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Abstract: The timely diagnosis of defects at their incipient stage of formation is crucial to extending
the life-cycle of technical appliances. This is the case of mechanical-related stress, either due to long
aging degradation processes (e.g., corrosion) or in-operation forces (e.g., impact events), which might
provoke detrimental damage, such as cracks, disbonding or delaminations, most commonly followed
by the release of acoustic energy. The localization of these sources can be successfully fulfilled via
adoption of acoustic emission (AE)-based inspection techniques through the computation of the time
of arrival (ToA), namely the time at which the induced mechanical wave released at the occurrence
of the acoustic event arrives to the acquisition unit. However, the accurate estimation of the ToA
may be hampered by poor signal-to-noise ratios (SNRs). In these conditions, standard statistical
methods typically fail. In this work, two alternative deep learning methods are proposed for ToA
retrieval in processing AE signals, namely a dilated convolutional neural network (DilCNN) and
a capsule neural network for ToA (CapsToA). These methods have the additional benefit of being
portable on resource-constrained microprocessors. Their performance has been extensively studied
on both synthetic and experimental data, focusing on the problem of ToA identification for the case
of a metallic plate. Results show that the two methods can achieve localization errors which are up
to 70% more precise than those yielded by conventional strategies, even when the SNR is severely
compromised (i.e., down to 2 dB). Moreover, DilCNN and CapsNet have been implemented in a tiny
machine learning environment and then deployed on microcontroller units, showing a negligible loss
of performance with respect to offline realizations.

Keywords: acoustic emission monitoring; capsule neural network; dilated convolutional neural
network; tiny machine learning; time of arrival estimation

1. Introduction

Acoustic emission (AE)-based monitoring represents one of the most effective non-
destructive evaluation (NDE) approaches for the structural health monitoring (SHM) of
structures or materials subject to stress [1,2]. The underpinning principle behind AE is
that the occurrence of acoustic events (such as cracks, delaminations, disbonding, etc.)
is intrinsically related to the structural status of integrity: the higher the frequency and
the intensity of the recorded acoustic activity, the higher the level of potential structural
degradation. A general AE-based SHM system comprises a distributed network of passive
sensors, which can localize such sources by analyzing the acoustic response of the structure.
In particular, the estimation of the time of arrival (ToA), also known as onset time, namely
the instant at which the induced mechanical wave arrives at the acquisition unit [3],
deserves primary importance.

The taxonomy of the strategies proposed for the task of ToA estimation is very broad
and spans from statistical methods to artificial intelligence (AI) solutions [4], the latter being
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an emerging trend of research in recent years thanks to their superior ability in learning very
complicated patterns hidden within data. Indeed, machine learning methods are superior
in that they can be applicable even when the signal-to-noise ratio (SNR) is poor: this might
happen either as a consequence of electromagnetic noise and rubbing disturbances in
the surrounding of the monitored environment, or due to the electronic noise affecting
the employed instrumentation [5]. Conversely, standard methods comprise the Akaike
information criterion (AIC) [6], which is based on the analysis of second-order statistics,
and the short-time average on long-time average (STA/LTA) [7] method, that computes
the ToA from the ratio between the mean amplitude of two moving time windows of
different size.

To attain sufficient estimation accuracy, most of these AI methodologies are very
onerous in terms of computational power and model size; thus, they are typically deployed
in remote servers. However, this framework requires the periodic transmission of long
time series to a central aggregating unit, a condition which might cause severe problems
in terms of network congestion, especially in the presence of battery-operated systems. A
viable solution to bypass this bottleneck is offered by the edge/extreme edge computing
perspective. Indeed, in this novel framework, data are processed in a sensor-near manner
by exploiting the native digital signal processing (DSP) functionalities of embedded micro-
processors to extract semantic information from raw data. The advantage is that, in this
scenario, the entire waveform can be collapsed into a batch of representative parameters
(such as the ones related to the ToA), which are the only quantities to be transmitted over
the monitoring network; this solution minimizes the network payload and, in turn, reduces
the overall system latency.

Nevertheless, the deployment of AI models in resource-constrained devices [8] rep-
resents a pivotal challenge for the development of the next generation of AE-driven and
DL-empowered AE architectures. A tangible response to this need is offered by the novel
and pioneering approaches driven by the Tiny Machine Learning (TinyML) ecosystem:
the latter is defined as the capability of running AI at the boundary between the phys-
ical and the digital world (https://www.tinyml.org/, accessed on 2 May 2023), i.e., by
means of edge or extreme edge devices, in a low-power and computationally efficient man-
ner. Notwithstanding these promising opportunities, which are expected to revolutionize
the standard approach to on-condition maintenance, there is still a lack of effective AI
methodologies and experimental evidence about TinyML solutions for AE data processing.

This work aims at bridging the gap above by demonstrating the actual embodiment
of different AI models for ToA estimation in AE signals, propagating over planar metallic
structures in the form of guided Lamb waves, on a general-purpose embedded system
equipped with a low-power and low-cost microcontroller unit (MCU), which is actually
in charge of running NN models for ToA computation in a self-contained manner. The
validity of the proposed AE workflow is showcased for the condition assessment of a
representative metallic plate.

The content of the work is organized as follows. In Section 2, the proposed neural
network (NN) architectures are firstly presented; then, the different quantization schemes
necessary for their TinyML porting are discussed. The experimental validation section
is extensively treated in Section 3 in terms of materials and methods, while performance
metrics are shown and discussed in Sections 4 and 5, respectively. Conclusions and future
outlooks end the paper.

1.1. Related Works

AE characterization via ToA is analogous to the identification of wave arrivals in
seismology, a field of research in which several deep learning (DL) solutions have initially
started to emerge to address this goal. Just to name a few examples, in [9] Ross et al.
proposed a template-based artificial neural network for earthquake phase detection, while
an unsupervised fuzzy clustering logic was explored in [10]. A variant of the well-known
U-Net [11] was also investigated in [12] for seismic arrival-time picking, on the premise of

https://www.tinyml.org/
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the outstanding results obtained for segmentation in biomedical applications. Different
studies exploited the capabilities of recurrent neural networks (RNNs) in learning time
dependencies across the input sequences for the accurate detection of the onset of target
events. For example, long short-term memory (LSTM) is adopted in [13], while in [14] the
authors combined dilated convolutional layers with gated recurrent units (GRU) to enlarge
the temporal receptive field at the input of the recurrent layer. A comprehensive list of
some recent developments in such direction is presented in [15].

The drawback of this kind of architecture is that it is less parallelizable than feedfor-
ward solutions, requiring long training time when the original sequence is composed by
hundreds of timestamps, even in the case of tiny models. Furthermore, it is worth mention-
ing the works of Saad et al. ([16,17]), who trained capsule neural networks (CapsNet) [18]
to classify seismic data in combination with a sliding window logic: wave onset picking
was achieved, in their case, by means of non-trainable post-processing techniques. In these
works, the original implementation of the dynamic routing algorithm ([18]) was applied
to obtain the output probabilities of target classes for each time window. Some recent
development in the field of computer vision have outperformed this original approach
by introducing attention-like mechanisms inside CapsNet architectures, which are able to
dynamically calibrate features maps depending on input data, enhancing the contributions
to output predictions of most important channels, spatial/temporal locations or—in this
specific case—capsules [19,20]. Preliminary works have started to emerge in the field of
biomedical signal processing: for example, in [21–23], attention modules of different na-
tures are employed during the feature extraction phase in combination with convolutional
operators, even if opting for a pristine form of the dynamic routing algorithm. However,
no practical evidence of such a strategy has yet been demonstrated in application contexts
involving onset wave picking.

Different works in the last few years addressed the problem of AE signal processing
and source localization. Several of them adopted non-trainable logic based on clusters of
closely spaced sensors in order to compute the direction of arrival of such an emission.
In [24,25], the authors relied on a time domain analysis aiming to obtain differences in
the ToA by using a cluster of closely spaced piezoelectric transducers and then applied a
geometrical procedure for localization. A similar analysis is performed in [26,27], in which,
however, time shifts between different transducer locations are extracted exploiting a
continuous wavelet transform (CWT) representation. Other studies rely, instead, on totally
ML tools. In [28], Hesser et al. adopted a support vector machine (SVM) and a shallow
artificial neural network (ANN) to predict, directly as output of the two neural models,
the coordinates of the target source; signals from a metallic plate instrumented with an
array of piezoelectric transducers were acquired for this purpose. Alternatively, in [29], the
authors were able to predict the dimension and position of a superficial flaw by applying
principal component analysis (PCA) to AE image data and, then, extracting a small set of
uncorrelated features which were fed into a SVM model. However, in this work, active
sensors are exploited; therefore, such a method is not suitable for passive AE monitoring
systems. In [30], Di Pietrangelo et al. trained a polynomial regressor and a shallow ANN to
predict the cartesian coordinates of impacts on a metallic plate by processing differences in
times of arrival between AE signals acquired in different locations.

It is worth mentioning that, despite the huge variability between the above-mentioned
strategies, which is reflected in the different nature of the computational scheme, all of them
present one or more of the subsequent limitations: (1) none of them tackles the problem
of poor SNRs; thus, their robustness to noisy configurations still need to be demonstrated;
(2) ML solutions ([28–30]) are intrinsically dependent on the structure which has been
simulated in order to train them, i.e., since proposed models directly produce as output the
coordinates of the damage, there is a one-to-one correspondence between the neural model
and the geometrical property of the analyzed structure; thereby, there is no proof that such
methods will be able to generalize in more complex application scenarios; (3) most of these
models works by aggregating multiple AE signals collected by different sensing units,
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therefore requiring the entire transmission of very long time sequences, which could be a
critical aspect in battery-powered monitoring systems.

Tackling the above-mentioned problems affecting state-of-the-art solutions motivates
our study. In fact, our goal is to implement a SHM framework for the robust extraction
of a single time value (i.e., the ToA) from each passive AE sensor, eventually hindered by
noise, hence forming the basis for defect localization by means of non-trainable logic: in
this way, our methodology is independent from the specific target structure and suitable
for single-sensor implementation, paving the way for a consistent reduction in the quantity
of data to be shared among the SHM network.

1.2. Contribution

Inspired by previous studies, alternative DL solutions are proposed in this work for
ToA extraction from AE time series. More specifically, we advance the results obtained
in [4,31] introducing the following novelties:

1. We propose two DL architectures for the purpose of ToA identification, one based on a
dilated convolutional neural network (DilCNN) and the latter being an improvement
of the capsule neural network (CapsNet) described in [4];

2. We extensively validate the performances of the two novel models against various
noise levels, proving their superiority in addressing two different tasks: (i) accuracy
in the pure ToA estimation while working on synthetic data, (ii) precision in acoustic
source localization for the experimental use case of a metallic aluminum plate; in
particular, we will show that DilCNN and CapsNet can achieve a localization error
which is up to 70% more accurate than STA/LTA and AIC even when the SNR is
considerably below 4 dB;

3. We implemented the devised NN models in a tiny machine learning environment and
eventually deployed on a general-purpose and resource-constrained microprocessor,
namely the STM32L4 microcontroller unit based on the ARM ®Cortex-M4®core: we
demonstrate that these tiny variants score negligible loss of performances with respect
to the full-precision alternatives.

2. Neural Network Architectures for ToA Extraction

In this section, the designed architectures are described in detail, along with the
adopted methodologies and tools for their coding. To this end, all the NN models have
been implemented and trained using Keras (https://keras.io/, accessed on 28 April 2023),
a high level deep learning API built on top of the open source platform TensorFlow (https:
//www.tensorflow.org/, accessed on 28 April 2023) (TF).

2.1. Dilated Convolutional Neural Networks

Convolutional neural networks (CNNs) are extremely popular DL models which have
achieved impressive performance in a wide variety of applications, including images and
time signal classification. Their functioning is inspired by the visual perception mechanism
of animals [32]. CNNs extract relevant information from training data, preserving them in
the form of linear filters (i.e., weights) and bias, which are applied to new inputs to obtain
maps related to the spatial occurrences of informative features. In this way, weights are
shared between different positions and the output of a convolutional layer is equivariant
with respect to shift operations [33].

For problems involving the extraction of global information from data, such as im-
age classification, a progressive undersampling of the input dimensions is performed by
means of pooling layers of non-unitary stride: these aim at suppressing noisy or irrelevant
features, while offering high level representations [33] and preserving computational re-
sources. However, strides are associated with some undesirable drawbacks, such as the
loss of temporal dependencies and the aliasing phenomenon, which might be particularly
important for time series analysis. Hence, the solutions presented in [4,31], although being
based on deep regression models with extremely low algorithmic burden, could not offer

https://keras.io/
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the optimal choice: the reason is that, for regression problems such as event picking tackled
in this work, all the information related to the instant of occurrence of a specific feature
might be lost due to the pooling layers and because of strides.

Consequently, to maximize the ToA prediction accuracy, it is mandatory to preserve
temporal resolution whilst also considering a sufficiently long observation window, neces-
sary to make each prediction aware of the full signal history. This means that the receptive
field of a single output neuron associated to an input instant, defined as the patch of
the input that affects its activation, should be wide enough. Considering a single path
processed via a fully convolutional one-dimensional neural network, the receptive field
R fL associated with a generic neuron at layer L is expressed by:

R fL =
L

∑
l=1

(kl − 1)
l−1

∏
i=1

dti + 1 (1)

where kl is the kernel size of the l-layer while dti is the stride factor at layer i (∏l−1
i=1 being

the product operator). Another possibility to increase the network prediction capability is
offered by the increment in the dimension of the kernel and/or in the number of hidden
layers. However, for hardware-oriented applications in which spatial information must
be preserved across the network and the neural models must be run on edge sensors with
limited computational capabilities, this solution is not viable.

To overcome this issue, a more fruitful alternative is proposed in this work, which
is based on the exploitation of dilated convolutional operators in place of the standard
convolutional layers. There are several works in the literature which have proven the
effectiveness of dilated kernels for the analysis of long time series with CNNs. Some
examples are given by [34–36]. The key point behind dilated convolution (schematically
depicted in Figure 1) is that certain weights are fixed to zero, hence introducing a sort
of holes in the kernels. The spacing between non-zero coefficients is constant along each
dimension and the associated dilation rate d is defined as the spacing plus one. It follows
that, when d = 1, conventional convolution is performed. Consequently, Equation (1)
can be rewritten by replacing, in all layers, the kernel size k with a novel formulation k̃,
reading as:

k̃ = d(k− 1) + 1 (2)

By looking at Figure 1, it is notable that NN architectures based on dilated convolution
can support exponential expansion of the receptive field without loss of resolution or
coverage [37]. When the stride factor is fixed at 1 and the appropriate padding is applied,
the dimension of the output is the same as that of the input.

Figure 1. Working principle behind dilated convolutions, for an exemplary case up to d = 4, binary
exponential basis and kernel size equal to 3.
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The resulting model proposed in this study is presented in Figure 2a, while the
structure of the constitutive building blocks is illustrated in Figure 2b; in the following, this
network will be referred to as DilCNN. There are two constitutive elements in DilCNN. The
first is a standard 1D convolutional block ConvBlock (left hand side of Figure 2a), defined by
the output shape out_shape (fixed at 8× 1) and the number of channels ch, followed by batch
normalization and ReLU activation function. The second is a 1D dilated convolutional
block DilConvBlock of constant out_shape 3× 1, maximum dilation rate d and number of
channels ch: for each dilation rate from d0 = 1 to d f = log2 d, a sequence of 1D dilated
convolutional layers plus batch normalization and ReLU activation is stacked.

The entire DilCNN is structured as follows. First, local features are extracted using
convolutional blocks with unitary dilation rate. At the end of each block, a MaxPooling
operator is introduced to suppress noisy information and reduce the computational com-
plexity of the subsequent layers. Although such an operation implies a loss of temporal
resolution, its effect become negligible when the number of MaxPooling layers is limited, in
favor of a better compatibility with the tight constraints of low-end microprocessors. Then,
local features are combined with a stack of non-causal dilated convolutions, to exploit both
the past and the future trends of the signal which might be equally informative for our
purposes. The dilation rate is increased exponentially after each layer, with an exponential
basis equal to 2. Finally, the probability of the presence of an acoustic ToA in each times-
tamp is computed by means of a 1× 1 convolution (block named Conv 1× 1 in Figure 2a)
activated by a sigmoid function.

The network is trained end-to-end using binary cross-entropy as a loss function, after
converting each time label into a single hot vector of proper dimension. Nevertheless,
this strategy might suffer from the same problems of unbalanced segmentation, i.e., the
networks might tend to assign a score denoting the dominant class (the absence of an
acoustic onset) to each timestamp: hence, a weight Wp ≥ 1 is applied to the false negative
term, leading to the loss function Lce in Equation (3):

ConvBlock(5000, 8)

MaxPooling(2)

+

ConvBlock(2500, 16)Conv 1x1(2500, 16)

MaxPooling(2)

+

ConvBlock(1250, 32)Conv 1x1(1250, 32)

MaxPooling(2)

+

Conv 1x1(625, 64)

+

Conv 1x1(625, 64)

Input(5000)

+

DilConvBlock
(1, 625, 64)

Conv 1x1(625, 64)

DilConvBlock
(4, 625, 64)

DilConvBlock
(16, 625, 64)

Conv 1x1(625, 1)

Output(625)

(a)

Figure 2. Cont.
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Conv1D 8x1, ch

Batch Normaliza�on

ReLU

ConvBlock(out_shape, ch)

DilConv1D
d, 3x1, ch

Batch Normaliza�on

ReLU

DilConvBlock(d, out_shape , ch)

Batch Normaliza�on

ReLU

DilConv1D
2d, 3x1, ch

(b)

Figure 2. The DilCNN architecture proposed for ToA estimation: (a) entire architecture, (b) constitu-
tive building blocks. The model has been trained with Adam optimizer [38] for 10 epochs, using a
learning rate equal to 0.001 and a batch size of 32. The parameter Wp has been tuned at the value of
10. The total number of parameters is 86,153, of which 85,273 are trainable, while the network implies
117.89 millions of floating point operations. Output number of timestamps and feature channels are
reported in parenthesis in this order. In case of dilated convolution block, the first value in parenthesis
refers to the dilation rate.

Lce = −
1
N

N

∑
i=1

Wp yi log(ỹi) + (1− yi) log(1− ỹi) (3)

with N being the number of samples, while yi and ỹi are the label and the prediction
associated with instant i, respectively. Residual connections between different blocks
are also added to avoid potential gradient losses, that may be a typical problem of deep
NNs [39].

2.2. Capsule Neural Networks

CapsNets have been introduced in [18] to solve some of the intrinsic limitations of
CNNs when solving image classification tasks. The latter can be summarized as follows:
(i) CNNs have difficulties in generalizing to novel viewpoints [18]: the ability to deal
with translation is built-in but, in the case of other affine transformations, we have to
enlarge the training data with additional data samples that can provide knowledge about
such new viewpoints; (ii) conventional CNN classification architectures rely on gradual
undersampling of the input space, which can lead to the loss of significant information
and spatial relationship between features [4,17], e.g., the classifier can be tricked and infer
a false positive if an object in the scene has the same sub-components of the target but in
different positions, thus belonging to a different class.

CapsNets overcome these issues by: (i) using transformation matrices that learn
how to encode the intrinsic spatial relationship between a part and a whole, ensuring
better generalization capabilities, (ii) substituting scalar activations by vectors which are
equivariant with respect to the transformations to be applied to the input [18,40]. Another
non-negligible benefit of CapsNets is their ability to learn from comparatively smaller
datasets, preserving salient data information such as position and location [17].

A CapsNet architecture is typically stacked on top of a convolutional network, which
is in charge of local feature extraction and consists of the following two layers:
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• Primary Capsule Layer : the first component of this layer is a convolutional operator
with a number of channels MPC × DPC, where MPC indicates the number of primary
capsules per spatial—or temporal—position. Thus, the output of this operator is
reshaped, starting from the channel dimension, into a set of NPC = K×MPC vectors
si with DPC coordinates, which are the so called primary capsules ui, with K being the
number of temporal positions. These primary capsules are activated by means of a
non-linear squash function and finally mapped into a probability value, according
with [18]:

ui =
||si||2

1 + ||si||2
si
||si||2

(4)

• Capsule Layer: each primary capsule ûi with i ∈ {1...NPC} generates a prediction ui|j
for every j-th class—with j ∈ {1 . . . Nclass}—by means of a weight opinion matrix Wij:

ûi|j = Wijui (5)

Such opinion matrices are learned during training and encode the relationship between
local low-level features and the high-level entities associated with classes; hence, they
are invariant to transformations applied to the input. In this way, capsules provide a
simple way to detect global features by recognizing the individual contributions of
the parts [40]. A global prediction pj for each class is, indeed, computed as a linear
combination of the vectors obtained via Equation (5), yielding to:

pj =
NPC

∑
i=1

cijûi|j (6)

Individual pj are then activated by the squash function in Equation (4). Coefficients
cij are determined following the dynamic routing protocol [18]. This consists of an
iterative process, summarized in Algorithm 1, which combines together the output
vj of single capsules with the appropriate parent belonging to the layer above. The
pairing procedure works as follows: if ûi|j has a large scalar product with the global
output of a possible parent class, there is a top-down feedback which increases the
coupling coefficient for that parent while decreasing it for the other ones. It follows that
the higher the norm of an output vector, i.e., the higher the level of agreement between
low-level capsules which are associated with its parts, the higher the likelihood that
the corresponding feature class describes the input data.

Algorithm 1 Dynamic Routing

for all capsule i in layer l and capsule j (i.e., class) in layer (l + 1): bij← 0
for r iterations do

for all capsule i in layer l: cij ← softmax(bij) =
exp(bij)

∑k exp(bik)

for all capsule j in layer (l + 1): pj ← ∑i cijûi|j
for all capsule j in layer (l + 1): vj ← squash(pj)

for all capsule i in layer l and capsule j in layer (l + 1): bij← bij + ûi|j · vj

end for
return vj for all capsule j in layer (l + 1)

The margin loss was used as cost function during training, since it can sum together
the components related to individual classes:

Lmargin =
Nclass

∑
a=1

Ta max(0, m+ − ||va||)2 + λ(1− Ta)max(0, ||va|| −m−)2 (7)
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where Ta = 1 if class a (a being 1 or 0) is present, while m+ = 0.9, m− = 0.1 and λ = 0.5
are tunable hyperparameters.

In this work, r = 3 has been imposed after an appropriate tuning of this parameter.
CapsNets based on dynamic routing can solve classification problems where it is reasonable
to assume that, at most, only one instance per class is present in the input scene [18].
Accordingly, in our scenario, only one wave arrival is supposed to be present in each
processed time series, which are thus split into overlapped windows of length Nw = 400:
label 1, corresponding to class AE, is assigned only when a data point has no samples
preceding ToA, i.e., it is fully contained into the time slot corresponding to the target
acoustic event and not into its pre-onset temporal sequence; otherwise, class Noise (label 0)
is attributed, indicating noisy windows. The task solved by the designed CapsNet is, thus,
to perform a binary classification distinguishing between these two classes, i.e., AE event or
noise. Hence, dedicated post-processing logic has to be applied to extract the sought ToA.

Similar to the solutions adopted in [4,16,17,41], predictions are formulated by com-
puting the probability curve related to the AE class, i.e., sliding a window with a constant
stride and calculating the norm of the output vector corresponding to such a class for
each shift. The stride factor has been selected equal to the pooling factor of the feature
extraction layers in the DilCNN model (i.e., 8), in order to obtain a fair comparison between
the two networks using the same temporal resolution. To this end, a dilated CNN, similar
to the one presented in Section 2.1 but without the first three d = 1 convolutional layers
followed by MaxPooling and different number of channels (i.e., 16, 32 and 64), has been
considered: in this way, it is possible to detect the window containing the onset of the signal
without relying on less generalizable and prone to noise methods such as simple thresh-
olding schemes. The overall CapsNet model, henceforth denoted as CapsToA, is illustrated
in Figure 3: in particular, Figure 3a shows the capsule neural network adopted for the
classification of windows: in convolutional blocks, kernel dimensions, output shape and
number of channels are reported; for the 1D convolution used in the primary capsule layer,
32 4× 1 kernels are used, reshaping the output tensor into 200 capsules with 8 dimensions.
All stride factors are set at a value of 2. The post-processing dilated CNN is instead reported
in Figure 3b. The two models are trained separately and the input of the latter is constituted
by the time sequence obtained by concatenating AE class predictions related to adjacent
windows. Since no padding is applied and input signals consist of 5000 samples, such a
curve is composed of a (5000− Nw)/stride + 1 = (5000− 400)/8 + 1 = 576 timestamp.

Given these computational complexity, a naive CNN with no attention mechanism
has been imposed to implement the convolutional layers forming the input block of the
CapsNet architecture (dark blue rectangles in Figure 3a). Similarly, a dynamic routing
algorithm is exploited in its earliest formulation [18] as performed in [4,16,17,41]. Such a
minimal approach is justified by the fact the our CapsNet should be executed 576 times for
each time series in order to produce the output probability curve. By doing so, we are not
aiming at proposing a novel DL architecture, a challenge which is out of the scope of the
work, but rather at establishing an effective framework based on CapsNet by introducing
an ad hoc post-processing strategy for the retrieval of the ToA.

2.3. Quantization Schemes

Models have to be converted into MCU-compliant and low-depth format (i.e., 8-bit)
to be portable on edge devices. This procedure, referred to as quantization, is crucial to
provide a significant reduction in both the memory footprint and computational complexity,
especially considering the critical resource constraints which characterize tiny embedded
devices with low-power consumption. Another fundamental reason supporting the ne-
cessity of quantization is that a great number of hardware platforms widely used in DSP
applications are equipped with instruction sets (ISAs) which are optimized for sub-word
operands [42]: this means that a single instruction can be applied simultaneously to multi-
ple operands with a bit resolution smaller than the parallelism of the data bus. However, the
conversion of weights and activations into int8 type could lead to performance degradation
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due to the lower representation capability provided by the NN models. Techniques have
been developed to minimize the effect of this unavoidable operation.

Conv1D 8x1(200, 8)
+ ReLU

Input(400)

Conv1D 6x1(100, 16)
+ ReLU

Primary Capsule 4x1
(dim=8, N=200)

Capsule
(dim=16, N=2)

Output(2)

Length

+

Conv 1x1(576, 32)

+

Conv 1x1(576, 64)

DilConvBlock
(1, 576, 16)

DilConvBlock
(4, 576, 32)

DilConvBlock
(16, 576, 64)

Conv 1x1(576, 1)

Output(576)

AE probability(576)

(a) (b)

Figure 3. Implemented CapsToA: (a) CapsNet used as classifier: the model has been trained with
Adam optimizer for 10 epochs using a learning rate equal to 0.001 and a batch size of 32; it relies on
54,136 trainable parameters and a single inference requires 0.567 millions of floating point operations;
(b) post–processing dilated CNN: while training hyperparameters and optimizator are the same, in
this case, the number of parameters is 27,697, of which 27,249 are trainable, and an inference requires
31.005 millions of floating point operations. Hence, the total number of parameters is 81,833: an
amount which is comparable to the one related to the network described in Section 2.1.

In general terms, a quantization scheme can be defined as the mapping between
the bit-representation of values (denoted q in the following) and their interpretation as
real mathematical numbers (r) [43]. Quantization procedures are typically implemented
using integer-only arithmetic during inference and floating-point arithmetic at training
time. We refer to post-training quantization (PTQ) when the model is converted into a
lower precision representation after a training process consisting of a stochastic gradient
descent implemented in floating point via a backpropagation algorithm. An alternative
to this approach is the so called quantization-aware training (QAT), in which trainable
parameters, i.e., weights and biases, are updated in floating point arithmetic as usual, while
the forward propagation necessary to the computation of the loss for each batch relies on
fake-quantization layers. The latter are used to emulate non-linear noise introduced by the
desired compression of weights and activations by means of a rounding mechanism [43,44].
QAT has the advantage of totally preserving the accuracy of the model after conversion, but
typically leads to longer training time [44,45] and could imply a worse overall performance
with respect to PTQ. For such reasons, only PTQ will be adopted in this work: it has been
implemented in a static fashion, meaning that activation ranges are calculated during model
conversion from a reduced batch of sample data, allowing quantization parameters to be
calibrated without introducing any overhead at runtime.

To accomplish this, public open source libraries have been used. In more detail,
DilCNN models were quantized by means of TensorFlow Lite (https://www.tensorflow.

https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
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org/lite, accessed on 27 April 2023) (TFLite), a framework for deploying TF models on
mobile and other edge devices, also providing a specific library for execution on MCUs (the
TensorFlow Lite for Microcontroller framework (https://github.com/tensorflow/tflite-micro,
accessed on 27 April 2023) or TFLite-Micro) including 8-bit kernel implementations of the
majority of the Keras layers and TF built-in operators. TFLite-based quantization uses
integer-only arithmetic without relying on a fixed-point format for the purpose of value
conversion: it applies an affine mapping of integers q to real numbers r [43] according with:

r = S(q− Z) (8)

where S is a floating point number denoted as a scale factor while Z is the integer zero-
point. This quantization scheme uses the same quantization parameters for all values
within each activation or weight array. Hence, separate arrays use different quantization
parameters. Weights of dilated convolutional layers have been mapped as pair of values
(S, Z) (corresponding to per-axis or per-channel conversion), since this can reduce the impact
of quantization [46].

Such parameters (S and Z) depend both on the number of bits adopted in the quantized
layer and on the numerical range covered by a tensor. For this reason, while the ones
associated with weights can be derived directly from the trained model, a representative set
of input data is required in order to calibrate the ones related to activations for the case of
static PTQ. For further details, the reader is referred to [43] and to the TFLite documentation
for 8-bit quantization (https://www.tensorflow.org/lite/performance/quantization_spec,
accessed on 27 April 2023).

Conversely, for the 8-bit implementation of the CapsNet architecture, we rely on
the framework proposed in [46] (https://gitlab.com/ESRGv3/q7-capsnets, accessed on
Thursday, 27 April 2023), which provides a ready-to-use library for the edge execution
of capsule Layers on Arm® Cortex®-M and RISC-V MCUs, along with a quantization
tool in the Python environment compatible with models developed in Keras. This library
developed for Cortex-M is an extension of CMSIS-NN [47] and implements 8-bit optimized
kernels for matrix multiplication which uses the single instruction–multiple data (SIMD)
features of Armv7E-M and Armv8-M architectures for multiply-and-accumulate (MACC)
operations. Since the related ISAs do not feature 4 × 8-bit MACC operands, they rely on
2 × 16-bit MACC performed after a sign extension.

Unlike the TFLite framework, a fixed-point notation with power-of-two scaling is used
in this case for the quantization of trainable parameters and activations, i.e., each tensor is
associated with a Qm.n format where m is the number of integer bits while the remaining n
are considered for the fractional part. It is important to note that m + n = 7 since the last bit
is used for the sign. The framework proposed in [46] enhances the precision in layers with
very small weights by virtually increasing the number of fractional bits: every weight still
fits in 8 bits, but the quantization format can, virtually, surpass this barrier. Once the right
fixed-point formats are defined, weights and biases are appropriately scaled and clipped
into the range [−128, 127]. Then, the amount of bit-wise shifts which should be applied
after each fixed-point matrix operations is calculated. Nevertheless, the output probability
related to the AE class is retained in a 32-bit format in order to avoid the saturation of
the curve, which would complicate the extraction of the ToA, then rescaled into an 8-bit
representation via Equation (8) before passing through the subsequent DilCNN model. The
final DilCNN-based ToA logic has been quantized analogously to the previously described
DilCNN by means of the TFLite framework, since the two models of CapsToA are trained
separately and then stacked together.

3. Model Deployment Process, Training and Testing

The entire validation flow, from dataset generation to model testing, for the task of AE
localization from real-field data is schematically represented in Figure 4.

https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://github.com/tensorflow/tflite-micro
https://www.tensorflow.org/lite/performance/quantization_spec
https://gitlab.com/ESRGv3/q7-capsnets
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Figure 4. Schematic flowchart of the endorsed model validation process: (1) dataset generation
via a custom ray-tracing algorithm modeling AE propagation in the form of guided mechanical
waves, (2) model training on numerical data and testing for the task of ToA identification vs known
ground truth labels, (3) model quantization and deployment on the target STM32L4 MCU, and
(4) experimental testing of the deployed model on real-field data addressing the problem of AE source
localization (comparison with known impact position).

3.1. Materials

The STM32L496ZGT-P Nucleo board [48] equipped with an ARM ®-Cortex®M4 core
and maximum clock frequency of 80 MHz has been employed for prototyping purposes. It
features 1 MB of FLASH memory and 320 KB of SRAM, which are compatible with the typical
characteristics of edge nodes to be deployed for long-lasting SHM monitoring. The X–CUBE–AI
expansion package (https://www.st.com/en/development-tools/stm32cubemx.html, accessed
on 2 May 2023) has been used as a development environment for the embodiment of the
sought models.

3.2. Dataset Generation

The dataset for the training phase has been built via numerical simulations (step 1
in Figure 4). This procedure based on synthetic AE signals has been preferred over a
purely experimental approach for two main reasons: the first is that it allows the data
collection phase to speed up, since a relatively short amount of time is necessary to generate
a representative pool of data; secondly, and more importantly, it permits the fast creation
of ground truth labels for supervised learning (as is the case of the adopted solutions), a
condition which is not applicable in passive AE monitoring scenarios where the true AE
triggering time is always unknown to the sensing system.

When an AE event occurs in a waveguide as a consequence of crack, corrosion or
delamination, the corresponding release of energy can travel along the structure in the
form of ultrasonic guided waves (GWs). The propagation characteristics of GWs can be
numerically modeled when the geometrical and mechanical parameters of the monitored
structure are known. To this end, an ad hoc ray-tracing algorithm has been exploited in
this work, which simulates the peculiar propagation behavior of GWs between different
combinations of points on a thick aluminum plate while also taking into consideration the
effects of multiple reflections due to the mechanical boundaries.

Moreover, it is worth mentioning that the generation of a custom dataset was imposed
by the absence, to the best of the authors’ knowledge, of public benchmarks which specifi-
cally address the same problem. Indeed, only a few AE data collections have already been
released in the literature, such as the ORION-AE (https://dataverse.harvard.edu/dataset.
xhtml?persistentId=doi:10.7910/DVN/FBRDU0, accessed on Tuesday, 2 May 2023) and
the Hsu-Nielsen on concrete blocks (https://www.sciencedirect.com/science/article/pii/
S2352340919301647#sec1, accessed on Tuesday, 2 May 2023) dataset. The former represents
a collection of time series reproducing the bolt loosening effect typical of assembled appli-
ances. However, despite the huge amount of data acquired during this campaign, there
are two main factors hindering its applicability in our SHM framework: (1) the acquired
measurements, namely vibrations, which reflect the dynamic response of the structure,
whereas we considered AE signals emitted as a consequence of long-aging static stress;

https://www.st.com/en/development-tools/stm32cubemx.html
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/FBRDU0
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/FBRDU0
https://www.sciencedirect.com/science/article/pii/S2352340919301647#sec1
https://www.sciencedirect.com/science/article/pii/S2352340919301647#sec1
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(2) the absence of labels, which are mandatory for the implementation of the supervised DL
models we have investigated. The latter, instead, contains bulk acoustic waves collected by
conducting pencil lead break tests on a concrete block. As such, the nature of the involved
AE signals differs largely from the one considered in our work. The main difference is that,
while bulk waves have only two propagation modes (longitudinal and shear) and can be
used to inspect small areas in the neighborhood of the AE transducers, Lamb waves can
travel comparatively longer distances, showing a multi-modal pattern (i.e., multiple sym-
metric and asymmetric modes are excited and propagate at the same time) and suffering
from interaction with the boundaries of the structure.

The entire number of combinations between the selected points for AE actuation
and reception has been chosen randomly, while also changing the SNR into the set
{1, 2, 4, 6, 8, 10, 12, 15, 18, 20, 25, ∞} for a total amount of 60,000 time series: 80% of this
data was used for training and validation and the remaining 20% was allocated to testing.

3.3. Validation Process

The performance of the different models has firstly been assessed on the synthetic
testing dataset (12,000 time series) introduced in Section 3.2 (step 2 in Figure 4). Mean
absolute error (MAE) and root mean square error (RMSE) are used in this first validation
step as performance metrics. Then, once quantized and deployed on the target STM32L4
MCU (step 3 in Figure 4), the ToA prediction algorithms have also been tested for localiza-
tion purposes in an experimental setting (step 4 in Figure 4) involving a thin aluminum
plate (1000× 1000× 3 mm) instrumented with three custom sensor nodes (installed on
three corners of the structure) developed within the Intelligent Sensor Systems lab of the
University of Bologna and located at as many corners of the structure (see Figure 5). Thanks
to the compact design including all the circuitry and electronics necessary to collect, pre-
process and characterize signals, each device works as a miniaturized oscilloscope capable
of acquiring, at the same time, signals on three different input channels with a capacity of
4 MS/s. All the details about the sensor node characteristics can be found in [49,50]. This
plate has been selected since it presents identical mechanical and geometrical properties to
the one adopted for numerical simulations; thus, it allows the exploitation of the same NN
models trained on the simulated time series.

Nine different positions have been considered for excitation: each test has been
repeated three times, for a total amount of 27 tests. The adopted sensor installation
plan is compatible with the triangulation method in [51], whose complete mathematical
formulation can be found in [4]: the algorithm is advantageous in that, thanks to simple
geometrical considerations, it allows the retrieval of a source position simply by knowing
the difference in ToA of three sensing units placed at known positions. Such a testing
procedure was necessary since, as anticipated, it is not possible to make an educated
guess about the true label in the case of a real-field scenario due to the passive nature of
AE monitoring. In these terms, localization offers an indirect means for quantifying the
performances in ToA estimation by computing the spatial error between the true impact
position and the estimated one.

Furthermore, since the primary advantage of AI approaches is that they can efficiently
learn patterns even in very noisy data, the impact of progressively increasing noise levels
on the predicted ToA was specifically evaluated. To this end, gathered data were corrupted
with an additive white Gaussian noise (AWGN) such that the corresponding SNR moves
from 20 dB to 2 dB at integer steps of 4 dB. Despite the fact that the nature of the background
noise of real AE signals can differ [5], additive white stationary noise (such as that generated
by electronic components) can be assumed to be the main source of SNR degradation and,
consequently, was used to simulate noisy AE scenarios in this study.
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Figure 5. Experimental setup employed for AE source localization: three sensors (S1, S2, S3) are
installed on three corners of the plate, while 9 different points equally spaced are considered for
AE actuation.

4. Results
4.1. Preliminary Validation on Synthetic Signals

Results on synthetic waveforms are summarized in Table 1, for different intervals of
SNR. The performances attained by AIC and the STA/LTA-based thresholding algorithm
are also reported. In the latter case, the ratio between the two moving averages is computed
on the absolute value of Hilbert-transformed signals: ToA was retrieved as that time index
for which the threshold is exceeded first. Such a threshold was fixed at 10 while the two
window lengths (5 and 250, respectively) were empirically tuned on a subset of training
data. Importantly, we have also included the accuracy in ToA estimation attained by a
standard CNN architecture having the same structure (i.e., identical number of parameters,
computational complexity and hyperparameters) of the DilCNN model, but replacing
dilated kernels with conventional convolutions. Some examples of simulated waveforms
with the relative predictions are showed in Figure 6.

As can be observed from Table 1, all the new DL models investigated in this work
widely outperform other statistical or threshold-based methods, especially in the presence
of high noise levels. In more detail, DilCNN is quite insensitive to noise, obtaining very
similar MAE and RMSE for all the considered SNRs. The superiority of dilated convolutions
over conventional ones has also been proven, as witnessed by the fact that CNN scores
were more than 16 times worse in all the configurations, eventually being less effective
than the AIC algorithm. This result is justified by the fact that, despite sharing the same
architecture, the receptive field of the output neurons in CNN (computed via Equation (1)
assuming the architecture size in Figure 2) is equal to 153 samples (i.e., 76.5 µs), nearly
seven times smaller than the one characterizing DilCNN, which amounts to 1065 samples
(corresponding to 532.5 µs). Thereby, in the following analyses, only results for dilated
convolutional architectures will be presented. Moreover, it is paramount to emphasize that
its quantized version (DilCNN int8) scores the same accuracy levels, with a negligible loss
of performance. CapsToA behaves comparatively better than AIC and STA/LTA, even if
proving to be more sensitive to noise disturbances. A slight degradation is noticeable for its
MCU implementation (CapsToA int8), but it still reaches significantly better metrics (both
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for MAE and RMSE) than the alternative DL-free solutions, as demonstrated by an average
gain of 30× for the whole set of noise ranges.

Table 1. MAE and RMSE in ToA identification (expressed in µs) for different SNR intervals. Perfor-
mances of the two NNs are reported both for floating point Keras models and for the int8-quantized
versions, with the exception of the CNN architecture which is included just for comparison purposes.
Best results for each SNR and metric are highlighted in bold font.

Method SNR [dB] MAE [µs] RMSE [µs]

AIC

≥20 29.47 40.10
12–20 68.96 89.02
6–12 115.47 133.79
<6 132.74 151.74

STA/LTA

≥20 59.56 106.23
12–20 150.38 213.31
6–12 229.00 321.83
<6 301.88 401.31

CNN

≥20 138.68 373.21
12–20 138.45 372.88
6–12 138.43 372.86
<6 138.82 373.40

DilCNN

≥20 8.29 29.98
12–20 8.25 29.89
6–12 8.23 29.81
<6 8.24 29.78

DilCNN int8

≥20 8.27 29.93
12–20 8.24 29.85
6–12 8.22 29.77
<6 8.26 29.79

CapsToA

≥20 7.63 11.4
12–20 10.15 14.41
6–12 14.54 28.51
<6 25.56 55.72

CapsToA int8

≥20 16.39 23.68
12–20 19.81 50.29
6–12 22.46 32.05
<6 43.79 71.08

Additionally, the computational complexity, intended as the number of MACC opera-
tions, was also estimated, together with the overall execution time (expressed both in clock
cycles Tck and ms) and the RAM and flash footprint of the generated models when run on
the STM32L4 MCU. All these values are summarized in Table 2 and are provided only for
the int8 quantized models, since they are the only DL architectures running on the target
embedded platforms; hence, these defining parameters are of crucial interest.

By looking at Table 2, it is possible to observe how differences in kernel implementa-
tions affects the computational efficiency of our networks. In fact, TFLite micro kernels used
for the implementation of DilCNN models performs much faster in case of conventional
convolution when compared to dilated convolution, as demonstrated by the difference
in the Tck/MACC ratio between the first model and the DilCNN-based post-processing
logic adopted in the CapsToA architectures: the reason is that the former distributes its
complexity mainly on d = 1 convolution operations, unlike the latter.

4.2. Real-Field Validation for AE Localization

In this section, the results in terms of localization accuracy when dealing with real-field
data are presented, by sweeping the SNR. Figure 7 reports some examples of collected
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signals, along with the predictions obtained by using the different identification, which are
better magnified in the second row in which a zoomed interval is depicted.
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Figure 6. Example of signals generated by the numerical simulation at different SNRs. Ground truth
labels are indicated with a red cross, while output predictions are showed with diamond markers for
each algorithm.

Table 2. System performance of the analyzed models with 8-bit numerical precision while running
on the target STM32L4 MCU at 80 MHz clock frequency.

Model SRAM Flash MACC Tck Tck/MACC Exec Time
[KB] [KB] [ms]

DilCNN int8 171.50 120.27 59,120,625 332,758,980 5.628 4159.359

CapsToA int8
CapsNet 16.18 54.14 280,032 2,076,305 7.415 25.954
DilCNN 136.00 49.50 15,750,720 147,491,915 9.364 1843.551

Overall 152.18 103.64 177,049,152 1,343,443,595 7.588 16,793.044

Results for source localization are statistically analyzed in Figure 8 in terms of boxplots
for the noise-free configuration, while Figure 9 summarizes the outcomes when testing on
signals corrupted by increasing levels of artificial AWGN added via software elaboration.
Boxes are limited between the 25th and 75th percentiles of the sample data, while the
horizontal line stands for the statistical median. Data points marked with a black cross
are outliers, which are identified as those values greater than q3 + 1.5(q3 − q1) or less than
q1 − 1.5(q3 − q1), where q1 and q3 are, respectively, the 25th and 75th percentiles. The
dashed vertical extrema of each box represent the whiskers.

Moreover, it is important to mention that large errors in ToA identification may lead to
non-physical configuration in which a possible source location does not exist analytically
or it is located out of the geometrical boundaries of the plate: when this applies, the
corresponding tests has been denoted as failed. The different failure rates, expressed as
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the ratio between the total number of failed tests over the total amount of performed
experiments, are summarized in Table 3, for each algorithm and SNRs; median values in
localization accuracy are also displayed.
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Figure 7. Examples of real signals acquired using the setup described in Section 3.3 (first row) with
the corresponding predictions returned in the zoomed-in insights in the second row: 20 dB on the
left, 4 dB of SNR on the right. It is worth remarking that the true value of the time of arrival could not
be determined in our measurement setup.

The above results confirm again the superiority of DL models in dealing with critically
noisy scenarios with respect to traditional methods. Indeed, these charts validate that, for
all the considered noise configurations, both the failure rate and source position estimation
are significantly improved when AI model solutions are considered, AIC and STA/LTA
being affected by (i) a remarkable statistical dispersion (larger boxplots) and (ii) much lower
success rate. For example, when the SNR is equal to or below 4 dB, the median error values
reached by the lower performing quantized neural model, i.e., CapsToA int8, decrease
more than 66% and 62% at 4 dB and 2 dB, respectively, when compared to AIC-related
scores (which is the most accurate amidst the two conventional algorithms). The proof is
the fact that, opposite to its quantization-free version, CapsToA int8 undergoes a penalty
on median value of about 17.9% at 4 dB and 22.7% at 2 dB after quantization.

DilCNN presents a moderate performance degradation as the noise level increases,
as opposed to behavior observed in the case of synthetic AE signals. This might be due
to the slight difference between the simulated and the actually measured data, as evident
by comparing the waveforms in Figure 6 and 7. However, between the two DL networks,
DilCNN is the one which shows the best accuracy at low SNRs after conversion to 8-
bit precision, with a maximum degradation in the median value below 21% and 48%
for the worst case situation of SNR = 4 dB. All these experimental observations further
corroborate the quality of the previously quantified results obtained in the case of analytical
frameworks, disclosing novel opportunities for sensor-near AE signal characterization and
defect localization.
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Figure 8. Boxplots related to localization performance achieved by the different ToA identification
strategies when dealing with real-field AE signals: from SNR 20 dB down to 2 dB.

Table 3. Median values and percentages of failed tests obtained with the different methods by varying
the signal-to-noise ratio. Best results for each SNR are highlighted in bold font.

Model Metric ∞ 20 dB 16 dB 12 dB 8 dB 4 dB 2 dB

AIC Median [cm] 4.05 3.12 4.62 5.68 6.85 18.93 24.03
Failure Rate 0% 0% 0% 7.7% 23.1% 34.6% 23.1%

STA/LTA Median [cm] 5.62 7.23 6.21 Failed Failed Failed Failed
Failure Rate 3.8% 0% 34.6% 76.9% 92.3% 96.2% 88.5%

DilCNN Median [cm] 3.21 3.3 3.69 3.24 3.76 4.58 7.67
Failure Rate 0% 0% 0% 0% 0% 0% 0%

DilCNN int8 Median [cm] 2.92 3.22 3.23 3.64 4.24 5.54 7.36
Failure Rate 0% 0% 0% 0% 0% 0% 0%

CapsToA Median [cm] 3.02 3.32 2.92 3.09 4.01 5.32 7.31
Failure Rate 0% 0% 0% 0% 0% 0% 0%

CapsToA int8 Median [cm] 2.84 2.6 2.64 3.75 3.81 6.27 8.97
Failure Rate 0% 0% 0% 0% 0% 0% 7.7%
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Figure 9. Boxplots related to the localization precision achieved by the different algorithms and
models in the real-field validation test with superimposed AWGN.
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5. Discussion

In Table 4, a comparison between the results achieved in this work and those
obtained by state-of-the-art approaches in the field of AE source localization is presented.
The reported localization errors correspond to the most accurate prediction for each
realization, considering the case of real-field experimental data and neglecting the effect
of noise. Notably, the analysis was limited to noise-free scenarios since the majority of
the previously proposed works did not consider the effect of noise. Correspondingly,
this lack of experimental validation in noise-corrupted configurations can be seen as
one of the major drawbacks of competitor approaches, together with the fact they
do not investigate nor demonstrate model deployment on low-end microprocessors.
Additionally, it is paramount to specify that a setup-wise comparison is not possible,
since the neural architectures were tested on remarkably different datasets, which,
in some cases (see [28]), focus on a simplified and favorable propagation environment
characterized by the absence of reflections and multi-modality which are, instead, typical
of AE wave propagation in real scenarios.

As can be observed by looking at the localization errors in Table 4, the DilCNN and
CapsNet-based architectures proposed in this work significantly outperform the previously
investigated approaches in [4,31]. In particular, the improvements can be found at two
levels: on one side, the accuracy in AE localization is almost doubled when comparing
with the conventional CNN (from 8 cm to 3 cm). On the other hand, the new models show
better generalization capabilities (thanks to the adoption of dilated convolution operations
allowing for a larger receptive field) while also shrinking consistently the overall network
dimension, a condition which is particularly crucial for the successful edge deployment of
capsule architectures (400 kB in [4] vs 100 kB for the entire CapsToA).

Compared with alternative ML strategies, the latter can attain more accurate defect
localization capabilities. Nevertheless, despite their promising results which can reduce
in some realizations to 1 mm, they show severe limitations which can be commented on
as follows. First, the ANN-based architectures ([28,30]) are trained to predict and learn
the position of the damage itself starting from raw data, rather than returning the ToA
and passing it to a second stage in which the AE position is estimated. However, such an
approach imposes a one-to-one correspondence between the structure used for training
and that used for testing, since the network is instructed to learn the spatial geometry
of the individual strategy rather than predicting a high-level feature such as the pure
ToA. Second, they might require (see [28]) aggregation of different time series collected
by manifold acquisition units, hence consuming rapidly all the power budget for data
outsourcing and causing potential network congestion. Finally, when implemented via
a mesh of active and passive sensors as in [29], they are not suitable for passive AE
monitoring.

As conclusive remarks, the models explored in this work aimed at the analysis of
time series using dilated convolutions, with and without the exploitation of capsule-
based mechanisms, show remarkable advancements with respect to previous solutions.
Additionally, the presented results confirm the superiority of DL tools with respect to
traditional ToA recovery techniques in dealing with low SNR. Such superiority becomes
clearly evident as the SNR drops below the value of 12 dB, reaching a 70% higher precision
at 4 dB. Finally, the networks present negligible loss of performance when the internal
parameters are converted from a floating point precision to 8-bit integers and run by the
low-power and memory-constrained STM32L4 MCU.
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Table 4. Comparison of results obtained in this work with respect to state-of-the-art approaches in the
field of AE source localization. Pros (3) and cons (7) of each method are discussed, along with their
quantitative performances in terms of magnitude of localization error (assuming that no additional
synthetic noise is inserted) and integration on extremely low-level computing devices.

Ref. Model MCU
Deployment

Noise
Analysis Loc. Error Pros/Cons

This
work

DilCNN,
CapsNet 3 3 3–4 cm

3 Showcased robustness to SNR < 4 dB
3 Better generalization capabilities (increased receptive

field) ensured by dilated convolutional layers

[31] CNN 3 3 8 cm

3 Highly quantized models with reduced memory con-
sumption (flash < 80 kB) and inference time (<240 ms)

7 Poor generalization capabilities due to the extensive
presence of pooling layers causing the loss of temporal
relationships in feature maps

[4] CNN,
CapsNet 7 3 5 cm

3 Showcased robustness to SNR < 8 dB and proved better
prediction capabilities compared with standard statis-
tics (AIC)

7 Huge memory and computational complexity of CNN
(>150 kB) and CapsNet (>400 kB) preventing deploy-
ment on MCU

[28] Shallow
ANN 7 7 1-3 mm

7 Small size specimen for experimental validation: the ef-
fects of reflections and physical interaction with bound-
aries are neglected

7 Poor model re-usability: the networks are trained to
predict the position itself of the impact, rather than es-
timating the pure ToA→ applicable only to structures
with propagation behavior and geometrical configura-
tions identical to the one considered at training stage

7 Simultaneous processing of multiple time series→ not
suitable for wireless battery-powered sensor networks

[29] PCA+SVM 7 7 2-5 cm

7 Processing of image data incompatible with sensor-near
data acquisition and processing

7 Huge memory complexity (>29 MB) incompatible with
MCU memory constraints

7 An active configuration is exploited→ not suitable for
passive AE monitoring

[30]
Polynomial
regressor+

ANN
7 7 1-2 mm

7 Absence of theoretical criteria for the estimation of re-
gression parameters (i.e., optimal polynomial degree)

7 Networks trained on highly energetic asymmetric
modes rather than faint symmetric modes

7 Poor model re-usability: the models are trained to pre-
dict the position itself of the impact→ applicable only
to structures with propagation behavior and geomet-
rical configurations identical to the one considered at
training stage

6. Conclusions and Future Works

In this work, NN models suited for the estimation of the ToA in acoustic signals
have been presented and deployed on a general-purpose MCU, showing their aptness for
sensor-near AE data mining even in the presence of significant noise levels. A prototyping
board equipped with an STM32L4 MCU has been used to attain this goal: the performances
of the devised solutions, called DilCNN and CapsToA, have been thoroughly validated on
both synthetic signals and real-field data under different noisy conditions. The obtained
outcome shows that, when working on simulated waveforms, the devised models can
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predict ToA with a MAE which is up to 16x and 36x lower than the one scored by the
standard AIC and STA/LTA algorithm, respectively. More importantly, it has been shown
that the same models can be run on the target low-end microcontroller without affecting
the resulting performances. Similar metrics were also confirmed when processing real data
in a framework involving the localization of AE sources on a metallic plate: in this case,
the adoption of AI solutions can reduce the median error from 25 cm (AIC) down to 5 cm
(DilCNN) when the SNR is as low as 4 dB.

This evidence unlocks new potential for the edge or extreme-edge inference of AE data
and, by extension, propose novel approaches to AE-based SHM: the designed networks are
superior in that they can alleviate the burdensome requirement of transmitting long time
series to central processing units while preserving the accuracy of the integrity evaluation
process.

Future works will explore data augmentation techniques, necessary for the sake of
data representation and increased generalization capabilities. Moreover, new kinds of
architecture will be analyzed. For instance, the effect of temporal and channel attention
modules which are able to suppress noisy or irrelevant features across layers should be
investigated in temporal convolutional networks addressing this kind of problem, as well
as the impact of a similar strategy on capsule-based NNs, aiming to enhance the dynamic
routing algorithm or replace it totally with non-iterative procedures. From a TinyML
perspective, parallel ultra-low-power edge microprocessors will be exploited as target
boards in order to shrink further the computation time.

Finally, it will be necessary to perform further evaluations as soon as a public and
sufficiently large dataset for onset time detection in AE frameworks is released, in order to
compare the performances of the proposed architectures when dealing with benchmark
use cases.
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Abbreviations
The following abbreviations are used in this manuscript:

AE Acoustic Emission
AI Artificial Intelligence
AIC Akaike Information Criterion
ANN Artificial Neural Network
CapsNet Capsule Neural Network
CapsToA CapsNet for ToA Estimation
CNN Convolutional Neural Network
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CWT Continuous Wavelet Transform
DilCNN Dilated Convolutional Neural Network
DL Deep Learning
DSP Digital Signal Processing
ISA Instruction Set
MACC Multiply and Accumulate
MAE Mean Absolute Error
MCU Microcontroller Unit
RMSE Root Mean Square Error
SHM Structural Health Monitoring
SLA/STA Short-Time Average on Long-Time Average
SNR Signal-to-Noise Ratio
SVM Support-Vector Machine
TinyML Tiny Machine Learning
TF Tensorflow
TF Lite Tensorlflow Lite
ToA Time of Arrival
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