable consequences.
Often, this is in a very simple form, e. g. assuming a constant self-interaction cross
section, but such models are heavily constrained by measurements from systems
like the Bullet Cluster.

SIDMhas less straightforward implications for structure formation than e. g.WDM,
whose impact can be described with a simple change in the matter power spectrum
(Tulin and Yu 2018). Generally, the impact will be strongest in the densest regions,
i. e. the inner parts of dark matter halos, simply because a higher concentration of
matter increases the amount of (self-)interactions occurring. Similar to baryons, the
departure from the collisionless regime in favor of increased scattering between dark
matter particles prevents their collapse to some extent, instead forming isothermal
cores at the centers of halos. This posits SIDM as a potential solution to the cusp–core
problem.

1.5.3 Ultra-light dark matter

Most of the specific dark matter models thus far have been in the form of elemen-
tary particles. While ultra-light dark matter models also postulate the presence of
new, heretofore-undetected particles, their masses are so incredibly light that they
behave collectively as a wave instead of as individual particles – e. g. in the form
of a Bose–Einstein condensate –, similar to how photons collectively form electro-
magnetic waves. Correspondingly, another term for this type of dark matter is wave
dark matter, which has very different dynamics than most other candidates based on
collisionless particles, with quantum matter wave effects appearing on macroscopic,
even galactic scales, forming, among other things, wave interference patterns and
transient fluctuations in the density field. Generally, this means that these new parti-
cles must be bosons (e. g. scalar particles), as fermions are restricted from occupying
the same states by the Pauli exclusion principle.

The simplest form of ultra-light dark matter, FDM, is the main subject of this
dissertation. However, there are several more involved scenarios, e. g. including a
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self-interaction term, which results in superfluid dark matter, or higher-spin wave
dark matter (see also the review articles cited in chapter 2).

Figure 1.6 shows how FDM suppresses small-scale structure similar to WDM, but
introduces additional effects in the form of wave interference patterns. More details
concerning the motivation and phenomenology of FDM are laid out in chapter 2.

1.5.4 Modified gravity

Asmentioned before, it is not strictly necessary for darkmatter to actually be “matter”
as would commonly be understood, as long as whatever physical mechanism used to
replace it effectively behaves as such (Mannheim 2006). One of the first attempts to
explain the effects of dark matter by modifying the laws of gravity was in the form of
Modified Newtonian dynamics (MOND), which provides an empirical modification
of the Newtonian inverse-square law of gravity in order to reproduce observed
galactic rotation curves (section 1.2.3) without invoking a “missing” component of
matter. However, MOND itself is an ad-hoc non-relativistic solution for a subset of
the observational evidence, which is unable to explain the full range of observed
gravitational effects, such as gravitational lensing (section 1.2.5). More general
models, which modify the laws of general relativity in a consistent manner, are a
subject of active research (Clifton et al. 2012).





2The fuzzy dark matter model

After the introduction of the general cosmological paradigm in chapter 1, I will now
introduce the main subject of this thesis, the FDM model, in more detail. For even
more in-depth information, there are also a number of recent review articles which
summarize many aspects of the field (Marsh 2016; Hui et al. 2017; Niemeyer 2020;
Hui 2021; Ferreira 2021).

2.1 Theoretical background

Fundamentally, FDM is identical to the well-studied scalar field dark matter model,
which is perhaps also the simplest particle-based darkmatter model at the theoretical
level. Such a model is described by the simple scalar field action

𝑆 =
1

ℏ𝑐2 ∫d4𝑥 √−𝑔 (
1
2𝑔𝜇𝜈(𝜕𝜇𝜙(𝑥))(𝜕𝜈𝜙(𝑥)) −

1
2

𝑚2𝑐2

ℏ2 𝜙(𝑥)2 −
𝜆

ℏ2𝑐2 𝜙(𝑥)4) (2.1)

with the metric 𝑔𝜇𝜈 and its determinant 𝑔, a real scalar field 𝜙, its mass 𝑚, and
a self-interaction coupling strength 𝜆.1 In this most fundamental description of
quantum field theory in a curved spacetime, 𝜙 is a quantum field. This action is to
be understood in the context of quantum field theory in a curved spacetime, i. e. 𝜙
is a (“second-quantized”) quantum field, although for the purposes of numerical
calculations, I will only consider the “classical” and non-relativistic limits.

The difference to most earlier studies of scalar field dark matter lies in the chosen
parameters, specifically the mass 𝑚, which is commonly assumed to be in the range
of 100GeV–TeV, in line with the concept of CDM. In contrast, an ultra-light scalar field
with a mass around 𝑚𝑐2 ≈ 10−22 eV, making fuzzy dark matter a form of scalar field
dark matter with an “unusual” choice of the scalar field particle mass 𝑚, is under
consideration here. This vast difference in the considered mass range compared to

1𝑐 and ℏ are the speed of light in vacuum and the reduced Planck constant, and are explicitly included
in all equations.
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heavy scalar particles has drastic phenomenological consequences. Additionally, the
ultra-light particles require a non-thermal production mechanism so that the resulting
dark matter is not ultra-hot, but still resembles CDM.

The term “fuzzy dark matter” is typically used for an ultra-light scalar field without
self-interactions, i. e. 𝜆 = 0. Thus, it corresponds to a limit (𝜆 → 0, or zero tempera-
ture, 𝑇 → 0) of more general ultra-light scalar field models (see Ferreira 2021, for a
review), such as superfluid dark matter. Such models are often called ALP models
due to the phenomenological similarity to the axion of QCD, which yields the same
action as eq. (2.1) originating from a periodic potential 𝑉(𝜙) ∝ Λ4(1 − cos(𝜙/𝑓𝑎)) for
𝜙 ≪ 𝑓𝑎 (see e. g. Marsh 2016; Hui et al. 2017).

As mentioned above, the distinguishing feature of the FDM model is the value of
the mass 𝑚, which is around 𝑚𝑐2 ≈ 10−22 eV, making this an ultra-light scalar field.
This is in stark contrast to most implementations of CDM, such as WIMP models
(which include scalar field dark matter models), which feature particle masses in
the range of 100GeV–TeV. The consequence of this wildly different mass regime
is that the scalar field is better described as waves instead of individual particles,
making FDM an example of a wave dark matter model, with striking differences
in phenomenology. The reason is that, for such ultra-light values of the particle
mass, the resulting particle number densities are extremely large, such that the
quantum-mechanical de Broglie wavelength will be much larger than the inter-
particle separation. Correspondingly, a collective wave description becomes much
more appropriate than dealing with individual particles. Such dark matter models
imply a non-thermal production mechanism to remain “cold”, in which case bosons
(like the scalar particles of FDM) can form a Bose–Einstein condensate.

I will assume non-relativistic approximations appropriate for simulations of cosmic
structure formation, where all velocities are ≪ 𝑐 and the considered scales are smaller
than the Hubble horizon 𝑐/𝐻0. Rewriting the real scalar field 𝜙 in terms of a complex
variable 𝜓,

𝜙 =
1
2

√ℏ3𝑐
2𝑚 Re(𝜓𝑒−𝑖 𝑚𝑐2

ℏ 𝑡) = √ℏ3𝑐
2𝑚 (𝜓𝑒−𝑖 𝑚𝑐2

ℏ 𝑡 + 𝜓∗𝑒𝑖 𝑚𝑐2
ℏ 𝑡), (2.2)

and taking the non-relativistic limit in Newtonian gauge yields the equations of
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motions for fuzzy dark matter, the Schrödinger–Poisson (SP) equations:2

𝑖ℏ𝜕𝑡𝜓(𝑡, ⃗𝑥) = −
ℏ2

2𝑚𝑎(𝑡)2 ∇2𝜓(𝑡, ⃗𝑥) +
𝑚

𝑎(𝑡)Φ𝜓(𝑡, ⃗𝑥) (2.3)

∇2Φ(𝑡, ⃗𝑥) = 4𝜋𝐺𝑚(|𝜓(𝑡, ⃗𝑥)|2 − ⟨|𝜓|2⟩(𝑡)), (2.4)

where 𝑎 is the cosmological scale factor, Φ is the Newtonian gravitational potential,
and the angle brackets in ⟨|𝜓|2⟩ indicate the spatial average. These are the equations
of motions whose non-linear time evolution is solved in my numerical simulations.
In the above, all quantities and coordinates are given in “comoving” form, to factor
out the dependence on the scale factor 𝑎(𝑡) as much as possible.3 Explicitly, comoving
and “physical” quantities are related as follows:

⃗𝑥 = 𝑎−1 ⃗𝑥phys, ∇ = 𝑎∇phys, 𝜓 = 𝑎3/2𝜓phys, Φ = 𝑎Φphys. (2.5)

As I have assumed a production mechanism that can be described as a Bose–Ein-
stein condensate, with almost all of the scalar particles in their quantum-mechanical
single-particle ground states and large number densities, I can make use of the mean
field approximation, also called the “classical” limit or wave limit, where the particles
behave collectively and coherently. The “wave function” 𝜓 in eq. (2.3), which is now
simply a complex number-valued function (instead of a quantum field), is then
understood as the single macroscopic amplitude of the FDM waves, with the mass
density given by

𝜌 = 𝑚|𝜓|2. (2.6)

This is why FDM is often called a “classical theory”.4

As in quantum mechanics, or generally for diffusion equations, eq. (2.3) obeys the
continuity equation

𝜕𝑡𝜌 + ∇ ⋅ 𝜌 ⃗𝑣 = 0, (2.7)

2Since eq. (2.3), despite being formally identical to the Schrödinger equation from single-particle
quantum mechanics, has a very different physical meaning and is in fact a Gross–Pitaevskii equa-
tion (Gross 1961; Pitaevskii 1961), eqs. (2.3) and (2.4) are technically the Gross–Pitaevskii–Poisson
system of equations. However, I will use the more common term “Schrödinger–Poisson equations”
here.

3All quantities will be given in terms comoving lengths unless specified otherwise.
4The distinction is irrelevant for the physical and phenomenological consequences of FDM, but

often seems to spark debate. I would like to note that, although FDM may be described by what is
formally a classical field theory, the underlying physical phenomena, such as matter waves and
Bose–Einstein condensation, were not known in classical physics.
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with the momentum density

𝜌 ⃗𝑣 =
ℏ
2𝑖(𝜓∗∇𝜓 − 𝜓∇𝜓∗) (2.8)

The momentum density 𝜌 ⃗𝑣 can also be used to define the bulk peculiar velocity
field ⃗𝑣, although this is problematic in the case 𝜌 = 0. Separating the complex wave
amplitude 𝜓 into its absolute value √𝜌/𝑚 and complex phase 𝜃,

𝜓 = √ 𝜌
𝑚𝑒𝑖𝜃, (2.9)

yields a simpler form of eq. (2.8):

⃗𝑣 =
ℏ
𝑚∇𝜃, (2.10)

i. e. the velocity is given by the gradient of the wave amplitude’s phase. Again,
however, this is ill-defined when 𝜓 = 𝜌 = 0, in which case the phase 𝜃 is undefined.
It should be noted that due to the presence of wave interference, the case 𝜓 = 0 is
actually quite common (occurring wherever destructive interference takes place)
and cannot be neglected as perhaps for non-wave dark matter models.

The wave function in polar components (eq. (2.9)) can be rewritten in hydro-
dynamical form using the Madelung (1927) transformation, which results in the
continuity eq. (2.7) along with a modified Euler equation

𝜕𝑡 ⃗𝑣c +
1
𝑎2 ∇c ⃗𝑣2

c = −
1
𝑎∇cΦc +

1
𝑎2

ℏ2

2𝑚2 ∇c
∇2
c√𝜌c
√𝜌c

(2.11)

(cf. e. g. Mocz et al. 2020). This allows for a hydrodynamical interpretation of the
density and velocity fields 𝜌 and ⃗𝑣.

In addition to the mass (as implied by the continuity equation, eq. (2.7)), the total
energy, given by

𝐸 = ∫d3𝑥 (
ℏ2

2𝑚2 |∇𝜓|2 +
1
2Φ|𝜓|2)

= ∫d3𝑥
ℏ2

2𝑚2 (∇√𝜌)2 + ∫d3𝑥
1
2𝜌𝑣2 + ∫d3𝑥

1
2𝜌Φ

= 𝑇𝜌 + 𝑇𝑣 + 𝑉 (2.12)
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is conserved (Mocz et al. 2017). The kinetic energy 𝑇 = 𝑇𝜌 + 𝑇𝑣 is made up of the
“bulk” kinetic energy 𝑇𝑣 and a gradient energy term 𝑇𝜌, while 𝑉 is the standard
gravitational potential energy.

The separation of the wave amplitude into two real variables and their connection
with the density (2.6) and velocity (2.10) allows a hydrodynamical interpretation
analogous to that of Madelung (1927) in quantum mechanics, although its validity
is problematic for destructive interference. FDM’s resistance against gravitational
collapse on small scales, which can be interpreted as an analogue to the Heisenberg
uncertainty principle in the SP formulation, then manifests itself as an explicit addi-
tional “quantum pressure” appearing in the analogue of the hydrodynamical Euler
equation.

There are two important length scales which serve as indicators of FDM wave
phenomena, both of which are determined by the constant ℏ/𝑚, which is the only
independent parameter in the equations of motion, eqs. (2.3) and (2.4). The first is
the de Broglie wavelength

𝜆dB =
2𝜋ℏ
𝑚𝑣 , (2.13)

which has the same meaning as in quantum mechanics and indicates the length scale
on which density fluctuations of order one occur. The second is the FDM analogue
of the Jeans length. In linear perturbation theory, this is the length scale where the
gravitational attraction balances the “quantum pressure” resisting collapse, such
that perturbations on larger scales grow, while smaller ones oscillate. Expressed as a
wave number 𝑘J, this is (Hu, Barkana, and Gruzinov 2000)

𝑘J = (
6Ωm
1 + 𝑧)

1/4

(
𝑚𝐻0

ℏ )
1/2

. (2.14)

as a function of the redshift 𝑧, with the Hubble parameter 𝐻0 and the cosmic matter
density parameter Ωm.

There is a correspondence between the Vlasov–Poisson equations which describe
the evolution of a CDM fluid and the Schrödinger–Poisson equations, with the latter
reducing to the former for ℏ/𝑚 → 0 (Widrow and Kaiser 1993; Mocz et al. 2018;
Garny, Konstandin, and Rubira 2020). This explains why FDM behaves like CDM on
large scales. A wave function 𝜓( ⃗𝑥) can be constructed from a phase space distribu-
tion function 𝑓 ( ⃗𝑥, ⃗𝑝) by means of a Wigner or Husimi transform. This relationship
illustrates why FDM behaves like CDM on scales larger than 𝜆dB. At first, this was
in fact considered as an alternate method to simulate CDM (Widrow and Kaiser
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1993). However, one can also take the equations seriously and actually consider the
Schrödinger–Poisson equations as the “true” description of dark matter. In this case,
the correspondence allows one to “translate” a phase space distribution function
to the wave function formalism. This is very useful because it enables direct com-
parisons between structure formation with CDM and FDM from the same initial
conditions (ICs).

In general, a wave function on a discretized lattice can be constructed using the
prescription

𝜓( ⃗𝑥�⃗�) ∝
𝑁−1
∑

𝑛′
1=0

…
𝑁−1
∑

𝑛′
3=0

√𝑓 ( ⃗𝑥�⃗�′, ⃗𝑣�⃗�) 𝑒𝑖 𝑚
ℏ ⃗𝑥�⃗�′⋅�⃗��⃗�+𝑅�⃗�, (2.15)

where ⃗𝑛, ⃗𝑛′ = (𝑛′
1, 𝑛′

2, 𝑛′
3) are discrete grid indices, ⃗𝑥�⃗� = ⃗𝑛Δ𝑥 and ⃗𝑣�⃗� = 2𝜋 ℏ

𝑚
�⃗�

𝑁Δ𝑥 are
discrete phase space grid points, and 𝑅�⃗� is a random phase which is required to
ensure that different velocity components are uncorrelated (cf. Widrow and Kaiser
1993; Mocz et al. 2018).

For the case of a “cold” or “single-stream” distribution function as in the case of
CDM, where each point in space has a single well-defined value for the velocity,
this value can be directly related to the wave function’s phase as in eq. (2.10). The
construction of the wave function then simply reduces to the polar decomposition
(eq. (2.9)), with the absolute value and phase determined by the density and velocity
at each point, respectively:

|𝜓( ⃗𝑥)| = √𝜌( ⃗𝑥)
𝑚 , (2.16)

∇ arg(𝜓( ⃗𝑥)) = ∇𝜃( ⃗𝑥) =
𝑚
ℏ ⃗𝑣( ⃗𝑥). (2.17)

Equation (2.17) can be easily solved numerically by applying the spectral method to
the equation

∇2𝜃( ⃗𝑥) =
𝑚
ℏ ∇ ⋅ ⃗𝑣( ⃗𝑥). (2.18)

2.2 Astrophysical phenomenology

2.2.1 Suppression of small-scale structure

Due to the analog of the Heisenberg uncertainty principle, or the “quantum pressure”
in the fluid formulation, FDM resists collapse on small scales. In linear perturbation
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Figure 2.1: Matter clustering, as measured by the matter power spectrum, for different dark
matter models. (Taken from Ferreira 2021).

theory, this results in a cut-off in the power spectrum on scales smaller than the Jeans
scale eq. (2.14). For higher FDM particle masses, this cut-off moves to smaller scales.

Although the precise shape of the linear power spectrum and the cut-off is different,
this behavior is very similar to the impact of WDM (cf. fig. 2.1). It similarly results
in a suppression of small-scale structure, even without taking into account the
characteristic wave dynamics of FDM. Due to this similarity, many attempts to put
constraints on the FDM parameter space rely on translating the formalism for WDM
to a slightly modified transfer function.

2.2.2 Soliton cores

Using numerical simulations of FDM halos, it was demonstrated that approximately
spherical, constant-density cores called solitons form at the centers of FDM halos
(Schive, Chiueh, and Broadhurst 2014). These solitons correspond to the spherically
symmetric ground state solution of the SP equations (Edwards et al. 2018).

Firstly, since solitons are compact with a relatively sharp edge, they can disturb
or tidally disrupt other surrounding matter, such as star clusters, especially as they
move around the halo relative to other matter (Li, Hui, and Yavetz 2021). Secondly,
as the soliton cores are present in a perturbed state characterized by interactions
with matter from their host halo and its environment, they are actually not static, but
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themselves fluctuate in their density amplitude (which is also called the “breathing
mode”). Both effects can significantly influence the dynamics of visible matter at the
centers of halos compared to a pure NFW profile.

2.2.3 Granules and interference patterns

Also first shown in detail in (Schive, Chiueh, and Broadhurst 2014) is that FDM halos
feature transient density fluctuations order one (i. e. relative to the time-averaged
density), which are often called granules, around the soliton core and throughout
the halo. These arise from the superposition of waves, which results in constructive
and destructive interference (outside of halos, this is also visible in the characteristic
interference fringes which are reminiscent of interfering electromagnetic waves).
Similar to the gravitational impact caused by the soliton, these fluctuations have the
potential to disrupt other systems present within the halo, such as stellar populations,
but on a much larger scale since they exist throughout the entirety of the halo (Dalal
and Kravtsov 2022).

2.2.4 Vortices

Since the FDM velocity is a gradient field (see eq. (2.10)), it does not appear to have
any vorticity. However, the complex phase is undefined at the sites of destructive
interference, where 𝜌 = 0. Consequently, these are the locations where vorticity
can develop (Hui et al. 2021). The properties of these objects and their distribution
present some unique opportunities for the potential detection of FDM, and have also
been proposed as an explanation of observations of cosmic filament spin (Alexander
et al. 2022).

2.3 Observational constraints

After FDM received increasing interest due to motivation from astrophysics and
particle physics, constraints on the mass 𝑚 of the scalar particles at values around
𝑚𝑐2 ≳ 10−21 eV accumulated using many different contexts and observables for some
time (Ferreira 2021). A recent summary is shown in fig. 2.2. FDM’s soliton halo cores
and their scaling relations have revealed themselves to be seemingly incompatible
with observations if a single value is assumed for the particle mass 𝑚 (Burkert 2020)
(see also section 4.9). This by itself does not rule out FDM as a dark matter candidate
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Figure 2.2: Compilation of observational constraints on 𝑚 (taken from Ferreira 2021).

– after all, if the origin of the “cusp–core problem” does not lie in the nature of dark
matter, this merely means that this problem cannot be used to constrain this nature.
In this sense, fig. 2.2 must also be viewed with care, since not all bounds apply in
general to the entire model, but sometimes make additional assumptions (such as
those concerning dSph galaxies). However, this does weaken FDM’s motivation as
a possible solution to the cusp–core question. Further, it constrains the parameter
space, since the cores must be relegated to regimes where they would not have
a strong observational impact if it is determined that their observation would be
incompatible with known results.

In a similar vein, dynamicalmodeling has recently been applied to ultra-faint dwarf
(UFD) galaxies, which would feature the largest FDM cores, whose results have lead
to claims of strong constraints on 𝑚, up to ≈ 10−19 eV (Hayashi, Ferreira, and Chan
2021; Zoutendijk et al. 2021). However, these analyses do not take the significant
scatter in the FDM core–halo mass relation, discovered in cosmological simulations,
into account (Chan, Ferreira, May, et al. 2022), which would weaken these bounds. A
very recent result from Dalal and Kravtsov (2022), claiming 𝑚𝑐2 > 3 × 10−19 eV due
to the heating effect of stellar orbits caused by potential fluctuations in FDM halos,
has more serious implications, since it does not depend on the uncertain core–halo
relation. However, most of these constraints (including the most recent) have in
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common that they have not been verified by self-consistent numerical simulations,
instead relying on approximate, idealized, or simplified numerical and analytic
approaches.



3Numerical methods and
implementation

In this chapter, I will briefly describe the “state of the art” of current methods in
computational cosmic structure formation in order to set the stage for the general
framework in which the work in this dissertation was performed in, as well as present
the methodology and implementation developed specifically for the simulation of
structure formation within FDM cosmologies. For a more extensive recent review
of simulation techniques and results with different dark matter models, including
FDM, see Angulo and Hahn (2022).

3.1 Numerical simulations of cosmic structure formation

Due to the multitude of physical scales involved in cosmic structure formation, both
in space and in time, the endeavor of performing numerical simulations of this non-
linear process involves a whole “stack” of tools and ingredients, as well as many
technical details. To summarize, a “cosmological simulation of structure formation”
consists of the following components and inputs:

A “background cosmology”: It is generally not feasible to follow the evolution of a
fully self-consistent general-relativistic space-time. Consequently, simulations
usually work with the non-relativistic, weak-field Newtonian approximation
and assume a static FLRW “background cosmology”. This background is static
because it does not take into account how inhomogeneities and changes in
the matter distribution would affect the space-time metric: there is no “back-
reaction” of matter on the metric (Buchert and Räsänen 2012). Instead, there
is only one global, position-independent expansion rate throughout the entire
simulation volume, corresponding to the approximation that the universe
is homogenous when smoothed on large scales. On smaller scales, peculiar
velocities and accelerations are expected to dominate over the “Hubble flow”



40 | 3 Numerical methods and implementation

of cosmic expansion, justifying the static background approximation. While
this is the framework predominantly applied in large simulations of structure
formation, approaches investigating the impact of back-reaction using a general
relativity (GR) treatment have been developed as well (Barrera-Hinojosa and
Li 2020).

The assumption of a background cosmology ultimately boils down to the
requirement of taking spatial expansion into account in the equations of motion.
Usually, when expressed in terms of suitably-defined “co-moving” quantities,
this only results in some additional factors of the scale factor 𝑎(𝑡) appearing
in the equations compared to the corresponding “non-cosmological” versions.
Since the evolution of expansion in the form of the scale factor must be followed,
cosmological simulations include the FLRW parameters – usually the density
parameters Ωc0, Ωb0 and ΩΛ0, and the Hubble parameter 𝐻0 – as external
inputs. In the case of ΛCDM, no cosmological parameters are required beyond
this; however, for other dark matter models, more parameters, such as the
particle mass for WDM and FDM, or the self-interaction cross section for SIDM,
enter as additional inputs.

“Low”-redshift ICs: For a number of reasons, it is neither feasible nor efficient to
attempt to follow the evolution of the universe (or some region within it)
throughout all of time – from the Big Bang to the present day – within a sin-
gle framework. The early, hot, relativistic universe is characterized by several
phase transitions and countless physical processes which are not only diffi-
cult and expensive to treat comprehensively, but also completely irrelevant
today. Further, it is not the precise micro-arrangement of matter and energy
(which would be hopeless to keep track of in detail in any case), but rather
their global and statistical properties which are most relevant for the following
formation of structure. At slightly later times, the evolution can be very accu-
rately described analytically by perturbation theory, making a fully non-linear
numerical treatment unnecessary.

A numerical method: Given ICs at some time, the appropriate equations of motion
for the relevant physics to be included in the simulation generally allow to solve
for the evolution of state over time. Since the resulting non-linear equations
cannot be solved analytically, a numerical schememust be devisedwhich allows
for the computational treatment of the equations.
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3.2 Simulations of structure formation with ΛCDM

For ΛCDM, the fundamental non-relativistic equations describing the evolution of
the dark matter fluid are the Vlasov–Poisson equations. The fact that CDM is “cold”
with negligible velocity dispersion implies that the fluid which it describes is initially
“single-streaming”, i. e. there is only a single value of the velocity associated with
each point in space with which the fluid is coherently moving:1

𝑓 ( ⃗𝑥, ⃗𝑣) = 𝑛( ⃗𝑥)𝛿( ⃗𝑣 − ∇𝑆( ⃗𝑥)) , (3.1)

where 𝑛( ⃗𝑥) is the number density and 𝑆( ⃗𝑥) a velocity potential. This allows for an
accurate description of phase space by sampling discrete points, each having a posi-
tion, velocity and mass associated with them, resulting in a “coarse-grained” version
of the fluid and its phase space. These discrete sampling points are usually called
“simulation particles”, “macro-particles” or simply “particles” for short. However, it
should always be clear that these do not correspond in any way to physical particles
(such as elementary particles – their masses are many orders of magnitude larger,
typically, than even the mass of the sun, 𝑀⊙), but are simply part of a procedure
which makes the underlying equations tractable for a numerical treatment. Since it
is impossible to handle a continuous field (such as density or phase space) without
an infinite amount of (discrete) memory storage and computational power, any
numerical approach must necessarily involve some kind of discretization step.

Except for specialized applications, this 𝑁-body approach is the vastly predomi-
nant framework which is used to dynamically evolve the distribution of CDM. It is
implemented by the vast majority of simulation software in common use, such as
GADGET-4 (Springel et al. 2021) and its predecessors, AREPO (Springel 2010; Wein-
berger, Springel, and Pakmor 2020), SWIFT (Schaller et al. 2016), GIZMO (Hopkins
2017), and many others. Concerning the specific numerical approaches to solving
the resulting equations of motions after discretization via the 𝑁-body prescription,
there is slightly more variation among implementations. Through a number of steps,
the original problem has returned to the familiar 𝑁-body problem of Newtonian
gravity (although 𝑁 is vastly lower than if all physical particles were considered
directly).

1As the CDM distribution evolves, it will not remain perfectly cold and eq. (3.1) eventually becomes
invalid. As structures collapse, they develop “multi-streaming”, with multiple values of the
velocity associated with a single point in space (a non-zero velocity dispersion). These events are
referred to as “shell crossing”.
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Even so, the simplest approach of determining the evolution of an 𝑁-body system
in Newtonian gravity, direct summation, incurs a computational cost of order 𝑂(𝑁2),
which quickly becomes prohibitive even for relatively low particle numbers (at
least when comparing the effective spatial resolution to the sizes of the simulated
cosmological and astrophysical systems). Some of the most common state-of-the-art
approaches to this problem are tree methods, the particle–mesh (PM) method, their
combination TreePM, and fast multipole methods (FMM).

3.3 Simulations of structure formation with fuzzy dark
matter

For FDM, the origin and framework of the equations of motions is very different
than for CDM. While the treatment of CDM is based on a phase space as in classical
statistical mechanics, FDM is a wave theory with completely different fundamental
variables. The difference is akin to the contrast between classical (e. g. Lagrangian or
Hamiltonian) mechanics and quantummechanics: While the dynamics in the former
are described using a six-dimensional phase space consisting of positions ⃗𝑥 and
velocities ⃗𝑣 (or momenta ⃗𝑝) as input variables, the latter contains all information in a
function of only the three-dimensional positions, at the “cost” of the function being
a complex-valued “wave function” instead of a real-valued distribution function.

These incompatible frameworks raise conceptual questions about how quantities
correspond to each other and how they should be compared in both cases. While
there are prescriptions relating wave functions and six-dimensional phase space,
these are not unique and do not necessarily have the properties expected of “true”
phase space distribution functions. Another approach, making use of the Madelung
fluid correspondence between the Schrödinger equations and a hydrodynamical
analog, can serve as yet another source of intuition about the relation of wave and
particle quantities.

On the level of equations of motions, approaches to numerical FDM simulations
can be separated into these two categories, namely thosemaking use of theMadelung
fluid formulation and those tackling the SP equations directly. As with 𝑁-body CDM
or hydrodynamics, implementations then further differ with respect to the specific
numerical schemes used to solve either set of equations of motion.
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3.3.1 Generating cosmological initial conditions

As detailed in section 3.2, numerical simulations of non-linear cosmic structure
formation in the late universe generally start with ICs derived from perturbation
theory (linear or higher order) at a timewhere this approach is still valid. In principle,
it would be necessary to adopt a similar approach for FDM, using (e. g.) the linearized
equations to obtain an initial, perturbed density amplitude 𝜓( ⃗𝑥) at the appropriate
redshift. However, it is possible to make use of the correspondence between FDM
and CDM (the Schrödinger–Poisson–Vlasov–Poisson correspondence; Mocz et al.
2018) to directly map ICs from the well-known ΛCDM machinery to FDM.

As long as the initial redshift is chosen to be before shell crossing occurs, this
procedure is safe, since fluctuating granules and interferences patterns develop in
FDM after this point, which would not be captured in CDM ICs. Fortunately, this is
not a significant restriction, because perturbation theory is generally only valid up to
shell crossing to begin with.

3.4 The AxiREPO code

One major result of the work on this dissertation is the AxiREPO code. It has been
developed to perform highly performant and scalable numerical simulations of FDM,
with and without baryons, and is the most fundamental instrument enabling all
the scientific results presented in the following chapters. Initially starting out with
small, idealized, non-cosmological test problems, such as those treated in Edwards
et al. (2018), the code’s functionality continuously grew with the requirements of
the projects. Today, it is a state-of-the-art tool for any kind of numerical simulation of
FDM, and has been used to carry out SP simulations of cosmic structure formation
with FDM at unprecedented scales – by far the largest to date.

AxiREPO is implemented as a module in the widely-used and highly successful
AREPO code (Springel 2010), which has also been publicly released (Weinberger,
Springel, and Pakmor 2020). AxiREPO implements a pseudo-spectral method with a
second-order split-step time integration to solve the SP equations, eqs. (2.3) and (2.4).
It boasts the following features:

• Both cosmological and non-cosmological simulations of FDM, solving the SP
equations with arbitrary ICs. This means that the code can be used both for
idealized or simplified setups, as well as for full-blown cosmological boxes.
Further, it can handle any problem that can be described using the SP equations,
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even including “unconventional” simulations of large-scale structure with
CDM.

• Support for both dark matter-only simulations as well as full hydrodynamical
simulations with baryons, even including a state-of-the-art galaxy formation
model such as IllustrisTNG (Weinberger et al. 2017; Pillepich et al. 2018),
making use of AREPO’s moving mesh implementation of hydrodynamics.

• High performance and scalability: The code is implemented in the C pro-
gramming language, using the Message Passing Interface (MPI) standard for
distributed-memory parallelism. It has been used to perform simulations with
grid sizes up to 86403, which is several orders of magnitude larger than any
other equivalent existing work on FDM.

• A novel halo finding algorithm which operates on the Cartesian grid used by
AxiREPO. This includes capabilities to compute halo masses (such as 𝑀200)
using the spherical overdensity algorithm, as well as the halos’ gravitational
“self-potential” (a measure for the gravitational binding energy). The halo
finder is described in more detail in sections 4.3.5 and 5.3.3.

• An implementation of higher-spin wave darkmatter, such as vector darkmatter.
This not entails the ability to perform simplified simulations of the same kind
as Amin et al. (2022), but also much more general cosmological simulations,
even including baryons.

• In principle, it is even possible to conduct simulations featuring both 𝑁-body
dark matter particles and the SP grid, allowing for mixed CDM and FDM
simulations similar to Schwabe et al. (2020), although there may be minor
technical details to resolve since this mode of operation has not been tested in
practice thus far.

In order to ensure the reproducibility of numerical results, as well as in the hopes
of providing a useful and versatile tool to the scientific community, AxiREPO will
also be released in a publicly documented form in the near future. Of course, this is
not to say that the code cannot be acquired right now: It can always be obtained by
contacting the author, but the missing piece for a proper public release is the lack of
user-facing technical documentation, without which the use of a complex piece of
numerical software becomes quite a daunting challenge unless guided by the author.
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While the details of the pseudo-spectral method and the implementation within
AxiREPO are laid out in sections 4.3 and 5.3, I will here discuss in more detail the
motivation for choosing this numerical approach and its merits compared to other
techniques. an important question is of course which of these should be chosen when
setting out to perform new simulations. The first choice is one between theMadelung
fluid formulation and the SP equations. For the work in this dissertation, I decided
to focus on the SP form because the fluid approach is generally unable to capture
the defining wave nature of FDM, with its interference fluctuations and granules,
which is the primary novel feature distinguishing FDM from other particle dark
matter candidates. While FDM fluid simulations may have their place for specific
applications in regimes where the details of the wave nature are not important,
the question of the validity of numerical results obtained in this fashion is always
looming in the background with this approach. In general, it has been shown that
there are significant discrepancies between fluid solvers and a full wave treatment
(Li, Hui, and Bryan 2019). Without a clear identification of the regimes where the
fluid approach yields reliable results, these questions will always cast doubt on the
outcomes of such simulations.

Having decided to numerically solve the SP equations, the question remained
on the numerical method to use. While one option would have been to implement
several different numerical schemes, whichwould also offer the technically interesting
opportunity to directly compare and validate several approaches, it is generally
already technically challenging enough to develop even a single implementation
until it can efficiently and reliably run the kind of large-scale simulation which was
the aim in this dissertation. Generally, the technical issues encountered when going
to large scales are difficult to predict and investigate, because testing big datasets on a
large amount of computing resources is necessarily slow and expensive, as access to
these resources is limited. Further, there is always a trade-off between implementing
and optimizing more code, and actually applying it to obtain scientific results.

In the end, the decision for the numerical approach in AxiREPO fell on the pseudo-
spectral method mentioned above. This choice has several advantages:

• Spectral methods generally provide excellent spatial convergence. While finite-
difference methods are classified based on the polynomial order of the error
𝜀 incurred for a given resolution Δ𝑥 = 𝐿/𝑁, where 𝐿 is the size of the domain
and 𝑁 the number of grid points, behaving as

𝜀 ∼ 𝑂((𝐿/𝑁)𝑝) , (3.2)
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e. g. 𝑝 = 2 for a second-order method, spectral methods behave as

𝜀 ∼ 𝑂((𝐿/𝑁)𝑁) (3.3)

(see e. g. Boyd 2001). In other words, when improving the grid resolution 𝐿/𝑁
by increasing the grid size 𝑁, finite-difference methods converge polynomi-
ally with order 𝑝 (the error decreases like a polynomial as the resolution is
increased), whereas spectral methods converge exponentially, and are thus
sometimes said to be of “infinite” polynomial order. Since FDM simulations
generally choose the lowest resolution that they can get away with within the
resolution constraints due to the cost stemming from the rapid ∝ Δ𝑥2 scaling
of the time steps, the pseudo-spectral method is the most accurate for a given
simulation box.

• The total mass is automatically and manifestly conserved for the pseudo-
spectral method. Other methods, such as adaptive mesh refinement (AMR)
implementations based finite-difference schemes, do not have necessarily the
same conservation property (e. g. Mina, Mota, and Winther 2020).

• The implementation of a pseudo-spectral solver for FDM is directly compatible
with existing implementations of the PM scheme, such as the one present in
AREPO. This simplifies the implementation and integration with the rest of the
code, given that AREPO was chosen as the general framework for development
in order to have direct access to its moving mesh implementation of hydro-
dynamics to handle baryonic physics. Indeed, almost no code changes were
necessary to implement the potential update step of the pseudo-spectral algo-
rithm – the existing PM code could be reused “as-is” for this purpose. Relatedly,
AREPO already features a high-performance parallel Fast Fourier Transform
(FFT) implementation based on the FFTW library (Frigo and Johnson 2005),
which could be adapted for the SP solver as well.

However, there are also drawbacks to the pseudo-spectral method. Chief among
them is the global nature of the FFTs: While this is also the property that affords it
the superior spatial convergence mentioned above, it seriously limits its versatility
because the method can only operated at a single, globally fixed resolution in boxes
with periodic boundary conditions. This limitation is less severe than it might sound
at first – although it does imply that to reach a given desired resolution somewhere
in the simulation box, it must be enforced everywhere, in practice, even adaptive
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approaches to FDM simulations using AMR cannot afford to significantly refine
when running in large volumes due to the quadratic scaling of the time steps. Further,
since refinement must take into account density and velocity for FDM, rather high
resolution is generally required throughout the simulation volume. And finally,
while an AMR code may conceptually perform less work by omitting operations in
regions where they are not needed, modern computing architectures incur severe
penalties for branches in the control flow. Thus, paradoxically, it is increasingly
becoming less efficient to be “smart” with the code’s logic, and instead “brute force”
methods using optimized algorithms (like FFTs) are actually the most effective on
highly parallel hardware such as graphics processing units (GPUs).





4Large simulations of cosmic
structure formation with fuzzy
dark matter

The main contents of this chapter have previously been published as May and Springel (2021),
and are reproduced here with slight modifications. Section 4.9 presents some of the findings
published in Chan, Ferreira, May, et al. (2022).

Abstract

An ultra-light bosonic particle of mass around 10−22 eV/𝑐2 is of special interest as a
dark matter candidate, as it both has particle physics motivations, and may give rise
to notable differences in the structures on highly non-linear scales due to the manifes-
tation of quantum-physical wave effects on macroscopic scales, which could address
a number of contentious small-scale tensions in the standard cosmological model,
ΛCDM. Using a spectral technique, I here discuss simulations of such fuzzy dark
matter (FDM), including the full non-linear wave dynamics, with a comparatively
large dynamic range and for larger box sizes than considered previously. While
the impact of suppressed small-scale power in the initial conditions associated with
FDM has been studied before, the characteristic FDM dynamics are often neglected;
in these simulations, I instead show the impact of the full non-linear dynamics on
physical observables. I focus on the evolution of the matter power spectrum, give
first results for the FDM halo mass function directly based on full FDM simulations,
and discuss the computational challenges associated with the FDM equations. FDM
shows a pronounced suppression of power on small scales relative to cold dark
matter (CDM), which can be understood as a damping effect due to “quantum
pressure”. In certain regimes, however, the FDM power can exceed that of CDM,
which may be interpreted as a reflection of order-unity density fluctuations occurring
in FDM. In the halo mass function, FDM shows a significant abundance reduction
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below a characteristic mass scale only. This could in principle alleviate the need to
invoke very strong feedback processes in small galaxies to reconcile ΛCDM with the
observed galaxy luminosity function, but detailed studies that also include baryons
will be needed to ultimately judge the viability of FDM.

4.1 Introduction

The “standard cosmological model” with ΛCDM has been extremely successful
in describing a wide variety of cosmological observations across a broad range of
physical scales (e. g. Frenk and White 2012; Bull et al. 2016). On small cosmological
scales, however, challenges such as the “cusp–core problem”, the “missing satellite
problem”, or the “too-big-to-fail problem” have sometimes raised questions about
the validity of ΛCDM (Weinberg et al. 2015; Del Popolo and Le Delliou 2017; Boylan-
Kolchin, Bullock, andKaplinghat 2011). Since physical effects experienced by baryons
can become relevant at these scales, it has proven difficult to disentangle the apparent
discrepancies from baryonic physics. In addition, even though the cosmological
properties of cold dark matter are constrained extremely well on large scales, its
micro-physical nature is still completely unknown thus far.

In light of these small-scale questions and the enduring lack of any direct detection
of the most well-studied dark matter candidates, in particular WIMPs, models based
on ultra-light (“axion-like”) scalar particles have been gaining interest as alternative
dark matter models. Due to their small masses, quantum effects are expected to
cause interesting wave-like behavior at small (i. e. galactic) scales compared to heavy
particles like WIMPs or compact objects. These effects have also been proposed to
elucidate some of the “small-scale problems” of CDM; for example, early numerical
simulations showed that ultra-light scalars form cores in the centers of dark matter
halos (Schive, Chiueh, and Broadhurst 2014). Furthermore, light (pseudo-)scalar
particles are a common feature of theories in particle physics, from the original axion
in QCD to a plethora of axion-like particles predicted by unified and early-universe
theories such as string theories (Marsh 2016).

The amount of existing work studying structure formation with CDM utterly
dwarfs that of such FDM, particularly concerning numerical simulations that reliably
probe the non-linear regime. Computations have been performed using a variety
of approaches and numerical methods, although many attempts were limited in
scope (Zhang, Liu, and Chu 2018; Laguë et al. 2021, table 1). Correspondingly,
our understanding of structure formation in FDM cosmologies is still comparatively
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spotty compared to CDM,where decades of experience have led to extremely detailed
insights. Apart from the lower level of research attention, an important reason
impeding insight into FDM has been that numerically solving the corresponding
equations of motion incurs very large computational costs – much higher than those
associated with corresponding calculations of ΛCDM. In particular, while it has
been established that, in the limit of large scales (or large particle mass), the FDM
equations are equivalent to the Vlasov–Poisson equations of CDM (Mocz et al. 2018;
Widrow and Kaiser 1993), the effects of FDM in (mildly) non-linear regimes of
structure formation are still poorly understood when compared to CDM.

Due to the computational requirements, the cosmological volumes studied in
simulations with full FDM dynamics have been especially limited (Woo and Chiueh
2009; Schive, Chiueh, and Broadhurst 2014; Veltmaat, Niemeyer, and Schwabe 2018;
Mocz et al. 2020), which is an issue that this chapter seeks to improve upon. In
particular, I would like to carry out simulations that smoothly connect the non-linear
state reached in isolated FDM halos to the still linear large-scale structure, thereby
bridging, in particular, the regime of mildly non-linear evolution where differences
in the temporal evolution compared to CDM can be expected. To this end, I carry
out very large uni-grid FDM simulations with a spectral method, which fully retains
the quantum-mechanical effects. Because there is still a dearth of precision studies of
how FDM compares to CDM for traditional measures of large-scale structure, I focus
my analysis on central measures of matter clustering, namely the power spectrum
and the halo mass function, and compare to ordinary ΛCDM where appropriate.

While methods which forego a treatment of the full wave dynamics have been able
to conduct simulationswith volumesmuch closer to those attainable using traditional
𝑁-body and smoothed-particle hydrodynamics (SPH) approaches for CDM (Schive
et al. 2016; Veltmaat and Niemeyer 2016; Zhang et al. 2018; Nori and Baldi 2018; Nori
et al. 2019), these do not capture inherent wave phenomena such as interference
effects, which can have a significant impact on the overall evolution at least on small
scales (Li, Hui, and Bryan 2019), leaving the validity of results obtained in this
way unclear in the absence of similar computations solving the fundamental wave
equations. In particular, while all simulations can easily incorporate the impact of the
suppressed small-scale power spectrum present with FDM in the initial conditions,
such methods either lack the wave nature of FDM entirely or only approximate it.
Using the simulations presented in this chapter, I aim to clarify the reliability of
such approximative results by explicitly omitting the suppression in the FDM initial
conditions, starting instead from “standard” ΛCDM initial conditions. In this way, I
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disentangle the two essential physical differences distinguishing FDM from CDM
in cosmological numerical simulations: the initial conditions and the non-linear
dynamics.

This chapter is structured as follows. I describe my numerical approaches for
cosmological simulations of FDM in section 4.3. In section 4.4, I turn to an analysis of
the results for the matter power spectrum, while in section 4.5 I report the findings
for the halo mass function. Section 4.6 discusses halo profiles, and section 4.7 the
differences expected in FDMdue tomodifications of the initial linear theory spectrum
relative to ΛCDM if this is self-consistently computed. Finally, I give my conclusions
in section 4.8.

4.2 Theoretical background

Since the theoretical background and fundamental equations relevant for FDM have already
been covered in section 2.1, the corresponding commentary in May and Springel (2021) will
not be reiterated here and the reader is referred to section 2.1.

4.3 Numerical methodology

My simulations are performed within the same framework as ordinary cosmological
ΛCDM simulations. The simulation volume consists of a cubic box of side length 𝐿
with periodic boundary conditions, which is intended to sample the matter distri-
bution in the universe. The volume is filled with matter whose average comoving
density is the mean background density

⟨𝜌c⟩ = Ωm𝜌crit = Ωm
3𝐻2

0
8𝜋𝐺. (4.1)

In order to solve eqs. (2.3) and (2.4), a 2nd-order symmetrized split-step pseudo-
spectral Fourier method (“kick–drift–kick”) is employed. For a small time step Δ𝑡,
the time evolution can be approximated as follows (Woo and Chiueh 2009; Edwards
et al. 2018):
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1
𝑎(𝑡)

Δ𝑡
2 Φc(𝑡+Δ𝑡, ⃗𝑥)⏟⏟⏟⏟⏟⏟⏟⏟⏟

“kick”
𝑒
𝑖 ℏ

𝑚
1

𝑎(𝑡)2
Δ𝑡
2 ∇2

c⏟⏟⏟⏟⏟
“drift”

𝑒−𝑖 𝑚
ℏ

1
𝑎(𝑡)

Δ𝑡
2 Φc(𝑡, ⃗𝑥)⏟⏟⏟⏟⏟⏟⏟

“kick”
𝜓c(𝑡, ⃗𝑥) (4.4)

where 𝒯 is the time ordering operator and, using the Baker–Campbell–Hausdorff
formula, the time evolution operator has been split into three parts which do not mix
functions of the position and derivative operators.

The fields 𝜓 and Φ are discretized on a uniform Cartesian grid with 𝑁3 grid points
to allow for numerical computations using the FFT. Accordingly, the numerical
algorithm of the pseudo-spectral method performs the following operations:

• 𝜓c ← 𝑒−𝑖 𝑚
ℏ

1
𝑎

Δ𝑡
2 Φc𝜓c (kick) (4.5a)

• 𝜓c ← FFT−1(𝑒−𝑖 ℏ
𝑚

1
𝑎2

Δ𝑡
2 𝑘2

FFT(𝜓c)) (drift) (4.5b)

• Φc ← FFT−1(−
1
𝑘2 FFT(4𝜋𝐺𝑚(|𝜓c|2 − ⟨|𝜓c|2⟩))) (update potential) (4.5c)

• 𝜓c ← 𝑒−𝑖 𝑚
ℏ

1
𝑎

Δ𝑡
2 Φc𝜓c (kick) (4.5d)

• Go to algorithm (4.5a) (4.5e)

Consecutive executions of algorithms (4.5a) and (4.5d) (i. e. except for the initial
and final time steps) can be combined into a single operation 𝜓c ← 𝑒−𝑖 𝑚

ℏ Δ𝑡Φc𝜓c to
improve performance.

The choice of the time step Δ𝑡 in algorithms (4.5a) to (4.5e) is determined by
the requirement that the phase difference in the exponentials must not exceed 2𝜋,
at which point the time step would be incorrectly “aliased” to a smaller time step
corresponding to the phase difference subtracted by a multiple of 2𝜋 due to the
periodicity of the exponential function. Both the kicks (algorithms (4.5a) and (4.5d))
and the drift (algorithm (4.5b)) yield separate constraints for Δ𝑡, which must be
simultaneously fulfilled. The resulting time step criterion is

Δ𝑡 < min(
4

3𝜋
𝑚
ℏ 𝑎2Δ𝑥2, 2𝜋

ℏ
𝑚𝑎

1
|Φc,max|

), (4.6)

where Δ𝑥 = 𝐿/𝑁 is the spatial resolution and Φc,max is the maximum value of the
potential. The constraint involving the resolution Δ𝑥 stems from the drift opera-
tion, while the constraint with the potential Φc,max results from the kick operation.
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The dependence Δ𝑡 ∝ Δ𝑥2 seems to be typical for all numerical approaches to the
Schrödinger–Poisson system of eqs. (2.3) and (2.4), and can be viewed as a reflection
of the relation of the Schrödinger equation to diffusion problems.

Another constraint on the validity of the discretization becomes apparent when
considering the velocity field (eq. (2.10)). Since this is given by the gradient of
the wave function’s phase, whose difference between two points can be at most
2𝜋, it follows that the discretized velocity field cannot exceed a maximum value
(depending on the concrete form of the discretized gradient operator) of about

𝑣max =
ℏ
𝑚

𝜋
Δ𝑥. (4.7)

Velocities 𝑣 ≥ 𝑣max cannot be represented in a simulationwith resolution Δ𝑥. Compar-
ing to eq. (2.13), it becomes apparent that this statement is equivalent to a constraint
on the resolution, which should be good enough to resolve the de Broglie wavelength
of the largest velocities:

Δ𝑥 <
𝜋ℏ

𝑚𝑣max
=

1
2𝜆dB(𝑣max). (4.8)

The requirement to resolve structures on the scale of the de Broglie wavelength,
given by eq. (4.8), in combinationwith the time step requirementΔ𝑡 ∝ Δ𝑥2 (eq. (4.6)),
is one of themain reasonswhy FDMsimulations require somanymore computational
resources than traditional particle-based CDM simulations.

To enable my simulation work, I have implemented the pseudo-spectral algorithm
(algorithms (4.5a) to (4.5e)) as a module in the AREPO code (Springel 2010; Wein-
berger, Springel, and Pakmor 2020), which has been dubbed AxiREPO, in a similar
approach to Mocz et al. (2017) andMocz et al. (2020). Algorithm (4.5c) is performed
using AREPO’s existing Poisson solver algorithm, while the split-step solution to the
Schrödinger equation is solved using newly developed, highly parallel code inspired
by the same algorithm. It, too, makes use of the “Fastest Fourier Transform in the
West (FFTW)” library (Frigo and Johnson 2005) to perform the FFT.

This new implementation enables simulations of grids which are several orders of
magnitude larger than any previous work. The split-step scheme and the integration
with AREPO also make it suitable for future simulations including baryons. All FDM
simulations reported in this chapter were performed using AxiREPO, whereas the
CDM simulations were done using AREPO’s standard TreePM method.
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4.3.1 Initial conditions

As mentioned previously, there is in fact a correspondence between the Vlasov–Pois-
son equations which describe the evolution of a CDMfluid and the Schrödinger–Pois-
son equations, with the latter reducing to the former for ℏ/𝑚 → 0 (Widrow and
Kaiser 1993; Mocz et al. 2018; Garny, Konstandin, and Rubira 2020). A wave function
𝜓( ⃗𝑥) can be constructed from a phase space distribution function 𝑓 ( ⃗𝑥, ⃗𝑝) by means
of a Wigner or Husimi transform. In this case, the correspondence allows one to
“translate” a phase space distribution function to the wave function formalism. This
is very useful because it enables direct comparisons between structure formation
with CDM and FDM from the same ICs.

In general, a wave function on a discretized lattice can be constructed using the
prescription eq. (2.15) (cf. Widrow and Kaiser 1993; Mocz et al. 2018). For the case
of a “cold” or “single-stream” distribution function as in the case of CDM, where
each point in space has a single well-defined value for the velocity, the construction
of the wave function simply reduces to the polar decomposition (eq. (2.9)), with the
absolute value and phase determined by the density and velocity at each point, re-
spectively,via eqs. (2.16) and (2.17). Equation (2.17) can be easily solved numerically
by applying the spectral method to eq. (2.18).

The ICs were generated using the N-GenIC code (Springel 2015), which employs
the Zel’dovich approximation to generate a perturbed particle distribution, for an
ordinary ΛCDM cosmological simulation at the starting redshift 𝑧 = 1/𝑎 − 1 = 127
with an input power spectrum following Efstathiou, Sutherland, and Maddox (1990)
and Efstathiou, Bond, and White (1992), i. e. of the form

𝑃(𝑘) ∝ 𝑘(1 + (𝑎𝑘 + (𝑏𝑘)
3
2 + 𝑐2𝑘2)

𝜈
)

− 2
𝜈

(4.9)

with 𝑎 = 6.4/Γ ℎ−1Mpc, 𝑏 = 3.0/Γ ℎ−1Mpc, 𝑐 = 1.7/Γ ℎ−1Mpc, Γ = Ωmℎ = 0.21,1 and
𝜈 = 1.13. A wave function was constructed from the same ICs using the procedure
in eqs. (2.16) and (2.17).

4.3.2 Resolution and convergence tests

Before using the newly-developed FDM AREPO module AxiREPO for simulations of
larger cosmological boxes, extensive tests were performed on boxes of comoving size
1See section 4.3.4.
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Figure 4.1: Projected dark matter density at 𝑧 = 0 in 𝐿 = 1 ℎ−1Mpc cosmological box
simulations of FDM with 𝑚𝑐2 = 1.75 × 10−23 eV and CDM ICs for different resolutions. A
high-resolution CDM simulation is shown for comparison. The 99th-percentile velocity
of the particles in the CDM simulation is given as 𝑣99.

𝐿 = 1 ℎ−1Mpc.2 This not only allowed for verification of the code’s correctness by
comparing to CDM simulations with the same ICs and to other implementations of
FDM, but also to study the behavior of the pseudo-spectral method. Of particular
interest are the resolution requirements, e. g. to what extent the numerical results
remain valid and the convergence of the matter power spectrum is compromised
when the velocity constraint (eq. (4.7)) is violated. Moreover, the differences to the
behavior of CDM simulations are of interest even in this small test volume. Although
the simulation volume is too small to be cosmologically representative at 𝑧 = 0 since
even the largest scales become non-linear by then, there are opportunities to observe
what differences (or similarities) become apparent in both the linear (early times)

2The cosmological parameters are the same as in section 4.3.4.
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and non-linear (late times) regimes of both dark matter models.

Figure 4.1 shows the projected density at 𝑧 = 0 of such test simulations across a
wide range of resolutions, with a CDM simulation for comparison.3 Notably, even at
the lowest resolution, the qualitative features are preserved and structures on the
largest scales remain the same. However, for the lower resolutions, structures become
increasingly “smeared out” (filling a larger volume), and the resulting range of values
in the density contrast is decreased, indicating that the lack of resolution interferes
with the formation of more compact structures. On the other hand, for the higher
resolutions, there are no appreciable discrepancies in the low-density regions and
filaments, with the only differences being slight changes in the position and internal
structure of the largest halos. This is in line with the idea of the velocity criterion
eq. (4.7) and indicates that simulations can yield valid answers in regions with low
velocities even in the presence of high-velocity regions which violate the criterion.
Common to all the FDM simulations, and in contrast to the CDM simulation, almost
all small-scale structure is erased due to the Heisenberg uncertainty principle with
a large de Broglie wavelength (𝜆dB = 1.21 kpc for 𝑚𝑐2 = 10−22 eV, 𝑣 = 100 kms−1).
The FDM structures consist of a few massive halos and smooth overdense filaments,
while in CDM, the filaments fragment into sub-halos down to the smallest scales.

A more quantitative indication of numerical convergence is given in fig. 4.2 by the
power spectra of the density field. This demonstrates that, for the given setup, grid
sizes of 1283 and smaller lead to significant deviations from higher-resolution results
even on large scales. This discrepancy is visible even in the density projections of
fig. 4.1. On the other hand, while it becomes difficult to see any visual differences for
grid sizes of 2563 and larger, the power spectra show that, to some degree, even the
2563 grid suffers from lack of power on smaller scales. In this case, at least roughly,
the velocity criterion seems to give a rather good indication of the resolution required
to achieve convergence of the power spectrum onmost scales (cf. the values of 𝑣max in
fig. 4.1). Generally, the (relative) lack of power is most pronounced and persists for
higher resolutions on smaller scales, i. e. the power spectrum converges progressively
from larger to smaller scales with increasing resolution, although even convergence
on just the largest scales places significant demands on resolution (better than a 1283

grid in this case).

3Due to the fact that at 𝑧 = 0, all scales have become non-linear with such a small box size, the
largest-scale structures parallel to the coordinate axes (“fundamental modes”, i. e. the modes with
the minimal value of 𝑘 = 2𝜋/𝐿) are clearly visible.



58 | 4 Large simulations of cosmic structure formation with fuzzy dark matter

10−210−1100
𝑟 / ℎ−1 Mpc (comoving)

10−3

10−2

10−1

100

𝑃(
𝑘)

/
ℎ−

3
M
pc

3
(c

om
ov

in
g)

𝑧 = 0.0

linear theory
483

643

1283

2563

4003

5123

101 102 103

𝑘 / ℎMpc−1 (comoving)

10−1

101

103

𝑃(
𝑘)

𝑃(
𝑘)

lin
ea
r

Figure 4.2: Dark matter power spectra for cosmological FDM simulations with different
resolutions, box size 𝐿 = 1 ℎ−1Mpc, and FDM mass 𝑚𝑐2 = 1.75 × 10−23 eV, at 𝑧 = 0
evolved from CDM ICs. The legend indicates the grid size for each included simulation.
The power spectrum evolved using linear perturbation theory is shown for comparison.
The bottom panel shows the ratio of the power spectra to the result from linear theory.

4.3.3 Computational cost analysis

As mentioned before, the required computational resources – both run-time cost
and memory – are a significant obstacle when attempting to perform large-scale
simulations of FDM. The run-time cost depends on three simulation parameters: the
FDM mass 𝑚, the (comoving) box size 𝐿 and the number of grid points 𝑁3 (where
𝑁 is the number of points per dimension).4

For each individual time step, the operations in algorithms (4.5a) to (4.5e) are
performed. The cost of a single time step only depends on the grid size 𝑁3, while
𝑚 and 𝐿 only enter the computation through multiplication as constant factors. It
is dominated by the cost of the FFT operations, which scales as 𝑂(𝑁3 ln(𝑁3)). The

4Instead of 𝑁, the resolution Δ𝑥 = 𝐿/𝑁 can be equivalently considered.
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Figure 4.3: The expected computational cost of cosmological simulations when running to
𝑧 = 0 as a function of box size 𝐿 for a grid size of 𝑁3 = 80963 and different FDM masses.
Shaded areas indicate regions where the velocity constraint eq. (4.7) is violated for the
corresponding mass at 𝑧 = 0 due to lack of resolution. The concrete values of CPU time
correspond to the Cobra cluster at MPCDF for reference.
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Figure 4.4: The expected computational cost of cosmological simulations with different FDM
masses as a function of target redshift 𝑧end for a grid size of 𝑁3 = 80963 at the maximum
allowed box size 𝐿 = 𝐿max, as given by the velocity constraint eq. (4.7). The points
where the curves intersect their associated shaded regions in fig. 4.3 would correspond
to 𝑧end = 0 in this figure.
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total cost then depends on the number of time steps which have to be performed,
which is determined by the time step size given by eq. (4.6). The drift criterion ∝ Δ𝑥2

is typically more stringent, especially in light of the resolution requirements (e. g.
eq. (4.7)) and for higher redshifts. Thus, the total number of time steps is roughly
inversely proportional to the limit given by the drift criterion, which results in the
following approximate behavior of the computation time 𝐶:

𝐶 ∝
𝑁5 ln(𝑁3)

𝑚𝐿2 . (4.10)

This relation was also verified in practice using measurements of small test computa-
tions.

Particularly striking is the strong dependence of eq. (4.10) on 𝑁5, which rapidly
leads to exploding computational costs for larger 𝑁. At fixed 𝑁, the cost can be
decreased by choosing a larger box size 𝐿 because this reduces the resolution Δ𝑥.
However, as mentioned before, the resolution requirements are quite strict due to
the inherent scale in the Schrödinger–Poisson system, which must be resolved in
order to yield reliable results.

To give a tangible reference for the absolute costs involved on the one hand, but
also the code’s performance on the other hand, fig. 4.3 shows the expected cost of
simulations with grid size 𝑁3 = 80963 to 𝑧 = 0 in CPU hours on the state-of-the-art
Cobra supercomputer at the Max Planck Computing and Data Facility (MPCDF).5

Figure 4.3 displays the CPU time for a range of masses 𝑚 with variable box size 𝐿.
Even when allowing for the velocity criterion eq. (4.7) to be violated, it becomes clear
that such a simulation would take at least 107CPUh. Even worse, the resolution
requirements severely limit the possible simulation volume to 𝐿 < 10 ℎ−1Mpc for
the mass range of interest. Since the de Broglie wavelength increases with smaller
masses, the resolution requirements can be loosened by choosing much smaller
values for 𝑚, but this does not nearly go far enough as the physically viable range is
bounded around ≳ 10−22 eV. The computational cost for the largest possible box size
𝐿max at a given mass 𝑚 (intersections of the graphs with the vertical lines) decreases
only weakly with decreasing 𝑚.

Figure 4.4 shows the same computation time at the largest possible box size due to
eq. (4.7) for each mass, but now for the case where the simulation is stopped earlier

5https://www.mpcdf.mpg.de/services/supercomputing/cobra

https://www.mpcdf.mpg.de/services/supercomputing/cobra
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Table 4.1: List of performed simulations with important characteristics. The lengths given
for the box sizes and resolutions are comoving.

Type Res. el. 𝐿 / ℎ−1Mpc 𝑚𝑐2 / eV Resolution

FDM 86403 10 7 × 10−23 1.16 ℎ−1 kpc
FDM 43203 10 (3.5, 7) × 10−23 2.31 ℎ−1 kpc
FDM 30723 10 (3.5, 7) × 10−23 3.26 ℎ−1 kpc
FDM 20483 10 (3.5, 7) × 10−23 4.88 ℎ−1 kpc
FDM 43203 5 7 × 10−23 1.16 ℎ−1 kpc
FDM 30723 5 (3.5, 7) × 10−23 1.63 ℎ−1 kpc
FDM 20483 5 (3.5, 7) × 10−23 2.44 ℎ−1 kpc
FDM 10243 5 (3.5, 7) × 10−23 4.88 ℎ−1 kpc
CDM 20483 10 — 9.69 × 103 ℎ−1 𝑀⊙
CDM 10243 10 — 7.75 × 104 ℎ−1 𝑀⊙
CDM 5123 10 — 6.20 × 105 ℎ−1 𝑀⊙
CDM 10243 5 — 9.69 × 103 ℎ−1 𝑀⊙
CDM 5123 5 — 7.75 × 104 ℎ−1 𝑀⊙

than 𝑧 = 0.6 Unfortunately, the computational cost does not depend very strongly on
the final redshift (approximately ∝ 𝑧−1/2 in the region shown); it is merely lowered
by a factor of ≲ 5 even when stopping at 𝑧 = 6, and still remains at several million
CPU hours for a 𝑁3 = 80963 simulation.

4.3.4 Simulations

All of my simulations were performed using the cosmological parameters Ωm = 0.3,
Ωb = 0, ΩΛ = 0.7, 𝐻0 = 70 kms−1Mpc−1 (ℎ = 0.7), and 𝜎8 = 0.9,7 with ICs as
described in section 4.3.1. The same random seed was shared for the generation
of all ICs at 𝑧 = 127 in order to allow for a direct comparison between different
dark matter models and resolutions. In order to avoid the onset of resolution effects
that would affect even my highest-resolution simulations, the simulations were run
until 𝑧 = 3. For comoving box sizes of 5 ℎ−1Mpc and 10 ℎ−1Mpc, and masses 𝑚𝑐2 of
3.5 × 10−23 eV and 7 × 10−23 eV, simulations with different resolutions – up to grid
sizes of 𝑁3 = 86403 – were performed. A detailed list of the different simulations is
given in table 4.1.
6The unevenness in the lines results due to AREPO’s time binning procedure, which “discretizes”

the allowed time step values.
7As usual, the density parameters Ω𝑖 indicate the values at 𝑧 = 0.
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To date, these are the largest three-dimensional cosmological simulations of struc-
ture formation including the full FDM dynamics to low redshifts, with a simulation
volume which is at least 64 times larger and a grid which has at least 600 times
more resolution elements than any comparable existing work. The largest simulation
required more than 7 × 106CPUh on the Cobra cluster to complete. Previous efforts
(using various methods) have only reached box sizes of 2.5 ℎ−1Mpc (Mina, Mota,
and Winther 2022, using an AMR method, until 𝑧 = 2.5) or 1.7 ℎ−1Mpc (Mocz et al.
2020, also with a pseudo-spectral method, until 𝑧 = 5.5) for full FDM simulations,
and 2.5 ℎ−1Mpc with a hybrid method (Veltmaat, Niemeyer, and Schwabe 2018, i. e.
not including the FDM dynamics everywhere in the simulation volume) for similar
cosmological simulations.

4.3.5 Grid-based halo finding

The halo mass function (HMF) is an important measure of large-scale structure. For
typical CDM simulations, it is determined using an algorithm like friends-of-friends
(FoF) in AREPO, which identifies halos by connecting simulation particles (point
masses) whose distance to other particles is below a certain threshold. When using
the pseudo-spectral method, however, there are no particles, and the density field is
instead represented by a Cartesian grid. This means that widely-used algorithms,
which operate on the particle distribution, cannot be used to analyze the FDM
simulations presented here.

Because of this, a modified version of the FoF algorithm was developed for this
dissertation to enable the determination of the HMF for a discretized density grid.
Instead of a linking length, this grid-based halo finder uses a density threshold as a
parameter. Adjacent cells in the grid are linked if their density exceeds the density
threshold. The grid-based halo finder is part of the pseudo-spectral FDM AREPO
module AxiREPO.

Figure 4.5 demonstrates that this new halo finder performs well in comparison
to the standard particle-based FoF algorithm. Using a CDM simulation with 5123

particles, the density was represented both using the original particle data and a
Cartesian grid with 10243 grid points whose density values were determined using
cloud-in-cell (CIC) mass assignment. The HMF was determined with the particle
and grid data as input for FoF and the new grid-based halo finder, respectively. As
evident in fig. 4.5, both procedures show excellent agreement. Differences arise in
the lightest halos, which are limited by resolution since density is always spread out
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Figure 4.5: The HMF of a cosmological ΛCDM simulation at 𝑧 = 0 with 𝐿 = 10 ℎ−1Mpc and
5123 particles, as determined using AREPO’s standard FoF algorithm (“particles”) and
the newly implemented grid-based halo finder (“grid”). The latter used the density grid
constructed from a CIC mass assignment of the simulation particles onto a grid with
10243 points as input, with an overdensity threshold of 60 times the matter background
density. The bottom panel shows the ratio of the mass functions. Note that the masses
given here are the masses of the FoF groups (i. e. the sum of all particle or grid cell masses
in the group) to give a direct comparison of the two approaches.

over at least one cell volume, and slight variations are present for the most massive
halos, where statistical effects play a role since there are only a few halos per mass
bin.

4.4 Dark matter power spectrum

The matter power spectrum gives important insight into how matter clusters at
different length scales, and its evolution in time is by now quite accurately known for
ΛCDM (e. g. Jenkins et al. 1998), even when baryonic effects are included (Springel
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Figure 4.6:Darkmatter power spectra at different redshifts for a high-resolution cosmological
FDM simulation with box size 𝐿 = 10 ℎ−1Mpc, FDM mass 𝑚𝑐2 = 7 × 10−23 eV, grid size
𝑁3 = 86403, and CDM ICs. The power spectrum evolved using linear perturbation theory
is shown for comparison. The lower panels show the ratio of the power spectra to the
result from linear theory. For 𝑧 = 63, the dashed line additionally indicates the FDM
Jeans scale (eq. (2.14)).
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et al. 2018). The power spectrum is also a particularly important diagnostic for a
comparison of FDM with CDM, because the former is expected to suppress structure
formation at scales smaller than 𝜆dB due to the Heisenberg uncertainty principle.
Due to the use of CDM ICs, my results demonstrate to what extent the dynamics of
the Schrödinger–Poisson eqs. (2.3) and (2.4) affect the clustering of matter compared
to CDM, even without the initial suppression present in a “realistic” FDM cosmology
(cf. section 4.7).

Figure 4.6 shows the time evolution of the matter power spectra of FDM at the
highest resolution of 86403 cells in a 10 ℎ−1Mpc box. From the top left to the bottom
right panel, I show redshifts from 𝑧 = 63 to 𝑧 = 3, and compare to expectations
from linear theory. In particular, the bottom of each panel gives the ratio of the
measured FDM power to the linear theory power spectrum used for initializing the
simulation. At high redshifts and at small 𝑘, FDM accurately follows linear theory,
with modes growing independently with the same linear growth factor, just like
CDM does, so that the pattern of random fluctuations of the particular realization
around the smooth initial input spectrum is preserved in time. Beginning at scales
around 𝑘 ≈ 10 ℎMpc−1 and a redshift of 𝑧 ≈ 15, signs of mildly non-linear evolution
are apparent, which manifest themselves in a stronger than linear growth of power.
This non-linear evolution becomes quickly more pronounced in a way reminiscent of
CDM, except that on the smallest resolved scales, for 𝑘 ≥ 1000 ℎMpc−1, the non-linear
growth appears sluggish and lagging behind that seen on larger scales.

It is now important to examine on which scales and at which times these results are
quantitatively reliable. As discussed earlier, the stringent numerical requirements of
FDMmake this more involved than for CDM, because here even the large-scale linear
growth requires a fairly high resolution to get right, and it is not readily clear how
numerical limitations will manifest themselves in the results. In fig. 4.7 I first compare
results for FDM simulations in a 10 ℎ−1Mpc box using different resolutions, with grid
sizes from 20483 to 86403. Focusing on the three redshifts of 𝑧 = 31, 𝑧 = 10 and 𝑧 = 3,
one can see that the results still appear well converged at the high redshifts of 𝑧 = 31
and 𝑧 = 10 (although the lowest-resolution simulation with 𝑁3 = 20483 slightly
starts to lag behind at 𝑧 = 10 on smaller scales). However, this ceases to be true at the
lower redshift of 𝑧 = 3, where the growth of the lower-resolution simulations now
clearly trails behind, and this effect occurs on an extended range of scales, including
fairly large ones, quite unlike in CDM, where the impact of spatial resolution limits
is typically constrained to fairly small scales. In particular, it becomes clear that once
the onset of non-linear evolution is not properly resolved anymore in a simulation,
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Figure 4.7: Dark matter power spectra for cosmological FDM simulations with box size
𝐿 = 10 ℎ−1Mpc, FDM mass 𝑚𝑐2 = 7 × 10−23 eV and CDM ICs at different resolutions
(indicated by different colors) and different redshifts (indicated by solid, dashed, and
dotted lines). The power spectrum evolved using linear perturbation theory is shown for
comparison. The bottom panel shows the ratio of the power spectra to the result from
linear theory at 𝑧 = 3.

the FDM spectra even stop to follow linear growth on the largest scales, making the
simulations appear to be frozen in in their current state.

Further insights into these numerical effects can also be obtained by examining
how they vary with box size and axion particle mass at a fixed epoch of 𝑧 = 3. This
is shown in figs. 4.8 and 4.9. Here, the impact of eq. (4.8) is clearly visible: The
resolution requirements becomemore stringent with larger axion masses and at fixed
grid size, a larger box size directly implies worse resolution. Thus, at fixed grid size,
if axion mass and box size are scaled by the same factor, the resulting power spectra
are identical except at small scales, which are impacted by the change in Jeans length
with different axion masses. Accordingly, due to resolution effects and contrary to
the physical expectation, for fixed box size and grid resolution, it is possible to see
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Figure 4.8: Dark matter power spectra for cosmological FDM simulations at fixed redshift
(𝑧 = 3) with FDM mass 𝑚𝑐2 = 7 × 10−23 eV using CDM ICs, with varying box sizes
(𝐿 = 5 ℎ−1Mpc and 10 ℎ−1Mpc) and resolutions. The power spectrum evolved using
linear perturbation theory is shown for comparison. The bottom panel shows the ratio of
the power spectra to the result from linear theory.

more small-scale power when the particle mass is lowered, since lower masses have
less stringent resolution requirements.

I finally come to a direct comparison of FDM with the (non-linear) CDM power
spectrum in fig. 4.10. While both accurately agree with each other and with linear
perturbation theory at large scales and early times, some differences start to show
up as early as 𝑧 ≈ 15. The non-linear small-scale power enhancement sets in some-
what more vigorously for CDM than for FDM. For example, while mild non-linear
amplification is similar at 𝑘 ≈ 10 ℎMpc−1 in CDM and FDM for 𝑧 = 15, this effects
extends to smaller scales 𝑘 ≈ 100 ℎMpc−1 in CDM, whereas FDM still pretty much
tracks linear growth there. From the viewpoint of the overall time evolution, it can
thus be said that the onset of non-linear structure formation is delayed for FDM, and
does not proceed strictly in the same bottom-up fashion as in CDM.
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Figure 4.9: Dark matter power spectra for cosmological FDM simulations at fixed redshift
(𝑧 = 3) with box size 𝐿 = 10 ℎ−1Mpc using CDM ICs, with varying FDM masses
(𝑚𝑐2 = 3.5 × 10−23 eV and 7 × 10−23 eV) and resolutions. The power spectrum evolved
using linear perturbation theory is shown for comparison. The bottom panel shows the
ratio of the power spectra to the result from linear theory.

Interestingly, FDMhowever eventually catches up in its non-linear growth and then
shows a quite similar overall shape of the non-linear power spectrum. While FDM
power is still somewhat suppressed at 𝑧 ≤ 7 for non-linear scales, the difference to
CDM is much smaller than at earlier redshifts. This is true until a characteristic scale
of around 𝑘 ≈ 1000 ℎMpc−1, where the FDM non-linear power drops significantly
below the CDM power. This scale appears to be related to the “quantum pressure”
effects in FDM, and is thus ultimately related to the particle mass.

Curiously, just before the non-linear FDM power decays away from CDM towards
small scales, it manages to slightly exceed it. This effect could be a reflection of the
interference patterns in the dark matter density field resulting from the wave-like
nature of FDM, which generates transient structures of size 𝜆dB that are clearly visible
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Figure 4.10: Dark matter power spectra at different redshifts for a high-resolution cosmologi-
cal FDM simulation with box size 𝐿 = 10 ℎ−1Mpc, FDM mass 𝑚𝑐2 = 7 × 10−23 eV, grid
size 𝑁3 = 86403, and CDM ICs, compared to cosmological 𝑁-body CDM simulations
with different resolutions. The power spectrum evolved using linear perturbation theory
is shown for comparison. The lower panels show the ratio of the power spectra to the
result of the highest-resolution CDM simulation. For 𝑧 = 63, the dashed line additionally
indicates the FDM Jeans scale (eq. (2.14)). Faint dotted lines show the shot noise limits
of the 𝑁-body simulations; the power spectrum cannot be measured accurately once it
reaches this limit.
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in high-resolution images that zoom in on large halos.8 These types of order-unity
density fluctuations are absent in CDM. If the associated enhancement of power
localized around a characteristic scale 𝑘 could bemeasured by some tracer sufficiently
accurately, it could be a tell-tale sign of FDM.

4.5 Halo mass function

One of the most important and fundamental outcomes of structure formation are
gravitationally collapsed structures of dark matter, so-called halos, which are in
turn the sites of baryonic galaxy formation processes. The abundance of halos as a
function of mass and epoch is thus fundamental to any cosmological model.

For the CDM scenario, the (extended) Press–Schechter formalism (Press and
Schechter 1974; Sheth and Tormen 1999) has proven to be a simple and quite reliable
approach to estimate the HMF and its evolution based on the linear theory power
spectrum and the linear growth factor alone. Comparisons to full 𝑁-body simulations
have both verified the basic approach and led to the calibration of more accurate
empirical fitting formulae describing the HMF (Jenkins et al. 2001; Tinker et al. 2008;
Despali et al. 2016). As a result, the HMF in pure CDM models is now accurately
known and understood.

In contrast, the situation for FDM is much more murky. While a few analytic
estimates have been published (Marsh and Silk 2014), based loosely on the idea of a
Jeans-filtered power spectrum to account for the “quantumpressure”, it is still unclear
whether these approaches are quantitatively reliable. Recently, Kulkarni and Ostriker
(2022) have advocated that a sharp 𝑘-space filtering in the Press–Schechter formalism
with a variable cut-off may be more adequate for the FDM regime. But their predic-
tions could only be compared to FDM mass function estimates by Schive et al. (2016),
which in turn were based on an approximate technique of removing “spurious”
low-mass halos in a collisionless 𝑁-body simulation with truncated initial fluctuation
spectrum, similar to how warm dark matter models are often treated (Wang and
White 2007). Ultimately, full non-linear simulations of the Schrödinger–Poisson
system are required to obtain quantitatively reliable results. However, due to the
numerical challenges involved in large-volume simulations of FDM, such determina-
tions have not been obtained thus far.

8A similar effect (although in a different cosmological context) has been found in Mocz et al. (2020).
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Figure 4.11: Projected dark matter density at 𝑧 = 3 of a 3 ℎ−1Mpc (comoving) slab in a high-

resolution cosmological box simulation of FDM with box size 𝐿 = 10 ℎ−1Mpc, FDM mass
𝑚𝑐2 = 7 × 10−23 eV, grid size 𝑁3 = 86403, and CDM ICs. The largest halos identified
with the halo finder are marked with circles whose radii indicate the halos’ virial radii
𝑅200.

My new simulations for the first time allow corresponding measurements, al-
though the results are not representative of a fully consistent FDM cosmology due to
the use of CDM ICs. However, my simulations allowme to demonstrate how strongly
the FDM dynamics alone impact the HMF, and accordingly, to what extent their
omission might affect the result. To this end, I study the HMF using the grid-based
halo finder introduced in section 4.3.5, whose operation on my largest simulation
is demonstrated in fig. 4.11. In fig. 4.12, I show the obtained mass functions for the
FDM and CDM cases for a set of example simulations.9 As expected from the power

9The halo masses are determined using the spherical overdensity definition, i. e. identifying the
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Figure 4.12: HMF of cosmological FDM and CDM simulations at 𝑧 = 3 with a box size of
𝐿 = 10 ℎ−1Mpc, CDM ICs, and FDM masses of 𝑚𝑐2 = 7 × 10−23 eV and 3.5 × 10−23 eV
(top and bottom panels, respectively). The HMF derived for CDM by Sheth and Tormen
(1999) is shown for comparison. The dotted lines show the fitting function determined
by Schive et al. (2016) for the given FDM mass, while the dashed lines show a fit of the
data to a similar function (eq. (4.11)) with two free parameters. The lower sub-panels
show the ratios of the mass functions to the CDM result.
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spectra, the HMF of FDM exhibits a lack of low-mass halos, but agrees for massive
halos. To obtain essentially perfect agreement with CDM for the most massive halos,
however, requires sufficiently high resolution in the FDM calculation for the target
redshift. As seen earlier, the numerical resolution requirements become ever more
stringent towards lower redshift, and once they start to be compromised, the growth
on large (even still linear) scales becomes damped, which then manifests itself in
halo masses which are biased low. This is clearly seen in fig. 4.12 in the comparison
of the low- and high-resolution FDM results for the HMF.

More interesting, however, is the abundance reduction of low-mass halos in FDM.
Indeed, the delayed onset of structure formation becomes apparent even more clearly
in the HMF than in the power spectrum, with almost no objects present before 𝑧 = 7.
At late times, there is a dearth of low-mass halos in the results, but the deficit appears
not as strong as the cut-off predicted by Kulkarni and Ostriker (2022). Rather, it
appears that power transfer to smaller scales is sufficiently strong in FDM that the
break in the HMF is weaker than predicted by simplified models based on “quantum
pressure”-filtered versions of the Press–Schechter formalism. This reinforces the
notion that simply applying a Jeans filtering at the linear level and assuming that all
smaller scales never grow and thus can be ignored does not necessarily yield sufficient
quantitative accuracy to predict the non-linear outcome of FDM. On the other hand,
the simulations shown in fig. 4.12 do not yet include the effect of ICs appropriate for
the FDMmodel, which feature a strong cut-off even in the initial power spectrum (see
section 4.7) and are thus expected to result in additional suppression of low-mass
halos.

Also shown in fig. 4.12 are two fits, given by dotted and dashed lines, in a fashion
similar to Schive et al. (2016). While the dotted line uses exactly the same function
as given in Schive et al. (2016) for the corresponding particle mass 𝑚, the dashed
line is a modified fit of the form

d𝑛
d𝑀∣

FDM
(𝑀, 𝑧) =

⎛⎜⎜⎜⎜
⎝

1 + ⎛⎜⎜⎜
⎝

𝑀
𝑀0

(
𝑚𝑐2

10−22 eV
)

4
3 ⎞⎟⎟⎟
⎠

𝛼
⎞⎟⎟⎟⎟
⎠

−2.2
d𝑛
d𝑀∣

CDM
(𝑀, 𝑧), (4.11)

where the Sheth and Tormen (1999) mass function has been used for the CDM
mass function (d𝑛/d𝑀)∣CDM(𝑀, 𝑧). In other words, the mass parameter 𝑀0 and

densest cell (FDM) or the particle with theminimumgravitational potential (CDM) as the center of
a halo, the halo’s virialmass𝑀200 is defined as the enclosedmass of a sphere around the halo center
with a radius such that the enclosed region has a mean density of 𝜌200 = 200⟨𝜌⟩ = 200Ωm𝜌crit.
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the inner exponent 𝛼 are allowed to vary compared to the values found in Schive
et al. (2016) (𝑀0 = 1.6 × 1010 𝑀⊙ and 𝛼 = −1.1 in Schive et al. (2016)). The result
shows that while an appropriate fit to the mass function can be obtained using a
very similar functional form, the shape changes slightly, and the peak mass 𝑀0 shifts
to much lower halo masses. This indicates that either the method used by Schive
et al. (2016) underestimates the number of low-mass halos, or that the inclusion
of FDM-appropriate initial conditions (as discussed in section 4.7) causes a strong
impact on the formation of low-mass halos. This question can only be resolved by
performing another set of full FDM simulations with self-consistent initial conditions.

4.6 Halo profiles

The internal density structure of cosmological dark matter halos is a further key out-
come of non-linear structure formation whose importance can hardly be overstated.
This is because of its crucial influence on the size, kinematics and morphology of
galaxies forming in the dark matter halos, as well as on the gravitational lensing
strength of these objects. These properties are of course decisive for the viability of a
cosmological model in the first place. For cold dark matter models, the spherically
averaged density profiles have 𝜌(𝑟) ∝ 𝑟−1 density cusps at their centers (Navarro,
Frenk, and White 1996), giving rise to a particular rotation curve shape of galaxies.

One of the often cited motivations for considering FDM is the so-called cusp–core
problem in ΛCDM, combined with the expectation that FDM naturally produces
cored density profiles that may be potentially easier to reconcile with rotation curve
data of certain galaxies. By considering a spherically-symmetric ground state of FDM,
one arrives at solutions called solitons, whose density profiles are flat towards their
centers. The production of such solitonic cores has been predicted on theoretical
grounds and has been verified with simulations of small cosmological volumes
(Schive, Chiueh, and Broadhurst 2014). Here, I am interested in testing whether I
also see them in my comparatively large-volume simulations, which have however
quite limited ability to resolve the internal structure of individual halos.

In fig. 4.13 I therefore consider spherically averaged density profiles, stacked for
several different mass ranges,10 in my highest-resolution simulation at 𝑧 = 3. The
stacking greatly reduces halo-to-halo scatter and allows me to clearly identify the
mean density profile. For comparison, I also show in the right panel equivalent
10The “stacking” is performed by determining the mean density across all halos in a given mass bin

for each radial bin.
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Figure 4.13: “Stacked” halo profiles at 𝑧 = 3 for several bins of virial mass 𝑀200 in 𝐿 =
10 ℎ−1Mpc cosmological box simulations of FDM (𝑚𝑐2 = 7 × 10−23 eV, 𝑁3 = 86403) and
CDM (5123 particles), using CDM ICs. The number of halos contained in each mass
bin is stated in parentheses. The top panel shows the results for FDM, while the bottom
panel shows those for CDM. Thin dashed lines show NFW fits (eq. (4.13)) to the region
within the virial radius 𝑅200, which is indicated with thick lines. For FDM, the inner
region of the halo has been excluded from the NFW fit and instead been fit to the soliton
density profile (eq. (4.12)), as indicated by dot-dashed lines. The FDM grid resolution is
shown as a vertical dotted line.
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density profiles for halos in a corresponding CDM 𝑁-body simulation. As before,
the centers of halos have been identified as the densest cell in the FDM case, or the
particle with the minimum gravitational potential in CDM, while the total halo mass
has been determined with the spherical overdensity definition in both cases. The
measurements of the density profiles include all mass around the halo centers, i. e.
beyond 𝑅200, the mean profiles eventually slow their decline and asymptote to the
cosmic mean density.

In the FDM case, the formation of solitonic cores in low-mass halos can clearly be
seen, as illustrated by the dot-dashed lines, which are fits to the analytic approxima-
tion of the soliton density profile by Schive et al. (2014):11

𝜌c,soliton(𝑟c) =
1.9 × 109 𝑎−1( 𝑚𝑐2

10−23 eV
)

−2
( 𝑟s
kpc)

−4

(1 + 0.091( 𝑟c
𝑟s)

2
)

8 𝑀⊙ kpc−3. (4.12)

Note that this profile depends on the core radius 𝑟s only, without further free param-
eters. My simulations thus accurately reproduce earlier work on the shape of the
innermost mean profile, where the “quantum pressure” dominates.12 In the outer
parts of the halos, the run of the mean density follows the NFW form (Navarro,
Frenk, and White 1996)

𝜌c,NFW(𝑟c) =
𝜌0

𝑟c
𝑅s

(1 + 𝑟c
𝑅s

)
2 (4.13)

rather well. It is thus tempting to use a combination of a solitonic core and a NFW
profile as comprehensive description of the non-linear density structure of FDM
halos, and to use this to forecast the rotation curve of galaxies and the core size of
galaxies as a function of their virial mass (Burkert 2020). I caution, however, that
this neglects the potentially significant impact of order-unity density fluctuations

11As before, 𝜌c refers to the comoving density; 𝑟c is the comoving distance from the soliton center.
12Since I use the mean of many halo density profiles in mass bins of a given width, the physical

interpretation of fitting the soliton profile eq. (4.12), which describes a single soliton (with a given
mass/radius), to such mean profiles is not necessarily immediately clear. The halos in a given
mass bin have a range of (soliton) masses, which are distributed according to the HMF. However,
since the soliton profile is simply flat in the center and for most of its domain of applicability, such
a fit will simply produce a central density corresponding to the HMF-weighted mean soliton mass
of the binned halos. Although it is not necessarily to be expected that the drop in density beyond
the flat central plateau of the stacked profile will be accurately described by the soliton profile due
to the varying soliton radii contained in each mass bin, the general agreement with the soliton
profile demonstrates the presence of the cores described in previous work in my simulations.
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of the FDM wave function outside the solitonic core, which are completely lost in
the spherical averaging and the halo stacking. Likewise, it is unclear how severely
baryons can impact the innermost density profile. These baryonic effects are quite
uncertain in CDM, but even less is known about them in FDM, where they could
potentially be stronger due to the lower darkmatter densities in the centers of halos. It
will thus likely require cosmological hydrodynamic simulations of galaxy formation
in FDM to arrive at firm predictions about rotation curve shapes. My results here
confirm that such calculations are in principle feasible down to intermediate redshifts
in sufficiently large volumes to allow population studies of galaxies, especially if the
resolution can be made spatially adaptive (also see e. g. Mocz et al. 2020).

4.7 Fuzzy dark matter initial conditions

Finally, I would like to briefly consider the additional source of differences in FDM
relative to CDM introduced due to modifications of the initial conditions. Thus
far, I had focused for this chapter on studying differences between CDM and FDM
resulting just from the different dynamics induced by the Schrödinger–Poisson
system of equations as opposed to the Vlasov–Poisson system governing collisionless
dynamics of classical particles. To this end, I had used identical initial perturbations,
retaining the CDMpower spectrum for definiteness. However, a physically consistent
model of a FDM cosmologywill witness modifications of its initial conditions relative
to CDM, particularly in terms of a significant reduction in small-scale power below a
scale set by the “quantum pressure”, yielding something resembling the truncated
power spectra of warm dark matter models. In linear theory, this is determined by
the Jeans scale 𝑘J (eq. (2.14)), above which perturbations evolve in an oscillatory
rather than growing fashion. It is however not clear how scales 𝑘 > 𝑘J react to non-
linear power transfer from larger scales once scales around 𝑘J become mildly or fully
non-linear. This can only be accurately treated with explicit (e. g. spectral) FDM
simulations like the ones which I have carried out here.

Figure 4.14 shows a comparison of two FDM simulations carried out either with
CDM-like initial conditions or instead with ICs predicted by the Boltzmann code
axionCAMB (Hložek et al. 2017) for an axion cosmologywith an adopted particlemass
of 2.5 × 10−22 eV 𝑐−2 in this comparison. For definiteness, I chose a 2 ℎ−1Mpc box size
with 24003 grid points to represent the wave function; the remaining cosmological
parameters are the same as before (section 4.3.4). I consider the time evolution down
to redshift 𝑧 = 3, and show in each redshift panel of the plot also the linear theory
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Figure 4.14: Dark matter power spectra at different redshifts for cosmological FDM sim-
ulations with both FDM and CDM ICs (FDM mass 𝑚𝑐2 = 2.5 × 10−22 eV, box size
𝐿 = 2 ℎ−1Mpc, grid size 𝑁3 = 24003). The CDM and FDM initial power spectrum
evolved using linear perturbation theory (scale-independent growth factor) are shown
for comparison. The lower panels show the ratio of the power spectra to the result from
CDM linear theory. For 𝑧 = 63, the dashed line additionally indicates the current FDM
Jeans scale (eq. (2.14)), while the dotted line indicates the Jeans scale at matter–radiation
equality, 𝑧 = 𝑧eq.
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power spectrum of the corresponding CDM cosmology, for comparison. At 𝑧 = 63,
the FDM model with CDM-like ICs follows linear growth accurately only to a scale
of order the Jeans scale set by the “quantum pressure”. On much smaller scales, the
growth has completely stalled, while in the transition region oscillatory behavior is
seen. This is the expected behavior based on linear theory, where scales with 𝑘 ≫ 𝑘J
should not grow, while those with 𝑘 ≪ 𝑘J follow the same linear growth as CDM. In
comparison, the FDM model with self-consistent ICs shows negligible small-scale
power and only agrees with the CDM linear power on the largest scales that can be
followed with this box size.

At redshift 𝑧 = 15, the FDM simulation with self-consistent ICs still shows a stalled
growth at the smallest scales, but scales around 𝑘J have already entered mild non-
linear evolution, as reflected in small excess power relative to the linear theory CDM
power spectrum. Apparently, this already couples significantly to smaller scales, so
that scales beyond 𝑘J begin to catch up with the growth, such that in this instance,
the power spectrum happens to agree coincidentally with the linear CDM power
at around 𝑘 ≈ 200 ℎMpc−1, while scales 𝑘 ≳ 1000 ℎMpc−1 are not yet affected and
still prevented from growth. Similarly, the self-consistent FDM model begins to
witness power transfer to smaller scales, as evidenced by the change in shape of its
small-scale power spectrum.

By redshift 𝑧 = 7, these trends have greatly accelerated. Now the non-linear
evolution of the FDMmodel started from CDM-like initial conditions has produced a
large power excess relative to linear theory for nearly all 𝑘 resolved in the simulation,
except for the largest scales (which are still linear), and the smallest scales (which are
still suppressed by “quantum pressure”). Interestingly, however, the model with self-
consistent initial conditions is clearly in the process of catching up to this evolution,
with its small-scale power being progressively filled in by the non-linear evolution
on larger scales. Finally, at redshift 𝑧 = 3, both simulations have become even closer
in their total matter power spectrum. These trends are expected to continue towards
lower redshifts (which are unfortunately inaccessible with this resolution), so that
the discrepancy introduced by starting from CDM-like initial conditions instead of
self-consistent FDM ones becomes largely forgotten on small scales, simply because
it is overwhelmed by non-linear evolution. However, there may still be an important
impact on other quantities, such as the HMF (which, however, requires a larger
box size, as in section 4.5, to measure). How large this is remains to be seen (cf.
chapter 5). In principle, excess oscillatory perturbations on small scales that cannot
grow should not give rise to additional collapsed halos, but due to the non-linear
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coupling to larger scales this may only be approximately true.

4.8 Summary and Conclusions

In this chapter, I have carried out simulations of fuzzy dark matter models with
the pseudo-spectral method. This can be considered the most accurate approach
to solve the Schrödinger–Poisson system numerically, without neglecting certain
aspects of the temporal evolution of the wave function. In particular, this can account
for oscillatory, order-unity fluctuations of the local density due to the quantum-
mechanical effects in the axion-like dynamics.

Unfortunately, the numerical resolution requirements to faithfully follow the FDM
dynamics are much harder to fulfill than for the familiar 𝑁-body techniques appli-
cable in the CDM case. Even large-scale modes require a very fine grid, otherwise
the velocities appearing in the dynamics cannot properly be represented because
then the spatial variation of the quantum-mechanical phase factor is not resolved.
Yet, making the grid fine enough to resolve the de Broglie wavelength 𝜆dB of the
largest velocities drives down the time step, which depends quadratically and not
linearly on the spatial resolution. In practice, this means that one cannot trivially
simulate large cosmological volumes at low resolution in a way similar to the stan-
dard practice in CDM. Rather, one is relegated to very small volumes and to the
high-redshift regime, whereas a push to large box sizes and low redshift quickly
becomes extremely expensive, as was highlighted in this chapter.

In this chapter, I could nevertheless compute the largest-volume simulations with
full FDM dynamics thus far by using rather large grid sizes of up to 86403 cells. This
allowed me to gain new insights into the evolution of the non-linear power spectrum
in these cosmologies, and to make the first direct measurements of the halo mass
function in such models, especially with respect to how the FDM dynamics affect
these observables without starting from an already-suppressed power spectrum in
the ICs. My main findings can be summarized as follows:

• Once sufficient resolution is available, the FDM power spectrum in my spectral
simulations follows the CDM evolution very closely on large scales, even once
highly non-linear evolution has set in on smaller scales.

• Lacking resolution in pseudo-spectral simulations of FDM manifests itself
in a spurious “freezing” of further structure formation once the resolution
requirements become violated. The evolution of the power spectrum then
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stops, and it remains roughly constant with decreasing redshift. This can be
detected by comparing the power on the largest scales to linear perturbation
theory or a CDM simulation, and observing that the FDM model falls behind.

• Themaximum simulation volumewhich can be achieved in the pseudo-spectral
method without violating resolution requirements increases for lower particle
masses 𝑚. The computational time required for the corresponding maximum
box size varies only slowly for different values of 𝑚. Stopping a simulation
before 𝑧end = 0 relaxes the resolution requirements, thus allowing for larger
box sizes, and reduces computational time, but not very strongly (the cost
approximately scales as ∝ 𝑧−1/2

end at fixed box size, which parallels the scaling of
the maximum particle velocity in linear perturbation theory).

• On small scales, FDM structure formation is suppressed compared to CDM
due to the effects of the “quantum pressure”, which also induces a small-
scale cut-off in the initial power spectrum of self-consistent cosmological FDM
models. The onset of non-linear structure formation is thus generally delayed in
FDM compared to CDM. However, on scales comparable to 𝜆dB, the difference
between FDM and CDM is reduced, and interference patterns on these scales
in FDM can even lead to a small temporary excess of power compared to CDM.
Mildly trans-linear and fully non-linear evolution in FDM in any case leads to
significant power transfer to scales smaller than the initial FDM Jeans scale,
even to the extent that oscillatory perturbations on these scales, if present, can
become completely overwhelmed and buried by the power transfer from larger
scales.

• I could, for the first time, measure the halo mass function directly from spectral
FDM simulations. For massive halos, I find the same abundance of halos as in
CDM, consistent with expectations based on the agreement of their large-scale
linear power spectra. The formation of the first halos is however delayed for
FDM with respect to CDM, and there are considerably fewer low-mass halos
forming compared to CDM. The low-mass cut-off of the HMF I find is less pro-
nounced than found by methods which take into account the suppressed FDM
ICs, even for those which neglect the non-linear FDM dynamics. This demon-
strates that the FDM ICs have a larger impact on the HMF than the dynamics
at later times, although the suppression caused by the latter is still sizable.
However, since the cut-off appears at much lower halo masses compared to
the FDM ICs, the impact of this effect is much more difficult to observe.
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• Despite their large grid sizes, my simulations have only limited resolving power
for the internal structure of dark matter halos. However, I could still clearly
detect characteristic solitonic cores in spherically averaged density profiles of
halos, with a profile shape that matches results of previous work well. These
cores are particularly large for low-mass halos, where they also substantially
reduce the central dark matter densities relative to CDM.

My results thus highlight that it is, in principle, possible to compute accurate
cosmological simulation results for FDM in representative volumes, albeit at consid-
erable computational cost. I will apply my implementation to FDM initial conditions
(similar to section 4.7) in larger volumes in chapter 5, providing physical observables
in a fully consistent FDM scenario. However, to conclusively understand the com-
bined dynamics of FDM and baryons in the centers of galaxies, and thus to arrive at
reliable predictions about whether these scenarios can resolve, e. g., the cusp–core
tension, will ultimately require to add baryonic physics to these simulations, and to
make them spatially more adaptive inside individual halos such that the resolution
can be increased there in a targeted fashion. First attempts in this direction have been
carried out (e. g. Mocz et al. 2019; Veltmaat, Schwabe, and Niemeyer 2020), but the
associated numerical challenges are still formidable.

4.9 Fuzzy dark matter and the core–halo mass relation

This section includes portions of work previously published in Chan, Ferreira, May, et al.
(2022). The large-scale cosmological simulations and resulting data were performed and
provided by the author of this dissertation, while additional small-scale cosmological and
soliton merger simulations were carried out by Hei Yin Jowett Chan, and the statistical
analysis to estimate the uncertainty in the core–halo mass relation was performed by Elisa
Ferreira.

Abstract

In the fuzzy dark matter (FDM) model, gravitationally collapsed objects always
consist of a solitonic core locatedwithin a virialized halo. Although various numerical
simulations have confirmed that the collapsed structure can be described by a cored
NFW-like density profile, there is still disagreement about the relation between the
core mass and the halo mass. To fully understand this relation, a large sample of
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cored halos is assembled, based on both idealized soliton mergers and cosmological
simulations with various box sizes. A sizable dispersion in the core–halo mass
relation is found that increases with halo mass, indicating that the FDM model
allows cores and halos to coexist in diverse configurations. A new empirical equation
is provided for a core–halo mass relation with uncertainties that can encompass all
previously-found relations in the dispersion, and emphasize that any observational
constraints on the particle mass 𝑚 using a tight one-to-one core–halo mass relation
should suffer from an additional uncertainty on the order of 50% for halo masses
≳ 109 (8 × 10−23 eV/(𝑚𝑐2))3/2 M⊙. Tidal stripping is suggested as one of the effects
contributing to the scatter in the relation.

4.9.1 Introduction

The CDM model is one of the essential components of the standard cosmological
paradigm. In this model, dark matter is described as a cold, pressureless, non-
interacting fluid that dominates thematter content of the universe. TheCDMmodel is
extremely successful in explaining the observed large-scale structure of our universe
(Planck Collaboration: Aghanim, Akrami, Ashdown, et al. 2020; BOSS Collaboration:
Alam et al. 2017; Pillepich et al. 2018). However, on small scales, the behavior
of dark matter is still weakly constrained and its properties are less understood.
A prominent manifestation of this is a series of possible incompatibilities found
between predictions from CDM-only simulations and observations (Bullock and
Boylan-Kolchin 2017).

The FDM model is proposed to be a promising alternative to CDM (for reviews
see e. g. Hui et al. 2017; Niemeyer 2020; Ferreira 2021; Hui 2021). In this model,
dark matter is composed of ultra-light particles. With a particle mass as light as
10−22 eV 𝑐−2, this candidate has a de Broglie wavelength of ∼ 1 kpc, behaving as a
wave on astrophysical scales, while on large scales it behaves like CDM, as required
by observations. This wave behavior on small scales leads to a series of phenomeno-
logical consequences, like the suppression of structure formation on those scales,
and the formation of a core in the interior of each galaxy halo, where the field is in its
ground state (soliton). With these features, the FDM model not only presents many
predictions that can be tested using observations, but depending on its mass, it might
reconcile some of the small-scale incompatibilities, like the cusp–core problem.

The dynamics of structure formation in the FDM model are governed by the non-
relativistic Schrödinger–Poisson system of equations. Although the computational
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cost of solving the coupled system in a cosmological box is known to be much more
expensive than for CDM simulations (May and Springel 2021), Schive, Chiueh, and
Broadhurst (2014)were able to perform cosmological FDM simulation on an adaptive
refined mesh to gain detailed insights into the non-linear structure formation. Their
self-gravitating virialized FDM halos are well-resolved to confirm the existence
of a solitonic core at the center of each halo, for which the density structure is
approximated by the so-called soliton profile with an outer NFW-like profile. In
addition, simulations have confirmed that FDM indeed mimics the non-linear power
spectrum of CDMon large scales, but suppresses structure on small scales depending
on the particle mass (Widrow and Kaiser 1993; Schive, Chiueh, and Broadhurst 2014;
Mocz et al. 2018).

Regardless of the different numerical approaches and initial setup, several inde-
pendent simulations have been performed to confirm the core–halo structure of a
FDM halo, but there is still disagreement on the relation between the core mass and
the halo mass, expressed as 𝑀c ∝ 𝑀𝛼

h (Schive et al. 2014; Schwabe, Niemeyer, and
Engels 2016; Mocz et al. 2017; Nori and Baldi 2021). The relation depends on the
mechanism of interaction between the core and the NFW region, which is not well
understood yet. It might also depend on the formation and merger history of the
halos, as shown in Du et al. (2017). Recent literature pointed out that the soliton is
in a perturbed ground state interacting with the NFW region, i. e. the excited states,
by means of wave interference (Li, Hui, and Yavetz 2021). The resulting oscillation
of the soliton further complicates the analytical understanding of the relation.

The disagreement on the core–halo mass relation is of particular observational
importance because many previous constraints on the particle mass of FDM are
made by dynamic modeling of dark matter-dominated galaxies, which relies on the
soliton profile and core–halo mass relation predicted by simulations. For instance,
analyses of dwarf spheroidal galaxies that have often found a particle mass of 𝑚𝑐2 ∼
10−22 eV or smaller (Chen, Schive, and Chiueh 2017; González-Morales et al. 2017;
Safarzadeh and Spergel 2020) are in tension with measurements like the Lyman-𝛼
forest measurement 𝑚𝑐2 ≥ 10−20 eV (Rogers and Peiris 2021), which constrains the
FDM mass by probing a different prediction, the suppression of structures. For UFD
galaxies that have even smaller stellar-to-total mass ratios, some studies predicted
similar particle masses as found for dwarf spheroidals (Calabrese and Spergel 2016),
while others (Safarzadeh and Spergel 2020) have found that the particle mass should
be heavier, with the strongest bound coming fromHayashi, Ferreira, and Chan (2021)
with a particle mass as heavy as 𝑚𝑐2 = 1.1+8.3

−0.7 × 10−19 eV from Segue I. Constraints



4.9 Fuzzy dark matter and the core–halo mass relation | 85

from ultra-diffuse galaxies also suggest a FDM mass of 𝑚𝑐2 ∼ 10−22 eV (Broadhurst
et al. 2020). Except for the Lyman-𝛼 bounds, the constraints cited above depend on
the assumed core–halo mass relation. Although the origin of such incompatibilities
might also be due the influence of baryons in these systems, the core–halo relation
is another important aspect, and any change or uncertainty in this relation will
influence the bounds on the FDM mass cited above.

Here, new FDM halo simulations are performed, and combined with the largest
cosmological FDM simulations with full wave dynamics to date (May and Springel
2021, presented earlier in this chapter), to obtain a large sample of collapsed objects.
The core–halo mass relation is revisited, and find a scatter that can encompass all
previously-found relations (i. e. Schive et al. 2014; Mocz et al. 2017; Mina, Mota, and
Winther 2022; Nori and Baldi 2021).

4.9.2 Theory

A consequence of the finite Jeans length and corresponding suppression of small-
scale structure formation can be seen in the suppression of small-scale power in the
power spectrum of these models, and consequently the suppression of the formation
of smaller halos. The effect of this suppression can also be seen inside halos, where
there is a highly non-linear evolution. The interior of each halo forms a core, where
there is no further structure formation and the FDM field is in its ground state. A
gravitationally bound object thus consists of two components in the FDM model:
The inner part – where quantum pressure dominates – is called the core, while in
the outer part, gravity dominates and structure formation can happen.

In Schive et al. (2014), a fitting function for the core–halo mass relation was
obtained:

𝑀c =
1

4√𝑎
⎡⎢
⎣
(

𝜁(𝑧)
𝜁(0))

1/2 𝑀h
𝑀min,0

⎤⎥
⎦

1/3

𝑀min,0 , (4.14)

where 𝑀c and 𝑀h are again the core and halo masses, and

𝑀min,0 ∼ 4.4 × 107(𝑚𝑐2/(10−22 eV))−3/2𝑀⊙ , (4.15)

and the outer exponent 𝛼 = 1/3 represents the (logarithmic) slope of the relation
𝑀c ∝ 𝑀𝛼

h . In order to compare with Schive et al. (2014), their definition of halo mass
𝑀h = (4𝜋𝑟3

h/3)𝜁(𝑧)𝜌m0 is followed here, where 𝑟h is the halo’s virial radius, 𝜌m0 is
the background matter density and 𝜁 ∼ 180 (350) for 𝑧 = 0 (≥ 1).
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Note that the SP equations follow a scaling symmetry

{𝑥, 𝑡, 𝜌, 𝑚, 𝜓} = {𝛼𝑥, 𝛽𝑡, 𝛽−2𝜌, 𝛼𝛽−2𝑚, 𝛽−1𝜓} . (4.16)

Therefore, this symmetry can be used to re-scale the resulting structure of a simula-
tion to another particle mass.13

Previous studies were able to confirm the empirical density profile eqs. (4.12)
and (4.13) using different simulations. However, they disagree about the form of
the core–halo mass relation, calling the validity of eq. (4.14) obtained by Schive et al.
(2014) into question. Schwabe, Niemeyer, and Engels (2016) performed idealized
soliton merger simulations and were unable to reproduce eq. (4.14). Mocz et al.
(2017) used a larger halo sample with simulations of a similar setup and obtained a
slope of 𝛼 = 5/9, disagreeing with eq. (4.14). Mina, Mota, and Winther (2022) found
the same slope of 5/9 using cosmological simulations with a box size of 2.5Mpc ℎ−1.
Finally, Nori and Baldi (2021) performed zoom-in simulations by including an
external quantum pressure term in an 𝑁-body code, and obtained a relation with
yet another value of the slope, 𝛼 = 0.6. Such disagreement between different studies
indicates that there is still a fundamental lack of understanding of the core–halo
structure in the FDM model, and also generates uncertainty in any constraints on the
FDM mass which were obtained using eq. (4.14) or similar relations. Therefore, the
main motivation of this section is to revisit and clarify the core–halo mass relation.

4.9.3 Results for the core–halo mass relation

Figure 4.15 shows the core–halo mass relation obtained from the soliton merger and
cosmological simulations. All data are scaled to 𝑚𝑐2 = 8 × 10−23 eV using eq. (4.16)
in order to enable a direct comparison with the data and fitting relation from Schive
et al. (2014). For reference, the “core–halo” mass relation of a soliton-only profile is
also shown, represented by the solid black line. This curve indicates the minimum
halomass for a certain coremass, and any halos located to the right of the soliton-only
core–halo relation must have the usual cored NFW structure. For halos in the soliton
merger simulationswithmass ≳ 108 𝑀⊙, the relation has a steeper slope than 𝛼 = 1/3,
confirming the results from Mocz et al. (2017). However, halos from the large-scale
cosmological simulation predict a core–halo relation with a large enough dispersion
that can cover a range of data produced by both the soliton merger simulations and
13Since only the goal is to re-scale only the mass, 𝛽 = 1 is fixed and only 𝛼 changed to perform the

scaling. This 𝛼 is unrelated to the slope of the core–halo mass relation.
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Figure 4.15: Core–halo relation scaled to 𝑚𝑐2 = 8 × 10−23 eV via eq. (4.16). Green dots are
halos simulated in Chan, Ferreira, May, et al. (2022) with cores resolved by at least 3Δ𝑥.
Purple and and faint purple dots are halos from the large-box cosmological simulation
(May and Springel 2021) with cores resolved by at least 2Δ𝑥 and Δ𝑥 respectively. The
pink shaded region is enclosed by the empirical fits to the purple and green dots, with
the maximum and minimum values of the parameters in eq. (4.14). The solid dotted
line corresponds to the soliton-only relation obtained from a pure core profile. The black
and orange dashed lines are fitting relations corresponding to the black and orange dots
obtained from Schive et al. (2014) and Nori and Baldi (2021) respectively.

Schive et al. (2014). The range of the dispersion can span as large as one order of
magnitude in halo mass for 𝑀c ∼ 5 × 107 𝑀⊙. This dispersion, which fills in the
space in between the soliton-only line and the relation from Schive et al. (2014),
indicates the diversity of the cored NFW structure in the FDM simulations. The tight
“one-to-one” core–halo relations found by different groups, with different slopes,
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therefore only describe a part, but not all populations of halos in the FDM model.
An empirical equation is suggested that has the following form: 𝑀c = 𝛽+(𝑀ℎ/𝛾)𝛼.

The parameter 𝛽 takes the limit of the relation for small halo masses into account,
although low-mass halos are rare in a FDM universe due to the suppression in the
initial power spectrum. 𝛼 is the slope that can be compared to previous works.
Including the scaling symmetry in eq. (4.16) and the redshift dependence according
to Schive et al. (2014) results in

𝑎1/2𝑀c = 𝛽 (
𝑚𝑐2

8 × 10−23 eV
)

−3/2

+ ⎛⎜
⎝

√𝜁(𝑧)
𝜁(0)

𝑀h
𝛾

⎞⎟
⎠

𝛼

(
𝑚𝑐2

8 × 10−23 eV
)

3(𝛼−1)/2

𝑀⊙ .
(4.17)

The best-fit parameters for the halos from the large-box cosmological simulation
give 𝛽 = 8.00+0.52

−6.00 × 106 𝑀⊙, log10(𝛾/𝑀⊙) = −5.73+2.38
−8.38 and 𝛼 = 0.515+0.130

−0.189, which
is shown as a pink shaded region in fig. 4.15.

The effect of the large dispersion is encompassed in the uncertainty of the model
parameters. This uncertainty is not the statistical uncertainty of the fit, but an “over-
estimation” of the uncertainty in the parameters that can reflect the large dispersion
of the data. Indeed, the statistical uncertainty would be the incorrect quantity to
consider in this case, since there is no assumption that there is an underlying “true”
set of values for the parameters with statistical fluctuations, but rather propose that
different halo populations could systematically follow different relations depending
on their histories and properties (see section 4.9.4). To obtain a more appropriate de-
scription of the core–halo diversity, kernel density estimation (KDE) was employed,
estimating the probability distribution function of the core masses with respect to
the central value of the corresponding binned halo mass. Each of these distributions
reveals the dispersion of core masses for each halo mass.The minimum and max-
imum curves 𝑀c(𝑀h) that fit all of these distributions are then obtained, and the
minimum and maximum vales for the parameters 𝑏, 𝛾 and 𝛼 extracted from these
curves. The difference to the global fit is the uncertainty in the parameters.

Nori and Baldi (2021), Mocz et al. (2017), and Schive et al. (2014) determined
slopes 𝛼 of 0.6, 0.556 and 0.333, respectively. Given the large dispersion seen in the
data, all of these slopes are compatible when taking into account the uncertainty
assigned to the fitting parameters. So when considering the proposed fitting function,
all of the other cases in the literature are covered aswell. Is should be emphasized that
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the results show that a general halo population is not well-described by any single
one-to-one core–halo mass relation. Further investigation is required to determine
which halo populations follow which relations (if any), and under what conditions –
cf. section 4.9.4.

This large spread and uncertainty in the fitting function can affect the constraints
on the FDM mass obtained from these relations. A a rough estimate of the error
is provided in the following. For the same halo mass 𝑀h = 109 𝑀⊙ in fig. 4.15, the
least massive core mass is 𝑀c = 3 × 107 𝑀⊙ and the most massive is 𝑀c = 108 𝑀⊙.
Applying these values to the core density in eq. (4.12) gives a 50% difference in
particle mass 𝑚. Therefore, any observational constraints made using the relation
eq. (4.14) should include an additional uncertainty on the order of 50% in the results,
unless the halomass is smaller than 109(8 × 10−23 eV/(𝑚𝑐2))3/2 𝑀⊙. Therefore, when
obtaining the FDM mass using the core–halo relation, one needs to take into account
the dispersion of these values, shown in the uncertainty in the fitting parameters,
which will translate to a higher uncertainty in the FDM mass.

Due to limited spatial resolution, it was only possible to observe the dispersion to
increase with halo mass until 𝑀c ∼ 6 × 107 𝑀⊙. It would be important for potential
future higher-resolution simulations to examine if the dispersion keeps increasing
along the soliton-only relation or not. Again, the increasing dispersion is of impor-
tance to observational studies since it will also lead to an increasing uncertainty in
the core–halo relation.

4.9.4 The origin of the dispersion

Different core–halo structures have been found in different simulations:

• As mentioned before, Schive et al. (2014) and Mocz et al. (2017) find different
results for the slope 𝛼 (1/3 vs. 5/9), even for similar simulation setups (soliton
mergers).

• Mina, Mota, and Winther (2022) claim to confirm a slope of 𝛼 = 5/9, as
found in the soliton merger simulations of Mocz et al. (2017), but using a
cosmological simulation, contradicting the result of 𝛼 = 1/3 from Schive et al.
(2014). However, the number of halos in their sample is very small.
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• Schwabe, Niemeyer, and Engels (2016) performed soliton merger simulations
similar to Schive et al. (2014) (and later Mocz et al. 2017)14 and could not
reproduce the previously-found value of the slope 𝛼, or indeed any universal
relation.

• Nori and Baldi (2021) studied the dynamics of eight simulated halos and
concluded with a similar comment: Schive et al. (2014) and Mocz et al. (2017)
only captured a partial representation of the core–halo relation in a realistic
cosmological sample.

• Yavetz, Li, and Hui (2021) used the Schwarzschild method to construct self-
consistent FDM halos and found that a stable core–halo structure can exist even
when the adopted core–halo mass relation deviates from Schive et al. (2014).

These examples illustrate that the diversity of the possible core–halo slopes found in
different works seems to originate from the type of simulations performed, which
results in halos and cores that have different properties. The diversity of core–halo
structure found in these simulations is exhibited in this chapter, where the difference
between the core–halo mass relation from halos formed in solitonmerger simulations
(green points in fig. 4.15) and in cosmological simulations (pink points in fig. 4.15)
can clearly be seen.

There are a few possible explanations for this diversity of halos: merger history (Du
et al. 2017; Yavetz, Li, and Hui 2021), tidal stripping effects, and the relaxation state of
the halo (Nori and Baldi 2021). Formation and merger history is an explanation that
seems very plausible to be a relevant factor. Larger cosmological simulations, like the
one from May and Springel (2021) (presented earlier in this chapter), present halos
that could have very different merger histories, and a large dispersion is expected.
This is different from the soliton merger simulations, where a complicated merger
history would not be expected. It is left for future work to try to identify the different
merger histories and try to clarify how this relates to the different incarnations of the
core–halo mass relation.

Another possible factor that can also contribute to the dispersion found is stripping.
The following will be an attempt to provide an argument to support tidal stripping as
one element responsible for the dispersion, based on the setups of various simulations.
By comparing the box sizes and the resulting slopes 𝛼 between the small-volume
cosmological simulations of Chan, Ferreira, May, et al. (2022) with Mocz et al. (2017)
14Although Schwabe, Niemeyer, and Engels (2016) made use of “sponge” boundary conditions

instead of periodic boundary conditions.
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and Schive et al. (2014), which are 335 kpc, 1765 kpc and ≥2000 kpc (box sizes) after
re-scaling via eq. (4.16), and ∼0.9, 0.556 and 0.333 (slopes) respectively, one finds
that smaller simulation box sizes are correlated with a steeper slope in the core–halo
relation. This can be explained by the stripping effect on the halo by its own gravity
due to the periodic boundary conditions: the self-stripping effect becomes more
effective at removing mass from the NFW region as the box size decreases. This
skews the core–halo structure towards smaller halo masses, steepening the core–halo
relation. A more rigorous test to prove the above argument requires simulations
with increased spatial resolution and box sizes up to at least 2Mpc, which current
numerical schemes are unable to feasibly achieve.

The self-stripping effect is a numerical artifact, but there is no doubt that a stable
core–halo structure can exist within such environments. In more realistic cosmo-
logical simulations, dwarf satellites also experience a similar effect from their host
halos in the form of tidal stripping. Therefore, stripping effects by tidal forces can be
suggested as one of the contributing factors causing the dispersion obtained from
the large-box simulation in May and Springel (2021). One subtlety is that the tidal
effect is an interaction between host halos and sub-halos with at least two orders of
magnitude difference in mass, but the halo finder used in May and Springel (2021)
does not identify sub-halos. However, it is known that sub-halos in CDM simula-
tions can temporarily move outside of the virial radius of the host halo after the first
pericentric passage (Bosch 2017). Ejected sub-halos should also exist in an FDM
cosmology, and are therefore identified by the halo finder. An in-depth analysis
of the tidal effect on the core–halo relation, or FDM sub-halos in general, would
require building merger trees, which is still not yet studied in any FDM cosmological
simulations. This investigation is left to future work.

4.9.5 Core radius–halo mass relation

As suggested by Burkert (2020), the FDM model may fail to explain the observed
trend of the core radius–halo mass relation measured from dwarf galaxies. Following
Mina, Mota, and Winther (2022), the core radius–halo mass relation is presented
as measured from the FDM halo samples. As shown in fig. 4.16, the scatter is still
observed, but the decreasing trend, which is a fundamental property of quantum
pressure-induced cores, is in disagreement with the positive scaling predicted by low
surface brightness (LSB) galaxies (Salucci et al. 2007; Di Paolo, Salucci, and Erkurt
2019).



92 | 4 Large simulations of cosmic structure formation with fuzzy dark matter

0.1

1

10

100

107 108 109 1010 1011 1012 1013

r c
[k

pc
]

Mh [M⊙]

May+21
Chan+22
Paolo+20

Figure 4.16: Core radius vs. halo mass. Green and purple points are properties of halos from
simulations of Chan, Ferreira, May, et al. (2022) and May and Springel (2021). The black
line shows the relation predicted by a soliton-only density profile. The dashed line is
an empirical function predicted by low surface brightness (LSB) galaxies (Salucci et al.
2007). Black crosses are from Di Paolo, Salucci, and Erkurt (2019).

The disagreement is expected because the negative scaling, where less massive
galaxies are cored, allows the FDM model to solve the core–cusp problem, but the
relation from LSB galaxies has the opposite behavior, where massive galaxies have
larger cores. In addition, LSB galaxies are predicted in CDM simulations to have
experienced tidal heating and supernova feedback (Martin et al. 2019). Therefore, the
relation between core radius and halo mass poses a challenge to the FDM model, but
more importantly, it motivates future FDM simulations to include baryonic physics
to verify if LSB-like galaxies can be formed or not.



5The fuzzy dark matter halo mass
function and filaments

The contents of this chapter have been published as May and Springel (2023) (with slight
modifications).

Abstract

Fuzzy dark matter (FDM) is a dark matter candidate consisting of ultra-light scalar
particles with masses around 10−22 eV/𝑐2, a regime where cold bosonic matter be-
haves as a collective wave rather than individual particles. Although constraints on
FDM are accumulating in many different contexts, very few have been verified by
self-consistent numerical simulations. I present new large numerical simulations of
cosmic structure formation with FDM, solving the full Schrödinger–Poisson (SP)
equations using the AxiREPO code, which implements a pseudo-spectral numerical
method. Combined with my previous simulations, they allow me to draw a four-way
comparison of matter clustering, contrasting results (such as power spectra) for each
combination of initial conditions (FDM vs. CDM) and dynamics (SP vs. 𝑁-body).
By disentangling the impact of initial conditions and non-linear dynamics in this
manner, I can gauge the validity of approximate methods used in previous works,
such as ordinary 𝑁-body simulations with an FDM initial power spectrum. Due
to the comparatively large volume achieved in my FDM simulations, I am able to
measure the FDM halo mass function from full wave simulations for the first time,
and compare to previous results obtained using analytic or approximate approaches.
I also investigate the density profiles of these filaments and compare to their ΛCDM
counterparts.
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5.1 Introduction

A number of tensions between theory and observations on small cosmological scales,
such as the “cusp–core problem”, the “missing satellite problem”, or the “too-big-
to-fail problem” (Weinberg et al. 2015; Del Popolo and Le Delliou 2017; Boylan-
Kolchin, Bullock, and Kaplinghat 2011) have sometimes raised questions about the
validity of the “standard cosmological model” based on ΛCDM, which has otherwise
been extremely successful in describing a wide variety of cosmological observations
across a broad range of physical scales (e. g. Frenk and White 2012; Bull et al. 2016).
Distinguishing effects due to baryonic physics from genuine failures of ΛCDM has
proven to be a significant challenge, however (e. g. Santos-Santos et al. 2020; Grand
et al. 2021; Sales, Wetzel, and Fattahi 2022). Further, CDM as a model only makes
predictions in the context of cosmology, with countless possible implementations of
galaxy formation physics (see Vogelsberger et al. 2020, for a recent review).

Although large-scale structure studies have solidified the correspondence of obser-
vations with the behavior of CDM, dark matter models can still deviate on less well
constrained, smaller (i. e. galactic) scales. In this regard, FDM offers a wide range
of new phenomena which have an impact on some of the “small-scale problems”
(see e. g. Marsh 2016; Hui et al. 2017; Niemeyer 2020; Hui 2021; Ferreira 2021, for
reviews). Due to the small particle masses, interesting wave effects occur which
are unique to this class of dark matter models. Early numerical simulations have
already shown that ultra-light scalars form cores in the centers of dark matter halos
(Schive, Chiueh, and Broadhurst 2014), possibly explaining observed dwarf galaxy
rotation curves (but see Burkert 2020). In addition, the cut-off in the FDM transfer
function, suppressing small-scale power in a similar fashion as WDM, has the poten-
tial to solve issues like the “missing satellite problem”. In a sense, FDM combines
properties similar to the features of WDM (suppression on small scales) and SIDM
(cored density profiles) with respect to the small-scale challenges mentioned above
(Boyarsky et al. 2019; Tulin and Yu 2018).

However, FDM also exhibits a number of additional unique phenomena. Objects
other than cores, such as quantized vortices, are another differentiating feature with
interesting prospects for detection (Hui et al. 2021), and relative fluctuations of order
one in the density field at the scale of the FDM wavelength can have a strong impact
on visiblematter e. g. through dynamical heating. Furthermore, light (pseudo-)scalar
particles are a common feature of theories in particle physics, from the original axion
in QCD to a plethora of axion-like particles predicted by unified and early-universe
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theories such as string theories (Marsh 2016).
After FDMgarnered great interest due tomotivation from astrophysics and particle

physics, as summarized above, constraints on the mass 𝑚 of the scalar particles
at values around 𝑚𝑐2 ≳ 10−21 eV accumulated using many different contexts and
observables for some time (Ferreira 2021). It has turned out that the scaling relations
of FDM halo cores are difficult to reconcile with observations when assuming a
single value for the particle mass 𝑚 (Burkert 2020), and although this does not
rule out FDM as a dark matter candidate by itself, it does weaken its motivation
as a possible solution to the “cusp–core problem”. Relatedly, recent results from
dynamical modeling of UFD galaxies (where FDM cores become increasingly large)
have been used to claim rather strong constraints on 𝑚, with values up to ≈ 10−19 eV
(Hayashi, Ferreira, and Chan 2021; Zoutendijk et al. 2021). However, most of these
analyses do not take the significant scatter in the FDM core–halo mass relation,
discovered in cosmological simulations, into account (Chan, Ferreira, May, et al.
2022), which would weaken these bounds. A very recent result from Dalal and
Kravtsov (2022), claiming 𝑚𝑐2 > 3 × 10−19 eV due to the heating effect of stellar
orbits caused by potential fluctuations in FDM halos, has more serious implications,
since it does not depend on the uncertain core–halo relation or delicatemeasurements
of the UFD central density.

However, most of these constraints (including the most recent) have in common
that they have not yet been verified by self-consistent numerical simulations, instead
relying on approximate, idealized, or simplified numerical and analytic approaches.
While cosmological FDM simulations have been carried out using a variety of nu-
merical methods, many attempts were quite limited in scope (Zhang, Liu, and Chu
2018; Laguë et al. 2021, table 1), so that the effects of FDM in (mildly) non-linear
regimes of structure formation are still poorly understood compared to CDM.

Apart from an overall still lower level of research attention, an important reason
impeding insight into FDM lies in the very large computational costs incurred when
numerically solving the corresponding equations of motion – these costs are much
higher than the ones associated with corresponding ΛCDM calculations. Due to
the computational requirements, the cosmological volumes studied in simulations
with the full FDM SP dynamics have been especially limited (Woo and Chiueh
2009; Schive, Chiueh, and Broadhurst 2014; Veltmaat, Niemeyer, and Schwabe 2018;
Mocz et al. 2020). Although recent advances in hybrid numerical techniques have
made it feasible to embed simulated FDM halos within much larger simulated boxes
(Schwabe andNiemeyer 2022), the fundamental issues driving the cost in the regions
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where the full FDMequations ofmotion are treated remain. In this chapter, I carry out
simulations that smoothly connect the non-linear state reached in isolated FDM halos
to the still linear large-scale structure, thereby bridging, in particular, the regime of
mildly non-linear evolution where differences in the temporal evolution compared
to CDM can be expected. I complement the previous simulations (chapter 4) by
including the self-consistent transfer function expected for an FDM cosmology. As
before, I carry out very large FDM simulations with a spectral method on a uniform
grid, which fully retains the quantum-mechanical effects. I compare and contrast
with my previous results for central measures of matter clustering, namely the power
spectrum and the HMF, and highlight the unique challenges and phenomena related
to filaments which arise when using an FDM initial power spectrum.

While methods which forego a treatment of the full wave dynamics have been
able to conduct simulations with volumes much closer to those attainable using
traditional 𝑁-body and SPH approaches for CDM (Schive et al. 2016; Veltmaat and
Niemeyer 2016; Zhang et al. 2018; Nori and Baldi 2018; Nori et al. 2019; Nori and
Baldi 2021), these do not capture inherent wave phenomena such as interference
effects, which can have a significant impact on the overall evolution at least on small
scales (Li, Hui, and Bryan 2019), leaving the validity of results obtained in this
way unclear in the absence of similar computations solving the fundamental wave
equations. While the hybrid method from Schwabe and Niemeyer (2022) improves
upon the computational limitations, by its nature it also does not incorporate the
full FDM evolution, and can only reproduce it in a statistical sense. In particular,
while all simulations can easily incorporate the impact of the suppressed small-scale
power spectrum present with FDM in the ICs, such methods either lack the wave
nature of FDM entirely or only approximate it. Using my simulations, I am now
equipped to fully clarify the reliability of such approximative results, disentangling
the two essential physical differences distinguishing FDM fromCDM in cosmological
numerical simulations: the dynamics (equations of motion) and the ICs.

This chapter is structured as follows. In section 5.3 I detail the numerical method-
ology. In section 5.4 I compare matter clustering in FDM and CDM cosmologies at
the level of the power spectrum, for different sets of initial conditions. I then turn
to a discussion of the challenges involved in measuring the HMF in self-consistent
cosmological FDM simulations in section 5.5. In section 5.6 I consider the density
structure of filaments in FDM as compared to CDM, while I return to halo profiles
in section 5.7. Finally, I present a summary of the findings and my conclusions in
section 5.8.
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5.2 Theoretical background

Since the theoretical background and fundamental equations relevant for FDM have already
been covered in section 2.1, the associated commentary in the published manuscript corre-
sponding to this chapter (May and Springel 2023) will not be reiterated here and the reader
is referred to section 2.1.

5.3 Numerical methodology

The numerical simulations are performed using the same setup as in chapter 4. Two
types of simulations are presented: (1) FDM simulations using the AxiREPO code1

first introduced in May and Springel (2021) (cf. chapter 4, which is implemented
as a module in AREPO (Springel 2010) and numerically solves the SP equations,
eqs. (2.3) and (2.4), using a pseudo-spectral method, and (2) “standard” 𝑁-body
CDM simulations using the unmodified AREPO code, which implements the TreePM
numericalmethod to solve the Vlasov–Poisson equations. For each type of simulation,
I additionally compare and contrast two different kinds of ICs, corresponding to an
FDM or CDM universe (see section 5.3.1).

As in the previous chapter 4, the simulation volume consists of a cubic box of
side length 𝐿 with periodic boundary conditions, sampling the matter distribution
in the universe. The box is filled with dark matter (FDM or CDM) whose average
comoving density is the cosmic mean background matter density

⟨𝜌⟩ = 𝜌m = Ωm𝜌crit = Ωm
3𝐻2

0
8𝜋𝐺. (5.1)

In the FDM case (pseudo-spectral SP solver), the fields 𝜓 (“wave function”) and Φ
(“potential”) are discretized on a uniform Cartesian grid with 𝑁3 points, enabling
the use of the FFT. In the CDM case, as usual, the phase space of dark matter particles
is sampled using (much) more massive “simulation particles”, whose trajectories
are evolved using Newtonian gravitational dynamics.

Concerning FDM SP simulations, it is important to make note of the tremendous
computational requirements involved. Firstly, for the pseudo-spectral method, en-
suring the absence of “aliasing” in the complex exponentials imposes a restriction

1The AxiREPO code will be made public in the near future (including the halo finder).
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on the size of the time step Δ𝑡,

Δ𝑡 < min(
4

3𝜋
𝑚
ℏ 𝑎2Δ𝑥2, 2𝜋

ℏ
𝑚𝑎

1
|Φmax|

), (5.2)

where Δ𝑥 = 𝐿/𝑁 is the spatial grid resolution and Φmax is the maximum value of
the potential. Although the exact form of eq. (5.2) is specific to the pseudo-spectral
method, the dependence Δ𝑡 ∝ Δ𝑥2 seems to hold for all numerical approaches to
the SP system of equations, eqs. (2.3) and (2.4), and serves as an illustration of the
Schrödinger equation’s nature as a diffusion equation.

Secondly, a constraint on the validity of the spatial discretization emerges from
the relationship between the velocity field and the gradient of the wave function’s
phase (eq. (2.10)), which implies that velocities 𝑣 larger than a certain value 𝑣max
cannot be represented in a simulation with spatial resolution Δ𝑥:

𝑣max =
ℏ
𝑚

𝜋
Δ𝑥. (5.3)

In other words, the “worst” spatial resolution Δ𝑥max that still yields acceptable results
is (roughly) given by the de Broglie wave length corresponding to 𝑣max:

Δ𝑥max =
𝜋ℏ

𝑚𝑣max
=

1
2𝜆dB(𝑣max)

⇔ Δ𝑥 <
𝜋ℏ

𝑚𝑣max
.

(5.4)

Or, rephrasing yet again, the de Broglie wavelength must be resolved for all velocities
appearing in the simulation. As with the time step criterion, similar considerations
mandate resolving the de Broglie wavelength also for other numerical methods for
the SP equations, yielding a similar constraint.

Combined, the time step criterion (5.2), Δ𝑡 ∝ Δ𝑥2, and the velocity criterion
(5.4), Δ𝑥 ∝ 1/𝑣, render simulations of large cosmological objects or representative
cosmological volumes prohibitively expensive. Contrary to 𝑁-body simulations, the
additional requirement on the spatial resolution makes it impossible to resort to
coarser, low-resolution simulations while still obtaining valid results on all (large)
scales that are still resolved. Instead, a lack of sufficient resolution will affect results
even on the largest scales and within the linear regime of structure formation, as
shown in chapter 4.

Although numerical methods have been developed for FDMwhich are in principle
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more versatile or sophisticated, such as AMR or hybrid techniques (Schwabe and
Niemeyer 2022), the unique computational demands of FDM have the effect that,
except for specific cases where very high resolution is desired in a small region
(“zoom-in”), these methods still suffer from the tremendous cost involved in FDM
simulations. While it may be argued that a uniform grid is wasteful in regions where
a lower resolution would be sufficient, the velocity criterion (5.4) actually imposes
significant demands on resolution even in low-density regions. The pseudo-spectral
method used here, although not very flexible due to its limitation to a single uniform
resolution, nevertheless has the advantage of unmatched accuracy in the spatial
integration (at the given level of resolution), in addition to its use of a very simple
and optimized algorithm in the form of the FFT, so it is at present one of the best
ways to address the unique challenges of the SP system of equations.

5.3.1 Initial conditions

As in chapter 4, the ICs were generated at the starting redshift 𝑧 = 1/𝑎−1 = 127 using
the N-GenIC code (Springel 2015), which employs the Zel’dovich approximation
(or second-order Lagrangian perturbation theory) to generate a random realization
of density fluctuations consistent with a prescribed power spectrum in terms of
a perturbed, but otherwise regular particle distribution. I analyze and compare
four different kinds of simulations (cf. section 5.3.2), differentiated by the solved
dynamics (FDM/Schrödinger–Poisson and CDM/𝑁-body) and the initial power
spectrum (“standard” ΛCDM and “self-consistent” FDM ICs with a cut-off at small
scales). For each case, a different approach for the ICs was necessary:

• CDM (𝑁-body) dynamics: In this case, the particle distribution generated by
N-GenIC can simply be used directly.

• FDM(Schrödinger–Poisson) dynamics: The initial wave function is constructed
using the prescription

|𝜓( ⃗𝑥)| = √𝜌( ⃗𝑥)
𝑚 , (5.5)

∇ arg(𝜓( ⃗𝑥)) = ∇𝜃( ⃗𝑥) =
𝑚
ℏ ⃗𝑣( ⃗𝑥), (5.6)

where 𝜌 is the matter density and ⃗𝑣 the velocity (cf. eqs. (2.6) and (2.10);
Widrow and Kaiser 1993; Mocz et al. 2018; May and Springel 2021). In this case,
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the random realization of the density fluctuation 𝛿( ⃗𝑥) in N-GenIC is actually
usedwithout creating a particle distribution at all, in order to avoid unnecessary
transformation steps. For the absolute value of the complex wave function,
the correspondence to the density via eq. (5.5) is straightforward. The wave
function’s phase requires a few more steps, with the following result using
eq. (5.6) (in Fourier space)

ℱ[𝜃]( ⃗𝑘) = −𝑖
𝑚
ℏ

⃗𝑘
𝑘2 ⋅ FFT[ ⃗𝑣]( ⃗𝑘) (5.7)

where ⃗𝑣 is the velocity field in the Zel’dovich approximation.

• CDM initial power spectrum: The simulations for this case are the ones pre-
viously presented in chapter 4. The ICs were generated with an input power
spectrum following Efstathiou, Sutherland, andMaddox (1990) and Efstathiou,
Bond, and White (1992), i. e. of the form

𝑃CDM(𝑘) ∝ 𝑘[1 + (𝑎𝑘 + (𝑏𝑘)
3
2 + 𝑐2𝑘2)

𝜈
]

− 2
𝜈

, (5.8)

with 𝑎 = 6.4/Γ ℎ−1Mpc, 𝑏 = 3.0/Γ ℎ−1Mpc, 𝑐 = 1.7/Γ ℎ−1Mpc, Γ = Ωmℎ =
0.21,2 and 𝜈 = 1.13. Here ℎ = 𝐻0/(100 kms−1Mpc−1) encodes the Hubble
constant.

• FDM initial power spectrum: In this case, I make use of the power spectrum
predicted in linear theory by the code axionCAMB (Hlozek et al. 2015; Grin,
Marsh, and Hlozek 2022) for an axion cosmology. However, in order to be
able to compare the simulations as directly as possible, the aim is to minimize
differences in the CDM and FDM ICs arising from the two different methods (a
fitting function eq. (5.8) and a numerical Boltzmann code). To this end, instead
of using the power spectrum 𝑃axionCAMB,FDM(𝑘) from axionCAMB directly, I
also calculated the corresponding ΛCDMpower spectrum 𝑃axionCAMB,CDM(𝑘)
using the same code and obtained the final input spectrum 𝑃FDM(𝑘) as follows:

𝑃FDM(𝑘) =
𝑃axionCAMB,FDM(𝑘)
𝑃axionCAMB,CDM(𝑘)𝑃CDM(𝑘). (5.9)

2See section 5.3.2.
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Table 5.1: List of performed simulations with important characteristics: simulation type
(SP/𝑁-body with FDM or CDM ICs), number of resolution elements (grid cells or 𝑁-
body particles), box size, FDM particle mass, and resolution (grid cell size or 𝑁-body
particle mass). The lengths given for the box sizes and resolutions are comoving. The
simulations with CDM ICs have previously been presented in chapter 4.

Type IC Res. el. 𝐿 / ℎ−1Mpc 𝑚𝑐2 / eV Resolution

SP FDM 86403 10 7 × 10−23 1.16 ℎ−1 kpc
SP FDM 61443 10 5 × 10−23 1.63 ℎ−1 kpc
SP FDM 43203 10 3.5 × 10−23 2.31 ℎ−1 kpc
SP FDM 43203 10 2 × 10−23 2.31 ℎ−1 kpc
SP FDM 43203 10 1 × 10−23 2.31 ℎ−1 kpc
SP CDM 86403 10 7 × 10−23 1.16 ℎ−1 kpc
SP CDM 43203 10 3.5 × 10−23 2.31 ℎ−1 kpc
𝑁-body FDM 20483 10 7 × 10−23 9.69 × 103 ℎ−1 𝑀⊙
𝑁-body FDM 20483 10 5 × 10−23 9.69 × 103 ℎ−1 𝑀⊙
𝑁-body FDM 20483 10 3.5 × 10−23 9.69 × 103 ℎ−1 𝑀⊙
𝑁-body CDM 20483 10 — 9.69 × 103 ℎ−1 𝑀⊙

This ensures that any variations between eq. (5.8) and axionCAMB are canceled
out, and only the differences arising from the choice of the CDM or FDMmodel
remain.

5.3.2 Simulations

The simulations were performed using the cosmological parameters Ωm = 0.3, Ωb =
0, ΩΛ = 0.7, 𝐻0 = 70 kms−1Mpc−1 (ℎ = 0.7), and 𝜎8 = 0.9,3 with ICs as described in
section 5.3.1. The same cosmological parameters and random seeds were shared for
the generation of all ICs at 𝑧 = 127 in order to allow for a direct comparison between
different darkmattermodels and resolutions, including those previously presented in
chapter 4. For a comoving box size of 10 ℎ−1Mpc, and differentmasses 𝑚, simulations
with different resolutions – up to grid sizes of 𝑁3 = 86403 – were performed. As
before, the simulations were run until 𝑧 = 3, where the FDM simulations should
still be largely unaffected by resolution effects. Furthermore, even the largest modes
in simulations of this box size would become non-linear before 𝑧 = 0, making the
reliability and benefit of evolving simulations to this point dubious in any case. A

3As usual, the density parameters Ω𝑖 indicate the values at 𝑧 = 0.
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Figure 5.1: Projected dark matter densities along a thin (100 ℎ−1 kpc) slice in cosmological
box simulations for different dynamics (SP, left column; or 𝑁-body, right column) and ICs
(FDM or CDM, rows), for box sizes 𝐿 = 10 ℎ−1Mpc at 𝑧 = 3. Insets showmagnified views
of a small sub-region, highlighting scales where FDM wave effects are more prominent.
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detailed list of the different simulations is given in table 5.1. A visual overview
showing the projected density across a slab of the simulation volume is displayed for
a subset of the simulations in fig. 5.1. The images readily make differences between
the four different kinds of simulations I have carried out apparent, and they show
the impact of different values of 𝑚 as well.

Most of the simulations listed in table 5.1 focus on the masses 𝑚𝑐2 = 7 × 10−23 eV
and 3.5 × 10−23 eV, respectively, used in chapter 4, but I also performed additional
“self-consistent” FDM simulations (SP + FDM ICs) for values of 𝑚𝑐2 = 5 × 10−23 eV,
2 × 10−23 eV and 10−23 eV in order to investigate the dependence of FDMphenomenol-
ogy on the particle mass. For the lighter masses 10−23 eV and 2 × 10−23 eV, the res-
olution (with respect to eq. (5.4)) is actually much better than that of the other
simulations, allowing me to evolve them further in time beyond 𝑧 = 3 (although
once again with the caveat that all spatial modes eventually become non-linear). For
𝑁-body simulations, a very high mass resolution (large number of particles) was
used when compared to most similar cosmological simulations. This was done in
order to be able to measure the power spectrum down to very small scales, compara-
ble to those accessible using a 86403 grid. Due to my earlier work in chapter 4 using
the same parameters, it was not necessary to investigate the numerical convergence
of the simulations again in detail.

Although progress has beenmade e. g. in hybridmethods (Schwabe andNiemeyer
2022), which do not solve the equations of motion for the full wave dynamics every-
where, my simulations remain the largest cosmological SP simulations of structure
formation with FDM. The new simulations with FDM ICs allow me to perform a
four-way comparison between SP and 𝑁-body dynamics on the one hand, and FDM
and CDM ICs on the other hand, and to quantify the impact of both aspects. Apart
from being able to study a self-consistent FDM cosmology, this also allows me to gain
insight into the extent to which FDM can be approximated (e. g.) by using 𝑁-body
simulations with a modified initial power spectrum, and to examine the validity of
previous work which took this approach (e. g. Schive et al. 2016).

5.3.3 Halo identification with suppressed small-scale power

In order to identify dark matter halos, the FoF-like halo finder developed in May
and Springel (2021) (cf. chapter 4), which is able to work on a Cartesian grid, was
used. Instead of a linking length for particle distances, this grid-based halo finder
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Figure 5.2: Projected dark matter density and volume rendering (different viewing angle to
illustrate 3D structure) showing the largest FoF group using a halo finder overdensity
threshold of 60𝜌m (top row), and 100𝜌m, 200𝜌m and 300𝜌m (bottom row) in a cosmological
box simulation of FDM at 𝑧 = 3 with box size 𝐿 = 10 ℎ−1Mpc, grid size 𝑁3 = 86403,
FDM mass 𝑚𝑐2 = 7 × 10−23 eV, and FDM ICs. The areas marked in red/orange in the
projections and shown in the volume rendering indicate regions spanned by the largest
FoF group identified by the halo finder using the given overdensity threshold.

uses a density threshold as an analogous parameter. Only grid cells above the given
overdensity threshold are considered, and they are always linked if they are adjacent.

While this approach worked very well for SP simulations with CDM-like ICs and
an overdensity threshold of 60𝜌m, the results with FDM ICs were very different. In
this case, halos are linked via continuous, smooth, dense filaments throughout the entire
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Figure 5.3: Halo mass function of a cosmological FDM simulations at 𝑧 = 3 with a box size of
𝐿 = 10 ℎ−1Mpc and FDM ICs for different values of the halo finder’s overdensity thresh-
old and after filtering using the gravitational binding criterion. Different simulations are
shown as labeled.

simulation volume. The central densities of these filaments exceed the threshold
value of 60𝜌m, leading to much larger regions of space being linked by the halo
finder than intended. Indeed, as illustrated in fig. 5.2, the largest FoF group traces
a network of filaments and spreads across the entire simulation box, incorporating
numerous halos and filaments. This has dire consequences for the endeavor of
actually identifying individual halos: Because each FoF group is counted at most
as a single halo, the largest group subsumes many halos and thus leads to a severe
under-counting. As shown in fig. 5.3, the resulting HMF shows very few or even no
halos at all across wide mass ranges.

In order to break the filamentary links between halos, it was necessary to use a
higher value for the overdensity threshold. Although the FoF groups are smaller
as a consequence, encompassing only the denser inner parts of halos, this removes
the filaments, which do not typically reach such high densities, from the groups.
Empirically, I arrived at a value of 300𝜌m to reliably prevent spurious connections
between and merging of FoF groups (cf. fig. 5.3).
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However, this countermeasure invokes another problematic effect: Now, FoF
groups are broken up into many small parts which do not all correspond to actual
and reasonably complete halos. Figure 5.3 shows how increasing the group finder’s
threshold leads to an ever larger proliferation of low-mass objects in the HMF. Clearly,
these objects are spurious artifacts, since, as visible in fig. 5.3, their number keeps
increasing with the threshold parameter, eventually even exceeding the CDM ICs
case, which can be viewed as an upper limit for the HMF expected for FDM ICs.

On visual inspection of a sample of these objects, it turned out that the vast majority
of them are localized density fluctuations arising from the wave nature of FDM, e. g.
in the form of constructive interference fringes, which can reach very high densities.
The top panel of fig. 5.4 shows how a large number of transient interference maxima
is erroneously identified as halos. Although the same patterns are present in the
SP simulations with CDM ICs, the lower threshold value of 60𝜌m ensured that
these objects remained connected to halos within a single FoF group. As such,
it should be that while the identification of these objects by the halo finder is a
consequence of the used algorithm in combination with the chosen value of the
density threshold parameter, they are physical (if transient) objects, contrary to
the “spurious halos” encountered e. g. in 𝑁-body simulations of WDM. In turn,
SP simulations (regardless of ICs) do not suffer from the spurious fragmentation
encountered in 𝑁-body simulations.

In the end, filtering this set of FoF groups using a gravitational binding criterion
proved necessary and successful for reliably identifying halos.4 To this end, I compute
the “self-potential” of each FoF group within 𝑅200, i. e. the gravitational potential 𝑉s
generated only by the matter within 𝑅200,5

𝑉s = −
1
2

| ⃗𝑟𝑖− ⃗𝑟𝑗|<𝑅200

∑
𝑖,𝑗
𝑖≠𝑗

𝐺𝑚𝑖𝑚𝑗

| ⃗𝑟𝑖 − ⃗𝑟𝑗|
, (5.10)

as well as the kinetic energy 𝑇𝑣 in the group’s center-of-mass frame using eq. (2.8)
and the gradient energy 𝑇𝜌, and excluded any FoF group which did not meet the

4Another check is to filter any spatially overlapping halos in order to avoid double-counting or
potentially mis-identifying sub-halos as halos, but with the data presented here, this was not
necessary after applying the gravitational binding criterion.

5The self-potential calculation was here done using direct summation, approximating each grid
cell as a point particle for simplicity, which is accurate up to hexadecupole order in the multipole
expansion (Barnes and Hut 1989).
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Figure 5.4: Examples of spurious FoF groups identified in FDM interference patterns (top
panel) and filaments (bottom panel) in a cosmological FDM simulation (projected
density). The former arise in great numbers as a consequence of raising the halo finder’s
overdensity threshold to 300𝜌m, while the latter appear due to a lack of small-scale power
analogous toWDM. The circlesmark the groups’ locations, with the radius corresponding
to 𝑅200.
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binding criterion
𝐸 = 𝑇𝑣 + 𝑇𝜌 + 𝑉s < 0, (5.11)

cf. eq. (2.12). This reliably excludes the gravitationally unbound, transient wave
interference patterns.

It should be noted that the computation of velocities from the complex wave
amplitude 𝜓 using the gradient of the phase as in eq. (2.10) is not straightforward.
Not only is the phase a periodic variable, making it necessary to take into account
wrap-around at 2𝜋 when computing gradients, but it is also undefined in regions of
destructive interference, where 𝜌 → 0. In the end, the most robust method turned
out to be using the (equivalent) definition via the momentum density in eq. (2.8).
Not only does this avoid the treatment of the periodic phase variable, but it is also
well-defined even for 𝜌 = 0, preventing pathological cases (extremely large velocities)
when computing the numerical derivative. Although obtaining the velocity from the
momentum density requires dividing by 𝜌, the results of this procedure turn out to
be much more well-behaved in practice.

Finally, in addition to the above, a stricter cut was enforced on the virial ratio
−2𝑇/𝑉 in the form of

− 2𝑇/𝑉s < 1.6 (5.12)

in order to eliminate a number of objects which were clearly highly perturbed objects
and not reasonably relaxed halos.6 Similar cuts are regularly applied in CDMmodels
when density profiles of halos are studied (e. g. Neto et al. 2007). These objects are
distinct from the wave interference phenomena, and instead could be called very
high-density filamentary structures, arising from the lack of power on small scales in
the FDM ICs case. Their high virial ratios indicate that, while gravitationally bound,
they have not reached a virialized state. In contrast, for CDM, such filaments do not
remain smooth, but fragment into (sub-)halos down to the smallest scales. Examples
of both kinds of non-halo objects are shown in fig. 5.4.

Figure 5.5 shows the virial ratios for FoF groups in an FDM simulation as a function
of 𝑀200 (determined using a spherical overdensity algorithm). Although a virial
ratio of ≈ 1, corresponding to 2𝑇 ≈ |𝑉|, would be expected for virialized objects,
there is a significant bias of many objects around −2𝑇/𝑉s ≈ 1.2. Indeed, this effect
has been observed for CDM halos in 𝑁-body simulations as well (Bett et al. 2007;
Neto et al. 2007), and seems to be due to the definition of the self-potential, which

6Since eq. (5.11) corresponds to −2𝑇/𝑉s < 2, eq. (5.12) automatically enforces gravitational binding
as well.
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Figure 5.5: Virial ratios −2𝑇/𝑉 for FoF groups identified by AxiREPO’s halo finder with
an overdensity threshold of 300𝜌m in a cosmological FDM simulation at 𝑧 = 3 with
𝐿 = 10 ℎ−1Mpc, 𝑁3 = 86403, 𝑚𝑐2 = 7 × 10−23 eV, and FDM ICs. The potential energy 𝑉 is
the “self-potential”, and both 𝑇 and 𝑉 are summed within a radius of 𝑅200 for each halo.
Points above the dashed line correspond to FoF groups which are not gravitationally
bound (𝐸 = 𝑇 + 𝑉 > 0). Points in the hatched region (−2𝑇/𝑉 > 1.6) are excluded from
my definition of “halos”.

neglects the contribution from a possible large-scale tidal field (Stücker, Angulo, and
Busch 2021). A more sophisticated approach, such as the “boosted potential binding
check” from Stücker, Angulo, and Busch (2021), can potentially improve the results,
but was not necessary in this case, perhaps due to the low number of remaining halos
after selection, which allows for easy manual inspection of the end result. Notably,
these problems of (1) enormous FoF groups, linked by smooth filaments, stretching
across 10s of Mpc, and (2) additional, non-virialized structures identified by the
halo finder, have been encountered in 𝑁-body simulations of WDM before (Angulo,
Hahn, and Abel 2013, especially figs. 2 and 4). There have also been speculations
that stars themselves may form in WDM filaments (Gao and Theuns 2007) (and
similarly for FDM, Mocz et al. 2020), giving rise to a qualitatively different mode of
galaxy formation compared to CDM.
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Figure 5.6: Four-way comparison of dark matter power spectra at different redshifts for
cosmological FDM (wave) and CDM (𝑁-body) simulations with FDM and CDM ICs
in 𝐿 = 10 ℎ−1Mpc boxes. The power spectrum evolved using linear perturbation theory
(scale-independent growth factor) is shown for comparison. The lower panels show the
ratio of the power spectra to the CDM result (𝑁-body simulation with CDM ICs). For
𝑧 = 63 and 31, a star additionally indicates the FDM Jeans scale, eq. (2.14). Faint dotted
lines show the shot noise limits of the 𝑁-body simulations; the power spectrum cannot
be measured accurately once this limit is reached.
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Figure 5.7: Dark matter power spectra for cosmological FDM simulations at 𝑧 = 3 with
different particle masses 𝑚 in 𝐿 = 10 ℎ−1Mpc boxes. The power spectrum evolved using
linear perturbation theory (scale-independent growth factor) is shown for comparison.

5.4 Four-way comparison of the power spectrum

The matter power spectrum is a crucial measure of matter clustering at different
length scales. For ΛCDM, even including baryonic effects, its behavior and temporal
evolution have been determined rather accurately using numerical simulations (e. g.
Jenkins et al. 1998; Hellwing et al. 2016; Springel et al. 2018). For FDM, linear structure
formation is scale-dependent even in linear perturbation theory, with a suppression
at scales smaller than the FDM Jeans length 𝜆J = 2𝜋/𝑘J (2.14), and even during
non-linear evolution on scales where the wave nature of FDM is relevant, i. e. at or
below the de Broglie wavelength 𝜆dB (2.13). Intuitively, this can be understood as a
consequence of the analogue of the Heisenberg uncertainty principle (Schrödinger
formulation), or, equivalently, the presence of the so-called “quantum pressure”
(Madelung fluid formulation).

Combined with my previous results (chapter 4), my new simulations with FDM
ICs, using both SP and 𝑁-body solvers, allow me to draw a four-way comparison of
observables, contrasting results for each combination of ICs (FDM vs. CDM) and
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dynamics (SP/“FDM” vs. 𝑁-body/“CDM”). Although only two of the four cases
are strictly self-consistent in a physical sense (namely, FDM and CDM with their
corresponding ICs), this approach allowsme to disentangle the two essential physical
differences distinguishing FDM from CDM in cosmological numerical simulations:
the initial conditions and the dynamics on small scales. This is particularly relevant to
evaluate to what extent approximate methods, such as the use of 𝑁-body simulations
with an FDM initial power spectrum (Schive et al. 2016; Mocz et al. 2020), can yield
reasonable results.

Figure 5.6 shows the measured matter power spectra for both FDM and CDM
cases, where simulations with 𝑚𝑐2 = 7 × 10−23 eV are used to represent FDM. The
solid lines (CDM ICs) correspond to the results from chapter 4, whereas the dashed
lines are the new simulations with FDM ICs added in this chapter. Reassuringly, all
cases accurately agree with each other and with linear perturbation theory on large
scales and at early times, and it can be observed again that the onset of non-linear
structure formation is delayed for FDM, and does not proceed strictly in the same
bottom-up fashion as for CDM.

As a reflection of this fact, the differences between the four cases exhibit variations
across time. For example, only the 𝑁-body CDM simulation significantly exceeds
linear growth at redshifts below 15, although the SP CDM case has similar, mild
non-linear amplification on large enough scales of 𝑘 ≈ 10 ℎMpc−1 to 20 ℎMpc−1 at
𝑧 = 15. However, by 𝑧 = 7, considerable non-linear enhancement is present on small
scales 𝑘 ≳ 5 ℎMpc−1 in all cases.

Indeed, for 𝑧 ≥ 7, the power spectra for simulations with the same ICs track
each other comparatively closely on all scales, although the SP simulations are still
suppressed by some tens of percent for 𝑘 ≳ 10 ℎMpc−1. There seems to be little
qualitative change in the relative evolutions of the power spectra beyond 𝑧 = 7.
Notably, for the most part during this time, the difference between SP and 𝑁-body is
significantly smaller than that between the different sets of ICs, and is of similar size
in both cases.

At 𝑧 = 3, SP and 𝑁-body results drift more apart compared to earlier times (𝑧 = 7,
𝑧 = 5). Interestingly, at this time, the relative difference between the dynamics and
the ICs is now roughly the same, meaning that each of the two physical “ingredients”
has a similar impact at this time. Since the time evolution stops at 𝑧 = 3, it is however
unclear whether this is the onset of a new, sustained phenomenological difference
or whether it is a transient, numerical artifact. Since the resolution requirements
for SP grow more stringent towards later times, it is also possible that these slight
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relative changes in the power spectra are the first hints of resolution effects affecting
the results.

An interesting difference for the SP simulations with different ICs is the location
of the “bump” on small scales, which starts to appear at 𝑧 = 7. At the location of
this bump, the small-scale power in SP simulations matches or even slightly exceeds
the CDM power (for FDM ICs, the SP simulation quite significantly surpasses its
𝑁-body companion on these scales). It is commonly attributed to the presence of
FDM interference patterns and granules of size 𝜆dB (Mocz et al. 2020), which are
unique to the wave nature of FDM and not present in CDM. However, curiously,
there is a shift in the location of this bump for the two SP simulations, with the
bump in the FDM ICs case appearing on smaller scales. Following the interpretation
that the bump is linked to 𝜆dB, this would imply that the FDM simulation displays
more power on smaller wavelengths, which (with the other parameters being equal)
would correspond to higher velocities. The physical origin of this effect remains
unclear and is a subject for future investigation.

Figure 5.7 shows the dependence of the power spectrum on different values of the
particle mass 𝑚 at 𝑧 = 3. In part due to the limited range in values of interest which
are feasible to simulate, the differences are somewhat minor. Slightly deviating from
the trend are the lowest-mass simulations with 𝑚𝑐2 = 10−23 eV and 2 × 10−23 eV,
whose resolution relative to the de Broglie wavelength is higher than that of the
other simulations. In particular, at very small scales, the simulation with 2 × 10−23 eV
surpasses even the higher-mass cases. This is an indication that the comparably
“lower-resolution” simulations are starting to be mildly impacted by resolution
effects at these scales. Notably, only the 10−23 eV case exhibits a distinct small-scale
cut-off in the spectrum, demonstrating that extremely high (“relative”) resolution is
required to obtain a converged power spectrum measurement at these small scales.

5.5 The halo mass function

The formation of gravitationally collapsed structures of dark matter, so-called halos,
is one of the most significant results of cosmic structure. In particular, halos serve
as the loci of collapse of baryonic matter and thus provide the environment for the
formation and evolution of galaxies. The HMF, which is a measure of halo abundance
as a function of mass, and its evolution across time, are thus critical benchmarks of a
cosmological model.
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While the (extended) Press–Schechter formalism (Press and Schechter 1974; Sheth
and Tormen 1999) has been demonstrated to be a simple and reliable method to
estimate the HMF and its evolution (depending only on the power spectrum and
growth factor in linear perturbation theory), with its validity being confirmed by
comparisons to non-linear 𝑁-body simulations (which has also allowed for the
calibration of more accurate empirical fits, e.g. Jenkins et al. 2001; Tinker et al. 2008;
Despali et al. 2016), there is no similar, simple approximation for FDM. None of the
few existing (semi-)analytic estimates, such as using a Jeans-filtered power spectrum
to account for the effects of “quantum pressure” (Marsh and Silk 2014; Du, Behrens,
and Niemeyer 2017), or a sharp 𝑘-space filtering in the Press–Schechter formalism
with a variable cut-off (Kulkarni and Ostriker 2022), have been verified using the
full non-linear SP evolution, rendering their quantitative reliability still unclear. The
closest substitution of this goal thus far has been reached by comparing to the FDM
HMF estimate in Schive et al. (2016), which employed the approximate technique of
collisionless 𝑁-body simulations with truncated initial fluctuation spectrum (but
without the full SP dynamics), similar to those performed in this chapter as well
(“𝑁-body with FDM ICs”). This type of simulation technique is also how WDM
models are often computed (e. g. Lovell et al. 2014), but importantly it exhibits a
number of by now well-known difficulties (Wang and White 2007), such as the
formation of “spurious” low-mass halos that necessitate special removal procedures
and ultimately introduce a significant source of uncertainty.

Supplementing my previous results (chapter 4), my new simulations allow for a
measurement of the HMF in a fully self-consistent cosmological wave simulation
of FDM for the first time. For this purpose, I made use of the FoF-based grid halo
finder in AxiREPO to identify collapsed structures in my SP simulations. However,
as discussed in section 5.3.3, the cut-off in the FDM initial power spectrum actually
introduces considerable complications in identifying bound structures – some of
which similarly plague WDM simulations (Wang and White 2007; Angulo, Hahn,
and Abel 2013) –, which mandate the application of additional filtering steps on the
initial group catalog determined by the halo finder. After implementing these steps,
it turns out that only a limited number of halo candidates in the raw catalog survive
in my FDM simulation and can be considered physically robust, bound structures.
Projections of these 68 halos at 𝑧 = 3 are displayed in fig. 5.8, making it clear that
the majority of them exhibit a morphology in their outer parts that is quite distinct
from what is typically seen in CDM simulations. In particular, the halos are usually
embedded in thick filaments that show clear patterns of interference ridges.
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Figure 5.8: Projected dark matter densities for all 68 identified halos at 𝑧 = 3 in a cosmological
FDM simulationwith box size 𝐿 = 10 ℎ−1Mpc, 𝑁3 = 86403, 𝑚𝑐2 = 7 × 10−23 eV, and FDM
ICs. The projection depth is 2𝑅200 for each halo. Circles with radius 𝑅200 (comoving)
are centered on halos.
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Figure 5.9: Halo mass functions in cosmological FDM and CDM simulations at 𝑧 = 3 with
FDM mass 𝑚𝑐2 = 7 × 10−23 eV, a box size of 𝐿 = 10 ℎ−1Mpc and different ICs. The
HMF derived for CDM by Sheth and Tormen (1999) is shown for comparison. Different
predictions for the FDM HMF from Schive et al. (2016), Du, Behrens, and Niemeyer
(2017), and Kulkarni and Ostriker (2022) are shown using dash-dotted lines. The lower
panel shows the ratios of the mass functions to the result of the CDM simulation.

Figure 5.9 shows the resulting HMF for the new FDM simulations compared to the
mass functions for CDM ICs. The results for the HMF make it clear that the ICs have
a much stronger impact than the choice of SP or 𝑁-body dynamics. Due to the cut-off
on small scales in the initial FDM power spectrum, the seeds of structure formation
are suppressed, and it becomes virtually impossible for halos below a certain mass
threshold to form. While the SP dynamics also implies a threshold for the formation
of virialized objects, this is drastically raised when introducing FDM ICs. Indeed,
this behavior is illustrated quite starkly by the fact that there are only 68 bound halos
in the entire simulation volume at 𝑧 = 3, whereas the SP simulation with CDM ICs
contains thousands of halos in the same (quite moderate) volume at the same time.

Although the statistics are somewhat poor due to the small number of resulting
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Figure 5.10: Halo mass functions in cosmological FDM simulations at 𝑧 = 3 with different
FDM mass values 𝑚 and a box size of 𝐿 = 10 ℎ−1Mpc, compared to a corresponding
CDM simulation. The lower panel shows the ratios of the mass functions to the CDM
result.

simulated halos – despite the efforts to simulate a larger volume than has been
standard for SP simulations thus far – the HMF can be measured with reasonable
accuracy and arrive at an important result: There appears to be quite good agreement
between the HMF measured in the fully self-consistent FDM wave simulation and
the fitting function of Schive et al. (2016), which was determined from 𝑁-body
simulations with an FDM power spectrum. Consistent with my conclusion above,
this confirms that the ICs are the primary factor in determining the FDM HMF, and
that the use of 𝑁-body simulations with filtering techniques is in principle sufficient
to obtain at least an approximate estimate of the HMF in an FDM cosmology.

The (semi-)analytic estimates obtained in Du, Behrens, and Niemeyer (2017) and
Kulkarni and Ostriker (2022), on the other hand, differ from the result obtained
using this technique: Both feature a steeper turnover and drop at low masses than
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measured in simulations, and while the former results in a similar cut-off mass, it
underestimates the number of halos for high masses and overestimates it for low
masses near the cut-off, whereas the latter features a lower cut-off mass, which does
not account for the presence of the lower-mass halos found. Thus, compared to meth-
ods based on the extended Press–Schechter formalism, the 𝑁-body approximation
seems to be the most reliable “simplified” approach to the HMF so far, as it yields
the best match to my measurements in full FDM simulations.

Figure 5.10 shows the dependence of the HMF on different values of the particle
mass 𝑚 (at 𝑧 = 3). It behaves as expected, although simulations with lower 𝑚 have
even fewer halos and thus suffer more severely from low statistical counts.

Unfortunately, given the small number of halos present even at the final redshift
𝑧 = 3, it is not possible to meaningfully study the evolution of the HMF with redshift
in the simulation volume and to explicitly confirm that this conclusion also holds at
other redshifts. Likewise, reliably characterizing the quantitative precision of fitting
functions such as those of Schive et al. (2016) will have to await FDM simulations
with much larger volumes and hence better statistics.

5.6 Fuzzy dark matter filaments

My findings concerning the stark departure of the nature of filaments in FDM com-
pared to CDM in section 5.3.3, and in particular their different visual appearance
of the outer parts of halos, compelled me to further investigate FDM filaments. Fig-
ure 5.2 provides an image of the cosmic web in FDM, which is quite unlike the more
familiar structures expected for CDM, and is thus adding to this motivation. Previous
results for WDM and smaller “proof-of-concept” simulations of FDM have already
provided hints that filaments represent another, second type of significant object
when it comes to baryonic processes such as star formation (e. g. Gao and Theuns
2007; Gao, Theuns, and Springel 2015; Mocz et al. 2020). Contrary to CDM, where
filamentary structures fragment into (sub-)halos down to the smallest scales, the
filaments in these models stay intact as smooth, overdense, large-scale dark matter
structures.

I used the DisPerSE code (Sousbie 2011; Sousbie, Pichon, and Kawahara 2011) in
order to attempt to identify the filaments in my FDM simulations. Unfortunately,
this approach was met with technical difficulty due to computational limitations of
the DisPerSE software. In particular, the code can only operate on shared-memory
architectures, with no capabilities for today’s distributed-memory parallel computing
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infrastructure using the MPI standard. This means that it is inherently limited to
the amount of memory present on a single node on a computing cluster. Gravely
exacerbating the problem is the fact that the DisPerSE algorithms are rather memory-
intensive. Even with the largest amount of memory available on the MPCDF’s Raven
system, which amounts to two terabytes, the simulated density fields were forced
to be severely “down-sampled” in order to allow them to be processed by DisPerSE.
As a note, previous work applying DisPerSE to find filaments in large cosmological
simulations, such as Galárraga-Espinosa et al. (2020), was able to avoid this problem
by applying the code on a tracer field only, such as the distribution of galaxies.
However, this option is not available in this case, because there are no objects (such
as halos) present in the dark matter filaments which could serve as a tracer field
with appropriate sampling rate. Rather, filaments need to be identified directly in
the smooth dark matter density field.

In order to ensure comparability between SP (FDM) and 𝑁-body (CDM) sim-
ulations, I constructed a CDM density field by binning the 𝑁-body particles to a
Cartesian grid using CIC mass assignment, making the input to DisPerSE a uniform
Cartesian grid of the density field in both cases. For FDM, the original 86403 grid
was smoothed and scaled down by computing the means of neighboring cells. A cut
value of 60𝜌m was used, which is the minimum threshold difference between critical
points in order for DisPerSE to keep them. This ensures that the identified structural
complex is not swamped by tiny small-scale fluctuations in the density field.

In the end, the largest grids which that could be processed with DisPerSE were of
size 2883 for the largest FDM simulation, 2603 for the 𝑁-body simulations (including
its CDM counterpart), and only 2163 for the largest SP simulation with CDM ICs.
This of course drastically reduces the spatial resolution (to 34.7 ℎ−1 kpc, 38.5 ℎ−1 kpc,
and 46.3 ℎ−1 kpc, respectively), and thus cannot be expected to yield either the full
population of simulated filaments or their precise locations. However, it nevertheless
results in a reasonable filament catalog which traces a good fraction of the cosmic
web, as shown in fig. 5.11.

While it is of course possible to investigate quantities like the radial filament density
profiles even with this degraded resolution, the results are not very insightful since
the identified filament lines will not generally trace the true, fully-resolved filament
centers, making the computed profiles in a significant fraction of the total radial
extent unreliable due to the varying offsets from the center. In order to improve the
measurement, the filaments output by DisPerSE were post-processed by evaluating
each filament segment and gradually shrinking a cylindrical region around the
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Figure 5.11: Projected dark matter density showing the filaments identified by DisPerSE
(marked using black lines) in a cosmological box simulation of FDM at 𝑧 = 3 with box
size 𝐿 = 10 ℎ−1Mpc, grid size 𝑁3 = 86403, FDM mass 𝑚𝑐2 = 7 × 10−23 eV (top), and in a
similar CDM simulation with 20483 particles (bottom). In order to enable DisPerSE to
process the simulated density field, it had to be scaled down to a 2883 (FDM) or 2603

(CDM) grid.
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segment towards the center of mass contained within the region at each step, similar
to the “shrinking spheres” technique often used to determine the densest (central)
point of a halo. In this case, the segments were only allowed to be offset in a direction
perpendicular to themselves, in order to avoid several segments clustering around
a single dense point and preserving the property that the segments trace the full
length of the filament. While they do not remain continuously connected with this
approach, the resulting error in the density profiles will be rather small as long as
the originally identified filament line roughly traces the actual filament, since there
will only be a slight inaccuracy in the measured distances of matter from the line
center due to the tilt of the segments compared to the “true” continuous filament
line.

Selected FDM and CDM filaments are shown in fig. 5.12, demonstrating the out-
come of this procedure. Especially for FDM, it can clearly be seen that the original
line which runs offset from the densest inner region of the filament is correctly shifted
towards the center. For CDM, on the other hand, the definition of a filament center
is more problematic, since the filaments are peppered with numerous small halos,
which are locally the densest points. While the procedure also correctly shifts the
segments to these dense points, the set of segments can become quite discontinuous
in this case, and it is visually not clear that the halos trace what one would intuitively
identify as the center of the filament as a whole. It may be the case that another
tracer, such as a suitably smoothed halo distribution, is more appropriate to describe
the shape of CDM filaments.

The final (cylindrically) radial density profiles, both as “stacked” profiles and
for a sample of individual ones, can be found in fig. 5.13. It is evident that, for
both FDM and CDM, filaments can reach rather high central densities. The main
difference between the two is the slope and extent of the density profiles: The FDM
filament density remains relatively flat and falls more slowly towards the outer
regions, reaching much further outwards before dropping to the background matter
density, while CDM filament profiles are relatively steep. Whereas CDM filaments
on average decline around a radius of 500 ℎ−1 kpc, FDM ones often extend beyond
1 ℎ−1Mpc. This difference in the shape of the density profiles is mostly determined
by the choice of ICs, independently of the simulation method.

In the inner regions, CDM filaments seem to reach higher central densities, al-
though this statement should be interpreted with caution. Firstly, as mentioned
before, it should not be expected that the identified filaments represent the full popu-
lation present in the simulation due to the coarse-grainingwhich had to be performed
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Figure 5.12: Projected dark matter density for an example FDM (𝑚𝑐2 = 7 × 10−23 eV; left)
and CDM (right) filament at 𝑧 = 3. A thin gray line indicates the location as identified
by DisPerSE on the coarse grid, while the thicker white line segments show how this
initial DisPerSE output was shifted to more accurately capture the filament center for the
purposes of computing radial density profiles.
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Figure 5.13: Filament profiles at 𝑧 = 3 for the filaments identified by DisPerSE in 𝐿 =
10 ℎ−1Mpc cosmological box simulations of CDM (20483 particles) and FDM (𝑁3 =
86403, 𝑚𝑐2 = 7 × 10−23 eV), scaled down to 2603 and 2883 grids, respectively, for process-
ing with DisPerSE. The corresponding grid resolutions used with DisPerSE are marked
by dashed lines. Filaments identified by DisPerSE were post-processed using the full
simulation data, allowing to resolve the density profiles at much smaller distances than
the resolution imposed by the DisPerSE grids. The thin lines show a random sample of
individual filament profiles, while the thick lines are the mean (“stacked”) density pro-
files of all filaments with a total length > 400 ℎ−1 kpc. Stacked profiles for corresponding
SP and 𝑁-body simulations with the other set of ICs are shown for comparison (the SP +
CDM ICs case had to be scaled down to 2163 for use with DisPerSE).

on the density fields. Secondly, the grid resolution for the FDM simulation funda-
mentally limits the scales on which the density profile can be measured, whereas
𝑁-body particles can gather on much smaller scales, so the innermost regions may
be subject to resolution effects. This is emphasized by the fact that both 𝑁-body and
SP simulations, respectively, exhibit the same central density in the stacked profiles
independently of the ICs. Thirdly, the filament segments tend to center on halos
present in the CDM filaments, which of course tend to have very high inner densities,
meaning that the density profile measurement is in part “contaminated” by these
halo profiles. This once again raises the question of how to define the filament center.
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Finally, the scatter in FDM filament densities is much greater than for CDM, in par-
ticular featuring a population of filaments with inner densities of around 100𝜌m or
even below. Further investigation into different populations of filaments may reveal
why these only seem to occur with FDM. Another interesting observation is that the
inner FDM filament profiles are much noisier than the CDM ones. While this can be
partially attributed to resolution, which leads to poor sampling rates in the small
inner cylindrical shells, it could also be a hint of the wave patterns and fluctuations
present with FDM.

Generally, it is clear that the procedure employed here is not the ideal way to
measure dark matter filaments. However, in the absence of superior methods and
tools, fig. 5.13 demonstrates that it can still provide adequate results even far below
the nominal grid resolution. The main drawback of the approach is that the filament
population, as identified by DisPerSE on the coarse density grids, is likely incomplete,
leading to potential biases in quantities like the mean density profiles. Further, the
sample is contaminated by pathological cases, such as spurious filaments which do
not directly correspond to any structure in the original, fine density field. Unfortu-
nately, the need for “correcting” the output in post-processing makes it difficult to
distinguish legitimate cases which can be fixed from pathological ones. Enforcing a
minimal filament length somewhat alleviates this, but is not a complete solution.

5.7 Fuzzy dark matter halo profiles from a
self-consistent cosmology

The halo catalogs from my simulations in chapter 4 are also very useful to study a
large sample of FDM halos, e. g. in the context of the core–halo mass relation (Chan,
Ferreira, May, et al. 2022). Due to the use of a CDM initial matter power spectrum, the
HMF is strongly enhanced compared to a “pure” self-consistent FDM model, even
for low halo masses, as shown in section 5.5. This significantly boosts the statistics
by increasing the number of simulated halos by several orders of magnitude, which
can alleviate the issue of limited simulation volumes available in FDM simulations
to some extent.

However, there is the lingering question of whether the cosmological context,
which differs from that of a “real” FDM cosmology due to the use of a CDM initial
matter power spectrum, has an impact on the halo properties, and thus whether
this approach is ultimately valid for studying halo profiles. If this were the case,
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then the halo population may not be representative of a true sample of FDM halos
with self-consistent ICs, making the approach less suitable for studying FDM halo
properties. With the addition of FDM IC simulations of sufficient size, it is now
possible to explicitly check for differences in halo properties for the different ICs.

Figure 5.14 shows the radial density profiles of all halos in the largest FDM sim-
ulation, highlighting a small number of individual profiles for visual clarity. The
profiles present the familiar solitonic core (fit e. g. by the analytic approximation
from Schive, Chiueh, and Broadhurst 2014),

𝜌soliton(𝑟) =
1.9 × 109 𝑎−1( 𝑚𝑐2

10−23 eV
)

−2
( 𝑟s
kpc)

−4

(1 + 0.091( 𝑟
𝑟s)

2
)

8 𝑀⊙ kpc−3, (5.13)

in the center and NFW density profile (Navarro, Frenk, and White 1996; Navarro,
Frenk, and White 1997),

𝜌NFW(𝑟) =
𝜌0

𝑟
𝑅s

(1 + 𝑟
𝑅s

)
2 , (5.14)

in the outskirts.7 In order to compare to the simulationwith CDM ICs, which contains
many more halos, an equal number of halos whose virial mass most closely match
those in the FDM IC simulation was selected. Figure 5.14 also shows “stacked”
profiles8 in different mass bins defined by these halos in a separate panel, with both
sets of stacked profiles matching excellently, although there seems to be a slight trend
towards higher central densities for the CDM ICs case. There is one exception in the
lowest-mass bin, where the central soliton differs quite drastically. However, this bin
only contains a single halo, so this only highlights that halos with similar masses
can have different properties. In this case in particular, it seems that the halo in the
FDM simulation has its mass somewhat inflated by excess overdensity in its outskirts
due to its presence in a filament (see last halo in fig. 5.8). Thus, while there might
certainly be a statistical impact in the form that a larger sample of halos is more
likely to contain outliers, e. g. “unusual” halos with a “rare” merger history, both
cases agree very well at the level of the averaged density profiles, and the results do
not show evidence for large systematic differences. There are slight hints for higher
central densities in the “true” FDM simulation, which could be investigated in future
work.

7All given quantities are comoving.
8The procedure of “stacking” refers to taking the mean density across all halos for each radial bin.
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Figure 5.14: Top: Halo profiles for all 68 identified halos (gray lines) in an 𝐿 = 10 ℎ−1Mpc
cosmological box simulation of FDM (𝑁3 = 86403, 𝑚𝑐2 = 7 × 10−23 eV, FDM ICs), with
theminimum-, maximum-, and an intermediate-mass halo highlighted. Bottom: “Stacked”
profiles in several mass bins of all halos for the FDM ICs case and the subset of halos
which match these most closely in mass for the CDM ICs case. Thin dot-dashed and
dashed lines show soliton (5.14) and NFW fits (5.14) to the regions of the stacked profile
within the soliton radius and virial radius 𝑅200, which are indicated with thick lines.
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5.8 Summary and Conclusions

The simulations presented in this chapter constitute the largest numerical simulations
of cosmic structure formation with FDM that account for its full wave nature via
the SP equations, using a pseudo-spectral method. By approaching simulation
volumes more representative of cosmic large-scale structure, I was able to follow the
combined linear large-scale, and non-linear small-scale evolution of wave FDM in
a fully self-consistent manner. The pseudo-spectral method can be considered the
most accurate approach to solve the SP system of equations numerically (although
usually, the issue is not about the accuracy of the numerical approach to SP equations,
but rather whether an attempt is made to solve these equations at all, or whether
the cost is shirked by choosing one of the approximate options). It encompasses all
aspects of the wave amplitude’s temporal evolution, and in particular accounts for
the oscillatory, order-unity fluctuations of the local density due to the wave effects in
the axion-like dynamics.

I stress again that, unfortunately, the numerical resolution requirements to faith-
fully follow the FDM dynamics are muchmore stringent than for the familiar 𝑁-body
techniques applicable in the CDM case. Even large-scale modes require a very fine
mesh due to the velocity criterion, eq. (5.4), since the spatial oscillations of the phase
factors are otherwise not resolved, resulting in a halted evolution and eventually just
numerical noise. Nevertheless, the time step criterion, eq. (5.2), with its quadratic
(rather than linear) dependence on the spatial resolution, enforces very small time
steps when the mesh is made fine enough to resolve the de Broglie wavelength 𝜆dB,
even when the coarsest possible mesh resolution is selected. These requirements
continue to severely limit the regimes available to full numerical simulations of
FDM, and in particular preclude large cosmological volumes to be computed at low
resolution in a way similar to the standard practice in CDM.

The large, fully self-consistent FDM simulations performed here have allowed me
to gain new insights into the evolution of the non-linear power spectrum in these
cosmologies, especially in comparison to CDM and the simplified approach of “𝑁-
body with FDM ICs”. I could also make the first direct, self-consistent measurements
of the halo mass function in such models. In the process, I discovered that the
filamentary structure of the cosmic web behaves more similarly to WDM than to
CDM, and characterized the properties of these filaments in comparison to CDM.

My main findings can be summarized as follows:

• In this chapter, I could determine the fully non-linear matter power spectrum of
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self-consistently evolved FDMcosmologies over an exceptionally broad range of
scales, and I have also computed matching CDM 𝑁-body simulations with the
same initial conditions. On large scales, I confirmed the consistency between
all simulations – a manifestation of the Schrödinger–Poisson–Vlasov–Poisson
correspondence –, verifying the expectation that FDM behaves like CDM on
these scales. On small scales, the “quantum pressure” in FDM suppresses
structure formation compared to CDM. Self-consistently accounting for FDM
yields initial conditions with substantially reduced power on small scales,
however, producing yet bigger suppression effects for low-mass halos, in a way
strongly reminiscent of WDM models.

• I was able to draw a four-way comparison of the evolution of the matter power
spectrum for the different choices of simulated dynamics and ICs. The findings
demonstrate that the differences between each option are time-dependent, with
large variations in their relative behaviors. Especially at early times, the ICs are
the determining factor, dominating the shape of the power spectrum at small
scales due to the cut-off from at the FDM Jeans scale. By 𝑧 = 15, bottom-up
structure formation is already in full swing for CDM, with non-linear excess
power accumulating on small scales. SP with CDM ICs starts to reach the linear
theory power spectrum again at this point, whereas simulations with FDM ICs
are still significantly lagging behind on scales smaller than the initial cut-off.
Finally, for smaller redshifts, the shapes of all power spectra start to become
rather similar, and by 𝑧 = 3, the impact of going from CDM to FDM ICs and
from 𝑁-body to SP dynamics is roughly similar in size. Of course, only SP
simulations exhibit a small-scale excess “bump” (exceeding even the CDM
power) due to wave interference.

• I have developed a technique which allows me to reliably identify halos in
self-consistent FDM SP simulations, including the proper “WDM-like” ICs
with suppressed small-scale power. This proved non-trivial because, similar to
WDM, standard halo finding algorithms like FoF are not able to handle on their
own the presence of extended, smoothly overdense filaments. By employing
an increased overdensity threshold combined with a binding criterion and a
filter on the identified objects’ virial ratios, I was able to identify the subset of
gravitationally collapsed, virialized objects.

• I could, for the first time, measure the self-consistent halomass function directly
from pseudo-spectral FDM simulations. By comparing SP simulations with
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FDM and CDM ICs, I could confirm that the FDM ICs have a larger impact on
the HMF than the late-time non-linear SP dynamics, although the suppression
caused by the latter is still significant. For the “true” FDM HMF, I found
broad agreement with the approximate scheme of obtaining the HMF from
𝑁-body simulations with an FDM initial power spectrum (as performed in this
chapter and previously in Schive et al. 2016). In contrast, predictions based on
the extended Press–Schechter formalism (Du, Behrens, and Niemeyer 2017;
Kulkarni and Ostriker 2022) do not fit the HMF results so well.

• I have investigated the differences between cosmic filaments for FDM and
CDM. Like WDM, FDM filaments do not fragment into (sub-)halos like those
of CDM, and instead feature the characteristic wave fluctuation patterns. I
found significant differences in the shapes of filamentary density profiles,
with FDM filaments being much more extended and featuring a more slowly-
declining density than CDM ones. These differences were mostly determined
by the choice of the initial power spectrum. The scatter in identified filaments
was also larger for FDM, which features a population with very high densities
(even comparable to lower-mass halos). Such objects have been found to be
the sites of first star formation with FDM (Mocz et al. 2020).

• One advantage of the “SP with CDM ICs” simulations which I have performed
previously is the much larger population of simulated halos, which can be
used to infer FDM halo properties using a large sample. However, it has
not been a priori clear whether all the halos obtained in such a simulation
are representative of a fully self-consistent FDM cosmology that is based on
the correct primordial power spectrum, yielding only a much suppressed
halo abundance. In this chapter, I was able to show that the properties of
the simulated halos match quite closely, validating the use of the larger halo
catalogs for the purposes of studying FDM halos. This is reminiscent of 𝑁-body
simulations of CDM and WDM cosmologies, which show very similar halo
density profiles apart from a slightly reduced concentration of WDM halos,
consistent with their later formation time (Avila-Reese et al. 2001).

Cosmological simulations of FDM are numerically much more challenging than
CDM, but my work shows that at least small volumes can be studied with decent
spatial resolution. Including baryons explicitly would clearly be a very worthwhile
and interesting next step to arrive at a more reliable assessment of whether these
cosmologies are still viable, and how tight some of the constraints placed on the
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particle mass really are. In this regard, the high computational cost of FDM sim-
ulations can actually be viewed as an encouragement. Unlike for “cheap” CDM
simulations, adding hydrodynamics and a modeling of galaxy formation physics
should be comparatively easy to do – at least it is not expected to dominate the com-
putational expense, and in this sense appears quite feasible. This will be attempted
in forthcoming work.



6Fuzzy dark matter simulations
with baryons and the Lyman-𝛼
forest

6.1 The Lyman-𝛼 forest

The so-called Lyman-𝛼 forest is an important observational probe of cosmological
large-scale structure and the intergalactic medium (IGM) (Weinberg et al. 2003).
Figure 6.1 illustrates how it arises: A distant object (typically a quasar, since quasars
are strong emitters in the relevant part of the electromagnetic spectrum, i. e. ultra-
violet light) emits radiation with a relatively smooth spectrum in the ultraviolet
range below the wavelength of the Lyman-𝛼 line at around 1216Å (i. e. it emits more
energetic radiation). The Lyman-𝛼 line is the atomic transition line of hydrogen
between the ground state (𝑛 = 1) and the first excited state (𝑛 = 2). As the radiation
emitted by the source (e. g. quasar) propagates, it experiences redshift due to the
cosmic expansion. On the way, it can encounter clouds of neutral hydrogen, which
are present in the IGM. When ultraviolet light with the wavelength of the Lyman-𝛼
line encounters neutral hydrogen, it will excite the hydrogen atoms and be absorbed
(the excited hydrogen will eventually fall back down to the ground state and re-emit
the Lyman-𝛼 photon; however, it will do so in a random direction, and thus almost
certainly not reach the same observer as the rest of the radiation which was not
absorbed). Thus, whichever part of the originally emitted spectrum which has been
redshifted to the wavelength of the Lyman-𝛼 line when it reaches neutral hydrogen
will be absorbed, corresponding to an absorption line in the spectrum measured by
an observer of the quasar.

As the emitted light travels, more and more energetic (lower-wavelength) parts of
the emitted spectrum are redshifted to the Lyman-𝛼 wavelength. Whenever a neutral
hydrogen cloud is encountered, the corresponding absorption line is imprinted
in a different part of the spectrum, since the light is continuously redshifted as it
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Figure 6.1: Illustration of how the observed Lyman-𝛼 forest arises. Taken from Springel,
Frenk, and White (2006).

propagates. When it eventually reaches the observer, the result is a “forest” of many
absorption lines as shown in fig. 6.1, each corresponding to a different absorber along
the line of sight. In this way, the Lyman-𝛼 forest represents a one-dimensional map of
the neutral hydrogen column density. This is an extremely valuable probe, because
it is a direct measure of the distribution of hydrogen gas and thus, its large-scale
structure. The statistics of this distribution can be used to check the predictions of
cosmological models of structure formation.

6.2 Simulation setup

Building on thework developed in the previous chapters, the simulation volumes and
redshifts reached in the large FDM simulations developed here are highly suitable
to study the Lyman-𝛼 forest. In fact, only the development of these large-scale
simulations makes it feasible to attempt this for a full wave treatment of FDM in
the first place, since simulation volumes of ≈ 1 ℎ−1Mpc are simply too small to
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meaningfully measure it. For these simulations, baryons from AREPO’s moving
mesh are now gravitationally coupled to AxiREPO’s FDM grid. In this configuration,
AREPO essentially operates analogously in PM-only mode, since there is no tree
gravity for FDM, and the gas and dark matter interact via the computed PM potential
and forces. This approach does not reduce the accuracy of the simulation, since the
dark matter is limited to the Cartesian grid resolution in any case, and this resolution
generally has to be set so high that the PM force for the gas is still resolved on quite
small scales. In fact, contrary to the usual experience with simulations of CDM
and baryons, the computational cost of the gas evolution and physics is essentially
negligible compared to the FDM computations.

The simulations presented here follow Springel et al. (2018) for the cosmological
parameters, which correspond to Planck Collaboration: Ade et al. (2016), with Ωm =
0.2603, Ωb = 0.0486, ΩΛ = 0.6911, 𝐻0 = 67.74 kms−1Mpc−1 (ℎ = 0.6774), 𝜎8 =
0.8159, and 𝑛s = 0.9667. The ICs were generated using an initial power spectrum
computed with axionCAMB (both FDM and CDM) in an 𝐿 = 10 ℎ−1Mpc comoving
box at 𝑧 = 63, with the perturbed density field and particle distribution produced
using the Zel’dovich approximation, as explained in chapters 4 and 5, and evolved
until 𝑧 = 3. For CDM, the baryons were included via the standard functionality
of N-GenIC, which splits the initially created particle load into two sets of dark
matter and gas particles, assigning mass values and shifting them according to the
respective density parameters in order to maintain a valid density field. For FDM, the
baryons are simply produced in the standard fashion as particles by N-GenIC – since
dark matter is present in the form of a grid, it is not necessary to shift the particles,
since there are no other particles which would cause collisions in the positions.
Two simulations were performed: An FDM one with an 86403 Cartesian mesh for
AxiREPO’s SP solver and 2563 gas cells, and a “standard” CDM one with 2563 dark
matter particles and 2563 gas cells.

For simplicity, in these first simulations, only AREPO’s basic built-in radiative
cooling and star formation prescriptions were enabled for the baryonic physics
(Weinberger, Springel, and Pakmor 2020). In addition, while AREPO’s standard star
formation model follows Springel and Hernquist (2003), an additional simplification
was made since there were no feedback or galaxy formation physics included in these
simulations: Instead of forming stars with a certain rate below the star formation
threshold, gas will be converted to star particles instantaneously once it reaches the
aforementioned threshold.1 Since the Lyman-𝛼 forest is sensitive to the volume of

1This is known as the QUICK_LYALPHA configuration option in AREPO.
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absorbing gas, whereas star formation occurs in small, collapsed regions, this choice
should not significantly affect the measurements.

6.3 First results

Unfortunately, the first simulation of the FDM with baryons using AxiREPO reached
𝑧 = 3 only a fewweeks before the submission of this dissertation. Thus, there was not
enough time to analyze the simulation data thoroughly, so that only some selected
first results can be presented here. In particular, the main question of whether the
characteristic wave fluctuations of FDM manifest themselves in the Lyman-𝛼 forest
in some unique way which is distinguishable from CDM, which would represent a
“smoking gun” for the astrophysical detection of FDM, still requires more detailed
investigation.

6.3.1 The impact of baryons on matter clustering

To begin, fig. 6.2 displays the projected FDM and gas densities of the simulation box
at 𝑧 = 3. It is clear that the gas traces the dark matter distribution; however, it can
also be seen that the high-density gas structures are more compact than the dark
matter structures they reside in. This demonstrates that the gas can condense and
collapse due to baryonic physics processes, whereas the dark matter cannot achieve
a similarly compact state as easily. FDM in particular resists collapse below the de
Broglie scale, and this contrast to baryons is clearly exemplified by fig. 6.2.

However, even beyond the distinct dynamics considered separately, it also shows
the impact of the presence of baryons on the FDM structures: Compared to FDM-
only simulations, such as those in chapter 5, where corresponding projections are
shown in fig. 5.2,2 the dark matter structures in fig. 6.2 are also slightly more compact
than their dark matter-only counterparts. Although some small deviations are to
be expected because the cosmological parameters are slightly different, this mostly
indicates that the additional gravitational potential due to the compact baryonic
structures is able to have an impact on the FDM structures as well.

Moving once again to the matter power spectrum, fig. 6.3 compares the evolution
of the matter power spectrum in the FDM simulations with and without baryons,
with a high-resolution CDM-only simulation shown again for reference. For the

2Due to the use of the same random seed in the IC for these simulations, it is easy to draw a direct
comparison.
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Figure 6.2: Projected darkmatter density (left) and baryon gas density (right) in a 10 ℎ−1Mpc
box simulation of FDM with 𝑚𝑐2 = 7 × 10−23 eV at 𝑧 = 3. The total numbers of grid and
gas cells in the simulation are 86403 and 2563, respectively.
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Figure 6.3: Matter power spectrum in a 10 ℎ−1Mpc box simulation of FDM with baryons
at 𝑧 = 3 compared to dark matter-only simulations of both FDM and CDM. The power
spectrum evolved using linear perturbation theory (scale-independent growth factor)
is shown for comparison. The lower panels show the ratio of the power spectra to the
CDM result. Faint dotted lines show the shot noise limits of the gas cells (upper) and the
𝑁-body CDM simulation (lower); the power spectrum of the corresponding component
cannot be measured accurately once it reaches this limit.
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FDM simulation with baryons, the separate power spectra of the different matter
components (FDM and gas) are displayed in addition to the total matter power
spectrum. It should be noted that, although the resolution of the gas cells is relatively
high for a simulation of this box size (with 2563 cells), it is completely dwarfed
when compared to the number of resolution elements in the dark matter component
(86403 for FDM and 20483 for CDM). Since the number of particles sets the limit
below which so-called shot noise dominates the power spectrum measurement
(treating AREPO’s Voronoi mesh cells as particles), this limit will be reached for
the gas component much sooner than the dark matter, preventing it from being
probed down to similarly small scales. Explicitly, the gas power spectrum can only be
measured up to around 𝑘 ≲ 102 ℎMpc−1. While the shot noise floor can be subtracted
from the power spectrum in an attempt to obtain an estimate on smaller scales, this
estimate should not be considered reliable.

Figure 6.3 shows that the inclusion of baryonic gas has an impact on the evolution
of the power spectrum compared to the FDM-only case. (Note again that there is
a small difference, especially with respect to a global offset in the normalization
of the power spectrum, due to the different choice of cosmological parameters.)
Interestingly, while the early (≤ 31) and final (𝑧 = 3) FDM power spectra are very
similar, the intermediate evolution shows some discrepancies. Between 𝑧 = 15 and
𝑧 = 5, the simulation with baryons has fallen behind the FDM-only simulation
in the growth of power on small scales below the initial FDM Jeans cutoff scale
(𝑘 ≥ 101 ℎMpc−1). However, by 𝑧 = 3, it has caught up again, such that there is
a temporary delay in the evolution of the power spectrum on those scales when
including baryons.

Further, there is an interesting development on small scales at 𝑧 = 3. Although
it is somewhat difficult to say because the power spectrum quickly approaches
the shot noise limit of the gas, it appears that the combined FDM and gas power
spectrum exceeds the FDM-only one for 𝑘 ≥ 20 ℎMpc−1. Since the former has a lower
overall normalization of the power spectrum due to the cosmological parameters,
this pulling ahead of the simulation with baryons is indeed significant. It appears to
be a quantitative confirmation of the effect observed earlier in fig. 6.2, where baryons
are more condensed on small scales than the FDM, and in turn have a compactifying
impact on the dark matter.

6.3.2 Fuzzy dark matter and the Lyman-𝛼 forest

I will now turn to the main purpose with which the baryonic FDM simulation was
designed: The Lyman-𝛼 forest. In order to analyze and quantify what impact the
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FDM (𝑚𝑐2 = 7 × 10−23 eV):

CDM:

Figure 6.4: Transmission along a line of sight through the gas in a 10 ℎ−1Mpc box simulation
of FDM (top) and CDM (bottom) with baryons at 𝑧 = 3.
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distribution of gas in the simulation would have on the observed Lyman-𝛼 forest,
the simulation volume is probed by many randomly chosen lines of sight. Along
these lines of sight, synthetic absorption spectra are constructed according to the
procedure outlined in Bolton and Haehnelt (2007). This results in the fraction of
transmitted flux 𝑇 = exp(−𝜏), where 𝜏 is called the optical depth, from the source
to the observer as a function of wavelength 𝜆.

Figure 6.4 shows examples of such absorption spectra from the companion simula-
tions of both FDM and CDM with baryons. It is clear that in the case of FDM with
the chosen mass parameter, there are much fewer absorption troughs than for CDM,
and those that are there also often appear broader than the CDM ones. This is a
consequence of the reduced amount of small-scale structure present with FDM: Since
the gas traces the dark matter, a reduction in small-scale structure implies that there
are fewer opportunities for neutral gas to condense into (relatively) dense clouds
(since there must be an appreciable amount of absorbing gas present along the line of
sight to have a noticeable impact on the transmitted flux). A possible hint at the wave
fluctuations in the FDM density field could hide, for example, around the first dip
on the left in the FDM transmission in fig. 6.4. As the flux rises again towards higher
wavelengths, there are what appear to be oscillations along the curve. It will be of
interest to study whether the baryons follow the FDM density oscillations in some
cases, and whether this can be identified in the Lyman-𝛼 forest through patterns like
these.

The synthetic absorption spectra can be used to estimate the flux power spectrum,
which is shown in fig. 6.5 for the simulations with baryons presented in this chapter
with some observational data for context (McDonald et al. 2000). There is very
good agreement on large scales, but the FDM starts to drop far below the CDM
case very quickly towards smaller scales. However, on the smallest scales, FDM
starts to slightly close the gap to again, meaning that the largest discrepancy is on
intermediate scales. This effect could be related to the similar phenomenon in the
matter power spectrum, where FDM wave fluctuations cause an enhancement of
power on small scales.
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Figure 6.5: The flux power spectrum of FDM and CDM simulations with baryons, obtained
by averaging over the synthetic absorption spectra of 1000 randomly selected lines of
sight. Observational data from McDonald et al. (2000) is shown for comparison.



7Conclusion and outlook

In this dissertation, I have presented the development, implementation, and analysis
of the largest wave numerical simulations (numerically solving the SP equations) of
cosmic structure formation with FDM which have been performed to date. These
simulations are pushing the boundary of what is feasible in the size of the simulation
volume and computational grid, improving on previous efforts by a large factor. The
achieved comoving box size of 10 ℎ−1Mpc has made it possible for the first time to
study larger-scale cosmological observables, such as the HMF or the Lyman-𝛼 forest,
in a direct, fully self-consistent manner without relying on approximations. Not only
that, but such extensive simulations can serve as a baseline to verify and calibrate
simplified or approximate approaches, providing a robust underpinning.

It is arguably safe to say that the ideal goal of gaining a comprehensive under-
standing of structure formation with FDM, similar to the current state of ΛCDM,
is much more difficult to achieve than originally hoped for at the beginning of this
project. Due to the prohibitive computational cost and requirements imposed by
the SP equations, it is highly unlikely that there will ever be a fully self-consistent
simulation of FDM’s wave behavior from large cosmological scales (hundreds of
Mpc) down to the wavelengths within halos for the foreseeable future, especially
for the larger FDM masses > 10−21 eV increasingly being pushed by observational
constraints.

However, this is not meant to diminish the achievements made as part of this dis-
sertation! On the contrary, it could be said that a complete framework for wave dark
matter simulations (not only limited to FDM!), including many of the “standard”
tools which are by now taken for granted in the context of 𝑁-body simulations (such
as a halo finder), was developed in only a few short years and proven in practice. At
this point (fundamental limitations enforced by FDM’s computational cost notwith-
standing), the work in this dissertation, with the resulting AxiREPO code, in principle
makes it possible to run any kind of realistic simulation of cosmic structure formation
with FDM, including full models of baryons and galaxy formation! Instead, it is
more a question of perspective, especially when one is used to the well-established
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sphere of ΛCDM 𝑁-body simulations: There was simply a lot more groundwork
and answering of fundamental questions necessary before setting out to perform
“full-physics” simulations than there would be when starting from a mature and
complete set of tools as in ΛCDM.

Although any kind of numerical work is bound to encounter technical challenges,
it should be pointed out that these were especially severe and numerous in this
endeavor of FDM simulations. These challenges were both fundamental and of
a more “mundane” nature: Concerning the former, the immense computational
requirements posed by FDM simulations have been demonstrated e. g. in chapter 4.
However, this is not only a problem for the final “production runs” of a simulation
suite, which will obviously be limited in scope by the computational cost. Rather,
it already takes a severe toll during the development stage, because it is simply not
possible to run low-resolution FDM simulations. This is very much unlike the experience
with CDM and 𝑁-body methods, where even a comparatively poor resolution gives
reliable results on the largest scales. The fact that similar low-resolution comparisons
cannot be done for FDM is a major obstacle for experimentation and debugging. For
example, how it is easy to imagine the difficulties involved in developing a reliable
measurement for the FDM HMF when the only kind of simulation that features
enough halos for any HMF to speak of is an 86403 grid, which forces any tests to be
run on a massive 10 TiB snapshot. Each iteration in the development process occurs
on a time frame measured in days when operating on the full snapshot data set.

Similarly, the fact that the analysis of the simulation data constantly involves such
large amounts of data makes the process very painful. All tools and scripts created to
analyze the simulations eventually had to evolve into MPI-parallelized distributed-
memory versions in order to be able to deal with the amount of data on reasonable
time scales. Even for the companion CDM simulations, which were done using
existing conventions tools, the high resolution used to be able to compare the FDM
and CDM power spectra frequently brought analysis software to its limits when
working on 20483 particle simulations, once again taking inordinate amounts of time
for standard operations (if they were possible at all without running out of memory)
like visualization or computing density profiles. So even here, the simplest solution
was often to start from scratch instead of attempting to make existing tools work.

As a consequence, it must be noted that the simulations presented in this disserta-
tion have not nearly been analyzed to the fullest extent! Large simulation projects like
the Millennium (Springel et al. 2005), EAGLE (Schaye et al. 2015), or IllustrisTNG
(Springel et al. 2018) simulations are are often explored over many years by large
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teams of researchers from different (sub-)fields. On the flipside, there are only so
many aspects a single person can investigate in a limited amount of time. However,
this should also serve as an illustration of the great potential of the FDM simula-
tions presented here: There are still countless facets to be discovered “hidden in the
data”, such as a more detailed and systematic exploration of the halo catalogs and
the properties of halos, e. g. shapes, concentrations, rotation curves, the interaction
of cores and granules with the remaining halo, merger events and halo stripping,
assembly bias, or the impact of the environment on halo evolution; the investigation
of vortices: their properties and prospects for detection; the evolution and history
across time, and the question of hierarchical growth; or higher-order statistics.

Concerning the state of the FDM model as a whole, it is undeniable that observa-
tional evidence, especially recently, is increasingly pushing the allowed parameter
space towards rather large particle masses, in a regime where the “fuzzy” properties
of FDM would be relegated to (astrophysically) tiny, practically unobservable scales
– at least for the simplest version of the model. While the methods developed in
this dissertation have paved the way for a detailed exploration of all aspects of the
FDM (within the computational constraints) in realistic scenarios including baryonic
physics and galaxy formation, the fact that the observational constraints have all
but excluded the parameter space where this is computationally feasible is rather
sobering. Indeed, it seems that the biggest challenge for numerical approaches to
FDM in the near future will be the issue raised in Dalal and Kravtsov (2022): With
their claims of constraining 𝑚 up to 10−19 eV, simulations on any kind of cosmologi-
cal scales in this mass range are completely unthinkable, as the required resolution
increases by three orders of magnitude compared to the simulations shown in this
work. However, the numerical method use to obtain this bound is not self-consistent,
so if this could be robustly confirmed using a full numerical treatment, it would
spell the end for FDM, which becomes almost indistinguishable from CDM in the
remaining allowed region.





ASupplement to chapter 4

Since there is no analytical solution to the general time-dependent Schrödinger–Pois-
son equations, reliability of the code in the general case (beyond toy examples and
limiting cases) can only be checked through comparison with other implementations.
Thus, in Chan, Ferreira, May, et al. (2022), we compared the dark matter density fluc-
tuations at 𝑧 = 0 in a test simulation using two independent implementations. The
codes are independently developed, but adopted the same pseudo-spectral splitting
method in second order.

We ran a cosmological fuzzy dark matter simulation separately with identical
initial conditions generated by MUSIC with box size 𝐿 = 10 ℎ−1Mpc, particle mass
𝑚𝑐2 = 2.5 × 10−24 eV, and number of grid cells 𝑁3 = 10243. The cosmological
simulations are evolved until 𝑧 = 0, and the density fluctuations are measured as the
power spectrum shown in fig. A.1.
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Figure A.1: Comparison of the power spectrum at 𝑧 = 0 between the codes used in Chan,
Ferreira, May, et al. (2022) for a cosmological test simulation.



BSupplement to chapter 5

After performing the simulations with FDM ICs, I discovered that, unfortunately,
a small error had occurred with the used input power spectra (generated by axion-
CAMB): Instead of generating the power spectrum at the correct starting redshift of
𝑧 = 127, the power spectrum was generated for 𝑧 = 0 and then scaled back to 𝑧 = 127
using the (scale-independent) CDM growth factor. However, since the growth factor
for FDM is scale-dependent, this procedure does not result in the correct power
spectrum for an earlier redshift.

Figure B.1 shows how the shape of the linear FDM power spectrum compares for
different redshifts. In this case, the red line (𝑧 = 0) was used (incorrectly) instead
of the orange line (𝑧 = 127). Fortunately, the discrepancy is not very serious. Since
FDM coincides with CDM on large scales, there is no error incurred there. The
difference essentially boils down to a slightly increased suppression on scales smaller
than 300 ℎ−1 kpc, accompanied by some changes in the details of the oscillations of
the power spectrum on these scales. However, the order of magnitudes of the relative
suppression involved (compared to CDM) are 10−12 and 10−9, or in other words,
structure is effectively completely suppressed on these scales in both cases. For all
intents and purposes, the difference is negligible, and is erased by the vastly larger
amount of power coming in from non-linear power transfer in the later stages of
evolution (cf. section 5.4). Nevertheless, I would like to note this slight inconsistency
in the ICs here for completeness.
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