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Transforming an initial quantum state into a target state through the fastest possible route—a quantum
brachistochrone—is a fundamental challenge for many technologies based on quantum mechanics. In two-
level systems, the quantum brachistochrone solutions are long known. These solutions, however, are not
applicable to larger systems, especially when the target state cannot be reached through a local
transformation. Here, we demonstrate fast coherent transport of an atomic wave packet over a distance
of 15 times its size—a paradigmatic case of quantum processes going beyond the two-level system. Our
measurements of the transport fidelity reveal the existence of a minimum duration—a quantum speed
limit—for the coherent splitting and recombination of matter waves. We obtain physical insight into this
limit by relying on a geometric interpretation of quantum state dynamics. These results shed light on a
fundamental limit of quantum state dynamics and are expected to find relevant applications in quantum
sensing and quantum computing.
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I. INTRODUCTION

.How fast can a quantum process be? Previous efforts to
answer this question have resulted in fundamental insights
into quantum state dynamics [1–7] and shed light on the
ultimate physical limits to the rate of information process-
ing [8–10]. Speeding up the dynamics of a quantum
process is also key to advance quantum technologies
[11–13], because faster processes can help us outrun
detrimental decoherence mechanisms, and so boost the
number of high-fidelity operations executed within the
system’s coherence time [14–16].
The fact that a minimum time is required to accomplish a

physical process has been known since Bernoulli’s famous
brachistochrone problem [17], long before the advent of
quantum physics. The origin of such a minimum time can
be traced back to the maximum rate at which a physical

state can change in time, which is generally determined by
the amount of physical resources (energy and type of
control) available to carry out the process.
For quantum processes, a precise formulation of such a

speed limit was first derived by Mandelstam and Tamm [1]
considering the transformation of a quantum state jψ initi into
an orthogonal one jψ targeti. They discovered that the duration
τQB of the fastest process—the quantum brachistochrone—
is bound by the inverse of the energy uncertainty [18],

τQB ≥ τMT ¼ ℏπ
2ΔE

; ð1Þ

providing a firm basis for Heisenberg’s time-energy uncer-
tainty principle [19]. Most significantly, the Mandelstam-
Tamm bound shows that the duration of a quantum process
cannot vanish, unless infinitely large energy resources
can be controlled. This bound was generalized to time-
dependent Hamiltonians, making it applicable to a far larger
class of quantum processes [2]. Further extensions have
been obtained for generic target states not necessarily
orthogonal to the initial one [20–22], open quantum systems
[23–26], semiclassical systems [27,28], and optimal
quantum control problems [29–33]. An experimental
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demonstration of the Mandelstam-Tamm bound in Eq. (1)
was given in effective two-level systems using ultracold
atoms [34,35] and superconducting transmon circuits [36].

II. QUANTUM BRACHISTOCHRONES
BETWEEN DISTANT STATES

Today, it is understood [4,37,38] that the Mandelstam-
Tamm bound in Eq. (1) can only be saturated (i.e.,
τQB ¼ τMT) when the quantum dynamics can be reduced
to that of a simple two-level system, i.e., when the
target state can be reached directly by a Rabi oscillation
[Fig. 1(a)]. Recently, however, Bukov et al. [7] pointed
out that such a simple Rabi oscillation dynamics connect-
ing the two states may be hard, or even impossible, to be
realized in many-level systems. Thus, the authors ques-
tioned the usefulness of the Mandelstam-Tamm bound for
these processes, since it fails to capture their true quantum
speed limit (i.e., τQB ≫ τMT).
A paradigmatic example of such a process would be

“teleporting” a massive quantum object between distant
quantum states through a Rabi oscillation, which is
fundamentally impossible because no direct coupling
between them [39] can be realized by physical local
operators [Fig. 1(b)]. In fact, any physical operator Ω̂Rabi
coupling directly the two states yields a vanishingly small
Frank-Condon factor, hψ initjΩ̂Rabijψ targeti ≈ 0.
In this work, we give the first experimental demonstra-

tion of coherent control of a physical process at its quantum
speed limit beyond direct local operations. Specifically, we

consider the problem of transporting a trapped massive
quantum particle to a distant location, separated by about
15 times the size of the wave packet, in the minimum
possible time under the constraint of a fixed trap depth. The
initial and target states are defined by the ground state of the
trap potential centered at the two different locations.
Because of the wide separation between the two states,
it is fundamentally impossible for the massive quantum
particle to reach the target state by a Rabi oscillation.
We see that inequality (1) fails to give a meaningful

bound on the shortest transport duration τQB if we examine
its scaling with respect to the transport distance d: While
the minimum time τQB is naturally expected to increase
with d, remarkably, the time τMT exhibits rather the
opposite behavior, as it decreases with d (Appendix M).
Away out of this conundrum is discussed below, adopting a
geometric point of view on wave packet dynamics.

III. FAST ATOM TRANSPORT IN OPTICAL
CONVEYOR BELTS

As of yet, transport experiments have been performed
with trapped ions and ultracold atoms in the nearly
harmonic low-energy portion of the trap potential
[40–44], where fast, high-fidelity transport is enabled by
effective protocols [45,46] known as shortcuts to adiaba-
ticity. In order to reach the quantum speed limit, however,
excitations of the wave packet beyond the low-energy range
of the trap potential must be controlled, requiring precise
knowledge of the full potential. For this purpose, we use a

(d)(a) (c)

(b)

FIG. 1. Transporting a massive quantum particle to a distant state. (a) Direct local coupling Ω̂Rabi between the initial and target state
can be realized when the two wave functions have nonzero spatial overlap. (b) Fundamentally, no direct local coupling between the two
states can be realized for large separations, d ≫ Δx, suppressing the possibility to attain the Mandelstam-Tamm bound. (c) Atom
transport in an optical conveyor belt (sinusoidal potential curves), depicted at the initial, intermediate, and final time of the process. The
probability distribution of the transported wave packet jψðtÞi is shown (shaded area), together with that of the initial and target states
(dashed lines). For illustration purposes, the chosen example shows a wave packet ending up in an excited state, corresponding to a low
(F ∼ 0.5) transport fidelity. (d) Quantum brachistochrone trajectory xtrapðtÞ of the optical conveyor belt (dark blue), corresponding to the
diamond data point marked by an arrow in Fig. 2. The actual position of the conveyor belt (cyan), measured with 1 Å precision by optical
interferometry, and the corresponding external drive (light blue), applied to steer the conveyor belt position, are also shown. For
comparison, a linear transport ramp (dashed line) is displayed.
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one-dimensional optical lattice as a conveyor belt [47] to
transport neutral atoms along its axis [Fig. 1(c)]. Its
sinusoidal trap potential is inherently well defined over
all spatial regions from trough to crest since it is created by
optical interference of two counterpropagating laser beams
(wavelength λ ≈ 866 nm, lattice constant λ=2). We choose
the trap depth U0 of the order of 100Erec in order to
suppress tunneling of the initial state to adjacent sites;
Erec ¼ ð2πℏÞ2=ð2mλ2Þ is the recoil energy of an atom of
mass m. We also maintain U0 constant during the whole
transport process to explore the scenario where the energy
available to control a physical process is fundamentally
limited; in fact, for an infinitely deep potential, no speed
limit exists [45] in nonrelativistic quantum mechanics.
All transport experiments begin by preparing the

matter wave of a 133Cs atom into the motional ground
state jψ initi of one of the sites of the optical conveyor belt
(Appendix A), which is initially held at rest. Subsequently,
we displace the conveyor belt within a given time τ to the
desired target location following a chosen trajectory xtrapðtÞ
as a function of time t [Fig. 1(d)]. The target location is
chosen to be one lattice site away (d ¼ λ=2) from the initial
location, corresponding to 15 times the initial sizeΔx of the
wave packet. While the atomic wave packet is highly
excited during transport, it ideally ends up in the ground
state of the displaced potential, jψ targeti, once the optical
conveyor belt is brought back to rest. We conclude the
experiments by measuring (Appendix F) the fidelity of the
transport process,

F ðτÞ ¼ jhψ targetjψðτÞij2; ð2Þ

quantifying the probability of occupying jψ targeti.
In the experiments, we control the position xtrapðtÞ of the

optical conveyor belt with high precision using a fast
polarization synthesizer [48], reducing the position noise
δx to much less than the size of the wave packet Δx
(δx ≈ 0.1 nm ≪ Δx ≈ 25 nm). We additionally suppress
systematic distortions from the desired trajectory
(Appendix E). Time-resolved measurements of xtrapðtÞ,
carried out by on-site laser interferometry (Appendix D),
reveal a nearly perfect agreement between the actual
trajectory of the conveyor belt and the targeted one
[Fig. 1(d)], with peak-to-peak discrepancies less than 10 nm.

IV. OPTIMAL TRANSPORT SOLUTIONS

For the transport of atoms, we choose a feed-forward
quantum control approach [49]: we steer the conveyor belt
along trajectories xtrapðtÞ that are designed to maximize the
transport fidelity. To obtain a trajectory xtrapðtÞ of given
duration τ, we take the solution for the corresponding
classical problem (Appendix G) and subsequently optimize
it using optimal quantum control methods [31,50,51] in
order to achieve maximum fidelity F ðτÞ. For the fidelity

optimization, we employ numerical simulations of atom
transport imposing two constraints: (1) xtrapðt ≤ 0Þ ¼ 0 and
xtrapðt ≥ τÞ ¼ d and (2) the Fourier spectrum of xtrapðtÞ is
limited to within the control setup bandwidth in order to
ensure that xtrapðtÞ is faithfully reproduced in the experi-
ments (Appendix H).
The resulting optimal trajectories [Fig. 1(d)] exhibit a

rather wiggling behavior, which is key to control excita-
tions during transport. Disregarding the fast wiggles, the
remaining behavior of xtrapðtÞ is reminiscent of a constantly
accelerated and decelerated trajectory for the first and
second half of the transport duration. In addition, optimal
trajectories notably start and finish with swift displace-
ments, which are favorable to place the atomic wave packet
where the trap potential is steep (Appendix G).

V. REVEALING THE QUANTUM SPEED LIMIT

Our measurements of the transport fidelity (Fig. 2)
demonstrate that optimal quantum control solutions accom-
plish F ≈ 1 within experimental uncertainty for all trans-
port times greater than τQB, occurring in the proximity of
τHO, the oscillation period in the harmonic approximation
of the trap potential (Appendix G). Crucially, for times
shorter than τHO, the fidelity drops rapidly, revealing
the existence of a minimum duration—a quantum speed
limit—for the transport of matter waves. To our knowledge,
this is the first observation of the quantum speed limit for a
multilevel system, where the transition from a quantum-
controllable to a quantum-noncontrollable process is
sharply resolved by fidelity measurements. Our measure-
ments reveal a rapid, yet smooth crossover around τQB, quite
at variance with the analogous classical problem, where the
transition between the two regimes is sudden [52].
We obtain insight about τQB by exploring the fidelity

landscape F ðτÞ as a function of τ, for different trap depths
U0 ≈ f70; 150; 300gErec. By varying the trap depth, we
change the number of effectively controlled energy levels
(4,6,10, respectively), for which site-to-site tunneling is
negligible over the transport duration τ. We determine the
transition to a quantum noncontrollable process as the
transport time at which the measured fidelity drops to
F ðτÞ ≈ 0.5 (inset of Fig. 2). Our measurements demon-
strate that in the range of trap depths explored here, the
quantum brachistochrone time τQB follows approximately
τHO. Atom transport performed in a time close to τHO is
notably much faster than its adiabatic counterpart, which
requires on the contrary τ ≫ τHO (Appendix J). In Sec. VII
we provide theoretical insight into the scaling of τQB,
showing that the minimum transport time is bound from
below by the classical brachistochrone time τCB ≈ 0.8τHO
(hatched area in Fig. 2). This bound corroborates the
experimentally observed scaling behavior of τQB with
τHO, which quite differs from that of the MT bound τMT
(dotted area in the same figure).
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To validate our experimental results, we employ numeri-
cal simulations of the transport process based on a one-
dimensional model of the conveyor belt potential
(Appendix C). A direct comparison of the computed
fidelity with the measured F ðτÞ reveals an excellent
agreement with the simulations taking into account a
thermal distribution in the transverse direction to the optical
conveyor belt (Fig. 2). Relying on the numerical simu-
lations, we are able to explain the rapid drop of fidelity
observed when the transport duration is reduced below τQB:
For short durations, high-energy excitations are created
above the discrete spectrum of controlled energy levels,
leading to a significant probability of tunneling to the
neighboring sites and thus to a drop of fidelity. The
occurrence of tunneling is especially evident in the limit
of very short durations, τ ≪ τQB. In this limit, in fact, the
optical conveyor belt is displaced so fast that the atom has a
considerable probability to remain in the very same state
jψ initi where it was initially prepared. This possibility
explains the apparent rise in fidelity for very short times
observed in Fig. 2; such events could be singled out by

probing a small ensemble of individually resolved atoms,
whose initial and final positions in the lattice can be
precisely detected [53] in addition to measuring the ground
state probability.
For comparison, we perform analogous transport

experiments applying a simple linear transport ramp
[Fig. 1(d)], corresponding to a bang-bang type of control
(Appendix I), as opposed to optimal quantum control. In
spite of its simplicity, bang-bang control enables faster-
than-adiabatic high-fidelity transport, and finds wide
applications in quantum technology [43]. The measured
transport fidelity reveals maxima of F ðτÞ when the
transport duration is chosen to be a multiple of the
oscillation period τHO (Fig. 2). In an ideal harmonic trap,
these maxima are expected to reach unit fidelity owing to a
perfect refocusing of motional excitations (Appendix I).
Our measurements show, however, that such refocusing
mechanism is only partially effective, owing to the
anharmonicity of the conveyor belt potential. To reach
fidelity values close to unity, long transport times are
required, τ ≫ τHO, rendering bang-bang control in

FIG. 2. Revealing the quantum speed limit. The fidelity F ðτÞ of transporting an atom over one lattice site is measured as a function of
the transport duration τ, expressed in units of the oscillation period τHO ≈ 20 μs, for a trap depth U0 ≈ 150Erec. Blue points: optimal
quantum control achieves near-unit fidelity for durations above the quantum brachistochrone time τQB (diamond point marked by an
arrow), in the proximity of τHO. Hatched area: low-fidelity region as expected for durations shorter than the classical brachistochrone
time τCB; see Sec. VII. Dotted area: low-fidelity region predicted by the Mandelstam-Tamm bound τMT. Purple points: linear transport
ramps achieve suboptimal fidelity. Black lines: computed fidelity based on numerical simulations of atom transport, assuming a
transverse temperature T⊥ ≈ 1 μK (solid) and a zero-temperature case (dashed). Inset: the fidelity landscape computed numerically as a
function ofU0 and τ for T⊥ ¼ 0 (colored contour map) and the measured transition points (experimental data) where the fidelity reaches
F ≈ 0.5. White lines: the oscillation period τHO, approximately representing the quantum brachistochrone time τQB, and the adiabatic
limit ensuring fidelities F > 0.9. Error bars represent one standard deviation.

MANOLO R. LAM et al. PHYS. REV. X 11, 011035 (2021)

011035-4



anharmonic potentials nearly as ineffective as adiabatic
transport.

VI. COHERENT SPLITTING AND
RECOMBINATION OF MATTER WAVES

To demonstrate that optimal quantum control transport is
fully coherent, we conduct a second, closely related experi-
ment, realizing a single-atom Mach-Zehnder interferom-
eter. To this purpose, we create a copy of the initial atom
wave packet with opposite spin direction, realizing a
superposition of j↑i and j↓i states, subject to two fully
independent, spin-selective optical conveyor belts [48].
Keeping the initial spin-down state at rest, we transport
the spin-up state to the next lattice site employing an
optimal quantum control trajectory of duration τ, and bring
it back with the same trajectory reversed. We conclude the
interferometer experiments by retrieving the contrast Cð2τÞ
of the interference fringe with a Ramsey interrogation
scheme [54].
In analogy to our previous findings, the interferometer

measurements reveal a high contrast for transport durations
τ ≳ τHO, attesting to the fully coherent nature of the process
(Fig. 3). The measured contrast is in fact directly related to
the fidelity F 2ð2τÞ of the process transporting the atomic
wave packet back and forth: Cð2τÞ ¼ jhψ initjψð2τÞij ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2ð2τÞ

p
. Moreover, if we make the assumption

F 2ð2τÞ ≈ F ðτÞ2, we can trace F 2ð2τÞ back to the single

transport fidelity. The direct comparison of the measure-
ments of the fidelity F ðτÞ and contrast Cð2τÞ reveals a
striking similarity (Fig. 3). This comparison shows the
importance of achieving high-fidelity transport operations
for fully coherent quantum processes involving super-
position of states.

VII. INTERPRETATION AND PHYSICAL INSIGHT

A basic interpretation of the quantum brachistochrone
time τQB observed in the experiments is provided by the
analog classical problem. There, the fastest process is
realized when the particle is maximally accelerated for
half of the time and then decelerated for the other half, with
its position being centered at the points of steepest
potential. This protocol results in the classical brachisto-
chrone time, τCB ¼ τHO

ffiffiffiffiffiffiffiffiffiffiffi
2n=π

p
, where n represents the

transport distance d expressed in units of the lattice
constant λ=2 (Appendix G). When transporting a quantum
particle, however, extra control is necessary to prevent too
large spreading of the wave packet in the anharmonic
potential [52], in particular when the wave packet
approaches the points of steepest potential, where the trap
loses its ability to confine. This additional requirement
translates in a longer time to achieve a near-unit fidelity
(τQB > τCB), yielding a lower bound on the quantum
brachistochrone time,

τQB > τHO
ffiffiffiffiffiffiffiffiffiffiffi
2n=π

p
; ð3Þ

where n ¼ 1 is the case chosen for the experiments in this
work. Comparing this bound to the measured data, which
show near-unit fidelity for durations above τHO, validates
the finding that the transport of atoms in our experiments
attains the quantum speed limit.
Can the same bound in Eq. (3) be obtained from quantum

mechanical principles? As we argued earlier, this question
cannot be answered based on the Mandelstam-Tamm
bound. Instead, we consider the quantum state evolution
from a geometric point of view, as proposed by Anandan
and Aharonov [2]. They prove that for every quantum
process of duration τ, the average energy uncertainty ΔE
[18] is related to the geometric path length of the time-
evolved state jψðtÞi,

l ¼
Z

τ

0

dsFS ¼ ΔEτ=ℏ; ð4Þ

measured by the Fubini-Study metric in the Hilbert space
of quantum states, ds2FS ¼ 1 − jhψðtþ dtÞjψðtÞij2 [55].
Applying this relation to a quantum brachistochrone
process, we directly obtain a lower bound on the quantum
brachistochrone time, τQB > ℏlQB=ΔEupper, provided that
(I) the path length lQB of the process is known and (II) an

FIG. 3. Atom interferometry at the quantum speed limit. Square
points: measured contrast Cð2τÞ of the atom interferometer of
duration 2τ, with the atom in j↑i being transported with optimal
quantum control back and forth. Circle points: measured fidelities
F ðτÞ from Fig. 2, reproduced here for comparison. Solid line:
expected contrast obtained from numerical simulations assuming
T⊥ ≈ 1 μK. Error bars represent one standard deviation. Inset: the
blue and red lines describe the movement of the spin-up and spin-
down conveyor belts, ensuring that the atom in spin-down state
remains effectively at rest, since the two spin-dependent poten-
tials are not fully decoupled (Appendix B).
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upper bound ΔEupper on the average energy uncertainty can
be provided.
To produce (I) and (II), we assume that at the quantum

speed limit the wave packet is steadily accelerated in
the first half and steadily decelerated in the second half,
with its shape maintained close to that of a coherent state.
Concerning point (I), under this assumption we can
estimate the path length of the quantum brachistochrone
process as the product of two factors (Appendix K),

lQB ≈
d

2Δx
f

�
τHO
πτQB

�
; ð5Þ

where fðξÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p
þ ξ2arccschðξÞ is a monotonically

increasing function greater than 1 for positive arguments.
Notably, the first factor in Eq. (5) coincides with the
distance between the initial and final states as measured by
the quantum geometric tensor (Appendix K),

lQGT ¼ d
2Δx

: ð6Þ

In contrast to lQB in Eq. (5), lQGT is a purely geometric
quantity independent of the dynamics of the process, since
it represents the shortest path length as measured by the
Fubini-Study metric in the restricted manifold of static
states that are reachable via an adiabatic transformation of
the control parameter xtrap (Appendix K). Equation (5)
shows that lQB is larger than lQGT. This finding is in line
with the conjecture put forth in Ref. [7] that lQGT is a lower
bound on the path length l of those processes that are
realizable with the control parameters available (in this
work, xtrap),

l ≥ lQGT: ð7Þ

The two factors in Eq. (5) can thus be interpreted as
follows. The first factor lQGT is a measure of the change of
jψðtÞi when its position is moved across a distance d,
which can be loosely understood as the number of local
transformations necessary to carry out the transport proc-
ess. The second factor f instead carries information about
the dynamics, reflecting the change of jψðtÞi when the
momentum is varied during transport. Numerical simula-
tions show that Eq. (5) approximates the actual lQB to
within a few percent.
Concerning point (II), the determination of an upper

bound on ΔE, we bound from above the potential con-
tribution to the instantaneous energy uncertainty ΔEðtÞ by
assuming the wave packet of size Δx to be positioned
where the trap potential is steepest, at�λ=8 from the center
of the site (Appendix K). By averaging over time [18], we
thus find an upper boundΔEupper onΔE, which remarkably
can be expressed in the form

ΔE < ΔEupper ¼ lQGTf

�
τQB

2nτHO

�
ℏ
τQB

; ð8Þ

where lQGT originates from the kinetic contribution to
ΔEðtÞ, whereas the second factor f stems from the trap
potential contribution. Combining Eqs. (5) and (8) in the
Anandan-Aharonov relation (4), we obtain

τQB ¼ lQB

ΔE=ℏ
> τQBf

�
τHO
πτQB

��
f

�
τQB

2nτHO

�
; ð9Þ

which, because of the monotonicity of f, directly translates
in inequality (3), thus providing a positive answer to the
question raised in the beginning. This result is consistent
with the recent findings that the quantum speed limit is not
a purely quantum phenomenon, but a universal property of
the dynamics of physical states in Hilbert space [27,28].
The conjectured bound on the path length, Eq. (7), alone

is not sufficient to yield a bound on τQB, since it does not
take into account the dynamical contribution, represented
by f in Eq. (5). Even so, this bound in Eq. (7) allows us to
obtain novel insights applicable to any transport process
that connects spatially distant states. In fact, using this
bound, we find that l is not just longer, but significantly
longer than the geodesic—the shortest possible path as
defined by the Fubini-Study metric—connecting the initial
to the target state. The reason is that the geodesic coincides
[56] with the path in Hilbert space traced by a Rabi
oscillation (Ω ¼ π=τ),

jψðtÞi ¼ cosðΩtÞjψ initi þ sinðΩtÞjψ targeti; ð10Þ

whose length is lgeo ¼ arccosðjhψ targetjψ initijÞ. Importantly,
lgeo levels off to π=2 for orthogonal states, regardless of the
distance d separating the two states in real space, thus
yielding l ≫ lgeo for d ≫ Δx. The atom, in contrast,
cannot evolve as in Eq. (10) because, as a massive particle,
it cannot disappear from the initial location while reap-
pearing at the target location [57], but must take a different
much longer path.
The geometric relation just obtained, l ≫ lgeo, is

the fundamental reason why the Mandelstam-Tamm
inequality falls short of giving a meaningful bound on
the quantum brachistochrone duration, τQB ≫ τMT. In
fact, applying the Anandan-Aharonov relation (4) to the
quantum brachistochrone process, we directly obtain
τQB ¼ ℏlQB=ΔE ≫ ℏlgeo=ΔE ¼ τMT, where τMT desig-
nates here the Mandelstam-Tamm bound generalized [19]
to the case of not necessarily orthogonal states.

VIII. CONCLUSIONS AND OUTLOOK

In this work, we have experimentally demonstrated high-
fidelity transport of matter waves connecting spatially
distant states in the shortest possible time, under the
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constraint of a fixed trap depth. By splitting and recombin-
ing atomic matter waves, we showed that coherent quantum
control is preserved at the quantum speed limit. By using
geometric arguments, we showed how our transport experi-
ments connecting distant states go beyond the quantum-
speed-limit paradigm developed for single qubits and
complex systems that can be effectively reduced to a
two-level system [58], where the Mandelstam-Tamm
bound is known to provide a meaningful lower bound
on the shortest duration τQB. This work focused on a
transport distance equal to one lattice site, which is the most
relevant case for quantum walks [13]. Extending our results
to much longer transport distances (Appendix L) is a very
interesting goal, with applications in long baseline inter-
ferometry, which is key to boost the sensitivity of quantum
sensors [59,60], to carry out fundamental tests of quantum
superposition states [61], and to implement fault-tolerant
quantum memories [62].
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APPENDIX A: ATOM TRAPPING AND COOLING

We load 133Cs atoms from the background gas
into a magneto-optical trap and subsequently transfer
them into a superimposed one-dimensional optical lattice
with a trap depth U0 ≈ kB × 400 μK ≈ 4000Erec, where kB
is the Boltzmann constant andErec ¼ ðℏkÞ2=ð2mÞ ¼ 2πℏ ×
2 kHz is the recoil energy; here, k ¼ 2π=λ is the wave
number associated with the wavelength λ of the optical
lattice, m is the mass of cesium atoms, and ℏ is
the reduced Planck constant. The initial number of atoms
is obtained by fluorescence imaging under near-resonant
molasses illumination with an exposure time of 400 ms. A
typical sample consists of 30 atoms loaded sparsely over 100
lattice sites. The molasses also cools the atoms further down
by polarization gradient cooling. Adiabatically lowering the
lattice trap depth to kB × 80 μK ≈ 800Erec further cools the
atoms down to around 10 μK. This temperature corresponds
to a longitudinal ground state population of around 40% as
determined by microwave sideband spectroscopy.
A weak magnetic field of 3 G along the lattice axis

provides a well-defined quantization axis. Relative to
the quantization axis, we select two hyperfine states of

the ground state for the atom transport experiments,
j↑i ¼ jF ¼ 4; mF ¼ 4i and j↓i ¼ jF ¼ 3; mF ¼ 3i. In
interferometer transport experiments, we use a superposi-
tion of both states, while for the other transport experiments
we use state j↑i.
We cool the atoms down to the vibrational ground state

along the longitudinal lattice direction by resolved side-
band cooling using microwave radiation at 9.2 GHz [63].
More specifically, microwave sideband cooling is achieved
by driving the cooling sideband j↑; ni to j↓; n − 1i, thereby
removing one vibrational energy quantum ℏωHO, while
simultaneously repumping the atoms to j↑i; here ωHO ¼
2π denotes the harmonic oscillation frequency:

ωHO ¼ 2π=τHO ¼ 2π

ffiffiffiffiffiffiffiffiffi
2U0

mλ2

r
: ðA1Þ

Microwave sideband transitions are enabled by displacing
one of the spin potentials by around 17 nm along the lattice
axis, lifting the orthogonality between different vibrational
states. After sideband cooling for 20 ms, a longitudinal
ground state population of typically 96% is reached.
In order to reduce the transverse temperature of the

atoms, during molasses cooling we superimpose to the
optical lattice a blue-detuned donut-shaped beam. Thereby,
we increase the confinement of the atoms in the direction
transverse to the optical lattice. By subsequently ramping
down the intensity of the donut beam adiabatically, we
lower the transverse temperature to T⊥ ≈ 1 μK.

APPENDIX B: SPIN-DEPENDENT
OPTICAL LATTICES

The optical lattice is operated at λ ¼ 865.9 nm, a
so-called “magic” wavelength allowing atoms in the state
j↑i to be trapped only by the right-handed circularly
polarized (R-polarized) light, while atoms in the state
j↓i are predominantly trapped by the left-handed circularly
polarized (L-polarized) light. The dipole trap potentials for
the two spin states are

U↑ ¼ −αIR; ðB1aÞ

U↓ ¼ −α
�
7

8
IL þ 1

8
IR

�
; ðB1bÞ

where IR and IL denote the intensity of the two circular
polarization components of the lattice laser field, and
the proportionality constant α only depends on cesium
polarizability.
In order to create two fully independent optical conveyor

belts transporting atoms selectively in either one of the two
spin states, we employ a polarization-synthesized beam,
where the phases ϕR and ϕL and the amplitudes of its
left- and right-handed circularly polarized components
are steered with high precision [48]. By interfering the
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polarization-synthesized beam with a counterpropagating
reference beam of fixed linear polarization, we create two
perfectly superposed standing waves. The position of each
standing wave,

xR;LðtÞ ¼
λ

2

ϕR;LðtÞ − ϕ0

2π
; ðB2Þ

is independently controlled by the phase ϕR;LðtÞ relative to
the phase ϕ0 of the counterpropagating reference beam.
The conveyor belt potential for an atom in state j↑i is
simply

U↑ðx; tÞ ¼ −U0;↑ cos2 fk½x − x↑ðtÞ�g; ðB3Þ
with x↑ ¼ xR and U0;↑ ¼ αIR > 0 being the trap depth; for
the sake of notation, we simply useU0 to refer toU0;↑ when
only state j↑i is involved. The conveyor belt potential for
an atom in state j↓i originates from the contribution of both
polarization components, as indicated by Eq. (B1b), and
takes the form

U↓ðx; tÞ ¼ −Uoffs;↓ −U0;↓ cos2 fk½x − x↓ðtÞ�g; ðB4Þ

with

U0;↓ ¼ α

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2L þ 49I2R þ 14ILIR cosðϕR − ϕLÞ

q
; ðB5aÞ

Uoffs;↓ ¼ α

16
ðIL þ 7IRÞ −

1

2
U0;↓; ðB5bÞ

x↓ ¼ λ

4π
arctan

�
IL sinðϕLÞ þ 7IR sinðϕRÞ
IL cosðϕLÞ þ 7IR cosðϕRÞ

�
: ðB5cÞ

Here,U0;↓ > 0 andUoffs;↓ > 0 are the contrast and offset of
the spin-down conveyor belt potential (see Fig. 4).
The phase of each of the two polarization components

ϕR;LðtÞ is controlled by two independent optical phase-
locked loops (OPLLs) with respect to a common reference
beam, using two acousto-optical modulators as actuators.
The set points of the OPLLs are controlled by a direct
digital frequency synthesizer (AD9954 by Analog
Devices), enabling fast preprogrammed arbitrary phase
ramps. The control system has a bandwidth of 800 kHz
and a slew rate of 0.84 rad μs−1. This slew rate limits the
maximum speed of the lattice to 0.13 sites per μs (equiv-
alently, 56 mm=s).
During the atom interferometer sequence described in

the main text, the spin-down conveyor belt is kept static in
order to preserve the spin-down wave function as a
reference. To that purpose, we actively compensate the
effect of the moving R-polarized standing wave onto U↓
during the transport of the spin-up potential. We therefore
suppress the position modulation with a compensation
ramp ϕL (blue trajectory in the inset of Fig. 3 of the main
text) that maintains x↓ constant,

ϕL ¼ − arcsin

�
ϕR

7fðϕRÞ
�
; ðB6Þ

where fðϕRÞ is a rather involved analytical expression
depending on ϕR. We do not compensate the depth modu-
lationU0;↓, Fig. 4(c), because motional excitations of atoms
in state j↓i are predominantly caused by position modula-
tion x↓, when the latter is not properly compensated.

APPENDIX C: SIMULATIONS OF ATOM
TRANSPORT

For the numerical simulations of atom transport, we
consider a one-dimensional model of the conveyor belt
potential, as introduced in Appendix B, corresponding to
the Hamiltonian:

ĤðtÞ ¼ p̂2

2m
þU0 cos2fk½x̂ − xtrapðtÞ�g: ðC1Þ

(a)

(b)

(c)

FIG. 4. Cross talk between spin-dependent potentials. Example
of transport ramp as in Fig. 1(d) when varying xRðtÞ without
compensating xLðtÞ; i.e., xLðtÞ ¼ xLð0Þ. (a) The position of the
spin-up potential only depends on the R-polarized standing wave,
x↑ðtÞ ¼ xRðtÞ. The position (b) and depth (c) of the spin-down
potential are modulated because of the cross-talk contribution
from the moving R-polarized standing wave; see Eq. (B5).
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We assume that the atom occupies initially the lowest
energy state of Ĥð0Þ. We compute the evolution of the wave
packet in discrete time steps using the Strang split-step
integration method [64].
In the transverse directions, a small, but nonzero temper-

ature T⊥ characterizes the initial state of the atoms; see
Appendix A. For the atom transport problem, the motion of
atoms in the transverse directions can be considered as
frozen. This assumption is justified by the large separation
between the timescales of the longitudinal (20 μs) and
transverse (1 ms) motion. However, because of the thermal
distribution of transverse positions, atoms experience a
different trap depth U0 depending on their distance from
the lattice axis (inhomogeneous broadening). Such a
distribution of trap depths reduces the transport fidelity,
especially for short transport durations close to the quantum
speed limit; see Fig. 2 of the main text. In the numerical
simulations, we take into account the thermal distribution
of transverse positions by assuming a two-dimensional
Boltzmann distribution in the harmonic approximation of
the transverse energy potential [63],

Pðr; T⊥Þ ¼
mω2⊥
kBT⊥

r exp

�
−
mω2⊥r2
2kBT⊥

�
; ðC2Þ

where r is the transverse distance from the lattice axis and
ω⊥ is the transverse trap frequency. The effective trap depth
experienced by atoms as a function of r is

U0ðrÞ ¼ U0ð0Þ exp
�
−
2r2

w2
DT

�
; ðC3Þ

where wDT is the lattice beam waist and U0ð0Þ is the depth
on the lattice axis. The average fidelity for a thermal
ensemble of atoms is then given by

F ðτ; T⊥Þ ¼
Z

∞

0

drF(U0ðrÞ)Pðr; T⊥Þ; ðC4Þ

where

F ðU0Þ ¼ jhψ targetjV̂ðτ; U0Þjψ initij2: ðC5Þ

Here, V̂ðτ; U0Þ denotes the operator evolving the state
for a time τ according to the Hamiltonian in Eq. (C1) with a
trap depth U0. In practice, the integral in Eq. (C4) is
replaced by a trapezoidal sum over about 10 different
discrete values of r.

APPENDIX D: PRECISION OPTICAL
MEASUREMENT OF TRANSPORT RAMPS

Measuring the actual trajectory of the conveyor belt with
high precision is important to achieve high-fidelity trans-
port operations. Indeed, knowledge of the actual trajectory

allows us to compensate for deviations from the target
optimal trajectory xtrapðtÞ; see Appendix E.
To that purpose, we developed an interferometric tech-

nique to reconstruct in situ the trajectory x↑ðtÞ and x↓ðtÞ of
the optical conveyor belts for the two spin states: The
conveyor belt trajectories are inferred via Eqs. (B3) and
(B4) from the positions xRðtÞ and xLðtÞ of the R- and
L-polarized optical standing waves, which are in turn
obtained via Eq. (B2) from a time-resolved measurement
of the optical phases ϕRðtÞ and ϕLðtÞ of the R- and
L-polarized components that form the polarization-
synthesized beam of the spin-dependent optical lattice.
The two phases are measured by using an optical phase

quadrature detection scheme, which consists of inserting a
Glan-Laser polarizer directly into the optical path of the
polarization-synthesized beam, and detecting the intensity
signal produced by the two interfering R- and L-polarized
components. If, for example, we aim to detect ϕRðtÞ, we
then hold ϕLðtÞ constant at either ϕRð0Þ or ϕRð0Þ þ π=2.
The recorded interference signals correspond to the in-
phase and quadrature components of ϕRðtÞ, respectively,
from which it is straightforward to obtain xRðtÞ; see Fig. 5.

APPENDIX E: AVOIDING DISTORTIONS
CAUSED BY BANDWIDTH LIMITATION

Deviations from the target optimal trajectory, which are
caused by the limited bandwidth of the control system,

(a)

(b)

FIG. 5. Optical interferometric measurement of the trap tra-
jectory. (a) Phase quadrature measurement of ϕRðtÞ, showing the
normalized intensities recorded after a Glan-Laser polarizer for
the in-phase, f1þ cos½ϕRðtÞ�g=2, and the quadrature signal,
f1þ sin½ϕRðtÞ�g=2. (b) Displacement x↑ðtÞ ¼ ðλ=2ÞϕRðtÞ=ð2πÞ
of the optical conveyor belt, reconstructed from the in-phase and
quadrature signals.
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must be compensated in order to realize high-fidelity
transport operations.
To that purpose, we initially assume a linear time-

invariant control system, implying that its response to an
external drive is fully characterized by its impulse response
function. The impulse response function can be obtained
as the derivative of the step response, which we measure
with the technique described in Appendix D by recording
the actual position of the conveyor belt after driving a
sudden, small step of its position. The resulting impulse
response function (Fig. 6) extends over a couple of
microseconds, limiting the control bandwidth to below
1 MHz. By deconvolving the target optimal trajectory
xtrapðtÞwith the impulse response function, we obtain a first
approximation of the external drive signal to be applied in
order to avoid signal distortions.
In a second step, in order to also take into account

nonlinearities of the control system, we iteratively reduce
the residual deviations between the actual and the optimal
target trajectory. In each iteration, the residual deviations are
measured with the technique in Appendix D, and a fraction
of them (typically 0.4 to avoid instabilities) is subtracted
from xtrapðtÞ before deconvolution. After 10 iterations, the
difference between themeasured and the target trajectories is
over the whole transport duration below 2% of a lattice site,
or equivalently, less than 10 nm. An example can be seen in
Fig. 1(d) of the main text.
Using numerical simulations, we could verify that the

deviations of the actual trajectory from the target one
affected the transport fidelity by no more than 1%, which is
within the experimental error. The reason why such
deviations, which are comparable in size to the atomic
wave packet, do not significantly affect the fidelity can be

explained in terms of two factors. (I) The target trajectory is
an optimal one, meaning that the transport fidelity is
affected by small deviations of the lattice trajectory only
in second order. (II) The spectral distribution of the
deviations from the target trajectory is important. High-
frequency components, ν≳ 3=τHO, are found to have small
effect. In fact, the wave packet response at higher frequen-
cies decreases akin to the response of a harmonic oscillator
subject to a high-frequency drive.

APPENDIX F: PRECISION MEASUREMENT
OF TRANSPORT FIDELITY

The fidelity F of a transport operation is given by the
fraction of atoms occupying the motional ground state
jψ targeti of the conveyor belt potential at the target position,
as defined in Eq. (2) of the main text.
We measure the ground state fraction with a detection

scheme that selectively removes atoms in higher motional
states from the trap while retaining those in the ground
state [63]: All atoms are first transferred from jψ↑i to jψ↓i
with a fast microwave π pulse on the carrier transition,
j↑; ni → j↓; ni. Subsequently, the relative position x↑ðtÞ −
x↓ðtÞ between the spin-up and spin-down conveyor belts is
adiabatically increased from zero to around 17 nm in order
to enable microwave transitions on the motional sidebands.
We perform 10 repetitions of a removal cycle, where first a
microwave pulse on the sideband j↓; ni → j↑; n − 1i trans-
fers all atoms, except those in the ground state, to the spin-
up state, and then a push-out beam resonant to the transition
jF ¼ 4i → jF0 ¼ 5i removes the transferred atoms by
radiation pressure. The remaining fraction of atoms indi-
cates the motional ground state population, with a typical
statistical uncertainty at the 2% level.
To compensate for the imperfect initial state preparation,

the reported values of the transport fidelity F are normal-
ized by the fidelity of the initial state preparation (around
96%; see Appendix A), which is measured by the same
technique, but omitting the transport operation.
The fraction of atoms in the motional ground state, as

measured with this scheme, does not discriminate whether
the transported atom ends up in the ground state of the
target site (true positive) or in that of an adjacent site of the
optical lattice (false positive). The latter possibility has,
however, a negligible probability to occur, unless the
transport duration is significantly shorter than the quantum
brachistochrone time τQB; see Fig. 2 of the main text. Such
false positive events could be separately detected and
filtered out by resolving the individual lattice sites [53]
in addition to measuring the ground state probability.

APPENDIX G: ANSATZ FOR OPTIMAL
TRANSPORT TRAJECTORIES

For optimal control of the transport process (see
Appendix H), it is important to start with a good ansatz

FIG. 6. Reconstructed impulse response function. The control
bandwidth is mainly limited [48] by a time delay, which
originates from the acousto-optical modulators employed in
the optical phase-locked loop to control the phases ϕR;LðtÞ;
see Appendix A.
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of the transport trajectory xtrapðtÞ. We obtain it considering
the classical analog of the atom transport problem: A
classical point particle of mass m, initially at rest in a
sinusoidal potential with lattice constant λ=2 and depth U0,
is to be transported over a distance d in the shortest possible
time such that it is again at rest after the transport. The
optimal strategy evidently is to maximally accelerate the
particle during the first half of the transport and maximally
decelerate it during the second half. Thus, the optimal
classical transport trajectory starts with a sudden lattice
displacement equal to δx ¼ λ=8, which places the particle
at the point of steepest potential, where it is maximally
accelerated. The lattice potential is then moved together
with the particle in order to maintain maximum acceler-
ation until the particle reaches half of the transport distance.
At that point, the potential gradient is suddenly reversed by
displacing the lattice by −2δx, thus ensuring maximum
deceleration in the second half. The particle reaches the
target position at zero speed, where a final sudden dis-
placement by δx places the potential minimum at the
particle’s final position. The duration of this process is
the classical brachistochrone time,

τCB ¼ τHO
ffiffiffiffiffiffiffiffiffiffiffi
2n=π

p
; ðG1Þ

where n ¼ d=ðλ=2Þ is the transport distance d expressed in
number of lattice sites.
This protocol can be extended to any transport duration

τ ≥ τCB by reducing the constant acceleration and decel-
eration below the maximum value, yielding the trajectory
[Fig. 7(a)]

xansatzðtÞ ¼

8>>>>>>>><
>>>>>>>>:

0 for t ≤ 0

d
2

�
t

τ=2

�
2

þ δx for 0 < t < τ=2

d −
d
2

�
τ − t
τ=2

�
2

− δx for τ=2 < t < τ

d for t ≥ τ;

ðG2Þ

with

δx ¼ λ

4π
arcsin

��
τCB
τ

�
2
�
≤
λ

8
: ðG3Þ

The effect of the sudden steps by δx is best understood
considering the dynamics from the reference frame comov-
ing with the trap. There, the classical particle is constantly
kept at the position of the minimum of the tilted potential,
thus avoiding in this reference frame motional excitations
(e.g., slosh motion); see Fig. 7(b).
We note that the same solution, xansatzðtÞ, was derived in

Ref. [65] by minimizing the transport time for a particle
confined within a distance δx from the center of a harmonic
trap. The ansatz trajectory xansatzðtÞ also resembles that
proposed in Ref. [66], which is obtained by minimizing the
anharmonic contribution of the trap potential. This con-
dition, in fact, can be shown to be related to minimizing the
slosh motion as achieved by xansatzðtÞ.
We also remark that a different type of transport control

has been proposed, where the Hamiltonian ĤðtÞ in Eq. (C1)
is extended with a linear potential term controllable in time,
which could be realized by means of an additional optical
lattice with a lattice constant about 10 times that of the
conveyor belt lattice [67]. In fact, a time-dependent linear
potential allows one in theory to perfectly counteract the
noninertial forces experienced by the atom in the reference
frame comoving with xtrapðtÞ, thereby enabling unity
fidelity for arbitrary transport trajectories xtrapðtÞ. This
approach requires, however, much greater energy resour-
ces, since the counteracting lattice to be effective must be
about 10 times deeper than the conveyor belt lattice.

APPENDIX H: OPTIMAL QUANTUM CONTROL
OF TRANSPORT TRAJECTORIES

Optimal quantum control searches for the trajectory
xtrapðtÞ that maximizes the transport fidelity F ðτ; T⊥Þ as
defined in Eq. (C4) for a given transport duration τ
and transverse temperature T⊥. Relying on numerical
simulations of the transport problem (see Appendix C),
we search for an optimal transport trajectory in the form of
a Fourier series,

(a) (b)

FIG. 7. Excitation-free classical trajectories. (a) The dotted
curve shows the trajectory of a classical point particle being first
constantly accelerated and then decelerated. The solid curve is the
trajectory of the trap xansatzðtÞ, see Eq. (G2), required to drive the
particle along the dotted curve. The example refers to τ ¼ 1.2τHO
and d ¼ λ=2, whereas δx is given by Eq. (G3). (b) The potential
in the noninertial comoving frame (solid curve) is equal to the
static potential (dashed curve) plus a linear tilt with slope
mẍansatzðtÞ. The sudden shift by δx keeps the particle at the
position of the potential minimum in the comoving frame,
avoiding motional excitations (e.g., slosh motion).
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xtrapðtÞ ¼ d
1 − cosðν1tÞ

2
þ
Xjmax

j¼1

bj sinðνjtÞ; t ∈ ½0; τ�;

ðH1Þ

where the frequencies νj ¼ πj=τ are chosen to satisfy the
boundary conditions xtrapð0Þ ¼ 0 and xtrapðτÞ ¼ d. We
choose the maximum frequency νjmax

to lie within the
bandwidth of our control system of around 800 kHz to
ensure that xtrap can be faithfully reproduced in the transport
experiments (see Appendix E). Importantly, the bandwidth
constraint νjmax

does not significantly affect the maximum
attainable fidelity when the condition νjmax

≳ U0=ð2πℏÞ is
fulfilled, which is the case here.
Numerical simulations comparing the maximum fidelity

reached by the optimization procedure as a function of the
bandwidth of the control system show that the limitation to
frequencies below νjmax

has no significant effect in the range
of parameters considered in this work. In fact, because νjmax

is larger than U0=ð2πℏÞ, the control system bandwidth
allows driving any relevant transition, i.e., any transition
between pairs of discrete states of the trap, for which
tunneling to neighboring sites is negligible.
Moreover, we conjecture that the optimal transport tra-

jectory satisfies the point symmetry xtrapðtÞ¼ d−xtrapðτ− tÞ,
which is equivalent to reducing the search parameter space
to the even Fourier coefficients fb2jg and thus taking
b2jþ1 ¼ 0. This conjecture is supported by numerical stud-
ies, showing that when the search parameter space is
unconstrained, theweight of the odd coefficients is negligible
compared to that of the even coefficients.
For a robust convergence of the search algorithm to a

global optimum of F ðτ; T⊥Þ, it is convenient to start
the optimization procedure with good initial values of
the coefficients fb2jg defining the transport trajectory. For
this purpose, based on physical intuition, we consider the
trajectory defined in Eq. (G2), xansatzðtÞ, which is designed
to avoid motional excitations of a classical point particle.
We project this ansatz into the form of Eq. (H1), thus
obtaining the initial set of control parameters fb2jg for the
numerical optimization procedure. We note here that
alternative to xansatzðtÞ, one can choose as ansatz for the
optimization procedure an optimal solution obtained for a
slightly longer transport time [51].
While xansatzðtÞ produces no motional excitations

for a classical point particle, it does cause small, but not
negligible wave packet deformations because of the anhar-
monicity of the potential. These excitations, if not counter-
acted via optimal quantum control, would result in a loss of
transport fidelity F ðτÞ, which becomes especially signifi-
cant for τ close to τQB. Our numerical optimization of the
transport process shows that optimal quantum control of
xtrap achieves this objective by avoiding too large motional
excitations (e.g., breathing and slosh motion) in the

reference frame comoving with the conveyor belt during
the whole transport process.
We here note that the degree of control can be increased

by changing in time the trap depth, in addition to xtrapðtÞ.
While for classical particles the shortest transport time is
achieved when the trap depth is held constant, and equal to
its maximum allowed value U0, for quantum particles the
minimum time can in theory be reduced by controlling the
trap depth in time, while keeping it below U0. Whether this
additional control parameter allows a visible reduction of
τQB will be investigated in future work.
Concerning the search algorithm, we use the interior-

point method provided by MATLAB with the fmincon
function, which allows us to include constraints. We use
constraints to limit the gradient of the trajectory to the
maximum slew rate of the control system (0.84 rad=μs),
which is determined by how fast the OPLL is able to track
the change of its set point; see Appendix B.
We note that for transport over many lattice sites, more

frequency components νj fit within the system bandwidth
due to the longer transport time, resulting in a higher-
dimensional search parameter space. In this case, using a
reduced randomized basis of functions to represent xtrapðtÞ,
as done by the DCRAB algorithm [68], is expected to be
preferable to exhaustively searching through the whole
system bandwidth at once, as done here.

APPENDIX I: BANG-BANG CONTROL

A widely used transport method is the so-called bang-
bang type of transport. We here compare the fidelities
achieved with our optimal control optimization procedure
to the fidelities of two types of bang-bang transport
protocols: the linear transport and the parabolic transport.
For the linear transport, xtrapðtÞ follows a trajectory with
constant speed from the initial to the target position. For the
parabolic transport, xtrapðtÞ is constantly accelerated with
ẍtrapðtÞ ¼ a on the first half of the transport and constantly
decelerated with ẍtrapðtÞ ¼ −a on the second half.
Both protocols are better understood in the reference

frame comoving with the trap. During the linear transport,
the wave packet is subject to two momentum kicks: one at
the start and one at the end. During the parabolic transport,
the wave packet is subject to three position kicks: one at the
start by −a=ω, one at half of the transport time by 2a=ω,
and one at the end by −a=ω. In both cases, motional
excitations are created after the initial kick. However, the
transport process can be timed so that the excitations
created by the first and possibly middle kicks are undone
by the last kick. The simulated infidelities of the two
transport types are shown in Fig. 8 and compared to the
infidelity of the optimal control transport as well as the
adiabatic transport discussed in Appendix J. The “magic”
transport durations for which the transport brings the wave
packet back to a minimally excited state lie close to
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multiples of approximately the harmonic period. The
small, but visible deviation from the harmonic period
τHO can be understood to a very good approximation
as the result of the anharmonic potential, which yields
an effectively lower trap frequency ω̃HO ≈ ωHO − Erec=ℏ
and, correspondingly, an effectively longer oscillation
period τ̃HO ≈ τHO½1þ ErecτHO=ð2πℏÞ�.
The dashed lines are the envelopes (worst-case infidel-

ities) derived in the harmonic approximation for the two
bang-bang protocols:

τlinearðF Þ ¼ τHO
1

π

lQGT

½− logðF Þ�1=2 ; ðI1aÞ

τparabolicðF Þ ¼ τHO
2

π

ffiffiffiffiffiffiffiffiffiffi
lQGT

p
½− logðF Þ�1=4 : ðI1bÞ

Their scaling with distance, lQGT ∝ d, indicates that the
linear transport protocol is faster for short transport dis-
tances, whereas the parabolic transport is faster for long
distances, since the trap can be accelerated to higher
speeds. Both are, however, much slower than the transport
operation obtained by optimal control, which is also shown
for comparison in Fig. 8.

APPENDIX J: ADIABATIC LIMIT

Adiabatic transport minimizes excitations of the wave
packet during the entire transport by using smooth transport
ramps. As an example, we here consider ramps that follow
a sinusoidal trajectory, which is continuous in position,
velocity, and acceleration,

xtrapðtÞ ¼ A sinð2πt=τÞ þ dt=τ; ðJ1Þ

where A ¼ −d=ð2πÞ is chosen such that _xtrapð0Þ ¼ 0. For a
given fidelity, we find in the harmonic approximation
that the required worst-case duration of the adiabatic
transport is

τadiabaticðF Þ ¼ τHO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
þ
�

l2
QGT

π2½− logðF Þ�
�1=3s

: ðJ2Þ

This relation is shown as the dashed green curve in Fig. 8.

APPENDIX K: ESTIMATION OF GEOMETRIC
PATH LENGTH AND ENERGY SPREAD

A very good, analytic approximation of the geometric
path length can be obtained assuming that at the quantum
speed limit the wave packet is steadily accelerated in the
first half and steadily decelerated in the second half,
meaning that the average position of the wave packet
evolves as

x̄QBðtÞ ≈
�
2dðt=τÞ2 for 0 < t < τ=2

−dþ 4dt=τ − 2dðt=τÞ2 for τ=2 < t < τ:

ðK1Þ

Numerical simulations confirm that this assumption, where
x̄QBðtÞ is a smooth function of time, is well fulfilled despite
the much less regular shape of the optimal control transport
trajectories xtrapðtÞ. Moreover, we assume that quantum
optimal control preserves the wave packet jψðtÞi close to a
coherent state jαðtÞi, avoiding too large spreading
and deformation, in particular when it approaches the
points of steepest potential, where the trap loses its ability
to confine. The coherent state is specified by its phase space
coordinates,

αðtÞ ¼ x̄QBðtÞ
2Δx

þ i
m _̄xQBðtÞ
2Δp

; ðK2Þ

with the position and momentum width being Δx ≈ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2mωÞp

and Δp ≈ ℏ=ð2ΔxÞ. Thus, the geometric path
length lQB, as defined in Eq. (4) of the main text, is
obtained by integrating the Fubini-Study differential form,

dsFS ¼ j _αðtÞjdt; ðK3Þ

over the duration τ. The integration produces

lQB ≈
d

2Δx
f

�
τHO
πτQB

�
; ðK4Þ

which corresponds to Eq. (5) of the main text.
We note that the factor d=ð2ΔxÞ can be identified with

the geodesic length lQGT determined by the quantum
geometric tensor [7,69]. In the atom transport problem,

FIG. 8. Transport protocols compared. Infidelity computed
numerically for the same conditions of Fig. 2 and T⊥ ¼ 0 using
different transport protocols. From top to bottom: a linear
transport ramp (purple), parabolic control (blue), adiabatic con-
trol (green), optimal quantum control (thick red). The dashed
lines represent the envelope functions according to Eqs. (I1a),
(I1b), and (J2).
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the quantum geometric tensor χμ;ν reduces to a scalar
quantity χ1;1 because of the single control parameter used to
transport the atom, i.e., the conveyor belt position xtrap. Its
value is specified by the differential form ds2QGT ¼
dxtrapχ1;1dxtrap ¼ 1− jhψ0ðxtrapþdxtrapÞjψ0ðxtrapÞij2, where
jψ0ðxtrapÞi ¼ expð−ip̂xtrap=ℏÞjψ initi denotes the ground
state of the conveyor belt displaced to the position xtrap
(p̂ is the momentum operator). The physical meaning of
the quantum geometric tensor is that of the Fubini-Study
metric in the restricted manifold of states reachable by an
adiabatic transformation of the control parameter xtrap. An
explicit computation of its value yields χ1;1 ¼ ðΔp=ℏÞ2,
from which we directly obtain

lQGT ¼
Z

d

0

dsQGT ¼ dΔp
ℏ

≈
d

2Δx
; ðK5Þ

where the last step follows from the approximately
Gaussian shape of the ground state. Notably, the geodesic
defined by the quantum geometric tensor, in stark contrast
with the Fubini-Study geodesic, denotes a path that actual
physical processes (e.g., adiabatic transformations) can
follow. In contrast to lQB in Eq. (K4), lQGT is a purely
geometric quantity independent of the out-of-equilibrium
dynamics of the process. Its length lQGT does however
scale with the transport distance d, and it can be loosely
interpreted as the number of local transformations neces-
sary to carry out the transport process.
For the determination of an upper bound on the energy

spread ΔE, we rely on the same assumptions made to
estimate lQB, i.e., an approximately coherent state evolving
as specified in Eq. (K2). A direct calculation of the
instantaneous energy spread yields

ΔEðtÞ¼ ½hψðtÞjĤ2ðtÞjψðtÞi− hψðtÞjĤðtÞjψðtÞi2�1=2

≈
�
_̄x2QBðtÞΔp2þ

�∂Uðx;tÞ
∂x

�
2

Δx2
�
1=2

½1þOðη2Þ�;

ðK6Þ
where Uðx; tÞ refers to the lattice potential, as defined
in Eqs. (B3) and (B4), the derivative of the potential
is computed at x ¼ x̄QBðtÞ, and η2 ¼ Erec=ðℏωÞ ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4U0=Erec

p
is the Lamb-Dicke factor, which is negli-

gible for the trap depths considered in this work. The two
terms in Eq. (K6) correspond to the leading contributions to
the energy uncertainty,

ΔKðtÞ ¼ Δpj _̄xQBðtÞj; ðK7aÞ

ΔUðtÞ ¼ Δx
				 ∂Uðx; tÞ

∂x
				
x¼x̄QBðtÞ

; ðK7bÞ

originating from the kinetic (ΔK) and potential (ΔU)
energy. The origin of the two terms can be intuitively

understood if we consider the evolution of the wave packet
in the reference frame comoving with x̄QBðtÞ. There, the
wave packet is at rest and displaced from the center of the
site by a distance x̄QBðtÞ − xtrapðtÞ, where the potential has a
nonvanishing slope ∂U=∂x, which explains the potential
contribution ΔUðtÞ. A Galilean transformation from the
comoving to the laboratory reference frame introduces a
term equal to _̄xQBðtÞp̂ to the Hamiltonian (Heisenberg
representation), explaining the kinetic contribution ΔKðtÞ.
We bound ΔU from above by replacing the derivative of

the potential (i.e., the force applied to the wave packet) by
its maximum value. For the conveyor belt potentials in
Eqs. (B3) and (B4), the maximum of the derivative,
2πU0=λ, is reached at the positions �λ=8 relative to the
center of the site, yielding the inequality

ΔEðtÞ < ½ _̄x2QBðtÞΔp2 þ ð2πU0=λÞ2Δx2�1=2: ðK8Þ

Integrating this expression over time [18] gives an upper
bound on the time-averaged energy uncertainty,

ΔE < ΔEupper ¼
ℏ
τQB

lQGTf

�
τQB

2nτHO

�
; ðK9Þ

which corresponds to Eq. (8) of the main text.
We note that at the quantum speed limit, for very long

transport distances, n ¼ d=ðλ=2Þ ≫ 1, ΔE is dominated by
the kinetic rather than the potential contribution,

ΔK
ΔU

>
Δp
Δx

d=τ
2πU0=λ

¼ n
τHO
τ

∝
ffiffiffi
n

p
≫ 1; ðK10Þ

where ΔK and ΔU denote here the time average of ΔKðtÞ
and ΔUðtÞ, respectively; in this expression, the first
inequality results from the foregoing upper bound on
ΔUðtÞ, whereas the proportionality assumption follows
from the scaling τ ∝ τHO

ffiffiffi
n

p
expected for a quantum

brachistochrone process. Hence, we find that in the limit
of n ≫ 1, the energy uncertainty ΔE of a transport process
at the quantum speed limit reduces to the time average of
ΔKðtÞ in Eq. (K7a):

ΔE ≈
ℏ
τQB

lQGT: ðK11Þ

APPENDIX L: LIMIT OF LONG DISTANCES

To transport atoms over n lattice sites, the quantum
brachistochrone time τQB is of the order of τHO

ffiffiffi
n

p
, as

shown in Eq. (3) of the main text. In turn, such a transport
time corresponds to velocities of the order of nλ=τQB ¼ffiffiffi
n

p
λ=τHO. Importantly, the transport velocity increases withffiffiffi

n
p

when atoms are transported in the shortest pos-
sible time.
Experimentally, the maximum velocity at which atoms

can be transported is determined by themaximumvelocity at
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which the optical conveyor belt can be displaced. In our
setup, this maximum velocity is at around 50 mm=s, limited
by the slew rate of the control system (see Appendix B).
Considering the foregoing scaling of the transport

velocity with n, the maximum velocity of the conveyor
belt presently limits the transport distance to about one
lattice site, n ≈ 1, over which atoms can be transported
following a quantum brachistochrone for trap depths up to
300Erec, which have been considered in this work. We also
note that the present optical-lattice control system [48]
allows us to transport atoms over much longer distances
with high fidelity, though in a time longer than τQB.

APPENDIX M: MANDELSTAM-TAMM BOUND IN
THE LIMIT OF LONG DISTANCES

We investigate the scaling of the Mandelstam-Tamm
bound of Eq. (1) in the main text in the limit of long
transport distances. In its most general form [19], when the
initial jψ initi and target jψ targeti states are not necessarily
orthogonal, the Mandelstam-Tamm time reads

τQB ≥ τMT ¼ lgeo

ΔE=ℏ
; ðM1Þ

where ΔE represents the time-averaged energy uncertainty
[18] and lgeo denotes the geodesic length as measured by
the Fubini-Study metric [55], lgeo¼arccosðjhψ targetjψ initijÞ.
Concerning the numerator in Eq. (M1), it is evident that

lgeo levels off to its maximum value, π=2, since for long
distances, d ≫ Δx, the target state is effectively orthogonal
to the initial state.
Concerning the denominator in Eq. (M1), it can be

shown, see Eq. (K11), that for very long transport distances
its expression is well approximated by

ΔE=ℏ ≈
d

2Δx
1

τQB
∝

ffiffiffi
d

p
; ðM2Þ

where the last step follows from the scaling τQB ∝
ffiffiffi
d

p
expected for the quantum brachistochrone time τQB as a
function of the transport distance d; see Eq. (3) of the main
text. The scaling ofΔE in Eq. (M2) results in the seemingly
counterintuitive fact that τMT is a monotonically decreasing
function of the distance, in stark contrast with the mono-
tonically increasing behavior of τQB with respect to the
distance. Note that with a different argument, the wrong
scaling of the Mandelstam-Tamm bound was recognized
before, studying the limit of very short transport durations
in harmonic traps [46].
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