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1 Introduction

In the coming years, the future high-luminosity Large Hadron Collider (LHC) and pro-
posed Circular Electron Positron Collider (CEPC), Future Circular Collider (FCC) and
International Linear Collider (ILC) experiments will accumulate a large amount of data,
which need to be compared by precision theoretical predictions for particle scattering cross
sections [1–7]. To get the relevant cross sections at NNLO, one crucial task is the evaluation
of multi-loop Feynman integrals with several external legs.
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Recent years have seen tremendous progress in computing five-particle Feynman inte-
grals, scattering amplitudes at two loops, and even complete cross sections. All the massless
two-loop five-point integrals were calculated analytically in a series of papers [8–14]. The
result provides a complete set of two-loop Feynman integrals for any massless 2→ 3 scat-
tering process, which can be used for three-jet production at hadron colliders to NNLO in
QCD. Very importantly, a dedicated computer implementation for evaluating the Feynman
integrals in the physical region in an efficient and reliable way was provided in reference [15].
First applications of the analytic progress include three-photon production [16–18], three-jet
production [19, 20], and diphoton plus jet production [21–25].

Also very recently, first results on two-loop five-point integrals with one off-shell leg
have become available [26–28]. These integrals are important ingredients for two-loop
scattering amplitudes for two-jet-associated W-boson/Z-boson production in QCD, see [29].

From the above paragraphs it is clear that the state of the art in analytically computing
two-loop Feynman integrals is five particles. Moreover, we see that when new results for
Feynman integrals become available, this constitutes a game changer and paves the way
towards obtaining scattering amplitudes, and eventually full cross sections. This motivates
us to aim at the two-loop six-point massless integrals, where very little is known in general.
The results for five-point integrals with one off-shell leg give a subset of the integrals
needed for genuine six-particle scattering. Moreover, we can get some information (and
motivation) from N = 4 super Yang-Mills (sYM), where the function space for planar
six-particle scattering is believed to be known to all loop orders, and is closely linked to
cluster algebras [30]. The relevant function space is beautifully given by nine alphabet
letters that define a certain class of iterated integrals. Remarkably, the knowledge of
the function space, together with physical properties of amplitudes, makes it possible to
bootstrap results to very high loop orders, as reviewed in [31, 32]. Unfortunately, this result
is closely linked to additional symmetries of planar N = 4 sYM that are broken in QCD,
and as a result, the corresponding integrals in QCD are considerably more complicated.

Already for five massless particles, the scattering kinematics, consisting of five indepen-
dent dimensionful Mandelstam variables turned out to be one of the main challenges in QCD.
One of the key insights was the discovery that those variables enter the Feynman integrals
in a very precise way. More precisely, it turned out that all relevant Feynman integrals
can be described by a function space with certain symbol letters, and there are exactly
31 symbol letters (that each depends in a precise way on the five-particle kinematics), as
initially conjectured in [9].

At six massless particles, there are eight independent dimensionful kinematic variables,
so that one can imagine a very complicated function space. One of our goals will therefore be
to identify appropriate symbol letters that describe the function space, generalizing the nine
dual conformal letters from N = 4 sYM, and the letters known from five-particle integrals
with one off-shell leg. Our second goal will be to initiate the systematic calculation of all
planar two-loop six-particle integrals. The reason for this is that, given the smaller amount
of symmetries that QCD enjoys compared to N = 4 sYM, it is likely that in practice
the knowledge of the symbol alphabet, while important, is not sufficient to bootstrap
full QCD amplitudes. Our method of choice to achieve these two goals is the canonical
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differential equation method [33, 34], that was instrumental in obtaining the five-particle
results mentioned above. Let us quickly review the main steps and challenges.

A key tool in these computations is the integration-by-parts (IBP) identities [35, 36]
that arise from the vanishing integration of total derivatives. In practice, the IBP identities
generate linear relations between loop integrals with a specific set of propagators but with
different numerators, allowing any integral to be expressed in terms of a finite basis of
integrals [37], so-called master integrals. In this way, the problem is reduced to that of
evaluating the master integrals.

A very successful method for evaluating the master integrals is the differential equation
with respect to kinematic invariants [38, 39]. For each set of Feynman integrals, one obtains
a set of first-order differential equations. These equations, together with an appropriate
boundary condition, determine the answer in principle. However, in general this solution is
very hard to obtain if the differential equation matrix is complicated. One of the keys to
the solution of the differential equation is to choose an optimal basis of integrals that leads
to a system of differential equations in a canonical form [33, 34], in which the loop integrals
have uniform degree of transcendentality (UT), also called transcendental weight.

A key insight, originally observed for integrals appearing in maximally supersymmetric
Yang-Mills theory [40], is that the UT property of the integrated functions can be understood
from properties of the rational loop integrand. It was observed that the UT integrals in
that have integrands that can be written in a so-called dlog form [41], that is, they only
have single poles in the integration variables. Moreover, their maximal residues, also called
leading singularities, are normalized to kinematic-independent constants. These properties
have hence been used for finding UT integrals beyond N = 4 sYM (see e.g. [42, 43], which
includes an algorithmic implementation.) In particular they have been crucial for calculating
the two-loop five-particle integrals mentioned above.

In the most basic version, the integrand analysis is done in four dimensions (or in
another integer dimension). Quite remarkably, for most cases this is sufficient to predict the
UT property of the integrals in dimensional regularization, with D = 4− 2ε, for any order
in ε. However, especially when many kinematic variables are involved, it was noticed that a
more refined analysis is necessary, that also includes aspects beyond four dimensions. This
is not too surprising, if one considers that it is possible to write down evanescent integrands,
i.e. integrands that vanish when the loop momentum is taken to be four-dimensional, but
which give non-zero answers after integration. In the case of six particles, information on
four-dimensional integrands is available from [44, 45]. Moreover, the integrand of two-loop
six-gluon all-plus scattering amplitudes is available in analytic form in [46].

A very useful way of including more than the four-dimensional information is to perform
the leading singularity analysis in Baikov parametrization. This idea has been used for the
finding of two-loop five-point massless UT integrals [14] as well as two-loop double box UT
integrals with four external masses [47]. (See also [48] which discusses this method in the
context of intersection theory [49–52].)

Already at five particles, this program faces enormous practical challenges, in terms
of the necessary computer algebra and running time, the size of intermediate and final
expressions. For this reason our analysis of the uniform weight properties of integrals is
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crucial, as the differential equations are known to simplify dramatically. That being said,
already in the case of five-particle amplitudes with one off-shell leg, they involve numerous
different singularities, depending on six kinematic variables. Each singularity describes a
physically interesting kinematic configuration, such as collinear limits, thresholds, and so
on. The general six-particle case we set out to study involves nine kinematic variables, and
one anticipates even more singularities, which makes it particularly challenging.

In view of the technical challenges, obtaining the full differential equations in one step is
a difficult task. However, we can profit from the fact that the differential equation method
can be combined naturally with (generalized) unitarity cuts. This fact is used for example
in the reverse unitarity method [53]. What is important in the present context is that cut
integrals, i.e. integrals where certain propagators are replaced by delta functions, satisfy the
same differential equations, albeit with different boundary conditions. Moreover, as only
integrals with certain propagators present can contribute to a given cut, this allows us to
focus on a given integral sector at a given time. Each integral sector (corresponding to a set
of propagators) corresponds to a block on the diagonal of the differential equations matrix.
In this paper we analyze the planar two-loop six-point integrals (beyond the ones that
correspond to two-loop five-point integrals with one massive external leg) on maximal cuts.

We use a variant of dimensional regularization called t’Hooft-Veltman (tHV) scheme,
where external states are four-dimensional while internal (loop) states are D-dimensional,
with D = 4− 2ε. This differs from the so-called conventional dimensional regularization
(CDR) where everything is in D dimensions. This is the same scheme commonly used for
helicity amplitudes, including all recent five-point results. However, up to five external legs,
the IBPs and the master integrals are the same in the two schemes, since there are at most
four independent external momenta (amplitudes can differ because there you also have
polarization states). Six external legs is the lowest multiplicity where one sees a scheme
difference also in the calculation of the reduction and the master integrals. A recent review
on this topic is [54].

We perform a leading singularity analysis in Baikov representation in order to search for
UT integrals with complicated kinematics [14, 47, 48]. We then use finite-field reconstruction
for the IBP reduction [55] and for deriving the differential equation. The diagrams considered
in this paper have complicated kinematics and the traditional IBP reduction is difficult.
To overcome this, we use the cutting edge finite-field reconstruction approach with the
package FiniteFlow [56–58] for the computations. In doing so, we find momentum twistor
parameterization [59, 60] useful, as it rationalizes certain Gram-determinant square roots.

In this way, we are able to reconstruct the differential equations on the maximal
cuts. We verify that they take a UT form for the integrals we identified with the Baikov
analysis. Furthermore, we identify and present the symbol letters appearing in the canonical
differential equations. This constitutes a crucial step in the calculation of the planar
six-particle two-loop integrals, and in identifying the relevant function space. We anticipate
that the latter will prove useful for a better analytic understanding of six-particle scattering
processes, for instance in the context of bootstrap methods.

This paper is organized as follows: in section 2, we introduce our conventions for
six-particle kinematics, including a useful momentum twistor parametrization. We also
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discuss the two-loop six-particle integrals and define the integral sectors analyzed in this
paper. In section 3 we discuss the main methods used: after outlining the canonical
differential equation method, we briefly review the integrand analysis for finding uniform
weight integrals, and discuss how we employ finite field methods to construct the canonical
differential equations. Sections 4 and 5 contain our main results: in section 4, we give, for
each integral sector, a set of master integrals that lead to canonical differential equations
on the cut, and we comment on the alphabet letters appearing in the equations. Section 5
summarizes our results for the function alphabet. These two sections are complemented
with supplementary material that contain our results in computer-readable form. Finally,
in section 6, we summarize our results, and discuss future directions.

2 Conventions and definitions

2.1 Planar massless six-particle kinematics

In this section, we introduce the conventions of the two-loop six-point massless kinematics.
The six external momenta are named as pi’s, i = 1, . . . 6 with p2

i = 0 and

6∑
i=1

pi = 0 . (2.1)

We recall that throughout this paper, all external momenta are treated as four-dimensional.
The Mandelstam variables are

sij = (pi + pj)2 , sijk = (pi + pj + pk)2 , 1 ≤ i, j, k ≤ 6 . (2.2)

Moreover, we define a notation for the Gram determinant

G

(
u1 . . . un
v1 . . . vn

)
= det(ui · vj) , (2.3)

where the R.H.S. is the determinant of the n×n matrix with the entries (ui ·vj), 1 ≤ i, j ≤ n.
We use the abbreviation

G(i1, . . . , ik) ≡ G
(
pi1 . . . pik
pi1 . . . pik

)
, 1 ≤ i1, . . . ik ≤ 6 (2.4)

For D dimensional external momenta, there are 9 independent Mandelstam variables,
see e.g. [61]. In four dimensions, however, five vectors are linearly dependent. The resulting
constraint can be written as

G(1, 2, 3, 4, 5) = 0 . (2.5)

This means that there are only 8 independent Mandelstam variables.
In addition to the scalar invariants discussed above, there are also pseudo scalars, which

we write as
εijkl ≡ 4

√
−1 εµ1µ2µ3µ4p

µ1
i p

µ2
j p

µ3
k p

µ4
l , 1 ≤ i, j, k, l ≤ 6 (2.6)
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where ε is the 4D Levi-Civita symbol. In addition to the independent Mandelstam variables,
one needs one pseudo scalar to fully specify the kinematics [61]. The latter can be any of
the ones appearing in eq. (2.6), for example ε1234.

The pseudo scalars are related to the Gram determinant G(i, j, k, l) as follows

G(i, j, k, l) = 1
16ε

2
ijkl . (2.7)

From this one sees that the new information contained in εijkl is a sign, εijkl =
±4
√
G(i, j, k, l). Since ε1234εijkl can be expressed in terms of Mandelstam variables, only

the sign for one choice of {i, j, k, l} is needed [61].
Other useful kinematic quantities that we will employ in this paper are,

Tr+(ijkl) ≡ sijskl − siksjl + silsjk + εijkl , (2.8)
Tr−(ijkl) ≡ sijskl − siksjl + silsjk − εijkl . (2.9)

Frequenly, we also use spinor helicity notations in this paper:

piµσ
µ

αβ̇
= λiαλ̃jβ̇ (2.10)

with the Pauli matrices σµ = (I2×2, σ
1, σ2, σ3). The spinor products are defined as,

〈ij〉 ≡ λαi λj,α (2.11)
[ij] ≡ λ̃i,α̇λ̃α̇j . (2.12)

With spinor products, kinematic quantities like (2.8) can be alternatively expressed as,

Tr+(ijkl) = 2[ij]〈jk〉[kl]〈li〉 (2.13)
Tr−(ijkl) = 2〈ij〉[jk]〈kl〉[li] . (2.14)

Momentum twistor parametrization. Recall that we treat the external states as
four-dimensional. In this case one can employ momentum twistor variables [59], that have
proven very useful in many contexts of studying scattering amplitudes. In particular, since
momentum twistors are unconstrained (they automatically solve momentum conservation
and massless on-shell conditions), it is easy to derive identities between functions expressed
in them.

Nevertheless, we will often use the variables introduced above in order to denote
final expressions (using, sometimes, an over-complete set of Mandelstam variables and
pseudo scalars), as we find that this leads to shorter expressions. To derive these compact
expressions, momentum twistors are very useful.

We refer interested readers to [59] for more details and definitions of the momentum
twistors. For the purposes of this paper, however, it suffices to say that we use a particular
momentum twistor parametrization, similar to [62], for our kinematic computations.

The latter is

Z =


1 0 1

x1
1
x1

+ 1
x1x2

1
x1

+ 1
x1x2

+ 1
x1x2x3

1
x1

+ 1
x1x2

+ 1
x1x2x3

+ 1
x1x2x3x4

0 1 1 1 1 1
0 0 0 x5

x2
x6 1

0 0 1 1 x7 1− x8
x5

 , (2.15)
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where x1, . . . , x8 are free variables. With this choice, all sij and εijkl are rational functions
of xi’s, i = 1, . . . 8. The parameterization in (2.15) is equivalent to the following explicit
parameterization,

s12 = x1 (2.16)
s23 = x1x5 (2.17)
s13 = −x1 (x5 − x8 + 1) (2.18)

s16 = −x1x2x3x4 (x5x6 − x8x6 − x5x7)
x5

(2.19)

s24 = x1 (x2 + 1) (−x3x5 − x5 + x2x3x6)
x2

(2.20)

s34 = −x1 (−x2x3x5 − x3x5 + x2x3x7x5 − x5 + x2x3x6)
x2

(2.21)

Tr+(1234) = 2x2
1 (−x2x3x5 − x3x5 + x2x3x7x5 − x5 + x2x3x6) (2.22)

Tr+(1236) = 2x2
1x2x3x4 (x7x5 − x5 + x6 + x8 − 1) . (2.23)

By these formulae, other kinematic variables, sij , εijkl, Tr±(ijkl), are uniquely determined
as rational functions in xi’s. The explicit expression of all kinematic variables in this
parameterization is given in the supplementary material.

The inverse map from the momentum-twistor variables to “normal” variables is

x1 = s12 (2.24)

x2 = −Tr+(1234)
2s12s34

(2.25)

x3 = −Tr+(1345)
2s45s13

(2.26)

x4 = −Tr+(1456)
2s56s14

(2.27)

x5 = s23
s12

(2.28)

x6 = −Tr+(1532) + Tr+(1542)
2s15s12

(2.29)

x7 = 1 + Tr+(1542) + Tr+(1543)
2s15s23

(2.30)

x8 = s123
s12

(2.31)

These expressions are simple, and it is easy to rewrite a rational function in xi’s as a function
of sij and εijkl. However, it is not straightforward to directly simplify an expression with
sij and εijkl.

To repeat, since the xi are unconstrained variables, they are suitable for automating
the computation of 6-point kinematics with common computer algebra systems.

2.2 Planar two-loop six-particle integrals

The goal of this paper is to derive differential equations for planar two-loop six-particle
Feynman integrals. Since the UT integrals for the planar two-loop five-point diagrams
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(a) Double-pentagon (b) Pentagon-box (c) Pentagon-triangle

(d) Double-box (e) Hexagon-box (f) Hexagon-bubble

Figure 1. Genuine two-loop six-point massless planar diagrams.

with one massive external leg are known [26, 27], in this paper we focus on the “genuine”
two-loop six-point planar diagrams. Here “genuine” means the corresponding diagrams
which (1) cannot be factorized to two one-loop diagrams, and (2) do not have two or more
external legs combined.

To determine the topologies of “genuine” two-loop six-point diagrams, we generate the
two-loop six-point diagrams consisting only of three-point vertices, and then determine
integral families. We find there are three planar two-loop six-point integral families,
characterized by the top-sector diagrams corresponding to a double pentagon, a hexagon-
box, and a heptagon-triangle integral. We then analyze integral subsectors (obtained by
pinching propagators), and keep the ones that are genuine in the above sense.

Then, performing a numeric IBP analysis with Azurite, we see that the master
integrals from the double pentagon and hexagon-box families (as well as those from two-loop
five-point integrals with one off-shell leg), cover the master integrals from the heptagon-
triangle family. In other words, the heptagon-triangle family does not provide new master
integrals. Therefore, it is sufficient for us to focus on the other two integral families. The
final list of integral sectors we need to consider is shown in figure 1.

In order to perform IBP reduction, one needs to choose irreducible scalar products. For
the double pentagon (DP) and hexagon-box (HB) families, we define the following factors
D1 = l21, D2 = (l1−p1)2, D3 = (l1−p1−p2)2,

D4 = (l1−p1−p2−p3)2, D5 = (l1+l2)2, D6 = l22,

D7 = (l2+p1+p2+p3+p4+p5)2, D8 = (l2+p1+p2+p3+p4)2, D9 = (l2+p1+p2+p3)2,

D10 = (l1+p5+p6)2, D11 = (l2+p1+p2)2 . (2.32)
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Diagram (a) (b) (c) (d) (e) (f)
Abbreviation DP-a DP-b DP-c DP-d HB-a HB-b

Number of propagators 9 8 7 7 9 7
Number of master integrals 5 3 1 7 1 1

Table 1. Information for the genuine two-loop six-point massless planar diagrams. Here the master
integer counting refers to the particular sector.

This allows us to treat all integrals using one common notation. For example, the DP
family corresponds to the sector (1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0), while the HB family corresponds
to (1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0).

3 Methodology

3.1 Canonical differential equations, cuts, and function alphabet

The method of differential equations [38, 63, 64] is a state-of-the-art tool for computing
Feynman integrals. However, beyond the simplest cases, a naive application of the method
can lead to prohibitive algebraic complexity. In references [33, 34] it was argued that with
a suitable choice of master integrals, differential equations can be simplified to a canonical
form. The latter can be solved easily order by order in a Laurent series expansion in ε, the
dimensional regularization parameter. The canonical form of the differential equation one
can hope to reach is

d~f = ε(dÃ)~f . (3.1)

In the case of multiple polylogarithms, Ã takes the form

Ã =
∑

ak logWk , (3.2)

where each ak is a constant matrix, and the Wk’s are functions of Lorentz invariants. The
individual Wk are called letters, and the set {Wk} is called alphabet. The significance of
these letters is that they specify the function space (and, as a proxy, the symbol [30] of the
functions) necessary to express the solutions to the differential equations.

Let us comment on the solution to the differential equations. If we write the solution
as a Laurent series,

ε2L ~f = ~f0 + ε~f1 + ε2 ~f2 + . . . , (3.3)

then, thanks to the proportionality of the R.H.S. of (3.1) to ε, the differential equations
decouple order by order in ε,

d~f1 = (dÃ)~f0 , d ~f2 = (dÃ)~f1 , . . . . (3.4)

Therefore, fk is given by k-fold iterated integrals, with the integration kernels being elements
of the matrix dÃ. We remark that in most cases, the boundary information can be obtained
from physical consistency conditions, see e.g. [65].
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To summarize, if we choose our basis integrals ~f in a judicious way, the resulting
differential equations are simplified a lot, ideally to the form (3.1), which is easily solved.

How should the basis integrals be chosen? The key property they should have can be
described with the concept of the degree of ‘transcendentality’, or transcendental weight,
T (f) of a function. We define T (Lik(x)) = k since Lik(x) is a k-fold iterated integral.
Moreover, we require T (f1f2) = T (f1) + T (f2). Therefore we have

T (log x) = 1, T (π) = 1, T (ζn) = T (Lin(1)) = n, (3.5)

T (algebraic factors) = 0, T (ζ2) = T
(
π2

6

)
= 2.

An integral J has the uniform transcendental (UT) weights if in the expansion ε2LJ =∑∞
n=0 ε

nJn,
T (Jn) = n (3.6)

If a function f also satisfies

T
(
f ′
)

= T (f)− 1 , (3.7)

where the prime stands for any partial derivative, then the function f is called a pure
function. This last criterion assures that one deals with a Q-linear combinations of uniform
weight functions, as opposed to functions with kinematic-dependent prefactors.

The usefulness of these concepts is that pure uniform weight functions satisfy simple
differential equations. In particular, if all basis elements I are pure uniform weight functions,
then the corresponding differential equation is canonical [33]. Therefore being able to identity
pure uniform weight integrals is paramount. We outline our approach to this problem in
section 3.2.

Let us discuss a structural property of the differential equations (3.1) that will be
important in the following. The propagator structure of Feynman integrals implies a
hierarchy according to which the integrals f can be arranged. Specifically, if an integral
corresponds to a subsector of another integral (i.e. it has only a subset of propagator factors
in its definition), this implies a zero in an off-diagonal element of the differential equation
matrix Ã. It is therefore useful to define integral sectors, corresponding to particular
propagator structures, such as the ones shown in figure 1, and their subsectors. When this
is done, Ã takes a block form. As mentioned earlier, all blocks corresponding to five-point
integrals with one off-shell leg have already been computed in previous work. What remains
to be done is to compute the blocks corresponding to the sectors in figure 1 (these are blocks
arranged along the diagonal), as well as off-diagonal blocks that connect their derivative to
the previously known integrals.

Experience shows that obtaining the canonical form (3.1) of the differential equations
is the most complicated step. The reason is that modifications to the basis integrals ~f

needed to take care of subintegrals have a special matrix form and can, at least in principle,
be obtained algorithmically [66, 67]. In this paper we focus on the diagonal blocks for all
genuine six-particle sectors shown in figure 1. We present an integral basis that puts the
differential equation corresponding to these sectors into canonical form, and we identify
novel alphabet letters Wk that appear in those differential equations.
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3.2 Integrand analysis to find uniform weight integrals

One crucial problem of using differential equation to solve Feynman integrals, is to find a UT
basis. There are different approaches to this, which can be classified into two types. Firstly,
a number of approaches have been developed that aim at first computing the differential
equations matrix, in any basis, and then simplifying it using appropriate transformations.
A guiding principle in finding the necessary transformations is the expected singularity
structure [34, 68]. There are a number of computer codes dedicated to this [69–74].
Secondly, another approach uses insights at the loop integrand level to identify UT integrals.
In particular, integrands with only logarithmic singularities, and kinematic-independent
maximal residues (leading singularities) that are expected [33, 40] to be UT functions.
These ideas have been automated in [42, 43].

The second approach has proven extremely useful, especially for Feynman integrals with
many kinematic variables or several singular points. It has the advantage that, if successful,
the differential equation matrix that needs to be computed is drastically simplified, thereby
avoiding an enormous amount of algebraic complexity. Even if one only ‘almost’ obtains a
canonical form, it is then usually much easier to find the remaining transformations.

Let us therefore review the integrand analysis. It was noticed, first in N = 4 super-Yang-
Mills amplitudes [40], that integrals with constant four-dimensional leading singularities
(and whose integrands have only single poles) give rise to UT integrals. It was later seen
that this principle also applies to integrals in other theories, and as such plays an important
role in the differential equations method [33].

Consider an L-loop integral, suppose the dimension of loop momenta is 4. The leading
singularities of an integral [75] are obtained by evaluating the integrand on certain integration
contours around (multiple) poles of the integrand. Schematically, the contour integral has
the form

1
(2πi)4L

∮
d4l1 . . . d

4lL
N

D1 . . . Dk
. (3.8)

For example, if the number of propagators k, equals the fold of integration 4L, then one type
of leading singularity is obtained by taking

∮
D1=0,...,Dk=0, the so-called maximal cut. Then

the leading singularity can be simply calculated by Cauchy’s formula. In general, there may
be other leading singularities due to additional poles that originate from Jacobian factors.
In this case, or when k < 4L, the leading singularity may be computed by recursive residue
computations (which include the so-called composite leading singularities). For complicated
multivariate residue computations, algebraic geometry techniques like the transformation
law and Gröbner basis can be very useful [76, 77]. The upshot is that for a given propagator
structure as in (3.8), the question which integrals (i.e., which loop-dependent numerators N)
lead to integrands with unit leading singularities, can be answered algorithmically [42, 43].
In a very recent paper [45], a four-dimensional basis of dlog integrands for planar six-particle
two-loop integrands was constructed.

As mentioned in the introduction, in some cases, especially those with many external
scales [14], the four-dimensional integrand analysis may not be enough. In such cases it is
natural to treat the integrand in D dimensions.
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In particular, it has proven useful to analyze integrands in the Baikov representation. In
this way, one treats some of the D-dependence exactly, while still using the same ideas about
the singularity structure of the integrand (but now in a different representation) [14, 47]. (see
also [48], where techniques of intersection theory are used to develop Baikov dlog forms for
UT integrals.) The D-dimensional Baikov analysis reveals some hidden information not seen
from the 4D leading singularities. An integral may have all 4D residues to be constants, but
some non-constant D-dimensional residues [14]. In this paper, we use the four-dimensional
analysis as a starting point, and then refine and complement it by the Baikov D-dimensional
leading singularity method. Let us briefly review the Baikov representation method.

Here we briefly introduce the Baikov representation [78], and give an example of the
leading singularity analysis in Baikov presentation.

In the scheme of dimensional regularization,

I(α1, . . . , αm;D) ≡
∫ L∏

j=1

dDlj
(iπ)D/2

1
Dα1

1 . . . Dαm
m

, (3.9)

here external momenta are p1, . . . , pE , pE+1 and the loop momenta are l1, . . . , lL. The
propagators are labeled so that

αi ≥ 1, i = 1, . . . , k (3.10)
αi ≤ 0, i = k + 1, . . . ,m . (3.11)

Next, define a set of all independent external and loop momenta:

v1, . . . , vE+L = p1, . . . , pE , l1, . . . , lL , (3.12)

and form their Gram matrix S,
Sij = vi · vj . (3.13)

And we can define another Gram matrix G, with

Gij = vi · vj , 1 ≤ i, j ≤ E . (3.14)

From the product of momenta in (3.12), we can get m scalar products

m = LE + L(L+ 1)
2 . (3.15)

The Baikov representation uses the inverse propagators and irreducible scalar products
as variables,

zα ≡ Dα, 1 ≤ α ≤ m. (3.16)

The Jacobian associated with the change of variables from (lµ1 , .., l
µ
L) to (z1, ..., zm) is an

appropriate power of the determinant of S,

S ≡ detSij . (3.17)
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The Baikov representation of the integral (3.9) is given by the formula

I(α1, . . . , αm;D) = CEL (D)S
E−D+1

2
E

∫
dz1 . . . dzm
zα1

1 . . . zαm
m

S
D−L−E−1

2 , (3.18)

where the first prefactor CEL (D) is just a function of dimension D, which will not influence
our discussion. Here SE = detG in (3.14) and S is defined in (3.17).

The Baikov leading singularities are the multivariate residues of the expression (3.18).
The advantage of this kind of leading singularity analysis is that the formula benefits from
the explicit D-dependence and the simple structure of the denominators.

In practice, we often use the loop-by-loop Baikov representation [79, 80]. This approach
can often reduce the number of variables related to ISPs (irreducible scalar products). We
use an example to explain how to do the loop-by-loop Baikov leading singularity analysis.

3.2.1 Example: Hexagon-box diagram in Baikov parametrization

The hexagon-box integral sector HB-a is shown in figure 1(e). There is one master integral
in this sector. The propagators are written in eq. (2.32).

First, treat the right part as a four point box diagram with external momenta p5, p6,
l1 and loop momenta l2 with four propagators. We can write a D-dimensional Baikov
representation of the right part, with the following S and SE ,

SR = G

(
l2 p5 p6 l1
l2 p5 p6 l1

)
, SE,R = G

(
p5 p6 l1
p5 p6 l1

)
. (3.19)

Then consider the left loop. The remaining left part is a pentagon diagram with
external momenta p1, p2, p3, p4, loop momentum l1 with the remaining five propagators.
Also, we have

SE,L = G

(
p1 p2 p3 p4
p1 p2 p3 p4

)
, SL = G

(
l1 p1 p2 p3 p4
l1 p1 p2 p3 p4

)
. (3.20)

The loop-by-loop Baikov representation for HB-a is

∫
dz1 . . . z9 G

(
p1 p2 p3 p4
p1 p2 p3 p4

) 5−D
2

G

(
l1 p1 p2 p3 p4
l1 p1 p2 p3 p4

)D−6
2

×G
(
p5 p6 l1
p5 p6 l1

) 4−D
2

G

(
l2 p5 p6 l1
l2 p5 p6 l1

)D−5
2

× N

D1 . . . D9
, (3.21)

where the Baikov variables z1, . . . z9 are

l22, l2 · p5, l2 · p6, l2 · l1
l21, l1 · p1, l1 · p2, l1 · p3, l1 · p4 . (3.22)

Under the maximal cut D1 = · · · = D9 = 0, and set D = 4, the Baikov residue is

Res(I) = s−1
56 (l1 · p6)−1(SE,L)1/2(SL)−1Nmaxcut . (3.23)
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From this expression, we can construct a following candidate numerator

NHB-a
1 =

G

(
l1 p1 p2 p3 p4
l1 p1 p2 p3 p4

)

G

(
p1 p2 p3 p4
p1 p2 p3 p4

)1/2 s56(l1 + p6)2 . (3.24)

The fraction between two Gram determinants cancels the residue from the left loop in the
Baikov representation, while the factor s56(l1 + p6)2 cancels the residue from the right box
loop. The numerator thus has constant leading singularity in Baikov representation.

3.3 Finite field IBP reduction and reconstruction of differential equations

We use both FIRE6 [81] and the finite-field computational framework FiniteFlow [56, 57]
for the IBP reduction in this paper. As mentioned in section 2.1, because of the four-
dimensional spacetime of the external states, only four of the six external momenta can be
linearly independent. Using the momentum-twistor parametrization defined in (2.15) we
represent the six external momenta in the propagators as linear combinations of four external
momenta, with coefficients that are rational functions of momentum twistor variables.

The analytic IBP reduction using eight variables is challenging. When a numeric IBP
reduction is needed to check if a differential equation is canonical, one can set the eight
momentum twistor variables to be random integers to get the numeric reduction table. As
mentioned at the end of section 3.1, in this paper we focus on the diagonal blocks of the
differential equations that correspond to six-particles sectors. To obtain these diagonal
blocks of the differential equations, for each sector, we perform the reductions on its maximal
cut, i.e. setting integrals of lower subsectors to zero. This makes a numerical IBP reduction
feasible with either FIRE6 or FiniteFlow.

However, a numeric IBP reduction is not sufficient to derive the analytic differential
equations, which we need to obtain analytic expressions of symbol lettersWk after integrating
them into the form of equation (3.2). For this purpose, we resort to finite fields and functional
reconstruction methods, implemented in the program FiniteFlow [56, 57]. We follow the
strategy described in ref. [57] to directly reconstruct the differential equation matrices on
the cuts (without the need of reconstructing more complicated analytic IBP tables).

The derivatives of the Feynman integrals in the momentum twistor variables can be
obtained as proper linear combinations of derivatives in the external momenta. These
derivatives are thus reduced to master integrals again, to obtain the differential equation
matrices. The system of IBP identities (which also includes symmetries and Lorentz
invariance identities) is generated with the help of the package LiteRed [82] and thus
reduced numerically (on the cut) to master integrals using FiniteFlow. The reduction is
performed over finite fields of integers modulo a machine size prime. This yields a numerical
evaluation of the differential equation matrices. Full analytic expressions for the differential
equations are thus reconstructed using the methods in [56, 57], from repeated numerical
evaluations with different numerical inputs for the momentum twistor variables and for the
prime that defines the finite field. Using this strategy the diagonal blocks of the differential
equation matrices can be found with very modest computing resources.
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A subtlety comes from the fact that some UT integrals have a square root prefactor in
their definition, whose analytic expression comes from the Baikov analysis. As shown in
ref. [57], one can still perform the reconstruction of the full differential equations without
performing any non-rational operation. If R is the square root of a rational function, then
R
′

R is rational. This implies that, via IBP identities, the correct square-root factors can thus
be easily restored at the end (for more details see [57]).

4 Results for uniform weight integrals

In section 2.2 we discussed the genuine planar two-loop six-particle integral sectors that we
analyzed. They are shown in figure 1. Table 1 contains the notation and the number of
master integrals. In this section we describe the outcome of our leading singularity and
Baikov analysis. For each integral sector, we provide a basis of master integrals that leads
to canonical differential equations (on the cut). Moreover, we identify the alphabet letters
appearing in the cut differential equations, and in each case remark which new letters are
encountered. For convenience of readers, all these results are available as computer-readable
supplementary material.

4.1 Double pentagon

Here we discuss the double pentagon sector shown in figure 1(a). Recall that there are five
master integrals in this sector.

We begin by a four-dimensional leading singularity analysis of the octa-cut. We find the
following that the following numerators lead to integrands with constant leading singularities.

NDP-a
1 = (w2 + v2)2s13s46(l1 − w1)2(l2 − v1)2 , (4.1)

NDP-a
2 = (w2 + v1)2s13s46(l1 − w1)2(l2 − v2)2 , (4.2)

NDP-a
3 = (w1 + v2)2s13s46(l1 − w2)2(l2 − v1)2 , (4.3)

NDP-a
4 = (w1 + v1)2s13s46(l1 − w2)2(l2 − v2)2 . (4.4)

Here, with the notation of spinor helicity notations,

w1 = p1 + [23]
[13]λ2λ̃1, w2 = w∗1 , (4.5)

v1 = p6 + [54]
[64]λ5λ̃6, v2 = v∗1 . (4.6)

These terms are reminiscent of the chiral numerators first introduced in [40]. All these
four integrals are finite integrals. We remark that the integral with the numerator NDP-a

1
in (4.1), in the limit ε = 0, is the double pentagon integral with two wiggly lines defined
in ref. [40]. Similarly, the integral with NDP-a

4 in (4.4), in the limit ε = 0, is the double
pentagon integral with two dashed lines defined in ref. [40]. The ε = 0 limit of the two rest
integrals in (4.2) and in (4.3) are the integrals with mixed numerators.

The four-dimensional integration of these numerators are analytically calculated in
refs. [83, 84]. The 4D integrals of the numerators NDP-a

1 and NDP-a
4 equal each other.
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However, the O(ε) parts of these integrals are different. In the dimensional regularization
scheme, the four integrals with the numerators NDP-a

i , i = 1, 2, 3, 4, are linearly independent
by the IBP analysis.

It is not easy to construct integrals with other forms of chiral numerators such that
they (1) have constant 4D leading singularity, (2) and are independent of the integrals
defined in (4.1) to (4.4) by IBP relations. Note that there are 5 master integrals on this
sector, so we would like to find more UT candidates by considering integrals with 5 × 5
Gram determinant numerators and integrals in 6D, like the strategy in the refs. [11, 14].

We remark that although integrals in (4.1) to (4.4) have constant four-dimensional
leading singularities, in dimensional regularization they are not guaranteed to be UT
integrals. However, as suggested in the ref. [14], such kind of integrals can be upgraded to
UT integrals with the addition of certain 5× 5 Gram determinant integrals.

We determine the UT candidates on this sector from D-dimensional Baikov leading
singularity computations. The resulting five integrals are (a more detailed explanation
follows below)

IDP-a
1 =

∫
d4−2εl1
iπ2−ε

d4−2εl2
iπ2−ε

NDP-a
1 −NDP-a

4
D1 . . . D9

, (4.7)

IDP-a
2 =

∫
d4−2εl1
iπ2−ε

d4−2εl2
iπ2−ε

NDP-a
2 −NDP-a

3
D1 . . . D9

, (4.8)

IDP-a
3 = F3

∫
d4−2εl1
iπ2−ε

d4−2εl2
iπ2−ε

µ12
D1 . . . D9

, (4.9)

IDP-a
4 = F4ε

2
∫
d6−2εl1
iπ3−ε

d6−2εl2
iπ3−ε

1
D1 . . . D9

, (4.10)

IDP-a
5 =

∫
d4−2εl1
iπ2−ε

d4−2εl2
iπ2−ε

NDP-a
1 +NDP-a

4 + F5µ12
D1 . . . D9

, (4.11)

where

µ12 =
G

(
l1 p1 p2 p3 p6
l2 p1 p2 p3 p6

)
G(1, 2, 3, 6) . (4.12)

The following comments are in order:

• The first two UT integrals IDP-a
1 and IDP-a

2 simply correspond to the two parity odd
combinations of the four integrals of eqs. (4.7)–(4.11). As pointed out in [83], IDP-a

1 has
vanishing O(ε0) order. However, the nonvanishing O(ε) order makes it an indepedent
integral.

• The third UT IDP-a
3 has the numerator given in eq. (4.12). The latter is a 5 × 5

determinant that involves the loop momenta. As a consequence, it vanishes for four-
dimensional loop momenta, but has a non-trivial Baikov leading singularity, which
is given by F3. F3 is a rational function of sij divided by ε1236, but its expression is
rather long. We were able to find a rather compact representation for it in spinor
notation,

F3 = (〈12〉[23]〈34〉[45]〈56〉[61]− 〈23〉[34]〈45〉[56]〈61〉[12])s456/8 . (4.13)
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In addition, with the help of finite field methods, we found the following relation to
the alphabet letters given in the subsection 5.1, namely F3 = W46W145/8.

• The fourth UT is the six-dimensional six-point double pentagon. Here the inter-
nal momenta are 6 − 2ε dimensional, while the external momenta are still in four
dimensions.

Let us sketch how to find the coefficient for this UT integral. By a loop-by-loop
Baikov representation, the integral has the representation,

∫
d9z G

(
l2 l1 p4 p5 p6
l2 l1 p4 p5 p6

)D−6
2

G

(
l1 p4 p5 p6
l1 p4 p5 p6

) 5−D
2

×G
(
l1 p1 p2 p3 p6
l1 p1 p2 p3 p6

)D−6
2

G

(
p1 p2 p3 p6
p1 p2 p3 p6

) 5−D
2

, (4.14)

where we dropped overall factors in ε only. The Baikov variables are chosen to be

l22, l2 · p4, l2 · p5, l2 · p6, l2 · l1
l21, l1 · p1, l1 · p2, l1 · p3, l1 · p6. (4.15)

Because of the loop-by-loop Baikov representation, we only have 10 Baikov variables.

Taking the limit D → 6, two Gram determinants can be ignored for the leading
singularity. Consider the maximal cut with D1 = . . . = D9 = 0, then only one fold of
integral remains there,

6D leading singularity = G

(
p1 p2 p3 p6
p1 p2 p3 p6

) 5−D
2 ∫

d(l1 · p6) G
(
l1 p4 p5 p6
l1 p4 p5 p6

)− 1
2

.

(4.16)

Here we impose the cut condition

l21 = 0, l1p1 = 0, l1p2 = s12
2 , l1p3 = s12 + s13 + s23

2 . (4.17)

To evaluate (4.16), it is convenient to set p1, p2, p3 and p6 as a 4D basis, and expand
the vectors p4 and p5 over this basis,

p4 = c41p1 + c42p2 + c43p3 + c46p6 ≡ p]4 + c46p6 , (4.18)
p5 = c51p1 + c52p2 + c53p3 + c56p6 ≡ p]5 + c56p6 , (4.19)

where the notation ] means the component of a vector in the linear subspace
span{p1, p2, p3}. Explicitly,

p]4 = p4 −
ε(1, 2, 3, 4)
ε(1, 2, 3, 6)p6 . (4.20)
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By momentum conservation p]5 = −p123 − p]4. Then, using basic linear algebra, the
equation (4.16) can be simplified as

6D leading singularity = G

(
p1 p2 p3 p6
p1 p2 p3 p6

) 5−D
2 ∫

d(l1 · p6) G
(
l1 p

]
4 p123 p6

l1 p
]
4 p123 p6

)− 1
2

= G

(
p1 p2 p3 p6
p1 p2 p3 p6

) 5−D
2 ∫

d(l1 · p6)(
a2(l1 · p6)2 + a1(l1 · p6) + a0

)1/2

= G

(
p1 p2 p3 p6
p1 p2 p3 p6

) 5−D
2 1
√
a0
. (4.21)

Here we rationalized the square root and compute a contour integral. The constant
a0 is,

a0 = −G
(
p]4 p123
p]4 p123

)
. (4.22)

Thus, by choosing the following factor

F4 = ε1236
4

√
−p]24 s123 + (p]4 · p123)2 (4.23)

= 1
8

(
16G(1, 2, 3, 6)s2

45 + 16G(1, 2, 3, 5)s2
46 + 16G(1, 2, 3, 4)s2

56

− 2ε1235ε1236s45s46 − 2ε1234ε1236s45s56 − 2ε1234ε1235s46s56

)1/2
, (4.24)

we get the UT integral (4.9). In the second line, we express F4 with more familiar
notations.

Note that the square root in F4 is not rationalized by the momentum twistor
parametrization. We will see that this square root leads to several symbol letters
which are not rationalized by momentum twistor parametrization.

• We find that the even combination

NDP-a
1 +NDP-a

4 (4.25)

is not a UT integral by itself. Although it has constant four-dimensional leading
singularity, the Baikov loop-by-loop analysis reveals a further, non-constant residue.
The latter can be cancelled by adding a suitable 5 × 5 Gram determinant to the
numerator,

NDP-a
1 +NDP-a

4 + F5µ12 . (4.26)

Here F5 is a function of kinematic variables.

We list the analytic form of F3, F4 and F5 in terms of momentum twistor parametrization
variables in the supplementary material of this paper.
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We verified that, using the five integrals given in eqs. (4.7)–(4.11) master integrals, the
differential equations on the cut take the canonical form (3.1). From the analytic differential
equation, the symbol letters are identified. Many letters are either simple combinations of
the Mandelstam variables, pseudo scalars or letters for two-loop five-point integrals with
one mass [26]. The square root (4.24) leads to several letters with the form,

F4 +Ri
F4 −Ri

, i = 1, . . . , 5 , (4.27)

where each Ri is a rational function in momentum twistor parametrization variables. The
explicit form of Ri’s are given in the supplementary material.

4.2 Pentagon-box

The pentagon-box sector, called DP-b, is depicted in figure 1(b). There are three master
integrals in this sector.

It is easy to construct the UT integrals with chiral numerators, similar to the previous
section. We find

NDP-b
1 = s12

(
s16 + 〈26〉[23][61]

[13]

)
s56(l1 − w1)2 , (4.28)

NDP-b
2 = s12

(
s16 + [26]〈23〉〈61〉

〈13〉

)
s56(l1 − w2)2 , (4.29)

NDP-b
3 = 2s12s56l1 · (w1 − w2)(l1 + p6)2 , (4.30)

where the vectors w1 and w2 are

w1 = p1 + [23]
[13]λ2λ̃1, w2 = w∗1 . (4.31)

The integrals with these numerators have constant 4D leading singularity, so we denote the
three integrals corresponding to the above three integrands IDP-b

i , i = 1, 2, 3. We comment
that the D-dimensional Baikov leading singularity analysis again suggests that they are UT
integral candidates.

Employing the finite-field methods for IBP reduction and rational reconstruction, we
find that with this choice of basis, the cut differential equations are canonical.

Most alphabet letters appearing in them can be expressed in terms of the ones from
known subsectors.

There is one new letter,

W139 = s12ε1456 + s123ε1256 . (4.32)

4.3 Pentagon-triangle

The pentagon-triangle integral sector DP-c is depicted in figure 1(c). There is only one
master integral in this top sector.
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A loop-by-loop leading singularity analysis suggests to define IDP-c
1 to have the following

integrand,

NDP-c
1 = s13

(
s56 −

〈43〉〈15〉[54]
〈13〉 − 〈63〉〈15〉[56]

〈13〉

)(
l1 + Q456 · λ̃3λ̃1

[13]

)2
. (4.33)

We checked that the corresponding cut differential equation is canonical. Note that the
differential equation contains a special even letter,

W182 =
(
s56 −

〈43〉〈15〉[54]
〈13〉 − 〈63〉〈15〉[56]

〈13〉

)(
helicity conjugate

)
= s15s34s45 + s15s36s45 − s15s35s46 + s14s35s56 + s16s35s56 − s13s45s56

s13
, (4.34)

where the chiral numerator factor in (4.33) explicitly appears.

4.4 Double box

Let us consider the double box integral sector DP-d, as shown in figure 1(d). There are 7
master integrals in this sector.

A four-dimensional integrand analysis yields the following numerators whose residues
on the heptacut are all rational numbers (here l′2 ≡ l2 − p6):

NDP-d
1 = s12s45s156 , (4.35)

NDP-d
2 = s12s45(l1 + p5 + p6)2 , (4.36)

NDP-d
3 = s12s45(l′2 + p1 + p6)2 , (4.37)

NDP-d
4 = s45

〈24〉
〈14〉(〈15〉[52] + 〈16〉[62])(l1 − p1 − v1)2 , (4.38)

NDP-d
5 = s45

[24]
[14]([15]〈52〉+ [16]〈62〉)(l1 − p1 − v2)2 , (4.39)

NDP-d
6 = s12

〈42〉
〈52〉(〈51〉[14] + 〈56〉[64])(l′2 − p5 − u1)2 , (4.40)

NDP-d
7 = s12

[42]
[52]([51]〈14〉+ [56]〈64〉)(l′2 − p5 − u2)2 , (4.41)

NDP-d
8 = s24

〈42〉〈15〉
〈14〉〈52〉(l1 − p1 − v1)2(l′2 − p5 − u1)2 , (4.42)

NDP-d
9 = s24

[42][15]
[14][52](l1 − p1 − v2)2(l′2 − p5 − u2)2 (4.43)

NDP-d
10 = s24(l1 − p1 − v2)2(l′2 − p5 − u1)2 , (4.44)

NDP-d
11 = s24(l1 − p1 − v1)2(l′2 − p5 − u2)2 , (4.45)

where the vectors v1, v2 and u1,u2 are

v1 = 〈14〉
〈24〉λ2λ̃1, v2 = v∗1 , (4.46)

u1 = 〈52〉
〈42〉λ4λ̃5, u2 = u∗1 . (4.47)
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However, similar to the case of double pentagon discussed above, some of these ex-
pressions need to be modified to give UT integrals. We use the D-dimensional Baikov
analysis [78], to find the following UT integrals on the cut of this sector:

IDP-d
1 =

∫
d4−2εl1
iπ2−ε

d4−2εl2
iπ2−ε

NDP-d
1

D1D2D3D5D7D8D9
(4.48)

IDP-d
2 =

∫
d4−2εl1
iπ2−ε

d4−2εl2
iπ2−ε

NDP-d
4 +NDP-d

5
D1D2D3D5D7D8D9

, (4.49)

IDP-d
3 =

∫
d4−2εl1
iπ2−ε

d4−2εl2
iπ2−ε

NDP-d
5

D1D2D3D5D7D8D9
, (4.50)

IDP-d
4 =

∫
d4−2εl1
iπ2−ε

d4−2εl2
iπ2−ε

NDP-d
6

D1D2D3D5D7D8D9
, (4.51)

IDP-d
5 = H1

∫
d4−2εl1
iπ2−ε

d4−2εl2
iπ2−ε

G

(
l1 p1 p2 p5 p6
l2 p1 p2 p5 p6

)
D1D2D3D5D7D8D9

, (4.52)

IDP-d
6 =

∫
d4−2εl1
iπ2−ε

d4−2εl2
iπ2−ε

NDP-d
8 +H2G

(
l1 p1 p2 p5 p6
l2 p1 p2 p5 p6

)
D1D2D3D5D7D8D9

, (4.53)

IDP-d
7 = H3I

DP-d
2 +H4I

DP-d
3 +H5I

DP-d
5

+ 2ε− 1
ε

H6

∫
d4−2εl1
iπ2−ε

d4−2εl2
iπ2−ε

G

(
l1 p1 p2 p5 p6
l1 p1 p2 p5 p6

)
D1D2D3D5D7D8D9

. (4.54)

Here H1, . . . H6 are functions in kinematic variables which are obtained in the Baikov
leading singularity computation. They are rational functions in the momentum twistor
parametrization (2.23). Some of them have simple expression in traditional kinematic
variables, for example,

H1 = −1
2

ε1245
G(1, 2, 5, 6) , (4.55)

H6 = s45ε1234
ε1256

[
ε2345(s15 + s16) + ε1345(s23 + s24)− ε1245s34

] . (4.56)

The expressions of Hi’s are listed in the supplementary material of this paper.
We proceeded as follows to obtain these expressions. Like the double pentagon

case, (4.52) is constructed from a 5 × 5 Gram determinant, with the overall coefficient
being obtained by a Baikov leading singularity analysis. (4.53) originated from NDP-d

8 , but
includes a D-dimensional correction to the numerator. Indeed, the role of the H2 term is to
cancel the non-constant D-dimensional residue for NDP-d

8 . After the first 6 UT integrals
are obtained, we find that the cut differential equation is almost canonical, except for the
last row. We then found the final integral (4.54) by a simple basis transformation.

We find that these 7 integrals satisfy a canonical differential equation on the heptacut.
We can read off the symbol letters appearing in this equation. In this block, all letters are
rational in the momentum twistor parameterization (2.23). Most letters are from five-point
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integrals with one massive external leg, except for the following new letter,

W145 = ε2345(s15 + s16) + ε1345(s23 + s24)− ε1245s34 . (4.57)

4.5 Hexagon-box

The hexagon-box integral sector HB-a is shown in figure 1(e). The only one UT integral
has been shown in section 3.2.1, which numerator is

NHB-a
1 =

G

(
l1 p1 p2 p3 p4
l1 p1 p2 p3 p4

)

G

(
p1 p2 p3 p4
p1 p2 p3 p4

)1/2 s56(l1 + p6)2 . (4.58)

We checked that the corresponding cut differential equation is in the epsilon form. The
differential equation contains the following new symbol letter

W176 ≡ s56 + 〈12〉[23]〈34〉[45]〈56〉[61]− 〈23〉[34]〈45〉[56]〈61〉[12]
ε1234

. (4.59)

Interestingly, it can be expressed as W176 = 2(l∗1 · p5), where l∗1 is one of maximal cut
solutions for l1.

4.6 Hexagon-bubble

The sector (1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0) of this family is named as HB-b (figure 1(f)). Based on
the cut IBP compuation, there is one master integral in this sector.

By the loop-by-loop Baikov analysis and the conventional bubble loop treatment, we
defined the following numerator for the UT integral in this sector:

NHB-b
1 = 1

ε

G

(
l1 p1 p2 p3 p4
l1 p1 p2 p3 p4

)

G

(
p1 p2 p3 p4
p1 p2 p3 p4

)1/2
(l1 + p6)2

(l2 − p6)2 , (4.60)

where again the ratio between two Gram determinants cancelled the residue in the left
hexagon loop, and the denominator (l2 − p6)2 just servers as a double propagator.

We explicitly checked that the corresponding differential equation on-cut is in the
epsilon form.

5 Result for function alphabets

In this section, we list the following alphabets, in the analytic form, for the canonical
differential equations, on the sector cut level.

The letters include those known from the two-loop five-point integrals with one off-shell
leg [26], suitably rewritten in our six-particle kinematics, including cyclic permutations. We
denote T as the generator of the cyclic permutation group of the external legs,

T(pi) ≡ pi+1 , i = 1, . . . 6 . (5.1)

For the new letters we identify, we also include their cyclic permutations.
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With the permutations included, we can make a connection to the dual conformal
hexagon function alphabet known from N = 4 super Yang-Mills. We show how the latter is
expressed in terms of our alphabet.

We classify the alphabet as three groups, according to the following transformations
(1) the space parity (2) the sign change of the square root in the function F4 in (4.24).

Finally, for convenience of the reader, we list separately the letters that appear in
each of the integral sectors considered in this paper. Moreover, the alphabet and the cut
differential equations in terms of these letters are given in the supplementary material of
this paper.

5.1 Even letters

We call a letter even, if this letter’s dlog is invariant under both the space parity transfor-
mation and the sign change of F4. In this subsection, we list the following even letters:

Define

W1 = s12, Wi+1 = TiW1, i = 1, . . . 5 , (5.2)
W7 = s13, Wi+7 = TiW7, i = 1, . . . 5 , (5.3)
W13 = s14, Wi+13 = TiW13, i = 1, . . . 2 , (5.4)
W16 = s12 + s13, Wi+16 = TiW16, i = 1, . . . 5 , (5.5)
W22 = s12 + s23, Wi+22 = TiW22, i = 1, . . . 5 , (5.6)
W28 = s13 + s23, Wi+28 = TiW28, i = 1, . . . 5 , (5.7)
W34 = s14 + s24, Wi+34 = TiW34, i = 1, . . . 5 , (5.8)
W40 = s13 + s14, Wi+40 = TiW40, i = 1, . . . 5 , (5.9)
W46 = s456, Wi+46 = TiW46, i = 1, . . . 2 , (5.10)
W49 = s124, Wi+49 = TiW49, i = 1, . . . 5 , (5.11)
W55 = −s15 − s16 + s45 + s46, Wi+55 = TiW55, i = 1, . . . 2 , (5.12)
W58 = −s14 + s23 + s56, Wi+58 = TiW58, i = 1, . . . 2 , (5.13)
W61 = −s14 − s23 + s56, Wi+61 = TiW61, i = 1, . . . 5 . (5.14)

There are 66 letters which are linear in sij ’s. Here T means the generator of the cyclic
permutation. Note that W13, W46, W55 and W58 are invariant under the permutation,

T3 : 1↔ 4, 2↔ 5, 3↔ 6 , (5.15)

which is the generator of the Z2 subgroup of the cyclic permutation group.
There are 57 letters quadratic in sij ’s (W67 ∼W123):

W67 =−(s12s45)+s34s45−s12s46 +s34s46 +s34s56, Wi+67 = TiW67, i= 1, . . . ,5 ,
(5.16)

W73 = s12s15 +s12s16−s15s34−s16s34 +s12s56, Wi+73 = TiW73, i= 1, . . . ,5 , (5.17)
W79 =−s15s45−s16s45−s15s46−s16s46−s15s56−s16s56 +s23s56−s45s56−s46s56−s2

56,
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Wi+79 = TiW79, i= 1, . . . ,2 , (5.18)
W82 = s12s15 +s2

15 +s12s16 +2s15s16 +s2
16−s15s34−s16s34 +s12s56 +s15s56 +s16s56,

Wi+82 = TiW82, i= 1, . . . ,5 , (5.19)
W88 =−s15s45−s16s45−s15s46−s16s46 +s12s56−s15s56−s16s56−s45s56−s46s56−s2

56,

Wi+88 = TiW88, i= 1, . . . ,5 , (5.20)
W94 =−s15s45−s16s45−s15s46−s16s46−s15s56−s16s56 +s34s56−s45s56−s46s56−s2

56,

Wi+94 = TiW94, i= 1, . . . ,5 , (5.21)
W100 = s15s45 +s16s45−s34s45 +s15s46 +s16s46−s34s46 +s15s56

+s16s56−s23s56−s34s56 +s45s56 +s46s56 +s2
56,

Wi+100 = TiW100, i= 1, . . . ,5 , (5.22)
W106 =−s12s15−s12s16 +s15s45 +s16s45 +s15s46 +s16s46

−s12s56 +s15s56 +s16s56−s23s56 +s45s56 +s46s56 +s2
56,

Wi+106 = TiW106, i= 1, . . . ,5 , (5.23)
W112 = s12s45 +s15s45 +s16s45−s34s45 +s12s46 +s15s46 +s16s46−s34s46

+s15s56 +s16s56−s23s56−s34s56 +s45s56 +s46s56 +s2
56,

Wi+112 = TiW112, i= 1, . . . ,5 , (5.24)
W118 =−s12s15−s12s16 +s15s34 +s16s34 +s15s45 +s16s45 +s15s46

+s16s46−s12s56 +s15s56 +s16s56−s23s56 +s45s56 +s46s56 +s2
56

Wi+118 = TiW118, i= 1, . . . ,5 . (5.25)

Note that W79 is invariant under T3.
The following 15 letters (W124 ∼W138) are pseudo scalars:

W124 = ε1234, Wi+124 = TiW124, i = 1, . . . 5 ,
W130 = ε1235, Wi+130 = TiW130, i = 1, . . . 5 ,
W136 = ε1245, Wi+136 = TiW136, i = 1, . . . 2 . (5.26)

Note that W136 is invariant under T3. Under the parity transformation, a pesudo scalar
transforms as εijkl → −εijkl but d log(εijkl) is invariant.

The rest even letters (W139 ∼ W145, W176 ∼ W190) are found through the analytic
canonical differential equations on the maximal cut:

W139 = s12ε1456 + s123ε1256, Wi+139 = TiW139, i = 1, . . . 5 , (5.27)
W145 = 〈12〉[23]〈34〉[45]〈56〉[61]− 〈23〉[34]〈45〉[56]〈61〉[12] (5.28)

W176 = s56 + W145
ε1234

, Wi+176 = TiW176, i = 1, . . . 5 , (5.29)

W182 = s15s34s45 + s15s36s45 − s15s35s46 + s14s35s56 + s16s35s56 − s13s45s56
s13

(5.30)

Wi+182 = TiW182, i = 1, . . . 5 , (5.31)
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W188 = 1
8

(
16G(1, 2, 3, 6)s2

45 + 16G(1, 2, 3, 5)s2
46 + 16G(1, 2, 3, 4)s2

56

− 2ε1235ε1236s45s46 − 2ε1234ε1236s45s56 − 2ε1234ε1235s46s56

)1/2
(5.32)

Wi+188 = TiW188, i = 1, . . . 2 . (5.33)

Note that under the parity transform, W145 → −W145 and d logW145 is invariant. Further-
more W145 has the remarkable property that d logW145 is cyclically invariant. W188, which
equals the square root F4 (4.24) from the six-dimensional double pentagon UT integral, is
invariant under T3.

The dlog of the letters in this subsection are all invariant under the parity transformation.
Furthermore the dlog of these letters are invariant under the sign change of the square root
in F4 (4.24). Thus we define them as even letters. The above even letters are closed under
the cyclic group permutations. The group action is manifest in the definitions above.

5.2 Parity odd letters

Here a parity odd letter refers to a letter W such that d logW → −d logW under the space
parity transformation, while d logW → d logW under the sign change of F4.

We use the following 30 partity odd letters (W146 ∼W175):

W146 = Tr+(1245) + Tr+(1246)
Tr−(1245) + Tr−(1246) , Wi+146 = TiW146, i = 1, . . . 5 , (5.34)

W152 = Tr+(1345) + Tr+(1346)
Tr−(1345) + Tr−(1346) , Wi+152 = TiW152, i = 1, . . . 2 , (5.35)

W155 = Tr+(1234)
Tr−(1234) , Wi+155 = TiW155, i = 1, . . . 2 , (5.36)

W158 = Tr+(1235) + Tr+(1236)
Tr−(1235) + Tr−(1236) , Wi+158 = TiW158, i = 1, . . . 5 , (5.37)

W164 = Tr+(2345) + Tr+(2346)
Tr−(2345) + Tr−(2346) , Wi+164 = TiW164, i = 1, . . . 5 , (5.38)

W170 = F + ε1234
F − ε1234

, Wi+170 = TiW170, i = 1, . . . 5 . (5.39)

Here F is the polynomial,

F = s12s15 + s12s16 − s12s23 + s23s34 − s15s45 − s16s45 + 2s23s45 + s34s45 − s15s46

− s16s46 + 2s23s46 + s34s46 + s12s56 − s15s56 − s16s56 + s23s56 + s34s56

− s45s56 − s46s56 − s2
56 . (5.40)

All the above 30 odd letters are from the 2-loop 5-point one massive alphabet permutations.
Again these 30 odd letters are closed in the cyclic permutation.
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5.3 Letters associated with the double pentagon square root

The following 15 letters (W191 ∼ W205) are from the double pentagon cut differential
equations,

W191 = F4 −R1
F4 +R1

, Wi+191 = TiW191, i = 1, . . . 2 , (5.41)

W194 = F4 −R2
F4 +R2

, Wi+194 = TiW194, i = 1, . . . 2 , (5.42)

W197 = F4 −R3
F4 +R3

, Wi+197 = TiW197, i = 1, . . . 2 , (5.43)

W200 = F4 −R4
F4 +R4

, Wi+200 = TiW200, i = 1, . . . 2 , (5.44)

W203 = F4 −R5
F4 +R5

, Wi+203 = TiW203, i = 1, . . . 2 . (5.45)

Here the function F4 is defined in (4.24). It contains a square root not rationalized with
the momentum twistor parameterization. Ri, i = 1, . . . , 5 are rational functions in the
momentum twistor parameterization variables. The expression for Ri’s are given in the
supplementary material of this paper.

These 15 letters are closed under the cyclic permutations. Under the sign change of
the square root in F4, all these letters transform as d logW → −d logW . Under the space
parity transformation, however, these letters transform as,

d logW191 → −d logW194, d logW194 → −d logW191, (5.46)
d logW197 → −d logW191 + d logW194 − d logW197 (5.47)

d logW200 → −d logW200, d logW203 → −d logW203. (5.48)

It is possible to diagonalize the parity transform by recombining these letters, however, the
resulting letters would have longer expressions.

5.4 Relation to dual conformal hexagon function alphabet

From the study of hexagon remainder function [85, 86], the following variables are well
known:

u1 = s12s45
s123s345

, u2 = s23s56
s234s456

, u3 = s34s16
s345s156

, (5.49)

and ∆ = (1− u1 − u2 − u3)2 − 4u1u2u3,

z± = −1 + u1 + u2 + u3 ±
√

∆
2 , (5.50)

yi = ui − z+
ui − z−

, i = 1, 2, 3 . (5.51)

The hexagon remainder function alphabet [85, 86] is

u1, u2, u3, 1− u1, 1− u2, 1− u3, y1, y2, y3 (5.52)

In our momentum twistor parametrization,
√

∆ is rationalized.
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Here we remark that the hexagon remainder function alphabet (5.52) are contained
in the 205 letters chosen above. Indeed, the nine hexagon alphabet letters (5.52) can be
written as rational functions of W1, . . . ,W145,

u1 = W1W4
W46W48

, u2 = W2W5
W46W47

, u3 = W3W6
W47W48

(5.53)

1− u1 = − W81
W46W48

, 1− u2 = − W79
W46W47

, 1− u3 = − W80
W47W48

,

y1 = W146W153, y2 = 1
W147W154

, y3 = 1
W151W152

.

What is more, we note that u1, u2, u3 and 1−u1, 1−u2, 1−u3 are products of even letters,
while y1, y2, y3 are products of odd letters.

We also note that
√

∆ can be written as rational functions of W1, . . . ,W145, as follows,
√

∆ = W145
W46W47W48

. (5.54)

5.5 Maximal cuts of the differential equation and alphabet letters

In this subsection, we list the letters used for each cut differential equation discussed in this
paper. Note that the letters we listed in this section is closed under the cyclic permutation,
however for a particular sector (with one particular orientation of external legs), only a
small subset of the letters appear in the cut differential equation.

• Dp-a: W1, W2, W3, W4, W5, W6, W7, W10, W46, W79, W81, W124, W126, W127, W129,
W145, W146, W147, W148, W151, W152, W153, W154, W188, W191, W194, W197, W200,
W203

• DP-b: W1, W2, W5, W6, W7, W11, W81, W120, W129, W130, W139, W149, W151, W152,
W160

• Dp-c: W1, W2, W7, W130, W145, W182

• Dp-d: W1, W2, W3, W4, W5, W6, W8, W11, W13, W14, W47, W79, W80, W82, W85,
W124, W125, W127, W128, W136, W145, W146, W147, W149, W150, W151, W152, W153,
W154, W155, W156, W171, W174

• Hb-a: W1, W2, W3, W5, W79, W124, W145, W176

• HB-b: W1, W2, W3, W79, W124, W145

The cut differential equations in terms of the d log of the symbol letters are given in the
supplementary material of this paper.
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6 Description of the supplementary material

Here we briefly describe the content of the supplementary material attached with this paper.

• In the file momentum-twistor-rep.txt, kinematic variables like sij , εijkl and
Tr±(i, j, k, l) are expressed in terms of our momentum twistor parametrization in the
subsection 2.1.

• The definitions of the functions Fi’s, Hi’s in the subsection 4.1 and 4.4, in terms of the
momentum twistor parametrization, are given in the .txt files with the corresponding
names. The functions Ri, i = 1, . . . 5, are defined in the file RFactors.txt.

• The list of alphabet letters, are firstly formally defined in terms of sij , sijk, εijkl, Fi, Hi

and Ri, in the file alphabet-formal-definition.txt. They are secondly defined in
terms of the momentum twistor parametrization variables, in the file alphabet.txt.

• Differential equation matrices for the integral sectors considered in this paper, are
given in the files ‘sector-name-abbreviation’-DE.txt. Note that the DE matrices
are given in the d log alphabet notation.

7 Summary and outlook

In this paper, we studied planar two-loop six-particle Feynman integrals. We performed
D-dimensional integrand analysis in order to find UT integrals on the cuts. We showed
that the basis integrals found by our analysis satisfy canonical differential equations on
the cut, and we identified novel alphabet letters appearing in the differential equations.
This constitutes an important step towards the analytic calculation of two-loop six-particle
Feynman integrals, and gives insights into their function space.

There are a number of natural directions for future work:
1. Thanks to the results in this paper, obtaining the canonical form of the differential

equations for all planar, two-loop six particle Feynman integrals should be within reach.
The challenge would be to obtain and simplify the off-diagonal blocks of the differential
equations, namely the ones that couple the genuine six-particle sectors discussed here, to
the five-point sectors with one off-shell leg. We do not expect major conceptual difficulties,
however given the number of master integrals involved, dedicated finite-field methods might
be needed.

2. A second interesting direction is to establish the full symbol alphabet for two-loop
planar six-particle scattering processes. This is extremely interesting theoretical information,
and in addition could help with rational reconstruction of entries of the differential equations.
In the present paper, we already identified a number of genuine six-particle symbol letters.
Based on experience with five-particle integrals one may expect additional symbol letters in
the off-diagonal blocks of the differential equations, which are yet to be computed. However,
one could try to obtain these letters in an alternative, possibly simpler way. The procedure
is in two steps. In a first step, one could use Landau equations, see e.g. [87–89], to establish
the allowed set of singularities. Then, in a second step, given the known square root factors
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(in part identified in the present paper), one can systematically construct alphabet letters
that are compatible with the set of singularities. See e.g. [90, 91] for a discussion. This
could constitute a useful shortcut to obtaining the symbol alphabet for these processes.

3. Once the symbol alphabet is known, either via the differential equations, or via
the Landau and algebraic analysis mentioned in the last paragraph, a third interesting
connection would be to analyze further the analytic properties of the function space. For
example, it would be very useful to classify which iterated integrals are permitted by general
QFT principles, such as the branch cut structure, Steinmann relations. This would on the
one hand inform bootstrap approaches (see e.g. [90, 92]), and on the other hand be an
important step for developing numerical codes for evaluating the special functions, as e.g.
in [15, 65].

4. In N = 4 super Yang-Mills, remarkably, the function space of planar six-particle
amplitudes is governed by a cluster algebra [93, 94]. It is an interesting question whether
cluster algebra structures also play a role in general quantum field theory. Knowing the
full six-particle alphabet will make it possible to investigate this question further in a
particularly interesting case.
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