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Abstract

Electric vehicles (EVs) charging swapping stations (CSSs), as well as multi-functional inte-
grated charging and swapping facilities (CSFs), have become important to reduce the
impact of e-mobility on the electric power distribution system. This paper presents a coor-
dinated planning optimization strategy for CSSs/CSFs and active distribution networks
(AND) that includes distributed generation. The approach is based on the application
of a specifically developed spatial-temporal load forecasting method of both plug-in EVs
(PEVs) and swapping EVs (SEVs). The approach is formulated as a mathematical pro-
gramming optimization model that provides the location and sizing of new CSSs, the
best active distribution network topology, the required distributed generation, and sub-
station capacities. The developed model is solved using CPLEX, and its characteristics and
performances are evaluated through a realistic case study.

1 INTRODUCTION

In recent years, growing concerns on environmental pollution
issues cause a steady increase in the penetration of electric vehi-
cles (EVs) in active distribution networks (ADNs). The power
requirements due to the use of EVs has strong spatial-temporal
uncertainty, which proposes a new challenge to the planning
of ADNs. This paper focuses on charging and swapping sta-
tions (CSS), also called charging and swapping facilities (CSF),
composed by both a charging system (CS) and a swapping
and charging system (SCS), able to satisfy the load demand of
plug-in EVs (PEVs) and swapping EVs (SEVs) simultaneously.

Accurate forecasting of EV load is the premise of optimal
planning of CSSs. The literature on the subject mostly focuses
on the PEV load forecasting [1–22]. Some approaches aim at
providing the medium-long-term forecasting of EV load, for
example, the overall load change of PEVs in different years
[1–4]. Deep learning method are used to obtain PEV load
curves [5–12]. Some approaches propose a forecast of the PEV
load curves based on the EVs travel chains analysis [13] or queu-
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ing theory [14]. Spatial-temporal EV load forecasting is also
documented, which can provide the curves of PEV loads [16–
18, 20–22] or a fixed PEV load spatial distribution [15, 19].
Locating and sizing new CSSs needs both the EV load curves
and the EV load spatial distribution.

SEV load forecasting is dealt with different approaches:
PEV data are used to forecast the SEV load or to obtain
the load curve of SEVs [23, 25–29] or fixed SEV load spatial
distributions are assumed [24].

Differently from the typical long charging duration of PEV
(from half an hour to several hours), the swapping process of
SEV is completed in a few minutes [23]. The traditional PEV
load forecasting method is no longer applicable to predict the
load of SEVs and a new specifically developed approach is
needed.

Currently, studies on stations with a single function (charg-
ing or swapping) are relatively well documented (e.g. [30–32] for
charging station and [24, 33] for swapping station). To satisfy the
requests associated with the use of PEVs and SEVs (i.e. differ-
ent types EV loads) in a region, it is usually necessary to build
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various types of stations [34–37], which may involve multiple
investment stakeholders. Therefore, it is difficult to unify the
planning and the coordinated operation with the ones of ADNs.
The CSS is a new type of EV multi-functional centralized sta-
tion, which combines the charging system and swapping system
in one station. CSS can reduce EV load fluctuations through the
complementary operation of CS and SCS.

Within this context, the integrated planning should appro-
priately consider the coupling between CSFs and ADN. Whilst
in [34, 35, 38–42] new charging stations are planned in a fixed
ADN configuration, a better coordination of the charging sta-
tion planning with the one of distributed generation (DG) and
ADN is proposed in [43–49]. In addition, several comprehen-
sive planning methods for CSFs adopt the load forecasting for
PEVs explicitly [50, 51].

The above-mentioned papers show the advantages of coor-
dinated planning that can improve power supply reliability,
power quality, EV adoption, operation efficiency, as well as
reduce planning investment and waste. Furthermore, inade-
quate coordination between the planning and operation of
charging stations and ADN could impede the construction
of additional charging stations and may require large capacity
energy storage systems to prevent vulnerabilities.

In addition, with the process of rapid improvement of smart
grid technology and electric transportation systems, the net-
work may experience the negative effects of cyberattacks [52],
such as congestions, power shortages, and other technical issues
[53]. Power outages due to cyberattacks are documented in
[54, 55]. While the paper is not focused on cybersecurity, the
following considerations could serve as a preliminary introduc-
tion. Detailed information on the power system configurations,
electrified transportation systems, and applied smart grids tech-
nologies favour successful cyberattacks [53, 56, 57]. Therefore,
the planning and operational data of most utilities are not pub-
licly available. Distribution system operators can take advantage
of EVs as mobile energy storage units to mitigate the impact
of cyberattacks. For example, they can use CSFs as emergency
power supplies to alleviate the consequences of false informa-
tion injection, by providing support to the affected load nodes,
reducing overload disconnections of power lines, and facilitating
fault recovery. In addition, the development of CSFs, which pro-
vides the control of charging operations for a large number of
EVs and for energy storage swapping, could overcome the chal-
lenge of coordinating dispersed low-power EV charging devices
(e.g. household EV chargers) through the use of aggregators,
local electricity markets, and demand response techniques [53].

This paper presents a coordinated planning approach of CSS
and ADN. The approach involves the development of an EV
spatial-temporal load forecasting method for PEVs and SEVs,
followed by the construction of a configuration model of CSS
and ADN. Using these models, the coordinated planning model
is obtained, the effectiveness of which is validated through case
studies.

The main contributions are summarized as follows.

1. An EV spatial-temporal load forecasting method is devel-
oped. This method includes the analysis of the temporal

and spatial characteristics of EV’s travel patterns, considering
the type of region, the departure time, the driving dura-
tion, and parking time. Driving carbon emissions are used to
guide EVs for charging and swapping. Coupling EV charging
and swapping processes with driving and parking processes
provides the forecasting of EV spatial-temporal load, consid-
ering EV load distribution, CSS layout, planning area roads,
and other factors.

2. The configuration models of CSS and ADN are developed.
The configuration models of CS and SCS are obtained from
their operation, service, and structure characteristics. The
analysis of the coupling between CS and SCS in terms of
planning and operation provides the configuration model of
CSS, considering its multifunctional and integrated charac-
teristics. The configuration model of ADN network includes
the analysis of DG penetration.

3. A coordinated planning model of CSS and ADN is devel-
oped, considering the EV spatial-temporal load forecasting.
The aim is to minimize the annual planning comprehensive
cost considering location and size of CSSs, the ADN con-
figuration, the size of substations and DGs, as well as the
carbon emission of EVs.

The rest of this paper is organized as follows. Section 2
describes the EV spatial-temporal load forecasting method. Sec-
tion 3 is devoted to the configuration models of CSS and ADN.
Section 4 presents the coordinated planning method. Section 5
illustrates the analysis of the case studies. Section 6 provides the
conclusions.

2 EV SPATIAL-TEMPORAL LOAD
FORECASTING METHOD

The travel patterns of EV are analysed from the temporal and
spatial aspects. The EV driving carbon emissions are used to
guide them to the charging stations. The flow chart of the EV
spatial-temporal load forecasting method is shown in Figure 1.

2.1 Analysis of EV travel chains

2.1.1 The temporal characteristics analysis of
travels

National household travel survey (NHTS) data is used to model
the EVs charging demand [9, 58, 59]. The EV daily initial depar-
ture time is represented by the gamma distribution (1). The EV
parking durations in the working regions (WRs) and commer-
cial regions (CRs) can be represented by the generalized extreme
value distributions (2) and (3), respectively. The driving process
of EV is divided into three types:

a. Type I—EVs drive from a residential region (RR) to a non-
RR (e.g. WR, CR);

b. Type II—EVs drive from a non-RR to a non-RR;
c. Type III—EVs drive from a non-RR to a RR.
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FIGURE 1 The overall flow chart of EV spatial-temporal load
forecasting method.

The duration of the above three types of driving processes
follows lognormal distributions (4).

f (tL) =
58.9089.881

Γ(9.881)
t 9.881−1
L e−58.908tL (1)

⎧⎪⎨⎪⎩
z =

tP−438.445

164.506

f (z ) =
1

164.506
e−(1−0.234z )−1∕(−0.234)

× (1 − 0.234z )−1−1∕(−0.234)

(2)⎧⎪⎨⎪⎩
z =

tP−68.520

41.761

f (z ) =
1

41.761
e−(1+0.657z )−1∕0.657

× (1 + 0.657z )−1−1∕0.657

(3)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f (tD) =
1

tD𝜎
√

2𝜋
e−[ln(tD )−𝜇]2∕(2𝜎2 )

(1) TypeI ∶

{
𝜇=3.020

𝜎=0.775
; Type(2) II ∶

{
𝜇=2.846

𝜎=0.815
;

(3) TypeIII ∶

{
𝜇=3.040

𝜎=0.761

(4)

where tL is the EV initial departure time. ΔtP is the EV parking
duration in a certain region (e.g. WR and CR). z is an intermedi-
ate variable. ΔtD is the EV driving duration between two certain
regions. μ and σ are the probability density function parameters
of EV driving duration.

FIGURE 2 The EV typical travel chains.

2.1.2 The spatial characteristics analysis of
travels

The charging and swapping load demand of EVs depend on
the driving distance between the arrival and departure sites and
the remaining battery level. There is a strong coupling between
EV load demands (i.e. charging and swapping processes) and
travel demands (i.e. driving and parking processes). The depar-
ture sites, parking sites, and destinations of EVs travel chains
can be classified into WRs, CRs, and RRs. Commonly, a daily
trip of EV starts from an RR and finally returns to the same
RR. The purpose of daily trip is often for work or entertain-
ment. The EV travel chains are divided into four typical types,
illustrated in Figure 2:

a. Type I—EV departs from the RR to the WR in the morning
(i.e. parking a period of time, and mainly to work etc.) and
return to the RR later;

b. Type II—EV departs from the RR to the CR in the morning
(i.e. parking a period of time, and mainly to entertain etc.)
and return to the RR later;

c. Type III—EV departs from the RR to the WR in the morn-
ing, and then driving from the WR to the CR, and return to
the RR later;

d. Type IV—EV departs from the RR to the CR in the morn-
ing, and then driving from the CR to the WR, and return to
the RR later.

2.2 Driving guide to charging and swapping

To fully consider the environmental protection factors of EV
charging statin planning, the driving carbon emissions between
the EV load demand site to the charging station are used.
The EVs’ daily total carbon emission ECO2 for charging and
swapping in the planning area is represented by (5).

ECO2 = 𝛽CO2

T∑
t=1

NCSS∑
i=1

⎛⎜⎜⎝ePEV

N PEV
i,t∑

j=1

D
PEV,min
i, j ,t + eSEV

N SEV
i,t∑

k=1

D
SEV,min
i,k,t

⎞⎟⎟⎠ (5)
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4 HE ET AL.

FIGURE 3 The coupling between EV charging and swapping processes
with driving and parking processes.

where 𝛽CO2 is the carbon emissions per unit of electric energy of
traditional generating units; T is the total hour per day [33]; NCSS
is the number of CSSs; N PEV

i,t and N SEV
i,t are the load numbers

of PEVs and SEVs of CSS i at time t, respectively; ePEV and
eSEV are the energy consumption per unit driving distance of
a PEV and a SEV, respectively; D

PEV,min
i, j ,t and D

SEV,min
i,k,t are the

minimum driving distances of PEV j and SEV k that drive to
CSS I, respectively.

2.3 The EV spatial-temporal load
forecasting

Figure 3 illustrates the integration of EV charging and swap-
ping processes with the driving and parking processes. Due
to the significant charging duration of a PEV, it is impracti-
cal to charge the PEV during the travel (the extreme scenario
of completely depleting the battery charge is not considered).
Thus, the charging of PEVs typically occurs during parking peri-
ods. Simultaneously, to ensure that the battery level can meet
the driving demand at the end of the parking period, the PEV
is generally charged immediately when parked. Conversely, the

FIGURE 4 The EV load probabilities relationship between the region
and road nodes.

SEVs can swap batteries both during the travel or initial park-
ing (i.e. a SEV generally does not go to a charging station for a
battery swap after the initial parking).

Based on the above assumptions, the two steps of the
proposed EV spatial-temporal load forecasting method are:

Step 1—simulation of travel chains, charging, and swapping
demands of EVs.

Firstly, regions (i.e. RR, CR, and WR) and road nodes in
the planning area are numbered. The roulette method [37] is
adopted to simulate the travel chain types of EVs, as well as
the region numbers where EVs are located at different times.
The duration of parking and driving processes of EVs are rep-
resented by (6). The EV battery level E

EV,S
i that accomplish the

driving process I is represented by (7). If the E
EV,S
i is lower

than the minimum battery level [60], the EV will request a
load demand for charging and swapping. Thus, the PEV ini-
tial charging time t PEV

C meets (8), and the SEV swapping time
t SEV
S satisfies (9). The probability of an EV requesting a charge
demand in a specific region is represented by (10). Based on
this, the probability matrix of EVs charging demands at road
nodes is constructed, according to (11). The relationship among
region i EV load probability and the EV load probabilities
of road nodes in region i is represented by (12). Specifically,
the EV load probabilities of road nodes are calculated by the
roulette method [37] based on the region i EV load probabil-
ity. Then, based on the travel chain types of EVs, the Monte
Carlo method [44] is used to sample the specific travel chain
information.

t P
i = tL +

∑
∀i

(Δt P
i + Δt D

i ) (6)

E
EV,S
i = E

EV,S
i−1 − eEVV

EV,D
i−1 Δt D

i−1, ∀i,EV ∈ {PEV, SEV}
(7)⎧⎪⎨⎪⎩

t PEV
C = t P

i−1,E
PEV,S
i ≤ SOCminEPEV

max

t PEV
C = [], others(PEVdoesnotcharge)

, ∀i (8)
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

t SEV
S = t SEV

S,a ,

⎧⎪⎨⎪⎩
t SEV
S,a ∼ U

(
tL +

∑
∀i

[
Δt P

i−1 + Δt D
i

]
, tL +

∑
∀i

[
Δt P

i + Δt D
i

])
E

SEV,S
i ≤ SOCminE SEV

max

t SEV
S = t SEV

S,b , t SEV
S,b = t P

i ,E
SEV,S
i ≤ SOCminE SEV

max

t SEV
S = [], others(SEVdoesnotswapbatteries)

, ∀i (9)

Pa
t =

[
Pa

1,t , P
a

2,t , P
a

3,t , … , P
a

Na,t

]
,

Na∑
i=1

Pa
i,t = 1, ∀t (10)

Pr
t =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Pr
1,1,t Pr

1,2,t ⋯ Pr
1,Nr ,t

Pr
2,1,t Pr

2,2,t ⋯ Pr
2,Nr ,t

⋮ ⋮ ⋱ ⋮

Pr
Na ,1,t

Pr
Na ,2,t

⋯ Pr
Na ,Nr ,t

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(11)

Pa
i,t =

∑
j∈℧i

P r
i, j ,t , ∀i, ∀t (12)

In (6)–(12) tP is the initial parking time that EV just arrived
at a region; Δt P

i and Δt D
i are the parking duration i and driv-

ing duration i of an EV, respectively; V
EV,D

i−1 is the EV average
driving speed of driving process i; EPEV

max is the energy storage
(ES) capacity of a PEV; t SEV

S,a and t SEV
S,b are the SEV possible

swapping time a and b, respectively; ESEV
max is the ES capacity

of a SEV; Pa
t and Pr

t are the EVs load demand probabilities
matrixes of regions and road nodes at time t, respectively; Pa

i,t
and Pr

i, j ,t are the EVs load demand probabilities in region i and
in road node j (belonging to region i) at time t, respectively; ℧i

is the set of road nodes that belong to region i; Na and Nr are
the numbers of regions and road nodes in the planning area
respectively.

The EV load probabilities relationship between region and
road nodes are shown in Figure 4. EV driving and parking
processes with different types of travel chains are illustrated in
Figure 5.

Step 2—Multi scenarios forecasting and scenarios cluster-
ing.

By repeating the step 1 above, T × NSC EV load distribu-
tion scenarios are obtained (T are the coordinates of EVs that
request charging and swapping according to (13) and NSC is the
number of scenarios simulated at the same time slot). The K-
means clustering method [24] is used to obtain a reduced set
of typical scenarios, according to (14). EV load number set Nr

t

for all road nodes at time t is obtained by using (15). EV load
mapping matrix N

r,C
t between road nodes and CSSs at time t is

constructed through (16). EV load number set NC
t for all CSSs

at time t is calculated by using (17).

⎧⎪⎨⎪⎩
WEV

t ,i =
[
wEV

t ,i (1),wEV
t ,i (2), … ,wEV

t ,i (N EV
t ,i )

]
CO

EV
t ,i, j = (X EV

t ,i, j ,Y
EV

t ,i, j )
,

{
EV ∈ {PEV, SEV}

∀t
(13)

SW EV
To⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎡⎢⎢⎢⎢⎢⎢⎢⎣

W EV
1,1 W EV

1,2 … W EV
1,NSC

W EV
2,1 W EV

2,2 … W EV
2,NSC

⋮ ⋮ ⋱ ⋮

W EV
T ,1 W EV

T ,2 … W EV
T ,NSC

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Clustering
⇒

SW EV
Ty

⏞⎴⎴⏞⎴⎴⏞⎡⎢⎢⎢⎢⎢⎢⎢⎣

WEV (1)

WEV (2)

⋮

WEV (T )

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Mapping
⇒

SW EV
R⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

W
EV,R

1,1 W
EV,R

1,2 … W
EV,R

1,T

W
EV,R

2,1 W
EV,R

2,2 … W
EV,R

2,T

⋮ ⋮ ⋱ ⋮

W
EV,R

NR ,1
W

EV,R
NR ,2

… W
EV,R

NR ,T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Guided driving
⇒

N r
t⏞⎴⏞⎴⏞⎡⎢⎢⎢⎢⎢⎢⎢⎣

N EV
r ,1,t

N EV
r ,2,t

⋮

N EV
r ,NR ,t

⎤⎥⎥⎥⎥⎥⎥⎥⎦
W

EV,R
j ,t =

[
w

EV,R
t , j

(1) , wEV,R
t , j

(2) , … , wEV,R
t , j

(
N

EV,R
t , j

)]
,

EV ∈ {PEV, SEV} , ∀t
(14)

N r
t⏞⎴⏞⎴⏞⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N EV
r ,1,t

N EV
r ,2,t

⋮

N EV
r ,Nr ,t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Mapping
⇒

N
r,C
t⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N EV
1,1,t N EV

1,2,t ⋯ N EV
1,Nr ,t

N EV
2,1,t N EV

2,2,t ⋯ N EV
2,Nr ,t

⋮ ⋮ ⋱ ⋮

N EV
NC ,1,t

N EV
NC ,2,t

⋯ N EV
NC ,Nr ,t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Mapping
⇒

NC
t⏞⎴⏞⎴⏞⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N EV
1,t

N EV
2,t

⋮

N EV
NC ,t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, EV ∈ {PEV, SEV} , ∀t (15)
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FIGURE 5 The EV driving and parking processes with different types of travel chains.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N EV

j ,k,t =

⎧⎪⎪⎨⎪⎪⎩
N EV

R,k,t ,min
{

LR
j ,k

}
, (ClosestbetweenroadnodekandCSS j )

0,Others

N EV
j ,k,t ∈ N

r,C
t ,N EV

R,k,t ∈ Nr
t ,EV ∈ {PEV, SEV}, ∀ j , ∀k, ∀t

(16)

⎧⎪⎨⎪⎩
N EV

j ,t =
∑

∀k
N EV

j ,k,t ,N
EV
j ,t ∈ NC

t ,N
EV
j ,k,t ∈ N

r,C
t ,

EV ∈ {PEV, SEV}, ∀ j , ∀k, ∀t
(17)

In (13)–(17) WEV
t ,i is the EV spatial-temporal load scenario

i at time t; CO
EV
t ,i ( j ) and (X EV

t ,i ( j ),Y EV
t ,i ( j )) are the load coor-

dinates of EV j at time t; SW
EV
To and SW

EV
Ty are the total and

typical scenarios of EV load distribution, respectively; SW
EV
R

is the mapping matrix between EV load coordinates and road
nodes; W

EV,R
j ,t is the EV load coordinates that belong to road

node j at time t; CO
EV
t ,i, j is the EV load coordinate i that belong

to road node j at time t; N
EV,R
t , j is the number of EV load coordi-

nates that belong to road node j at time t; N EV
R,k,t is the EVs load

number at road node k and time t; N EV
j ,k,t is the EV load num-

ber mapping between road node k and CSS j at time t; N EV
j ,t is
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HE ET AL. 7

FIGURE 6 The structure of CSS.

FIGURE 7 The coupling of planning and operation between CSS and
ADN.

the EV load number of CSS j at time t; LR
j ,k is the EV driving

distance from road node k to CSS j.

3 CONFIGURATION MODELS OF CSS
AND ADN

3.1 CSS operation and configuration models

The typical structure of a CSS is shown in Figure 6. The CS is
equipped with chargers of specific type (indicated as charger-I)
to meet the PEV charging demands and the SCS is equipped by
the swappers, the swapping batteries ES and chargers of specific
type II, indicated as charger-II.

As the redundancy and margin of the system need to be con-
sidered in the planning process, the presence of energy storage
in CSS is evaluated so to meet the needs of EV load demands
in normal times. The internal energy storage of CSS can also
be used to help the ADN in case of congestions or after faults,
serving as an emergency power source.

The centralized communication and control of EV charg-
ing in CSFs by the grid is of low cost and low complexity
with respect to the implementation of the aggregators, demand
response schemes, and local markets for the dispatch of dis-

FIGURE 8 Planning area.

TABLE 1 The basic load of ADN nodes.

Node

Power

(MW) Node

Power

(MW) Node

Power

(MW)

1 0.5 8 1 15 0.8

2 1 9 0.8 16 0.5

3 0.4 10 0.4 17 0.5

4 0.6 11 0.5 18 0.4

5 0.5 12 1 19 0.6

6 0.5 13 0.5 20 0.4

7 0.4 14 0.6

persed EV charging. Therefore, here, the CSS operation is
considered to be scheduled by the utility.

3.1.1 Operation model of CSS

The operation model of CSS is built based on the CS and SCS
models. Thus, the CSS i power PCSS

i,t at time t is equal to the sum
of CS and SCS:

PCSS
i,t = PCS

i,t + PSCS
i,t (18)

where PCS
i,t and PSCS

i,t are the power of CS and SCS, respec-
tively.

1. CS operation

The CS operation model is given by (19)–(22):
(19) is the relationship between the CS power PCS

i,t and

charger-I’s power PCI
t in CSS i at time t;
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8 HE ET AL.

FIGURE 9 Basic parameters.

(20) provides the PEV’s maximum charging duration Δt PEV
max ;

(21) is the relationship between PEV’s operating battery level
E

PEV,o
t and charging power;
(22) represents the power states of charger-I.

PCS
i,t = N PEV

i,t PCI
t , 0 ≤ PCI

t ≤ PCI
max (19)

E
PEV,o
max − E

PEV,o
min

ΔT 𝜂CH
ch

≤

t PEV
0 +ΔtPEV∑

t=t PEV
0

PCI
t , 0 ≤ ΔtPEV ≤ Δt PEV

max

(20)

E
PEV,o
t = E

PEV,o
t−1 + ΔTPCI

t−1𝜂
CH
c (21)

⎧⎪⎨⎪⎩
PCI

t ≥ 0,EPEV,o
min ≤ E

PEV,o
t ≤ E

PEV,o
max

PCI
t = 0,EPEV,o

t > E
PEV,o
max

(22)

In (19)–(22) PCI
max is the charger-I maximum power [43];

E
PEV,o
max and E

PEV,o
min are the upper and lower limits of battery

level of PEV [27];ΔT is the unit duration [33]; 𝜂CH
c is the charg-

ing efficiency [39, 44, 61]; t PEV
0 andΔtPEV are the charging initial

time and duration of a PEV, respectively.

1. SCS operation

The SCS operation model is given by (23)–(28):
(23) is the relationship among SCS i power PSCS

i,t and charging

power P
CII,c

i, j ,t and discharging power P
CII,d

i, j ,t of charger-II j;

(24) and (25) represent the states and upper limit PCII
max [43] of

charger-II’s power, respectively;
(26) represents the coupling between battery level and power

of battery;
(27) is the relationship among SCS i power, battery level

E
SCS,o
i,t and EV load at time t;

(28) gives the number of SCS high-level batteries N
SCS,h
i,t .

PSCS
i,t =

N CII
i∑

j=1

[
P

CII,c
i, j ,t − P

CII,d
i, j ,t

]
, P

CII,c
i, j ,t P

CII,d
i, j ,t = 0 (23)

⎧⎪⎨⎪⎩
P

CII,c
i, j ,t = 0,ESCB,o

i, j ,t ≥ E
SCB,o
max

P
CII,d

i, j ,t = 0,ESCB,o
i, j ,t ≤ E

SCB,o
min

(24)

⎧⎪⎨⎪⎩
0 ≤ P

CII,c
i, j (t ) ≤ PCII

max,E
SCB,o
min ≤ E

SCB,o
i, j ,t ≤ E

SCB,o
max

0 ≤ P
CII,d

i, j (t ) ≤ PCII
max,E

SCB,o
min ≤ E

SCB,o
i, j ,t ≤ E

SCB,o
max

(25)

E
SCB,o
i, j ,t =E

SCB,o
i, j ,t−1 + ΔT

⎛⎜⎜⎝𝜂CH
c P

CII,c
i, j ,t−1 −

P
CII,d

i, j ,t−1

𝜂CH
d

⎞⎟⎟⎠ (26)

E
SCS,o
i,t =E

SCS,o
i,t−1 +

∑N CII
i

j=1 E
SCB,o
i, j ,t + ΔT

∑N CII
i

j=1

(
𝜂CH

c P
CII,c

i, j ,t−1 −
P

CII,d
i, j ,t−1

𝜂CH
d

)
−(

E
SCB,o
max − E

SCB,o
min

)
N SEV

i,t−1
(27)

ceil{(1 + 𝛽SEV)N SEV
i,t } ≤ N

SCS,h
i,t (28)

In (23)–(28) ESCS
i is the ES capacity of SCS in CSS i; N CII

i is
the number of charger-IIs in CSS i; 𝛽SEV is the SEV load margin
coefficient; E

SCB,o
i, j ,t is the battery level of battery j in SCS i at time

t.

3.1.2 Configuration model of CSS

The optimal configuration of CSS is obtained from the
configuration models of CS and SCS, provided by (29)–(32).

1. CS configuration
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HE ET AL. 9

TABLE 2 System parameters.

Parameter Value Parameter Value

𝛽CO2(ton∕kWh) 1.08 × 10−3 ZCII 4

ePEV(kWh∕km) 0.25 S WT
max∕S PV

max(kVA) 2000

eSEV(kWh∕km) 0.25 𝛽S 0.6

EPEV
max (kWh) 50 aCI(m2) 25

Δt PEV
max (h) 1 Si, j ,max(MVA) 8

aSCS(m2∕kWh) 0.2 cCO2(kYuan∕ton) 0.13

𝛽CI 0.2 𝜒T 0.75

aSW(m2) 50 aCII(m2) 10

𝛽SEV 0.5 S WT
min ∕S PV

min(kVA) 1000

PSW(kW) 15 𝛽T 0.2

𝛽SW 0.2 cos𝜙DG 1

TABLE 3 Average driving speeds of EVs.

Time

Upper limit of EV

average speed

(km/h)

Lower limit of EV

average speed

(km/h)

Traffic restriction period
(7:00–9:00)

40 16

Non-traffic restriction period
(17:00–19:00)

64 32

TABLE 4 Different planning cases.

Case

CSF type

(Coordinated

planning with ADN) CSF characteristic

Case1 Two CSSs EV integrated multi-function CSF

Case2 One charging station,
and one swapping
station

EV distributed single function CSF

For the CS configuration, the margin of charger-I is con-
sidered, and the number of charger-I N CI

i in CSS i satisfies:

ceil
{

(1 + 𝛽CI)N PEV
i,t

}
≤ N CI

i (29)

where 𝛽CI is the margin coefficient of charger-Is; ceil{x} means
the x is rounded upper by the units of 1.

1. SCS configuration

For SCS configuration, the capacity of SCS meets:

ESEVceil
{

N
SCS,h
i,t

}
≤ ESCS

i
(30)

considering that the margin of the equipment, the number of
charger-II N CII

i and swappers N SW
i of CSS i meet (31) and (32),

respectively.

ceil

{
ESCS

i

ZCIIESEV

}
≤ N CII

i (31)

ceil
{(

1 + 𝛽SW
)

N SEV
i,t

}
≤ N SW

i (32)

In (31) and (32) ZCII is the number of batteries that can be
charged by a charger-II simultaneously; ZSW is the number of
SEVs that can be swapped by a swapper within ΔT .

3.2 Configuration model of ADN

The ADN network topology planning is modelled as a pro-
gramming problem with mixed integer variables. The power line
length matrix D satisfies (33). The ADN matrix Z shows the
states of the branches. The radial network constraint of ADN is
(34).

D
⏞⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⏞⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1,1 D1,2 ⋯ D1,n

D2,1 D2,2 ⋯ D2,n

⋮ ⋮ ⋱ ⋮

Dn,1 Dn,2 ⋯ Dn,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Mapping
⇔

Z
⏞⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⏞⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z1,1 Z1,2 ⋯ Z1,n

Z2,1 Z2,2 ⋯ Z2,n

⋮ ⋮ ⋱ ⋮

Zn,1 Zn,2 ⋯ Zn,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(33)

∑
Zi, j = NADN − 1, ∀i, ∀ j (34)

where Di, j is the candidate power line length between adja-
cent node i and j (i.e. Di, j = ∞ means that the line cannot
be built and Di, j = 0 means node i and node j are coinci-
dent). Zi, j = 1∕0 means that the power line between node i

and j is proposed/not proposed. NADN is the numbers of ADN
nodes.

Based on the power outputs of DGs (e.g. wind turbine (WT)
and photovoltaic (PV) units [47]), the capacity of DGs meet the
following limits:

0 ≤ PDG
t ≤ P

DG,c
t ≤

SDG

cos𝜙DG
,

S DG
min ≤ SDG ≤ S DG

max (35)

where PDG
t and P

DG,c
t are the DG actual power output and

upper limit [47] at time t respectively; SDG, S DG
max and S DG

min are
the DG capacity, its upper and lower limits, respectively.

4 COORDINATED PLANNING MODEL
OF CSS AND ADN

The coupling of planning and operation between CSS and ADN
is shown in Figure 7.
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10 HE ET AL.

FIGURE 10 The number of EV load forecasting results.

TABLE 5 Comparison alternative schemes.

Cost (k Yuan) Case1 Case2

Annual comprehensive cost 33781.2218 33541.4203

Construction cost 8360.6060 8282.1708

Energy purchase cost 24158.630 24001.169

Operation-maintenance cost 1253.3071 1246.6071

Carbon trading cost of EV 8.6793 11.4731

4.1 Objective

Aiming at minimizing the annual comprehensive cost, the objec-
tive of the coordinated planning model of CSS and ADN is:

min F = CI +CE +CO +CC (36)

where F includes the infrastructure cost CI, energy purchase
cost CE, operation-maintenance (OM) cost CO and EV carbon
transaction cost CC.

Considering the optimal configurations of DG, power lines,
and CSS, the infrastructure cost is given by:

CI =
∑

d∈ΦDG

𝛽(1+r )YDG

(1+𝛽)YDG−1
cDG
d

S DG
d

+
∑

l∈ΦLI

𝛽(1+𝛽)YLI

(1+𝛽)YLI−1
cLI
l

DLI
l
+

∑
s∈ΦSU

𝛽(1+𝛽)YSU

(1+𝛽)YSU−1
cSU
s S SU

s +
∑

c∈ΦCSS

∑
e∈ΦEQ

𝛽(1+𝛽)Y
CSS
e

(1+𝛽)Y
CSS
e −1

cCSS
c,e S CSS

c,e

(37)

where 𝛽 is the discount rate [27]; YDG, YLI, YSU, and Y CSS
e are

the service life of DG, power line, substation, and CSS equip-
ment e, respectively [30]; D is the number of days per year [62];
S DG

d
, DLI

l
, S SU

s , and S CSS
c,e are the capacities/size of DG d, power

line l, substation s, and CSS equipment e, respectively; cDG
d

, cLI
l

,
cSU
s , and cCSS

c,e are the unit costs of DG d, power line l, substa-
tion s, and CSS equipment e, respectively;ΦDG, ΦLI, ΦSU, ΦCSS,
and ΦEQ are the sets of DG, power lines, substations, and CSS
equipment, respectively.

The electricity consumption of CSS and basic load, as well as
the network losses and DG power outputs, are included in cost
CE given by:

CE = DΔt

{
T∑

t=1

cE
t

[ ∑
c∈ΦCSS

PCSS
c,t +

∑
k∈ΦLOAD

PL
k,t −

∑
d∈ΦDG

PDG
d ,t + P lo

t

]}
(38)
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HE ET AL. 11

FIGURE 11 The EV spatial-temporal load forecasting results.

where cE
t is the power purchase price of ADN at time t; PCSS

c,t

and PL
k,t are the powers of CSS i and basic load k, respectively;

PDG
d ,t is the power outputs of DG d; P lo

t is the network power
loss of the ADN; ΦLOAD is the set of basic loads.

Considering each equipment, the system OM cost is calcu-
lated by:

CO =
∑

d∈ΦDG

oDG
d

S DG
d

+
∑

l∈ΦLI

oLI
l

DLI
l
+

∑
s∈ΦSU

oSU
s S SU

s +∑
c∈ΦCSS

∑
e∈ΦEQ

oCSS
c,e S CSS

c,e
(39)

where oDG
d

, oLI
l

, oSU
s , and oCSS

c,e are the annual OM costs of DG d,
power line l, substation s, and CSS equipment e, respectively.

The annual EV carbon transaction cost is calculated by:

CC = DcCO2ECO2 (40)

where cCO2 is the unit carbon transaction cost.

4.2 Constraints

4.2.1 ADN constraints

The ADN operation is represented by the Dist-flow Equa-
tion (41). The node voltage constraints meet (42) and the power
line capacity limit satisfies (43).
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12 HE ET AL.

TABLE 6 The configuring results of planning project I.

Case Case1 Case2

CSF

Charging

station

Swapping

station CSS1 CSS2

Charger-I 23 0 11 12

Charger-II 0 11 8 6

Swapper 0 29 16 14

Energy storage (kWh) 0 2150 1200 1000

Transformer (kVA) 1250 1250 1600 1250

Land area (m2) 575 1990 1395 1260

TABLE 7 The configuring results of planning project II.

Case Case1 Case2

WT (kW) 2000 2000

PV (kW) 2000 2000

Substation capacity (MW) 16 16

ADN power line length (km) 17.5071 17.5071

EV annual carbon emissions (Ton) 66.7610 88.2544

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
m∈Ω( j )

Pj ,m,t = Pi, j ,t − Ri, j
|||Ii, j ,t

|||2 − Pj ,t

∑
m∈Ω( j )

Q j ,m,t=Qi, j ,t − Xi, j
|||Ii, j ,t

|||2 − Q j ,t

Pj ,t=PL
j ,t +

∑
∀k

PCSF
k, j ,t −

∑
∀q

PDG
q, j ,t

Q j ,t=QL
j ,t +

∑
∀k

QCSF
k, j ,t −

∑
∀q

QDG
q, j ,t

|||Vj ,t
|||2 = ||Vi,t

||2 − 2(Pi, j ,t Ri, j + Qi, j ,t Xi, j ) + (R2
i, j + X 2

i, j )
|||Ii, j ,t

|||2
|||Ii, j ,t

|||2= P2
i, j ,t+Q2

i, j ,t|Vi,t |2

(41)

P2
i, j ,t + Q2

i, j ,t ≤ S 2
i, j ,max (42)

V min
i ≤ Vi,t ≤ V max

i (43)

where Ω(j) is the set of end nodes of branch that headed of
the node j; Pi, j ,t and Qi, j ,t are the active, reactive powers of the
beginning of branch i,j at time t, respectively; Ii, j ,t is the current
flowing of branch i,j at time t; Ri, j and Xi, j are the resistance
and reactance of branch i,j, respectively; PCSF

k, j ,t and QCSF
k, j ,t are the

active and reactive powers of CSF k on ADN node j at time t,
respectively; PL

j ,t and QL
j ,t are the active power and reactive power

of basic load on the ADN node j at time t, respectively; PDG
q, j ,t

and QDG
q, j ,t are the active power and reactive powers of DG q on

ADN node j at time t, respectively; Vi,t , V max
i and V min

i are the
node i voltage and its upper and lower limits [49], respectively;
Si, j ,max is the maximum transmission capacity of the power line
i,j.

4.2.2 Transformer capacity constraints

The capacities constraints of CSS transformer and of the main
substation are:

⎧⎪⎨⎪⎩
(1+𝛽T )𝛽S(PCI

maxN CI
i
+PCII

maxN CII
i

+PSWN SW
i

)

𝜒T cos𝜙T
≤ T T

i

Pmax
Sub

𝜒T cos𝜙T
≤ SSub, T

T
i ∈ ST, SSub ∈ ST

(44)

where 𝛽T and 𝛽S are the coefficients of capacity redundancy and
load simultaneous of transformer respectively; PSW is the rated
power of a swapper; 𝜒T is the load rate; ST is the rated capacities
set of the transformer [63]; Pmax

Sub is the maximum active load
power of substation.

4.2.3 Construction constraints of CSS

The constraints of CSS area, unit area price cost, and CSS i

coordinate (X CSS
i ,Y CSS

i ) are:

aSCSESCS
i + aCIN

CI
i + aCIIN

CII
i + aSWN SW

i ≤ AA
i ≤ AS

i
(45)

cA
i = cS

j , (X
CSS

i ,Y CSS
i )

= (X CSS,S
j ,Y

CSS,S
j ), (X CSS

i ,Y CSS
i ) ∈ CSS (46)

where aCI, aCII and aSW are the areas of a charger-I, charger-
II, and swapper, respectively; aSCS is the area of unit capacity
ES; AS

i is the planning area upper limit of CSS i; cS
j is the unit

area price cost of CSS candidate site j; (X CSS,S
j ,Y

CSS,S
j ) is the

coordinate of CSS candidate site j; CSS is the CSS candidate
coordinates set.

4.3 Solution approach

The coordinated planning model of CSS and ADN is a
large-scale, non-convex, non-linear combinatorial optimiza-
tion problem, which is difficult to be solved directly.
The convex relaxation method is applied to transform the
non-convex non-linear energy flow equations (as described
in [35, 49] and references therein). Then, the proposed
planning is represented by a second-order cone optimiza-
tion model that can be efficiently solved by the CPLEX
solver [49].
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HE ET AL. 13

FIGURE 12 The economies of planning
project.

5 CASE STUDY

5.1 Parameter setting

An actual planning area in eastern China is taken as the case
study, which is illustrated in Figure 8. The basic load of ADN
nodes is shown in Table 1. The planning profiles and parame-
ters are given in Figure 9 and Table 2. The connection nodes of
WT and PV units are node 2 and node 12, respectively. The can-
didate sites 1 to 3 for CSF installations are located at nodes 5, 8,
and 6, respectively. The unit land prices of candidate sites 1 to
3 are 0.22, 0.18, and 0.2 kYuan/m2, respectively. The substation
is located at node 8.

The unit purchase costs for WT unit, PV unit, power line,
substation, charger-I, charger-II, swapper, CSF transformer,
and swapping energy storage are 3 kYuan/kVA, 5 kYuan/kVA,
500 kYuan/km, 3 kYuan/kVA, 150 kYuan, 100 kYuan,
200 kYuan, 0.25 kYuan/kVA, and 1 kYuan/kWh, respec-
tively. The corresponding unit OM costs are 0.1 kYuan/kVA,
0.2 kYuan/kVA, 1 kYuan/km, 0.03 kYuan/kVA, 0.5 kYuan,

FIGURE 13 The planning results of ADN topology and EV CSFs
locations.

0.2 kYuan, 0.1 kYuan, 0.01 kYuan/kVA, and 0.05 kYuan/kWh,
respectively.
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14 HE ET AL.

FIGURE 14 The planning results of ADN topology and EV CSFs locations.

The system rated voltage is 10 kV. The per unit length
resistance and reactance of a cable are 0.4 and 0.325 Ω/km
respectively. Daily total loads numbers of PEVs and SEVs
are both 200 in the planning area. The maximum wind speed
is 25 m/s. The minimum capacities unit of PV and WT are
both 200 kVA. The parameters and data of this test case have
been mainly collected from the reports of China State Grid
Corporation.

The actual driving speeds of EVs are closely related to the
actual traffic conditions. According to the traffic restriction
periods and the maximum speed limit of main road equal to
80 km/h in Shanghai, China, the average driving speeds of EVs
is shown in Table 3.

To compare and analyze the differences in planning and
operation results between EV distributed single function CSFs
and EV integrated multi-function CSFs, two planning cases are
considered, described in Table 4.

5.2 Simulation analysis

The EV spatial-temporal load forecasting results are shown in
Figures 10 and 11. The spatial-temporal distribution charac-
teristics of EV loads have strong uncertainty and randomness.
Since the user habits of PEVs and SEVs are basically identi-
cal, the load curves of PEVs and SEVs have a certain similarity.
However, since the SEV swapping process is more flexible in
temporal than that of the PEV charging process (i.e. the swap-
ping process can occur during both travel and parking periods,
but the charging process occurs during parking period), the
load forecasting results between PEVs and SEVs show certain
differences in time and space.

In Figure 10, the distributions of PEVs and SEVs (i.e., charg-
ing and swapping EVs) load demands have strong fluctuations

on the timeline. The peak load demands of PEVs and SEVs
mainly occur during the daytime. Around 12:00, many EVs
depart from RRs to WRs or CRs, resulting in a load superpo-
sition and an early peak load occurrence. The largest number
of PEVs and SEVs are 19 and 24 respectively. At about 20:00,
most PEVs and SEVs return to RRs and cause an evening peak
load. By the EV spatial-temporal load forecasting method pro-
posed in this paper, the temporal distribution curve EV load for
each road node is obtained, as shown in Figure 10.

Figure 11 (relevant to few typical EV spatial-temporal distri-
butions) illustrates the uncertainty, randomness, imbalance etc.,
of temporal and spatial distribution characteristics of PEVs and
SEVs loads. At 5:00, the PEVs and SEVs loads concentrate in
RRs mainly. At about 12:00, the loads concentrate on WRs and
CRs mainly. The EV loads are generated to randomly spread all
over the planning area (i.e. RRs, WRs, and CRs) at about 20:00.
As a result, the EV spatial-temporal load analysis and forecast-
ing method based on the travel chains theory proposed here
can reasonably reflect the spatial-temporal dynamic change rule
and uncertainty of driving, parking, and other states during EV
travel. The results of EV spatial-temporal loads are used as the
basis of the CSS planning.

Figure 12 shows the economic aspects of the planning
project. It can be seen from Figure 12, for the planning of CSS
and ADN (i.e. in Case 1), the annual comprehensive cost (F) of
planning Case 1-2 is lower than that of Cases 1-1 and 1-3 respec-
tively. Thus, Case 1-2 is the best among the sub-cases of Case 1.
For the planning of charging, swapping stations, and ADN in
Case 2, the F of Case 2-3 is lowest. Thus, Case 2-3 is the best
scheme in Case 2. Cases 1-2 and 2-3 are considered alternative
sub-cases to be compared and analyzed.

Table 5 shows the comparison alternative schemes. Case 1-2
in Case 1 and Case 2-3 in Case 2 are indicated as Case 1 and Case
2 in the following text, respectively, for simplicity. Although
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HE ET AL. 15

FIGURE 15 The planning results of ADN
topology and EV CSFs locations.

FIGURE 16 The voltages of ADN nodes.
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16 HE ET AL.

FIGURE 17 The various indexes of planning project.
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HE ET AL. 17

the types and functions of the selected CSFs have significant
differences (i.e. distributed single function units vs centralized
multi-function unit), the sizes in the two sub-cases are almost
the same. The infrastructure cost of Case 1 is higher than that of
Case 2. It has less difference in energy purchase costs between
the 2 sub-cases, which is caused by the close EV load levels in
the two sub-cases. The OM cost of Case1 is higher than that
of Case 2, which is caused by the close overall system planning
scales in the two sub-cases. The daily driving distances of EVs
for energy supply of Case 1 are shorter, resulting the EV carbon
transaction cost of Case 1 lower than in Case 2. Therefore, the
planning scale and economy of Case 1 are basically the same as
those of Case 2, but the CSSs in Case 1 can reduce the carbon
emissions of EVs driving.

Tables 6 and 7 show that the total number of charger-I in
CSFs of the two cases are the same. The planning results of
ADN topology and EV CSFs locations are shown in Figure 13.
The number of charger-II, swapper, SCS ES capacity, trans-
former capacity, and area of Case1 are 3, 1, 50 kWh, 350 kVA,
90 m2 larger than those of Case 2, respectively. The correspond-
ing average annual investments of Case 1 are 26.1554, 17.4369,
11.8698, 7.6286, 15.3445 kYuan higher than those of Case 2,
respectively. The OM costs of charger-II, swapper, SCS ES, and
transformer of Case1 are 0.6000, 0.1000, 2.5000, 3.5000 kYuan
higher than those of Case 2, respectively. Therefore, the EV
CSFs total planning scales between the two cases have less
difference.

With the same construction scales of ADNs in the two
cases—that is, the PV capacity of 2000 kVA, WT capacity of
2000 kVA, power line length of 17.5071 km, and substation
expansion capacity of 16,000 kVA—the investments of ADNs
in the two cases are the same.

The planning scales of CSFs and ADN between Case1 and
Case 2 are basically same. ADN optimal topologies in the two
cases are the same. The proposed planning method can meet the
power supply at all nodes. The annual carbon emission of EV
in Case 1 is 21.4934 tonnes less than that of Case 2, which indi-
cates that compared with the charging, and swapping stations,
the CSS can further improve the environmental protection.

Figure 14 shows the ADN power balance optimization
results. The operation state optimization results of CSFs are
shown in Figure 15. Figure 14 shows that the overall ADN
power balances of the two cases are basically similar. All kinds
of loads, DGs power outputs, and ADN interactive power meet
the power balance demands. Figure 15 shows that charging,
swapping stations in Case 2 have higher powers compared to
the CSSs in Case 1. CSSs can cut down the peak load power
of the local grid. The ADN has a larger operation margin. The
CSSs and swapping stations reduce the peak power demands
as much as possible during the period of high energy purchase
price. Figure 15c shows that the operation battery levels of SCSs
(CSSs, Case 1) and swapping station (Case 2) are not less than
the energy demands of SEV loads in each period.

Figure 16 shows the bus voltages. Various indexes of the plan-
ning project are illustrated in Figure 17. Figures 16 and 17 show
that although the EV CSFs types of the two cases are different,
the node voltages in the two cases both meet the constraints.

The minimum node voltages of Case 1 and Case 2 are 0.9498
and 0.9452 p.u., respectively. The maximum node voltages are
1.0035 and 1.0044 p.u., respectively. The voltage deviations, as
defined in [64], of Case 1 is 0.0054 lower than that of Case
2. This is because CSS can achieve the complementary opera-
tion of the subsystem in the station, improving the power flow
distribution and the system voltage profile.

Figure 17 shows that the power fluctuation index of Case
2 charging, and swapping stations are −0.6826 and 14.1692
higher than those of the maximum between CSS1 and CSS2
in Case1, respectively. The power fluctuation index of Case1 is
0.0026 higher than that of Case2, which is a small difference.
The CSSs have better EV load fluctuation stabilization capabili-
ties. In terms of average and maximum power line load rate, for
Case 2 they are 0.97% and 4.21% higher than those of Case1,
respectively. The average and maximum substation load rates
of Case 1 are 0.74% and 0.17% lower than those of Case 2,
respectively. The peak valley differences of charging, and swap-
ping stations are 210.2 and 355.1 kW higher than those of the
maximum between CSS1 and CSS2, respectively. The peak val-
ley differences of Case 2 are 2.8 kW smaller than that of Case 1.
The real-time network loss of Case 1 is lower, and the daily total
value is 513.6 kW lower than that of Case 2. The total daily driv-
ing distance of PEVs and SEVs in Case 2 is 59.11 and 158.98 km
higher than that of Case 1 respectively.

6 CONCLUSION

This paper proposes a coordinated planning method of CSS
and ADN considering EV spatial-temporal load forecasting. At
first, based on the travel chains analysis of EVs, the EV fore-
casting model is developed. Then, the configuration model of
CSS is built, based on the modelling of CS and SCS. According
to the model of ADN network and DG capacities, a coordi-
nated planning model of CSS and ADN is finally developed.
The results obtained for realistic test cases support the following
conclusions.

1. The adopted EV spatial-temporal load forecasting method
can reflect the spatial-temporal dynamic change rule and
uncertainty of driving, parking, and other states during EV
travels. It describes the charging characteristics and the spa-
tial aggregation and dispersion degree in the planning area at
different times.

2. The planning method of CSS and ADN proposed in this
paper achieves the sizing and locating planning of CSSs,
and the planning results satisfy the PEVs and SEVs load
demands in the planning area. The plans the ADN net-
work topology and the capacities of DGs and substations
are obtained. The ADN satisfies the load demands of CSSs
and basic load nodes, meeting DGs power outputs and grid
radial structure constraint.

3. The CSS use can improve the ADN operation. Compared to
the single function charging stations and swapping stations,
the CSSs have the advantages of multi-function, integra-
tion, and subsystem energy complementary operation. As a
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18 HE ET AL.

result, in the CSSs and ADN coordinated planning, the peak
valley differences, ADN network loss, power fluctuation
index, power line load rate, EVs driving carbon emissions,
and power demands are reduced. The EV use convenience,
the ADN transmission margins, and the voltage quality
are increased, which improves the safety, reliability, envi-
ronmental protection and comprehensive economy of the
planning.

NOMENCLATURE

Functions

℧i Set of road nodes that
belong to region i

CO
EV
t ,i ( j ) = (X EV

t ,i ( j ),Y EV
t ,i ( j )) EV j load coordinates

N
r,C
t EV load mapping

matrix between road
nodes, CSSs

NC
t All CSSs EV load num-

bers set
Nr

t EV load numbers set
Pa

t , Pr
t Regions, road nodes

EV load demand prob-
abilities matrixes

ST Transformer rated
capacities set

SW
EV
To , SW

EV
Ty EV load distribution

total, typical scenarios
SW

EV
R Mapping matrix

between EV load
coordinates with road
nodes

W
EV,R
j ,t Road node j EV load

coordinates
WEV

t ,i EV spatial-temporal
load scenario i

ΦDG, ΦLI, ΦSU, ΦCSS, ΦEQ, ΦLOAD DG, power line, sub-
station, and CSS equip-
ment, basic loads set

CSS CSS candidate coordi-
nates set

D Power line length
matrix

Indices and Sets

Z ADN branch states matrix
ceil {x} x is rounded upper by the units of 1

t , T , Δt Index, hour numbers per day, unit time slot
CO

EV
t ,i, j Road node j EV load coordinate i
Ω(j) End nodes set of branches headed of node j

Parameters

cCO2 Unit carbon transaction cost
(X CSS,S

j ,Y
CSS,S
j ) CSS candidate site j coordinate

AS
i

CSS i planning area upper limit

Di, j Candidate power line length between
adjacent node i and j

E
PEV,o
max , E

PEV,o
min Upper, lower limits of PEV battery level

EPEV
max , ESEV

max PEV, SEV ES capacity
Na, Nr Numbers of regions, road nodes
NADN Numbers of ADN nodes
NCSS Number of CSSs
NSC Numbers of scenario simulated at the

same time slot
PCI

max, PCII
max Charger-I, Charger-II maximum power

Pmax
Sub Substation maximum active load power
PSW Swapper rated power

Pa
i,t , Pr

i, j ,t Region i, road node j EV load demand
probabilities

PL
j ,t , QL

j ,t ADN node j basic load active, reactive
powers

PL
k,t Basic load k power

P
DG,c

t DG power output upper limit
Ri, j , Xi, j Branch i,j active, reactive powers

S DG
max , S DG

min DG capacity upper, lower limits
Si, j ,max Power line i,j maximum transmission

capacity
V max

i , V min
i Node i voltage upper and lower limits

YDG, YLI, YSU, Y CSS
e DG, power line, substation, CSS equip-

ment e service life
ZCII Number of batteries that can be

charged by a charger-II simultaneously
ZSW Number of SEVs that can be swapped

by a swapper within ΔT

aCI, aCII, aSW, aSCS Charger-I, charger-II, swapper, unit
capacity ES areas

cDG
d

, cLI
l

, cSU
s , cCSS

c,e DG d, power line l, substation s, CSS
equipment e unit cost

cS
j

CSS candidate site j unit area price cost

cE
t ADN power purchase price

ePEV, eSEV PEV, SEV energy consumption per unit
driving distance

oDG
d

, oLI
l

, oSU
s , oCSS

c,e DG d, power line l, substation s, CSS
equipment e annual OM cost

𝛽CI, 𝛽SEV Margin coefficient of charger-Is, SEV
load

𝛽CO2 Carbon emissions per unit of electric
energy of traditional generating units

𝛽T, 𝛽S Transformer capacity redundancy, load
simultaneous coefficients

𝜂CH
c Charging efficiency
𝜒T Load rate
μ, σ EV driving duration probability param-

eters
D Number of days per year
𝛽 Discount rate

Variables

ΔtD EV driving duration between 2 regions
Δt PEV

max PEV’s maximum charging duration
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HE ET AL. 19

AA
i

, T T
i

CSS i area, transformer capacity

D
PEV,min
i, j ,t , D

SEV,min
i,k,t PEV j, SEV k drives to CSS i minimum

distance
ECO2 The EVs’ daily total carbon emission

E
SCB,o
i, j ,t SCS i battery j battery level

E
SCS,o
i,t SCS i battery level

E
EV,S
i EV battery level that accomplishes the

driving process I
ESCS

i CSS i SCS ES capacity

E
PEV,o
t PEV’s operating battery level

Ii, j ,t Branch i,j current flowing
LR

j ,k EV driving distance from road node k
to CSS j

N EV
R,k,t Number of EVs load at road node k

N PEV
i,t , N SEV

i,t Load numbers of PEVs, SEVs of CSS i

N
SCS,h
i,t Number of SCS high-level batteries

N CI
i Number of charger-I

N CII
i Number of charger-IIs in CSS i

N CII
i , N SW

i Numbers of charger-IIs, swappers
N EV

j ,k,t Number of EV loads mapping between
road node k and CSS j

N EV
j ,t Number of EV load of CSS j

N
EV,R
t , j Number of EV load coordinates that

belong to road node j
Pi, j ,t , Qi, j ,t Branch i,j active, reactive powers

PCS
i,t , PCI

t , PCSS
c,t CS i, charger-I, CSS c powers

PCSS
i,t , PWT

w,t , PPV
p,t CSS i, WT w and PV p powers

PSCS
i,t , P

CII,c
i, j ,t , P

CII,d
i, j ,t SCS i charger-II j power, charging

power, discharging power
PCSF

k, j ,t , QCSF
k, j ,t ADN node j CSF k active, reactive

powers
PDG

q, j ,t , QDG
q, j ,t ADN node j DG q active, reactive

powers
PDG

t , SDG DG power output, capacity
P lo

t ADN network power loss
S DG

d
, DLI

l
, S SU

s , S CSS
c,e DG d, power line l, substation s, and

CSS equipment e capacities/amount
Vi,t Node i voltage

V
EV,D

i EV driving process i average driving
speed

Zi, j Power line building variable between
node i and j

t PEV
0 , ΔtPEV PEV charging initial time, duration
t PEV
C , t SEV

S PEV initial charging, SEV swapping
time

tL, ΔtP EV initial departure time, parking dura-
tion

tP Initial parking time that EV just arrived
at a region

t SEV
S,a , t SEV

S,b SEV possible swapping time a and b
z EV driving process duration intermedi-

ate variable

Δt P
i , Δt D

i EV parking duration i, driving duration
i

F , CI, CE, CO, CC Costs of annual comprehensive, infras-
tructure, energy purchase, operation-
maintenance, EV carbon transaction
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