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Abstract

Cooperation and knowledge sharing are of paramount importance in the evolution of an intelligent

species. Knowledge sharing requires a set of symbols with a shared interpretation, enabling effective

communication supporting cooperation. The engineering of intelligent systems may then benefit

from the distribution of knowledge among multiple components capable of cooperation and symbolic

knowledge sharing. Accordingly, in this paper, we propose a roadmap for the exploitation of knowledge

representation and sharing to foster higher degrees of artificial intelligence. We do so by envisioning

intelligent systems as composed by multiple agents, capable of cooperative (transfer) learning—Co(T)L

for short. In CoL, agents can improve their local (sub-symbolic) knowledge by exchanging (symbolic)

information among each others. In CoTL, agents can also learn new tasks autonomously by sharing

information about similar tasks. Along this line, we motivate the introduction of Co(T)L and discuss

benefits and feasibility.
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1. Introduction

Human beings can perform a huge number of different tasks: if a human needs to learn a new

task, it can typically manage to do so easily. Broadly speaking, humans may learn new skills

in two ways: by generalising experience – e.g., via inductive reasoning –, or, by deductively

infer new knowledge from that they already hold or can get from others—e.g., talking (direct

communication) or reading (indirect communication) [1]. In the former case, novel knowledge

is formed into the learner’s mind. Conversely, in the latter case, knowledge requires to be

represented via symbolic means (e.g., words, gestures, etc.), in order for communication – and

therefore transfer of meaning – to occur. In particular, knowledge acquisition also requires the

learner to reason about how to exploit the acquired knowledge in practice.
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When learners are computational agents (rather than humans), algorithms are available to

mimic basic cognitive capabilities such as induction, communication, knowledge representation,

and reasoning. These have been developed under the umbrella of symbolic artificial intelligence

(AI) and machine learning (ML). However, unlike the human case, symbolic AI and ML algorithms

are commonly tailored to solving one or few tasks at a time, and they are not meant to take

advantage from interaction, cooperation, nor knowledge exchange.

This paper stems from the idea that ML-based intelligent systems could and should take

advantage from the exchange of symbolic knowledge to improve their learning capabilities

[2, 3, 4]. In particular, we argue that symbolic knowledge exchange may have a role to play in

letting software agents attain the capability of learning to learn new tasks.

Along this line, we envision two sorts kind of intelligent systems: Cooperative Learning

(CoL) and Cooperative Transfer Learning (CoTL). CoL systems are multi-agent systems (MAS)

whose agents can retrieve / provide knowledge about a specific task from / to other agents,

so as to exploit that knowledge during learning and possibly at inference time. CoTL systems

are CoL systems whose agents can acquire, exploit, and combine knowledge about different

related tasks so as to learn to execute novel tasks they were not designed for. Both kinds of

systems are able to mimic the learning process of human societies, despite to different extents.

In other words, agents help each others by sharing (predominantly) symbolic and (possibly)

sub-symbolic knowledge about the tasks they need to do—similarly to what humans do.

Accordingly, in this paper we propose a roadmap for the exploitation of knowledge repre-

sentation and sharing to foster higher degrees of artificial intelligence, via CoL and CoTL. In

particular, we analyse the requirements of both CoL and CoTL w.r.t. the state of the art, and

discuss how they could be realised in principle. Along this line, the paper is organised as follows.

Section 2 provides definitions for symbolic and sub-symbolic knowledge representations along

with techniques to manipulate knowledge. Section 3 introduces the definition of CoL and CoTL

systems providing general agent architectures. Finally, Section 4 discuses the main advantages

of CoL and CoTL, it draw conclusions, and provides insights about future works.

2. Background

2.1. Symbolic vs. Sub-symbolic Knowledge

Symbols are carriers of meaning that people may exploit in communication, e.g., words, traffic

signs, flags, etc. They are commonly used to represent knowledge in a way that is interpretable

for humans. Furthermore, symbols can be automatically processed by algorithms, and, therefore,

by computational agents.

Following the definition given in [5], a symbolic representation [of knowledge] consists of:

(i) a set of symbols, (ii) a set of grammatical rules enabling possibly infinite combinations of

those symbols, and (iii) the possibility to assign elementary/combined symbols with meaning.

Formal logics – such as propositional logic (PL), knowledge graphs (KG), Horn clauses and first

order logic (FOL) – are notable examples of symbolic knowledge representation means.

Formal logics allow for both intensional and extensional knowledge representation. In

particular, an intensional definition means represent data indirectly by describing the elements

of relations or set via other relations or sets. Because of intensional representation (a.k.a.



compactness), domain independence, and versatility, logic can be used as lingua franca for

knowledge representation [6].

Conversely, sub-symbolic representations violate the definition provided in [5]. In fact, they

commonly represent data as arrays of numbers of fixed size – violation of item (ii) –, and

knowledge as functions over such arrays. Notably, each component of any array is poorly

meaningful by it-self (violation of item (iii)), unless considered with its local context (neighbour

numbers in the array).

Sub-symbolic functions are widely used in ML tasks, such as neural networks (NN). The vast

majority of NN consist in a direct acyclic graph of neurons, which are composed by several

connection weights plus a bias value and an activation function. NN (and in general any sub-

symbolic predictor) cannot be conventiently interpreted by humans: even small NN would

require a significant cognitive to be partially understood by the human mind. Therefore, NN

are used as black-boxes [7] and this is accepted in trade of their high performances.

2.2. Symbolic Knowledge Extraction vs. Injection

Symbolic Knowledge Extraction (SKE) is the set of methods accepting trained sub-symbolic

predictors as input and producing symbolic knowledge as output, in such a way that the

extracted knowledge reflects the behaviour of the predictor with fidelity [8, 9, 10]. Literature

provides several SKE algorithms: some may focus on extraction out of classifiers (cf. [11, 12])

or regressors (cf. [13, 14]). Virtually all those methods extract knowledge in the form of

propositional rules.

Despite SKE is usually used as a way to post-hoc explain black-box predictors to humans,

it may serve other purposes. For instance, knowledge extracted via SKE could be exploited

to help ML during training. In this case, representing knowledge symbolically brings several

benefits: the extracted knowledge is agnostic w.r.t. the original predictor, and it is compact due

to intensionality.

Dually to SKE, Symbolic Knowledge Injection (SKI) is the set of algorithms affecting how

sub-symbolic predictors draw their inferences by making them consistent with some prior

symbolic knowledge [15, 16, 17]. There are three main ways to provide such knowledge: (i) by

altering the loss function used during the training to induce an error whenever the prediction

of the network violates the knowledge, (ii) by modifying the undergoing architecture in such a

way that the additional parts “mimic” the knowledge, and (iii) by generating input data for the

predictor from the knowledge. There are several SKI algorithms in literature covering all such

approaches, and supporting the injection of different logic formalisms. For instance, references

[18, 19] deal with FOL, references [20] use Horn logic, while reference [21, 22, 23, 24, 25]

target PL. Notably, virtually all SKI methods target NN because of their superior predictive

performance, other than their malleability.

Generally speaking, SKI improves the efficiency or effectiveness of the sub-symbolic predictors

it is applied to (e.g., accuracy, training time, data greediness, etc.). The common SKI workflow

requires a human expert providing domain-specific knowledge to be injected. However, this is

not a strict requirement. In fact, symbolic knowledge may be provided not only by humans, but

by other computational agents as well. For instance, the knowledge to be injected may be the

result of some prior SKE process.



2.3. Transfer vs. Multi-Task Learning

Let us denote as ‘task’ any kind of supervised ML task. Accordingly, Transfer Learning (TL) is

the set of techniques aimed at letting a predictor 𝑃 , targetting task 𝑇 , take advantage from the

knowledge 𝐾 acquired by some prior predictor 𝑃 ′
, trained on some other task 𝑇 ′

. Of course,

tasks 𝑇 and 𝑇 ′
are assumed to be similar to some extent. The main objectives of TL are to:

(i) reduce the amount of data required to train 𝑃 , (ii) speed up its training, and (iii) improve its

predictive performance.

TL algorithms from literature differ w.r.t. two major dimensions: what to transfer and how to

transfer [26]. Of course, another relevant aspect is when to transfer (cf. Sections 2.3 and 3.1).

Finally, similarity among tasks is yet another fundamental aspect—which is often devoted to

the experience of practitioners.

Notably, TL has been most successfully applied to convolutional NN – in particular, ImageNet

[27] – for biomedical image processing [28]. However, despite their variety, most TL techniques

only support the transfer of sub-symbolic knowledge. In fact, the transferred knowledge com-

monly consist of the shallowest layers of a NN, which are transplanted into another NN, of

which only the deeper layers are then re-trained. Hence, to the best of our knowledge, there are

no TL algorithms explicitly leveraging upon symbolic knowledge transfer.

Multi-task Learning (MTL) is a set of mechanisms aimed to improve the performance of a

predictor via transfer learning [29]. More precisely, given a set of similar tasks {𝑇1, . . . , 𝑇𝑚} –

according to some notion of task similarity –, MTL aims at learning the 𝑚 tasks altogether, by

training as many predictors 𝑃1, . . . , 𝑃𝑚. In doing so, MTL attempts to improve the performance

of each 𝑃𝑖, by taking advantage of the knowledge while training the other predictors [30].

Differently from TL techniques where there is one task that receives the knowledge from the

others, in MTL all tasks receive knowledge from the others, simultaneously. Similarly to TL,

virtually all MTL techniques rely on sub-symbolic knowledge transfer.

MTL techniques may be classified w.r.t. whether they target either homogeneous or het-

erogeneous tasks. Two tasks 𝑇1, 𝑇2 are homogeneous when they share the same input and

output attributes (names and type). What may be different is data sampling, and its distribution.

Conversely, heterogeneous tasks have different attributes, with possibly no overlapping [31].

In MTL the question “where to transfer” is not avoided like in TL. Especially for heterogeneous

tasks, the problem of computing a ‘degree of similarity’ is still open. Empirically, one could test

if two or more tasks are related by applying MTL itself: if the overall performance increases

using MTL, then the tasks can be considered as similar.

3. Contributions

3.1. Cooperative Learning

A CoL system is a MAS where agents can retrieve knowledge about a task from other agents

and provide knowledge to others when requested. Explicit knowledge sharing – especially

symbolic – is of paramount importance for the MAS as a whole, as it enables agent-to-agent

knowledge transfer [3].

To support CoL, agents should be endowed with some fundamental capabilities, namely:



(a) Agent’s architecture for CoL. (b) Agent’s architecture for CoTL.

Figure 1: Architectures for CoL and CoTL agents.

1. learning from experience and updating their behaviour accordingly,

2. representing their inner behavioural specification in symbolic form,

3. updating their behaviour to comply to some symbolic specification,

4. interacting with each other, possibly exchanging symbolic specifications.

As the reader may notice, capabilities 2 and 3 are complementary. When combined with capa-

bility 4, these may pave the way to cooperation among agents, aimed at learning by interaction.

Finally, capability 1 is necessary to let some agents learn novel behaviours independently of

others.

When actually building CoL systems, capability 1 is likely supported by sub-symbolic ML. In

particular, each agent is assumed to be endowed with some ML predictor, supporting learning

from local data. However, since MAS are commonly composed by heterogeneous agents serving

disparate purposes, many predictors of diverse sorts are likely to be exploited within the same

system.

To support capability 4 in spite of heterogeneity, agents should agree on common, shared

symbolic representation means by which behavioural specifications could be described—and

later exchanged. Along this line, SKE and SKI may serve the purposes of capabilities 2 and 3,

respectively

Figure 1a shows the general design of CoL agents. Each CoL agent must be equipped with

(possibly multiple) SKE and SKI algorithms, in order to support symbolic knowledge I/O. When

queried, an agent may extract symbolic knowledge from its inner ML predictor (via some SKE

technique) and send it to the querying agent. The recipient may then update its local predictor

by injecting the received knowledge into it. Knowledge pre- and post-processing steps (e.g.,

pruning / merging / selecting formulæ) may occur before SKI or after SKE, to regulate which

particular chunks of knowledge are actually transferred.



Crucial choices to be addressed during the design of a CoL system are: (i) the supported

formalisms for knowledge representation, and (ii) an appropriate SKE/SKI toolkit w.r.t. the

undergoing predictor(s) knowledge representation (almost straightforward for pedagogical SKE

techniques). About (i), one could choose FOL over PL or KG for its expressiveness. However, the

more one formalism is expressive the less are the available techniques: it is therefore reasonable

to consider also less expressive logics for (ii).

It is worth mentioning that a single agent can be initially trained even in lack of prior

knowledge. At some point in the training process, the agent may extract knowledge, combine it

with other knowledge received from other agents, inject it back, and continue training. In this

way, the agent performs several train-extract-fix-inject cycles, in order to boost its performance

w.r.t. the target task. In principle, at every new cycle, the extracted knowledge is more and

more accurate in describing how to approach the task, because the predictor itself is more and

more accurate in its prediction due to better new prior knowledge.

3.2. Cooperative Transfer Learning

A CoTL system is a MAS where agents can retrieve knowledge about several tasks from other

agents and provide knowledge to others when requested. Unlike simple CoL systems, agents in

CoTL systems may exploit knowledge (either their own, or other agents’ one) about related

tasks to learn novel tasks they were not originally designed for. In other words, the ultimate

goal of CoTL systems is to make agents able to “learning to learn”.

Learning to learn [novel tasks] is an extension of the well known definition of ML [32]

introduced in [33]. More precisely, given:

• a set of task 𝒯 = {𝑇1, . . . , 𝑇𝑛},

• trainable experience for each task {𝐸1, . . . , 𝐸𝑛} = ℰ (e.g., ML predictors or symbolic

knowledge bases), and

• a performance measure for each task {𝑓1, . . . , 𝑓𝑛} s.t. 𝑓𝑖 : 𝒯 × ℰ → R,

a computational agent is capable of learning to learn when each 𝑓𝑖 increases as a function of all

items in ℰ , and well as 𝑛.

Relevant practical aspects about CoTL concern when and how to transfer experience. Con-

cerning the ‘when’, humans should not intervene in the process and arbitrary choose which

tasks is correlated with the others—as it would be infeasible. Therefore, agents must also be

endowed with the ability of computing similarity among different tasks. The choice of which

one(s) use is up to the designer (e.g., similarity based, distance based, etc.) or it could be also be

treated as a task to learn. The interested reader may find useful insights in [29].

Let us now focus on ‘how’ to transfer experience. If an agent is dealing with homogeneous

tasks (that is, tasks with the same input and output space but different data distributions), it can

easily use the knowledge of one task while addressing the other. Instead, heterogeneous tasks

are different beasts: they can differ in both input and output features—and there may also be

no overlap at all. Consider for instance the case of two heterogeneous classification tasks 𝑇1

and 𝑇2, for which an agent owns experience in the form of logic knowledge bases 𝐾1 and 𝐾2



composed by Horn clauses. That agent may then transfer knowledge from one task to the other

via the following procedure:

1. if there exist some rule 𝑟 ∈ 𝐾1 ∪𝐾2 s.t. both the head and the body of 𝑟 only refer to

input features shared and classes which are shared among 𝑇1 and 𝑇2, then the rule can

be used as-is;

2. if the body of 𝑟 refers to shared input features and the head targets to classes which are

either 𝑇1- or 𝑇2-specific, then the rule could be used anyway by some SKI algorithm (e.g.,

[34]) otherwise it is necessary to find a mapping between the specific classes of the two

tasks if it exists (e.g., just renaming, linear dependencies with other labels, etc.);

3. finally, if both shared and task-specific features are referred in 𝑟, one could:

a) relax the rule (e.g., considering only terms involving shared features) then go to

step 1;

b) find a mapping between task-specific features of the two tasks [31], then go to step

1;

c) if none of the previous step are possible (e.g., resulting in empty body), then ignore

the rule.

A similar procedure can be applied for other sorts of task (e.g., regression) and adapted to deal

with other form of knowledge representations.

Figure 1b shows a general design for a CoTL agent. In the same way as for CoL systems,

multiple SKE and SKI algorithms must be available for each agent in order to exploit symbolic

knowledge.

In addition to CoL, the core component of a CoTL agent is the task similarity score. Accord-

ingly, we assume designers provide a function 𝜎 : 𝒯 2 → R≥0, where 𝒯 is the task space, to

evaluate the degree of similarity between two tasks.

Another relevant design aspect of CoTL is the criterion for selecting knowledge for related

tasks. For instance, designers may leverage threshold-based approach selecting the knowledge

of all the tasks having a 𝜎 score greater than the threshold. Alternatively, one can use the

knowledge of the 𝑘 most related tasks.

4. Discussion and Conclusions

The joint exploitation of symbolic and sub-symbolic knowledge representation means, as well

as knowledge manipulation tools, to build MAS that miminc humans’ knowledge sharing

capabilities is a promising research direction. It has the potential to overcome current limitation

from the state of the art, such as: (i) TL considers sub-symbolic knowledge representation but

not symbolic one therefore it is not human interpretable; (ii) MTL has to train a predictor on

related tasks at the same time implying intrinsic difficulties to scale, moreover (iii) it is currently

tailored on sub-symbolic knowledge alone.

CoL and CoTL systems can bring a great impulse in the study and developing of intelligent

systems. A non-exhaustive list of advantages of CoL and CoTL are: (i) they could provide



more and more accurate human-interpretable explanation for a task; (ii) they may increase the

performance of an agent/predictor in solving a single task; (iii) the improvement of one agent in

solving a task should lead other agents to improve; (iv) the improvement on one task could lead

towards the improvement of other tasks; (v) learning is a continuous and automated process

that does not require human intervention.

However, there are a number of challenges to be addressed for research on CoL and CoTL

to proceed. First, in spite of the many algorithms proposed into the literature so far, running

implementation of SKE and SKI algorithms are rare. Second, the choice of how to deal with

task similarity in CoTL is not trivial and can affect the performance of the whole system. Third,

trust should be taken into account, eventually. How good is the knowledge that an agent is

receiving? What is the reputation of an agent? Finally, there is still the need for datasets –

probably smaller ones w.r.t. not using CoL and CoTL – to successfully train predictors on new

tasks. Indeed, humans can perform new tasks quite well even with just an explanation of how

to do it and without explicit training (e.g., play a new game). Achieving such ability would be a

big jump towards artificial general intelligent systems.

Summarising, this paper introduces novel concepts of Cooperative Learning and Cooperative

Transfer Learning within the scope of MAS. These systems integrate both symbolic and sub-

symbolic knowledge representation and manipulation tools to mimic the learning process of

the human society. The paper proposes a general agent architecture for both CoL and CoTL

and discusses about advantages and limits.

This preliminary work is a forerunner for empirical future works on CoL and CoTL. Proceeding

by crescent complexity, the first works will address CoL: starting from a train-extract-fix-inject

local workflow and then perform tests on a whole MAS. The next step will be investigating

CoTL systems and a new kind of CoTL MAS capable of learn a new task without the explicit

need of a dataset.
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