
TYPE Original Research

PUBLISHED 11 May 2023

DOI 10.3389/fcomp.2023.1178040

OPEN ACCESS

EDITED BY

Haibin Zhu,

Nipissing University, Canada

REVIEWED BY

Abdallah Qusef,

Princess Sumaya University for Technology,

Jordan

Mohamed Wiem Mkaouer,

Rochester Institute of Technology,

United States

*CORRESPONDENCE

Artem Kruglov

a.kruglov@innopolis.ru

RECEIVED 02 March 2023

ACCEPTED 17 April 2023

PUBLISHED 11 May 2023

CITATION

Ciancarini P, Kruglov A, Malikova A, Pedrycz W

and Succi G (2023) How social interactions can

a�ect Modern Code Review.

Front. Comput. Sci. 5:1178040.

doi: 10.3389/fcomp.2023.1178040

COPYRIGHT

© 2023 Ciancarini, Kruglov, Malikova, Pedrycz

and Succi. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

How social interactions can a�ect
Modern Code Review

Paolo Ciancarini1, Artem Kruglov2*, Aygul Malikova2,

Witold Pedrycz3,4,5 and Giancarlo Succi1

1Department of Computer Science and Engineering, University of Bologna, Bologna, Italy, 2Lab of

Industrializing Software Production, Faculty of Computer Science and Engineering, Innopolis University,

Innopolis, Russia, 3Department of Electrical and Computer Engineering, University of Alberta, Edmonton,

AB, Canada, 4Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland, 5Department of

Computer Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Türkiye

Introduction: Modern Code Review (MCR) is a multistage process where

developers evaluate source code written by others to enhance the software

quality. Despite the numerous studies conducted on the e�ects of MCR on

software quality, the non-technical issues in the MCR process have not been

extensively studied. This study aims to investigate the social problems in the MCR

process and to find possible ways to prevent them and improve the overall quality

of the MCR process.

Methodology: To achieve the research objectives, we applied the grounded

theory research shaped by GQM approach to collect data on the attitudes of

developers from di�erent teams toward MCR. We conducted interviews with 25

software developers from 13 companies to obtain the information necessary to

investigate how social interactions a�ect the code reviewing process.

Results: Our findings show that interpersonal relationships within the team can

have significant consequences on the MCR process. We also received a list of

possible strategies to overcome these problems.

Discussion: Our study provides a new perspective on the non-technical issues in

the MCR process, which has not been extensively studied before. The findings of

this study can help software development teams to address the social problems

in the MCR process and improve the overall quality of their software products.

Conclusion: This study provides valuable insights into the non-technical issues

in the MCR process and the possible ways to prevent them. The findings of this

study can help software development teams to improve the MCR process and the

quality of their software products. Future research could explore the e�ectiveness

of the identified strategies in addressing the social problems in the MCR process.

KEYWORDS

Modern Code Review, social interactions, software quality, survey, qualitative analysis

1. Introduction

Modern Code Review (MCR) is a multistage process where developers evaluate source

code written by others to enhance the software quality (Fatima et al., 2019; Davila and

Nunes, 2021; Malikova and Succi, 2021). The term MCR appeared in 2013 and represents

the lightweight version of Fagan inspection. MCR is tool-based and asynchronous process,

which distinguishes it from others code review approaches (Bird and Bacchelli, 2013).

Asynchrony allows participants to conduct code reviews independently of time and space

(Stein et al., 1997). The use of tool-based code review implies adapting a tool to bring

structure to the process of reviewing patches and supporting the overall logistics of the

process, and there aremany such tools that are used in open-source and commercial projects:

CodeFlow (used byMicrosoft), Gerrit (Google’s Chromium and OSS projects), ReviewBoard

(VMware), Phabricator (Facebook), and others (Sadowski et al., 2018).

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2023.1178040
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2023.1178040&domain=pdf&date_stamp=2023-05-11
mailto:a.kruglov@innopolis.ru
https://doi.org/10.3389/fcomp.2023.1178040
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2023.1178040/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Ciancarini et al. 10.3389/fcomp.2023.1178040

The core of MCR requires at least two people: the author and

the reviewer. Some companies involve more than one reviewer,

for instance, VMware involves two independent reviewers (Rigby

and German, 2006), and Microsoft requires an average of four

people (Rigby and Bird, 2013). The process consists of several

steps common among different companies: creating, previewing,

commenting, addressing feedback, and approving (Sadowski et al.,

2018).

One of the most compelling reasons for performing MCR is

to prevent developers from inappropriately “protecting” the code

they developed, that is, avoiding organizing the process so that no

one but them can change their code or even, in the most extreme

cases, use it. Moreover, the review provides insight into the code

to other developers, promotes the exchange of information among

team members, supports them, and improves the overall process

and quality of the software (Bird and Bacchelli, 2013). A thorough

empirical study conducted at Google evidenced that the main

drivers for MCR, from the developers’ perspective, are education

(teaching or learning), maintenance of organizational standards,

and, eventually, prevention of bugs, defects, and other quality issues

(Sadowski et al., 2018).

Unlike recent researches that focus on analyzing the artifacts

of the online tools used (Ahmed et al., 2017; Asri et al., 2019;

Chouchen et al., 2021), our work focuses specifically on a qualitative

analysis of the aspects of interpersonal interactions in the MCR

process. Consequently, in this work we aim at answering the

following research questions:

RQ1: How do social interactions affect the code reviewing process?

RQ2: How to prevent the artifacts induced by social interactions and

improve the quality of MCR?

This work is structured as follows. Section 2 presents the state of

the art inMCR research. Section 3 describes the selected approaches

and the structure of the conducted research. The demographics of

the research and data collection process are presented in Section 4.

Section 5 shows the results of its implementation. The evaluation

and discussion of results in respect to defined research questions

as well as overall summary of the work are presented in Section

6, followed by the analysis of validity of the research in Section 7.

Finally, we discussed the directions of further research in Section 8

and draw the conclusions in Section 9.

2. Related works

The effects of MCR have been studied in many researches

(Ebert et al., 2019, 2021; Nazir et al., 2020; Wang et al., 2021),

with experiments conducted at large software companies, such as

Microsoft (Bird and Bacchelli, 2013; Rigby and Bird, 2013; Bosu

et al., 2017), Google (Rigby and Bird, 2013; Sadowski et al., 2018),

Mozilla (Kononenko et al., 2016), and in open-source projects

(Rigby and Bird, 2013). These works reveal a significant number

of non-technical issues in MCR: distance, review subject, context,

customization, and social interaction. Distance can be interpreted

as physical or social distance between different teams or different

roles. The problem with the subject of the review arises from a lack

of comprehension of the code. The problem of context is related

to the misunderstanding of the reasons for changing the code.

Customization is a problem arising from the specific requirements

in each particular company (Uchoa et al., 2020; AlOmar et al.,

2022).

A number of researches resulted in development of models and

tools for automated evaluation of MCR process and its outcomes

(Hijazi et al., 2022; Thongtanunam et al., 2022).

Factors of social interactions include the trust relationship with

the author of the code (Zhang et al., 2020), interaction among

the MCR participants (history of interactions, frequency, and so

on; Bosu et al., 2017; Fatima et al., 2019; Kashiwa et al., 2022),

relationships between the teammembers (Succi et al., 2002; Coman

et al., 2014; Bosu et al., 2017), and the perception of the individual

author or reviewer (Bosu et al., 2017; Fatima et al., 2019; Kashiwa

et al., 2022). Furthermore, individual factors including skills,

characteristics, emotions, knowledge and experience, psychological

safety, work style, and individual bias, also affect social interactions

(Fatima et al., 2019). These kinds of human issues are the area of

this research. Specifically, considering how social interactions and

individual factors can lead to not objective and misleading reviews.

Problems related to social interaction between developers and

affecting the code review process are common to both distributed

and co-located teams (Bosu et al., 2017). It is worth considering

that interactions become more superficial as the size of the

team increases (Crowston and Howison, 2005). Moreover, the

researchers found that a few individuals on a team have a large

number of interactions, while the rest have only a few (Crowston

and Howison, 2005). A number of OSS (Open Source Software)

and Microsoft teams were observed to analyze the effects of social

factors (Bosu et al., 2017; Alami et al., 2019). The results have shown

that concepts such as trust, respect, credibility, and friendship have

a significant impact on the code review processes.

The researches mentioned above are mainly focused on the

problems of the MCR and their consequences, while the possible

solutions to these issues are not well-studied. In this regard, the

current research aims not only at investigating social problems

described above, we also have a purpose of finding possible ways

to prevent them and improve the overall quality of MCR process.

3. Structure of the empirical
investigation

This study is based on:

(a) the Goal-Question-Metric approach (Basili and Weiss,

1984) for creating a research framework, elaborating the

questionnaires, and validating the obtained results, and

(b) the Grounded theory research in form of a survey for

conducting qualitative research (Bolderston, 2012).

Qualitative research is a procedure that involves collecting and

analyzing the data (e.g., images, sounds, words, and numbers;

Rossman and Rallis, 2003). Such a strategy uses a different set of

philosophical assumptions, research strategies, and methods for

collecting, analyzing, and interpreting data (Creswell and Creswell,

2018). Its purpose is to learn about some facet of the social world

by understanding concepts, opinions, or experiences (Rossman and

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1178040
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Ciancarini et al. 10.3389/fcomp.2023.1178040

FIGURE 1

GQM model.

Rallis, 2003). Qualitative research has different approaches such as

grounded theory, case study, ethnography, phenomenology, and

narrative study (Bolderston, 2012). For our work, the grounded

theory is best suited since it helps to study the process of human

interactions and generate theories to create theories that explain

human behavior (Bolderston, 2012).

3.1. GQM model

In this work we followed the research model suggested

by Malikova and Succi (2021): semi-structural interviews with

developers of different companies to investigate the topic and

gather the statistics. The goals behind conducting the survey are:

1. To understand how social interactions affect the code

reviewing process.

2. To define the strategy for preventing the impact of negative

social interactions and, thus, improving the quality of MCR.

Using the GQM approach, the defined goals are further

elaborated into questions and metrics. The resulted model

presented in Figure 1.

3.2. The research strategy

Many studies successfully used interviews to investigate various

aspects of the software development process, and the code review

in particular (Bird and Bacchelli, 2013; Rigby and Bird, 2013;

Kononenko et al., 2016; Bosu et al., 2017; Sadowski et al., 2018;

Fregnan et al., 2022). Thus, we also relied on this method to

collect data on the attitudes of professional developers towardMCR

process and the human factors affecting it.

The survey consists of several steps, including the preparation

phase, execution, and analyzing the results (Creswell and Creswell,

2018). Preparation is devoted to the elaboration of the interview

protocol, which includes: (a) instructions for the interviewer,

(b) date, place, interviewer, interviewee, (c) the questions, (d) pilot

tests, and (e) final thank-you statement.

For this survey, we have opted for the face-to-face (individual

interview) format. The target group is developers from the software

teams.We suggested involving participants from the heterogeneous

teams so that their work processes may differ from each other.

This allowed us to study the opinions of different categories

of developers.

We decided to apply the criteria of the study by Bosu et al.

(2017) to ensure the validity of the results. The restriction is

to survey developers with sufficient experience—namely, only

those who have participated in at least 30 code reviews. Also,

since our research is related to the investigation of interpersonal

relationships, it was important to take into account the amount of

time that the survey participant has been working in the current

team. We set the minimum employment criterion of 6 months.

Survey questions were chosen to meet the following criteria:

(a) be clear and understandable to interviewees, (b) be related to

MCR and its social issues, and (c) not to deal with information that

may be protected by a non-disclosure agreement.

The interview script consists of three parts: two questions on

demographic, six general questions on the topic (questions 3–8),

and nine questions addressing the research objectives (questions 9–

14 refer to RQ1 and questions 15–17 refer to RQ2). The complete

list of questions for an interview is given in Table 1.

The execution phase required adherence to the established

protocol. The interview was conducted with each participant

individually. Each interview was accompanied by a sound recorder

and a quick-notes tool. The time of interviews varied from 3 to

17 min, depending on the situation. The place depended on the

interviewees’ preferences as well as their physical location. The set

of questions was the same for all interviewees, but the questions

could vary according to a semi-structured format in order to

understand and learn more about the participant’s opinions.

At the end, results were analyzed in the following order:

1. Transcribing interview by organizing and preparing the data

for analysis.

2. Read all the data.

3. Code the data by classifying the data by words (Rossman and

Rallis, 2003).

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1178040
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Ciancarini et al. 10.3389/fcomp.2023.1178040

TABLE 1 Interview script.

No. Question Answer options

1 What is your education level? • Bachelor’s degree

• Master’s degree

• Ph.D.

• No university education

2 What is your working experience as a developer? Open-ended

3 What is your working experience in your current team? Open-ended

4 How many people work with you in the team? • 1-4

• 5-9

• 10-15

• 16+

5 What is your work format? • Remote

• Office

• Mixed

6 Do you conduct code reviews within your team? • Yes

• No

7 How many hours per week, on average, do you spend reviewing other contributors code? Opened

8 Why code review is/isn’t important? Opened

9 Has it ever happened that you conducted a code review with a person emotionally close to you? • Yes, please explain how you felt, and, if possible

provide examples

• No

• I cannot answer

10 Has it ever happened that you conducted a code review with a person that you could not stand? • Yes, please explain how you felt, and, if possible

provide examples

• No

• I cannot answer

11 Do you think that the identity of the contributor relevant to you when you conduct a code review? • Yes

• No

• I cannot answer

12 When you review poorly written code, does it affect your perception of the author of the code? Open-ended

13 When you review very well written code, does it affect your perception of the author of the code? Open-ended

14 Could you say that interpersonal relationships affect the objectivity of the code review? Open-ended

15 If yes, is it a problem in your team? Open-ended

16 If yes, what possible solutions to these problems do you see? Open-ended

17 Are there any other problems affecting the code review process within your team? Open-ended

4. Generate a description of the setting or people and categories

or themes for analysis by codes.

5. Represent the description and themes.

6. Produce qualitative analysis of the results (Creswell and

Creswell, 2018).

The results of the conducted interviews helped us understand

the processes and problems of the code reviewers. In addition, we

collected possible solutions that the participants proposed for their

particular team.

4. Demographics of the survey

During March and April 2021 we conducted 25 interviews

with software developers from 13 different companies. They were

carried out according to the established protocol in online and

offline formats. To ensure the integrity of the results and to promote

the replicability of the research results, we made anonymized audio

recordings and processed data1

Figure 2 shows the demographic distribution of the

participants. Thus, the majority of respondents were male

(88%), 12%–female. Most participants (72%) have a bachelor’s

degree, 12% have a master’s degree, 8% are Ph.D. and the rest 8%

have no higher education. The working experience of interviewees

varies from half a year to 13 years, with the median value is 2.

Information about the teams of participants is shown in

Figure 3. According to the respondents, 20% work in an office,

44% work remotely, and 36%—mixed. The number of developers

working in the same teams with respondents varies from 2 to 30

people (median is 5). Working time together is from 3 months to

5 years, with the median value of 1 year. And time spending on

1 Available at: https://drive.google.com/drive/folders/17AZoon52nDvVvD

K7eUhwczjtP1H9Ec8p?usp=sharing.

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1178040
https://drive.google.com/drive/folders/17AZoon52nDvVvDK7eUhwczjtP1H9Ec8p?usp=sharing
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Ciancarini et al. 10.3389/fcomp.2023.1178040

A B

C

FIGURE 2

Personal information about participants. (A) Gender distribution. (B) Education level. (C) Work experience.

A B

C D

FIGURE 3

Information about working teams. (A) Work format. (B) Team size. (C) Time spending on reviewing other’s code per week. (D) Time working within

the current team.

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1178040
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Ciancarini et al. 10.3389/fcomp.2023.1178040

reviewing other’s code per week varies from 30min to 10 h (median

is 2 h).

5. Results of the survey

5.1. Why code review is/isn’t important?

One hundred percent of the surveyed participants answered

that the code review is an essential part of the development within

their team. We also asked developers to mention the reasons why

code review is meaningful for them (multiple answers could have

been given). And there is a list of all identified reasons for the

importance of the procedure, sorted by popularity (Figure 4).

5.2. Has it ever happened that you
conducted a code review with a person
emotionally close to you? What did you
feel?

Most of the participants (68%) answered that they had to check

the code of a person emotionally close to them. Opinions about

objectivity were divided into two groups. Some developers have

said that it’s pretty hard for them to be objective when reviewing

a person they know well:

“I had to be not too rude. It was necessary to write

something more restrained.” (I-1)

“Sometimes I felt admiration.” (I-11) “I have to work with

my younger cousin. And in this regard, I am stricter with him

than with others.” (I-14)

“Of course, we look based on our experience, from some

of our emotional backgrounds. When we look at a loved one,

there’s a predisposition, but on the other hand, you can swear

him since you’re no longer afraid.” (I-20)

Others, on the contrary, noted that out-of-work relationships

do not matter, and they check everyone identically:

“There is no difference for me. I conduct reviews for

everyone in the same way.” (I-10)

“I basically have a neutral collegial attitude toward 98% of

people.” (I-15)

The second group had significantlymore developers (80%) than

the first (20%).

5.3. Has it ever happened that you
conducted a code review with someone
you could not stand? How did that make
you feel?

The majority of respondents had never checked the code of

a person that they could not stand. Those who did check (28%)

provided the following feedback. Most respondents (about 76%)

were confident about objectivity:

FIGURE 4

Benefits of the code review.

“Since we are engaged in a common business, it is better to

teach a person who does not know how to do it.” (I-20)

“I try to separate the work from the personal, so I was

objective.” (I-23)

Others (about 24%) felt that their emotions were impacting

their judgments:

“I had an annoyance and desire to find as many errors as

possible.” (I-1)

“I felt aggression, anger, wish to rewrite his code.” (I-4)

“I didn’t want to let his code go to production.” (I-6)

“If a person was extremely unpleasant to me, I simply

ignored his requests.” (I-17)

5.4. Do you think that the identity of the
contributor is important to you when you
conduct a code review?

A significant part of interviewees (75%) answered that identity

of the contributor matters when conducting a code review:

“For me, code review depends on the person’s experience.

If developer is more experienced, they won’t try to delve into

his code, and, on the contrary, if I know that developer is a

beginner I will be more critical.” (I-10)

“This affects the wording of my comment.” (I-18)

Others claimed that identity had nothing to do with them when

checking the code:

“If a person has been developing for 3 years, then he cannot

make any simple mistakes. Most often, you just need to make

sure that everything is fine and I will not thoroughly check any

places. But if a person works for a month, then I will check

almost every day.” (I-16)

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1178040
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Ciancarini et al. 10.3389/fcomp.2023.1178040

5.5. When you review poorly written code,
does it a�ect your perception of the author
of the code?

Respondents answered quite differently, but two main points

of view can be distinguished. For some of them, the quality of the

written code is not related to its author’s personality. They do not

treat the author of the code as a personality, but as a developer:

“Rather, I would not make condemnation about this

person. I’ll just roughly understand how much this person

understands the area.” (I-11)

“I draw some conclusions regarding his level.” (I-21)

While others can draw conclusions about a person by his code:

“Naturally, if a person is mistaken and repeats, then you

can understand what kind of person.” (I-2)

“If I know that a person has 5 years of development

experience, and at the same time he writes code as an intern,

then I will think that the person is not smart enough.” (I-25)

5.6. When you review very well written
code, does it a�ect your perception of the
author of the code?

The respondents answered this question about the same as the

previous one. For the part of interviewers, the quality of the written

code is not related to the person’s personality:

“Is there a difference who wrote the code, that is, a rather

abstract thing from a professional point of view?” (I-3)

For the second part, the code plays role to form a relationship

with the author of the code:

“If you are not very familiar with a person, then in any case,

the attitude toward him will be based on all sorts of little things,

including the quality of his code.” (I-12)

5.7. Could you say that interpersonal
relationships a�ect the objectivity of the
code review?

Most of the developers agreed that relationships at work affect

communication processes, and code reviews as well:

“I usually trust developers with a lot of experience, because

I have no doubt that they did something strange.” (I-8)

“If he is more experienced, they will try to delve into

his code, and if on the contrary, I will be more critical. The

personality of the author matters, because for code impulse

people I worry more.” (I-10)

“When you have confidence in a person, then you start to

turn a blind eye at his code.” (I-25)

5.8. Is interpersonal relationships a problem
in your team?

Few of the participants agreed that interpersonal relationships

are a problem in their teams. But some still share the consequences

of this problem:

“Sometimes there are moments that a person finds fault

with everything very meticulously.” (I-11)

5.9. What possible solutions to
non-objective review problem do you see?

In contrast to the importance of code review, the programmers

gave only one option for this and the next question. A large

number of different options were proposed on how to avoid

bias in the code review process (directly corresponds to M3 of

GQM model): (a) involve at least two reviewers in the review

process for objectivity, (b) discuss the review criteria with the

team, standardization, (c) conversations, (d) reallocation of teams,

(e) team extensions, (f) anonymity, (g) help of the team leader,

(h) checking soft skills during onboarding, (i) team hierarchy, and

(j) enable the creator of the pull request to replace the reviewer.

5.10. Are there any other problems
a�ecting the code review process within
your team?

The most popular answers are long-wait for checking pull-

request and misunderstanding of the essence of the code. But there

are also other aspects: (a) the huge pull-request that hard to review,

(b) subjective code vision, (c) assigning the role of the reviewer to

a developer who does not know in this area, (d) not using tools for

review, (e) communication format, (f) overall involvement, (g) not

linking the pull request to the task in the agile board, (h) switching

context from tasks to tasks, (i) necessity to quickly release the task

and there is no code review in this case, and (j) lack of knowledge

of the code base.

6. Discussion

Going back to the GQM model (see Section 3), we made the

following observations. With respect to Goal 1, we found two,

somehow contradictory, facts:

1. Social interaction seems to create an emotional bond that

may prevent people from finding mistakes in code written by

peers during MCR sessions (75% of respondents agreed with this

statement).

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1178040
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Ciancarini et al. 10.3389/fcomp.2023.1178040

2. Social interaction creates a flow of ideas and a shared

language that facilitate finding mistakes in code written by peers

during MCR sessions (56%).

With respect to Goal 2, there is a set of possible solutions for

overcoming people’s issues during MCR provided by interviewees

(10 options in Section 5.9).

Regarding the research questions stated for this work, we make

the following conclusions.

6.1. How do social interactions a�ect the
code reviewing process? (RQ1)

The influence of interpersonal relationships on code review

was proven to be a fact in the conduct and analysis of the

interviews. We also found consequences that usually negatively

affect the code review process. Among them: missing errors,

unwillingness to accept code to production, ignoring, negative

emotions that interfere with being objective. It is quite interesting

to see an analogy with the results of the MCR anti-patterns analysis

conducted by Chouchen et al. (2021)

We analyzed each factor separately, and found out that all of

them lead to a deterioration in the quality of the code review. As a

result, the quality of the product as a whole may get worse. Missed

errors can lead to viral bugs in the product that can affect the

user experience (Bird and Bacchelli, 2013). Unwillingness to accept

code to production and ignoring requests from the reviewer or the

author of the code will affect the teamwork within the team. Lack

of communication skills is one of the factors of demotivation and

low productivity (Trendowicz and Münch, 2009). Finally, negative

emotions not only impede objectivity during the review process

(Egelman et al., 2020), but also lead to backslash by the developer,

which results in decreased performance.

6.2. How to prevent the artifacts induced
by social interactions and to improve the
quality of MCR? (RQ2)

Programmers made many suggestions on how to avoid the

problems associated with social interactions during the code

review. A complete list of proposed options was given in

Section 5.9. At the moment, we only have a list of suggested

options on ways of improving the review process. Validation of the

effectiveness of each of these methods in the context of teams of

different sizes and formats requires comprehensive analysis, and is

the subject of further research on this topic.

6.3. General conclusions

We have analyzed the results of the survey and come to the

following conclusions:

• Code review is an important part of development for any

team: with a different format and number of developers.

• Code review is essential for finding bugs, learning a new

feature, and maintaining standard.

• The interpersonal relationship between the reviewer and the

author of the code can affect the code review process in different

ways: missing errors, unwillingness to accept code to production,

ignoring, negative emotions that interfere with being objective.

• For most, the personality of the author only matters when

taking into account his professional experience.

• The code written by an individual does not affect the

perception of his personality, and conclusions are made on his

professional qualities.

• There are many other problems in teams related not

only to communication between developers. These issues include

verification time, the size of the verified code, subjectivity, the level

of the verifier, and so on.

• There are several ways to improve the quality of code

review according to interviewees’ opinions. The most popular

are involving multiple reviewers, creation of common criteria,

improving soft skills, and others.

7. Validity of the empirical
investigation

To be sure of the correctness of the findings, we need to check

these findings on validity and reliability (Creswell and Creswell,

2018).

7.1. Internal validity

Threats to internal validity relate to internal factors in our study

that could affect our results. To ensure the internal validity of this

study, two strategies were employed: participant checking and peer

examination. As mentioned earlier, we select only those who have

reviewed more than 30 works and have also been working in the

current team for more than 6 months. Finally, we conducted the

peer examination of the results.

7.2. External validity

Threats to external validity concern the generalization of our

findings. The majority of respondents were male and had a high

school education, and it can limit the generalizability of the results

to other groups of software developers. In addition, although

respondents’ work experience varied widely, most had relatively

limited experience which affect the validity of the study in the

context of more experienced developers.

Thus, we should recognize that our findings may not be

generalizable to the high extend. Reducing the impact of these

factors on external validity may be the direction for further research

on this topic.

7.3. Construct validity

To check the comprehensibility and validity of the survey

questions, we applied three pilot tests.

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1178040
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Ciancarini et al. 10.3389/fcomp.2023.1178040

The first one was a meeting with a psychology expert during

which we rephrase the questions, changed their order, and replaced

and added new ones. The need for the consultation with a

psychology specialist was that the questionnaire is more social, and

the goal is to understand peer impression.

Second, we applied a checklist proposed by Creswell

and Creswell (2018) to further improve the question

preparation process.

And finally, we performed a test survey with several developers

to rephrased some questions, analyze the responses, and perform

final improvements to the questions and the process of conducting

the interview itself.

8. Future work

This research is just the beginning of studying social issues in

the team during the code review. A great deal of work was done in

searching for the necessary literature, describing the methodology

of the study, and verifying the results. We have received data

regarding the questions posed, but we need to investigate them

in more detail. In future work, we can study similar researches,

which may have already proven the effectiveness of a particular

method for improving the code review process, or we can conduct

ourfquoteexperiments.

Moreover, it would be interesting to explore further the effect

of MCR in Open Source (Paulson et al., 2004; Rossi et al., 2012)

and in Agile environments (Coman et al., 2014; Kruglov, 2021), and

when different programming approach are in place, such as mobile

(Corral et al., 2014) or functional/logic (Clark et al., 2004).

9. Conclusion

MCR has shown to be an effective mechanism to identify

bugs in the code (Heumuller, 2021; Han et al., 2022; Hijazi et al.,

2022); however, given their intrinsic subjectivity, they can be

significantly affected by human factors such as interpersonal

relationships, as was shown by Malikova and Succi (2021). In

this paper we have investigated impact of social interactions on

the code reviewing process. We identified the repercussions

of interpersonal relationships that affect the code review

process, such as negative emotions and unwillingness to

admit the developer’s code to production. In 75% cases social

interactions create an emotional bond that prevent people from

finding mistakes, although in 56% they have positive effect of

creating a flow of ideas and a shared language which aids in

finding mistakes.

Furthermore, we have collected a number of suggestions on

how to improve the quality of MCR process. The most popular

opinions are to involve multiple teammembers in the main review,

to develop a list of criteria within the team for which code will be

reviewed, and to improve the soft skills of the software development

team members.

The results of this work will be useful both to those who

involved in software development—software engineers, developers,

IT managers—and who want to study this topic further and analyze

the human factors in the code review process.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Ethics statement

Ethical review and approval was not required for the study

on human participants in accordance with the local legislation

and institutional requirements. Written informed consent for

participation was not required for this study in accordance with the

national legislation and the institutional requirements.

Author contributions

PC, GS, and WP contributed to the conception and design of

the study. AK, AM, and GS conducted the literature review. PC and

AM created questionnaire and survey design. AM performed the

survey. PC, AK, GS, andWP analyzed results of the survey. AK and

AM wrote the first draft of the manuscript. All authors contributed

to manuscript revision, read, and approved the submitted version.

Funding

This research was funded by Russian Science Foundation, grant

22-21-00494.

Acknowledgments

We thank Innopolis University for generously funding this

research.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1178040
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Ciancarini et al. 10.3389/fcomp.2023.1178040

References

Ahmed, T., Bosu, A., Iqbal, A., and Rahimi, S. (2017). “SentiCR: a customized
sentiment analysis tool for code review interactions,” in 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE) (Hangzhou: IEEE).

Alami, A., Cohn, M. L., and Wasowski, A. (2019). “Why does code review work for
open source software communities?,” in 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE) (Montreal, QC: IEEE). doi: 10.1109/icse.2019.00111

AlOmar, E. A., Chouchen, M., Mkaouer, M. W., and Ouni, A. (2022). “Code review
practices for refactoring changes,” in Proceedings of the 19th International Conference
onMining Software Repositories (Pittsburgh, PA: ACM). doi: 10.1145/3524842.3527932

Asri, I. E., Kerzazi, N., Uddin, G., Khomh, F., and Idrissi, M. J. (2019). An
empirical study of sentiments in code reviews. Inform. Softw. Technol. 114, 37–54.
doi: 10.1016/j.infsof.2019.06.005

Basili, V., and Weiss, D. (1984). A methodology for collecting valid software
engineering data. IEEE Trans. Softw. Eng. 10, 728–738. doi: 10.1109/TSE.1984.5010301

Bird, C., and Bacchelli, A. (2013). “Expectations, outcomes, and challenges of
modern code review,” in Proceedings of the International Conference on Software
Engineering (San Francisco, CA: IEEE).

Bolderston, A. (2012). Conducting a research interview. J. Med. Imaging Radiat. Sci.
43, 66–76. doi: 10.1016/j.jmir.2011.12.002

Bosu, A., Carver, J. C., Bird, C., Orbeck, J., and Chockley, C. (2017). Process
aspects and social dynamics of contemporary code review: insights from open source
development and industrial practice at microsoft. IEEE Trans. Softw. Eng. 43, 56–75.
doi: 10.1109/TSE.2016.2576451

Chouchen, M., Ouni, A., Kula, R. G., Wang, D., Thongtanunam, P., Mkaouer,
M. W., et al. (2021). “Anti-patterns in modern code review: Symptoms and
prevalence,” in 2021 IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER) (Honolulu, HI: IEEE). doi: 10.1109/saner50967.2021.00060

Clark, J., Clarke, C., De Panfilis, S., Granatella, G., Predonzani, P., Sillitti, A., et al.
(2004). Selecting components in large cots repositories. J. Syst. Softw. 73, 323–331.
doi: 10.1016/j.jss.2003.09.019

Coman, I. D., Robillard, P. N., Sillitti, A., and Succi, G. (2014). Cooperation,
collaboration and pair-programming: field studies on backup behavior. J. Syst. Softw.
91, 124–134. doi: 10.1016/j.jss.2013.12.037

Corral, L., Georgiev, A. B., Sillitti, A., and Succi, G. (2014). “Can execution
time describe accurately the energy consumption of mobile apps? An experiment in
Android,” in Proceedings of the 3rd International Workshop on Green and Sustainable
Software (Hyderabad: ACM), 31–37.

Creswell, J., and Creswell, J. (2018). Research Design: Qualitative, Quantitative, and
Mixed Methods Approaches. SAGE Publications

Crowston, K., and Howison, J. (2005). The social structure of free and open source
software development. First Monday 10. doi: 10.5210/fm.v10i2.1207

Davila, N., and Nunes, I. (2021). A systematic literature review and taxonomy of
modern code review. J. Syst. Softw. 177:110951. doi: 10.1016/j.jss.2021.110951

Ebert, F., Castor, F., Novielli, N., and Serebrenik, A. (2019). “Confusion in code
reviews: reasons, impacts, and coping strategies,” in 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering (SANER) (Hangzhou:
IEEE). doi: 10.1109/saner.2019.8668024

Ebert, F., Castor, F., Novielli, N., and Serebrenik, A. (2021). An exploratory study
on confusion in code reviews. Empir. Softw. Eng. 26. doi: 10.1007/s10664-020-09909-5

Egelman, C. D., Murphy-Hill, E., Kammer, E., Hodges, M. M., Green, C., Jaspan,
C., et al. (2020). “Predicting developers’ negative feelings about code review,” in
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering
(Seoul: ACM). doi: 10.1145/3377811.3380414

Fatima, N., Nazir, S., and Chuprat, S. (2019). “Individual, social and personnel
factors influencing modern code review process,” in 2019 IEEE Conference on Open
Systems (ICOS) (Pulau Pinang: IEEE), 40–45.

Fregnan, E., Petrulio, F., Geronimo, L. D., and Bacchelli, A. (2022).What happens in
my code reviews? An investigation on automatically classifying review changes. Empir.
Softw. Eng. 27. doi: 10.1007/s10664-021-10075-5

Han, X., Tahir, A., Liang, P., Counsell, S., Blincoe, K., Li, B., et al. (2022).
Code smells detection via modern code review: a study of the OpenStack
and qt communities. Empir. Softw. Eng. 27. doi: 10.1007/s10664-022-
10178-7

Heumuller, R. (2021). “Learning to boost the efficiency of modern code
review,” in 2021 IEEE/ACM 43rd International Conference on Software

Engineering: Companion Proceedings (ICSE-Companion) (Madrid: IEEE).
doi: 10.1109/icse-companion52605.2021.00126

Hijazi, H., Duraes, J., Couceiro, R., Castelhano, J., Barbosa, R., Medeiros,
J., et al. (2022). Quality evaluation of modern code reviews through intelligent
biometric program comprehension. IEEE Trans. Softw. Eng. 49, 626–645.
doi: 10.1109/tse.2022.3158543

Kashiwa, Y., Nishikawa, R., Kamei, Y., Kondo, M., Shihab, E., Sato, R., et al. (2022).
An empirical study on self-admitted technical debt in modern code review. Inform.
Softw. Technol. 146:106855. doi: 10.1016/j.infsof.2022.106855

Kononenko, O., Baysal, O., and Godfrey, M. (2016). “Code review quality: how
developers see it,” in 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE) (Austin, TX), 1028–1038. doi: 10.1145/2884781.2884840

Kruglov, A. (2021). “Impact of the communication issues: A case study of IT start-
up,” in Frontiers in Software Engineering. ICFSE 2021. Communications in Computer
and Information Science, Vol 1523, eds G. Succi, P. Ciancarini, and A. Kruglov (Cham:
Springer). doi: 10.1007/978-3-030-93135-3_8

Malikova, A., and Succi, G. (2021). “Modern code reviews: preliminary results
of an analysis of the state of the art with respect to the role played by human
factors,” in Proceedings of the 16th International Conference on Software Technologies
(SCITEPRESS - Science and Technology Publications).

Nazir, S., Fatima, N., and Chuprat, S. (2020). Situational factors for modern code
review to support software engineers’ sustainability. Int. J. Adv. Comput. Sci. Appl. 11.
doi: 10.14569/ijacsa.2020.0110161

Paulson, J. W., Succi, G., and Eberlein, A. (2004). An empirical study of open-
source and closed-source software products. IEEE Trans. Softw. Eng. 30, 246–256.
doi: 10.1109/TSE.2004.1274044

Rigby, P. C., and Bird, C. (2013). “Convergent contemporary software peer
review practices,” in Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering - ESEC/FSE 2013 (Saint Petersburg: ACM Press).
doi: 10.1145/2491411.2491444

Rigby, P. C., and German, D. M. (2006). A Preliminary Examination of Code
Review Processes in Open Source Projects. Available online at: https://flosshub.org/sites/
flosshub.org/files/Rigby2006TR.pdf

Rossi, B., Russo, B., and Succi, G. (2012). Adoption of free/libre open source
software in public organizations: factors of impact. Inform. Technol. People 25, 156–
187. doi: 10.1108/09593841211232677

Rossman, G. and Rallis, S. (2003). Learning in the Field: An Introduction to
Qualitative Research, 2nd Edn. Thousand Oaks, CA: SAGE

Sadowski, C., Söderberg, E., Church, L., Sipko, M., and Bacchelli, A. (2018).
“Modern code review: a case study at google,” in Proceedings of the 40th International
Conference on Software Engineering: Software Engineering in Practice, ICSE-SEIP ’18
(New York, NY: Association for Computing Machinery), 181–190. doi: 10.1145/
3183519.3183525

Stein, M., Riedl, J., Harner, S. J., and Mashayekhi, V. (1997). “A case study
of distributed, asynchronous software inspection,” in Proceedings of the (19th)
International Conference on Software Engineering (Boston, MA), 107–117.

Succi, G., Pedrycz, W., Marchesi, M., andWilliams, L. (2002). “Preliminary analysis
of the effects of pair programming on job satisfaction,” in Proceedings of the 3rd
International Conference on Extreme Programming (XP) (Alghero; Sardina), 212–215.

Thongtanunam, P., Pornprasit, C., and Tantithamthavorn, C. (2022).
“AutoTransform,” in Proceedings of the 44th International Conference on Software
Engineering (Pittsburgh, PA: ACM). doi: 10.1145/3510003.3510067

Trendowicz, A., and Münch, J. (2009). Factors influencing software development
productivity - state-of-the-art and industrial experiences. Adv. Comput. 77, 185–241.
doi: 10.1016/S0065-2458(09)01206-6

Uchoa, A., Barbosa, C., Oizumi, W., Blenilio, P., Lima, R., Garcia, A., et al. (2020).
“How does modern code review impact software design degradation? an in-depth
empirical study,” in 2020 IEEE International Conference on Software Maintenance and
Evolution (ICSME) (Adelaide, SA: IEEE). doi: 10.1109/icsme46990.2020.00055

Wang, D., Wang, Q., Wang, J., and Shi, L. (2021). “Accept or not? An empirical
study on analyzing the factors that affect the outcomes of modern code review?,” in
2021 IEEE 21st International Conference on Software Quality, Reliability and Security
(QRS) (Hainan: IEEE). doi: 10.1109/qrs54544.2021.00104

Zhang, X., Rastogi, A., and Yu, Y. (2020). “On the shoulders of giants: a new
dataset for pull-based development research,” in Proceedings of the 17th International
Conference on Mining Software Repositories, MSR ’20 (New York, NY: Association for
Computing Machinery), 543–547. doi: 10.1145/3379597.3387489

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1178040
https://doi.org/10.1109/icse.2019.00111
https://doi.org/10.1145/3524842.3527932
https://doi.org/10.1016/j.infsof.2019.06.005
https://doi.org/10.1109/TSE.1984.5010301
https://doi.org/10.1016/j.jmir.2011.12.002
https://doi.org/10.1109/TSE.2016.2576451
https://doi.org/10.1109/saner50967.2021.00060
https://doi.org/10.1016/j.jss.2003.09.019
https://doi.org/10.1016/j.jss.2013.12.037
https://doi.org/10.5210/fm.v10i2.1207
https://doi.org/10.1016/j.jss.2021.110951
https://doi.org/10.1109/saner.2019.8668024
https://doi.org/10.1007/s10664-020-09909-5
https://doi.org/10.1145/3377811.3380414
https://doi.org/10.1007/s10664-021-10075-5
https://doi.org/10.1007/s10664-022-10178-7
https://doi.org/10.1109/icse-companion52605.2021.00126
https://doi.org/10.1109/tse.2022.3158543
https://doi.org/10.1016/j.infsof.2022.106855
https://doi.org/10.1145/2884781.2884840
https://doi.org/10.1007/978-3-030-93135-3_8
https://doi.org/10.14569/ijacsa.2020.0110161
https://doi.org/10.1109/TSE.2004.1274044
https://doi.org/10.1145/2491411.2491444
https://flosshub.org/sites/flosshub.org/files/Rigby2006TR.pdf
https://flosshub.org/sites/flosshub.org/files/Rigby2006TR.pdf
https://doi.org/10.1108/09593841211232677
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1145/3510003.3510067
https://doi.org/10.1016/S0065-2458(09)01206-6
https://doi.org/10.1109/icsme46990.2020.00055
https://doi.org/10.1109/qrs54544.2021.00104
https://doi.org/10.1145/3379597.3387489
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	How social interactions can affect Modern Code Review
	1. Introduction
	2. Related works
	3. Structure of the empirical investigation
	3.1. GQM model
	3.2. The research strategy

	4. Demographics of the survey
	5. Results of the survey
	5.1. Why code review is/isn't important?
	5.2. Has it ever happened that you conducted a code review with a person emotionally close to you? What did you feel?
	5.3. Has it ever happened that you conducted a code review with someone you could not stand? How did that make you feel?
	5.4. Do you think that the identity of the contributor is important to you when you conduct a code review?
	5.5. When you review poorly written code, does it affect your perception of the author of the code?
	5.6. When you review very well written code, does it affect your perception of the author of the code?
	5.7. Could you say that interpersonal relationships affect the objectivity of the code review?
	5.8. Is interpersonal relationships a problem in your team?
	5.9. What possible solutions to non-objective review problem do you see?
	5.10. Are there any other problems affecting the code review process within your team?

	6. Discussion
	6.1. How do social interactions affect the code reviewing process? (RQ1)
	6.2. How to prevent the artifacts induced by social interactions and to improve the quality of MCR? (RQ2)
	6.3. General conclusions

	7. Validity of the empirical investigation
	7.1. Internal validity
	7.2. External validity
	7.3. Construct validity

	8. Future work
	9. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


