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ABSTRACT

Atomtronics deals with matter-wave circuits of ultracold atoms manipulated through magnetic or laser-generated guides with different
shapes and intensities. In this way, new types of quantum networks can be constructed in which coherent fluids are controlled with the
know-how developed in the atomic and molecular physics community. In particular, quantum devices with enhanced precision, control, and
flexibility of their operating conditions can be accessed. Concomitantly, new quantum simulators and emulators harnessing on the coherent
current flows can also be developed. Here, the authors survey the landscape of atomtronics-enabled quantum technology and draw a road-
map for the field in the near future. The authors review some of the latest progress achieved in matter-wave circuits’ design and atom-chips.
Atomtronic networks are deployed as promising platforms for probing many-body physics with a new angle and a new twist. The latter can
be done at the level of both equilibrium and nonequilibrium situations. Numerous relevant problems in mesoscopic physics, such as persis-
tent currents and quantum transport in circuits of fermionic or bosonic atoms, are studied through a new lens. The authors summarize some
of the atomtronics quantum devices and sensors. Finally, the authors discuss alkali-earth and Rydberg atoms as potential platforms for the
realization of atomtronic circuits with special features.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1116/5.0026178

TABLE OF CONTENTS
I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
II. DYNAMICALLY SCULPTED LIGHT. . . . . . . . . . . . . . . . 4

A. Fast-scanning AODs. . . . . . . . . . . . . . . . . . . . . . . . . . 4
1. Feed-forward control . . . . . . . . . . . . . . . . . . . . . . 4
2. Phase evolution in time-averaged potentials . . 5
3. Atomtronics with time-averaged optical traps. 5

B. Optical potentials with liquid-crystal SLMs . . . . . . 5
C. Direct imaged DMD optical potentials . . . . . . . . . . 6

1. Half-toning and time-averaging . . . . . . . . . . . . . 6
2. Atomtronics with DMDs. . . . . . . . . . . . . . . . . . . 6
3. Turbulence with DMDs. . . . . . . . . . . . . . . . . . . . 6

D. Hybrid atomic-superconducting quantum
systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

E. Concluding remarks and outlook . . . . . . . . . . . . . . . 7
III. IMPLEMENTING RING CONDENSATES. . . . . . . . . . . 8

A. General features of ring traps . . . . . . . . . . . . . . . . . . 8
B. Techniques based on magnetic traps . . . . . . . . . . . . 8

1. RF dressing and bubbles . . . . . . . . . . . . . . . . . . . 9
2. Waveguides formed from time-averaged

adiabatic potential (TAAP) . . . . . . . . . . . . . . . . . 9
3. Dynamical ring in an rf-dressed adiabatic

bubble potential . . . . . . . . . . . . . . . . . . . . . . . . . . 11
C. Trapping in rings with optical potentials . . . . . . . . 12

AVS Quantum Sci. 3, 039201 (2021); doi: 10.1116/5.0026178 3, 039201-1

VC Author(s) 2021.

AVS Quantum Science ROADMAP scitation.org/journal/aqs

https://doi.org/10.1116/5.0026178
https://doi.org/10.1116/5.0026178
https://doi.org/10.1116/5.0026178
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1116/5.0026178
http://crossmark.crossref.org/dialog/?doi=10.1116/5.0026178&domain=pdf&date_stamp=2021-08-25
https://orcid.org/0000-0002-9024-5727
https://orcid.org/0000-0003-0769-1927
https://orcid.org/0000-0003-3531-8759
https://orcid.org/0000-0003-2508-3896
https://orcid.org/0000-0002-0879-0591
https://orcid.org/0000-0002-2891-4547
https://orcid.org/0000-0001-7084-6958
https://orcid.org/0000-0003-4995-8212
https://orcid.org/0000-0003-4963-9246
https://orcid.org/0000-0001-9852-0183
https://orcid.org/0000-0003-3571-6642
https://orcid.org/0000-0003-4676-8827
https://orcid.org/0000-0002-1239-8373
https://orcid.org/0000-0002-3896-4759
https://orcid.org/0000-0002-3149-2402
https://orcid.org/0000-0001-5939-4612
https://orcid.org/0000-0003-2351-3768
https://orcid.org/0000-0001-5775-2084
https://orcid.org/0000-0003-2707-9962
https://orcid.org/0000-0002-2123-6026
https://orcid.org/0000-0001-9976-6871
https://orcid.org/0000-0002-9634-9455
https://orcid.org/0000-0002-5691-4982
https://orcid.org/0000-0003-3629-6002
https://orcid.org/0000-0002-3405-9508
https://orcid.org/0000-0002-4761-0071
https://orcid.org/0000-0003-1784-2127
https://orcid.org/0000-0002-0107-3338
https://orcid.org/0000-0003-0742-6015
https://orcid.org/0000-0003-0126-5820
https://orcid.org/0000-0002-8332-2309
https://orcid.org/0000-0001-5527-1068
https://orcid.org/0000-0002-5960-0612
https://orcid.org/0000-0001-6172-8407
https://orcid.org/0000-0002-4712-9456
https://orcid.org/0000-0003-0713-8523
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1116/5.0026178
https://scitation.org/journal/aqs


1. Optical trapping . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2. Optical ring traps . . . . . . . . . . . . . . . . . . . . . . . . . 12
3. Imperfections in optical traps. . . . . . . . . . . . . . . 15

D. Hybrid traps: RF bubble plus light sheet(s) . . . . . . 15
E. Concluding remarks and outlook . . . . . . . . . . . . . . . 16

IV. ATOMTRONIC CHIPS AND HYBRID SYSTEMS . . . . 16
A. Progress toward on-chip interferometry . . . . . . . . . 16
B. Precision sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
C. Cryogenic atom chips and hybrid quantum

systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
D. Concluding remarks and outlook . . . . . . . . . . . . . . 20

V. QUENCH DYNAMICS OF INTEGRABLE MANY-
BODY SYSTEMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A. Quench dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
B. Evolution under integrable Hamiltonians . . . . . . . . 21

1. The Lieb-Liniger model . . . . . . . . . . . . . . . . . . . . 21
2. The XXZ Heisenberg spin chain . . . . . . . . . . . . 26

C. Concluding remarks and outlook. . . . . . . . . . . . . . . 26
VI. NONEQUILIBRIUM PROTOCOLS FOR ONE

DIMENSIONAL BOSE GASES IN ATOMTRONIC
CIRCUITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

A. Quench dynamics in the Lieb-Liniger model. . . . . 28
1. The quench problem . . . . . . . . . . . . . . . . . . . . . . 28
2. The quench action . . . . . . . . . . . . . . . . . . . . . . . . 29
3. Quenches to the attractive regime . . . . . . . . . . . 29

B. Floquet Hamiltonian for the periodically tilted
Lieb-Liniger Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

C. Concluding remarks and outlook. . . . . . . . . . . . . . . 31
VII. PERSISTENT CURRENTS AND VORTICES IN

ATOMTRONIC CIRCUITS . . . . . . . . . . . . . . . . . . . . . . . 32
A. Mechanism for producing flow in a racetrack

atom–circuit BEC by stirring . . . . . . . . . . . . . . . . . . 33
1. How stirring a racetrack atom circuit

produces flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2. Creation of a single unit of flow: Vortex

swap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3. Final flow production: Flow overtakes the

barrier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
B. Persistent currents in coplanar double-ring

geometries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1. Spontaneous persistent current formation in

a ring trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2. Spontaneous persistent current formation

in coplanar connected ring traps . . . . . . . . . . . . 34
C. Persistent currents in transversally coupled

atomtronic circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
D. Concluding remarks and outlook . . . . . . . . . . . . . . 38

VIII. PHASE SLIP DYNAMICS ACROSS JOSEPHSON
JUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A. Critical transport and vortex dynamics in a thin

atomic Josephson junction . . . . . . . . . . . . . . . . . . . . 39
B. Bose–Josephson junction among two one-

dimensional atomic gases: A quantum impurity
problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1. Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

C. Bose–Einstein condensate confined in a 1D ring
stirred with a rotating delta link . . . . . . . . . . . . . . . 43
1. Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2. Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3. Metastability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

D. Thermal and quantum phase slips
in a one-dimensional Bose gas on a ring . . . . . . . . 47
1. Model and methods . . . . . . . . . . . . . . . . . . . . . . . 47
2. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

E. Concluding remarks and outlook . . . . . . . . . . . . . . . 49
IX. ATOMTRONICS ENABLED QUANTUM DEVICES

AND SENSORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A. Diodes, transistors, and other discrete

components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
B. Atomtronic SQUIDs . . . . . . . . . . . . . . . . . . . . . . . . . . 51
C. Sagnac interferometry and rotation sensing . . . . . . 52
D. Magnetometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
E. Concluding remarks and outlook . . . . . . . . . . . . . . . 54

X. TWO LEVEL QUANTUM DYNAMICS IN RING-
SHAPED CONDENSATES AND MACROSCOPIC
QUANTUM COHERENCE . . . . . . . . . . . . . . . . . . . . . . . . . 56

A. The Atomtronic quantum interference device:
AQUID. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
1. The rf-AQUID qubit . . . . . . . . . . . . . . . . . . . . . . 57
2. Atomtronic flux-qubit: Ring lattice

interrupted with three weak links . . . . . . . . . . . 58
B. Demonstration of the one qubit and two qubit

unitary gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
1. Single qubit gates . . . . . . . . . . . . . . . . . . . . . . . . . 59
2. Two-qubit coupling and gates . . . . . . . . . . . . . . 59

C. Readout of atomtronic qubits . . . . . . . . . . . . . . . . . . 59
1. Interferometric detection of the current states 59

D. Experiment realization of the ring-lattice
potential with weak links. . . . . . . . . . . . . . . . . . . . . . 62
1. A ring lattice with single weak link. . . . . . . . . . 62
2. Experiment realization of the ring-lattice

potential with three weak links . . . . . . . . . . . . . 62
E. Setup for adjustable ring-ring coupling . . . . . . . . . . 63
F. First experimental demonstration of the

interference of atomtronic currents . . . . . . . . . . . . . 64
G. Concluding remarks and outlook. . . . . . . . . . . . . . . 66

XI. TRANSPORT AND DISSIPATION IN ULTRACOLD
FERMI GASES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A. Superfluid transport with Fermi gases. . . . . . . . . . . 68
1. Fermionic superfluidity and critical velocity . . 68
2. Josephson currents . . . . . . . . . . . . . . . . . . . . . . . . 68

B. Fermionic transport in mesoscopic channels . . . . . 69
C. Fast spin drag in normal Fermi gases . . . . . . . . . . . 70
D. Concluding remarks and outlook . . . . . . . . . . . . . . 71

XII. TRANSPORT IN BOSONIC CIRCUITS . . . . . . . . . . . . 72
A. Matterwave guides . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
B. Ring-leads system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
C. Y-junctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
D. Differences between fermions and hard-core

boson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
E. Entangled state generation with topological

pumping in ring circuits . . . . . . . . . . . . . . . . . . . . . . 77
F. Concluding remarks and outlook . . . . . . . . . . . . . . . 77

XIII. ARTIFICIAL QUANTUM MATTER IN LADDER
GEOMETRIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A. A boson ring ladder at weak interactions. . . . . . . . 78

AVS Quantum Science ROADMAP scitation.org/journal/aqs

AVS Quantum Sci. 3, 039201 (2021); doi: 10.1116/5.0026178 3, 039201-2

VC Author(s) 2021

https://scitation.org/journal/aqs


1. Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2. Ground state of weakly interacting ring . . . . . . 78
3. Excitation spectrum of weakly interacting

ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
B. The boson ladder at strong interaction . . . . . . . . . . 79
C. Ultracold atoms carrying orbital angular

momentum (OAM) in a diamond chain . . . . . . . . 80
1. Topological edge states and Aharonov–Bohm

caging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2. Simulating quantum magnetism with strongly

interacting ultracold bosons . . . . . . . . . . . . . . . . 82
D. Concluding remarks and outlook . . . . . . . . . . . . . . 83

XIV. QUANTUM-ENHANCED ATOMTRONICS WITH
BRIGHT SOLITONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A. Scattering properties of attractive bosons against

a barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
B. Creation and manipulation of quantum solitons. . 84

1. Quantum solitons in the Bose–Hubbard
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2. Solitons in rotation. . . . . . . . . . . . . . . . . . . . . . . . 85
3. Entangling solitons with different Lz. . . . . . . . . 87

C. Concluding remarks and outlook. . . . . . . . . . . . . . . 87
XV. ATOMTRONICS WITH ALKALINE-EARTH-LIKE

METAL ATOMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A. Why alkaline-earth-like metal atoms? . . . . . . . . . . . 87
B. Effective Abelian and non-Abelian gauge fields. . . 88
C. Persistent current of SU(N) fermions . . . . . . . . . . . 89
D. Concluding remarks and outlook . . . . . . . . . . . . . . 90

XVI. MANIPULATING RYDBERG ATOMS . . . . . . . . . . . . 91
A. Driven-dissipative Rydberg systems. . . . . . . . . . . . . 91
B. Microwave-optical conversion using Rydberg

atoms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
C. Concluding remarks and outlook. . . . . . . . . . . . . . . 93

I. INTRODUCTION

Quantum technologies are enabling important innovations in the
21st century with applications in areas as diverse as computation, sim-
ulation, sensing, and communication. The core of these new techno-
logical developments is the ability to control quantum systems all the
way from the macroscopic scale down to the single quantum level.
The latter has been achieved in physical systems ranging from atomic
and spin systems to artificial atoms in the form of superconducting
circuits.1,2

In this article, we mostly focus on cold atom systems, where
recent technological developments have delivered a collection of mag-
netic or laser-generated networks and guides in which atomic matter-
waves can be controlled and manipulated coherently.3,4 Atomtronics
exploits the state of the art in this field to realize matter-wave circuits
of ultracold atoms.4,5 Some key aspects of this emerging field give
atomtronic circuits great promise as a quantum technology. First, since
atomtronic circuits employ matter-waves of neutral atoms, spurious
circuit-environment interactions, which might, e.g., lead to decoher-
ence, are expected to be less serious than in networks employing elec-
trically charged fluids sensitive to Coulomb forces. Second, atomtronic
networks can realize new types of circuits with current carriers having
bosonic and/or fermionic quantum statistics along with tunable

particle–particle interactions ranging from short-range to long-
distance and from attractive to repulsive. Third, recent progress in the
manipulation of optical guiding potentials enables engineering of
time-dependent circuits whose topology can be reconfigured while
they operate.3,6–9

The name Atomtronics is inspired by the analogy between circuits
with ultracold atomic currents and those formed by electron-based
networks of conductors, semiconductors, or superconductors. For
example, a Bose–Einstein condensate (BEC) confined in a linear opti-
cal lattice with a suitable abrupt variation of the particle density can
exhibit behavior very similar to that of an electronic diode.10,11 As
another example, a BEC in suitable optical ring trap is the atomic
counterpart of the superconducting SQUID of quantum electron-
ics,11–13 displaying the SQUID’s defining characteristics of quantum
interference15 and hysteresis.16 It is important to note that because
atomtronics is entirely based on flexible potential landscapes and not
limited to material properties, it is expected to be possible to create
quantum devices and simulators with new architectures and function-
alities that have no analog in conventional electronics.

The quantum nature of ultracold atoms as coherent matter waves
enables interferometric precision measurements and new platforms
for quantum information processing with applications in fundamental
science and technology.17,18 At the same time, atomtronic circuits can
serve as powerful probes of many-body quantum regimes: analogous
to solid state I-V characteristics, and many-body cold atom systems
can be probed by monitoring the current flowing in them while
changes are made to external parameters and applied (effective) fields.
In this way, atomtronic platforms can be thought of as extensions to
the scope of conventional quantum simulators, revisiting textbook sce-
narios in many-body physics, such as frustration effects, topological
constraints, and edge state formation, with the advantages of tunable
boundary conditions and minimal finite size effects. Another interest-
ing domain in which atomtronics can play an important role is meso-
scopic physics.19–21 Important themes in the field of mesoscopic
physics, such as persistent currents in ring-shaped structures and
problems of quantum coherent transport, can be explored with a new
twist.

For the implementation of the program sketched above, an
important challenge to face in the years to come is to optimize the con-
trol of the matter-wave currents in complex networks as, for example,
optical lattices, guiding circuits for matter waves based on optical or
magnetic fields, or cold atoms-solid state hybrid circuits. On one
hand, such a step would be instrumental to harness current and trans-
port for investigations on quantum many-body physics and artificial
matter in both the static and dynamic conditions. In particular,
Rydberg atoms and ultracold fermionic systems with SU(N) symmetry
provide novel interesting directions to go to. Experimental challenges
for this goal are to design improved schemes for controlling the result-
ing matter-wave interactions and for including advanced schemes for
their detection. On the other hand, the control of complex quantum
networks would be opening the way to work out new types of devices
based on integrated atomtronic circuits. In particular, new chips inte-
grating different technologies, for example, silicon-based electronics
and the various atomtronics approaches, would provide a milestone in
quantum technology. Concerning potential applications, a certainly
important direction pursued in the current research in Atomtronics is
devoted to interferometry and inertial sensing with enhanced
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performance, but quantum simulation and computation as well as all
other aspects of quantum technology are accessible. In this context,
stabilizing the atomic coherence on small-to-intermediate spatial
scales, for example, by smoothing the wave guides, are important chal-
lenges to be solved in order to harness the full power of cold-matter-
wave quantum technology.

In this review, we summarize recent activities in Atomtronics and
discuss the future of the field. In Secs. II–IV, we review fabrication
principles for atomtronic platforms, ranging from reconfigurable opti-
cal potentials employing acousto-optic deflectors, digital micromirror
devices, and liquid-crystal spatial light modulators to micro-optical
systems and hybrid solid state–cold atom systems circuits where a
scanning focused laser beam modifies the current density of a super-
conducting chip to create the desired trapping potential. These new
capabilities open the way to addressing the dynamics of many-body
systems, as described in Secs. V and VI. Sections VII and VIII deal
with persistent currents in toroidal and ring-shaped condensates.
These systems, the simplest atomtronic circuits with a closed architec-
ture, enable the study of basic questions in many-body physics in a
variety of new and different conditions. Atomtronic quantum sensors
and devices are discussed in Sec. IX. Ring-shaped bosonic circuits are
investigated as ideal platforms for matter-wave SQUIDs [the
Atomtronic QUantum Interference Device (AQUID)] and flux qubits
in Sec. X. These studies have also touched upon a number of funda-
mental questions, such as macroscopic quantum coherence, the nature
of superfluidity in restricted geometries, and vortex dynamics.
Transport in fermionic and bosonic circuits are discussed in Sec. XI
and XII, respectively. Section XIII deals with bosonic ladders. In addi-
tion to their potential relevance to basic research in many-body phys-
ics, we envisage that they will be instrumental to the fabrication of
coupled atomtronic circuits. In Sec. XIV, we discuss atomtronic cir-
cuits that exploit bright solitons both for studying fundamental ques-
tions in many-body quantum dynamics and for realizing quantum
devices with enhanced performances. Sections XV and XVI deal with
alkali-earth atoms with SU(N) symmetry and Rydberg atoms. To date,
the latter have received little attention, but we believe that they offer
great promise as an atomtronic quantum technology.

The present article was inspired by the Atomtronics@Benasque
conference series. The Benasque staff is warmly acknowledged for
their invaluable help in the organization of these workshops, and we
thank the Benasque director Jose-Ignacio Latorre for his constant sup-
port of this line of research.

II. DYNAMICALLY SCULPTED LIGHT

M. Baker, G. Gauthier, T. W. Neely, H. Rubinsztein-
Dunlop, F. Tosto, R. Dumke, P. Ireland,
D. Cassettari

In recent years, many experiments have been carried out with
cold neutral atoms in arbitrary, reconfigurable optical potentials. Single
atoms have been trapped in arbitrary-shaped arrays,22–26 which have
subsequently led to the demonstration of topological phases of inter-
acting bosons in one-dimensional lattices.27 Various configurations of
atomtronic circuits have been demonstrated, namely, closed wave-
guides and Y-junctions,28 oscillator circuits,29 atomtronic transistors,30

rings, and atomtronic SQUIDs (AQUIDs).13,31,32 Reconfigurable
optical potentials have also been used to realize Josephson junctions in

rubidium condensates12 and in fermionic lithium superfluids in the
BCS-BEC crossover.33 They have even been used for the optimization
of rapid cooling to quantum degeneracy.34 Finally, another area of
interest is the realization and study of quantum gases in uniform
potentials.35,36 Some of these experiments are described in detail in
Secs. II A–II E.

Static holographic potentials, as opposed to reconfigurable, also
play an important role in atomtronics and have been implemented
with great success.37–42 In particular, static holograms can provide sub-
stantial advantages for the generation of Laguerre–Gaussian and
higher order Hermite–Gaussian modes.40,43,44 Static hologram techni-
ques, such as optical nanofiber evanescent wave trapping,45 structured
nanosurfaces to create trapping potentials,46,47 and the use of engi-
neered quantum forces48 (also know as London–van der Waals or
Casimir forces), are promisingly emerging technologies that will bene-
fit the field of atomtronics. However, this section focuses on recently
adopted dynamic technologies that have opened new avenues of
research.

More generally, we note that sculpted light has many more appli-
cations beyond cold atom physics, e.g., to microscopy, optical tweezers,
and quantum information processing with photonic systems.3 In this
section, we review the tools and techniques that underpin all these
experiments: scanning acousto-optic deflectors (AODs), digital micro-
mirror devices (DMDs), and liquid-crystal spatial light modulators
(SLMs).

A. Fast-scanning AODs

By rapidly scanning a trapping laser beam much faster than the
trapping frequencies for the atoms, the atoms experience the time-
average of the optical potential. Under these conditions, despite the
modulated scanning action of the beam, the density of the atom cloud
remains constant in time. The spatial location of the beam can be
scanned in arbitrary 2D patterns, “painting” the potential landscape,
simply by modulating the RF frequencies driving the crystal.7 The con-
trol over the RF power at each scan location allows local control over
the potential depth. This feature can be used to error-correct, ensuring
smooth homogeneous potentials, or can be deliberately engineered to
implement barriers, wells, or gradients in the trap. The trapping geom-
etry can be dynamically changed with the use of deep-memory arbi-
trary waveform generators or field programmable gate array (FPGA)
technology, which combined with nondestructive measurement allows
for the real-time correction of the potential. Given the weak axial con-
finement provided by the scanned beam, this is best used in conjunc-
tion with an orthogonal light sheet, which provides tight confinement
along the axis of the scanned beam, and ensuring excitation and phase
fluctuations in the axial dimension is minimized.7

1. Feed-forward control

The diffraction efficiency of AODs can change with the drive fre-
quency. In order to correct this, it is generally necessary to use feed-
forward to compensate by adjusting the RF power of the AOD crystal
and, hence, the beam intensity at each (x,y) location. To correct imper-
fections in other elements of the trapping potential, one can measure
the atomic density distribution in the trap using absorption imaging
and apply iterative correction to the RF power at each (x,y) location.32
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2. Phase evolution in time-averaged potentials

A full treatment time-averaged potentials need to include the
phase evolution of the condensate under the effect of the scanning
beam. The time-varying potential Vðx; y; tÞ acts to imprint a phase /
with the evolution �h@/ðx; y; tÞ=@t ¼ Vðx; y; tÞ. For sufficiently fast
scan rates, the imprinted phase effect is negligible, but at slower scan
rates, this phase imprinting action can accumulate local phase, leading
to residual micromotion in the condensate, and the signatures of
which have been observed.49 This is an important consideration for
atomtronic applications where the phase is an observable of interest,
such as for guided Sagnac interferometry.50

3. Atomtronics with time-averaged optical traps

The time-averaged optical dipole traps are extremely versatile,
allowing a variety of geometries to be generated, and dynamically
changed in structure by real-time adjustment of the scanning pattern.
In the context of atomtronic geometries, BECs have been trapped into
flat bottom line-traps, rings,32,51 lattices,52 and dumbbell reservoirs
(Fig. 1). Additionally, single mode matter-wave propagation and
coherent phase splitting have been demonstrated in circuit elements
such as waveguides and beamsplitters.28 The time-averaged optical
beams can be used to introduce multiple repulsive barriers and stirring
elements to study persistent currents and superfluid transport in atom-
tronic circuits.12

B. Optical potentials with liquid-crystal SLMs

A liquid-crystal SLM spatially modulates the phase of the light.
The phase pattern on the SLM acts as a generalized diffraction grating
so that in the far field, an intensity pattern is formed, which is used to
trap atoms. In practice, the far field is obtained by focusing the light
with a lens so that the intensity pattern that traps the atoms is created
in a well-defined “output plane” coinciding with the lens focal plane.
The SLM acts effectively as a computer-generated hologram, and the
light field in the output plane is the Fourier transform of the light field
in the SLM plane.

The first experiments with these holographic traps go back over
ten years ago.53,54 A reason for the use of phase-only SLMs, rather
than amplitude modulators, is that the former does not remove light
from the incident beam. This is advantageous from the point of view
of light-utilization efficiency. Moreover, as is shown below, a phase-

only SLM allows the control of both the amplitude and phase on the
output plane.

The calculation of the appropriate phase modulation to give the
required output field is a well-known inverse problem, which, in gen-
eral, requires numerical solution. Iterative Fourier Transform
Algorithms (IFTAs) are commonly used, and variants that control
both phase and amplitude have been recently demonstrated.55,56 The
removal of the singularities (e.g., vortices), which particular pattern
optimization techniques can introduce, is widely researched due to
their importance for controlled beam shaping57–60 and, in particular,
to confine BECs in uniform potentials.35,61 One such example is a con-
jugate gradient minimization technique that efficiently minimizes a
specified cost function.60,62 The cost function can be defined to reflect
the requirements of the chosen light pattern, such as removing optical
vortices from the region of interest.

The intensity patterns obtained with this method are shown in
the first row of Fig. 2. They are taken at a wavelength of 1064 nm, i.e.,
red-detuned relative to the rubidium transition, causing rubidium
atoms to be trapped in the regions of high intensity. The SLM light is
focused on the atoms by f¼ 40 mm lens, giving a diffraction limit of
the optical system of 6 lm at 1064 nm.

Going from left to right in Fig. 2, shown are a simple waveguide,
a waveguide with a potential barrier halfway across, a ring trap, and a
crosslike pattern. The latter has been proposed for the study of the
topological Kondo effect.63 In all these light patterns, the phase is con-
strained by the algorithm. For the simple waveguide, the ring and the
cross, a flat phase is programmed across the whole pattern.
Controlling the phase this way leads to a well maintained intensity
profile shape as it propagates out of the focal plane for up to�10 times
the Rayleigh range. By comparison, a pattern with random phase loses
its shape much sooner.

Differently from the other three patterns, for the waveguide with
the barrier, a sharp p phase change halfway across the line was pro-
grammed. In the resulting intensity profile, this phase discontinuity
causes the intensity to vanish, hence creating the potential barrier
whose width is close to the diffraction limit.

The second row of Fig. 2 shows Rb BECs trapped in the potential
created by the SLM light patterns combined with an orthogonal light
sheet that provides tight confinement along the axis of propagation of
the SLM light.64,65 The clouds are imaged after a 2 ms time of flight
and undergo mean-field expansion during this time, leading to a final
density distribution that is more spread out compared to the trans-
verse size of the SLM traps.

FIG. 1. Example geometries of time averaged optical dipole potentials: (a) BEC
trapped in dumbbell potential with two reservoirs connected through a channel of
tunable length and width and (b) ring lattice of BECs. The scale bar on each image
indicates 50 lm.

FIG. 2. 87Rb condensates in SLM-generated optical potentials. The top row shows
the intensity patterns used for trapping, and the bottom row shows the condensates
after a 2ms time of flight. The ring trap contains �106 atoms, while the other traps
contain �5� 105 atoms. The scale bar on the images indicates 100 lm.
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Controlling the phase of the light pattern opens new possibilities
for the trapping and manipulation of ultracold atoms. Here, we have
shown that the phase control gives an alternative way to create barriers
close to the diffraction limit by using discrete phase jumps. Liquid-
crystal SLMs were also used to transfer phase structure in a four-wave-
mixing process in rubidium vapor, in particular trans-spectral orbital
angular momentum transfer from near-infrared pump light to blue
light.66 Additionally, they have enabled research into uniform 3D con-
densates. More recently, they were used in the realization of bottle
beams that have been used to create 3D optical trapping potentials for
confining Rydberg atoms.26 In addition to this, the phase control can
also be useful for many atomtronics applications, for instance, phase
imprint via a Raman transition,67 and the realization of artificial gauge
fields.68,69

C. Direct imaged DMD optical potentials

A recent addition to the spatial light modulator family is the
digital micromirror device (DMD). Developed for digital light proc-
essing (DLP) applications, DMDs consist of millions of individually
addressable, highly reflective mirrors. Each hinged mirror, of typical
size 7.56–10.8 lm, is mounted on a silicon substrate on top of control
electrodes. The application of a control voltage tilts the mirrors
between two “on” or “off” angles, typically 612�. The mirror array
acts as a dynamical configurable amplitude mask for light reflected
from their surface. The DMDs can be placed in the Fourier plane of
the imaging/project system, similar to typical phase-based SLMs,
where it can modulate both the phase and the amplitude of the
light.72 If phase modulation is not required, the DMD can be used as
a binary amplitude mask in the object plane, similar to its DLP appli-
cations.9,73 In the “DC” mode, the mirrors are fixed to the on angle
and a static pattern can be projected. The true versatility of the
device, however, lies in its dynamical (“AC”) capability with full
frame refresh rates exceeding 20 kHz.

1. Half-toning and time-averaging

The projected image from the DMD is binary in nature.
Although this would appear as a significant limitation in producing
arbitrary optical potentials, a number of techniques exist to overcome
this issue. The first of these is half-toning, or error-diffusion, which
takes advantage of the finite optical resolution of the projection optical
system to increase the amplitude control. With suitable high magnifi-
cation, such that the projected mirror size is smaller than the resolu-
tion, multiple mirrors contribute to each resolution spot in the
projected plane.74 In this way, half-toning can be used to create inten-
sity gradients in the light field, as shown in Fig. 3(a). Same as in the
case of time-averaged AOD traps, feed-forward using the atomic den-
sity32,70,71 can be performed to correct for imperfections in the projec-
tion potential, as shown in Fig. 3(b).71

One can also make use of the high-speed modulation of the mir-
rors to further improve the intensity control. The mirror array of the
DMD is capable of switching speeds from DC to 20 kHz. By varying
the on/off time of individual mirrors (pulse-width modulation), the
time-average of the resulting light field can be utilized to improve the
smoothness of the projected potentials.71

2. Atomtronics with DMDs

Atomtronics studies how to use neutral atom currents to create
circuits that have properties similar to existing electrical devices. The
advances in control and increased resolution of trapping potentials
have been instrumental in the development of this field. The dynamic
control over the potential given by DMDs have allowed time depen-
dent implementations. Combined with other techniques such as the
optical accordion lattice,73 which allows smooth transitions between
quasi-2D and 3D systems, they open up further avenues of control for
future studies. The high resolution projection of DMD optical poten-
tials enables the creation of complex masks. These have facilitated the
study of superfluid transport in a variety of traps. Figure 4 shows three
relevant geometries for superfluid transport studies.

3. Turbulence with DMDs

The dynamic properties of DMDs can be used for the creation of
turbulence. As shown in Fig. 5, these techniques have been used to
study Onsager vortices and their emergence in superfluids,75,76 the

FIG. 3. Generating complex potentials using half-toning. (a) Initial in situ image of
the BEC density in a half-toned potential of Einstein calculated using the optical
system parameters. (b) Final converged BEC image after 11 feedback iterations
where the atomic density is used to iteratively correct for imperfection in the density
generated using the method described by Tajik et al. (Ref. 70) and Gauthier
(Ref. 71).

FIG. 4. Useful atomtronics geometries created with directly imaged DMD trapping.
(a) A dumbbell geometry of two reservoirs connected by a channel where the reser-
voir size, channel length, and channel width can be varied to study superfluid trans-
port. (b) Square lattice of BECs with a period of 10lm formed using the projection
of a half-toned DMD pattern. The lattice period can be dynamically increased or
decreased. (c) A ring-shaped BEC with a diameter of 110lm and a radial width of
10lm is useful for interferometry and transport experiments. The scale bar on
each image indicates 20lm.
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creation of tunable velocity solitons,77 and equilibration of chiral vor-
tex clusters.78

D. Hybrid atomic-superconducting quantum systems

Superconducting (SC) atom chips have significant advantages in
realizing trapping structures for ultracold atoms compared to conven-
tional atom chips.4,80–85 These advantages have been extended further
by the development of the ability to dynamically tailor the supercon-
ducting trap architecture. This is done by modifying the current den-
sity distribution in the SC film through local heating of the film using
dynamically shaped optical fields. This allows for the creation of
desired magnetic trapping potentials without having to change the
chip or the applied electrical field.

Typically, a high-power laser and a DMD are used to create and
shape the light field used to destroy the superconductivity and influ-
ence the shape and structure of a trap. Various trapping potentials
have been realized using this technique, in particular, to split a single
trap (see Fig. 6) or to transform it into a crescent or a ringlike trap (see
Fig. 7). Since the atomic cloud evolves with the trapping potential,
cold atoms can be used as a sensitive probe to examine the real-time

magnetic field and vortex distribution. Simulations of the film heating,
the corresponding redistribution of sheet current density, and the
induced trapping potentials have been found to agree closely with
experiments. Such simulations help us to better understand the pro-
cess and can be used to design traps with the needed properties.

More complex structures can be achieved by increasing the heat-
ing pattern resolution. This method can be used to create magnetic
trap lattices for ultracold atoms in quantum computing applications
and, in particular, optically manipulated SC chips open new possibili-
ties for ultracold atoms trapping and design of compact on-chip devi-
ces for investigation of quantum processes and applications in
atomtronics.86–92

E. Concluding remarks and outlook

In this section, we have described the suite of technologies avail-
able to the experimenter for creating configurable optical potentials for
ultracold atoms, primarily discussing AOMs, SLMs, and DMDs. A
hybrid technique utilizing optical configurable potentials to shape
magnetic potentials through superconducting quantum chips interme-
diary were also discussed. These technologies have drastically
improved the control and manipulation of ultracold neutral atoms.

Although previously available static holograms technologies pro-
vided great control for the creation of optical potentials and are still
usually better for 3D trapping potentials, the dynamic manipulation
capabilities presented here have enabled new classes of experiments
with ultracold atoms. For example, dynamically modulated DMDs
have facilitated new studies of two-dimensional-quantum turbu-
lence75,76,78 and condensate evolution in response to rapidly quenched
trapping potentials.31,96 AOMs have enabled steerable arrays of single
atoms,23,52,94 facilitating quantum simulation experiments.
Furthermore, the rapid reconfigurability of DMD traps has enabled
groundbreaking studies in the emerging field of atomtronics, where
the system parameters can be easily tuned.29,33,77,95,99

As the technology behind optical manipulation continues to
mature and evolve through the increase in SLMs pixel array sizes and
switching frequencies, these sculpted light and hybrid techniques are
sure to have an even bigger impact on the development of atomtronics.
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III. IMPLEMENTING RING CONDENSATES

M. Baker, T. A. Bell, T. W. Neely, A. L. Pritchard, G.
Birkl, H. Perrin, L. Longchambon, M. G. Boshier, B. M.
Garraway, S. Pandey, W. von Klitzing

The many interesting properties of degenerate quantum gases,
such as phase coherence, superfluidity, and vortices, naturally make
the geometry of these systems of great interest. Ring systems are of
particular interest, as the simplest multiply connected geometry for
coherent matter-wave guiding and as a potential building block for cir-
cuital atomtronic devices. In addition, ring systems have interesting
properties such as persistent flow, quantum hall states, and the poten-
tial for Sagnac interferometry.

Advances in the control of quantum gases have seen the develop-
ment of atom waveguides formed from both magnetic trapping and
magnetic resonance, and optical dipole trapping, and more recent
implementations using hybrids of both. These approaches satisfy the cri-
teria needed for coherent quantum matter-wave flow: i.e., the wave-
guides are smooth and can form loops that are dynamically controllable.

A. General features of ring traps

Irrespective of the mechanism of trapping, magnetic or optical,
some common parameters for ring traps can be described. We will
restrict our discussion to ring traps that can be considered approxi-
mately harmonic; in cylindrical co-ordinates, the ring potential with
radius R is expressed in terms of radial and vertical trapping frequen-
cies xq and xz, respectively,

Vðq; zÞ ¼ 1
2

mx2
qðq� RÞ2 þ 1

2
mxz

2z2: (1)

Considering now a trapped gas within this potential, the con-
nected geometry of the ring trap results in modifications to the usual
derivation for the condensate critical temperature Tc for a 3D harmon-
ically trapped gas, yielding97

Tc ¼
ffiffiffi
2
p

N0�h3xqxz

1:514kb
5=2m1=2pR

 !2=5

; (2)

where N0 is the atom number. For sufficiently elongated geometries,
such as cigar traps, or ring traps with long azimuthal length, a regime
of thermally driven phase-fluctuations in the condensate can exist98,102

even at temperatures below Tc. These phase-fluctuations are sup-
pressed when the correlation length is larger than the system size,
which for a ring geometry is half the azimuthal circumference, or pR.
As we are typically interested in fully phase coherent ring traps, we
can define this transition temperature T/,97

T/ ¼
�h2N0

kbmpR2
: (3)

Finally, in the Thomas–Fermi approximation, where the interac-
tion energy dominates, the chemical potential in the ring trap can be
expressed in terms of the trapping parameters,100

l ¼ �h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N0xqxzas

pR

r
; (4)

and as is the s-wave scattering length.
In this section, we will discuss the experimental and theoretical

developments in all three types of waveguide approach. In what fol-
lows, in Sec. III B, we discuss approaches primarily involving magnetic
and radio-frequency fields; and in Sec. III C, we we will discuss optical
and hybrid approaches to implementing ultracold atoms and conden-
sates in rings before concluding in Sec. III E.

B. Techniques based on magnetic traps

Experimental techniques for trapping atoms in magnetic fields
are well developed since the first BECs, and it is natural to consider
such an approach, and build on that approach, to make ring wave-
guides. Nevertheless, this brings particular challenges because of the
need to satisfy Maxwell’s equations for fields trapping in a ring geome-
try, the need to avoid the loss of atoms from Majorana spin flips,
occurring in the vicinity of field zeros, and the desire, for some experi-
ments, to have trapping systems with high symmetry.

The earliest examples of waveguides for ultracold atoms were
produced using static magnetic fields, where DC current carrying
wires were used to create large area ring101 and stadium102 geometries
which initially trapped thermal atoms. With Ref. 103, we had the first
demonstrations of a ring waveguide with a Bose-condensed gas.
Subsequent experimental developments can be divided into systems
which principally use macroscopic coils for generating the magnetic
trap, and those systems which employ microfabricated structures in an
atom chip to generate the spatially varying potentials. We will briefly
discuss the latter next and the former in Secs. III B 1–III B 3.

The appeal of atom-chip traps is their compact footprint, potential
portability, and the ability to fabricate quite complex geometries,
switches, and antenna components into a compact package.104,105

Additionally, the close proximity of the wires allows high trapping fre-
quencies to be achieved, even for modest currents. However, trapping in
close proximity to a surface brings with it its own challenges. Foremost
of these are the corrugations in the magnetic guiding potential, which
arise from imperfectly directed currents in the conducting material. An
additional challenge is the perturbing effect of the end connections to
supply current in and out of the conducting ring. Although these prob-
lems can be alleviated to some degree by the use of AC fields,106 which
provides a smooth time-averaged current in the wire, as well as switch-
ing elements at the end connections to minimize the perturbative phase
effects on the ring condensate,107 they cannot be removed completely. A
comprehensive survey on the implementation of ring traps based on
atom-chips, and their applications, is covered in detail in Ref. 108.

Here, we will focus our attention on ring traps derived from a
combination of static magnetic traps with RF and modulated fields.
Using macroscopically large conducting elements requires the use of
high currents and occupies a greater size, but there are significant gains
in the resulting trap smoothness, as the conducting elements are far
from the trapping region. This makes such magnetic traps ideal for
producing corrugation free toroidal waveguides for coherent matter,
which is detailed in this section.
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However, the complexity of the fields requires an atom-chip
approach to a pure magnetic waveguide system104,105 and this brings a
difficult problem for the perfect ring waveguide because of the need to
get the currents into, and out of, the wires that define the waveguide.
We can try to live with this,108 but asymmetry seems inevitable. We
can think of tricks, for example, as the atoms go around the ring, and
we can switch the current between different sets of 130 wires as in Ref.
107. This would avoid the bumps and humps in the waveguide, which
occur in the places where current enters and leaves the defining struc-
tures at the expense of potential losses and heating as the guides are
switched over.

1. RF dressing and bubbles

It is not obvious that micrometer-scale trapping structures for
ultracold atoms can be created using macroscopic scale magnetic coils.
However, by means of the addition of radio-frequency coils, magnetic
traps with a simple trapping geometry can be transformed into ring
traps and other topologies. The theoretical basis is to treat the atom
and radio-frequency field with adiabatic following and the dressed-
atom theory.109 Originally introduced in the optical domain by
Cohen-Tannoudji and Reynaud,109 we adapt it here in the radio-
frequency domain where it has found several applications (see also
Secs. III B 2, III B 3, and III D). The approach is suitable for ultracold
atoms in magnetic traps where the trap potential is governed by the
spatially varying Zeeman energy and the spatially varying energy dif-
ference between Zeeman levels can be in the radio-frequency
range.110,111 The method relies on the adiabatic following of local
eigenstates, and it is notable that the superpositions of Zeeman states
can provide some resilience to temporal noise and surface rough-
ness.106 The combination of static magnetic fields and radio-frequency
fields with their different spatial and vector variation allows flexibility
in the resulting potentials for the creation of shell potentials, rings,
tubes, and toroidal surfaces among others.110,111

As a simple example, we can consider a simple spatially varying
static field and a uniform radio-frequency field. A simple spatially
varying magnetic field (obeying Maxwell’s equations) is the quadru-
pole field,

B0ðrÞ ¼ b0ðx êx þ y êy � 2z êzÞ; (5)

where b0 represents the gradient of the field in the x-y plane. This field
is often generated by a pair of coils with current circulating in opposite
directions. When an atom interacts with this static field via its mag-
netic dipole moment l, we obtain the ubiquitous interaction energy,

UðrÞ ¼ �l � B0ðrÞ ! mFgFlBjB0ðrÞj; (6)

responsible for magnetic potentials and the Zeeman energy split-
ting. The second form for UðrÞ has the integer or half integer mF

¼ �F;…; F, which arise from the quantization of the energy along
with the Land�e g-factor gF and Bohr magneton lB. For our exam-
ple static field [Eq. (5)], the resulting potential is UðrÞ
¼ mF�ha

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ 4z2

p
, where a ¼ gFlBb0=�h.

In the next step toward radio-frequency dressed potentials, we
add the RF field. The interaction is still given by Eq. (6) but with the
replacement B0ðrÞ ! B0ðrÞ þ Brfðr; tÞ. The oscillating radio-
frequency field Brf ðr; tÞ is, in general, off-resonant to the local Larmor

frequency or local Zeeman energy spacing jgF jlBjB0ðrÞj, and we
define a spatially varying detuning of the RF field as

dðrÞ ¼ xrf � xLðrÞ: (7)

Those locations defined by dðrÞ ! 0 typically define a surface in space
where RF resonance is found, and correspondingly, there is a mini-
mum in the interaction energy overall.110,111 In the linear Zeeman
regime, the local Larmor frequency is given by

xLðrÞ ¼
jgF jlBjB0ðrÞj

�h
; (8)

which is derived from the static potential UðrÞ. The oscillating field
Brf ðr; tÞ yields an interaction energy110,111 in terms of a Rabi fre-
quency X0ðrÞ,

�hX0ðrÞ ¼
gFlB

2
jB?rf ðrÞj ; (9)

where the factor of two arises from the rotating wave approximation in
the case of linear polarization (more general polarizations are discussed
in Ref. 111), and B?rf ðrÞ is the component of Brf ðr; tÞ perpendicular to
the local static field B0ðrÞ. Finally, by combining the energies (6)
and (9) through diagonalization of the Hamiltonian in a full treat-
ment,110,111 we obtain the local eigenenergies, or dressed potentials,

UðrÞ ¼ m0F�h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ðrÞ þ X2

0ðrÞ
q

¼ m0F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hxrf � �hxLðrÞ½ �2 þ gFlBjB?rf ðrÞj=2

� �2
q

; (10)

where m0F are a set of integers, or half-integers, similar to the mF

described above.
The result of this is that slow atoms are confined by the potential

(10), which in a typical configuration, and to a first approximation,
confines atoms to an iso-B surface defined by �hxrf � �hxLðrÞ ¼ 0,
which approximately reduces the value of UðrÞ in Eq. (10). The term
gFlBjB?rf ðrÞj=2 also plays a role, and in particular, it can be zero at cer-
tain locations on the trapping surface allowing the escape of atoms.
This latter effect prevents the trapping of atoms in a shell potential by
using the static quadrupole field (5). However, shell potentials are pos-
sible with different field arrangements such as those arising from the
Ioffe–Pritchard trap and variations,110–115 which have become candi-
dates for experiments on the International Space Station.116 The
requirement is simpe for a local extremum in the magnitude of the
field B0ðrÞ together with a nonzero B?rf ðrÞ. The reason for the interest
in shell potentials in the earth orbit is that on the earth’s surface a grav-
itational term mgz should be added to Eq. (10), which plays an impor-
tant role for larger and interesting shells (e.g., see Sec. III B 3).

Although the matter-wave bubbles produced by shell potentials
have become an object of great interest, the shell potentials themselves
are the building blocks for other potentials of interest such as ring
traps: we will see an example in Sec. III D. Another example is in Sec.
III B 2, where a modulated bias field is used to make a ring trap: then
B0ðrÞ ! B0ðrÞ þ Bmðr; tÞ and Bmðr; tÞ is a field varying in space,
and time, but typically at a frequency rather lower than the radio-
frequency case.

2. Waveguides formed from time-averaged adiabatic
potential (TAAP)

Time averaged adiabatic potentials (TAAPs) allow the generation
of extremely smooth matterwave guides,117 which can be shaped into
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a half-moon or ring (see Fig. 8). They are an excellent candidate for
matterwave optics, long-distance transport experiments, and interfer-
ometry in an atomtronic circuit.117–119 TAAPs are formed by applying
an oscillating homogeneous potential to the adiabatic bubble traps
described in Sec. III B 1. If the modulation frequency ðxm ¼ 2pfmÞ is
small compared to the Larmor frequency, but fast compared to the
trapping frequency of the bubble trap, then the effective potential for
the atoms is the bubble potential time-averaged over one oscillation
period.120 Let us consider TAAP potentials formed from a quadrupole
bubble trap and an oscillating homogeneous field of the form
Bm ¼ 0; 0;Bm sin xmtf g. The modulation field simply displaces the
quadrupole (and thus the bubble trap) by zm ¼ a�1Bm sin xmt at an
instant in time. In order to find the effective potential that the atoms
are subjected to by this method, one calculates the time-average.
Time-averaging of a concave potential increases the energy of the bot-
tom of the trap, as is readily illustrated by taking the time average of a
harmonic potential jumping between two positions: the curvature
does not change since it is everywhere the same; however, the energy
of the trap bottom increases since it is at exactly the crossing point
between the two harmonic potentials. Returning to the modulated
bubble trap, one notices that the modulation is orthogonal to the shell
at the poles of the shell ðx ¼ y ¼ 0Þ, but tangential to the shell on the
equator (z¼ 0). Therefore, the time averaging causes a larger increase
in the trapping potential at the poles rather than the equator and,
therefore, creates a ringlike structure.

Assuming that xRF is modulated such as to stay resonant on the
ring and to keep XRF constant, the vertical and radial trapping
frequencies can be controlled via the relative amplitude of the

modulation b ¼ gFlBBm=�hxRF as xq ¼ x0 ð1þ b2Þ�1=4 and xz

¼ 2x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1þ b2Þ�1=2

q
, where the radial trapping frequency of the

bare bubble trap is x0 ¼ mFgFlB a ðm �hXRFÞ�1=2 with the mass of the
atom m, the gF is the Land�e g-factor of the considered hyperfine mani-
fold, lB is the Bohr magneton, and XRF the Rabi frequency of the
dressing RF. In order to achieve large RF field strengths (�0:3–1 G)
and Rabi frequencies, ðXRFÞ, one usually has to use RF-resonators,
which make it very difficult to tune the RF frequency, and which
results in a somewhat weaker confinement in the axial (i.e., vertical)
direction. Trapping frequencies of the order of a hundred hertz are
readily achieved.

In many cases, it is also desirable to confine the atoms azimuth-
ally. This is readily achieved either by tilting the ring away from being

perfectly horizontal or by modifying the polarization of the rf-field.
The half-moon shaped BEC in Fig. 8(b) was formed this way. A
gravito-magnetic trap results from tilting the direction of the Bm and
thus tilting the ring against gravity.118 The gravito-magnetic potential
forms a single minimum much like a tilted rigid pendulum. One can
also create a trap by changing the polarization of the dressing RF: tilt-
ing a linear polarization from the z-axes will cause due to its projection
on the local B-field, and a sinusoidal modulation of the Rabi frequency
along the ring resulting in a two minima on opposite sides of the ring.
Alternatively an elliptical RF polarization creates a single minimum.
Combining these modulation techniques permits the creation of two
arbitrary placed traps along the ring or, more generally, any longitudi-
nal confinement of the form a1 sin ð/þ /1Þ þ a2 sin ð2/þ /2Þ,
where / is the azimuthal angle and /1 and /2 are phase offsets. Note
that there are no angular spatial Fourier components higher than 2/
present in the system.

Thermal atoms and BECs are readily loaded into the gravito-
magnetic TAAPs from a trapping-frequency-matched dipole trap.
This can be done fully adiabatically by ramping down the dipole con-
finement and at the same time ramping up the TAAP trap. With a suf-
ficiently high level of control on the rf-fields, one can also load them
from a TOP trap via a tilted dumbbell-shaped trap.118 Once in the
ring, one can then manipulate the atoms with a simple manipulation
of the time-averaging fields: The depth of the azimuthal trap can be
changed by modifying the degree of tilt applied to the modulation field
ðBmÞ. By changing the direction of the tilt (i.e., the phase between the
modulation fields in the x and y directions), one can move the trap
along the ring. This can be used, e.g., to accelerate the atoms along the
ring with angular momenta of 40 000 �h per atom being readily
achieved.117 They can then travel in the waveguides over distances of
tens of centimeters without any additional heating associated with the
propagation. One can also remove the azimuthal confinement and
allow the condensates to expand around the ring. Viewed in the coro-
tating frame at high angular momenta, the atoms see an exceptionally
flat potential with the largest resulting density fluctuations correspond-
ing to an energy difference of a few hundred picokelvin: this is equiva-
lent to a few nanometers in height.117 Current experiments have been
performed with BECs in the Thomas–Fermi regime with about 20
transverse vibration modes occupied. The 1D regime is readily accessi-
ble simply by reducing the atom number and increasing the radius of
the ring.

The complete lack of any roughness combined with a picokelvin
level control of the trapping parameters make the TAAP waveguides a
very good candidate for guided matterwave interferometry and the
study of ultralow energy phenomena such as long-distance quantum
tunneling. A remaining challenge is to completely fill the ring with a
phase coherent condensate. Current experiments allowed a condensate
to expand along the ring, which converts the chemical potential of the
BEC into kinetic energy. When the condensate touches itself at the
opposite side of the ring, the two ends have a finite velocity in opposite
directions, resulting in a spiral BEC, i.e., a BEC wrapped around itself.
Using atom-optical manipulation of the expansion process, kinetic
energies in the pico-kelvin range (a few hundred micrometers per sec-
ond) can readily be achieved. It will be interesting to study the very
low energy collisions that will lead to a thermalization of this system.
A promising approach for a fully phase-coherent ring-shaped conden-
sate is to first fill a small ring and then increase its radius. This should

FIG. 8. (a) BEC in a symmetric, ring-shaped TAAP ring with a diameter of 470lm.
(b) BEC in a circular TAAP matterwave guide with superimposed gravito-magnetic
modulation in the azimuthal direction.
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not induce any additional phase fluctuations, despite the fact that the
lowest excitation has an energy of E ¼ �h2=ð2mr2Þ, which for a ring of
1 mm radius is 3 fK.

3. Dynamical ring in an rf-dressed adiabatic bubble
potential

There is a formal analogy between the Hamiltonian of a neutral
gas in rotation and the one of a quantum system of charged particles
in a magnetic field. This makes rotating superfluids natural candidates
to simulate condensed matter problems such as type II superconduc-
tors or the quantum Hall effect.121,122 For a quantum gas confined in a
harmonic trap of radial frequency xr and rotating at angular fre-
quency X approaching xr, the ground state of the system reaches the
atomic analog of the lowest Landau level (LLL) relevant in the quan-
tum Hall regime.123–125 Reaching these fast rotation rates is experi-
mentally challenging in a harmonic trap because the radial effective
trapping potential in the rotating frame vanishes due to the centrifugal
force. To circumvent this limit, higher-order confining potentials have
been developed,126 which allow to access the regime where X even
exceeds xr.

The adiabatic bubble trap has many features that make it a very
good candidate to explore this regime. Indeed, it is very smooth, and
easy control of its anisotropy is possible through the dressing field
polarization.127 This allows us to deform the bubble and rotate the
deformation around the vertical axis in a very controlled way, allowing
us to inject angular momentum into the cloud. The curved geometry
of the bubble provides naturally the anharmonicity required to rotate
the atoms faster than the trapping frequency xr at the bottom.

In the experiment at LPL,128 the atoms are placed in a quadru-
pole magnetic field of symmetry axis z dressed by a radio-frequency
(rf) field of maximum coupling X0 at the bottom of the shell. Here,
the equilibrium properties in the absence of rotation (X¼ 0) are well
known:127 the minimum of the trapping potential is located at r¼ 0
and z¼ z0, and around this equilibrium position, the potential is
locally harmonic with vertical and radial frequencies xz ¼ 2p
�356 Hz and xr ¼ 2p� 34 Hz without measurable in-plane anisot-
ropy. This trap is loaded with a pure BEC of 2:5� 105 87Rb atoms
with no discernible thermal fraction. This atomic cloud has a chemical
potential of l=�h ¼ 2p� 1:8 kHz, which is much greater than xr and
xz and well in the three-dimensional Thomas-Fermi (TF) regime.
In addition to the dressing field, a radio-frequency knife with

frequency xkn is used to set the trap depth to approximately xkn � X0

by outcoupling the most energetic atoms in the direction transverse to
the ellipsoid.129,130

In a frame rotating at frequency X, the effective dressed trap
potential is the usual trap described above with the addition of a
� 1

2 MX2r2 term taking into account the centrifugal potential. In this
frame, the atomic ground state consists of an array of vortices of quan-
tized circulation, each vortex accounting for �h of angular momentum
per atom. When only a few vortices are present, the velocity field dif-
fers strongly from the one of a classical fluid, but for a sufficiently large
number of vortices, the superfluid rotates as a solid body with a rota-
tion rate X. When X < xr , the equilibrium position remains on the
axis r¼ 0 at z¼ z0, and the only difference is a renormalization of the

radial trapping frequency: xeff
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

r � X2
q

. Of course, as this fre-

quency decreases, the trap anharmonicity becomes more important in
the determination of the cloud shape.

For X > xr , the trap minimum is located at a nonzero radius. In
this situation, a hole grows at the trap center above a critical rotation
frequency Xh,

131 leading to an annular two-dimensional density profile
[Fig. 9(a)], which we will refer to as a “dynamical ring.”128 Moreover,
the velocity of the atomic flow is expected to be supersonic,132 i.e.,
exceeding by far the speed of sound. For increasing X, one expects the
annular gas to sustain vortices in its bulk up to a point where
the annulus width is too small to host them. The gas should then enter
the so-called “giant vortex” regime132,133 where all the vorticity gathers
close to the center of the annulus.

The experimental sequence is the following: angular momentum
is injected into the cloud by rotating the trap with an ellipsoidal anisot-
ropy at a frequency X ¼ 31 Hz. The trap rotation is then stopped and
isotropy is restored. At this moment, which we take as t¼ 0, the cloud
shape goes back to circular with an increased radius due to its higher
angular momentum. An additional evaporation process, selective in
angular momentum, continuously accelerates the superfluid and
increases its radius.128 Due to this size increase, the chemical potential
is reduced and the gas enters the quasi-2D regime l 	 �hxz . After a
few seconds, a density depletion is established at the center of the
cloud which is a signature of X now exceeding xr. After a boost in
selective evaporation due to a lowering of the frequency of the rf knife,
a macroscopic hole appears in the profile, indicating that X is now
above Xh and that a fast rotating dynamical ring with a typical radius
of �30 lm has formed as can be seen in Fig. 9(b). The rotation keeps
increasing, and a ring is still observable after t ¼ 80 s. Rotational
invariance is critical in that regard and is ensured at the 10�3 level by a
fine tuning of the dressing field polarization and of the static magnetic
field gradients.111

A Thomas–Fermi profile convoluted with the imaging resolution
is much better at reproducing the experimental density profile than a
semiclassical Hartree–Fock profile, demonstrating that the samples are
well below the degeneracy temperature. Using the Thomas–Fermi
model, we can estimate the properties of the cloud. For example, the
ring obtained at t ¼ 35 s has a chemical potential of l=�h ’ 2p
�84 Hz and an averaged angular momentum per particle hL̂zi=N
’ �h� 317. Interestingly, the estimated peak speed of sound c
¼

ffiffiffiffiffiffiffiffiffiffi
l=M

p
’ 0:62 mm=s at the peak radius rpeak is much smaller than

the local fluid velocity v ¼ Xrpeak ’ 6:9 mm=s: the superfluid is,
therefore, rotating at a supersonic velocity corresponding to a Mach

FIG. 9. (a) Density contour (red annulus) for a BEC rotating at 1:06xr in the shell
trap (gray ellipsoid). (b) In situ integrated 2D density of a dynamical ring. Picture
size: 130� 130lm2. Reprinted with permission from Guo et al., Phys. Rev. Lett.
124, 025301 (2020). Copyright 2020, American Physical Society.

AVS Quantum Science ROADMAP scitation.org/journal/aqs

AVS Quantum Sci. 3, 039201 (2021); doi: 10.1116/5.0026178 3, 039201-11

VC Author(s) 2021

https://scitation.org/journal/aqs


number of 11. Moreover, due to the continuous acceleration of the
rotation, the dynamical ring radius grows gradually with time which
results in a decrease in the chemical potential and an increase in the
Mach number. For t > 45 s, the chemical potential is below 2�hxr and
the highest measured Mach number is above 18.

Superfluidity in the dynamical ring has also been evidenced by
the observation of quadrupolelike collective modes. After the ring for-
mation, the rotation rate, while accelerating, crosses a value where the
quadrupole collective mode is at zero frequency, such that any ellipti-
cal static anisotropy can excite it resonantly. A very small bubble
anisotropy is enough to excite this mode characterized by an elliptic
ring shape rotating with a period of approximately 10 s in the direction
opposite to the superfluid flow (Fig. 10). This counterpropagating
effect is not predicted by a mean-field theory and has been confirmed
by resonant spectroscopy of the quadrupole mode during the ring
acceleration.128

The persistence of superfluidity at such hypersonic velocity raises
fundamental questions about the decay of superfluidity in the presence
of obstacles, and how superfluidity can be preserved at such speeds:
nonlinear effects, the presence of vortices and the dependence on tem-
perature would be particularly interesting to study experimentally and
compare with theoretical predictions.134–138 This hypersonic superflow
is not yet a giant vortex, but it is an important step toward this long-
sought regime whose transition rotation frequency is not theoretically
clearly identified. Moreover, the well-known elementary excitation
spectrum for a connected rotating superfluid is strongly modified
when the ring appears, and the important discrepancies observed
between the experimental results and a mean-field theoretical
approach for a quadrupolelike collective mode highlight the need to
refine the description of fast rotating superfluids in anharmonic traps.

An alternative way of generating large angular momentum states
in rf-dressed adiabatic bubble potentials is to first generate them in a
TAAP ring and then reduce the vertical modulation, thus adiabatically
transferring the atoms into the bubble.

C. Trapping in rings with optical potentials

Potentials for ultracold atoms can be formed through the use of
focused far-detuned optical beams.139 Since the potential is directly
proportional to the intensity of the optical field, ring-shaped

condensates may be created through the implementation of ring-
shaped optical patterns. The most significant advantage in optical
dipole ring traps is the insensitivity to the hyperfine state, allowing
multicomponent and spinor BECs to be trapped. Additional advan-
tages include the imprinting of superfluid flow, either through phase
imprinting or through Raman transitions that can directly transfer
angular momentum to the cloud. The advent of spatial light modula-
tor technologies means the optical ring trap has become highly config-
urable, allowing more complex geometries to be generated.

1. Optical trapping

The light–matter interaction can be parameterized through the
complex polarizability, where the real part is associated with the dipole
trapping potential and the imaginary component results in the absorp-
tive scattering of photons. Trapping cold atoms requires that absorp-
tion is minimized to avoid scattering loss of atoms from the trap.
Defining D ¼ x� x0, the detuning of the trapping laser from reso-
nance, the scattering loss rate reduces as D�2 while the trapping poten-
tial reduces as D�1. Thus, sufficient detuning of the optical field will
result in an optical potential that is approximately conservative. The
potential arising for far-detuned dipole trapping light is given by

UdipðrÞ ¼
pc2

2x3
0

C
D

IðrÞ; (11)

where I(R) is the intensity profile of the light and C is the transition
linewidth. Since the trapping force is determined through the gradient
of Eq. (11), a trapping potential requires a nonuniform optical inten-
sity, obtained by shaping and focusing the intensity profile IðrÞ. Ring
traps, can either be created from attractive (red-detuned) or repulsive
(blue-detuned) light, usually by combining the ring shaped intensity
profile with a perpendicular light sheet that provides confinement
along the propagation direction of the projected ring pattern.

2. Optical ring traps

We begin by looking at some of the optical beam techniques for
ring traps that are in use and outline their potential for atomtronic
applications.

FIG. 10. (a) In situ evolution of a quadrupole deformation in the dynamical ring. The elliptical deformation is rotating against the supersonic flow. (b) Time evolution of the orien-
tation of the ellipse major axe.
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a. Laguerre–Gauss beams. One of the first proposed methods for
a ring optical dipole trap was the use of Laguerre–Gaussian (LG)
modes having circular symmetry.140 For far-off-resonance light, these
provide the spatial structure for a toroidal trap. An additional advan-
tage of such LG modes is that they also carry orbital angular momen-
tum. With pulses of near-resonant light, the LG modes can be tailored
to provide two-photon Raman transitions that transfer exact quanta of
circulation to the condensate.

The LG0N modes are typically generated by phase transformation
of a Gaussian TEM00 mode, which transforms the spatial profile of the
beam into a donut mode carrying N�h units of orbital angular momen-
tum. A number of methods exist, including spiral phase plates, com-
puter generated holograms, or through the use of phase based spatial
light modulators. The toroidal intensity profile of the LG01 mode is
given by141

ILG01ðrÞ ¼
4PLG01

pr0
2

r
r0

� �2

e�2r2=r2
0 ; (12)

where PLG is the total laser power in the LG beam and r0 is the radius
at the peak intensity of the LG mode. Correction for imperfections in

the spatial structure, and obtaining sufficient power in higher order
modes, is typically a challenge. Ring traps and circulating currents
using LG modes have been demonstrated in both single state and mul-
ticomponent spinor gases and were early demonstrations of all-optical
trapping of BEC in a ring geometry.67,142,143 To date, they have been
used to realize small optical rings for the study of quantized superfluid
flows.

b. Painted optical traps. An alternative to projecting a ring shaped
beam is to build a time-averaged potential with a moving, red-
detuned, focused laser beam. By rapidly steering a Gaussian beam in a
circular orbit, a ring trap can be generated. This is achieved through
the use of two acousto-optical deflectors (AOD) controlling the two
axes of the painting beam by driving the deflectors with lists of fre-
quency points that are repeatably iterated at high speed.7,32 This
approach was used to create the first ring BEC,7 as shown in Fig. 11.

The advantages of this technique is that it allows adapting the
intensity locally to create desired features in the potential landscape
and to flatten imperfections due to possible laser inhomogeneity;28 the
available laser power is used in an efficient way as only the relevant
trapping locations are illuminated; the painting laser itself can be used

FIG. 11. (a) A painted potential system in which a tightly focused rapidly moving red-detuned laser beam paints the desired potential on a horizontal light sheet providing vertical
confinement. (b) In-trap absorption images of BECs formed in painted potentials. The technique can create a BEC in any shape that can be drawn on a sheet of paper.
Reprinted with permission from Henderson et al., New J. Phys. 11, 043030 (2009). Copyright 2009, Author(s) licensed under a Creative Commons Attribution 3.0 License

AVS Quantum Science ROADMAP scitation.org/journal/aqs

AVS Quantum Sci. 3, 039201 (2021); doi: 10.1116/5.0026178 3, 039201-13

VC Author(s) 2021

https://scitation.org/journal/aqs


as a stirrer to set the quantum fluid into rotation and demonstrate
quantized superfluid flows;144 the technique also enables more com-
plex geometries. As an example, the atomtronic analog of a Josephson
junction has been demonstrated and used to realize a DC atomtronic
SQUID.12 More recently, the dynamic potentials possible with paint-
ing were used to show that the atomtronic SQUID exhibits quantum
interference.15

The painting approach also comes with specific technical con-
straints that may need to be addressed. The phase of the time-
averaged beam loop plays a role on the fine details of the potential,
which results in imprinting of the condensate phase, and has to be
compensated for.49 This is particularly relevant for the application of
such traps in atom interferometry schemes.

c. Conical refraction. A novel approach to generating ring traps
has been demonstrated with the use of conical refraction occurring in
biaxial crystals. A focused Gaussian beam passing along the optical
axis of the crystal transforms, at the focal plane, into one or more con-
centric rings of light. In the case of a double-ring, the light field enclo-
ses a ring of null intensity, called the Poggendorff dark ring.145 For a
blue-detuned laser field, the atoms are trapped between the bright
rings. The advantage of this configuration is that it minimizes sponta-
neous scattering of photons responsible for heating when the laser
beam is not very far detuned from resonance. Further advantages
include the high conversion efficiency of the incoming Gaussian beam
to the ring-trap light field and the access to different ring configura-
tions. The ring diameter is defined by the refractive indices of the biax-
ial crystal and its length. The width of each ring is given by the focal
waist of the focused Gaussian beam. A variation of the ratio of these
numbers (e.g., by changing the focal waist) allows for a variation of the
resulting light field topology from a single bright ring to a bright ring
with a central bright spot and further to bright double rings of increas-
ing diameter. As with LG modes, there are challenges in alignment of
the optical beams through the biaxial crystal. On the other hand, the
conversion efficiency from a Gaussian TEM00 mode to the ring pattern
can be close to unity. The first results on BECs transferred into a
Poggendorff ring have been reported.145 Ongoing work is directed
toward implementing quantum sensors (e.g., Sagnac interferometers)
for rings with large diameter and atomtronic SQUIDs for small rings.

d. Digital micromirror direct projection. Direct imaging of digital
micromirror devices (DMDs) has recently emerged as a powerful tool
for the all-optical configuration of BECs.9,73,146,147 Ring traps can be
created by directly projecting the DMD-patterned light onto a verti-
cally confining attractive light-sheet potential,9,146 similarly to Fig. 12,
or onto a vertically oriented accordion lattice.73 This can be accom-
plished using a relatively simple optical system, usually consisting of
an infinite conjugate pair. Due to the large magnification factors
required to reduce the DMD image to the typical 100 lm scale of the
BEC, the final element in the imaging system is typically an infinity
corrected microscope objective.9,146 DMDs may also be used in the
Fourier plane of the imaging system,72 where the DMD implements
an amplitude-only hologram. A detailed discussion of holographic
techniques is beyond the scope of this section, and the reader is
referred to more complete reviews of the subject.148

In Fig. 13, direct imaging of a DMD is used to create a ring trap,
along with a central phase-uncorrelated reference BEC. By introducing

a stirring barrier with the DMD, and circulating the barrier around the
ring, a 21-quanta persistent current results, corresponding to an angu-
lar momentum of �132 �h per atom. The winding number of the cur-
rent is visualized through interference with the reference central BEC
after a short 5 ms time of flight.149 The DMD technology can also be
used to phase imprint an azimuthal light gradient such that angular
momentum can be imparted to the atoms150 and a circulating current
created.151

e. Microfabricated optical elements. An approach combining flexi-
bility, integrability, and scalability can be based on the application of
microfabricated optical elements for the generation of complex archi-
tectures of dipole traps and guides.152 It draws its potential from the
significant advancement in producing diffraction-limited optical ele-
ments with high quality on the micro- and nanometer scale.
Lithographic manufacturing techniques can be used to produce many
identical systems on one subtrate for a scalable configuration.153 On
the other hand, state-of-the art direct laser writing gives high flexibility
in producing unique integrated systems and allows for fast

FIG. 12. (a) A typical optical ring trap configuration; the potential is formed at the
intersection of the vertically focused ring pattern and horizontal sheet beam. (b) In-
trap absorption image of a ring BEC formed in a 164 lm diameter time-averaged
optical potential with ðxq;xzÞ ¼ 2p ð50; 140ÞHz trapping frequencies. (c)
Expanded ring after 20 ms time of flight. The scale bar is 50lm.

FIG. 13. (a) A ring trap with a diameter of 100lm is created using a repulsive
DMD-patterned potential combined with an attractive horizontal sheet beam. By
using the dynamic control of the DMD, a stirring barrier is introduced into the ring
and then accelerated through 90�, before being removed from the ring. The result-
ing persistent current is imaged through interference with the central BEC in a short
time of flight, determining a net circulation quanta of N¼ 21.
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prototyping.154 Applications range from integrated waveguides and
interferometer-type structures155 to arrays of dipole-traps for quantum
information processing156 and single-atom atomtronics implementa-
tions.157 In combination with DMD-based control of the light field
(see Sec. III C 2 d), access to dynamic reconfiguration becomes pos-
sbile. Integrability is not limited to the generation of light fields for
dipole potentials but can be extended to the integration of light sources
and detectors or even complex quantum-optical systems such as an
entire magneto-optical trap.152

3. Imperfections in optical traps

Defects in the optical potential will influence the ability to sustain
superfluid flow without dissipation, or may introduce unwanted phase
perturbations on the condensate if the optical potential is time-
varying. We can gain some measure of the significance, and the level
of control required for optical traps useful in atomtronics, by consider-
ing the density of the BEC in a ring potential. In the Thomas–Fermi
limit, with sufficient atom number in the trap, the interaction energies
dominate over kinetic energy terms, leading to a simplified GPE
equation ½VðrÞ þ gjWðrÞj2�WðrÞ ¼ lWðrÞ, giving the density nðrÞ
¼ jWðrÞj2 ¼ ½l� VðrÞ�=g, where l is defined by Eq. (4). The density
occupies the spatial profile of the ring trap. In the context of the inten-
sity of the optical potential, assuming a fixed light sheet, the trap depth
scales directly scales with the ring optical intensity I0, while the chemi-

cal potential of the BEC more weakly follows as l / I1=4
0 . This means

that for a typical condensate, the chemical potential is on the order of
tens of nanokelvin, and is only weakly effected by the trapping inten-
sity, while large optical trap depths on the order of 1 lK or larger may
be easily achieved and utilized. Since the density of the condensate
closely follows the optical potential, small perturbations in the optical
field can result in significant fluctuations on at the energy scale of the
condensate, and thus significant density fluctuations; variations in the
optical intensity must typically be limited to less than 1% in order to
avoid unwanted perturbations. The precision of the optical projection
is thus a key consideration when implementing configurable optical
potentials. These aspects, however, also mean that the condensate den-
sity provides a very sensitive probe of the optical potential, and the
atom density can be used to feedforward corrections to the optical
potential.32

D. Hybrid traps: RF bubble plus light sheet(s)

One can also combine optical potentials and magnetic trapping
to produce a hybrid trap and exploit the advantages of each technique
for ring trap generation. As mentioned above, optical potentials can
achieve large trapping frequencies, while magnetic traps are very
smooth due to the macroscopic size of the coils generating them. The
bubble geometry described in Secs. III B 1 and III B 3 is particularly
suited to create a ring trap: by combining the rf-dressed bubble trap
and an optical light sheet as in Sec. III C 2, one can create a toroidal
trap. The principle is depicted in Fig. 14: a horizontal light sheet is
superimposed with a bubble trap which is rotationally invariant
around the vertical direction.100,158 The light sheet is designed to
achieve a strong optical confinement in the vertical direction, and the
radial confinement is ensured by the bubble trap itself, made with the
same rf-dressed quadrupole trap as in Sec. III B 3. Maximum radial

trapping and maximum radius will be attained if the light sheet is
located at the equator of the bubble, a situation which also ensures
maximum decoupling between the vertical trapping frequency xz and
the radial trapping frequency xr.

Experimentally, the optical trap is formed between two horizon-
tal light sheets, which are made repulsive by their large blue detuning
from the atomic transition. The bubble radius is significantly smaller
than the light sheets width and also the vertical Rayleigh length to
minimize the azimuthal potential variations. The choice of a small
radius also comes with a higher critical temperature and a larger
chemical potential, which reduces the relative density fluctuations
around the ring due to optical imperfections from residual light
scattering of the vacuum glass cell (see Sec. III C 2). One then creates
a trapped toroidal degenerate gas of approximately 105 atoms
[Fig. 14(b)]. With further reduction of optical imperfections in the
light sheets, one could enter with 104 atoms the quasi-1D condensate
regime,159 where large-scale correlations and solitons play an essential
role in the dynamics.

The gas can be set into rotation by different procedures, using
either magnetic or optical means. The first method, used in our experi-
ment in Ref. 160, consists in slightly deforming the bubble trap with
an ellipsoidal anisotropy, rotate this magnetic deformation at a given
fixed frequency and finally restore the circular symmetry. In a second
method (Fig. 15), the rotation is induced by a rotating optical
defect160,161 driven by a dual-axis acousto-optic modulator system as
described in Sec. III B 1. Well-controlled circulation could also be
imparted by direct optical phase imprinting onto the ring trap.150

Above some critical rotation frequency depending on the excita-
tion strength, one observes, after a time-of-flight imaging procedure, a

FIG. 14. (a) Principle of the ring trap based on the combination of a magnetic bubble
trap and two blue-detuned light sheets. (b) In situ image of the ring. The spot at the
center is not due to the presence of atoms inside the ring but only to optical diffrac-
tion from the ring.

FIG. 15. Time-of-flight images of (a): a nonrotating ring, (b) and (c): rotating rings
with different circulations. The rotation is imparted by a rotating 7lm-waist blue-
detuned vertical Gaussian beam.
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hole in the atomic distribution. The hole is absent when the ring is
nonrotating, and is, thus, evidence for a nonzero circulation of the
superfluid in the ring trap (Fig. 15). The hole area grows for increasing
rotation rates and shrinks with time when one lets the cloud rotate
freely in the trap. In future experiments, optical barriers created by
spatial light modulators could be imposed onto the ring and dynami-
cally modulated in height and position. This would create the equiva-
lent of Josephson junctions in superconductors and allow us to
simulate models of nonequilibrium quantum systems and emulate
new setups in mesoscopic superconductivity.16,28 This hybrid ring is
very promising for the study of 1D superfluid dynamics, for example,
shock waves induced by rotation in the presence of a static bar-
rier.162,163 Increasing again the ring confinement toward the one-
dimensional regime with fermionization of the atoms164 could lead to
NOON states more robust against decoherence.165

E. Concluding remarks and outlook

The development of technology for controlling electronic systems
and generating complex optical fields is giving ever greater control of
ultracold atoms and condensates of atoms. The ring trap remains of
particular interest because of the topology, the possibility for self-
interference, circuital currents, Sagnac interferometry and so on. In a
way, it is its own primitive atomtronic circuit. For optical ring traps,
painted optical potentials and digital micromirror devices have dem-
onstrated high level of configurability and dynamic control over the
condensate, allowing state-independent trapping, and the ability to
introduce junctions, moveable barriers into the atomtronic ring. The
ring systems based on RF dressed magnetic traps are also extremely
flexible because of the level of electronic control. Atoms can be acceler-
ated and rotated around ultrasmooth waveguides, simply by varying
or introducing additional control frequencies with time. The future
challenges for the technology, after this development, will be to create
particular atomtronic applications and test the limits of technology for
creating large scale structures and structures, which possibly have
some 3D features. In the future, we will undoubtedly see more control
complexity and more hybrid approaches. Where surface interactions
are less of a problem, we can also envisage atomtronic circuits based
on atom-chip technology, where rings, and complex guided circuits,
may be enabled by the design of wire structures and the fields they
produce from static and AC currents.
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IV. ATOMTRONIC CHIPS AND HYBRID SYSTEMS

C. Hufnagel, M. Keil, A. G€unther, R. Folman, J. Fortagh,
R. Dumke

During the last decade atom chip approaches to quantum technol-
ogy have become a powerful platform for scalable atomic quantum-
optical systems,104,105,166 with applications ranging from sensor and
imaging technologies to quantum processing and memory. Atom chips
coupled to solid state-based quantum devices, e.g., superconducting
qubits or nitrogen vacancy centers, are thereby paving the way for prom-
ising quantum simulation and computation schemes.167–169 Along this
research line, several groups around the world have developed versatile
atom chip configurations, which allow trapping of ultracold atomic
clouds and degenerate Bose-Einstein condensates (BECs) close to chip
surfaces and well-defined manipulation of their internal and external
degrees of freedom. Atom chips provide a very relevant technology for
the emerging field of atomtronics,5,30,105,170–173 for which dynamic
tunneling barriers are required.175,179 Such barriers may be formed on
atom chips with lm-scale widths, matching the length scale dictated by
the atomic deBroglie wavelength. The atom chip offers the ability to real-
ize guides and traps with virtually arbitrary architecture and a multitude
of novel architectures,176 with a high degree of control over atomic prop-
erties, like interactions and spin, enabling new quantum devices.5,105

Here we review progress in our groups in Beer Sheva, T€ubingen
and Singapore on recent developments in atom chip technologies.

A. Progress toward on-chip interferometry

The Ben-Gurion University of the Negev (BGU) Atom Chip
Group (http://www.bgu.ac.il/atomchip) is promoting the idea of atom-
tronics without light. This entails circuits for atoms based on electric
and magnetic traps, guides and tunneling barriers. The vision is for a
complete circuit, including particle sources and detection, that makes
no use of gravity, e.g., no time of flight for the development of interfer-
ence fringes. This requirement means that a future technological
device could work at any angle relative to gravity.

As a basis for this effort we use the Atom Chip technology devel-
oped over the past 20 years.105,166 An example of a circuit design we
plan to implement is a continuous-wave, high-finesse Sagnac interfer-
ometer, where the multiple turns enabled by the guiding potential
allow miniaturization of the loop while maintaining sensitivity to rota-
tion.174 In the following we briefly present some of the work that has
been done to advance the atomtronics technology.

To begin with, a stable tunneling barrier (in terms of instabilities
of tunneling rates) should be no wider than the de Broglie wavelength,
which is on the order of 1 lm. Since the resolution with which we can
tailor fields is on the order of the distance from the field source, one
must construct the atomic circuit at a distance of no more than a few
micrometers from the surface of the chip.175 At these very small atom-
surface distances, several problems must be avoided:

(1) Johnson noise. This is a hindering process as it may cause
spin-flips (reducing the trap/guide lifetime), as well as

AVS Quantum Science ROADMAP scitation.org/journal/aqs

AVS Quantum Sci. 3, 039201 (2021); doi: 10.1116/5.0026178 3, 039201-16

VC Author(s) 2021

http://www.bgu.ac.il/atomchip
https://scitation.org/journal/aqs


decoherence. In several papers we have shown ways to combat
both effects either by the geometry or by the choice of mate-
rial.84,175,177–179 We have also measured Johnson noise and cal-
culated its interplay with phase diffusion caused by atom-atom
interactions.170

(2) Finite size effects. As the atom-surface distance becomes
smaller, so should the current-carrying wire width, or else the
magnetic gradients will be severely undermined. Narrow wires
require high-resolution fabrication175 or thin self-assembled
conductors such as carbon nanotubes.179

(3) Casimir-Polder and van der Waals forces. As the atom-
surface distance becomes smaller, the magnetic barrier between
the atoms and the surface should be strong enough to avoid
tunneling of the atoms to the surface. This has been calculated
for submicrometer distances.175,179

(4) Fragmentation. Due to electron scattering in the current-
carrying wires (e.g., due to rough wire edges), the minimum of
the trap, or guide, is not smooth and the atomic ensemble may
split and exhibit a nonuniform density along the wire axis. This
was studied by us both experimentally and theoretically.180–182

(5) High aspect ratios. As the atom-surface distance becomes
smaller, the trap or guide exhibits much higher transverse fre-
quencies compared to the longitudinal frequency. This brings
about low dimensionality and can cause different problems
such as phase fluctuations in a 1D BEC. Alternative wire config-
urations allow more flexibility for adjusting the trap aspect
ratio.

In a proof-of-principle experiment183 we were able to avoid all
the above hindering effects, and showed that spatial coherence could
be maintained for at least half a second at an atom-surface distance of
just 5 lm.

Another important problem that needs to be overcome is that of
atom detection at very small atom-surface distances. At these distances
of a few micrometers, the stray light from the nearby surface makes it
very hard to achieve a reasonable signal-to-noise ratio for in situ detec-
tion with typical optical elements. As a solution, and also to avoid
on-resonance spin-flips and decoherence, we studied the possibility of
off-resonant atom detection with high-Q microdiscs.184–186

With the above tools we are now preparing to go forward with
our vision for a Sagnac circuit,174 where as a first stage we have the
goal of observing spatial coherence of atoms after one, and then sev-
eral, turns in a guiding loop. The guiding potential is made in two
alternative ways. The first method, using RF potentials, is being led by
Thomas Fernholz of the University of Nottingham. It requires multi-
layer chips (4 layers of currents), which are fabricated at BGU. Two
such layers are shown in Fig. 16. The second effort also requires a
unique chip. The guiding potential will be based on a repulsive perma-
nent magnet potential in combination with an attractive electric field
produced by a charged wire. The first experiments will be pulsed,
whereby a BEC will be loaded onto the loop at the beginning of every
cycle. Later on we will move toward realizing a continuous-wave ver-
sion. We will first conduct the experiment in the pulsed mode by load-
ing a thermal cloud, and later on use a 2D MOT as a continuous
source.

Finally, let us note that quite a few groups around the world have
realized free-space matter wave interferometry. It is now an important
challenge to adapt these interferometers to the framework of

atomtronics. Specifically, the BGU Atom Chip group has made signifi-
cant steps in this direction by realizing, in the last 5 years, several types
of novel interferometers which are not based on light. These interfer-
ometers are based on the magnetic splitting force (Stern-Gerlach) and
they have already enabled the observation of spatial fringes,187,188 spin
population fringes,189 unique T3 phase accumulation,190 clock interfer-
ometry,191,192 and the observation of geometric phase.193

B. Precision sensing

Precise sensors are one of the most important elements in applied
and fundamental science. The use of quantum properties in sensing
applications promises a new level of sensitivity and accuracy.194 Using
cold atoms on atom chips as probes will enable many interesting
applications.

In the laboratories at the University of T€ubingen we are working
with atom chips that host one or two layers of lithographically imple-
mented wire patterns. They allow the creation of spatially and tempo-
rally varying magnetic fields, as used for three-dimensional
positioning and manipulation of cold atomic quantum matter.195 We
typically use wire patterns made of gold in room temperature environ-
ments196 and superconducting patterns of Niobium in 4 K and mK
surroundings.197

With such a “carrier chip” for cold atoms on hand, we established
a dual-chip process, where a second chip hosting nanostructured solid
state systems is attached on top of the carrier chip.195 In this way, cold
atoms can be efficiently coupled to other quantum systems and hybrid
systems can be realized.

We have used this scheme to develop a novel cold-atom scanning
probe microscope (CASPM), which uses ultracold atoms and BECs as
sensitive probe tips for investigating and imaging nanoscale sys-
tems.198 Similar to an atomic force microscope (AFM), the probe tip is
scanned across the surface of interest, while static and dynamical prop-
erties of the probe tip are monitored. Evaluating changes within
the cold-atom tip density and motion then gives access to basic

FIG. 16. A multilayer current-carrying chip produced at BGU for a Sagnac experi-
ment, in co-operation with Thomas Fernholz and Peter Kr€uger at the University of
Nottingham. Concentric gold conducting rings (2lm thick, upper layer) are 70 lm
wide, with intervening gaps of 20–50 lm. The lower layer is also 2lm thick gold,
with a 3lm thick SU8 insulating layer planarized to better than 0:4lm. The entire
device’s outer diameter is 1.37 mm.
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interactions and serves as a novel imaging and sensor technique. In
contrast to conventional AFMs with their “heavy and rigid” solid state
tips, our CASPM uses a dilute gas of atoms, which not only allows for
nondestructive measurements, but also for much higher sensitivity to
external forces and fields. Inspired by conventional AFMs, we have
been able to demonstrate several modes of operation.199 These include
not only a contact mode, where we measure position-dependent losses
of the probe tip, but also a dynamic mode, where we initiate a center-
of-mass oscillation of the cold-atom tip and monitor the position-
dependent changes of the probe tip oscillation frequency.198 Based on
the latter, we have used cold-atom force spectroscopy to unveil anhar-
monic contributions in near-surface potentials. As in atomic force
microscopy, this may be used to reconstruct the surface potentials.
Moreover, we have developed a novel operation mode, not accessible
to conventional AFMs, where we bring the dilute probe tip into direct
overlap with the nano-object of interest. By measuring time-
dependent probe tip losses, we have then been able to deduce the
underlying van der Waals (Casimir-Polder) interactions.200,201 We
have demonstrated and characterized all different operating modes of
CASPM by measuring individual free-standing carbon nanotubes
grown on a silicon chip surface. Here we have shown that CASPM
extends the force sensitivity of conventional AFMs by several orders of
magnitude down to the yN regime, and the working distance up to
several micrometers.199 This makes CASPM a powerful tool for inves-
tigating fragile nano-objects with ultrahigh force sensitivity.

While first measurements with CASPM suffered from long mea-
surement times, we have just lately extended the microscope by a pow-
erful single atom detection scheme.202,203 It is based on continuous
subsampling of the probe tip via a multiphoton ionization process in
conjunction with temporally resolved ion detection and high quantum
efficiency. This allows real-time monitoring of the probe tip dynamics
and density while losing only few atoms from the probe tip.203,204 This
not only speeds up probe tip oscillation frequency measurements by at
least three orders of magnitude,203 but also enables new applications
for CASPM.

In one of these applications we proposed a quantum galvanome-
ter to detect local currents and current noise in nanoscale mechanical
quantum devices.205,206 Measuring the current noise would then give

access to the quantum properties of the device. We successfully dem-
onstrated the principal operating scheme of this galvanometer by
coherently transferring artificially generated magnetic field fluctua-
tions via a Bose-Einstein condensate onto an atom laser and investi-
gating its single-atom statistics.207,208 Employing second-order
correlation analysis, we could not only extract the microwave power
spectral density (current noise spectrum) but also the noise correla-
tions within the bandwidth of the BEC, which will give access to the
quantum noise properties of the current source. This will extend
CASPM to a promising quantum sensor, not only for detecting local
forces and force gradients, but also for currents as well as electric and
magnetic fields (AC and DC), including their specific noise spectra.

C. Cryogenic atom chips and hybrid quantum
systems

Atom chips made from superconducting circuits offer certain
advantages over normal metal devices. The coherence properties of
trapped atoms are improved by orders of magnitude due to reduction
of magnetic noise coming from the surface of the chip. Moreover,
superconductors can be operated in the mixed state, where vortices
can be used to generate self-sufficient atom traps. In addition to that,
working in cryogenic environments offers the possibility to interface
atoms with solid state devices to form hybrid quantum systems.84

Besides atom chip experiments in room-temperature environ-
ments, the group in T€ubingen also operates superconducting atom chips
with trapped BECs of rubidium atoms.197,209,210,214 As shown in Fig. 17,
condensates are routinely transferred into coplanar cavity structures211

and the measured coherence time between hyperfine ground state super-
positions reaches several seconds. Microwave dressing is used to suppress
the differential shift of state pairs with the “double-magic point” being
the optimum working point for quantum memories.212 We have success-
fully demonstrated coherent coupling of a hyperfine state pair through a
driven superconducting coplanar microwave cavity,213 which paves the
way for future cavity-based quantum gate operations.

In addition to manipulating ground-state atoms we have success-
fully implemented two-photon Rydberg excitation in a cryogenic envi-
ronment near the superconducting chip.215 We have developed
techniques for optical detection of Rydberg populations and

FIG. 17. Superconducting atom chip at the University of T€ubingen. (a) In vacuo trap setup with electromagnets for cold atom preparation (right) and cryostat with a supercon-
ducting chip at 4.2 K (left). (b) Photograph of the chip holder and the superconducting atom chip. (c) The chip features superconducting wire components for magnetic trapping
and positioning of atomic clouds and a coplanar microwave cavity. (d) Bose–Einstein condensate of 3 � 105 87Rb atoms in a 15ms time-of-flight image, released from the
superconducting atom chip. Reprinted with permission from Bernon et al., Nat. Commun. 4, 2380 (2013). Copyright 2013, Nature Publishing Group.
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coherences216 and measured the increased lifetime of Rydberg states in
cryogenic environments.215 In preparation for interfacing Rydberg atoms
with superconducting circuits, we have obtained high-resolution spectra
of rubidium Rydberg states in a field-free vapor cell as reference,217 and
in precisely controlled electrostatic fields218 near surfaces at room and
cryogenic temperatures. These studies add to our understanding of elec-
trostatic fields of surface adsorbates that build up during experiments
with cold atoms at chip surfaces.88,219,220 Based on the measured data,
quasi-classical quantum defect theory,221 Stark-map calculations,218 suit-
able dressing techniques,212,222 and numerical methods developed for
simulating quantum operations in the presence of thermal cavity pho-
tons,89 we are currently focusing on the coherent manipulation of
Rydberg atoms and quantum computation schemes in the presence of
inhomogeneous fields at the surface of superconducting coplanar cavities.

The realization of hybrid quantum systems based on atoms and
superconducting qubits requires truly cold temperatures in the 10 mK
range, as dictated by the otherwise fast decoherence of the supercon-
ducting qubit. The great advantage is that at this temperature the num-
ber of microwave photons in the cavities that mediate the interaction
between the solid state and the atomic system is near zero. The price to
pay is a highly complex experimental system combining cold-atom
technologies with a 3He/4He dilution refrigerator.223,224 Our dilution
refrigerator consists of several temperature-shielded volumes (stages), of
which we use the 6 K-stage and the 1 K-stage for cold atom experi-
ments. The 1 K-stage includes a cold plate with a nominal base temper-
ature of 25 mK.209 We routinely operate a magneto-optical trap at the
6 K-stage, from which we transport magnetically trapped, ultracold
rubidium clouds at 100 lK to the 1 K-stage. The 1 K-stage has a suffi-
ciently large volume (several liters) to accommodate microwave cavities,
such as coplanar waveguide cavities, and has convenient optical access
for optical traps and laser beams for spectroscopic measurements. This
experimental setup is currently being extended for studying the fully
quantum regime of cold-atom superconductor hybrid systems.

In the Singapore group we are working in two directions. One is
the exploration of superconducting atom chips using high-temperature
superconductors and another is the development of coherent interfaces
between superconducting circuits and ultracold atoms.

High temperature superconductors have various distinct proper-
ties when implemented as atom chips. First of all, the technical

demands are lower due to the higher working temperatures, which
can be reached with liquid nitrogen instead of liquid helium.
Moreover, high temperature superconductors are type-II supercon-
ductors and allow the storage of magnetic fields in the remanent state.
We have shown experimentally and in simulations, that these trapped
fields can be used to generate novel traps for ultracold atoms.225,226

Ramping a magnetic field perpendicular to a planar structure of
YBCO we were able to generate various magnetic traps for cold atoms
[see Fig. 18(a)].227 These traps can be generated either by using exter-
nal magnetic fields together with vortices or in a completely self-
sufficient way, where the trap is solely created by vortices. In the latter
case, low noise potentials can be generated, as there is no technical
noise coming from external power sources and the noise coming from
the movement of vortices is expected to be an order of magnitude less
than Johnson noise in normal conductors.84

Another property of vortices in superconducting thin films is
that their distribution can be manipulated with light. Heating parts of
the superconductor will result in a force on the vortices, which shifts
the position of the vortices and consequently changes the vortex distri-
bution. We have used this effect to generate various trap patterns with
a thin square of superconducting YBCO, using light patterns generated
by a spacial light modulator.228 The advantage of this technique is that
multiple trap geometries can be generated with the same chip architec-
ture in-situ, without the need of changing the chip and breaking the
vacuum of the ultrahigh vacuum chamber.

Aside from using superconducting chips exclusively to manipu-
late cold atoms, we are also working on interfaces between cold atoms
and superconducting qubits fabricated on the superconducting chip.
What we envision here is the coherent transfer of quantum states
between cold atoms and qubits made of superconducting integrated
circuits. These hybrid systems will have many application, like the
transduction of quantum states between the microwave and optical
regime or the creation of universal quantum computing devices.

As mentioned before in this article, the practical implementation
of a hybrid atom-superconducting qubit system is technically chal-
lenging. In Singapore we decided to bring cold atoms inside the dilu-
tion refrigerator by magnetically transporting them from a room
temperature vacuum chamber directly to the mK stage of the refrigera-
tor. With this technique we are able to bring clouds of 5� 108 87Rb

FIG. 18. (a) Image of a thermal atomic cloud of 103 87Rb trapped in a self-sufficient quadrupole magnetic trap generated by vortices on a 1 � 1 mm2 square of superconducting
YBCO (National University of Singapore). The lower part of the image shows a mirror image of the cloud, caused by the reflection of the imaging beam from the chip surface.
Reprinted with permission from Siercke et al., Phys. Rev. A 85, 041403 (2012). Copyright 2012, American Physical Society. (b) Setup for a hybrid quantum system of
atoms and superconductors. The image shows a transmon qubit fabricated on a silicon substrate. Inset: the transmon installed in a 3D microwave cavity. The cavity allows to
read-out and manipulate the transmon with RF radiation. In the future, we plan to bring atoms into the cavity to form a hybrid quantum system.
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atoms close to the mK stage, at a base temperature of 70 mK.224

Trapped inside the mK stage, the atomic cloud exhibits an exceptional
lifetime of 13 minutes, which is a promising starting point for future
experiments.

In order to couple atoms and superconducting circuits a few sce-
narios are possible, which can be categorized in indirect and direct
coupling. Also, the state of the atoms, i.e., ground state or highly
excited (Rydberg), will have a significant influence on the experimental
parameters. When indirectly coupled, the qubit and atom are individ-
ually coupled to a resonator, which mediates the interaction. In this
case the coupling of the resonator to the qubit is easily implemented
and can reach the strong coupling regime. Coupling ground state
atoms to a planar resonator is an ambitious task. It was shown that the
coupling strength of a single atom is only 40 Hz at a resonator-atom
distance of 1 lm.229 In order to reach strong coupling one conse-
quently needs to collectively couple an ensemble of 106 atoms to the
waveguide, which is experimentally challenging. Using Rydberg states
can considerably relax these requirements. We have shown that for
Rydberg states strong coupling can be achieved with even a single
atom.90,230 The strong coupling can even be reached with atom-
resonator distances of tens of micrometers, when using the fringe field
of the capacitive part of the resonator to couple the atom.

When using Rydberg atoms, even directly coupling of atoms to
charge qubits can be realized. A neutral atom placed inside the gate
capacitor of a charge qubit acts as a dielectric medium and affects the
gate capacitance, resulting in a modulation of the charge-qubit energy
bands. Moreover, the local quasi-static electric field strongly depends on
the charge-qubit state, leading to different DC Stark shifts of atomic-
qubit states. We have shown that in such a setup quantum states can be
transferred between the two qubits and CNOT and Hadamard gates can
be realized.231 Schemes for Rydberg atoms interacting with flux qubits
have been theoretically proposed to realize quantum memories.232

We think that we now have the tools at hand to interface cold
atoms with superconducting circuits. In the near future we would like
to first couple atoms to 3D transmons, see Fig. 18(b). For this we
designed and tested superconducting 3D cavities that have free space
access for the transport and optical manipulation of cold atoms. First
experiments to transport atoms inside the cavity are under way. At the
same time we are developing our own fabrication for superconducting
qubits. First chips have already been fabricated and tested. With both
systems at hand we can then go forward to build hybrid systems of
cold atoms and superconducting circuits.

D. Concluding remarks and outlook

In this review we have described applications of atom chips in
atomtronics, precision sensing and quantum information. We illus-
trated the state of the art in these topics and touched upon future pros-
pects and utilizations. In this zoomed-in view, we omitted many other
excellent activities in the field, due only to unavoidable space limita-
tions. Here, we would like to bring up other achievements that will
shape the future of the atom chip platform.

Most of the experimental studies described above used bosonic
rubidium atoms. In fact, many other species, like fermions, molecules
and ions are used in atom chips.105 Fermions are another one of the
fundamental building blocks of matter and therefore highly interesting
objects to study, including low dimensional physics, the interaction of
fermions with different species, or spin physics.233

Molecules, as the bridge between physics and chemistry, are an
additional compelling candidate for many studies. Implementations
range from fundamental science, like the measurement of the electric
dipole moment and parity violation, to applied science in quantum
processing. A “Lab on a Chip” for molecules is thus a sought-after
goal. Recently, the trapping of simple molecules on microchips was
realized,234,235 opening the way for many interesting investigations.

Trapped ions are one of the most promising candidates for prac-
tical quantum computing. In order to control and measure a large
number of ions it will be necessary to fabricate surface-electrode traps
on miniaturized microchips. The development and integration of these
chips is currently ongoing and will be a major part in the future devel-
opment of scalable quantum computer architectures with ions.236

Using the wave nature of atoms, atom chips will in future be used
as precise sensors for material research and fundamental science. So-
called “quantum gas microscopes” have been developed for room-181

and cryogenic237-temperature environments and are ready to be used
in the nontrivial studies of unique materials. At the same time, matter
waves are being employed for precision measurements in atomic inter-
ferometers. By analogy to the optical interferometer, the splitting and
recombination of matter waves on atom chips are, for instance, being
used to test theories in quantum thermodynamics,238 quantum many-
body physics,239 and find applications in gravitational sensing.240

Intimately connected with precision sensing is the field of funda-
mental science. Many studies will be possible with atom chips, includ-
ing tests of the Weak Equivalence Principle,241 interactions of
antihydrogen with matter and gravity,242 non-Newtonian gravity, and
the search for a fifth fundamental force.

All these examples show that atom chip technology has a bright
future ahead. Combined with further integration and miniaturization,
atom chips will play a role in many areas, both in fundamental
research, as well as practical measurements.
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V. QUENCH DYNAMICS OF INTEGRABLE MANY-BODY
SYSTEMS

N. Andrei, C. Rylands

The study of nonequilibrium quantum physics is currently at the
intellectual forefront of con- densed matter physics. One-dimensional
systems in particular provide an exciting arena where over the last
decade significant advances in experimental techniques have allowed
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very precise study of an array of nonequilibrium phenomena and
where a number of powerful theoretical tools were developed to
describe these phenomena. Here we give a brief account of a few sys-
tems that are described by one dimensional integrable Hamiltonians,
the Lieb-Liniger model and the Heisenberg chain and how integrabil-
ity gives access to the study of some of their local and global nonequi-
librium properties.

While the principles of equilibrium statistical mechanics are well
understood and form the basis to describe a variety of phenomena,
there is no corresponding framework for the nonequilibrium dynam-
ics, although efforts to fully understand the underlying principles
extend back to Boltzmann and beyond. Solving particular models
numerically or analytically and comparing to experiments may illumi-
nate bits of the puzzle.

Here, is an extended version of talks given by the first author at
Atomtronics 2019 at Benasque where some aspects of the questions
were discussed. It is based on a review article243 written with Colin
Rylands and builds on work carried out with several collaborators:
Deepak Iyer, Garry Goldstein, Wenshuo Liu, Adrian Culver, Huijie
Guan and Roshan Tourani to whom we are very grateful for many
enlightening and useful discussions.

A. Quench dynamics

A convenient protocol to observe a system out of equilibrium is
to prepare it in some initial state jUii, typically an eigenstate of an ini-
tial Hamiltonian Hi, and then allow it to evolve in time using another
Hamiltonian, H for which jUii is not an eigenstate.244–246 One then
follows the correlations of local observables,

hUij eiHt fO1ðx1ÞO2ðx2Þ � � �g e�iHt jUii (13)

as they evolve. One may be interested to know what new properties
characterize the system, whether a dynamical phase transition occurs
at some point in time247 or how its entanglements evolve. A particu-
larly important question that arises in this context is whether the sys-
tem thermalizes. Namely, can the system act as a bath to a small
subsystem, here the small subsystem is the segment that contains the
local operators OjðxjÞ. In the long time limit (to thermalize it is neces-
sary that vt 
 L where L is the size of the system, and v a typical
velocity) one needs to show

lim
t!1
hUij eiHt fO1ðx1ÞO2ðx2Þ � � �g e�iHt jUii

¼ Tr e�bHfO1ðx1ÞO2ðx2Þ � � �g=Z (14)

with the final inverse temperature b determined by the initial energy,
E0 ¼ hUijHjUii ¼ Tr e�bHH=Z.

Also global properties are of interest. These are commonly stud-
ied via the Loschmidt amplitude (LA), the overlap between the initial
state with its time evolved self, conveniently expressed using a com-
plete set of energy eigenstates, jni:

GðtÞ ¼ hUi je�iHt jUii ¼
X

n

jhn jUiij2e�iEnt (15)

and its Fourier transform,

PðWÞ ¼
ð1
�1

dt
2p

eiWtGðtÞ ¼
X

n

dðW � EnÞjhnjUiij2; (16)

which measures the work distribution done during the quench.248

B. Evolution under integrable Hamiltonians

We shall consider evolutions effectuated by post-quench
Hamiltonians that are integrable, namely Hamiltonians admitting a
complete set of eigenstates jni and eigen-energies En given by the
Bethe ansatz. The ability to obtain these follows from the existence of
an infinite set of local charges, fQn; n ¼ 1…1g, that commute with
the Hamiltonian and constrain the time evolution leading to a general-

ized Gibbs ensemble e�
P

n
bnQn with the final inverse temperatures bn

determined by the initial values q0
n ¼ hUijQnjUii.249

Thus some features of integrable time evolution are nongeneric.
It turns out however that many features observed in integrable models
can also be observed when integrability is broken. An example is the
“dynamical fermionization” of repulsively interacting bosons in the
integrable Lieb-Liniger Hamiltonian, discussed below. We showed this
feature can be also observed in the bose-Hubbard model, the lattice
version of the Lieb-Liniger model, which is not integrable.250 Further,
many systems, in particular ultracold atom systems, are actually
described by integrable Hamiltonians and can therefore be studied as
such. Here we discuss two of them.

1. The Lieb-Liniger model

The model describes systems of ultracold gases of neutral bosonic
atoms moving in one dimensional traps and interacting with each
other via a local density interaction of strength c which can be repul-
sive c> 0 or attractive c< 0. Aside from being an excellent description
of the experimental system, it is one of the simpler Hamiltonians for
which there exists an exact solution via Bethe ansatz. The Lieb-Liniger
Hamiltonian reads

H ¼ �
ð

dx W†ðxÞ @
2
x

2m
WðxÞ þ c

ð
dx W†ðxÞWðxÞW†ðxÞWðxÞ (17)

(setting �h ¼ 1). Here W†ðxÞ; WðxÞ create and annihilate bosons of
mass m. The exact N-particle eigenstate is given by251,252

jfkjgi ¼
ð

dN x
YN
i;j¼1
i<j

hðxi � xjÞ þ sðki; kiÞhðxj � xjÞ
� �

�
YN
l¼1

eiklxl W†ðxlÞj0i: (18)

Here sðki; kiÞ ¼ ki � kj þ ic=ki � kj þ ic
� �

¼ eiuðki�kjÞ is the two par-
ticle scattering matrix, uðkÞ ¼ 2arctanðk=cÞ is the phase shift. The sin-
gle particle momenta kj are unrestricted in the infinite volume limit
while with periodic boundary condition on a line segment L they must
satisfy the Bethe ansatz equations: kiL ¼

PN
j¼1 uðki � kjÞ þ 2pni,

with the integers ni being the quantum numbers of the state. The
single particle momenta are related to the conserved charges by
qn ¼

PN
j¼1 kn

j , in particular the energy is given by, q2 ¼ E ¼
PN

j¼1 k2
j .

This set of eigenstates allows the study of time evolution through
the partition of the unity, 1N ¼

P
k1;…;kN

jfkjgihfkjgj=NðfkjgÞ
� �

.
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Here NðfkgÞ ¼ det½djkðLþ
PN

j¼1 u0ðkj � klÞÞ � u0ðkj � kkÞ� is a
normalization factor.

In terms of the partition identity, the time evolved wavefunction
is given by,

jUðtÞi ¼ e�iHt jUii

¼
X

k1;…;kN

e
�itð
PN

j¼1
k2

j ÞjfkjgihfkjgjUi i (19)

with the initial state jUii encoded in the overlaps hfkjgjUi i. These
overlaps have been studied by many groups, e.g.253 and are typically
very difficult to calculate. Once these overlaps are known they can be
put in exponential form and combined with matrix elements of a given
operator to yield a quench action which is typically evaluated in the
saddle point approximation.254

Beyond overlaps: One may get around the difficulty of comput-
ing overlaps by choosing an alternate form of the partition identity
obtained by exchanging the ordering in momentum space for ordering
in coordinate space leading to the Yudson representation of the parti-
tion of the unity,255,256 or equivalently choosing appropriate trajecto-
ries for integrating over the momenta, see250

1N ¼
X

k1;…;kN

jfkjgiðfkjgj
NðfkjgÞ

: (20)

Here we have introduced the notation jfkjgÞ (notice the parenthesis
replacing the ket) to denote the Yudson state,

jfkjgÞ ¼
ð

dN x hð~xÞ
YN

l

eiklxl W†ðxlÞj0i (21)

with hð~xÞ denoting a Heaviside function which is nonzero only for the
ordering x1 > x2 > � � � > xN . The Yudson state is simpler to work
with than the full eigenstates of the model and its overlaps with the ini-
tial state can be readily calculated, particularly if the initial state is
ordered in coordinate space.

The domain wall initial state: As an example we consider an ini-
tial state in the form of a domain wall and quench it with c> 0 Lieb-
Liniger Hamiltonian. Its time evolution can be studied analytically and
several interesting phenomena will be shown to emerge:

• Nonequilibrium Steady state (NESS)
• RG flow in time
• Evolution along space-time rays
• Hanbury Brown-Twiss effect
• Dynamical fermionization

The initial state, as depicted in Fig. 19, consists N cold atom
bosons held in a very deep optical lattice of length L with N; L!1
and d ¼ L=N held fixed. The lattice site �xj ¼ jd; j ¼ �1;…;�1;
0; 1…þ1, are filled with one boson per site in the left half of the lat-
tice: j¼�1 to j¼ 0, and none in the half to the right,

jUii ¼
ð

dN x
Y0

j¼�1

x
2p

	 
1
4

e�x=4ðxj��x jÞ2W†ðxjÞj0i: (22)

The quench consists of suddenly releasing the trap and allowing the
bosons to interact and evolve under the Lieb-Liniger Hamiltonian.

Time evolving the system and using the Yudson representation we
find,

jUiðtÞi ¼
8p
x

	 
N
4 X

k1;…;kN

e
�
PN

j¼1
1=x 1þixtð Þk2

j þikj�x j½ �

NðfkjgÞ

�����fkjg
+
: (23)

When the lattice is removed the gas expands and the particle density
will become nonzero between the lattice sites and also to the right of
the domain wall. In the vicinity of the domain wall particles will begin
to vacate the left hand side of the system and populate the right hand
side, see Fig. 20. The effects of this quench can only be felt within a
“light-cone” centered at the edge and determined by a finite effective
velocity, veff which depends upon x. On the right, x
 veff t the den-
sity will remain zero while to the left, x��veff t, the average density
will remain 1=d - the effects of the quench are still felt as the initially
confined bosons will expand and begin to interact with each other.

We first examine the local portion of the quench around the
domain wall. Since to the left there is an infinite particle reservoir and
to the right an infinite particle drain the system will never equilibrate,
however at long times a nonequilibrium steady state (NESS) consisting
of a left to right particle current is established. This can be investigated
by computing the expectation value of the density qðx; tÞ
¼ hUiðtÞjW†ðxÞWðxÞjUiðtÞi. Utilizing the known formulae for the
matrix elements of the density operator with Bethe eigenstates257 this
can be calculated exactly. To the right of the domain wall, at long times
and to leading order in 1=cd three regions emerge:256

FIG. 19. The domain wall initial state: A cold atom gas is held in the left part of a
deep optical lattice, extending from j¼ –1 to j¼ 0. This is then removed and the
gas is allowed to expand. The system is open—its size is large compared to time
of evolution.

FIG. 20. At long times, a nonequilibrium steady state (NESS) is established as
depicted on the right. Measuring the density at x¼ x0 one will see the initial density
q0 change to the crossover regime qCross at intermediate times ending up as time
and space independent value qNESS which encodes the interaction and the initial
quench. Reprinted with permission from Rylands and Andrei, Annu. Rev. Condens.
Matter Phys. 11, 147–168 (2020). Copyright 2020, Annual Reviews.
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qðx; tÞ ¼

qNESS ¼
1

2d
� 4p

cd2 ;
1ffiffiffiffi
x
p � x� veff t

qCrossðxÞ ¼
1
d

f þ 16

pcd2 e� x2=rð Þ x
ffiffiffi
p
pffiffiffi
r
p f � 1

2
e�2 x2=rð Þ þ p

2
f ð1� f Þ

" #
; x � veff t

q0 ¼ 0; x
 veff t;

8>>>>>><
>>>>>>:

(24)

where f ¼ f ðx; tÞ ¼ 1
2 erfcðx=

ffiffiffiffiffiffiffiffi
rðtÞ

p
Þ and rðtÞ ¼ t2x=2þ 2=x. Far

to the right x 
 veff t we see that the density vanishes while closer to
the light-cone some complicated crossover behavior occurs. Since the
model is Galilean rather than Lorentz invariant the light-cone is not
sharp giving instead this crossover regime. Most interesting is the
region deep inside the light-cone in which the density becomes inde-
pendent of x, t, signifying the appearance of the NESS,
Nonequilibrium Steady State. We note that the particle density in this
regime, qNESS ¼ 1=2d� 4p=cd2, is reduced as compared to the equi-
librium value, qEQL ¼ 1=2d, the value a closed system would have
reached after a quench from a domain wall state. This is a nonequilib-
rium effect of an open system which allows the bosons to expand fur-
ther to the right in response to the repulsive interactions among the
bosons. It follows from the order of limits with the size of the system L
satisfying L
 vt, to be contrasted with the behavior in a closed sys-
tem, with the opposite order of limits. Within this region all local
properties of the system can be calculated by taking the expectation
value with respect to this NESS, hOðx; tÞi ¼ hWNESSj OjWNESSi where
jWNESSi can be determined by taking the appropriate limit of (23).

On the left portion of the lattice x� �veff t we are outside the
light-cone, the system is unaffected by the domain wall portion of the
quench and the lattice translational invariance is restored. At long
times the density within this region is

qðx; tÞ ¼ 1
d

1þ
X1
s¼1

e�rðtÞ p2s2=d2ð Þ cos
2psx

d

� �" #
; (25)

which describes small oscillation about a uniform density of 1=d.
This result coincides with what one would expect for a quench

from a lattice initial state of the Tonks-Girardeau (TG) gas, the c!1
limit of the LL model. To understand this one should go beyond the
density and compute the normalized noise correlation function
C2ðx; x0Þ ¼ q2ðx; x0; tÞ=qðx; tÞqðx0; tÞ � 1 where

q2ðx; x0; tÞ ¼ hUiðtÞjW†ðxÞWðxÞW†ðx0ÞWðx0ÞjUiðtÞi: (26)

This correlation function is related to the Hanbury Brown-Twiss effect
and will detect the nature of the interactions between particles, a peak
indicating bosons while a dip indicates fermions.258,259 Computing the
noise correlation function q2ðx;�x; tÞ by inserting two copies of the
identity and evaluating the integrals at long time by saddle point
method260 one finds it becomes a function only of the ray variables
n ¼ x=t (measured with respect to n0 ¼ x0=t see Fig. 20). For suffi-
ciently long times n � 0 a distinct fermionic dip is seen for arbitrary
c> 0 while c¼ 0 shows a bosonic peak, the turn over to the dip occur-
ring on the time scale, t � c�2, see Fig. 21. This turn over results from
an increase in time of the effective coupling constant c - starting from
any initial repulsive value it will flow to strong coupling in the long

time limit.261,262 This follows elegantly from the Yudson representa-
tion of the time evolving wave function:260 rewriting the dynamic
factor in Eq. (18), hðxi � xjÞ þ sðki; kiÞhðxj � xjÞ, as ki � kj

�ic sgnðxi � xjÞ=ki � kj � ic, we note it tends to sgnðxi � xjÞ upon
rescaling k2

j t ! k2
j . Therefore, the product of bosonic fields with the

dynamic factors,
Q

i<j signðxi � xjÞ
Q

j W
†ðxjÞ, behaves fermionically.

The physical argument underlying the mathematical manipulations is
also simple. In the long time limit only the slow bosons remain around
x; x0 in the noise correlation function q2ðx; x0; tÞ and they interact via
the effective S-matrix Sij !�1. The system in the long time limit will
then behave as if it consisted of noninteracting fermions. This dynami-
cal fermionization, the development of fermioniclike correlations, was
subsequently observed in experiment both in the integrable Lieb-
Liniger system (the Weiss group 2020) and previously in the corre-
sponding lattice version, the Bose-Hubbbard model (the Greiner
group 2015).263

The flow of the coupling naturally leads to the concept of
renormalization group (RG) flow in time t. By analogy with conven-
tional RG ideas, increasing time plays the role of reducing the cut off
with c ¼ 1 being a strong coupling fixed point. For comparison we
recall that in the usual RG picture c has scaling dimension 1 and so
also flows to strong coupling. Subsequently, similar behavior was also
seen in strongly coupled impurity models.264,265 Extending the dynam-
ical RG analogy one can envisage that other Hamiltonians close to the
Lieb-Linger will flow close the neighborhood of the same strong cou-
pling fixed point, prethermalize in other words, only to end up ther-
malized on longer time scales if the model is not integrable, see Fig. 22.
An example is provided by the lattice version of the Lieb-Liniger

FIG. 21. The noise correlation function C2ðn;�nÞ, as a function of n ¼ x=s at long
times for a quench from a lattice like initial state. For arbitrary values of c> 0, with
d fixed, the system develops a distinct fermionic dip at the origin. Reprinted with
permission from Iyer et al., Phys. Rev. A 87, 053628 (2013). Copyright 2013,
American Physical Society.
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model, the nonintegrable Bose-Hubbard model which also exhibits
dynamical fermionization.250

We turn now to study the global properties of the post quench
system through the Loschmidt amplitude (15) and the work distribu-
tion function (16) focusing on the experimentally relevant case of a
cold atom gas initially held in a deep optical lattice which is then
removed entirely in the quench, see Fig. 23. The system is translation-
ally invariant and described by the Lieb-Liniger model.

We consider N bosons on a circle of length L initially described
by the state (22) with N consecutive sites filled, with Nd� L so that
the unfilled part of the lattice is taken to be much larger than the filled
portion to avoid complications arising from the boundary conditions.
Employing the Yudson resolution of the identity, the Loschmidt
amplitude can be determined to be,266

GðtÞ ¼ 8p
x

	 
N=2 X
n1;…;nN

e
�2=x 1þiðx=2tÞ½ �

PN

j¼1

k2
j GðfngÞ
NðfngÞ ; (27)

where GðfngÞ ¼ det½e�ikjð�x j��x kÞ�ihðj�kÞuðkj�kkÞ� and hðj� kÞ is a
Heaviside function. Using the same 1=cd expansion as before the
Fourier transform of this can be explicitly found and analytic expres-
sions for the work distribution, PðWÞ obtained. We plot this for both
noninteracting and strongly interacting bosons cd
 1 in Fig. 24 for
different particle number and see some commonalities as well as strik-
ing differences. Notice that the average work in both cases is the same,
hWi ¼ Nx=4 as is the large W > hWi behavior. The former state-
ment can be understood from the fact that bosons are initially in non-
overlapping wavefunctions and hWi ¼ hW0jHjW0i. In comparison,
the small W � hWi behavior is strongly affected by the presence of
interactions. Large resonant peaks are present in the interacting work
distribution and can be attributed to the scattering of strongly repul-
sive excitations in the post quench system. Those peaks which are clos-
est to hWi involve fewer scattering events while those W¼ 0 involve
more. As the particle number is increased these fluctuations are
suppressed like 1=

ffiffiffiffi
N
p

.267,268 For large systems of bosons the most
interesting behavior therefore occurs in the region of W � 0 where
the effects of the interaction are most keenly felt. In this region it can
be shown that the distribution decays as a power law with the expo-
nent drastically differing between the free and interacting cases. For
the former we have Pc¼0ðWÞ �WN=2�1 whereas in the latter it is
Pc>0ðWÞ �WN2=2�1, the presence of interactions in the system caus-
ing a dramatically faster decay of the work distribution. Behavior such
as this will be seen in Sec. V B 2 also when the excitations are gapped
as well as interacting.

We can use our knowledge of PðWÞ to investigate the global
behavior of the post quench system. As a consequence of the large W
agreement between the distributions for the interacting and noninter-
acting systems we can determine that at short times jGðtÞj2 is inde-
pendent of the interactions. This corresponds to the initial period of
expansion from the lattice in which the particles do not encounter one
another. On the other hand, small W behavior provides insight to the
long time dynamics, the power law decay of PðWÞ near the origin
translating to the long time power law decay of the LE. Fourier trans-
forming the distribution for free bosons we find that as t !1;
jGðtÞj2 ! 1=tN while in the interacting case we have instead
jGðtÞj2 ! 1=tN2

, a much faster decay. We attribute this dramatic dif-
ference in the decay away from the initial state to the fact that the large
repulsive interactions acting on each other forcing them to spread out
into the one dimensional trap, thereby decreasing their overlap with
jWii. We should note that this is true regardless of the strength of the
interactions and highlights the strongly coupled nature of even weakly
interacting systems in low dimensions. As we saw earlier, in the long
time limit any repulsive coupling flows in time strong coupling,

FIG. 22. Prethermalization in the Bose–
Hubbard model. Reprinted with permission
from Iyer et al., Phys. Rev. A 87, 053628
(2013). Copyright 2013, American
Physical Society.

FIG. 23. The ultracold atom gas is initially held in a deep optical lattice which is (a)
completely removed—post-quench dynamics described by the Lieb–Liniger
Hamiltonian or (b) merely lowered—the postquench dynamics given by
Sine–Gordon Hamiltonian. Quench (b) is discussed in Ref. 269.
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therefore the exponent is independent of the initial strength of c, in the
TG limit (c ¼ 1) one finds the same power law behavior at long
times as for the finite c case. This is the dynamical fermionization dis-
cussed in Sec. V A.

The attractive regime is of significant interest. The properties of
the attractive model both in and out of equilibrium are much less stud-
ied than its repulsive counterpart. This dearth of theoretical results
stems from the increased complexity of the Bethe ansatz solution in
the attractive model. When c< 0 the model supports bound states and
the ground state consists of a single bound state of all N particles.270

While the eigenstates given by (18) remain valid, complex values of k
which correspond to bound states are allowed. The resolutions of the
identity (20) also remains formally valid provided these complex val-
ued solutions are accounted for. A stumbling block however remains
as the normalization of the Bethe states in the attractive regime is not
known in closed form.

In the low density limit however it has been shown that for both
repulsive and attractive interactions the spatially ordered identity (20)
becomes250,255,260

1N ¼
ð

C

dN k

ð2pÞN
jfkgið kf gj: (28)

The contours of integration, C, lie on the real line for repulsive interac-
tions and are spread out in the imaginary direction for the attractive
case with Im ðkjþ1 � kjÞ > jcj.

Making use of this here in conjunction with the same jcj 
 mx
expansion we find that the work done in the attractive regime sepa-
rates into two contributions,

Pc<0ðWÞ ¼ PfreeðWÞ þPboundðWÞ: (29)

The first term PfreeðWÞ is the contribution from particles which do
not form bound states, it is identical to the expression in repulsive case
only now c< 0. The major difference imposed by this is that the effec-
tive distance between the particles is smaller deff < d, the attractive
interactions promoting the clustering of particles.

The simple analytic continuation to negative coupling of the first
term is reminiscent of the super Tonks-Girardeau gas. This highly

correlated state of the LL (Lieb-Liniger) model is created by preparing
a repulsive LL gas in the Tonks-Girardeau limit, c!1 and then
abruptly changing the interaction strength from the being large and
positive to large and negative. The result is a metastable nonequilib-
rium state which exhibits enhanced correlations. Many of the proper-
ties of this state can be shown to emerge from a simple analytic
continuation of the coupling to large negative values. In effect the neg-
ligible overlap of each particle of our initial state mimics the density
profile of the TG gas and so super-TG like behavior is not unexpected.
We should stress that the expression (28) is valid at arbitrary negative
values c and so not limited to super-TG regime.

The second term PboundðWÞ is entirely different. It is due to the
bound states and is calculated by deforming the contours in (28) to
the real line and picking up contributions due to the poles at ki � kj

¼ ic present in (18). An n-particle bound state can be shown to con-
tribute Pn�boundðWÞ / jcjn�1e�njcjd with factors from multiple bound
states being multiplicative.

This exponential factor means that the probability that the initial
state transitions to one containing bound states is highly suppressed
and in the true super-TG limit vanish entirely. Despite this, for finite
jcj the bound states have a strong signature in work distribution func-
tion. Since forming a bound state will lower the energy of the sys-
tem270 the work distribution becomes nonvanishing at negative values
of W. There is a nonzero probability that work can be extracted from
the system. Importantly this does not violate the 2nd law of thermody-
namics as the average work remains positive hWi.271,272 In fact, it has
been observed recently that the probability of extracting work from a
single electron transistor can be as high as 65% whilst still satisfying
the 2nd law.273

To see this we examine the leading term of PboundðWÞ which
arises due to the formation of a single two particle bound state

PboundðWÞ � N

ffiffiffiffiffiffiffiffiffi
2px

m

r
e�jcjd�2W=x

C N
2 � 1
� � 2 W þ jcj

2

4m

� 
x

" #N=2�2

; (30)

which is nonvanishing for �jcj2=4m < W. Determining the full
bound state contribution is a straightforward yet involved calculation
that we we will not deal with here.

FIG. 24. The work distribution function,PðWÞ, for different numbers of bosons released from an optical lattice with d=m ¼ 2 and x¼ 10. We measure the work from ei the ini-
tial state energy. On top, we show the distribution for noninteracting bosons while on the bottom we show the same quantity for interacting bosons, c> 0. Reprinted with per-
mission from Rylands and Andrei, Phys. Rev. B 100, 064308 (2019). Copyright 2019, American Physical Society.
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2. The XXZ Heisenberg spin chain

The XXZ Heisenberg chain provides another example of an
experimentally relevant integrable model. The Hamiltonian

H ¼ J
XN

j¼1

frx
j rx

jþ1 þ ry
j ry

jþ1 þ D rz
j rz

jþ1g (31)

models a linear array of spin interacting via anisotropic spin exchange.
The isotropic case D¼ 1 is SU(2) invariant and enjoys the distinction
of being the first model solved by Bethe by means of the approach that
bears his name.274 The generalization to the anisotropic case was given
by Orbach.275 The eigenstates are again characterized by a set of Bethe
momenta fkjg describing the motion of M down-spins in a back-
ground of N – M up-spins, and are given by

j~ki ¼
X
fmjg

Y
i<j

hðmi �mjÞ þ sðki; kjÞhðmj �miÞ
� �

�
Y

j

eikjmj r�mj
j*i; (32)

where mj the position of the jth down-spin is summed from 1 to N
(the length of the chain), and the S-matrix is given by

sðki; kjÞ ¼ �
1þ eikiþikj � 2Deiki

1þ eikiþikj � 2Deikj
: (33)

The Heisenberg chain exhibits a complex spectrum which includes
bound states in all parameter regimes. To carry out the quench
dynamics for the model one needs to construct the appropriate
Yudson representation and use it to time evolve any initial state.276

Here we display in Fig. 25 the time evolving wavefunction of two adja-
cent flipped spins in the background of an infinite number of
unflipped spins and compare it to the experimental results (no adjust-
able parameters are involved.) The time evolution of the magnetization
from an initial state of three flipped spins for different values of the
anisotropy D is given in Fig. 26. We see that excitations propagate out-
ward after the quench forming a sharp light-cone in contrast to the
Lieb-Liniger model. The boundary of the light-cone arises from the
propagation of free magnons which travel with the maximum velocity

allowed by the lattice. Rays within the light-cone are the propagation
of spinon bound states. As the anisotropy D is increased the bound
states slow down and more spectral weight is shifted to them. Due to
the integrability of (31) these excitations have infinite lifetime which
prevents any dispersion of these features. The introduction of integra-
bility breaking terms can therefore be expected to alter this picture, for
example through spinon decay.277

C. Concluding remarks and outlook

In this chapter we have explored some aspects of the far from
equilibrium behavior of integrable models. After a broad overview of
the current status of the field we investigated some particular phenom-
ena through a number of illustrative examples. We saw that the Bethe
ansatz solution of the Lieb-Liniger and Heisenberg models provided
us with a powerful tool with which to study both the local and global,
nonequilibrium behavior of these strongly coupled systems. The
quench dynamics of more complex models such as the Gaudin-Yang
model279,280 describing multicomponent gases has also been accessed
via the Yudson approach281 allowing the study of phenomena such a
quantum Brownian motion or the dynamics of FFLO (Fulde-Ferrell-
Larkin-Ovchinnikov) states.282,283 Similarly the quench dynamics of
other models such as the Kondo and Anderson models are currently
studied via the Yudson approach.284 They give access to such quanti-
ties as the time evolution of the Kondo resonance or of the charge or
heat currents in voltage or temperature driven two lead quantum dot
system.

These methods we discussed could be thought as being micro-
scopic, starting from the exact eigenstates of the system. Recently these
problems have been studied from a macroscopic perspective by com-
bining integrability and ideas from hydrodynamics.285 Generalized
hydrodynamics (GHD) provides a simple description of the nonequi-
librium integrable models on long length scales and times. It has been
utilized in studies of domain wall initial states in the Lieb-Linger and
the emergence of light-cones in quenches of the XXZ model.286,287

This method allows the incorporation integrability breaking effects
within the formalism, but is limited to “Euler scale” dynamics. It
would be of great interest compare the results and expectations of
GHD with the methods and results presented here to further

FIG. 25. (a) The norm of the wavefunction jWðm; n; tÞj2 at different times for two flipped spins initially at m ¼ 1; n ¼ 0. (b) The joint probabilities at different times of two spins
at sites i and j initially at i ¼ 1; j ¼ 0, measured experimentally in Ref. 278. Reprinted with permission from Liu and Andrei, Phys. Rev. Lett. 112, 257204 (2014). Copyright
2014, American Physical Society.
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understand the limitations of both the microscopic and macroscopic
approaches.

VI. NONEQUILIBRIUM PROTOCOLS FOR ONE
DIMENSIONAL BOSE GASES IN ATOMTRONIC
CIRCUITS

L. Piroli, A. Trombettoni

A promising line of research in atomtronics is the realization of
configurations where several waveguides in which ultracold atoms
move are merged to form circuits.5 Among the challenges one has to
face, an important one is the tailoring of the circuits in a way to reduce
transverse instabilities during the dynamics of ultracold matter

wavepackets.28 This would allow for the possibility of stable motion of
the matter wavepackets across the whole circuit, including the passage
through junctions and in the regions where the waveguides composing
the circuit have to bend. Since transverse instabilites are suppressed in
one-dimensional geometries, the lines of research of atomtronics and
one-dimensional ultracold atoms have been developing tight connec-
tions in the last decade. On the one hand, the study of circuits made of
one-dimensional waveguides open new directions of investigation for
the community working on one-dimensional integrable systems, such
as the study of junctions of one-dimensional waveguides: an example
is given in,63 where a junction of three Tonks-Girardeau gases is stud-
ied, and connected to the literature of coupled/intersecting nanowires.
On the other hand, the amount of available results in the field of one-
dimensional integrable models provides an extremely useful basis for

FIG. 26. The local magnetization after a quench from an initial state of three flipped spins at the origin for different values of the anisotropy D. Time, the vertical direction, is
measured in units of the exchange coupling J. Reprinted with permission from Liu and Andrei, Phys. Rev. Lett. 112, 257204 (2014). Copyright 2014, American Physical
Society.
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the characterization of ultracold matter wavepackets on such geoem-
tries, which has been at center of significant discussions in the
Atomtronics@Benasque conference series.5

One-dimensional interacting bosons are well described by the
integrable Lieb-Liniger model, which was extensively studied since its
introduction in the sixties, also in connection with other one-
dimensional integrable systems. Extensions and generalizations of the
Lieb-Liniger model may apply to one-dimensional fermionic systems
and mixtures, including Bose-Bose and Bose-Fermi mixtures.
Therefore, the field of atomtronics circuits made of (possibly con-
nected) one-dimensional ultracold systems is a natural arena to apply
such a body of knowledge, and at the same time calls for new ideas
and investigations using integrability techniques.

One-dimensional systems provide per se an exciting arena where,
over the past decade, significant experimental technical advances have
allowed for very precise studies of a series of nonequilibrium phenom-
ena. At the same time, a number of powerful theoretical tools were
developed to describe them. The study of one-dimensional systems
plays a role as well in the field of atomtronics and in particular in
atomtronics circuits, where matter-wave packets can be controlled and
moved. When the transverse dimensions of the waveguides in which
atoms move are small enough to create one-dimensional tightly con-
fined traps and the energies involved are negligible with respect to the
excitation energies of transverse degrees of freedom, then one enters
the one-dimensional regime. Ultracold bosons are then effectively
described by the Lieb-Liniger model,288–290 belonging to the family of
integrable theories. In such one-dimensional regimes quantum fluctu-
ations play a prominent role and a general issue is whether and for
what applications such one-dimensional features hamper or at vari-
ance make it easier to realize atomtronics tasks.

Here we give an account of some interesting properties of the
Lieb-Liniger model and how integrability gives access to the study of
some of its local and global nonequilibrium properties. The following
contribution focuses on the theoretical study of two of the more useful
protocols to control the quantum dynamics of the Lieb-Liniger model:
(i) integrable dynamics after a quench; (ii) Floquet engineering. They
are relevant for atomtronics applications, both for the possibility to
have quenches and time-periodic potentials as a tool to control the
dynamics and induce desired dynamical regimes and for the remark-
able progress in experimental techiniques enabling the possibility to
vary interaction strengths, geometry of the trap and the time-
dependence of the potentials acting on the atoms in one-dimensional
ultracold systems.288–290 In the present contribution, L.P. wrote Sec.
VI A, while A.T. wrote Sec. VI B.

A. Quench dynamics in the Lieb-Liniger model

In the early noughties, a series of cold-atomic experiments con-
tributed to the emergence of a growing theoretical interest in the non-
equilibrium dynamics of isolated quantum integrable systems.125,291

For instance, in the famous “quantum Newton’s cradle” experi-
ment,292 out-of-equilibrium arrays of trapped one-dimensional (1D)
Bose gases were shown not to reach thermal equilibrium within the
accessible time scales. This peculiar behavior was attributed to the
approximate integrability of the system: indeed, in the idealized situa-
tion where longitudinal confining potentials are neglected, a 1D gas of
N bosons with mass m and pointwise interactions can be described by

the integrable Lieb-Liniger Hamiltonian.251 Denoting by L the length
of the system, the Hamiltonian can be written as

H ¼
ðL

0
dx

�h2

2m
@xW

†@xWþ cW†W†WW

� �
; (34)

where W; W† are bosonic creation and annihilation operators satisfy-
ing canonical commutation relations. Here, the interaction strength is
related to the one dimensional scattering length a1D through
c ¼ ��h2=ma1D

293 and can be varied via Feshbach resonances294 to
take either positive or negative values.

Given its relative simplicity and experimental relevance, in the
past decade a large number of studies have focused on the nonequilib-
rium dynamics in the Lieb-Liniger gas, especially within simplified
protocols such as the one of a quantum quench:295,296 in this setting
one considers the ground state of some Hamiltonian Hðc0Þ (c0 denotes
an internal parameter), which is suddenly changed at time t¼ 0 by an
abrupt variation c0 ! c. These studies have played an important role
for the development of a general theory of integrable systems out of
equilibrium.297 In this section, we provide a review of a selected num-
ber of them, focusing exclusively on the simplest case of homogeneous
settings (see Sec. VI C for recent further developments in the presence
of confinement potentials and inhomogeneities).

1. The quench problem

Physical intuition suggests that after a quench an extended
system should act as an infinite bath with respect to its own finite
subsystems, and that local properties should relax to stationary
values described by a thermal Gibbs ensemble. While for generic
models this picture turns out to be correct,249,298,299 a quite dif-
ferent scenario emerges in the presence of integrability, due to
the existence of an extensive number of local conservation laws
which strongly constrain the dynamics. In this case, it was pro-
posed in Ref. 300 that the correct post-quench stationary proper-
ties are captured by a generalized Gibbs ensemble (GGE), which
is written in terms of all higher local conservation laws beyond
the Hamiltonian.300–302 It was later discovered that quasi-local
conservation laws must also be taken into account303–308 and the
validity of the GGE is now widely accepted.

Despite the established conceptual picture, computations based
on the GGE are hard, and more generally the characterization of the
post-quench dynamics remains extremely challenging in practice. In
order to explain the difficulties involved, it is useful to consider the
time evolution of a physically relevant observable for the 1D Bose gas,
namely so-called pair correlation function309

g2 ¼
hUjW†2ðxÞW2ðxÞjUi

D2
; (35)

where D ¼ N=L is the particle density, with L the system size, while
jUi is the state of the system. Physically, g2 quantifies the probability
that two particles occupy the same position. For a quantum quench,
we have the formal expression (setting �h ¼ 1)

hUðtÞjW†2ðxÞW2ðxÞjUðtÞi ¼
X
m;n

hUð0ÞjnihmjUð0Þi

� hnjW†2ðxÞW2ðxÞjmie�i En�Emð Þt : (36)
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Here we denoted by jni, En the energy eigenstates and eigenvalues,
respectively, while jUðtÞi is the state of the system evolved at time t
after the quench. For the Lieb-Liniger model the Bethe ansatz257 is a
very efficient tool to obtain most of the ingredients appearing in Eq.
(36), including the matrix elements of the local operator
W†2ðxÞW2ðxÞ.310,311 However, due to the complicated form of the
energy eigenfunctions, there appears to be no simple way to compute
the overlaps hUð0Þjni for general initial states. Furthermore, Eq. (36)
involves the evaluation of a double sum over all the eigenstates of the
Hamiltonian, which is currently out of reach in most of the physically
interesting situations.

Due to the above difficulties, initial studies in the Lieb-Liniger
model were restricted to the limit of either vanishing312,313 or infinitely
repulsive post-quench interactions,314–320 where the Hamiltonian can
be mapped onto free fermions through a Jordan-Wigner transforma-
tion. While these works already made it possible to explore in some
detail interesting phenomena such as local relaxation317 and “light-
cone” spreading of correlation functions,312,317 it remained as an open
problem to provide predictions in the case of finite values of the
interactions.

2. The quench action

A conceptual and technical breakthrough came with the intro-
duction, by Caux and Essler, of the so-called Quench Action
method,254,321 which proved to be a powerful and versatile approach
to the quench dynamics in integrable systems (other methods, that
will not be discussed here, have also been developed, including a
Yudson-representation approach, which is also suitable to study inho-
mogeneous initial states, see Refs. 260, 266 and the contribution of N.
Andrei and C. Rylands).

It is well known that, in the thermodynamic limit, each eigenstate
of an integrable system is associated with a distribution function qðkÞ,
where k are the quasi-momenta of the (stable) quasi-particle excita-
tions.257 Based on physical arguments, it was proposed in Ref. 254 that
this description could be exploited to replace the double sum in Eq.
(36) with a functional integral over all distribution functions qðkÞ.
This approach is particularly powerful to investigate the late-time
limit, for which one can write (in the thermodynamic limit)254,321

lim
t!1
hUðtÞjW†2ðxÞW2ðxÞjUðtÞi

¼
ð
Dq eS q½ �hqjW†2ðxÞW2ðxÞjqi; (37)

where jqi denotes an eigenstate corresponding to the distribution
function qðkÞ. Here we introduced the “Quench Action” S½q�, which
can be determined based on the knowledge of the overlaps hUð0Þjni.
While, as we have already mentioned, it is not known how to obtain
these in general, it turned out that they can be computed in several
interesting cases.322–343

Given S½q�, the functional integral can be treated exactly by
saddle-point evaluation, so that the r.h.s. of Eq. (37) can be replaced by
hqsjW†2ðxÞW2ðxÞjqsi, where dS½qs�=dq ¼ 0. Crucially, the saddle-
point distribution function qsðkÞ determines all the post-quench local
expectation values (which can be explicitly computed via exact Bethe
ansatz formulas310,344–347) and thus represents an effective characteri-
zation of the late-times steady state.

The Quench Action approach was first applied in the Lieb-
Liniger model for quenches from zero to positive values of the interac-
tions, c0 ¼ 0! c > 0.348 It was found that the steady state displays
quantitative different features from a thermal state, unequivocally
proving the absence of thermalization. The same approach also
allowed for the computation of the full time evolution of g2

349 (see
also350,351) unveiling a quite general power-law decay to stationary val-
ues for local observables, and for a detailed study of the statistics of the
work performed by the quench.352–354

3. Quenches to the attractive regime

In the case of quenches to repulsive interactions, the late-time
steady state appears to display features that are only quantitatively dif-
ferent from those observed at thermal equilibrium.348 In this respect,
an even more interesting picture emerges for quenches to the attractive
regime. These were investigated in Refs. 355 and 356 where the for-
malism of Refs. 254 and 348 was employed to study interaction
quenches of the form c0 ¼ 0! c < 0.

The main results of these works are arguably the prediction of
the dynamical formation of n-boson bound states with finite densities
Dn, and the characterization of the corresponding distribution of
quasi-momenta qnðkÞ. Interestingly, it was shown that the value of n
for which the density Dn is maximum decreases with the rescaled
interaction c ¼ jcj=D. Although this result might appear counter-
intuitive, there is in fact a simple physical interpretation: in the attrac-
tive regime, the bosons have a tendency to form multiparticle bound
states. However, in the quench setup the total energy of the system is
fixed by the initial state, while the energy of n-particle bound states
increases, in absolute value, very rapidly with c and n.355 Therefore, n-
particle bound states cannot be formed for large values of c, while they
become accessible as c decreases.

We note that the structure of the stationary state predicted in
Refs. 355 and 356 is qualitatively very different from the super Tonks-
Girardeau gas, which is obtained by quenching the one-dimensional
Bose gas from infinitely repulsive to infinitely attractive interac-
tions.315,357–362 Indeed, the latter features no bound state, even though
it is more strongly correlated than the traditional Tonks-Girardeau
gas, as has been observed experimentally.359 The findings of Refs. 355
and 356 are thus also interesting because they show that the physics
emerging at late times after a quench depends qualitatively on the ini-
tial state of the system.

Importantly, the formation of bound states after the quench have
consequences on the local correlation functions. For instance, the
value of g2 at large times is always greater than 2, and increases with
c ¼ jcj=D.356 This is displayed in Fig. 27, and is once again qualita-
tively different from the case of the super Tonks-Girardeau gas. We
note that these results are consistent with subsequent numerical calcu-
lations reported in Ref. 363 and based on the method developed in
Refs. 364 and 365.

B. Floquet Hamiltonian for the periodically tilted
Lieb-Liniger Model

Another promising protocol for inducing and controlling inter-
esting instances of quantum dynamics is provided by the Floquet engi-
neering. In this scheme the original Hamiltonian—in this section
the Lieb-Liniger model—is subject to a time-periodic driving V.
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The Floquet Hamiltonian control then the time dynamics of the sys-
tem when observed at stroboscopic times, i.e., at times multiples of the
period of V. The general goal is to design V in a way that the Floquet
Hamiltonian is the one inducing the desired quantum dynamics.

In general, when a periodic driving acts on an integrable model,
then the resulting Floquet Hamiltonian is nonintegrable. In this sec-
tion, we consider the case of the Lieb-Liniger model subject to a poten-
tial periodic in time and linear in space, which we refer to as a periodic
tilting.366 The Floquet Hamiltonian of the integrable Lieb-Liniger
model for such linear potential with a periodic time–dependent
strength is integrable and its quasi-energies can be determined using
well known results for the undriven Lieb-Liniger model.

We pause here to comment about the relevance of the investiga-
tion of Floquet engineering, and periodic tilting in particular, starting
from the Lieb-Liniger Hamiltonian for atomtronics applications and
perspectives. Controlling matter-wave dynamics in waveguides and
other atomtronics circuitry and components is in general an interest-
ing perspective to be discussed and studied. A time-independent
potential linear in space induces a motion in the atomtronics devices,
and a time-dependent periodic tilt can be used to control the motion
across, to and fro, a circuit. As discussed in the Introduction, to reduce
trasnverse excitations it may be convenient to use and merge one-
dimensional waveguides, and a natural question is what is the effect of
a time-dependent periodic tilting in such one-dimensional systems.

We then consider the periodic tilting

Vðx; tÞ ¼ f ðtÞ x

with f(t) a periodic function with period T. The Lagrangian density of
the system is

L ¼ i
2

W†@tW� h:c:
� �

� 1
2m

@xW
† @xW�

c
2
W†W†WW

�Vðx; tÞW†W; (38)

where h:c: denotes the hermitian conjugate of the first term and
W ¼ Wðx; tÞ.

When the potential V is time-independent with f(t) constant,
then it is well known that one can gauge away the potential linear in
space by moving to the center-of-mass accelerating frame. Notice that
this property is valid in any dimension and also for interacting sys-
tems, as long as the two-body interaction depends only on the relative
distance (for a pedagogical presentation see, e.g., Ref. 367).

Let now come back to the case of f(t) periodic in time.
Proceeding as one does for the single-particle and the two-particles
cases,366,368 one can solve the Schr€odinger equation of the many-body
interacting model. To this aim, one introduces the following gauge
transformation:

Wðx; tÞ � eihðx;tÞuðyðtÞ; tÞ; (39)

where

yðtÞ ¼ x � nðtÞ;

with the functions nðtÞ and hðx; tÞ to be suitably determined in order
to gauge away the potential term V from the Lagrangian density when
rewritten in terms of the field u.

The functions n and h are determined as it follows. We start by
imposing

@tn ¼
1
m
@xh (40)

and

�@th ¼
1

2m
@xhð Þ2 þ xf ðtÞ: (41)

We now make the ansatz

hðx; tÞ ¼ mx@tnþ CðtÞ; (42)

finding the conditions

m@2
t n ¼ �f ðtÞ (43)

and

@tC ¼ �
m
2
@tnð Þ2; (44)

determining nðtÞ and CðtÞ in terms of f(t). From the differential equa-
tions (43)–(44) one gets366

hðx; tÞ ¼ �x
ðt

0
f ðsÞ ds� 1

2m

ðt

0

ðs

0
f ðs0Þ ds0

	 
2

ds: (45)

Notice that, with our choices of the initial conditions [nð0Þ ¼ dnð0Þ=
dt ¼ 0 and Cð0Þ ¼ 0], one has hðx; 0Þ ¼ 0 and yð0Þ ¼ x. Using (45),
from (40), n can be readily determined.

For the sake of simplicity we will discuss the caseðT

0
f ðsÞds ¼ 0 (46)

(referring to366 for a discussion about the case
Ð T

0 f ðsÞ ds 6¼ 0). The
major simplification is that the gauge phase (45) does not depend
anymore, at stroboscopic times, on the spatial variable, i.e.,
hðx;TÞ � hðTÞ.

Provided the condition (46) holds, with the functions h and n
previously determined we can rewrite the Lagrangian density (38) in
terms of uðy; tÞ which involves no longer the external potential:

FIG. 27. Main panel: Pair correlation function, as defined in Eq. (35) in the steady
state reached after a quench c0 ¼ 0! c < 0. The plot shows g2 as a function of
the rescaled interaction c ¼ jcj=D, and is computed using the results of Ref. 355.
Inset: Densities Dn of the n-particle bound states for the same quench, and c¼ 2.
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L ¼ i
2

u†@tu� h:c:
� �

� 1
2m

@yu
† @yu�

c
2
u†u†uu: (47)

Notice that the outlined procedure also works for a more general
potential of the form Vðx; tÞ ¼ xf ðtÞ þ gðtÞ.

To determine the Floquet Hamiltonian we need to determine the
function h at the stroboscopic times: t � nT , with n integer. One has

hðnTÞ ¼ � 1
2m

ðnT

0
dt
ðt

0
dt0f ðt0Þ

" #2

(48)

and

nðnTÞ ¼ � 1
m

ðnT

0
dt
ðt

0
dt0f ðt0Þ: (49)

Now we want show that the ratios nðnTÞ
nT and hðnTÞ

nT do not depend
on time, i.e., on n. Let be FðtÞ a function such that dF

dt ¼ f ðtÞ. The
constant of integration is chosen to be such that Fð0Þ ¼ 0. From (46)
one has ðT

0
f ðtÞdt ¼FðTÞ ¼ 0; (50)

so that one can see that FðtÞ is a periodic function of period T. Using
the definition of the function F, from (49) one gets

nðnTÞ ¼ � 1
m

ðnT

0
FðtÞdt ¼ � I

m
n; (51)

where I �
Ð T

0 FðtÞdt. It follows that the ratio nðnTÞ
nT is n–independent.

The same reasoning applies for the gauge phase h, since it is

hðnTÞ ¼ � I0

2m
n; (52)

where I0 �
Ð T

0 F2ðtÞdt.
We are now able to write the Floquet Hamiltonian, which is

found to be

HF ¼
XN

j¼1

p̂2
j

2 m
þ nðTÞ

T
p̂j �

hðTÞ
T

!
þ c
X
j<i

dðxj � xiÞ: (53)

We observe that the previous derivation of the Floquet
Hamiltonian is valid not only for the one-dimensional Lieb-Liniger
Hamiltonian, but also for a generic interacting system in any dimen-
sion subject to a periodic tilting. In the one-dimensional Lieb-Liniger
this result implies the main point of this section, relevant for atom-
tronics application: the Floquet Hamiltonian (53) is integrable, as it
can be immediately seen. A further important comment, on which we
are going to comment more in the following, is that the derivation of
(53) is valid for translational invariant systems.

One can then apply the standard Bethe ansatz techniques
(see251,257) to compute the quasi-energies and the eigenfunctions.
More precisely, one has to compute the pseudo-momenta kj obeying
the Bethe equations. If the system is subjected to periodic boundary
conditions, the pseudo-momenta kj are determined in terms of the fol-
lowing Bethe equations:

kj Lþ 2
XN

i¼1

arctan
kj � ki

mc

� �
¼ 2p j� N þ 1

2

� �
; (54)

for j ¼ 1;…;N , where L is the circumference of the ring in which the
system is confined.

Using the previous results one can write the many-body states at
the stroboscopic times. A multiparticle jwi state for the Lieb-Liniger
model read (apart from the normalization factor)

jwi ¼
ð

dN x vðx1;…; xN ; tÞW†ðx1; tÞ � � �W†ðxN ; tÞj0i (55)

where vðx1;…; xN ; tÞ is the N–body wavefunction.
The wavefunction v in (55) is a solution of the Schr€odinger

equation

i@tvðx1;…; xN ; tÞ ¼ Hvðx1;…; xN ; tÞ; (56)

with H being the Lieb-Liniger Hamiltonian in first quantization

H ¼ � 1
2m

XN

j¼1

@2
x þ c

X
j<i

dðxj � xiÞ þ
XN

j¼1

Vðxj; tÞ: (57)

Using (39) one can write for the periodically driven model

jwi ¼
ð

dN y gðy1;…; yN ; tÞu†ðy1; tÞ � � �u†ðyN ; tÞj0i: (58)

The relation between the functions v and g is given by

vðx1;…; xN ; tÞ �
YN
i¼1

eihðxi ;tÞgðy1;…; yN ; tÞ; (59)

where g is the solution of the same Schr€odinger equation (56) but with
no external potential (V ¼ 0).

An important comment is related to the fact that, as mentioned,
the treatment of the Lieb-Liniger model in a periodic tilting presented
in this section is valid only for translational invariant systems.
However, for setups relevant for atomtronics one has to consider the
effect of their particular boundary conditions. As an example, one can
consider circuits obtained merging one-dimensional waveguides. The
derivation presented here does not longer applies and the results of
this section provides only a first step toward the determination of the
correct Floquet Hamiltonian, a study which in the opinion of the
author is a deserving subject in view of the possible obvious applica-
tions in atomtonics components and circuits. Separate considerations
apply to ring geometries. One can think to periodically rotate the ring,
with now the angle u playing the role of the coordinate x since one
can show366 that in the comoving reference frame (and under the
assumption that f(t)¼ 0 at the stroboscopic times) the Floquet
Hamiltonian has the form (53). This is analogous of what occurs for a
two-dimensional harmonic potential in rotation, where the
Hamiltonian in the rotating frame has the form H � XLz

121 and one
can slightly deform the isotropic potential to break translational invari-
ance. The equivalent of this in a periodically rotating ring geometry
could be the addition of an out-of-plane periodic rotation component.

C. Concluding remarks and outlook

The past few years have witnessed very rapid developments
within the theory of integrable systems out of equilibrium. Arguably,
the most important piece of progress pertains the introduction of the
so-called generalized hydrodynamics (GHD).285,369 This is a very
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powerful framework, which builds upon the techniques developed in
the idealized case of homogeneous systems, and allows one to provide
exact predictions also for inhomogeneous settings, although only at
hydrodynamic scales.

While a review of these results is beyond the scope of the pre-
sent article, we note that recent works have shown that GHD is
more than adequate to tackle exactly experimentally relevant set-
ups of repulsive 1D Bose gases, including systems with confining
potential,370–373 spatial inhomogeneities374 and dephasing noise.375

In fact, quite remarkably, GHD predictions have now also been
experimentally verified by monitoring clouds of bosonic cold atoms
trapped on an atom chip.376

It would be extremely interesting to extend some of these recent
results to inhomogeneous 1D Bose gases with attractive interactions,
where the study of homogeneous quantum quenches have already
revealed unexpected new features. More generally, a promising route
is to analyze the out-of-equilibrium dynamics of even more compli-
cated inhomogeneous integrable quantum gases, such as multicompo-
nent mixtures of fermions and bosons,377,378 for which the emergence
of interesting phenomena at the hydrodynamic scale has been already
pointed out in simple settings.380,383

Going beyond quench protocols, the effect of a time-periodic tilt-
ing in the Lieb–Liniger model with repulsive interactions has been dis-
cussed. It was shown that the corresponding Floquet Hamiltonian is
integrable, by studying the spectrum of the quasi-energies and the
dynamics of the system at stroboscopic times. Importantly, the analy-
sis presented for the Lieb-Liniger model can be extended to other 1D
integrable systems in time-periodic linear potentials such as, for
instance, the Yang-Gaudin model for fermions. In the future, it would
be very interesting to study the effect of periodic tilting in more general
configurations. A main issue to be studied starting from the results
presented here is that of the boundary conditions of the specific atom-
tronics system of interest when subject to a periodic tilting. Among
the different cases that would provide a worthwhile investigation is
that of atomtronics circuits periodically tilted and their application to
atomtronics tasks.
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VII. PERSISTENT CURRENTS AND VORTICES IN
ATOMTRONIC CIRCUITS

T. Bland, M. Edwards, N. P. Proukakis, A. Yakimenko

Atomtronics relies on the flow of coherent matter waves in the
form of atomic Bose-Einstein Condensates (BECs) in closed cir-
cuits, such as in the form of closed toroidal traps, or more extended,
race-tracklike, potentials. Persistent currents in such geometries
enable fundamental studies of superfluidity and may lead to

applications in high-precision metrology and atomtronics.5,145 The
question of the generation and stability of the atomic persistent
currents – which in the absence of external driving should be topo-
logically protected – is of fundamental importance; thus it has
been the subject of numerous experimental and theoretical
investigations12,16,41,67,93,140,142,143,161,381–394

The quantized circulation in a ring effectively corresponds to
an m-charged vortex line pinned at the center of the ring-shaped
condensate, where the vortex energy has a local minimum. Noting
that there is no condensate density at that location, we can think of
this as a “ghost” vortex – in the sense that, at some radial distance
from the center of the closed loop where there is non-negligible
superfluid density, the arising phase profile is identical to that cor-
responding to a vortex located at the center, where the superfluid
density is practically zero. Since the vortex line energy increases
with condensate density such a vortex turns out to be bounded by
the potential barrier, that is why even multicharged (m> 1) meta-
stable vortex states can be very robust. The generation and decay of
a persistent current is governed by the dynamics of these quantum
vortices, which can be deterministic, or random, depending on the
particular setting considered.

Specifically, as modeled theoretically and observed experimentally,
persistent currents can form in toroidal BECs by stirring the condensate
with an optical paddle potential, imparting angular momentum in the
ring through the generation of vortices and through the decay dynamics
after an external perturbation.12,16,41,67,161,382,383,386–388,390,391,395 They
can also be induced by transmitting angular momentum from a
Laguerre-Gaussian beam.140,142,389 Moreover, persistent currents can
also spontaneously form in toroidal BECs as phase defects appearing
after a quench into the BEC state.93,392–394 Persistent currents also arise
in multicomponent condensates in a ring geometry.143,385,396–398

Coupled persistent currents of ultracold atomic gases provide
a possibility to investigate the interaction of the superflows in a
tunable and controllable environment, providing the possibility
for precision measurements and even potentially controllable
quantum gate operations. Previous theoretical studies399–401 have
drawn considerable interest to systems of coupled circular BECs.
Using accessible experimental techniques, it is possible to consider
a variety of physical phenomena in this setting: from Josephson
effects in the regime of weak interactions (where the superflow
decays by inducing phase slips reviewed in Sec. VIII) to quantum
Kelvin–Helmholtz instability for merging rings.

In this contribution we review recent developments in the under-
standing of the formation and dynamics of persistent currents in such
closed geometries based on mean-field, dissipative, and stochastic sim-
ulations. We start by considering the mechanism of formation of per-
sistent currents in a racetrack BEC, induced by a stirring potential
(Sec. VII A) (which also encompasses ring-trap geometries as a special
case). We then discuss more complicated atomtronic architectures,
focusing on BECs trapped in two coupled toroidal potentials which
are either embedded within a single plane, or are linked transversally.
Specifically, we firstly review (Sec. VII B) recent work394 discussing the
spontaneous formation of persistent currents in coplanar double ring
geometries. We then present a brief overview (Sec. VII C) of recent
investigations402–404 of the dynamics of quantum vortices in a pair of
vertically stacked atomtronic circuits. We end with some concluding
statements.
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A. Mechanism for producing flow in a racetrack
atom–circuit BEC by stirring

1. How stirring a racetrack atom circuit produces flow

We start by presenting a picture of how macroscopic flow is pro-
duced in a BEC confined in a racetrack atom–circuit by stirring with a
wide rectangular barrier within the Gross–Pitaevskii model. The
atom–circuit BEC is strongly confined to a horizontal plane and the
2D racetrack channel potential (see Fig. 28) consists of two half–circles
separated by straightaways of length L; we note that in the limit L¼ 0,
this reduces to a ring potential, so the present discussion fully encom-
passes that setting.405

It is well–established that flow is accompanied by production and
motion of vortices67,161,382,383 or dark solitons406 in the condensate.
Here, we describe how and where vortices form, how they move there-
after, how circulation localized to a vortex is converted into macro-
scopic flow around the entire racetrack, and what conditions lead to
the final amount of flow.

2. Creation of a single unit of flow: Vortex swap

Flow can be induced in a racetrack BEC atom circuit by stirring
with a weak–link potential barrier. As the stirring barrier moves and
strengthens, it produces a region of lowered density. This region of
depressed density causes a backflow (flow opposite the stir direction)
to develop in this region. This backflow spawns a vortex (circulation
same as the stir) located on the outside of the channel and an antivor-
tex (antistir circulation) on the inside. At a critical value of the barrier
height, the two vortices swap positions. This event generates two dis-
turbances that move away from the barrier in opposite directions at
the average speed of sound. The first is the vortex/antivortex pair that
moves off in the antistir direction and the second is a compression
wave moving in the stir direction.

This backflow is illustrated in Fig. 29(a). In the full figure, we
have plotted a series of snapshots of the velocity distribution from
shortly before until shortly after the creation of the first unit of flow. It
is easy to see that the backflow speed is greatest at the inner and outer

edges of the channel where the racetrack plus barrier potential is larg-
est. As the barrier moves, the condensate in front of the barrier must
migrate to the back of the barrier. The atoms at the inner and outer
channel edges must move faster to avoid the regions of high potential.
In this way vortices, are formed by stirring with a barrier that is much
wider than the stirred condensate.

When the height of the barrier reaches a critical value, the vortex
migrates from the outside to the inside of the channel as can be seen
in Fig. 29(b). Shortly after this vortex swap two disturbances are gener-
ated. The first is the vortex/antivortex pair, located on the inside and
outside of the channel, respectively, move away from the barrier in the
antistir direction. This vortex pair causes atoms on the antistir side of
the barrier to flow in the stir direction between the vortices. The sec-
ond disturbance is a compression wave that propagates away from
barrier region in the stir direction. This compression wave also moves
atoms in the stir direction. Both disturbances move at a speed that is
approximately the local speed of sound [cðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gncðrÞ=m

p
] averaged

over the cross section of the condensate. These disturbances are the
mechanism by which the localized circulation in the form of a vortex
is converted into macroscopic flow around the entire racetrack.

3. Final flow production: Flow overtakes the barrier

The final circulation produced can be roughly predicted as the
number of units of quantized flow that lies closest to the speed of the
stirring barrier. The exact number depends on the details of the stir-
ring and the geometry of the racetrack as we describe below. When
vortices inside the racetrack potential are generated the circulation
they provide is localized near their cores. As stirring proceeds, this cir-
culation is converted into a nearly constant tangential velocity compo-
nent around the midline track by the pair of disturbances generated
each time a vortex swap occurs.

The circulation as a function of time is shown in Fig. 29(d) for
the case where L ¼ 30 lm, vstir ¼ 339 lm/s and, T¼ 0 nK). This
graph shows that the circulation (shown as the blue curve) is zero until
a succession of vortex–swap events produces enough flow so that the
flow generated is greater than the speed of the stirring barrier (shown
as the cyan horizontal line in the figure in quantized flow speed units).

In this case, five units of flow exceeds the barrier speed by almost
a full flow speed unit. When the disturbance pair generated by the first
vortex swap travels around the racetrack and comes back to sweep
through the barrier region again, they cause a forward flow to develop
in the barrier region. At this moment, an inverse vortex swap event
can occur causing the total circulation to decrease by one unit. In this
way, the circulation can oscillate around the number of units that
makes the flow closest to the stir speed of the barrier.

Another circulation–changing mechanism that is only present in
the non–ring racetrack case occurs when the barrier transitions from
straight parts of the racetrack to curved parts or vice–versa. The times
when the barrier is on straight or curved parts are indicated in
Fig. 29(d) by the red- and black-colored curve that depicts the barrier
height. This graph is colored red for times when the barrier is on the
curved parts of the racetrack and black–colored when it is on the
straightaways. Careful examination of the circulation graph shows
that, when the barrier transitions from curved to straight (red to black)
racetrack parts, the circulation increases by one unit. When the barrier
transitions from straight to curved parts the circulation decreases by

FIG. 28. The atom–circuit racetrack potential consists of two semicircular endcaps
(inner radius Ri ¼ 12lm, outer radius Ro ¼ 36lm) separated by straightaways of
length L. This figure was created using data reproduced from Eller et al., Phys.
Rev. A 102, 063324 (2020). Copyright 2020, American Physical Society.
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one unit. We also note that this only happens when the barrier
strength is above a critical value.

The general mechanism for flow production in the racetrack by
stirring with a rectangular barrier in the context of the Gross-
Pitaevskii equation can thus be summarized as follows. The stirring
barrier both moves and increases in strength. This generates a back-
flow in the region of depressed density. This backflow is fastest at the
inner and outer channel edges in this region. This flow spawns a vor-
tex/antivortex pair at the outer and inner edges, respectively.
Eventually these two vortices swap locations generating a moving vor-
tex (now on the inner channel edge)/antivortex (now at the outer
edge) pair that moves away from the barrier in the antistir and also
generating a compression wave that moves away from the barrier in
the stir direction. These disturbances both move at the average speed
of sound. The total amount of flow produced is roughly the number of
flow–speed units closest to the speed of sound.

B. Persistent currents in coplanar double-ring
geometries

Having identified the key mechanism for flow production in the
context of a pure T¼ 0 BEC, it is natural to also consider the role of
phase fluctuations and dissipation on the (spontaneous) emergence of
supercurrents, and what happens when multiple ring-trap geometries
are coupled.

1. Spontaneous persistent current formation in a ring
trap

The formation of persistent currents in a ring trap can also pro-
ceed spontaneously; it is well-known that the generation of a super-
fluid in such a geometry can carry with it a randomly generated
winding number, which is expected to be statistically distributed about
the most probable “zero” value (which corresponds to the absence of
a persistent current).392,393 This is because phase coherence forms
locally in a ring, and the size and width of the toroidal geometry, along
with the rate of the actual quench leading to the formation of the ring-
trap condensate, control the maximum winding number that can
spontaneously emerge.386,394

This is already well-known in the context of the Kibble–Zurek
mechanism,407,408 which relates the generated winding number to the
quenching rate of the driven phase transition, an effect already dis-
cussed and observed across different physical systems. Among those,
this effect has also been confirmed in ultracold atoms in ring-trap
geometries through a controlled gradual cooling rate quench, produc-
ing an experimentally observed distribution of winding numbers,392 in
agreement with numerical and theoretical expectations.394 In fact, the
local nature of such coherence evolution implies that this effect of
spontaneous persistent current generation already manifests itself even
in the limit of very rapid (or instantaneous) quenches toward a coher-
ent superfluid regime. The existence of phase fluctuations and nonzero
winding numbers can, for example, affect the dynamics of otherwise
deterministically-generated dark solitons in ring-trap geometries.409

2. Spontaneous persistent current formation
in coplanar connected ring traps

Next, we turn our attention to the dynamics of winding numbers
in connected geometries, focusing here on the simplest possible such
coplanar example, based on the 2D geometry shown in Fig. 30(a).
Utilizing state-of-the-art numerical simulations based on the stochas-
tic (projected) Gross–Pitaevskii equation,393,394,410–417 we find that—as
in the case of a single ring trap—coherence within the double-ring
trap forms locally during condensate growth, as shown in Fig. 30(b).

After a quench, the phase develops locally along and across the
ring circumference,393 with an early such example of typical evolution
shown by the phase profile of Fig. 30(b-iv). Although at the common
interface around x � 0 (where the trap depth has the same depth and
width as the outer double-ring edges) the phase of the superfluid is
constrained to be the same in both connected rings, this does not
nonetheless dictate the behavior of the emerging phase in the remain-
ing “unconnected” regions forming the bulk of the ring’s spatial extent.
Specifically, the unconnected regions in the double-ring geometry are
free to randomly establish their own phase dynamics (constrained by
the size and width of the unconnected regions), thus often leading to
nonzero winding numbers with varying (nonlinear) phase gradients
across the ring circumference.

FIG. 29. Velocity distributions of the racetrack condensate during the ramp–up of the stirring. (a) A backflow plus vortex/antivortex pair develops in the barrier region, (b) the
vortex/antivortex pair swap, (c) the vortex/antivortex pair move away form the barrier in the antistir direction while a compression wave moves off in the stir direction. (d)
Circulation (blue line) around the midline track versus time for this case. The red and black curve gives the barrier height versus time. The curve is colored red when the barrier
is on the curved parts of the racetrack and colored black when it is on the straight parts. The quantity Vp;mas is the maximum energy height of the barrier during the stir. The
straight cyan curve shows the stirring speed of the barrier in units of the quantized flow speed, vflow ¼ 2p�h=ðMsÞ, where s is the arc length of the racetrack midline.
Parameters: L ¼ 30 lm, vstir ¼ 339 lm/s. Results shown are based on zero–temperature Gross-Pitaevskii mean-field theory. Panel (d) of this figure was created using data
reproduced from Ref. 417.
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An example of such a long-term behavior with winding numbers
–1 andþ 2 across the left and right rings, respectively, is shown in
Fig. 30(b-vi) with a positive winding number referring arbitrary, by
convention,387,394 to clockwise rotation. In the double-ring case, we also
find a distribution of winding numbers about the most probable value
of zero net winding number, as shown in Fig. 30(c). In fact, when inte-
grating over the winding numbers of the other ring, we find that (in
our chosen, experimentally-relevant, geometry), the distribution of
winding numbers in each ring actually exactly matches that of the sin-
gle ring trap with the same radius, width and depth.394 We expect this
to be true for the majority of experimentally-relevant potentials, for
which the ring radius typically largely exceeds any transversal width
(and motion is frozen out in the third, transverse, direction).

Remarkably, our previous work394 has shown such features to be
largely independent of the exact details of the connected geometry,
provided it does consist of two (2D) planar-connected closed geome-
tries with a unique single (extended) connected region. For example,
we have verified all above conclusions to be also valid in a figure-of-
eight (“lemniscate”) potential, where there is a real crossing in the path
of propagating ultracold atoms.394 By extension, we would, therefore,
expect similar features to hold in extended or “flattened” geometries,
such as connected race-track geometries, as the underlying physics is
that of how much winding can be supported by the combination of
loop radius R and width w, which are found to obey the winding num-
ber relation hjnwji �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pR=w

p
.393,394,408

Given the potential independence of winding numbers supported
across two identical connected ring traps, it is interesting to enquire

about the stability of such features. Essentially, one can think of a
winding number of, say, 6n (where n ¼ 0; 1; 2;…) around a closed
loop (whether exactly ring-shaped, or not), as being due to the exis-
tence of a “ghost” vortex trapped in the middle of the closed loop.
Using such an intuitive interpretation, the winding number of a ring
trap will change by an integer unit if such a “ghost” vortex is allowed
to leave its enclosure, mapped out by the underlying trap potential.
Due to the topological protection of the winding number, such an
effect can be achieved by deforming the system topology through a
change in the trap potential: for example, in the single ring-trap case,
this could be achieved by opening a small hole in the potential, such
that the enclosed ghost vortex can escape to the region outside of the
ring. The related topic of phase slips in the presence of fluctuations is
discussed in Sec. VIII.

In the double-ring geometry, we have explicitly verified that the
transfer of the winding number from one side of the double-ring
geometry, to the other can be facilitated by allowing for a zero-
potential region to connect the two sides. Such a transfer can be rea-
sonably controlled by the specific details of the potential deformation,
even potentially leading to the annihilation of oppositely-oriented
superflows (corresponding to ghost vortices of opposite circulation,
which can hence annihilate), a topic of active ongoing research investi-
gations to harness potential atomtronic applications. Our present
work for interacting superfluids adds to that of tunneling angular
momentum states considered at the single-particle level in single-
component condensates418–420 and also for two-component
condensates.396

FIG. 30. (a) Simplest coplanar connected double-ring geometry: Shown are (i) the 2D potential, and (ii) the cut through y¼ 0. Note that the interfacial potential considered here
is identical to that of the outer unconnected regions of the rings. (b) Formation dynamics of characteristic numerical realization with different winding numbers across the two
rings: shown are growing density (from a noisy initial configuration; top row (i)-(iii)) and corresponding phase evolution [bottom row, (iv)–(vi)], for a characteristic example with
distinct winding numbers nleft ¼ �1 and nright ¼ þ2 across the left and right rings, respectively. (c) Histogram of all possible steady-state winding number contributions, when
performing numerical quenches from an initial noisy configuration. The indicated white box highlights the case ðnleft; nrightÞ ¼ ð�1;þ2ÞÞ considered in (b). We have explicitly
verified that once such an unequal winding number contribution forms after sufficient system relaxation/equilibration, it does remain stable for all subsequent evolution (with
this feature also found to be insensitive to the precise choice of the “growth” parameter c in the stochastic simulations). Parameters: N � 2� 105 87Rb atoms, T¼ 10 nK,
effective 2D interaction strength ~g ¼ 0:077; Tight harmonic transverse confinement with xz ¼ 2p� 1000 Hz, with the 2D potential defined by Vðx; yÞ ¼ V0 minð1
�exp ½�2ðqðx � R; yÞ � RÞ2=w2�; 1� exp ½�2ðqðx þ R; yÞ � RÞ2=w2�Þ; where qðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; V0 ¼ 1:1l, the ring radius is R ¼ 25lm and its width is

w ¼ 6lm. Adapted with permission from Bland et al., J. Phys. B. 53, 115301 (2020). Copyright 2020, Author(s) licensed under a Creative Commons Attribution 4.0 License.394
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Although work discussed here has been restricted to a coupled
geometry with a single extended interface, once such transfer process
becomes reasonably controlled for multiparticle systems, one may
envisage possible extensions to multiple connected closed-loop geome-
tries (whether ring-shaped, race-track, or related), with the aim of
deterministic transfer of winding numbers across a multiple-loop
atomtronic architecture. Research into this promising direction is cur-
rently very active by the present authors.

Next, we discuss coupled persistent current dynamics in an alter-
native geometry of two transversally stacked ring-trap potentials con-
nected by tunneling.

C. Persistent currents in transversally coupled
atomtronic circuits

Here, we briefly overview our recent findings402–404 on dynamics
of quantum vortices in two coupled vertically stacked toroidal conden-
sates with persistent currents [see Fig. 31(a)].

In practice, the double-ring system with different angular
momenta in its top and bottom parts may appear spontaneously as a
result of cooling with different momenta, m1 and m2, being frozen into
the two rings after the transition into the BEC state, similar to sponta-
neous persistent current formation in coplanar coupled rings,
described in Sec. VII B. We note that creation of ring currents in a
double ring system by cooling421 and instability of nonrotating tunnel
coupled annular Bose–Einstein condensates422,423 have been discussed
in the literature.

The asymmetry of the density distribution in the top and bottom
rings makes it possible to excite the vorticity also by applying a stirring
laser beam, similar to the mechanism described in Sec. VII A.
Generating a vortex in the lower-populated ring only, keeping the
higher-populated one in the zero-vorticity state is illustrated in
Fig. 31(b). A detailed analysis of the methods for persistent current
generation in the system of coupled rings is under progress and will be
published elsewhere.

In our recent work,402 it was demonstrated that the azimuthal
structure of the tunneling flows in double-ring system with topological
charges m1, m2 implies formation of jm1 �m2j Josephson vortices,
also known as rotational fluxons. The azimuthal structure of the
tunneling flow [see the inset in Fig. 32(a)] implies zero net (integral)
current through the junction for states, built of persistent currents
with different topological charges in coupled rings (m1 6¼ m2). In par-
ticular, these include the case of opposite topological charges

(m1 ¼ �m2Þ—considered in Ref. 424 and called “hybrid vortex sol-
iton.” These structures host two different types of the vortices: vertical
vortex lines and horizontal Josephson vortices. It turns out that the
fluxons’ cores rotate and bend, following the action of the quench, i.e.,
the formation of tunnel junction with chemical potential difference. It
was found in Refs. 402–404, as the barrier decreases, and the effective
coupling between the rings, respectively, increases, the Josephson vor-
tices accumulate more and more energy. When the persistent currents
merge the relaxation process to new equilibrium state is driven by 3D
dynamics of interacting Josephson vortices and vortex lines of the per-
sistent currents [see, for example, Fig. 32(b)].

In our simulation of the merging rings, we have used the dissipa-
tive Gross–Pitaevskii equation in the following form:

ði� cÞ�h @w
@t
¼ � �h2

2M
r2wþ Vextðr; tÞwþ gjWj2w� lw; (60)

where g ¼ 4pas�h
2=M is the coupling strength, M is the atomic mass

(M ¼ 3:819� 10�26 kg for 23Na atoms), as is the s-wave scattering
length (positive as¼ 2.75 nm, corresponding to the self-repulsion in
the same atomic species, is used below), l is the chemical potential of
the equilibrium state, and c� 1 is a phenomenological dissipative
parameter. This form of the dissipative GPE has been used extensively
in previous studies of vortex dynamics (see, e.g., Refs. 382, 384, 385,
413, and 425) Note that main results of our work, concerning the role
of the symmetry breaking in the interacting superfluids rings are not
sensitive to the weak dissipative effects. We demonstrated in our
works403,404 that the symmetry of the system is the key feature explain-
ing remarkable properties of the interacting quantized superflows.
Certainly, the symmetry is in no way related to details of the dissipa-
tive terms. We have found that the subsequent relaxation process is
determined by the initial stage of the evolution of the merging ring, in
the course of several first microseconds after the barrier was switched
off. Obviously, an effect of the weak dissipation on these fast processes
is practically negligible. The dissipation plays a significant role in the
course of subsequent temporal evolution of the condensate. In fact, in
most experiments, in situ observation of the vortices is not possible,
and only the final state can be analyzed after the completion of the
relaxation. We include the dissipative effects in our model to investi-
gate the final states of the merging superflows, which can be directly
compared with expected experimental observations.

The relaxation of the merging rings is driven by substantially 3D
nonlinear dynamics of the vortex lines corresponding to persistent

FIG. 31. (a) Schematics of the coupled ring-shaped condensates. Coaxial rings separated by repulsive potential, allowing investigation regime of tunneling coupling (long
Josephson junction) and regime of merging rings (when the barrier is eliminated). (b) Schematics of preparation of the state with different angular momenta in double-ring sys-
tem. Coaxial rings with different number of atoms are stirred by a rotating potential barrier. A persistent current is generated in a less populated ring (shown by green) while
more populated toroidal condensate (shown by red) remains in nonrotating state.
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currents and Josephson vortices, as illustrated in Fig. 32(b). It turns
out that the final state of the condensate crucially depends on an
initial population imbalance in the double-ring set, as well as on the
shape of the 3D trapping potential, oblate or prolate.404 In the

oblate (axially squeezed) configuration, a ring with nonzero angular
momentum can impose its quantum state onto the originally non-
rotating ring only above a well-defined critical value of the popula-
tion imbalance.

FIG. 32. Coupled coaxial superfluid atomic circuits with counter propagating persistent currents. (a) Hybrid vortex stationary states with hidden vorticity. Vertical red and blue
dashed lines designate cores of the counter-propagating persistent currents in the two rings. The cores of the Josephson vortices are indicated by solid black lines. (b)
z-component of the corresponding tunnel-flow density distribution through the barrier, Jzðx; y; z ¼ 0Þ. (c) The final value of the total angular momentum per particle Lz=N for
the merging rings with initial vorticities ðþ1;�1Þ as a function of initial population imbalance P ¼ ðN1 � N2Þ=ðN1 þ N2Þ. (d) An example of evolution of the merging rings in
oblate trapping potential. The barrier separating two rings is switched off at t > td ¼ 0:015 s, dissipative parameter c ¼ 0:03. Red (blue) lines indicate positions of the vortex
(antivortex) core. The population of the bottom ring, with vortex m1 ¼ þ1, is slightly larger than in the top one, with antivortex m2 ¼ �1 [initial imbalance parameter,
P¼ 0.06, is indicated by filled red circle in (c)]. The final state has m¼�1. The symmetric drift of two diametrically opposite antivortices toward the central hole leads to sub-
sequent annihilation of the central vortex and relaxation of the toroidal condensate into a final antivortex m¼�1 state, as described in Ref. 403.
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It is apparent that two merging classical counter-propagating
flows with zero total angular momentum evolve to the ground (nonro-
tating) state. Surprisingly, merging counter-rotating quantized flows in
the axially-symmetric trap never evolve toward the nonrotating ground
state, with Lz¼ 0, even for small imbalances, P� 1 (see Fig. 32). It is
particularly remarkable that the vorticity of the final state is imposed
by the less populated component if P < Pcr � 0:1755, and by the
stronger component only if P > Pcr . These counter intuitive properties
of merging superflows are illustrated in Figs. 32(c) and 32(d). In this
example, the number of atoms in the ring with topological charge
m1 ¼ þ1 is moderately greater than number of atoms in the antivor-
tex state (m2 ¼ �1). The symmetric drift of two diametrically oppo-
site antivortices toward the central hole leads to subsequent
annihilation of the central vortex and relaxation of the toroidal con-
densate into a final antivortex state, i.e., the final topological charge of
the merger is imposed by less populated ring as is seen in Fig. 32(d). A
remarkable role of the symmetry of this system for vortex dynamics is
investigated in Ref. 403.

Instead of the development of the classical Kelvin–Helmholtz
instability at the interface of the merging persistent currents in a pro-
late potential trap, sufficiently elongated in the axial direction, we
observe the formation of nonlinear robust hybrid vortex structures (as
illustrated in Fig. 33 and explained in Ref. 404).

Thus, the ring-merging process and topological charge of the
final state can be controlled by the perturbation of the trapping poten-
tial, specially adapted for the initiation of symmetry-breaking of the
system, and by tuning of the initial population imbalance.403,404

D. Concluding remarks and outlook

We have reviewed our current understanding of the spontaneous
and controlled formation and stability of persistent currents in basic
atomtronic circuits consisting of single or coupled ring-trap potentials
and extended racetrack potentials. We have found that on–demand
persistent flow can be created in a racetrack potential by stirring. The
flow speed can be set to any value by adjusting the stir speed and/or
the racetrack geometry. We discussed how persistent currents can also

be generated spontaneously after crossing the BEC phase transition. In
coplanar geometries, we showed that the spontaneous generation of
persistent flow is unaffected by the density overlap of the two rings,
taking the first step in understanding ring–ring interactions and open-
ing the possibility of many-ring arrays in the future. We have dis-
cussed our recent findings on dynamics of quantum vortices in two
coupled vertically stacked toroidal condensates with persistent cur-
rents. It turns out that evolution of weakly coupled superfluid rings
and merging quantized superflows with different topological charges is
determined by complex dynamics of rotational Josephson vortices
located between persistent currents.

The control over quantum topological excitations in such geome-
tries offers an outstanding route to emerging quantum technologies
with wide-ranging applications, such as topologically protected fault-
tolerant quantum computation and quantum sensors for acceleration
and rotation. These critically rely on minimizing decoherence and dis-
sipation and optimizing the engineering of such components. For
example, flexible sensor operation would require a rapid generation of
the desired initial state, with further reduction in shot-to-shot atom
number fluctuations crucial for sensor accuracy. Other areas where
further theoretical and experimental work is needed (and currently
well underway) include atomtronic transport, gatelike manipulation of
quantum topological excitations, and readout mechanisms in atom-
tronic circuits.
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VIII. PHASE SLIP DYNAMICS ACROSS JOSEPHSON
JUNCTIONS

A. Minguzzi, A. P�erez-Obiol, J. Polo, N. P. Proukakis,
K. Xhani

The phenomenon of superfluidity and its consequences can
reveal itself in different ways in a quantum gas. One of the most
remarkable manifestations of superfluidity is the frictionless motion of
particles within the fluid, which is in direct relation with the macro-
scopic quantum phase coherence of the fluid. However, in certain cir-
cumstances, this frictionless motion can be broken with dissipation
taking over. Phase slips represent one of the fundamental mechanisms
leading to dissipation in superfluid systems.161,391,426–430

Phase slips correspond to jumps in the phase structure of the
wavefunction of a quantum fluid. They can arise in dynamical super-
flow through a barrier in distinct manners, as summarized below: In
the case of a coherent superfluid, dynamical flow through a barrier can
trigger excitations that lead to phase slips. The form of such excitations
depends on the dimensionality and the geometry of the system and
can take the form of solitonic or vortex excitations, with associated
acoustic emission. The presence of fluctuations in the system—
whether of thermal, or quantum nature—creates an additional mecha-
nism of “incoherent” phase slips, thus giving rise to richer dynamics.
Atomtronic circuits typically consist of one (or more) Josephson junc-
tions, embedded within a closed, typically ring-shaped and low-
dimensional, geometry. Therefore, understanding phase slip processes
can prove crucial for the development of quantum technologies and,
in particular, Atomtronic devices.

Currents in ring geometries are ideal candidates for the study of
superfluidity in interacting quantum gases. In particular, these cur-
rents are metastable states that can maintain the flow of particles even
when no external field or force is applied. However, these metastable
states can decay in different scenarios. The decay of current states in
one dimensional rings corresponds to a sequence of phase slips associ-
ated with the loss of angular momentum by the system. Such a type of
event may occur as triggered, e.g., by thermal fluctuations or other
type of fluctuations, and in such case, they correspond to the afore-
mentioned incoherent phase slips, as well as in quantum coherent
manner, i.e., as an oscillation among different angular momentum
states.431 Examples of dissipative motion have been observed in hyster-
esis dynamics16,161,383,432,433 where thermal activation plays an impor-
tant role.434

In addition, phase slips can also be triggered by an external
mechanism, for instance a weak link can catalyze the production of
vortices at zero temperature435 and solitons.163 It has been shown that
thermally activated phase slips can become dominant in the damping
dynamics of some observables at relatively low temperatures.388,436

Recent studies have demonstrated the connection between the
dissipative motion observed in Josephson systems and phase
slips.162,430,437,438 In this case, vortex nucleation can be triggered
through the weak link producing the Josephsonlike junction29 or
through thermal activation, depending on the range of parameters.

In a similar case, the connection between low-energy excitations and
dissipative motion was proven to be the main mechanism,439 leading
to the damping of Josephson oscillations.440

In this section, we present recent developments in the topic of
phase slips and their role in the dissipative dynamics of observables
such as population imbalance of Josephson systems and current
dynamics in ring potentials. Special attention is given to the nonlinear
excitations of the different systems, such as vortex rings and dark soli-
tons. In Secs. VIII A–VIII E, we summarize different studies performed
by the authors, which illustrate how phase slips can emerge in
Atomtronics devices and isolated quantum systems.

Section VIII A is devoted to the study of nucleation of vortex
rings in a weakly linked three-dimensional elongated superfluid. In
Sec. VIII B, we consider the damping of Josephson oscillations in a
one-dimensional (1D) strongly interacting Bose gas. Section VIII C is
dedicated to the excitation spectrum of a 1D stirred Bose gas. Section
VIII D focuses on the dynamical phase slips occurring in a phase
imprinted Bose gas trapped in a ring potential. Finally, in Sec. VIII E,
we present the conclusions and outlook, summarizing and discussing
how phase slips play a crucial role on Atomtronic-based devices.

A. Critical transport and vortex dynamics in a thin
atomic Josephson junction

In this section, we give a detailed and intuitive picture of the
emergence of phase-slips and dissipation across a single Josephson
junction in a full three-dimensional (3D) atomtronic geometry.
Although there exist phenomenological models which can account for
dissipative effects in such a setting—such as the extension of the two-
mode model of Josephson junctions441 to include a damping
term442–444 or models based on the analogy to a resistively-shunted
junction (RSJ) circuitry445—such models can only offer limited insight
into the microscopic characterization of the observed dissipation. For
a more complete discussion, this section, therefore, focuses on the case
of a junction embedded within an elongated harmonically-trapped
superfluid, as a paradigmatic example of the arising dynamics. Such a
choice is based on the existence of a carefully characterized experi-
ment,430,437 detailed ab initio numerical analysis of which438,446 has
enabled not only qualitative connections to be made, but also facili-
tated direct links between microscopic and macroscopic observables
and manifestations, directly relating these to the experimental observ-
ables. The discussion below is, thus, based on our recent works,438,446

conducted at both zero and finite temperatures, which have fully ana-
lyzed all aspects of the arising microscopic dynamics.

The relevant experiment focused upon here was conducted in
Florence,430,437 in the context of an elongated 6Li fermionic superfluid,
separated by a thin Gaussian barrier induced by a focused laser beam
located at x¼ 0 and of 1=e2 width w � 4n � 2 lm� Rx � 110 lm,
where n (Rx) denotes the superfluid healing length (axial system size).
The experiment probed all regimes of values of ðkFaÞ�1, where kF

denotes the Fermi wavevector and a the atomic s-wave scattering
length. Although relevant and subtle differences were observed when
transitioning from the BEC to the BCS superfluid regimes—mainly
associated with different critical velocities and spatial extents due to
the changing interaction dependence and the increasing importance of
the fermionic degrees of freedom—the key underlying physical process
leading to dissipation of superflow was found to be the same in all
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regimes, as outlined below (see also Sec. XI for a discussion of trans-
port and dissipation in ultracold Fermi gases).

The presence of an initial population imbalance across the two
wells separated by the barrier (initiated by moving the superfluid rela-
tive to the barrier at t¼ 0) induced a neutral current flow in the nega-
tive x-direction, leading to the transfer of particles from the right to
the left well. As expected, small values of initial population imbalance
were found to lead to symmetric Josephson “plasma” oscillations
about a zero population imbalance and associated oscillations in the
relative phase.441,447 Nonetheless, when the initial fractional popula-
tion imbalance exceeded a critical value, the system population
dynamics transitioned to a different regime. Based on earlier experi-
ments with ultracold Josephson junctions,428,448,449 one may have
expected a transition to a so-called macroscopic quantum self-
trapping regime, in which the population transferring oscillations pro-
ceed around a nonzero value of the population imbalance (i.e., one
side of the junction always has a higher population than the other),
and with a running phase,441,447 the existence of such a regime has
been argued to be related to the presence of a vortex ring in the barrier
region, which annihilates within the weak-link region (but outside the
region of observable condensate density).450,451 Interestingly, a differ-
ent regime was observed in the recent Florence experiment character-
ized by the observation of vortices in the superfluid bulk. Such a
dissipative regime can arise when the emergent vortex ring acquires
sufficient energy to overcome the barrier and penetrate the bulk super-
fluid. This is the regime analyzed in our recent work.438 Specifically in
our case—and, in particular, during the first part of the dynamical evo-
lution when particle flow is still in a single direction—and for suffi-
ciently large population imbalances, the very narrow nature of the
barrier438 was found to induce a local superfluid flow that accelerates
in time and exceeds the local critical velocity for vortex excitation,
which, in this geometry, takes the form of a vortex ring excitation. As
a result, the presence of a Josephson current flow led to the generation
of a vortex ring, associated with a phase jump of 2p across the axial
direction, and a flow which is no longer dissipationless. Such a phase
slippage process is well documented in related contexts of Josephson
junctions in superfluids and superconductors,426,427 where it can be
described in terms of phenomenological models.

Numerical analysis has shed more light on this process in the
highly controlled environment of an ultracold atomic gas, modeled by
the full 3D Gross–Pitaevskii equation describing the low-temperature
regime of a weakly interacting condensate. Such analysis has been con-
ducted based on the experimental parameters of Refs. 430 and 437 in
the molecular BEC regime. Key findings reported in Ref. 438 are
clearly summarized in Fig. 34. Interestingly, the observed dissipation
arises as a combination of the transfer of incompressible kinetic energy
from the particle flow to the vortex and the acoustic (phonon) emis-
sion (with the latter potentially amounting to a significant fraction of
the total flow energy). More details about this phase-slip process and
the associated acoustic emission can be found in Ref. 438. For com-
pleteness—before proceeding further with such characterization—we
note that while such a dissipative regime was found in the limit of rela-
tively low and narrow barriers [height � OðlÞ, and width four times
the system healing length, for the parameter space probed in the
Florence experiments430,437] a transition to a self-trapped regime also
exists in the limit of broader and/or higher barriers; such analysis, pro-
viding a unified overview of the distinct dynamical regimes across a

single Josephson junction was presented in Ref. 446. The stability of
this self-trapping regime is directly affected by thermal and quantum
fluctuations452–457 and by higher order tunneling processes,458 which
are known to gradually destroy such a state, eventually leading to oscil-
lations about a zero population imbalance.

We proceed here by reviewing the phase-slip-related transition to
the dissipative regime probed in the Florence experiments.430,437

Consider the case when the fractional population imbalance zBEC

across the junction starts at a positive value (i.e., right well has higher
population than left well): the induced Josephson dynamics leads to an
(initial) superflow toward the left side of the junction [Fig. 34(a)], thus
causing an initial decrease in the fractional population imbalance.
However, as such an imbalance decreases at an increasing rate, imply-
ing an increase in the superfluid velocity (and corresponding super-
fluid current), there comes a point when the magnitude of the
superfluid velocity exceeds some threshold value [loosely set by the
mean speed of sound shown by the horizontal dashed line in
Fig. 34(b)], acquires a temporally local maximum value, as a result of
which it becomes energetically favorable for a vortex ring excitation to
be generated at the barrier at x¼ 0. Such a process is associated with
an abrupt jump of �2p in the condensate relative phase, as shown in
Fig. 34(c). The vortex ring generation instantaneously opposes the
population transfer [leading to the flattening of zBECðtÞ visible in Fig.
34(a)] and can even lead to a reversal of the background superflow
[i.e., �hvxi changing sign in Fig. 34(b)] due to the additional
“swirling” velocity of the induced vortex ring. The vortex ring, initially
generated (as a “ghost” vortex) in the low density region outside the
local transversal spatial extent of the BEC, remains initially within the
axial barrier region xVR � 0 [Fig. 34(d)], shrinking transversally [Fig.
34(e)] and entering the Thomas–Fermi radius. After a short time, the
accelerating vortex ring reaches the axial edge of the barrier (the super-
fluid density maximum is located at jxVRj � 2w) and starts traveling
at a constant speed [linear part of decreasing xVRðtÞ], while maintain-
ing its radius. A detailed instructive visualization of the overall super-
fluid geometry and the narrow nature of the barrier region can be
found in Figs. 34(f)–34(i), which also displays the vortex ring genera-
tion and initial dynamics.

The long-term dynamics after the generation of a vortex ring
from the decay of the superflow depends critically on the system
parameters. If the initial population imbalance is relatively weak (but
still above the required threshold for defect-inducing decay of super-
flow), a single vortex-ring may be generated, whose lifetime and subse-
quent dynamics outside the barrier depends on the value of the barrier
height, as shown in.446 However, in cases of larger initial population
imbalance, after the first vortex ring has been generated and left the
central region, the background superflow due to the remaining popu-
lation imbalance, i.e., chemical potential difference, picks up its pace
[around t � 13 ms in Fig. 34(b)], until at some time later, when the
previously generated vortex ring has already traveled a (potentially sig-
nificant) axial distance from the barrier region, it once again exceeds
the local critical speed and a second vortex ring is generated (around
t � 16:3 ms). This process can repeat itself, leading to even more vor-
tex ring generation, until (due to the decreasing population imbalance)
the background flow weakens to the point that it can no longer exceed
the critical velocity. The resulting sawtoothlike profile of �hvxi
[Fig. 34(b)] is typical of phase slippage phenomena seen in superfluid
helium.427,459–461 A generated vortex ring eventually decays either by
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shrinking into a rarefaction pulse during its axial propagation (as rele-
vant for the case considered here), or by interacting with the transver-
sal condensate boundaries as the transversal spatial extent decreases
during its propagation toward the axial condensate edge.438 In cases of
high initial population imbalance, the time window between successive
vortex ring generation events (depending on h=Dl with Dl being the
chemical potential difference between the two wells) can be shorter
than the vortex ring lifetimes, thus allowing the coexistence of multiple
sequentially generated vortex rings; such rings may further interact
both indirectly (through their respective emitted acoustic waves), and
directly (vortex–vortex interactions), potentially leading (for very high
initial population imbalances) to reconnection processes, “leap-
frogging” (sequential passage of one vortex ring through the other), or

even a “turbulentlike” regime (already discussed, for example, in 2D
geometries462) this, in turn, leads to a highly complicated long-term
dynamics of the population imbalance.

The experimental observations430,437 are consistent with the pic-
ture described here. More concretely, the experiments led to the obser-
vation of one, or more, individual vortices, seen after removing the
barrier (an added experimental complication required for imaging
purposes), allowing the system to evolve and expand. This is consistent
with the underlying picture described above, upon detailed consider-
ation of the transversally asymmetric nature of the potential (which
leads to excited, noncircular, vortex rings exhibiting Kelvin wave exci-
tations), inherent fluctuations (which lead to asymmetric generation,
propagation and decay of the vortex rings, and can thus explain the

FIG. 34. Characterization of phase slip process and subsequent vortex ring dynamics in a weakly-interacting elongated 3D condensate: (a) Fractional population imbalance
zBEC ¼ ðNR � NLÞ=ðNR þ NLÞ across a thin Josephson junction against time. (b) Induced superfluid velocity along x, weighted over the transverse density in the x¼ 0 plane.
(c) Induced superfluid relative phase along x, evaluated at z¼ 0, y ¼ 0:81lx , corresponding to the vortex ring semiaxis along the y direction at t¼ 12.1 ms [see subplots
(g)–(h)]. (d) and (e) Corresponding position xVR and mean radius RVR of the generated vortex rings as a function of time. (f) and (g) 3D density profile (density isosurface taken
at 0.002 of maximum density) at t¼ 12.1 ms, revealing the superfluid geometry and narrow barrier, along with a zoom-in to the highlighted central region [enclosed within the
white rectangle in (f)] where the generated vortex ring (green near-circular structure) becomes clearly visible. (h) and (i) Corresponding planar (z¼ 0) 2D snapshots of the con-
densate density (left) after substracting the background density and scaled to its maximum value, and phase profiles (right) revealing the emergence and early dynamics of the
first generated vortex ring at the indicated times. Spatial axes are plotted in terms of the harmonic oscillator length along the x-axis, lx ’ 7:5 lm. Parameters for this figure:438

NBEC ¼ 60; 000 bosonic 6Li molecules, 1=ðkFaÞ ’ 4:6; zBECðt ¼ 0Þ ¼ 0:17; xx ’ 2p� 15 Hz, xy ’ 2p� 187 Hz, xz ’ 2p� 148 Hz (cigar-shaped trap), based on a
double-well potential defined by Vtrapðx; y; zÞ ¼ ðM=2Þðxx

2x2 þxy
2y2 þ xz

2z2Þ þ V0 e�2x
2=w2

, where M ¼ 2m is the molecular mass, V0 ¼ 0:8l is the height of the
Gaussian barrier and w � 2:0lm is the barrier 1=e2 width. Figure similar in spirit to individual plots shown (for other population imbalances) in Ref. 438.
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presence of single/odd-number-of defects in experimental expansion
images) and dynamical barrier removal (which is found to signifi-
cantly extend the lifetime of generated vortex rings).438

Reference 438 also considered the role of temperature and ther-
mal fluctuations by means of a self-consistent (“ZNG”) kinetic the-
ory,413,416,417,463 in which the condensate is described by a dissipative
Gross-Pitaevskii equation which explicitly includes friction and colli-
sional population transfer with the thermal cloud, the latter being
treated by a quantum Boltzmann equation. This demonstrated that
the presence of small thermal fluctuations does not significantly influ-
ence the above vortex generation process, although we have observed
that a high enough temperature can in fact induce additional
thermally-activated vortex rings; examples of the latter behavior in the
one-dimensional context are discussed by means of a different finite-
temperature model in Sec. VIII D below. Beyond the initial generation
process, thermal effects were found438 to have a significant role on the
long-term vortex dynamics, where they act both to destabilize the oth-
erwise symmetric motion of the vortex ring through the introduction
of fluctuations, and to damp the motion through a mutual friction
damping mechanism.464,472

The process that we have discussed here is generic and applies to
any geometry and dimensionality, even though specific details will
vary. For example, in the case of one-dimensional systems (see Secs.
VIII B and VIII D), the underlying defects generated are dark solitons
with the corresponding dynamics in ring traps of direct relevance to
atomtronics discussed in Sec. VIII C.

Although the above discussion focused primarily on reviewing
the emergence of dissipation across a single 3D junction embedded
within a harmonic trap, it is pertinent to highlight here the important
related work of quantum transport across an atomtronic “dumbbell”
circuit, consisting of two reservoirs connected by a configurable linear
channel of variable length and width:29 this was both studied experi-
mentally, and analyzed theoretically in the context of a superfluid
acoustic model, a phase-slip model for the conductance, and via
mean-field simulations. Such a work also highlighted the existence of
Josephson plasma and dissipative dynamical regimes with the transi-
tion between such regimes observed (for given channel) at variable ini-
tial population imbalance. Moreover, Gauthier et al29 noted that the
relative importance of sound and vortex energy as the origin of dissi-
pative dynamics depends sensitively on the details of the geometry of
the channel: for example, small channel widths which cannot support
vortex dipoles, lead to the generation of unstable topological excita-
tions which decay rapidly to compressible excitations. Thus, for small
channels, they found the origin of dissipation to be sound-dominated.
This is qualitatively consistent with the findings of Ref. 446, which
characterized the dominant dissipation mechanism for sufficiently
high barriers as the propagation of emitted sound waves.

B. Bose–Josephson junction among two one-
dimensional atomic gases: A quantum impurity
problem

The one-dimensional (1D) geometry in ultracold Bose gases pro-
vides an ideal physical platform for the study of the quantum dynamical
behavior of Bose–Josephson junctions, as the low dimensionality of these
systems leads to the enhancement of quantum fluctuations and correla-
tions. Recent experiments have realized and studied the 1D strongly
interacting regime by using quasi-one-dimensional cigar-shaped

potentials in which the transverse motion of the particles is effectively
frozen.359,440,466–470 One-dimensional systems present features that
clearly separate them from the higher dimensional ones, especially in the
intermediate and strongly interacting limit where the motion of the par-
ticles is defined by its collective behavior. This collective motion is tightly
connected to the low-energy excitation spectrum of the gas.

One dimensional systems are characterized by specific thermali-
zation properties (e.g., to generalized Gibbs ensemble for integrable sys-
tems), which has been a topic of continuous interest.249,292,471,472 Phase
slips play a crucial role in the dissipative dynamics of quantities such as
population imbalance in Josephson systems and current dynamics in
ring potentials. For instance, phase slips are the only mean to change
angular momentum in one-dimensional rings, as such rings cannot
host vortices in the transverse direction, and they occur at the position
of a localized barrier. In one-dimensional wires, phase slips occur when
a soliton is formed or destroyed upon hitting the barrier giving rise to
the junction.163 Hence, Josephson junctions in one-dimensional sys-
tems are an appealing physical platform to investigate such damping
phenomena and one of the simplest yet complete many-body systems
displaying thermal and quantum phase slips.

Recent studies have investigated phase slips in different contexts:
for instance in Ref. 473, they investigated two tunnel-coupled one-
dimensional tubes placed side-by-side and characterized their low-
energy physics described by unequal Luttinger liquids. Other approaches
are also being investigated; e.g., in Ref. 474, they attribute the short-time
evolution to multimode dephasing, while for longer times, they relate the
relaxation to the nonlinear dynamics of the system.

Subsection VIII B 1 presents a study of the microscopic origin of
phase slips in 1D bosonic Josephson junctions. Specifically, the analy-
sis is performed in the strongly interacting regime by considering two
weakly coupled one-dimensional wires in a head to tail configuration.
The results and discussion presented here are adapted from.439

1. Model

The intermediate and large interaction regimes of a 1D Bose gas
are difficult to treat, both numerically and analytically, due to the
many-body character of the system. Using the Luttinger liquid (LL)
theory475 one can calculate the low-energy dynamical response of two
strongly interacting one-dimensional bosonic fluids confined within
an effective 1D waveguide of length L, tunnel-coupled through a weak
link created by a barrier. In particular, in Ref. 439, we have studied the
system’s response to a quench in the particle number difference
between the two subsystems. By using a mode expansion of the density
fluctuation and phase field operators from the LL theory and by defin-
ing the relative coordinates for the field operators, we identified the
zero modes N̂ and /̂0 as the relative population and phase differences
between the two coupled wires, and Q̂l and P̂l as the relative coordi-
nates for the excited modes. The resulting Hamiltonian reads

Ĥ
rel
T ¼

�h2

2ML2
ðN̂ � NexÞ2 � EJ cos /̂0

� 

þ
X
l1

1
2M

P̂l þ
ffiffiffi
2
p

�h
L
ðN̂ � NexÞ

� �2

þ 1
2

MX2
lQ̂

2
l

" #
(61)

with effective mass M ¼ �hK=2pvL ¼ K2m=2p2N0, N0 being the aver-
age particle number in each tube and Nex � N0 the excitation
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imbalance, which may be tuned by a suitable choice of the initial con-
ditions. It is worth mentioning that the center-of-mass coordinates are
completely decoupled from the relative ones and they simply take the
form of a harmonic oscillator, which can be readily diagonalized, not
playing any role in the observable of interest.

We identify in Eq. (61) three terms: (i) a quantum impurity parti-
cle term corresponding to the two collective variables N̂ and /̂0, (ii) a
bath of harmonic oscillators formed by the excited modes, and (iii) a
coupling term / P̂lN̂ , obtained by expanding the second line of Eq.
(61). Hamiltonian Eq. (61) has the same structure as that of the
Caldeira–Leggett model.476–478 However, it is important to remark
that in our model, the bath of harmonic oscillators is intrinsic to the
microscopic model, while in the Caldeira–Leggett model, it is phe-
nomenologically introduced. The energy scales EQ and EJ depend on
interactions, the latter being renormalized by quantum fluctuations.406

Concomitantly, the sound velocity and the Luttinger parameter vary
with the interaction strength as described in Ref. 475. The first two
terms of Eq. (61) correspond to the familiar Josephson Hamiltonian,
where two regimes can be identified depending on the ratio of the
Josephson energy, EJ, and kinetic energy, EQ ¼ �h2=ML2 ¼ 2DE=K ,
with DE ¼ �hpv=L being the level spacing among the phonon modes
of the bath.

Case 1: Let us first consider the case EJ 
 EQ, i.e., the Josephson

potential term �EJ cos ð/̂0Þ dominates upon the kinetic energy term
in Eq. (61). In particular, starting from an initial particle imbalance
among the two wires, its dynamical evolution was obtained from the
Heisenberg equations of motion,439 leading to the quantum Langevin
equation of motion with three dominant parameters: the Josephson
frequency xJ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 � c2
p

where x0 ¼
ffiffiffiffiffiffiffiffiffiffi
EJ EQ
p

=�h, the memory-
friction kernel nNðtÞ whose large temperature properties are given by
hnNðtÞi ¼ 0 and hnNðtÞnNðt0Þi ¼ 2E2

J kBT=�h2MLvdðt � t0Þ and a
damping rate given by c ¼ pEJ=�hK (assuming a large frequency cutoff
for the LL theory),

€̂N þ x2
0 cos ð/̂0ÞN̂ þ

ðt

0
dt0 cNðt; t0Þ _̂N ðt0Þ ¼ nNðtÞ: (62)

Within this Josephson regime, two different behaviors depending on
interactions exist. In the weakly interacting limit, where K � 1=

ffiffiffiffiffiffiffi
g1D
p

and vs �
ffiffiffiffiffiffiffi
g1D
p

with g1D being the 1D interaction strength, the predic-
tions of the two-mode model in its small-oscillation limit are recov-
ered, i.e., EQ / g1D and c=EQ vanish for g1D ! 0, yielding undamped
Josephson oscillations. However, for strong interactions, EQ increases,
as it is related to the compressibility of the system, and EJ decreases,
since it is renormalized by increasingly larger phase fluctuations. Thus,
by inspecting the dimensionless damping rate cQ � c=x0 ¼ p

ffiffiffiffiffi
EJ
p

=ffiffiffiffiffiffi
EQ
p

K , one can predict that the Josephson oscillations will be more
and more damped at increasing interactions.

Case 2: In the EJ � EQ limit, the phase is only weakly pinned
and, therefore, it will display large fluctuations. In this regime, it is
more convenient to use the Fock basis for the relative number. In this
case, the energy levels of the quantum particle in Eq. (61) can be
described as a function of the number of excitations Nex, which now
plays the role of quasi-momentum in the effective crystal, taking the
form of parabolas enðNexÞ ¼ EQðn� NexÞ2=2, with N̂ jni ¼ njni.
These parabolas present gaps of amplitude EJ opening at semi-integer
values of Nex. If we focus on the anticrossing points Nex ¼ 61=2;

63=2;…, the system effectively behaves as a two-level model and the
Josephson dynamics correspond to the Rabi oscillations of the quan-
tum particle, with frequency EJ=�h. Note that the large value of EQ fixes
the scale of bath-modes level-spacing. This, creates a large gap between
the level-spacing of the bath and that of the quantum particle, �hx. In
the strongly interacting limit, there exists an exact solution for infi-
nitely repulsive interactions, corresponding to K¼ 1 in the LL theory,
known as the Tonks-Girardeau (TG) regime.164,479,480 In particular, in
Fig. 35(b), we show that for a small initial imbalance, i.e., Nex ¼ 1=2,
undamped oscillations occur with a frequency xTG ¼ eNþ1 � eN . This
is where the correspondence between the LL and TG regime can be
made as EJ ¼ �hxTG and EQ ¼ �h2p2N=mL2. Hence, the oscillations
observed in the exact solutions at small dV0 are the undamped Rabi
oscillations of the quantum particle predicted by the LL model. For a
larger imbalance, and thus beyond the low-energy description given
by the LL theory, an effective damping appears due to the high energy
excitations produced by the quench. The finite temperature regime
was also addressed within the exact TG regime, as shown in Fig. 35(c)
for small-imbalances. Unlike in the LL predictions, in the TG exact
solution, damped oscillations were found. In order to pinpoint the ori-
gin of this damping, we computed the spectral function of the system
at finite temperature.439 We found that the exact spectral function
contains multiple particle–hole excitations while the LL model
assumes a linear excitation spectrum. In fact, we found that the exact
spectral function also contains several low-energy excitations with fre-
quencies of the order of EJ, which are associated with the presence of a
finite barrier and are responsible for the observed damping.

In summary, our work showed that the LL model for two tunnel-
coupled atomic gases can be mapped on a quantum impurity problem
in the presence of a bath. The exact TG solution validates the fre-
quency of the Josephson oscillations predicted in the LL model, and
that the oscillations may in fact be damped by an intrinsic bath made
out of low-energy excitations, but points out the existence of other
modes that are beyond the LL model and that also provide damping of
the excitations.

C. Bose–Einstein condensate confined in a 1D ring
stirred with a rotating delta link

Analyzing the spectrum of BECs trapped in ring settings is an
important step toward understanding the generation and decay of
supercurrents. The spectrum of a BEC in a 1D ring stirred by a rotat-
ing link can be first illustrated in the mean field limit, at zero tempera-
ture, and with a Dirac delta potential rotating at constant speed. Here,
we follow these assumptions based on this section in Refs. 481 and 482
This approach has the advantage that the stationary solutions in the
delta comoving frame are the ones of the free 1D GPE, and the effect
of the moving potential is relegated to fixing specific boundary condi-
tions. This is in contrast to models with finite width potentials,483–485

and a generalization of a static point like impurity.10,486 It allows for
analytical expressions of the solitonic trains dragged by a rotating
weak link and for the critical velocities at which the condensate
becomes unstable and decays. The metastability of each excited state
can be readily studied through a Bogoliubov analysis, and the hystere-
sis cycles observed in stirring experiments16 can be qualitatively under-
stood in terms of this model.
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1. Model

The stationary solutions are given by the condensate wave func-
tion, /ðhÞ; h 2 ½0; 2pÞ, and the corresponding chemical potential, l,
in the delta comoving frame. Using natural units, �h ¼ M ¼ R ¼ 1,
with M the mass of the atoms and R the radius of the ring, the GPE
and boundary conditions read

� 1
2
/00ðhÞ þ gj/ðhÞj2/ðhÞ ¼ l/ðhÞ; (63)

/ð0Þ � ei2pX/ð2pÞ ¼ 0; (64)

/0ð0Þ � ei2pX/0ð2pÞ ¼ a/ð0Þ; (65)

where g> 0 is the reduced 1D coupling, assumed to be repulsive, a=2
> 0 and X the strength and velocity of the Dirac delta, and / is nor-
malized to

Ð 2p
0 dhj/ðhÞj2 ¼ 1. The spectrum is, thus, determined by

three parameters, g, a, and X. A general solution, /ðhÞ ¼ rðhÞeibðhÞ,
can be written in the closed form in terms of one of the 12 Jacobi func-
tions.10 These functions contain two free parameters, the elliptic mod-
ulus, m, which generalizes the trigonometric functions into the Jacobi
ones, and a frequency k. Any set of values for k and m entails a solu-
tion that satisfies Eqs. (63)–(65) for a specific strength a, velocity X,
and chemical potential l.

2. Spectrum

The free and stationary solutions, X ¼ a ¼ 0, consist in plane
waves, real symmetry breaking solutions, and complex symmetry
breaking solutions.487 They correspond to vortex states, dark solitonic

trains with an even number of zeros, and gray solitonic trains. The
latter is a generalization of the former two, plane waves representing
the limit in which gray solitons become infinitely shallow, and dark
solitons the limit in which the minima of gray solitons become
zero. All these solutions are found by imposing a phase jump
bð2pÞ � bð0Þ ¼ 2pn with n an integer. If instead one constrains an
arbitrary phase difference of 2pX, the obtained solitonic trains move
at velocity X—and are stationary in the frame of reference rotating at
X. The spectrum of stationary solutions from the point of view of an
observer moving at X is plotted in the left panel of Fig. 36. These solu-
tions also include plane waves under a boost of X. Dark solitonic trains
with an even number of zeros comove with the condensate at X ¼ l,
while trains with an odd number of zeros travel at X ¼ l þ 1=2, where
l is an integer. Waves moving at velocities departing from X ¼ l=2
consist in gray solitonic trains, with shallower solitons the larger
jX� l=2j. At X ¼ l=26jXn � n=2j with Xn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g=2pþ n2=4

p
and n

indicating the number of dark solitons in the original train, the ampli-
tudes become constant, and the gray soliton solutions merge into
plane waves (parabolas in Fig. 36).

Once a barrier is created, the rotational symmetry is broken, and
gray and dark solitonic train solutions are split into two. The energy
spectrum, as observed in the Dirac delta comoving frame, is split into
a set of swallowtail (ST) diagrams, see middle and right panels of
Fig. 36. This looped structure implies that each wave train with a fixed
number of dips in the density can be dragged only at a certain range of
velocities. This range is limited by a pair of critical velocities, one
X < l=2 and another X > l=2, beyond which stationary solutions do
not exist for the particular ST centered at X ¼ l=2. These pair of

FIG. 35. (a) Relative number dynamics
NðtÞ=Nð0Þ (dimensionless) in two tunnel-
coupled wires (LL approach) for various
values of cQ ¼ c=x0. Stochastic noise
uncertainties are indicated in shaded
areas. (b) and (c) Relative-number oscilla-
tions (TG regime) following a quench of
the step potential dV0 creating the initial
imbalance: (b) at zero temperature for
dV0=EF ¼ 0:07 (yellow-dotted line), 0.14
(magenta dashed line) and 0.72 (blue
solid line), with EF the Fermi energy; (c) at
finite temperature for dV0=EF ¼ 0:07.
Reprinted with permission from Polo et al.,
Phys. Rev. Lett. 121, 090404 (2018).
Copyright 2018, American Physical
Society.439
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velocities are marked by the tips in each swallowtail, and depend on
the magnitude of the weak link.

3. Metastability

The critical velocities define the regions in parameter space where
stationary solutions exist, and the possible stirring protocols, or paths
½aðtÞ;XðtÞ� through which solitonic trains can be dragged, see Fig. 37
for a sample of these regions. Bogoliubov analysis show that the solu-
tions corresponding to these regions are mostly stable under perturba-
tions, while the solutions corresponding to top parts of swallowtails

are completely unstable. This metastability analysis does not qualita-
tively change for a wide range of nonlinearities (g¼ 1 to g¼ 50). In
general, weaker atomic interactions and larger a imply narrower
ranges of velocities at which solitons can be dragged without dissipa-
tion. Moreover, for small g, the swallowtail loops become smaller, and
at half-integer velocities, pairs of dark solitonic states are energetically
very close to the ground states.

With the general features of the spectrum and its metastability
laid out, one can devise adiabatic paths that avoid both, the critical
lines delimiting the tips of the ST, and the metastable regions. Setting a
weak link at zero velocity and then accelerating it, only produces

FIG. 36. Lower part of the spectrum lðXÞ, in the reference frame of a Dirac delta of strengths a ¼ 0; 1, and 4, moving at constant velocities X 2 ð�2; 2Þ, and where g¼ 10.
Dots mark the velocities and energies of dark solitonic trains. Crosses in the left panel mark the velocities Xn at which gray solitonic trains merge into the ground state for
X > 0. Reprinted with permission from P�erez Obiol and Cheon, Phys. Rev. E 101, 022212 (2020). Copyright 2020, American Physical Society.481

FIG. 37. Regions where stationary solutions exist corresponding to the bottom of the first three ST centered at X ¼ 0; 12 ; 1 and for g¼ 10. They are colored as the correspond-
ing sections in Fig. 36. All these solutions are stable against perturbations except for the regions in yellow in the right plot. A path which explicitly leaves the stationary region
is drawn on the left panel. The paths in the middle panel represent cycles to obtain a dark soliton and a vortex with one quantum of angular momentum. Reprinted with permis-
sion from P�erez Obiol and Cheon, Phys. Rev. E 101, 022212 (2020). Copyright 2020, American Physical Society.481
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currents of angular momentum J � 1 before the condensate becomes
unstable. If instead the weak link is set while rotating at a finite velocity
Xi 2 ðXn;Xnþ1Þ; n  1, and then slowed down, any number of dark
solitons or vortex states with any number of quanta of angular
momentum can be obtained. As an example, cycles to obtain one dark
soliton and a vortex are drawn in the middle panel of Fig. 37. The den-
sities and phases corresponding to the vertices of this rectangular path
are plotted in Fig. 38.

One can also devise paths that explicitly cross the critical line sep-
arating the stable and unstable regions. One such path is schematically
plotted in the left panel of Fig. 37, where a weak link is set in the con-
densate at rest and then accelerated passed the critical velocity. In this
case, one can expect the condensate to enter an unstable state and
decay to the immediate lower state, corresponding to the lower branch
of the swallowtail diagram. If then the opposite path is taken,in which
the weak link is slowed down, the previous states are not recovered,
and the condensate is left with an increased angular momentum, pro-
ducing hysteresis. To recover the initial state, the weak link velocity
has to be further decreased to reach the other critical point, so that the
condensate decays again and the hysteresis cycle can be closed.
Therefore, the swallowtails and critical velocities also provide a basis
model to understand the hysteresis cycles observed in experiments. In
particular, in Ref. 16, the cycle widths and critical velocities decrease as
stronger weak links are rotated. This qualitatively agrees with the spec-
trum studied here, where the hysteresis widths DX are defined by the
widths of the swallowtails, and decrease as weaker interactions g or
larger link strengths a are considered. Moreover, the model also

predicts hysteresis cycles coupling states with different angular
momentum, corresponding to paths along upper swallowtail dia-
grams. On the other hand, these downward swallowtails are the char-
acteristic of repulsive interactions, and it can be shown that such
hysteresis cycles cannot happen for attractive interactions.482

The above stirring mechanisms, deduced analytically from the
spectrum, are corroborated by numerical simulations of the time-
dependent GPE where a Gaussian potential is rotated, instead of a
Dirac delta. These simulations also allow one to test the stability of stir-
ring protocols involving more excited states not studied in the analyti-
cal case. Indeed, for Gaussian widths of about 2% of the ring
perimeter, dark solitonic trains with various zeros and vortices with up
to a few quanta of angular momenta are produced following the proto-
cols provided by the model with a rotating Dirac delta. Similarly, the
condensate is able to sustain stable solutions when stirred by a
Gaussian link up to a certain velocity. This critical velocity decreases
with the Gaussian height, as expected from the regions of stationary
solutions in Fig. 37.

This model offers a new approach to study metastability and vor-
tex and soliton nucleation in ring condensates with a rotating weak
link. The processes described in this section can also be understood in
terms of a rotating trap and a fixed weak link or defect. Analytical
expressions for the dragged solitonic trains and critical velocities allow
to study ground states as well as excited states, and to understand how
they are coupled among them. At half-integer velocities and for strong
enough weak links dark solitonic states with zero current could be eas-
ily excited from the ground states. They could also be produced if a

FIG. 38. Densities (solid lines) and phases
(dashed lines) in the Dirac delta comoving
frame corresponding to the key points of
the dark solitons and vortex cycles in Fig.
37 (where g¼ 10). The first steps in both
of them consist in setting a delta on the
ground state (top left plot) while rotating at
X ¼ 1:4, and then lowering its velocity to
X ¼ 1

2 (top and middle right plots). At this
point, one can unset the delta and obtain
a dark soliton, or further decrease the
velocity down to X ¼ �0:4, and then
unset the delta, in which case the state of
one vortex is reached. Reprinted with per-
mission from P�erez Obiol and Cheon,
Phys. Rev. E 101, 022212 (2020).
Copyright 2020, American Physical
Society.481
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defect appears in a rotating condensate, which is then slowed down.
Bogoliubov analysis indicate that the spectrum is roughly divided in
stable and unstable regions (bottom and top parts of swallowtails). At
the same time, the main features of hysteresis cycles can be qualita-
tively understood in terms of the swallowtail structure of the spectrum.
This analysis complements phase slip mechanisms studied in 2D and
3D traps, where richer dynamics involving vortex excitation is possi-
ble, see Sec. VIII A, and numerical works in 1D where either stronger
interaction regimes are studied, see Sec. VIII B, or explicit thermal acti-
vation is considered, as discussed next in Sec. VIII D.

D. Thermal and quantum phase slips
in a one-dimensional Bose gas on a ring

This section’s results and discussions are adapted from Ref. 162
and give an example of a one-dimensional quantum system where
both coherent and incoherent phase slips appear at different regimes
of bosonic interactions and temperatures. The section focuses on
phase slips between different angular momentum states occurring in a
one-dimensional Bose gas trapped in a ring potential. The current is
induced through phase imprinting150,488,489 and due to the dimension-
ality of the system vortex nucleation is forbidden within the ring.
Therefore, one-dimensional phase slips require the existence of a dif-
ferent microscopic mechanism.

Previous studies have investigated the origin of phase slips and
how these can lead to a decay of the superfluid current in different sce-
narios. For instance, in Ref. 436, they introduced a shallow lattice to
trigger such phase slips and investigated the system using a combina-
tion of techniques based on the mean field Gross–Pitaevskii equation,
including a Bogoliubov analysis as well as phenomenological noise
and dissipation term in the mean field description. In a more recent
work, it has been shown that phase slips can also be driven by acoustic
waves in higher dimensional system,490 which indicates that low
energy excitations can be one of the triggering mechanisms of phase
slips.

The work presented below covers all interaction range using dif-
ferent approaches and models. It also considers an experimentally real-
istic scenario where the currents are introduced through phase
imprinting and takes into account how phase slips are originated in
each regime. Therefore, it provides a good example of the current tech-
niques and observations found currently in the field.

1. Model and methods

As presentend in Ref. 162, we consider N bosons of mass m with
repulsive contact interactions on a ring of circumference L with peri-
odic boundary conditions. The coupling between different angular
momentum states is triggered by the presence of a barrier, a procedure
analogous to the experimental implementations of phase
imprinting.150,488,489

In order to investigate phase-slips in the system, let us start from the
equilibrium state W0 in which a static barrier is present, and then induce
a quench in the many-body wavefunction such that W0ðx1;…; xNÞ
! W1ðx1;…; xNÞ ¼ W0 � e

i2p‘
P

j
xj=L

. The current dynamics is then
obtained from

JðtÞ ¼ �i
�h

2m
1
N

ðL

0

dx
L
hŴ†

@xŴ � ð@xŴ
†ÞŴi: (66)

The dynamical response is found using different methods depending
on the interaction strength, c ¼ mg=�h2n, and temperature regimes: (i)
the Gross–Pitaevskii equation (GPE) and analytical two-mode model
adapted from Ref. 441 at T¼ 0 for a weakly interacting gas (c� 1);
(ii) the projected Gross–Pitaevskii equation (PGPE) at T> 0 and
c� 1414,417,491 and (iii) the time-dependent Bose–Fermi mapping at
c
 1, describing the infinitely strong interaction Tonks–Girardeau
(TG) limit for the entire temperature range.164,479,480 Throughout ths
section, a quench inducing a circulation ‘ ¼ 1 is considered, although
the results can be generalized to larger circulations. Depending on the
model, two types of barriers are considered: a delta potential
VðxÞ ¼ adðxÞ, for which analytical results can be obtained, and a
Gaussian potential VðxÞ ¼ V0 exp ð�x2=2w2Þ, which is more realistic
from the experimental point of view. Both cases are compared using a
dimensionless parameter for the barrier strength: kGP ¼ V0=l0 for
weak interactions with l0 ¼ gn being the chemical potential of the
homogeneous annular gas, and kTG ¼ Vb=EF for strong interactions,
with Vb ¼ an being the energy associated with the barrier and EF

¼ �h2n2p2=2m the Fermi energy.

2. Discussion

Within the considered system, the current dynamics depends on
interaction and temperature regimes.162 Figures 39(a)–39(c) show the
results in the weakly interacting regime. At zero temperature, the cur-
rent remains very close to the initial quenched circulating state for
weak to moderate barriers, up to kGP � 1. Above this critical value, a
fast decay of the current appears, followed by oscillations around the 0
value. This behavior is found to correspond to the transition of the
currents from self-trapping to Josephson oscillations, in analogy to
the well known Josephson effect for particle imbalance predicted in
Ref. 441.

For temperature T ¼ l0=kB,492 the dynamics of the current are
quite different. At low barriers, i.e., kGP 	 0:5, we observe an exponen-
tial decay of the current, while for larger barriers, one observes damped
oscillations. In this regime, thermal phase slips occur deterministically
at the position of the barrier where the density vanishes. In order to
elucidate the mechanisms behind the current decay, Fig. 39(c) shows a
single classical field trajectory, showing many spontaneous thermal
gray solitons.493 While most of the solitons present a small density dip,
thus being fast and transmitted through the barrier,494 notice that the
current undergoes discrete jumps each time a soliton reflects on the
barrier. In this case, the density profile vanishes when the soliton
reaches zero velocity, allowing for a phase slip to occur. This corre-
sponds to the adiabatic process indicated by the dashed red line in
Fig. 39(c). The observed exponential decay of the average current can
be understood as an intrinsically stochastic process occurring when
the barrier couples the soliton dynamics to the long wavelength sound
excitations.494

The strongly interacting regime c
 1, where the classical
picture does not apply, is described using the exact Tonks–Girardeau
solution. We show that the dynamics of the current microscopically
corresponds to quantum coherent oscillations between different angu-
lar momentum states. At zero temperature, in contrast to the weakly
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interacting regime, it can be seen that for weak barriers (kTG � 1),
there is no self-trapping [see Fig. 39(d)]. Rather, the current undergoes
Rabi-like oscillations. These oscillations correspond to coherent quan-
tum phase slips due to backscattering induced by the barrier, which
breaks the rotation symmetry thus coupling different angular momen-
tum states.406,431 Microscopically, it corresponds to dynamical pro-
cesses involving the whole Fermi sphere, i.e., multiple-particle hole
excitations where each particle coherently undergoes oscillations of
angular momentum from Lz ¼ �h to Lz ¼ ��h. At increasing barrier
strength, an envelope appears on top of the current oscillations,
degrading the Rabi oscillations. This envelope originates from the pop-
ulation of higher-energy modes, each transition being characterized by
a different frequency (see Ref. 162) leading to a mode-mode coupling
and dephasing, and more complex current oscillations. At finite tem-
peratures, the quench dynamics of the current involves high-energy
excitations with an amplitude weighted by the Fermi distribution.162

The resulting dynamics corresponds to an effective damping of the
current oscillations with an exponential decay [see Fig. 39(e)] due to
the effect of incoherent phase slips. The revivals observed for large bar-
riers at zero temperature are highly suppressed due to the thermal

excitations. We identify the oscillation frequency as Josephson oscilla-
tions in which at increasing barrier strength, the frequency crosses
over from a Rabi-like regime with x ¼ p2NkTG to a Josephson-like
regime with x /

ffiffiffiffiffiffiffiffi
kTG
p

. This is in agreement with the predictions of
the low-energy Luttinger liquid theory (see Ref. 439 and Sec. VIII B
above).

In summary, in this section, we have presented a study of the
dynamics of a one-dimensional ring pierced by a localized barrier, fol-
lowing a phase imprinting. From a static point of view, a localized bar-
rier can lead to solitonic excitations as seen in Sec. VIII C. However,
these can also be thermally activated or created dynamically by
quenching a current in the system. Within the mean field regime, the
self-trapping behavior of the current prevents coherent phase slips, but
at finite temperatures, incoherent phase slips are observed. Their
microscopic origin is related to the coupling between the soliton
dynamics and the long wavelength sound excitations, which are intrin-
sically stochastic, leading to an exponential decay of the average cur-
rent. A similar microscopic behavior is found in higher dimensions;
however, the excitations take other specific forms such as vortex rings
as seen in Sec. VIII A. When considering the strongly interacting

FIG. 39. (a)–(c) Classical field simulations of the quench dynamics in the mean-field regime for c ¼ 0:02. (a) Average current per particle [solid lines, unit: P ¼ �h=ðNmÞ] as a
function of time (unit: s ¼ mL2=�h) at T¼ 0. Top to bottom: kGP ¼ f0:8; 1; 1:05; 2g. (b) Current at T ¼ l0=kB for barrier strengths kGP ¼ f0:6; 0:9; 1:5; 2g. (c) Zoom on a
single classical field trajectory at T ¼ l0=kB and kGP ¼ 0:6, illustrating a phase slip. This consists in a jump in the current (top panel), corresponding to the reflection of a
slow soliton on the barrier, also visible in the density deviation map (middle panel) and appearing as a singularity in the phase profile (bottom panel). (d) and (e) Exact solutions
in the Tonks-Girardeau regime. (d) Average current per particle versus time after the quench for N¼ 23, at T¼ 0, for barrier strength kTG ¼ f0:1; 0:5; 1; 4g. (e) Current at
T ¼ EF=kB (solid lines) for kTG ¼ f0:1; 0:5; 1; 4g from top to bottom. (a)–(e) Horizontal dotted (dashed) lines indicate the values for J¼ 0 (61). Reprinted with permission
from Polo et al., Phys. Rev. Lett. 123, 195301 (2019). Copyright 2019, American Physical Society.162
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regime, coherent phase slips dominate the dynamics. Finally, at finite
temperatures, incoherent dynamics appears due to thermally occupied
high-energy excitations that lead to an average decay of the current.

E. Concluding remarks and outlook

We have discussed different regimes of ultracold atomic gases in
which phase slips play a crucial role on the dissipative motion of cer-
tain macroscopic observables and discussed their connection to low-
lying and macroscopic excitations in such systems. Understanding
these processes in detail is crucial to harnessing future atomtronic
applications.

To understand the microscopic origin of such mechanisms, we
have considered the diverse settings of 3D harmonic traps and 1D sys-
tems in harmonic and ring traps with weak and strong interactions.
We have also considered the effect of thermal fluctuations on such
dynamics.

In the context of a weakly interacting harmonically confined 3D
ultracold quantum gas with a weak link creating a Josephson-like junc-
tion, the phase slips are related to the generation of vortex rings and
associated sound emission with increasing population imbalances
leading to sequential ring generation, even potentially opening up an
avenue for a turbulentlike regime. Our analysis was performed for a
bosonic system, but the relevant experiment is actually performed
across different superfluid regimes of an ultracold fermionic gas. As
such, our results only strictly apply to the BEC side, and numerous
interesting open questions remain on how the explicit nature of the
fermionic statistics affects this picture as one moves toward the unitary
and BCS superfluid regimes.430,437,495

In a 1D strongly correlated Bose gas, it is low-energy excitations
within the bulk that provide the underlying mechanism leading to the
dissipative motion across the junction. Although in this regime, we
also observe that damping of large particle imbalances proceeds
through higher-energy modes. On the other hand, in 1D ring poten-
tials, the relevant excitations leading to the decay of the current at
weak interactions are dark solitons, although low-energy excitations
are also involved in the decay mechanism. In our studied regime, dark
solitons were thermally activated; however, they can also have other
origins, e.g., being triggered by the presence of an impurity. In that
case, the specific soliton or solitonic train generated depends on the
size of the impurity and its velocity relative to the current. The micro-
scopic origin of the phase slippage is then related to the coupling
between the soliton dynamics and the long wavelength sound excita-
tions (which are intrinsically stochastic). We note that, while the 1D
systems considered in Secs. VIII B–VIII D allow us to identify the
microscopic origin of excitations, the barriers and topologies consid-
ered in these microscopic theories are significantly simplified ones,
and extending this work to more realistic scenarios could bring new
insight regarding the energy scales at which the damping of oscilla-
tions occurs. Indeed, present-day experiments use finite width barriers
and external confinements to trap strongly correlated atoms, which
could influence the damping. Moreover, the results shown in Sec.
VIII B rely on the low-energy theory given by the Luttinger liquid
model. Beyond the low-energy model, one should approach the prob-
lem numerically. However, numerical simulations of strongly corre-
lated systems are highly complex. Therefore, developments in this field
could prove of great importance in corroborating and extending the
dynamics of strongly correlated Josephson coupled systems for strong

quenches. Finally, we note that the spectrum and role of impurities
presented in Sec. VIII C and the microscopic mechanism leading to
damping can notably depend on the dimensionality.

One of the main challenges for quantum technologies is to con-
trol the system’s quantum state while maintaining its quantum coher-
ence for longer times.2 Thus, reducing dissipative motion becomes
crucial for the development of atomtronic devices. Moreover, control-
ling and understanding the mechanisms involving coupling to low-
energy excitations can also lead to a reduction of this dissipation. In
addition, the initial quantum state can also be of consequence to the
system’s final stability, as the projection to high energy excitations can
lead to complex damped dynamics. From these results, we can draw
some insight regarding future directions for improving and reducing
dissipative behavior. Integrable or quasi-integrable systems, in which
many conserved quantities exist compared to the system’s degrees of
freedom, have been shown to present a long-lived coherence and
dissipation-free dynamics.249,292,300 Also, several recent studies have
focused on topologically protected states496,497 as the main building
blocks for future atomtronic devices, as these states prove very robust
against perturbations.
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IX. ATOMTRONICS ENABLED QUANTUM DEVICES
AND SENSORS

D. Anderson, V. Ahufinger, A. S. Arnold, G. Birkl,
M. Boshier, S. A. Gardiner, B. M. Garraway,
J. Mompart

In this section, we will discuss some example cases where the
atomtronics approach is leading to novel components (which may be
part of a larger device) and applications such as rotation sensing and
magnetic sensing.
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A. Diodes, transistors, and other discrete components

The terminology Atomtronics suggests, correctly, but not exclu-
sively, an analogy between circuits for atomic matter and those based
on standard electronics. The flow of electrons in an electric circuit can
be considered in a way analogous to the flow of cold neutral atoms in
an atomtronic circuit. (At present, there is some flexibility in this inter-
pretation.) Important questions concern how to confine the atoms to a
circuit, how to control them, and what devices and applications can
arise.

It would be a gross over-simplification to suggest that an atom-
tronic circuit should merely mimic an electronic circuit. While this
might be the case, it is by no means essential, and indeed, it is very
much intended that future atomtronic systems go beyond analogs of
standard electronic circuits. To be specific: Although we may start
with these basic analogs, the future hope is for devices that use the
properties of matter-wave coherence and other quantum properties of
matter to go beyond these direct analogs, and to even create devices
with no electronic counterpart because of the unique properties of the
quantum physics of matter. Meanwhile, however, in this first part of
Sec. IX, we will explore the progress made in formulating and imple-
menting discrete atomtronic components that are similar to electronic
ones.

The basic electronic elements are often regarded to be batteries,
resistors, capacitors, diodes, transistors, and the like. If we start with
the battery, in the atomtronic world, it can be regarded as a reservoir
of atoms. Clearly, that is too simplistic and not enough on its own. So
first steps are to involve atoms contained in a reservoir and allowed to
flow out of that reservoir into a more complex circuit or at least into
another reservoir as in cases of two-terminal flow.498 The current of
neutral atoms is driven by the difference in the chemical potential
between two reservoirs, typically implemented by the two sides of a
barrier, in a way that is analogous to Ohm’s law in conventional circuit
theory. The battery is later intended to supply power to an atomtronic
circuit via the transport of cold atoms.

Such a battery was demonstrated in Ref. 499, which was comple-
mented by the respective theoretical description in Ref. 500. In this
“battery” experiment, a relatively large confining potential for ultra-
cold atoms is divided into two parts by introducing a spatially narrow
beam of blue-detuned light acting as a barrier [see Fig. 40(a)]. Atoms
can be confined on one side of the combined potential, the other side,
or both. During the experiment discussed here, atoms are initially
loaded on one side [the left side in Fig. 40(a)] and then allowed to flow
to the right side as controlled by the sharp barrier which essentially
controls the “resistance.” This flow can be classical, or quantum,
depending on the temperature of the loaded atoms. [Tunneling does
not play a role in Fig. 40(a) if the main contribution to flow is from
over-the-barrier atoms and if the left well rethermalizes sufficiently to
maintain the distribution.] To prevent the reflection of atoms from the
second well, a “terminator” is added to the system by means of an
optical beam that pumps atoms in the second well into untrapped
states, such that they are lost from the system. This terminator also
represents a load-matched impedance [see Fig. 40(b)] in the analogous
electric circuit.

A cold atom system with ballistic atoms has been used to demon-
strate the dynamics of a linear RLC circuit.501 In this case, a light sheet
trap is modified with additional dipole beams to create 2D confine-
ment of the atoms: two reservoirs are generated that are joined by a

narrow link. These “capacitor”-like systems are charged by loading
atoms into one of the reservoirs. Subsequently the flow of atoms
through the narrow channel discharges the capacitor. The channel
possesses a finite resistance and appears to have inductance as well.501

In analogy to solid state materials modifying the electronic wave
function, optical lattices offer band-gap structures for cold atoms (in
this context, see, e.g., Ref. 502). These allow the creation of diodes and
transistors by changing the base-line potential of the lattice across a
discontinuity or junction in just the same way as for semiconductors
across a NP- or PN-type junction.11,503 However, it is interesting to
note that the atomtronic diode can display its functionality with just a
few lattice sites (i.e., with just a few potential minima) and the atom-
tronic transistor is proposed to be functional with just three potential
wells.30 It can be constructed in the same way as the battery experi-
ment discussed above,499 but with an additional blue-detuned dipole
beam adding one additional barrier to the passage of the atoms. The
transmission of atoms through the double-barrier system is now
dependent on the chemical potential between the two barriers,172,504

giving a transistorlike behavior with “source,” “gate,” and “drain”
assigned to the three regions around the barriers. Furthermore, by cas-
cading transistor junctions, i.e., by adjusting the sets of lattice poten-
tials, a logic gate (AND gate) has been proposed consisting of just five
lattice sites.11

One direction for future extensions is the development of more
exotic circuit elements. For example, asymmetric double well poten-
tials made by optical dipole beams have been used to create a
Josephson junction for an atomtronic system.505,506 In the direction of
increasing complexity of circuits, for example, the proposal for an
AND gate starts to open the way for a very unusual type of quantum
logic which is based on the flow of neutral atoms. Here, we can imag-
ine going from AND gates to NAND gates, which are universal gates,
and then by further increasing the complexity, a universal matter-
wave quantum computer is accessed—at least in principle.

FIG. 40. An atomtronic battery. (a) The confining fields for the atoms are formed
using magnetic and optical potentials. The image of atoms demonstrates the situa-
tion when they fully occupy the system with the terminator off. (b) An equivalent cir-
cuit for the atomtronic battery. Reprinted with permission from Caliga et al., New J.
Phys. 19, 013036 (2017). Copyright 2017, Author(s) licensed under a Creative
Commons Attribution 3.0 License.
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B. Atomtronic SQUIDs

Quantum interference has a high importance in atomtronics,
which is particularly true in the case of atomtronic SQUIDS.
Atomtronic SQUIDS are not superconducting devices, but are named
for their analogy with SQUIDS. They are sometimes denoted AQUIDs
for Atomtronic QUantum Interference Devices.5

A conventional SQUID can be built from a superconducting ring
with one or two “weak links,” which form Josephson junctions. At
each junction, the current and the junction phase are closely related in
such a way that magnetic field strengths can be determined from the
oscillatory behavior of the voltage drop across the junction. The result-
ing device makes an excellent magnetic field sensor.507

A basic atomtronic SQUID consists of a ring waveguide for ultra-
cold neutral atoms with two barriers inserted12,15 [see Fig. 41(a)]. In
the analogy, the ring waveguide replaces the superconducting ring,
and the barriers replace the Josephson junctions. The current-phase
relation for atomtronic tunnel junctions and weak links was explored
in Refs. 16 and 13. Each barrier clearly affects the phase of the wave-
function and, just like the super-conducting analogs, there is a critical
current: in the atomtronic case, when the flow is too fast, it breaks up
into vortex–antivortex pairs.67,161 In a conventional SQUID, current
flow in the superconducting loop is established by changing the mag-
netic flux through the loop. In the atomtronic SQUID, current flow in
the waveguide loop is created by rotation of the system. It follows that
the device’s behavior is sensitive to rotation of the SQUID (or equiva-
lently rotation of the barriers). This principle, including quantum
interference effects, has been recently demonstrated in Ref. 15. Figure

41(b) shows the transition from the AC Josephson regime (AC current
through the junctions with nonzero chemical potential difference
across them) to the DC Josephson regime (DC tunneling current flow-
ing through the junctions with no chemical potential) marked with
the vertical blue line as a function of the number of atoms for two dif-
ferent rotation rates. This transition point becomes oscillatory as a
function of the rotation rate (for a fixed number of atoms) or as a
function of the number of atoms (at different rotation rates as shown
here). These oscillations can be used to determine the rotation rate
(Xext in Fig. 41). Another recent work has shown that the atomtronic
SQUID also exhibits hysteresis behavior analogous to the conventional
SQUID.16

The recent experiments with ring traps and barriers12,15,16,67,161,391

are based on optical dipole potentials. The ring trap and weak link can
be created with a Laguerre–Gauss beam (with a hole) and a focused
Gaussian beam.67 For the ring part, potentials created by conical refrac-
tion are possible as well.145 Alternatively, a very flexible approach is to
use “painted” potentials,7,28 where an optical dipole beam is rapidly
scanned around the region of interest. As the beam is scanned, the
intensity of the light is modulated so that a two-dimensional image is
formed which produces a rather flexible 2D potential. Confinement in
the third dimension is provided by a light sheet and the dipole potential
from that. The painted potential can include a ring, and the “weak link”
barriers which can be moved around the ring at will.

The atomtronic SQUID has the clear potential of being a central
building block for atomtronic devices: e.g., for rotation or magnetic
field sensors. However, it may also play other important roles in

FIG. 41. (a) We show how the “Josephson
junction” barriers move in the atomtronic
SQUID in order to observe a synthetic
external rotation. The two barriers move at
different rates Xext 6 2pf . The number of
atoms on either side of the barriers is N1
and N2. (b) The normalized population dif-
ference ðN2 � N1Þ=ðN2 þ N1Þ is plotted
as a function of the number of atoms in
each experimental run. The blue line indi-
cates the point at which a critical atom
number is reached, where the system
switches from AC to DC Josephson
regimes. The critical atom number varies
with the “rotation” rate, being larger in the
lower panel of (b). Reprinted with permis-
sion from Ryu et al., Nat. Commun. 11,
3338 (2020). Copyright 2020, Author(s)
licensed under a Creative Commons
Attribution 4.0 License.
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atomtronic circuits. It could be a component in a more complex circuit
where matter wave interference is essential or allow for the storage of
quantum information in the quantum states of the atomtronic
SQUID.

C. Sagnac interferometry and rotation sensing

Rotation detection devices come in many forms, including
microelectromechanical systems (MEMS), hemispherical resonator
gyros (HRGs), ring laser gyros (RLGs), and fiber-optic gyroscopes
(FOGs). They are ubiquitous in the sense that mobile phones contain
low-sensitivity gyroscopes that users can access via apps such as
Phyphox. These more “traditional” sensors have been reviewed with
viewpoints that are mainly academic508 and industrial.509

Atoms can also be used as gyroscopes, for example, via nuclear
spins in comagnetometers.510 Alternatively, the demonstration of
atom-optical manifestations of the Sagnac effect dated in 1991,511 and
already in 1997, short-term sensitivities of 2� 10�8 (rad/s)/

ffiffiffiffiffiffi
Hz
p

were
demonstrated in an atom-based Sagnac interferometer;50,512 since then
there have been many technical advances in such “free space” interfer-
ometers,513 commonly based on a Mach–Zehnder-type configuration.

From an atomtronic standpoint, we wish to consider “closed-
path” guided configurations, which have been used for cold mole-
cules,514 cold atoms,101,155 and Bose–Einstein condensates103,515

(BECs) since the early 2000s and have been recently considered for
chip-scale development.108,173 Theoretical and experimental guiding
geometries include optical dipole, magnetic and Stark confinement
using constant, time-averaged, inductive or dressed poten-
tials.6,7,9,28,32,102,107,142,143,158,390,406,516–535 Highly supersonic superfluid
flow is also possible;103,117,128 however, while the concept of closed-
path cold atom configurations has long held traction, the sensitivity
has yet to reach the high levels of free-space cold atom gyros.536 There
has been some important recent experimental progress on this
front,537,538 i.e., all the necessary experimental tools appear, in princi-
ple, to be present.

This means we consider Bose-condensed atoms held within an
appropriate (e.g., toroidal, as used in atomtromic SQUIDs) trapping
potential V. This is necessarily assumed to be in a rotating frame
defined by the angular velocity vector X, manifesting as an additional
term i�hX � ðx �rÞ in either the single-particle Schr€odinger equation
or the Gross–Pitaevskii equation (GPE) when describing mean-field
dynamics of Bose-condensed atoms. A coordinate system where X
points along the z axis (dynamics viewed from within a frame rotating
anticlockwise around the z axis with angular frequency X) simplifies
this term to i�hXðx@y � y@xÞ. A good general starting point for
describing the dynamics within a variety of such systems is the follow-
ing system of GPEs,

i�h
@

@t
Wj ¼�

�h2

2m
r2Wj þ i�hX x

@

@y
Wj � y

@

@x
Wj

� �
þVjWj þ

X
j0

gjj0 jWj0 j2Wj: (67)

The j index labels different internal atomic states, the Vj incorporate
energy differences between the internal states and any internal state
dependences of the trapping potential, and the gjj0 quantify the
strengths of s-wave scattering terms (ignoring the possibility of inter-
nal-state-changing collisions).

We first consider a tight toroidal trapping potential, reducing our
treatment to a radius R one-dimensional ring geometry, leaving only
the polar angle / free, reduce to a single internal state, and neglect all
interactions. The GPE then becomes

i�h
@

@t
wð/Þ ¼ � �h2

2mR2

@2

@/2 þ i�hX
@

@/

!
wð/Þ: (68)

Note that the interactions are genuinely insignificant if the gas is very
dilute, or if interactions are tuned away using an appropriate Feshbach
resonance. The evolution of an initial, localized matter wave split into
an equal superposition with opposite velocity splitting products can, at
the simplest level, be considered without explicit mention of the initial
wave packet. At this level, an initial state wð0Þ evolves as wðtÞ:

wð0Þ ¼ ðei‘/ þ e�i‘/Þ=
ffiffiffiffiffi
4p
p

¼ cos ð‘/Þ=
ffiffiffi
p
p

;

wðtÞ ¼ e�i�h‘2t=2mR2
cos ð‘ /þ Xt½ �Þ=

ffiffiffi
p
p

;

yielding intensity fringes / ð2=pÞf cos ð2‘½/þ Xt�Þ þ 1g multiplied
by the number of atoms whenever the matter wave splitting products
overlap in space. For a matter wave initially centered at / ¼ 0
enclosed in a ring with area A ¼ pR2; this occurs at / ¼ p or 0, when
t ¼ ð1 or 1ÞAm=�h‘, yielding a phase shift of D/ ¼ Xt ¼ ð2 or 4Þ
AXm=�h, respectively.

Using the speed v ¼ �h‘=Rm and wavelength k ¼ 2pR=‘ of the
propagating atoms, we express the latter phase shift as D/
¼ 8pAX=kv, the same form as the phase shift accumulated by an opti-
cal Sagnac interferometer, with k and v replaced by the wavelength
and speed of light, respectively. This highlights the promise of atom
interferometry, in that kv can be made much smaller than its optical
equivalent. Also, note that if the initial state is literally wð0Þ
¼ cos ð‘/Þ=

ffiffiffi
p
p

, i.e., there is no localizing “envelope” to the wave
packet, the accrued fringe shift can be observed at any time, effectively
increasing the enclosed area of the interferometer. This highlights an
important feature in that as the speed of light is a constant, it is neces-
sary to increase A in order to increase the interrogation time; with cold
atoms, this is not the case.

With typical repulsive interactions (positive g), such standing
wave fringes will rapidly disperse; however, in a two-component sys-
tem with very similar scattering lengths () g11 � g12 � g22, as can be
achieved in 87Rb),539 producing an equal superposition initial state
such that w1ð0Þ ¼ cos ð‘/Þ=

ffiffiffiffiffi
2p
p

; w2ð0Þ ¼ sin ð‘/Þ=
ffiffiffiffiffi
2p
p

, the two
components stabilize each other by making the total mean field poten-
tial gðjw1j

2 þ jw2j
2Þ essentially flat (hence, no gradients and no dis-

persive forces). Alternatively, initializing the system such that
w1ð0Þ ¼ ei‘/=

ffiffiffiffiffi
4p
p

; w2ð0Þ ¼ e�i‘/=
ffiffiffiffiffi
4p
p

, followed by an evolution
time T=2, a p pulse swapping the internal states, and a second evolu-
tion time T=2, produces

w1ðTÞ ¼ e�iuT e�i‘ð/þXTÞ=
ffiffiffiffiffi
4p
p

;

w2ðTÞ ¼ e�iuT ei‘ð/þXTÞ=
ffiffiffiffiffi
4p
p

(u is a global phase depending on ‘2 and the values of g11, g12, and
g22). Repeating the initializing process produces

w1ðTÞ ¼ �ie�iuT sin ð‘ /þ XT½ �Þ=
ffiffiffiffiffi
2p
p

;

w2ðTÞ ¼ e�iuT cos ð‘ /þ XT½ �Þ=
ffiffiffiffiffi
2p
p

:
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The value of X can then be inferred from population measurements:
N1 ¼ N½1þ cos ð2‘XTÞ�=2; N2 ¼ N½1� cos ð2‘XTÞ�=2, where N is
the total particle number. The p swap pulse at T=2 is carried out to
counteract accumulation of relative phase due to differences in internal
state energy and values of g11 and g22; if g11 � g22 and the energy gap
between the internal states is well known, this can be neglected, and a
detailed experimental proposal based around 87Rb and magnetic vor-
tex pumping has been determined by Helm et al.540 This alternative
has the advantage of there being no mean field gradients even when
the scattering lengths are quite different and turns a measurement of
interference fringes into a measurement of relative population. Note,
however, that optimum sensitivity of such a measurement is when the
slope of the response curve is maximal, e.g., when 2‘XT � p=2;540,544

it may, therefore, be advisable to add a controlled relative phase in an
experimental realization.

A quite different approach, again in near 1D, is to have a single
component condensate with attractive interactions, using, e.g., 85Rb or
7Li, again ideally in a ring geometry, as illustrated in Fig. 42.542 In this
case, the GPE exhibits soliton solutions: stable, nondispersive, localized
wave packets which are robust to collisions, behaving something like
classical particles. Given a sufficiently sharp barrier—ideally a d-func-
tion, more realistically a Gaussian barrier with width significantly
smaller than the soliton’s characteristic length543,552 formed, e.g., by a
focused off-resonant sheet of light545—an initial soliton can be split
into two halves propagating with equal and opposite velocity if its
incoming velocity is correctly calibrated to the barrier size. In an essen-
tially similar way, the splitting products can accumulate a relative
Sagnac phase, which could, in principle, be visualized through spatial
interference fringes.546 The solitons’ small size can make this a less

suitable approach, however, than recombining them again on a bar-
rier, where the relative phase manifests through the relative sizes of the
wave packets emerging on either side of the barrier as the result of this
second collision, i.e., again as relative population measurement, with
an essentially similar (ideal) dependency on X as that outlined above.
This second barrier interaction can take place either at a second barrier
exactly opposite to the first,547 or due to the fact that solitons are
robust to collisions and, therefore, in some sense they should “pass
through” one another back at the same barrier at which the initial
splitting took place, following both splitting products having
completely circumnavigated the ring.542

The roles of quantum noise and interaction for rotation sensing
with bright solitons in the quantum regime were studied in Ref. 548. It
was found that interaction and noise should be carefully considered in
order the performances of the system are not spoiled. In Ref. 549, the
scattering properties of a quantum matter wave soliton splitting in a
barrier were studied. In addition, the GPE analysis is of limited accu-
racy for the quantitative analysis of the sensitivity of atom interferome-
try in the presence of interaction. For other features of bright soliton
interferometers, please see Sec. XIV.

Finally, we note that everything we have described is in a sense
“classical,” in the sense of a classical field description of the BEC being
completely adequate and that, more explicitly, quantum elaborations
have been proposed, exploiting spin squeezing550 or ideas from quan-
tum information.551

D. Magnetometry

The development of compact highly sensitive magnetometers
with high spatial resolution is one of the current challenges of

FIG. 42. An incoming soliton splits at time Ts on a barrier into two solitons of equal amplitude and opposite velocity. At a time Tc, the solitons recombine either at the same bar-
rier (a), or a second barrier (b) antipodal to the first (the example value of X is the same in both cases). The resulting phase difference is read out via the population difference
in the final output products within the positive (shaded) and negative domains. (c) Final population in the positive domain Iþ as a function of X. The sensitivity of the single bar-
rier case (dashed line) is twice that of the double barrier case (solid line) because the interrogation time Tc � Ts is doubled. Reprinted with permission from Helm et al., Phys.
Rev. Lett. 114, 134101 (2015). Copyright 2015, American Physical Society.
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Atomtronics. The capability of measuring very weak magnetic fields
with high precision and accuracy is at the basis of numerous applica-
tions, including bio-magnetism, geology, data storage, and archaeol-
ogy.552 Different approaches have been followed in the previous years
to reach this goal, mainly using superconducting quantum interference
devices (SQUIDs), nitrogen-vacancy (NV) diamond magnetometers,
and atomic magnetometers. Currently, SQUIDs and spin-exchange
relaxation-free magnetometers reach sensitivities at the fT/

ffiffiffiffiffiffi
Hz
p

level
and below,553 whereas NV-magnetometers allow for pT/

ffiffiffiffiffiffi
Hz
p

sensitiv-
ities.554 A valuable pictorial log-log plot of experimental device scale vs
magnetic sensitivity for a wide variety of magnetometer sensor tech-
nologies can be found in Fig. 2 of a recent review.555

Atomic magnetometers can be classified depending on whether
the magnetic field drives the internal or the external degrees of freedom
of the atoms. The former are typically based on the measurement of the
Larmor spin precession of optically pumped atoms either using thermal
clouds or BECs. In the case of thermal clouds, double-resonance opti-
cally pumped magnetometers are an attractive instrument for
unshielded magnetic-field measurements due to their wide dynamic
range and high sensitivity.556 In the BEC case, the use of stimulated
Raman transitions has been reported557 as well as the separate probe of
the different internal states of a spinor BEC after free fall558 or the mea-
sure of the Larmor precession in a spinor BEC.559–564 Also, note that a
two-component BEC has been also investigated for magnetometry.565

An alternative approach to atomic magnetometry is based on
encoding the magnetic field information in the spatial density profile
of matter waves. Some examples of this approach are those based on
detecting density fluctuations in a BEC due to the magnetic induced
deformation of the trapping potential.237,566,567 Recently, a different
scenario has been explored and a quantum device for measuring two-
body interactions, scalar magnetic fields and rotations based on a BEC
in a ring trap has been proposed.568 To this aim, the BEC is prepared
in an imbalanced superposition of the two counter-propagating orbital
angular momentum (OAM) l¼ 1 modes and due to quantum interfer-
ence, a line of minimal atomic density appears. In the presence of non-
linear interactions, this nodal line shows a solitonlike rotating motion
(Fig. 43). An analytical expression relating the angular frequency of
the rotation of the minimal density line, Xm, to the strength of the
nonlinear atom–atom interactions and the difference between the
populations of the counter-propagating modes is derived,

Xm ¼
Un16

2 1þ U
D

� � ; (69)

where n16 is the population imbalance between the l ¼ 61 modes, U
is a nonlinear parameter proportional to the scattering length, and D is
the chemical potential difference between the l¼ 3 and l¼ 1 modes,
see Ref. 568. This expression constitutes the basis to use the physical
system under consideration as a quantum sensing device by measuring
the rotation frequency of the minimum density line by direct imaging,
in real time, the spatial density distribution of the BEC. In fact, a full
experimental protocol based on direct fluorescence imaging of the
BEC that allows one to measure all the quantities involved in the ana-
lytical model is proposed.

Let us assume that the lifetime of the BEC is s. Then, the condi-
tion Xmx � 1=s being x; the ring trapping frequency must be fulfilled
to be able to observe the rotation of the minimum density line for the

time the experiment lasts. The upper limit of observable values of X is
imposed by the regime of validity of the model, i.e., Xm < 0:025 to
avoid the excitation of states with OAM higher than 1. A magnetic
field produces, in general, a variation of the scattering length, which
does not depend on the magnetic field orientation. Therefore, the pres-
ence of an external magnetic field will induce a variation of Xm and
the system could be used as a scalar magnetometer by relating changes
on the frequency of rotation of the minimal line to variations of the
modulus of the magnetic field. The sensitivity in the measurement of
magnetic field variations increases with the number of condensed par-
ticles but keeping the scattering length small and having a strong
dependence of the scattering length on the magnetic field modulus.
Thus, close to a Feshbach resonance, these requirements could be
meet. However, close to a Feshbach resonance, the three-body losses
may limit the lifetime of the BEC making difficult the measurement.
Nevertheless, some atomic species such as 85Rb, 133Cs, 39K, or 7Li have
been reported to form BECs that are stable across Feshbach resonances
with lifetimes on the order of a few seconds, so they could be potential
candidates for using the system as a magnetometer. Taking into
account that the trapping frequency x, is typically of the order of a
few hundreds of Hz for ring-shaped traps, and considering typical val-
ues of Xmx � 1 Hz compatibles with typical times for the experiment
of around s � 1 s, the minimum density line would perform some
complete round trips. Assuming that one could resolve angular differ-
ences on the order of�0:1 rad, variations in the rotation frequency on
the order of 10�2 Hz could be measured. Thus, for the parameter val-
ues reported in Ref. 569, in principle, this magnetometer would allow
one to measure changes in the magnetic field on the order of a few pT
at a bandwidth of 1 Hz.

E. Concluding remarks and outlook

In this section, we have presented some examples for engineering
of atomtronic devices. We have discussed recent advances in the devel-
opment of basic components for atomtronics such as batteries, diodes,
and transistors. However, atomtronics applications are expected to go
beyond analogs of electronic circuits with atoms by making use of the
specific quantum properties of ultracold atomic matter. In this context,
we have shown that by taking advantage of quantum coherence and
interactions between ultracold atoms, it is possible to design atrom-
tronic SQUIDS, matter-wave interferometers, as well as rotation and
magnetic sensors with extremely high accuracy and resolution. All
these applications open the door to the future development of
completely new types of quantum devices, which might be integrated
into complex and large-scale atomtronic circuits.
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FIG. 43. (a) Time evolution of the population of the states involved in the dynamics. (b) Snapshots of the density profile for different instants of the dynamical evolution. (c)
Time evolution of the real part of the coherence between the j1;þi and j1;�i states. The points correspond to the numerical simulation of the GPE, while the continuous
lines are obtained by solving the FSM equations. The considered parameter values are R¼ 5, g2d ¼ 1, for which U¼ 0.0128, l1 ¼ 0:529 and l3 ¼ 0:699; a1þð0Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p1þð0Þ

p
¼

ffiffiffiffiffiffi
0:7
p

and a1�ð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p1�ð0Þ

p
¼

ffiffiffiffiffiffi
0:3
p

. Reprinted with permission from Pelegr�ı et al., New J. Phys. 20, 103001 (2018). Copyright 2018, Author(s) licensed
under a Creative Commons Attribution 3.0 License.
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X. TWO LEVEL QUANTUM DYNAMICS IN RING-SHAPED
CONDENSATES AND MACROSCOPIC QUANTUM
COHERENCE

D. Aghamalyan, M. Boshier, R. Dumke, T. Haug, A.
Minguzzi, L.-C. Kwek, L. Amico

A qubit is a two state quantum system that can be coherently
manipulated, coupled to its neighbors, and measured. Several qubit
physical implementations have been proposed in the last decade, all of
them presenting specific virtues and bottlenecks at different levels.570–575

In neutral cold atoms proposals, the qubit is encoded into well isolated
internal atomic states. This allows long coherence times, precise state
readout, and, in principle, scalable quantum registers. However, an indi-
vidual qubit (atom) addressing is a delicate point.576,577 Qubits based on
Josephson junctions allow fast gate operations and make use of the pre-
cision reached by lithography techniques.578 The decoherence, however,
is fast in these systems, and it is experimentally challenging to reduce it.
For charged qubits, the main problem arises from dephasing due to
background charges in the substrate; flux qubits are insensitive to the
latter decoherence source but are influenced by magnetic flux fluctua-
tions due to impaired spins proximal to the device.570

Here, we aim at combining the advantages of cold atom and
Josephson junction based implementations. The basic idea is to use
the persistent currents flowing through ring shaped optical latti-
ces13,14,401,579–583 to realize a cold atom analog of the superconducting
flux qubit (see Refs. 165, 579, and 584–587 for the different schemes
that can be applied to induce persistent currents). A barrier potential
painted along the ring gives rise to a weak link, acting as a source of
back-scattering for the propagating condensate, thus creating an
interference state with the forward scattered current. This gives rise to
an atomic condensate counterpart of the celebrated rf-SQUID—a
superconducting ring interrupted by a Josephson junction,445,570

namely, an Atomtronics Quantum Interference Device (AQUID).
Due to the promising combination of advantages characterizing
Josephson junctions and cold atoms, the AQUID is now an object of
intense investigation.16,391 The first experimental realizations have
been done by means of a Bose–Einstein condensate free to move
along a toroidal potential, except through a small spatial region, where
a very focused blue-detuned laser creates weak links, namely, an effec-
tive potential constriction.12,67,161 By adapting the logic applied in the
context of solid state Josephson junctions570,588 to a specific cold
atoms setup, a cold atom version of the SQUID can be created. On
the theoretical side, it has been demonstrated that the two currents
flowing in the AQUID can, indeed, define an effective two-level sys-
tem, that is, the cold-atom analog of flux qubits.13,14,579,580,589 The sys-
tem is assumed to be driven by an effective flux piercing the ring
lattice. The potential constriction breaks the Galilean invariance and
splits the qubit levels, that otherwise would be perfectly degenerate at
half-flux quantum. By a combination of analytic and numerical tech-
niques, one can demonstrate that the system can sustain a two-level
effective dynamics.13,14,579,580 We also review a physical system con-
sisting of a Bose–Einstein condensate confined to a ring shaped lattice
potential interrupted by three weak links.14 By employing path inte-
gral techniques, we explore the effective quantum dynamics of the
system in a pure quantum phase dynamics regime. By a combination
of analytic and numerical techniques, it was demonstrated that the

system can sustain a two-level effective dynamics giving other realiza-
tion of the atomtronic qubit.

After outlining theoretical framework, which leads to obtaining a
single qubit, we go further by showing how single qubit and two-qubit
gates can be implemented by using an effective action approach.401,580

In order to achieve two-qubit gates, we allow a nonvanishing hopping
term between the different rings.

We also review the experimental realization of ring lattices with
one and three weak links performed at Nanyang Technological
University in the experimental group of Dumke in Singapore. Indeed
using a spatial light modulator, they have experimentally realized580

both the single ring lattice with a weak link and scaled ring-lattice
potentials that could host, in principle, n 10 ring-qubits, arranged in a
stack configuration, along the laser beam propagation axis. Trapping
potential of a ring-shaped optical lattice with three week links a
�20 lm diameter using a spatial light modulator has been reported in
Ref. 13.

The current and type of state inside these atomic qubits can be
read out via time-of-flight measurements.590 When the ring is inter-
fered with a reference condensate, a spiral pattern appears in the time
of flight, which indicates the magnitude and direction of the current.
For low resolution images, these spirals can be read out from the den-
sity–density correlation images. Furthermore, the type of superposi-
tion state can be measured from the noise in the time-of-flight
images.590

First progress toward an experimental realization has been made
recently. In a recent experiment, interference of persistent currents of
AQUIDs has been demonstrated at the Los Alamos National
Laboratory by Ryu et al.15 By inducing a bias current in a rotating
atomic ring interrupted by two weak links, the interference between
the Josephson current with the current from the rotation creates a
oscillation in the critical current with applied flux. This oscillation is
measured experimentally in the transition from the DC to the AC
Josephson effect. This experiment has been performed within a dilute
Bose–Einstein condensate that is well described within a mean-field
description and thus entanglement of currents, which is a key ingredi-
ent for the atomic qubit, has not been demonstrated. Nonetheless, it is
a major step toward the implementation of the atomic qubit.

A. The Atomtronic quantum interference device:
AQUID

We start by considering analytical models fore the confined one-
dimensional many-body systems and use them to demonstrate an
emerging effective two level dynamics of the system. Let us start by
considering N interacting bosons at zero temperature, loaded into a
1D ring-shaped optical lattice of M sites. The discrete rotational sym-
metry of the lattice ring is broken by the presence of a localized poten-
tial in one lattice site (later we also consider case of three weak links),
which gives rise to a weak link. The relevant physics of the system is
captured by the Bose–Hubbard model. The Hamiltonian reads

HBH¼
XM

i¼1

U
2

niðni�1ÞþKini� Ji e�i2pX=Ma†
iþ1aiþh:c:

� 	 

; (70)

where ai ða†
i Þ are bosonic annihilation (creation) operators on the ith

site of a ring with length M and ni ¼ a†
i ai is the corresponding num-

ber operator. Periodic boundaries are imposed, meaning that
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aM � a0. The parameter U takes into account the finite scattering
length for the atomic two-body collisions on the same site:
U ¼ 4p�h2a0

Ð
dxjwðxÞj4=m, with w(x) being the Wannier functions

of the lattice, m the mass of atoms, and a0 the scattering length. To
break the translational symmetry, there are two possible ways: Either,
the hopping parameters are all equal Ji ¼ J except in one weak-link
hopping i0 where Ji0 ¼ J 0. The other alternative, which we choose in
this review, is to place a potential barrier at a single site Ki ¼ K, and at
all other sites, the potential is set to zero with Ji ¼ J;8i. The two
options show qualitatively the same physics.14 The ring is pierced by
an artificial (dimensionless) magnetic flux X, which can be experimen-
tally induced for neutral atoms as a Coriolis flux by rotating the lattice
at constant velocity12,67,161 or as a synthetic gauge flux by imparting a
geometric phase directly to the atoms via suitably designed laser
fields.586,591 The presence of the flux X in Eq. (70) has been taken into
account through the Peierls substitution: Ji ! e�i2pX=MJi. The
Hamiltonian [Eq. (75)]is manifestly periodic in X with period 1. In the
absence of the weak-link, the system is also rotationally invariant and,
therefore, the particle–particle interaction energy does not depend on
X. The many-body ground-state energy, as a function of X, is, there-
fore, given by a set of parabolas intersecting at the frustration points
Xn ¼ nþ 1

2

� �
.476,592 The presence of the weak-link breaks the axial

rotational symmetry and couples different angular momenta states,
thus lifting the degeneracy at Xn. This feature sets the qubit operating
point.14,580

It is worth noting that the interaction U and the weak-link
strength induce competing physical effects: the weak-link sets an heal-
ing length in the density as a further spatial scale; the interaction tends
to smooth out the healing length effect. As a result, strong interactions
tends to renormalize the weak link energy scale.14,406,581

In the limit of a large number of bosons in each well �n ¼ N=M;
ai �

ffiffiffi
�n
p

ei/i and the Bose–Hubbard hamiltonian (BHH), Eq. (70) can
be mapped to the quantum-phase model employed to describe
Josephson junction arrays:593,594

H ¼
XM

i¼1

U
2

n2
i � Ji cos /iþ1 � /i � Xð Þ

	 

; (71)

where ½ni;/l� ¼ i�hdil are canonically conjugate number-phase varia-
bles and Ji � �nti are the Josephson tunneling amplitudes.

1. The rf-AQUID qubit

In this case, a single weak link occurs along the ring lattice
t00 ¼ t. The presence of the weak link induces a slow/fast separation of
the effective (imaginary time) dynamics: the dynamical variables rela-
tive to the weak link are slow compared to the “bulk” ones, playing the
role of an effective bath (nonetheless, we assume that the ring system
is perfectly isolated from the environment). Applying the harmonic
approximation to the fast dynamics and integrating it out, the effective
dynamics of the AQUID is governed by (see for detailed derivation
appendix material of Ref. 580),

Heff ¼Hsyst þHbath þHsyst�bath: (72)

The slow dynamics is controlled by

Hsyst ¼ Un2 þ ELu
2 � EJ cos ðh� XÞ; (73)

where h is the phase slip across the weak link with EL ¼ J=M and
EJ ¼ J 0. For d¼: EJ=EL  1; Hsyst describes a particle in a double well

potential with the two-minima-well (see Fig. 44) separated from the
other features of the potential. The two parameters, U and t0=t, allow
control of the two level system. The two local minima of the double
well are degenerate for X ¼ p. The minima correspond to the clock-
wise and anticlockwise currents in the AQUID.The presence of a finite
barrier, K > 0, breaks the axial rotational symmetry and couples dif-
ferent angular momenta, thus lifting the degeneracy at the frustration
points by an amount DE, see Fig. 44. Provided other excitations are
energetically far enough from the two competing ground-states, this
will identify the two-level system defining the desired qubit and its
working point. Because of the quantum tunneling between the two
minima of the double well, the two states of the system (qubit) are
formed by symmetric and antisymmetric combinations of the two cir-
culating current states.

The WKB level splitting is (see for detailed derivation in
Appendix C.3 of Ref. 595)

D ’ 2
ffiffiffiffiffiffiffiffi
UEJ
p

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

d

� �s
e�12

ffiffiffiffiffiffiffiffi
EJ=U
p

ð1�1=dÞ3=2

: (74)

From this formula, we can see that the limit of a weak barrier and
intermediate to strong interactions form the most favorable regime to
obtain a finite gap between the two energy levels of the double level
potential as depicted on Fig. 44. Incidentally, we comment that the
bath Hamiltonian in Eqs. (72) and (73) is similar to the one describing
the dissipative dynamics of a single Josephson junction in the frame-
work of the Caldeira–Leggett model.476 As long as the ring has a finite
size, however, there are a finite number of discrete modes and no real

FIG. 44. Main panel: sketch of the qubit energy splitting, due to the barrier K, for
the two lowest-lying energy states in the many-body spectrum of model (70). Black
dashed lines denote the ground-state energy in the absence of the barrier, as a
function of the flux X. Switching on the barrier opens a gap at the frustration point
X ¼ p (continuous red lines). The three insets show the qualitative form of the
effective potential at X ¼ 0; p; 2p. Note the characteristic double-well shape form-
ing at X ¼ p. The qubit, or effective two-level system, corresponds to the two low-
est energy levels of this potential. In this figure the energies are plotted in arbitrary
units. Reprinted with permission from Aghamalyan et al., New J. Phys. 17, 045023
(2015). Copyright 2015, Author(s) licensed under a Creative Commons Attribution
3.0 License.
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dissipation occurs.596 In the limit N !1, a proper Caldeira–Leggett
model is recovered. In agreement to the arguments reported above,
the qubit dynamics encoded in the AQUID is less and less addressable
by increasing the size of the ring.14,580

2. Atomtronic flux-qubit: Ring lattice interrupted
with three weak links

Here, we consider N Bosons in an M site ring described by the
Bose–Hubbard model. The Hamiltonian reads

HBHH ¼
XM

i¼1

U
2

niðni � 1Þ � ti eiXa†
iþ1ai þ h:c:

� 	 

: (75)

where ai ða†
i Þ are bosonic annihilation (creation) operators on the ith

site and ni ¼ a†
i ai is the corresponding number operator. Periodic

boundaries are imposed, meaning that aMþ1 � a1. The parameter U
takes into account the finite scattering length for the atomic two-body
collisions on the same site. The hopping parameters are constant tj¼ t
except in the three weak-links lattice sites i0; i1; i2, where they are
ti0 ¼ t0; ti1 ¼ ti2 ¼ t00. The ring is pierced by an artificial (dimension-
less) magnetic flux X, which can be experimentally induced for neutral
atoms as a Coriolis flux by rotating the lattice at constant veloc-
ity,161,597 or as a synthetic gauge flux by imparting a geometric phase
directly to the atoms via suitably designed laser fields.591,598,599 The
presence of the flux X in [Eq. (75)] has been taken into account
through the Peierls substitution: ti ! e�iXti. The Hamiltonian [Eq.
(75)] is manifestly periodic in X with period 2p; in addition, it enjoys
the symmetry X$�X. The presence of the weak-link breaks the
axial rotational symmetry and couples different angular momenta
states, thus lifting the degeneracy at Xn. This feature sets the qubit
operating point.14,580

Here, again in the limit of a large number of bosons in each well
�n ¼ N=M; ai �

ffiffiffi
�n
p

ei/i , and the Bose–Hubbard hamiltonian (BHH)
[Eq. (75)] can be mapped to the quantum-phase model and equivalent
Hamiltonian is given by Eq. (71).

The effective action for the quantum phase model reads (see Ref.
13 for details),

Seff ¼
X

a¼0;1;2

ðb

0
ds

1
U

_ha
2 þ VðhaÞ

	 

(76)

� J
U

ð
dsds0haðsÞGaðs� s0Þhaðs0Þ; (77)

where

VðhaÞ¼
:

Jcah
2
a �

J 0

3
cos ðh1 � h2 � XÞ

� J 00

3
ðcos h1 þ cos h2Þ;

(78)

with ca ¼ 1
2 ð12� UJ

PM�4
2

k¼1
fak2

x2
k
Þ, where ha¼: /iaþ1 � /ia . We assume

that the weak links are sufficiently spaced to make the nearest neigh-
bor phase differences in between them (fast variables) small. This
implies that substantial phase slips occur at the weak links with the
constraint h0 þ h1 � h2 ¼ 0 modð2pÞ. The interaction between the
fast and the slow modes is described by the kernel,

GaðsÞ ¼
X1
l¼0

XM�4
2

k¼1

x2
l fak2

x2
k þ x2

l

eixls: (79)

We observe that VðhaÞ defines the effective dynamics of the
superconducting Josephson junctions flux qubits,588,600 but perturbed
by the h2 terms; by numerical inspection, we see that the correspond-
ing coefficients are small in units of J and decrease by increasing M.
Moreover, in Fig. 45, we introduce the numerical result for the spec-
trum of the quantum particle that moves in the potential given by Eq.
(79) under the additional assumption that h2 terms do not contribute.
From this figure, we clearly see that near the frustration point X ¼ p
two lowest energy levels are well separated from each other and from
higher excitations, which means that effective dynamics of the system
defines a qubit. It is important to point out that quantum phase model
is applicable in the limit of the high filling; however, the results for the
effective-two level description were demonstrated to hold in the limit
of low filling by applying an exact diagonalization method for the
Bose–Hubburd model as it has been demonstrated in Refs. 14 and 15

B. Demonstration of the one qubit and two qubit
unitary gates

The aim of this section is to show how the effective phase dynam-
ics of optical ring-lattices with impurities serves to the construction of
one- and two-qubit gates—a necessity for a universal quantum com-
putation. Here, we adapt results which were obtained by Solenov and
Mozyrsky601 for the case of homogeneous rings with impurities. It
results, that a single ring optical lattice with an impurity is described
by the following effective Lagrangian [see Eq. (73)]:

L ¼ 1
2U

_h
2 þ J

N � 1
ðh� UÞ2 � J 0 cos h: (80)

Then, we introduce the canonical momentum P in a usual way,

FIG. 45. Six first energy levels of the reduced system given by the effective potential
Eq. (79) as a function of the dimensionless external flux X. Here J0 ¼ 0:7J;
J00 ¼ 0:8J; U ¼ 0:5J, and h1 ¼ �h2. Reprinted with permission from
Aghamalyan et al., New J. Phys. 18, 075013 (2016). Copyright 2016, Author(s)
licensed under a Creative Commons Attribution 3.0 License.

AVS Quantum Science ROADMAP scitation.org/journal/aqs

AVS Quantum Sci. 3, 039201 (2021); doi: 10.1116/5.0026178 3, 039201-58

VC Author(s) 2021

https://scitation.org/journal/aqs


P ¼ @L

@ _h
¼ 1

U
_h: (81)

After performing a Legendre transformation, we get the following
Hamiltonian:

H ¼ J 0
P2

2l
� J

J 0ðN � 1Þ ðh� UÞ2 þ cos h

" #
; (82)

where l ¼ J 0=U is an effective mass of the collective particle. The
quantization is performed by the usual transformation P! �d=dh.
For d ¼ J 0ðN � 1Þ=2J > 1, the effective potential in Eq. (82) can be
reduced to a double well; for U ¼ p, the two lowest levels of such a
double well are symmetric and antisymmetric superpositions of the
states in the left and right wells, respectively. The effective
Hamiltonian can be written as

H ’ erz; (83)

and the lowest two states are jwgi ¼ ð0; 1ÞT and jwei ¼ ð1; 0ÞT :
WKB estimate for the energy splitting e of the qubit is given by
Eq. (74).

1. Single qubit gates

For the realization of single-qubit rotations, we consider the sys-
tem close to the symmetric double well configuration U ’ p. In the
basis of the two-level system discussed before, the Hamiltonian takes
the form

H ’ erz þ
U� p

d
hhi01rx; (84)

where hhi01 is the off-diagonal element of the phase-slip in the two-
level system basis. It is easy to show that spin flip, Hadamard, and
phase gates can be realized by this Hamiltonian. For example, a phase
gate can be realized by evolving the state through the unitary transfor-
mation UzðbÞ [tuning the second term of Eq. (84) to zero by adjusting
the imprinted flux]

UzðbÞ ¼ expðiesrzÞ ¼
eies 0
0 e�ies

� �
: (85)

After tuning the gap energy close to zero (adjusting the barrier height
of the impurity), we can realize the following rotation

UxðbÞ ¼ expðiasrxÞ ¼
cos a i sin a

i sin a cos a

� �
; (86)

where a ¼ U� p=dhhi01s. When a ¼ p=2 and a ¼ p=4, the NOT
and Hadamard gates are, respectively, realized.

2. Two-qubit coupling and gates

The effective dynamics for two coupled qubits, each realized as
single ring with localized impurity (as in Fig. 50), is governed by the
Lagrangian

L ¼
X
a¼a;b

1
2U

_ha
2 þ J

2ðN � 1Þ ðha � UaÞ2 � J 0 cos ðhaÞ
	 


� ~J 00 cos ha � hb �
N � 2

N
ðUa � UbÞ

	 

; (87)

where J 00 is the Josephson tunneling energy between the two rings.
When Ua ¼ Ub ¼ U and J 00 � J 0, the last term reduces to
�J 00ðha � hbÞ2=2 and the Lagrangian takes the form

L ¼ J 0
X
a¼a;b

1
2J 0U

_ha
2 þ J

2J 0ðN � 1Þ ðha � UaÞ2 � cos ðhaÞ
	 
"

þ J 00

J 0
ðha � hbÞ2

2

#
: (88)

By applying the same procedure as in Sec. X B 1, we obtain the follow-
ing Hamiltonian in the eigenbasis of the two-level systems of rings a
and b,

H ¼ Ha þ Hb þ
J 00

J 0
r1

xr
2
xhhi

2
01; (89)

Ha ¼ era
z þ

U� p
d
þ J 00p

J 0

� �
hhi01r

a
x: (90)

From this equations, it follows that qubit–qubit interactions can be
realized using our setup. If we choose the tuning e! 0 and U! p
�dJ 00p=J 0, the natural representation of a ðSWAPÞa gate602 can be
obtained,

UðsÞ ¼ exp �i
J 00

J 0
r1

xr
2
xs

	 

; (91)

where a ¼ sJ 00=J 0. A CNOT gate can be realized by using two
ffiffiffiffiffiffiffiffiffiffiffiffiffi
SWAP
p

gates.602 It is well known that one qubit rotations and a CNOT gate are
sufficient to implement a set of universal quantum gates.603

C. Readout of atomtronic qubits

For a controlled quantum system, it is essential to be able to read
out the state of a prepared quantum state. For the atomtronic qubit,
one can determine the properties of the qubit by reading out the cur-
rent of the atoms. The existence of the atomic current flowing in
AQUID can be detected by standard time-of-flight measurement of the
ring condensate.14 A more in-depth analysis can be performed by
interfering the ring condensate with a second condensate confined in
the center of a ring. This condensate sets a phase reference for the
phase winding of the ring condensate. By in-situ measurement of the
two interfering condensates, the self-heterodyne detection of the phase
of the wave function is realized. For weakly interacting continuous ring
systems, where no entanglement is present, both the orientation and
the intensity of the current states have been detected.149,392,604,605

For atomtronic qubits, this detection scheme has to be applied to
the case of ring lattices with stronger interactions. This has been stud-
ied in Ref. 590, and the key results are reviewed below.

1. Interferometric detection of the current states

To read out the direction and the intensity of the current in the
ring lattice, an approach originally carried out by the Maryland and
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Paris groups to map-out the circulating states in continuous ring-
shaped condensates can be applied.16,142,161,392,604 Accordingly, the
ring condensate is made to interfere with a another condensate at rest,
located at the center, fixing the reference for the phase of the wave-
function. The combined wavefunction evolves in time, interferes with
itself and finally is measured. The number of spirals gives the total
number of rotation quanta.

In the actual experiment, the condensate is imaged through in
situ measurements. In this way, the current direction and magnitude is
well visible as a spiral pattern. The position of the spirals depends on
the relative phase between ring and the central condensate. In a single
experimental run, the spirals will be visible for a condensate with the
high number of particles. However, if the number of particles is low or
the atom imaging is inefficient, one has to average over multiple shots
and take expectation values, which experimentally corresponds to take
averaged results over many experimental runs. However, every realiza-
tion of the experiment has a random phase in the phase of the spirals,
which is averaged out over many repetitions. As the relative phase
between ring and central condensate is determined randomly upon
measurement, the expectation value of the density operator will aver-
age over different realizations of the spiral interference pattern, wash-
ing out the information on the current configuration structure.
However, as we show below, the information about the spirals can be
recovered using density–density correlations.

The expansion dynamics is modeled with the Bose–Hubbard
model. The ring wavefunction is calculated by solving the ground state
of the Bose–Hubbard Hamiltonian, while the central condensate is
simply a single decoupled site with Nc particles. The dynamics of the
density n̂ðr; tÞ ¼ ŵ

†ðr; tÞŵðr; tÞ is initialized assuming that the
bosonic field operator of the system is ŵðrÞ ¼

P
n wnðrÞân, where

wnðrÞ are a set of Wannier functions forming a complete basis.606,607

In our calculation, we approximate the full basis for wave functions
living in the ambient space on which the condensate expands with the
set of Wannier functions composed of Gaussians peaked at the ring
lattice sites and at its center (the Gaussian approximation for the
Wannier functions is a well verified approximation for single site
wavefunctions—see Refs. 608 and 609) For the free evolution (we are
indeed in a dilute limit), we assume that each particle at site n expands
in two dimensions as

wnðr; tÞ ¼ 1ffiffiffi
p
p rn

r2
n þ

i�ht
m

e� ðr�rnÞ2=2 r2
nþi�ht=mð Þð Þ; (92)

where rn is the width of the condensate located at the n-th site. The
dynamics of the condensates is then approximated as ŵðr; tÞ
¼
P

n wnðr; tÞân. We observe that such an approximation works well
in the situations in which the optical lattice is assumed to be suffi-
ciently dense in the space in which the condensate is released (as in
the release from large three dimensional optical lattices).

To observe the intereference, and thus the qubit properties, using
averaging over multiple shots, the interference pattern is measured
with higher order density-density correlations. We calculate the densi-
ty–density covariance610–613

covðr; r0; tÞ ¼ hn̂ðr; tÞn̂ðr0; tÞi � hn̂ðr; tÞihn̂ðr0; tÞi: (93)

We also define the root of the density covariance, which has the same
unit as the density to improve the contrast of the measured interfer-
ence pattern,

rðr; r0; tÞ ¼ sgnðcovðr; r0; tÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jcovðr; r0; tÞj

p
: (94)

First, we plot the expectation value of the density of expanded
atoms for different values of interaction at the degeneracy point
X ¼ 1=2 in Fig. 46. The density of expanded atoms at longer times
has some characteristic features depending on the interaction. For
interaction energy smaller than the potential barrier, the center shows
a characteristic bright and dark spot. For stronger interaction, it
becomes a single, blurred spot. At the degeneracy point, we observe a
superposition of counter-flowing current states. Interaction modifies
the many-body entanglement, which changes the characteristic time-
of-flight pattern. After a long enough free expansion, the atom density
assumes the initial momentum distribution. However, it is difficult to
read out the exact state of the current as the characteristic spirals are
not visible in the expectation values of the density.

Next, we show the density–density covariance rðr; r0Þ in Fig. 47.
A clear spiral pattern emerges here. In this case, a step in the spirals at
the weak link site (here at the center bottom) is clearly visible for inter-
mediate times. This indicates the appearance of a superposition of two
winding numbers. Although the interferometric pictures can look

FIG. 46. Density of expanding atoms at times t ¼ 0; 0:3s; 0:6s; 1:2s, with
s ¼ mRrr=�h. From left to right: U¼ 0, U=J ¼ 1; U=J ¼ 5. Flux X ¼ 1

2 at the
degeneracy point. At intermediate time, we observe some spiral-like structure at the
edges. This is not the interference with the central condensate, but a residue of the
ring lattice interfering with itself. Calculated using Bose-Hubbard model, no interac-
tion during expansion. Data in color and normalized to one. Ring has 7 particles,
M¼ 14 ring sites, ring radius R. Width of central and ring cloud is rr ¼ 2R=L and
potential barrier K ¼ J, 25% of atoms in central condensate. Barrier at x¼ 0,
y ¼ �R. Reprinted with permission from Haug et al., Phys. Rev. A 97, 013633
(2018). Copyright 2018, American Physical Society.
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similar, different interactions lead to current states that may be very
different in nature. For U¼ 0, the current is in a nonentangled super-
position state, whereas for interaction U¼ J in a highly entangled
NOON state.

Below, we shall see how additional information on the states can
be grasped analyzing the noise in the momentum distribution of the
ring condensate. Indeed, the noise for zero momentum strongly
depends on the specific entanglement between the clockwise and anti-
clockwise flows. In the case of an entangled cat state, all atoms have
together either zero or one momentum quanta. A projective measure-
ment will collapse the wavefunction to either all atoms in the zero or
one momentum state. Averaging over many repeated measurements
will result in erratic statics of the measurements. In contrast, in nonen-
tangled single-particle superpositions, each particle has independently
either zero or one momenta quanta. A single projective measurement
will result in on average half the atoms having zero and half the atoms
having one rotation quantum. Therefore, fluctuations averaged over
many measurements will be low. We define the noise of the momen-
tum distribution,

rkðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hn̂ðkÞn̂ðkÞi � hn̂ðkÞihn̂ðkÞi

p
: (95)

Having in mind a time-of-flight experiment, the optimal point to mea-
sure the noise is at k ¼ 0, as at this point the density is maximal for

zero rotation quanta, and zero for one or more rotation quanta. We
plot the noise of the time-of-flight image at k ¼ 0 without a central
condensate in Fig. 48. First, the interaction U and weak link K is plot-
ted in Fig. 48(a). We see that the momentum noise is minimal in the
parameter regime U=J � 1 and K=J > cU=J , where c is some con-
stant, which corresponds to the mean-field limit. As soon the interac-
tion becomes larger than the energy gap induced by the potential
barrier, the noise increases. Here, entangled phase winding states of
zero and one winding quantum appear. For the large interaction, the
noise decreases again, however, remains higher than in the mean-field
regime. With the increasing interaction, we can define three regimes
of entanglement:614 At the degeneracy point X ¼ 1

2, for interaction
smaller than the energy gap created by the weak link, we observe one-
particle superposition states jWi / ðjl ¼ 0i þ jl ¼ 1iÞN , where N is
the number of particles and l is the angular momentum of the atom.
This regime is well described by the Gross–Pitaevskii equation. Here,
the noise at k ¼ 0 is minimal and is given by rGP

k ðk ¼ 0Þ /
ffiffiffiffi
N
p

=4.
When the interaction and the weak-link energy gap is on the same
order, the near-degenerate many body states mix and entangled
NOON states are formed jWi / jl ¼ 0iN þ jl ¼ 1iN . The noise is
maximal and given by rNOON

k ðk ¼ 0Þ / N=4. The ratio of the mini-
mal and maximal noise is

ffiffiffiffi
N
p

. Thus, with the increasing particle num-
ber, the superposition and entangled states are clearer to distinguish.
The increasing interaction further will fermionize the system. With
the interaction, angular momentum of each atom individually is not
conserved, however, the center of mass angular momentum K of the
whole condensate is. Then, the ground state is a superposition of
jWi / jK ¼ 0i þ jK ¼ Ni.

Next, the momentum noise is plotted against applied flux X in
Fig. 48(b). Due to the two level system effective physics, the noise in
the time of flight of the ring condensate is particularly pronounced at
the degeneracy points. This phenomenon allows one to detect the
degeneracy point in the ring condensate, without resorting the hetero-
dyne detection protocol. The noise is maximal at the degeneracy point,
when the barrier and interaction are on the same order. Changing the
flux away from the degeneracy point decreases the noise.

Further information can be identified by looking at the density at
the site of the weak link. For the zero on-site interaction, the site at the
potential barrier is always depleted at the degeneracy point for any
value of potential barrier strength. However, when the interaction

FIG. 47. Root of density-density covariance rðr; r0 ¼ f0;R=2gÞ of expanding
atoms with flux X ¼ 1

2 at the degeneracy point. The discontinuity in the bottom of
the spirals at intermediate times t ¼ 0:3s and t ¼ 0:6s shows that the ring con-
densate is in a superposition of zero and one rotation quantum. Same parameters
as Fig. 46. Reprinted with permission from Haug et al., Phys. Rev. A 97, 013633
(2018). Copyright 2018, American Physical Society.

FIG. 48. Momentum noise rkðk ¼ 0Þ (in color, normalized to one) plotted for poten-
tial barrier K against a) on-site interaction U (X ¼ 1

2) and b) flux X (U=J ¼ 1).
Momentum noise is extracted from time-of-flight image after long expansion. Only
ring is expanded, without central condensate. Black line shows the critical point
where depletion at the potential barrier is 1% of the average particle number per
site. Above the line the potential barrier site is depleted. Other parameters are
M¼ 11 ring sites and 5 particles. Reprinted with permission from Haug et al., Phys.
Rev. A 97, 013633 (2018). Copyright 2018, American Physical Society.
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exceeds a critical value, particles start occupying the site.14 This is plot-
ted as a black line in Fig. 48. For small interaction, the critical value
has a linear relationship between U and K.14 The filling of the potential
barrier site indicates the onset of entanglement between different flux
quanta. The depletion factor can be measured by a lattice-site resolved
absorption measurements.

D. Experiment realization of the ring-lattice potential
with weak links

In this section, we provide the experimental details for the reali-
zation of ring-lattice potentials with weak-links. Among the different
architectures, the focus is on the structure that can be relevant for the
construction of two level quantum systems.

1. A ring lattice with single weak link

The optical potential was created with a liquid crystal on a silicon
spatial light modulator (PLUTO phase only SLM, Holoeye Photonics
AG), which imprints a controlled phase onto a collimated laser beam
from a 532 nm wavelength diode pumped solid state (DPSS) laser. The
SLM acts as a programmable phase array and locally modifies the
phase of an incoming beam. Diffracted light from the computer gener-
ated phase hologram then forms the desired intensity pattern in the
focal plane of an optical system (doublet lens, f¼ 150 mm). The result-
ing intensity distribution is related to the phase distribution of the
beam exiting the SLM by Fourier transform. The calculation of the
required SLM phase pattern (kinoform) has been carried out using an
improved version of the mixed-region-amplitude-freedom (MRAF)
algorithm59,615 with angular spectrum propagator. This allows one to
numerically simulate the wavefront propagation in the optical system
without resorting to paraxial approximation. A region outside the
desired ring lattice pattern (noise region) is dedicated to collect
unwanted light contributions resulting from the MRAF algorithm’s
iterative optimization process. This can be seen in the measured inten-
sity pattern in Fig. 49 as concentric, periodic structures surrounding
the ring-lattice and can be filtered out by an aperture.

The ring-lattice potential shown in Figs. 49 and 50 can be readily
scaled down from a radius of �90 to 5� 10 lm by using a 50�
microscope objective with NA¼ 0.42 numerical aperture (Mitutoyo
50� NIR M-Plan APO) as the focusing optics for the SLM beam and
with k2 ¼ 830 nm light, suitable for trapping rubidium atoms.
Accounting for the limited reflectivity and diffraction efficiency of the
SLM, scattering into the noise region and losses in the optical system
only about 5% of the laser light contributes to the optical trapping
potential. However, this is not a limiting factor for small ring-lattice
sizes in the tenth of micrometer range as discussed here where �50
mW laser power is sufficient to produce well depths of several Erec.
The generated structures are sufficiently smooth with a measured
intensity variation of 4.5% rms to sustain persistent flow-states.67 The
barrier height can be dynamically modified at a rate up to 50 ms per
step with an upper limit imposed by the frame update rate of the SLM
LCD panel (60 Hz).

2. Experiment realization of the ring-lattice potential
with three weak links

We produce the optical potential using a spacial light modulator
(Holey Photonics AG, PLUTO-NIR II), SLM. A collimated Gaussian
beam, of 8 mm diameter, is reflected from the SLM’s surface forming
an image through a f¼ 200 mm lens. The light is then split into the
two sides of our system with 10% of the light in the “monitoring” arm
and 90% into the “trapping” arm used to create a red-detuned dipole
trapping potential for a gas of Rb87 atoms. A Ti:sapphire laser
(Coherent MBR-110) produces a 1 W, 828 nm beam, which is spatially
filtered and collimated, before reflection on the SLM. To produce the
trapping potential, the SLM’s kinoform is imaged through a 4f lens
system reducing the beam size to 3 mm diameter and focused through
a 50� microscope objective with a 4 mm focal distance and a numeri-
cal aperture of NA¼ 0.42 (Mitutoyo 50X NIR M-Plan APO). The
monitoring arm of the system creates an image of the potential
through a 10� infinity-corrected microscope objective focused on a
CCD camera (PointGrey FL3-GE-13S2M-C). The CCD camera views,
therefore, an enlarged image of the optical potential.

FIG. 49. Simulation (a) and experimentally realized (b) intensity distribution of a ring- lattice with a weak link between two lattice sites. Reprinted with permission from
Aghamalyan, Ph.D. dissertation, Singapore, 2015.
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To increase the accuracy of the output potential, we use the com-
putationally generated kinoform and produce an image of the optical
potential in the monitoring arm of our system and use this as a further
source of feedback to the MRAF algorithm. Our method is broadly
similar to Bruce et al,616 however it is specialized for producing ring-
lattices. Figure 51 shows a flow chart of our improved algorithm. In
the first step, the target image, Ti, and the initial phase, /0, are loaded
as an input to the MRAF code. This runs for 20 iterations (this was
found to be sufficient to get good convergence in most cases) and out-
puts a phase kinoform, /i. The kinoform is now applied to the SLM
and an image recorded on the camera in the monitoring arm of our
system, Mi. The discrepancy, Di, between the original target and the
measurement is calculated and used to form an updated target Tiþ1.
Here, our algorithm differs from Ref. 616 as we take the discrepancy
to be Di ¼ �ðM2

i þ T2
0 Þ=2T0. Also, we do not take into account the

whole image, and the discrepancy is calculated by comparing the max-
ima and minima around the azimuthal, 1D, profile of the lattice to the
target profile. The targets maxima and minima are then adjusted with
Tiþ1 ¼ Ti þ aDi, where a is a problem specific feedback gain and i is
the iteration number. The process now repeats with /0 and Tiþ1 as
the inputs to the MRAF code. The feedback gain, a, is set to be 0.3 to
ensure a quick convergence, and this process iterates 30 times. At this
point, the algorithm is complete and the best image from the set M is
selected that minimizes the discrepancy below 2%. With this method,
we produce the ring-lattice potential shown in Fig. 52 (left) that on the
trapping side of our apparatus creates a scaled-down lattice with a
radius of 5–10 lm with more than sufficient power to trap ultracold
atoms. On the right of Fig. 52, the azimuthal profile around the ring
lattice is shown. The red curve indicates the profile on the first itera-
tion of the feedback loop. After five iterations (blue curve), the algo-
rithm has converged significantly toward the original target (solid
line).

E. Setup for adjustable ring-ring coupling

In this section, proposal for experimental realization of ring latti-
ces with tunable distance between the rings is suggested by utilizing
the SLM technique.59,615 With a SLM arbitrary, optical potentials can
be produced in a controlled way only in a 2d-plane—the focal plane of
the Fourier transform lens—making it challenging to extend and up-
scale this scheme to 3d trap arrangements. The experiment, however,
showed (see Fig. 53) that axially the ring structure potential remains
almost undisturbed by a translation along the beam propagation axis
of Dz ¼ 62:2 � R, where R denotes the ring-lattice radius. The ring-
lattice radius is only weakly affected by an axial shift along z and scales
with DR=R ¼ 0:0097 � z; where z is normalized to the ring-lattice
radius. For larger axial shifts from the focal plane, the quality of the
optical potential diminishes gradually. Based on our measurements,
this would allow implementation of ring-lattice stacks with more than
ten rings in a vertical arrangement, assuming a stack separation com-
parable to the spacing between two adjacent lattice sites. Propagation
invariant beams may allow a potentially large number of rings to be
vertically arranged.532

In addition to making the inter-ring dynamics strictly one
dimensional, the lattice confinement provides the route to the inter-
rings coupling.

To allow controlled tunneling between neighboring lattice along
the stack, the distance between the ring potentials needs to be adjust-
able in the optical wavelength regime (the schematics in Fig. 54 can be
employed). A trade-off between high tunneling rates (a necessity for
fast gate operations) and an efficient readout and addressability of
individual stack sites needs to be analyzed. Increasing the lattice stack
separation after the tunneling interaction has occurred well above the

FIG. 50. Experimental realization of a ring-lattice potential with an adjustable weak
link. Measured intensity distribution with an azimuthal lattice spacing of 28 lm and
a ring radius of 88 lm. The central peak is the residual zero-order diffraction. The
size of the structure is scalable and a lower limit is imposed by the diffraction limit
of the focusing optics. Reprinted with permission from Amico et al., Sci. Rep. 4,
4298 (2014). Copyright 2014, Author(s) licensed under a Creative Commons
Attribution 3.0 License.

FIG. 51. Our feedback algorithm. Starting at the top left the initial phase and target
are used in the MRAF code. This generates the phase guess, /i , which is
uploaded to the SLM and an image captured by the CCD camera, Mi. This is used
to calculate the discrepancy between the image and the original target, and a new
target Tiþ1 is created. The loop then repeats. Reprinted with permission from
Aghamalyan et al., New J. Phys. 18, 075013 (2016). Copyright 2016, Author(s)
licensed under a Creative Commons Attribution 3.0 License.
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diffraction limit while keeping the atoms confined, optical detection,
and addressing of individual rings becomes possible.

This arrangement produces equal, adjustable ring–ring spacing
between individual vertical lattice sites and can, therefore, not readily
be used to couple two two-ring qubits to perform two-qubit quantum-
gates. The SLM method, however, can be extended to produce two
ring-lattices in the same horizontal plane separated by a distance larger

than the ring diameter. The separation between these two adjacent
rings can then be programmatically adjusted by updating the kino-
form to allow tunneling by mode overlap.618 Combined with the
adjustable vertical lattice (shown in Fig. 54), this would allow, in prin-
ciple, two-ring qubit stacks to be circumferential tunnel-coupled to
form two-qubit gates.

F. First experimental demonstration of the
interference of atomtronic currents

A key ingredient to realize the atomtronic qubit is the interfer-
ence of currents that make up the qubit dynamics. Controlling and
interfering currents in situ of a cold atom circuit are a challenging task,

FIG. 52. Left: Final image of the ring lattice after completion of the feedback algorithm. Right: Azimuthal Profile. The solid line plots the target profile. This is compared to the
result after the 1st and 5th iteration of the feedback algorithm (red and blue lines, respectively,). Reprinted with permission from Aghamalyan et al., New J. Phys. 18, 075013
(2016). Copyright 2016, Author(s) licensed under a Creative Commons Attribution 3.0 License.

FIG. 53. Effect of an axial translation on the ring lattice potential. (a) Ring lattice inten-
sity distribution measured at various positions along the beam propagation axis around
the focal plane (Z¼ 0). Note that the initial beam, phase modified by the SLM, is not
Gaussian any more. The optical potential remains undisturbed by a translation of 2.2
times the ring-lattice radius centered around the focal plane (Z¼ 0). Here R designa-
tes the ring-lattice radius of 87.5 lm. (b) This is in contrast to a Gaussian laser beam
which exhibits a marked dependence on the axial shift from the focal plane where the

beam waist xðzÞ scales with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðz=z0Þ2

q
and Rayleigh range z0. Reprinted with

permission from Amico et al., Sci. Rep. 4, 4298 (2014). Copyright 2014, Author(s)
licensed under a Creative Commons Attribution 4.0 License.

FIG. 54. Proposed setup for the ring-ring coupling. Two Gaussian laser beams of
wavelength k and distance D, pass through a lens and interfere in the focal plane
(f is the focal length). The distance D can be easily controlled by moving the mir-
rors. The distance between the fringes is a function of 1=D.617 The resulting
Gaussian laser beam with wave vector kG ¼ 2pD=ðkf Þ, then, interferes with two
counter propagating Laguerre-Gauss laser beams of amplitude E0. The inset shows
the ring lattice potentials separated by d ¼ kf=D. Here, l¼ 6 and p¼ 0. Reprinted
with permission from Aghamalyan et al., Phys. Rev. A 88, 063627 (2013).
Copyright 2013, American Physical Society.
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as it requires high coherence and control in the system. Recently, inter-
ference of currents in an AQUID has been realized experimentally for
the first time, which is reviewed in this section.15 The interference can
be revealed by a periodic modulation of the critical current with
applied flux in an atomtronic ring interrupted by two weak links. Note
that the interference has been achieved for a dilute Bose–Einstein con-
densate, which can be described within the mean-field limit as a classi-
cal wave equation. While entanglement that is critical for atomic
qubits cannot be demonstrated within this experiment, it is nonethe-
less a first step toward establishing the ingredients for atomic qubits
based on superposition of currents.

The periodic modulation of the critical current can be under-
stood by calculating the total current within a model of the atomtronic
SQUID based on quantum phase-controlled Josephson junction cur-
rents and a toroidal trap geometry [Fig. 55(a)]. The total current is the
result of interference of the two Josephson junction currents, given by

I1 ¼
1
2
ðIt þ IjÞ ¼ Ic sin ð/1Þ; (96)

I2 ¼
1
2
ðIt � IjÞ ¼ Ic sin ð/2Þ; (97)

where Ic is the critical current of atoms, It is the total current, and Ij is
the circulating current around the atomtronic SQUID. Because of the

toroidal geometry and single valuedness of the wavefunction describ-
ing the atoms, the phases should satisfy /1 � /2 þ 2px¼ 2pn, where
x ¼ X=X0, with X being the rotation rate of atoms and n is an inte-
ger. The rotation rate of the atoms can be shown to be

x ¼ xext þ batom
Ij

Ic
; (98)

where xext ¼ Xext=X0; Xext is the external rotation rate of the atom-
tronic SQUID, batom ¼ 2pIc=NX0, and N is the total number of
atoms. This equation for the rotation rate of atoms can be derived
from the relation between the circulating current and the movement
of atoms relative to the Josephson junctions. The parameter batom is
analogous to the screening parameter in the conventional SQUID and
can be thought as proportional to the “inductance” that induces the
deviation of the rotation rate of atoms from the imposed external rota-
tion rate of the atomtronic SQUID. Equations (1)–(4) are equivalent
to those of a DC SQUID,619 reflecting the fact that the fundamental
underlying physics of a double junction atomtronic SQUID and a DC
SQUID is the same. In the limit of batom ¼ 0 (for example, when Ic

� 0 with much higher barrier height), we can analytically calculate the
total currents It ¼ 2Ic cos ðpxextÞ sin ð/1 � pxextÞ. Thus, the critical
current is j2Ic cos ðpxextj, which establishes a clear modulation of the
critical currents by tuning xext with a period of X0. With finite batom,

FIG. 55. Calculation of the periodic modulation of the critical current. (a) Schematic of a double junction atomtronic SQUID. The atomtronic SQUID was created by scanning a
single 834 nm laser beam with 1.7lm waist and the barrier full width at half maximum (FWHM) was 2.1 lm. Xext is the rotation rate of the atomtronic SQUID and X is the
rotation rate of atoms. /1 and /2 are the phase differences across the Josephson junctions, I1 and I2 are Josephson junction currents, and N1 and N2 are numbers of atoms
in each half. Arrows represent the movement of the junctions. The calculated potential of the atomtronic SQUID and the density of atoms are shown for the radius of 3.85lm.
(b) Critical current as a function of Xext=X0 calculated for different values of batom. (c) Normalized critical currents (2Ic=N) where Ic is the critical current and N is the total num-
ber of atoms as a function of the number of atoms with different xext for the atomtronic SQUID with 3.85lm radius. batom varies with the number of atoms and the critical cur-
rent. For each number of atoms, batom was calculated to find the variation of the normalized critical current. (d) Modulation of the critical atom number as a function of Xext=X0
for three different normalized bias currents with the 3.85lm radius atomtronic SQUID. Reprinted with permission from Ryu et al., Nat. Commun. 11, 3338 (2020). Copyright
2020, Author(s) licensed under a Creative Commons Attribution 4.0 License.
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we can numerically calculate the critical current, and the periodic
modulation amplitude decreases with the increasing batom, as can be
seen in Fig. 55(b). By using the calculated modulation in Fig. 55(b),
the expected periodic modulation of the critical current in an atom-
tronic SQUID can be calculated with the Gross–Pitaevskii equation
(GPE) in 2D. Figure 55(c) shows the normalized critical current, which
is the critical current of atoms normalized to the number of atoms
2Ic=N , as a function of the number of atoms for the different rotation
rates of the atomtronic SQUID. For a fixed number of atoms, the nor-
malized critical current shown in Fig. 55(c) modulates with the rota-
tion rate. However, it is very difficult to experimentally observe this
modulation because of the strong dependence of the normalized criti-
cal current on the number of atoms and the difficulty in producing a
BEC with the same number of atoms consistently. Instead of a fixed
number of atoms, a fixed normalized bias current was used, generated
by moving Josephson junctions with a fixed speed. When the rotation
rate changes, the critical atom number—which is the number of atoms
at the transition from DC to AC Josephson effect with the chosen nor-
malized bias current—modulates periodically, as shown in the GPE
calculation of Fig. 55(d).

The theoretical prediction of the modulation of the critical cur-
rent (measured using the critical atom number) is plotted in Fig. 56.
The experimental values clearly show the characteristic modulations

of the critical current with flux, revealing the interference of currents
in the AQUID.

G. Concluding remarks and outlook

In this section, we have introduced atomtronic qubits constructed
with neutral atomic currents flowing in ring-shaped optical lattice
potentials interrupted by few weak links, which give rise to the
Atomtronics quantum interference device (AQUID). The effective
quantum dynamics of the system is proved to be that one of a two-
level system. The spatial scale of the rings radii would be in the range
of 5 to 20 lm. The ring–ring interaction can be realized with the phys-
ical system of two Bose–Einstein condensates, flowing in ring-shaped
optical potentials, and mutually interacting through tunnel coupling.
Clearly, such systems may be relevant for quantum computation pur-
poses, which was demonstrated further by showing how single and
two qubit gates can be obtained in the setup.

The initialization of the qubit can be accomplished, for example,
by imparting rotation through light-induced torque from
Laguerre–Gauss (LG) beams carrying an optical angular momentum.
Stacks of n � 10 homogeneous ring lattices with tunable distance and
stacks of AQUIDs have been experimentally realized (in the lab coor-
dinated by Dumke) with spatial light modulators (SLM). Such

FIG. 56. Comparison between experiment and theory. (a) Comparison of the measured and calculated values of X0=ð2pÞ (calculation done using GPE). The three curves cor-
respond to calibration scales of the atomtronic SQUID radius. (b)–(d) Critical atom number as a function of the rotation rates obtained with GPE simulation and DC SQUID the-
ory, along with the measured data and the best fit. For (b), the radius is 4.82lm; for (c), the radius is 3.85lm; and for (d), the radius is 2.891lm. Reprinted with permission
from Ryu et al., Nat. Commun. 11, 3338 (2020). Copyright 2020, Author(s) licensed under a Creative Commons Attribution 4.0 License.
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configurations are realized by making use of the cylindrical symmetry
of Laguerre–Gaussian beams and exploiting the flexibility (in terms of
generating light fields of different spatial shapes) provided by the SLM
devices. The stack of qubits can be realized following very similar pro-
tocols. Indeed, similar goals were carried out by realizing the AQUID
with homogeneous condensates (i.e., without lattice modula-
tion).12,15,16,67,161,604 We remark that the lattice confinement brings
important added values with respect to that realization. First of all, the
gap between the two levels of the qubit displays a more feasible depen-
dence with the number of atoms in the system compared with the case
of homogeneous rings with a delta barrier. This is ultimately due to
the fact that the barrier can be localized on a lattice spacing spatial
scale;614 thereby, the k-mixing that is the key feature to have a well
defined two level system is not suppressed (as, in contrast, happens for
homogeneous condensates with a realistic barrier. As a second positive
feature, the lattice provides a platform for the qubit–qubit interaction.
These two features, we believe, could ultimately facilitate the exploita-
tion of the device in future atomtronic integrated circuits.

We also reviewed the construction of a flux qubit employing a
ring condensate trapped in a regular lattice potential except for three
specific lattice points with a reduced tunneling amplitude. The three
weak links solution was originally suggested in quantum electronics to
facilitate the function of the system as a qubit.588 We apply a similar
logic leading to fluxonium from the rf-SQUID: the continuous quan-
tum fluid, in our system, is replaced by a chain of junctions connecting
the different weak links. We believe that the additional lattice helps in
adjusting the persistent current flowing through the system. The three
weak links architecture, indeed, realizes a two-level effective dynamics
in a considerably enlarged parameter space. The qubit dynamics can
be read out via time-of-flight measurements. A spiral pattern emerges
when the expanding atomic ring with a specific current is interfered
with a reference condensate. The noise in the time-of-flight images is a
hallmark of the entanglement present in the current, allowing to char-
acterize the atomic qubit. With these methods, the type of current
(entangled vs nonentangled), the magnitude and direction can be read
out. The depletion at the weak-link can be used to determine the state
of the qubit as well. This opens up a way to experimentally character-
ize atomic qubits in the lab.

Recent experiments have demonstrated the interference of cur-
rents in atomic SQUIDs for the first time. Oscillations in the critical
current with applied flux are a clear hallmark of interference of atomic
currents. This result has been achieved in a Bose–Einstein condensate
in the dilute limit, such that it can be described within a mean-field
description. While entanglement as a key ingredient for atomic qubits
has not been demonstrated, this result nonetheless opens up the path
to create atomic qubits via superposition of currents and observe their
macroscopic entanglement.

Decoherence, of course, is an important issue for our proposal
that remains to be studied. We comment, however, that measurements
of the decay dynamics of a rotating condensate in an optical ring trap
show that the quantized flow states have remarkably long lifetimes, of
the order of tens of seconds even for high angular momentum
(l¼ 10).142 Phase slips (the dominant mechanism of decoherence),
condensate fragmentation, and collective excitations that would ulti-
mately destroy the topologically protected quantum state are found to
be strongly suppressed below a critical flow velocity. Although atom
loss in the rotating condensate does not destroy the state, it can lead to

a slow decrease in the robustness of the superfluid where the occur-
rence of phase slips becomes more likely. We believe that the decoher-
ence rates could be controlled within the current experimental know-
how of the field. The Atomtronics’ positive trend crucially relies on the
recent progress achieved in the optics microfabrication field. Thereby,
central issues, of the cold atoms system, such as scalability, reconfigur-
ability, and stability, can be feasibly addressed. In many current and
envisaged investigations, there is a need to push for further miniaturi-
zation of the circuits. The current lower limit is generically imposed by
the diffraction limit of the employed optics. Going to the submicrome-
ter scale, although challenging, might be accessible in the near future.
At this spatial scales, mesoscopic quantum effects could be traced out.
The scalability of multiple-ring structures will be certainly fostered by
tailoring optical potentials beyond the Laguerre–Gauss type (f.i.
employing Bessel–Gauss laser beams). A central issue for Atomtronics
integrated circuits is the minimization of the operating time on the cir-
cuit and the communication among different circuital parts (i.e.,
AQUID–AQUID communication). Currently, typical time rates are in
the millisecond range, but a thorough analysis of the parameters con-
trolling time rates is still missing.

XI. TRANSPORT AND DISSIPATION IN ULTRACOLD
FERMI GASES

J. P. Brantut, F. Chevy, M. Lebrat, F. Scazza,
S. Stringari

Atomtronics is based on the flow of quantum gases in circuits or
devices. It, therefore, provides a natural framework in which transport
and dissipation, two fundamental dynamical processes, can be
observed, studied, and controlled. These processes are of fundamental
interest in the entire field of many-body physics: first, because they
involve not only equilibrium or ground state properties but chiefly
that of excitations and they are intrinsically difficult to calculate from
first principles. Second, for the same reason, they are very sensitive
investigation tools for experimentalists. Third, they underly most of
the functionalities of solid-state based quantum devices.

Fermionic quantum gases provide the most direct connection
between atomtronics and solid-state electronics. The obvious analogy
between the transport of fermionic atoms in light-imprinted structures
and that of electrons in condensed matter systems suggests that atom-
tronics systems could be used as quantum simulators for their
electronic counterparts, for which ab initio modeling is very challeng-
ing.620 The vastly different scales of cold atoms, presented in Table I,

TABLE I. Comparison between cold Fermi gases and electrons in solids.

Cold Fermi gases Electrons in solids

Interactions Contact, tunable Coulomb, with
density-dependent screening

Internal states Hyperfine states Spin
Structure shaping Light-induced Gating, crystal growth
Energy scales EF � 1 lK 10 K < EF < 104 K
Density scales �1012 cm�3 1010 (semiconductors)–

1022 cm�3 (metals)
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as well as the specific control tools make them especially promising in
this perspective.

While electronic systems benefit from their ability to reach low
relative temperatures, and from more than a century of development
of methods and control protocols for currents and voltages, cold
atomic atomtronic systems reach for previously uncharted parameter
regimes: they can reach very high relative temperatures without
encountering phonons or other disturbances, they offer full control
and imaging of the spin degrees of freedom without the need for ferro-
magnetic materials and have a rich internal structure that can be lever-
aged as an extra “synthetic” dimension.621 Of particular interest is the
possibility of cold Fermi gases to operate in the strongly interacting
regime, close to a Feshbach resonance, opening the possibility to real-
ize quantum devices from strongly correlated matter bypassing the
outstanding challenges encountered in solid state systems. In this
regime, the system is described by the so-called BEC-BCS crossover
that interpolates between weakly attractive fermions described by BCS
(Bardeen–Cooper–Schrieffer) theory, and a Bose–Einstein condensate
(BEC) of strongly bound molecules.622,623 The equilibrium properties
of gases in this regime have been extensively investigated in the last
decade, and several key thermodynamic properties such as the ground
state energy, critical temperature, or pairing gap are now known with
high precision.624,625

The recent years have seen a growing number of experiments
exploring the dynamics of fermionic gases in this strongly interacting
regime. New systems mixing bosonic and fermionic superfluids pro-
vides renewed opportunities to study superfluid flow.626–628 The devel-
opment of two-terminal systems for cold atoms in particular provides
the simplest devicelike geometry.498 For a long, low dimensional chan-
nel, this has allowed for the measurement of particle,629 spin,630 and
heat conductances631 as well as off-diagonal transport coefficients such
as spin-drag or thermopower. For short, planar junctions, it realizes a
tunnel connection for which superfluidity yields the celebrated
Josephson effect.33,430,437,438

This contribution presents some of the most recent development
of ultracold Fermi gases in the atomtronics context. In Sec. XI A, trans-
port phenomena in superfluid Fermi gases are discussed, first in the
perspective of the Landau criteria, then in the case of Josephson junc-
tions. In Sec. XI B, we describe transport of Fermi gases in mesoscopic
channels. In Sec. XI C, the physics of the fast spin drag in normal
Fermi gases is presented.

A. Superfluid transport with Fermi gases

1. Fermionic superfluidity and critical velocity

The first microscopic theory of dissipation in superfluids was
proposed by Landau who predicted the existence of critical velocity
below which an object in motion in a superfluid feels no drag.632

Landau’s original argument was based on constraints imposed by
energy and momentum conservation when elementary excitations are
shed in the superfluid. In this limit, the critical velocity is given by the
minimum value of xðkÞ=k, where xðkÞ is the dispersion relation of
low-energy modes of the system. For a concave dispersion relation,
this is the slope of xðkÞ at the origin and the critical velocity is, there-
fore, simply the sound velocity.

In fermionic systems, the excitation spectrum is composed of
both bosonic collective modes (the so-called Bogoliubov–nderson

modes) corresponding to phonons and fermionic quasi-particles asso-
ciated with broken Cooper pairs.633 These two sectors lead to different
predictions for the critical velocity when interactions are varied across
the BEC-BCS crossover. In the BEC regime, where pairs are tightly
bound, phonons set the critical velocity, as in a traditional atomic
Bose–Einstein condensate. On the contrary, on the BCS side of the res-
onance, the Cooper pairs are loosely bound and are easily broken by a
moving object. In this regime, the critical velocity is vc ’ D=pF , where
D is the excitation gap and pF is the Fermi momentum. The existence
of these two excitation branches leads to a maximum of Landau criti-
cal velocity close to the unitary limit that was experimentally observed
by stirring an optical potential in the cloud.634,636

Recent experiments on atomic mixtures have raised the question
of the onset of dissipation in two counterflowing superfluids.626,628,636

Experiments on dual Bose–Fermi superfluids revealed the existence of
a critical velocity which was later on interpreted as an extension of
Landau’s seminal argument similar to parametric down-conversion in
quantum optics. In this scenario, the relative motion of the two super-
fluids can excite pairs of excitations in the superfluids.627,637–639 This
modifies the expression of the critical velocity, which is equal to the
sum of the sound velocities of the two superfluids when phonons limit
superfluidity, a prediction that agrees with experimental measure-
ments628 performed on mixtures of 6Li and 7Li.

Let us conclude this subsection by stressing some of the hypothe-
ses underlying Landau’s scenario. First, as mentioned earlier, the iden-
tification of Landau critical velocity in the phonon sector with sound
velocity assumes that the dispersion relation is convex. Although this
is true for bosons in free space, this is no longer the case for fermions,
for which the coupling with the broken-pair particle–hole continuum
bends the dispersion relation downwards.640 Likewise, the presence of
a transverse trapping in experiments leads to a reduction of the critical
velocity due to an inversion of the concavity of the dispersion relation
at large momenta, a feature first pointed out in weakly interacting
Bose–Einstein condensates641,642 and recently generalized to arbitrary
hydrodynamic superfluids.643 Second, Landau’s argument assumes
that the velocity of the moving disturbance is constant, while in experi-
ments, the motion of the disturbing potential is usually oscillatory to
account for the finite size of the system. By analogy with an accelerated
electric charge that radiates electromagnetic wave at an arbitrary
small velocity, Landau critical velocity is suppressed for accelerated
disturbances.644 Finally, as initially proposed by Feynman and
Onsager645,646 topological defects, such as quantized vortices, are
responsible for the onset of dissipation for stronger disturbances.495

2. Josephson currents

The Josephson effect represents a quintessential manifestation of
macroscopic quantum phase coherence, stemming from spontaneous
symmetry breaking in superfluid states. A so-called Josephson junction
is typically created by weakly coupling two superfluid order parame-
ters through a thin insulating barrier. In the solid state, this is achieved
by separating two superconductors with a nanometer-sized insulating
layer. Josephson first predicted that a dissipationless supercurrent
Is ¼ Ic sin ðuÞ should flow across a tunnel junction in the absence of
an applied voltage, associated with the coherent tunneling of Cooper
pairs and sustained only by the relative phase u between the two order
parameters. The maximum value Ic of the supercurrent is coined by
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the Josephson critical current, and it is directly related to the strength
of the tunnel coupling between the two order parameters within the
insulating barrier. The measurement of Ic provides a powerful probing
tool offering fundamental insights into the microscopic properties of
the involved superfluid states and their robustness against dissipation.
For example, for BCS superconductors, Ic is directly related to the
order-parameter amplitude, i.e., the gap jDj, by the Ambegaokar–
Baratoff relation. For applied currents above Ic, the junction enters a
resistive regime, where a nonzero stationary conductance arises from
dissipative excitation processes and a finite electro-chemical potential
response is generated across the junction.

Experimental studies with atomic superfluids have so far mainly
targeted coherent transport in BECs with various geometries and opti-
cally engineered weak links.12,16,67,391,428,448,604,647 On the other hand,
the study of supercurrents between weakly coupled superfluid Fermi
gases is of high relevance from both the fundamental and the practical
point of view,430,648,649 since transport therein is crucially influenced
and complicated by strong interparticle interactions and their interplay
with fermionic statistics. Only recently, dc Josephson supercurrents
have been observed in strongly interacting Fermi gases close to a
Feshbach resonance (Fig. 57).33 Reminiscent of the behavior of the
Landau critical velocity across the BCS-BEC crossover,622 the
Josephson critical current was found to exhibit a pronounced maxi-
mum around unitarity, resulting from opposite variations of the chemi-
cal potential and the pair condensate fraction, the latter playing the role
of the order-parameter amplitude throughout the crossover.33 First
experimental investigations of the Josephson effect in quasi-two-
dimensional fermionic condensates have also been reported recently,
providing information on the connection between condensation and
the Berezinskii–Kosterlitz–Thouless superfluid transition.96 Moreover,
experiments showed the breakdown of coherent Josephson transport to
be accompanied by the nucleation of topological defects generated
above critical flows by the barrier constriction and subsequently emit-
ted into the superfluid bulk.437,438 More efforts will be necessary to
shed light on the precise mechanisms underlying dissipation in
Josephson junctions between crossover Fermi superfluids, and on the
interplay of bosonic and fermionic excitation mechanisms, correspond-
ing to the Bogoliubov–Anderson and pair-breaking excitation branches
observed for an obstacle moving through the superfluid.495,633–635 Such
explorations will be essential for our understanding of dissipative trans-
port in highly correlated fermionic systems and for extending the appli-
cations of the Josephson effect to emerging atomtronic devices.

B. Fermionic transport in mesoscopic channels

Mesoscopic devices refer to small-size systems whose transport
properties are influenced by the quantum nature of matter. For exam-
ple, the conductance of a narrow constriction becomes quantized
when its width is comparable to the de Broglie wavelength of the
particles traversing it. Initially demonstrated with electrons in semi-
conducting nanostructures,650 mesoscopic transport can be naturally
extended to fermionic atoms.

As quantum gases have to be particularly shielded from environ-
mental perturbations, they are intrinsically closed systems, which is
both a blessing and a complication to study mesoscopic transport phe-
nomena. On the one hand, the relaxation of thermodynamical quanti-
ties involved in transport such as momentum or spin mostly depend
on interparticle interactions, which can be tuned for instance via

Feshbach resonances. On the other hand, real-life transport measure-
ments with electrons imply connecting macroscopic leads acting as
particle and heat baths to a smaller system of interest, usually treated as
a grand canonical ensemble. With quantum gases, such a paradigm for
transport requires partitioning the isolated system into a mesoscopic
conductor and two or more macroscopic reservoirs that thermalize fast
enough compared to the transport timescales to be considered in ther-
modynamical equilibrium. Cold-atom realizations close to such multi-
terminal setups include single and multiple Josephson junction arrays
of trapped BECs,448,651 weak links in ring traps,16,161 and planar junc-
tions between two fermionic superfluids.33,430,437

FIG. 57. Realization of a current-biased Josephson junction between ultracold fermi-
onic superfluids. (a) Two superfluid reservoirs (L, left; R, right) of 6Li fermion pairs
are weakly coupled through a thin optical repulsive barrier created using a DMD.
An external current Iext is imposed by translating the tunneling barrier at a constant
velocity v. Pair transport is tracked by recording the relative imbalance z
¼ ðNR � NLÞ=ðNR þ NLÞ through in-situ absorption imaging, while the order-
parameter relative phase / is revealed through matter-wave interference. (b)
Experimental current-imbalance characteristic, and (c) current-phase relation IðuÞ
for a crossover Fermi gas on the BEC side of the Feshbach resonance. The solid
line denotes the fit to a resistively-shunted Josephson junction circuit model, while
the shaded vertical lines indicate the extracted Ic. Reprinted with permission from
Kwon et al., Science 369, 84 (2020). Copyright 2020, AAAS.
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By reducing the dimensionality of the mesoscopic region, the
atomic equivalent of quantum point contacts has been realized, dis-
playing quantized conductance.652 Starting from this two-terminal
configuration, more complex structures can be engineered by projec-
ting arbitrary light potentials via holographic techniques.95 Recently,
this technique allowed to investigate the insulating properties of a
mesoscopic lattice imprinted site by site within a quantum wire,653 vis-
ible as a suppression of conductance at Fermi energies located in the
lattice band gap [Figs. 58(a) and 58(b)]. Strikingly, this insulating
behavior persists as attractive interactions are increased to the point
where reservoirs become superfluid. The robustness of the fermionic
character of transport can be attributed to the existence of a
Luther–Emery liquid,654 a strongly correlated phase of matter distinc-
tive of the 1D character of the channel. In a more recent set of experi-
ments, optical control in atomic point contacts was extended to spin
by using light tuned close to atomic resonance to create local effective
Zeeman shifts [Fig. 58(c)]. This leads to the realization of an ideal spin
filter with cold atoms, one of the most fundamental spintronic devi-
ces.655 In the presence of weak interactions, near-resonant light scat-
tering can be entirely accounted for by including losses in a
Landauer–B€uttiker model.656 Such a progress toward spin-dependent
transport opens avenues for exploring the transport dynamics of
strongly correlated heterostructures, where novel nonequilibrium spin
and heat transport657,658 and exotic phases of matter659 could be
observed.

C. Fast spin drag in normal Fermi gases

Spin drag is a ubiquitous concept in many branches of physics. It
is usually associated with interaction effects that affect the Euler equa-
tion for the spin current. Spin drag can be of collisional nature, giving

rise to spin diffusion since collisions do not conserve the spin current,
or of collisionless nature, being at the origin of nondissipative dynam-
ics.660–667 Experiments on transverse spin diffusion663 (Leggett–Rice
effect) in an ultracold Fermi gas along the BCS-BEC crossover have
allowed for the determination of the relevant combination G0 � G1=3
of the spin parameters of Landau theory of Fermi liquids. In particular,
the parameter G1 accounts for the strength of spin–current interac-
tions. Spin drag can also be due to the modification of the equation of
continuity in the spin channel caused by interactions and yielding a
violation of the corresponding f-sum rule. An example of such a spin
drag behavior of collisionless nature (hereafter called “fast spin drag”)
takes place in the Andreev–Bashkin effect caused by quantum fluctua-
tions in a mixture of two interacting superfluids.668,669 This effect is
very tiny and difficult to observe in dilute Bose gases, unless one con-
siders one-dimensional configurations670 or quantum gases in an opti-
cal lattice.669 In the following, we will discuss some consequences of
fast spin drag in a normal (nonsuperfluid) interacting mixture of two
Fermi gases, where the effect can be sizable and hopefully measurable.
Other nontrivial examples examples of fast spin drag concern the
dynamical behavior of coherently coupled Bose–Einstein condensed
mixtures.

To investigate the phenomenon of fast spin drag, it is convenient
to consider an external perturbation of the form Hpert ¼ �kf ðrÞHðtÞ
applied to the system, where HðtÞ is the usual Heaviside step function
(equal to 0 for t< 0 and 1 for t> 0) and the function f ðrÞ character-
izes the nature of the perturbation, while k is its strength. For example,
in an ultracold atomic gas, a convenient choice is f ðrÞ ¼ x, corre-
sponding to a boost generated by an optical potential. If the perturba-
tion is equally applied to both components of the mixture, the velocity
acquired by the system is given, for short times, by vx ¼ kt=m, where

FIG. 58. Studying mesoscopic transport with ultracold fermions. (a) A degenerate Fermi gas of lithium-6 atoms is shaped using repulsive light potentials into a one-dimensional
channel smoothly connected to two macroscopic reservoirs. Spatial light modulation techniques combined with high-resolution optics allow to imprint additional structures to
the 1D channel, such as a lattice of variable length. (b) For weak interactions, the current through the lattice is proportional to applied bias and particle transport is captured by
a linear conductance coefficient. Conductance shows a local minimum as a function of the overall chemical potential, indicating the emergence of a band gap when approach-
ing the infinite lattice limit. (c) Spin-dependent quantized conductance in the presence of a near-resonant obstacle focused on the 1D channel, realizing the cold-atom equiva-
lent of a spin filter. Panels (a) and (b) reprinted with permission from Lebrat et al., Phys. Rev. X 8, 011053 (2018). Copyright 2018, American Physical Society. Panel (c)
reprinted with permission from Lebrat et al., Phys. Rev. Lett. 123, 193605 (2019). Copyright 2019, American Physical Society.
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m is the atomic mass, and we have set �h ¼ 1. A more interesting sce-
nario occurs when the perturbation is applied in a selective way only
to one component (hereafter called component 1). In this case, the
velocities acquired by the two components will be different, and for
short times, they can be easily calculated starting from the many-body
wave function of the system which, in the presence of a fast perturba-
tion, takes the form WðtÞ ¼ exp ½iktx1 � iHt�W0 with x1 being the
center-of-mass operator relative to the first component. The velocities
acquired by the two components are then given by

v1 ¼
d
dt
hx1i ¼ 2kth x1; H; x1½ �½ �i=N ¼ ktðmn

1 þms
1Þ=N; (99)

v2 ¼
d
dt
hx2i ¼ 2kth x1; H; x2½ �½ �i=N ¼ ktðmn

1 �ms
1Þ=N; (100)

where N is the total number of particles and we have expressed the
double commutators as proper combinations of the energy-weighted
moments mn

1 ¼
Ð

dxxSðx1þx2;xÞ and ms
1¼
Ð

dxxSðx1�x2;xÞ of
the dynamic structure factors relative, respectively, to the in-phase
(x1þx2) and out-of-phase (x1�x2) operators.

In the absence of current interactions, only component 1 will feel
the external kick. In fact, in this case, the commutator ½H; x2� com-
mutes with x1 being uniquely fixed by the kinetic energy term in the
Hamiltonian and, consequently, v2 ¼ 0 and mn

1 ¼ ms
1. While the in-

phase energy-weighted moment mn
1 is given by the model-

independent f-sum rule mn
1 ¼ N=2m, as a consequence of Galilean

invariance, the out-of-phase moment is instead sensitive to the pres-
ence of spin-current interactions,671 and in uniform matter, it takes
the value

ms
1 ¼ N

1
2m�
ð1þ G1=3Þ; (101)

where m� ¼ mð1þ F1=3Þ is the effective mass of quasi-particles fixed
by the Landau’s parameter F1 accounting for density–current interac-
tions and determining the low-temperature behavior of the specific
heat,672 while G1 is the spin–current interaction parameter. Result
[Eq. (101)] reflects the fact that particle-hole excitations, properly
accounted for by Landau’s theory of Fermi liquids, do not exhaust the
f-sum rule, multipair excitations playing a crucial role in providing the
remaining difference. The spin energy-weighted sum rule [Eq. (101)]
was actually employed673 to estimate the average multipair excitation
energy in liquid 3He.

The violation of the f-sum rule in the spin channel is responsible
for the spin drag effect in a normal Fermi liquid, which, according to
Eqs. (99)–(100), takes the form

v2

v1
¼ ðF1 � G1Þ=3

2þ ðF1 þ G1Þ=3
; (102)

revealing that the drag effect (v2 6¼ 0) vanishes only if the Landau param-
eters F1 and G1 are equal. In a dilute Fermi gas the values of the Landau’s
parameters are available in both three674,675 and two dimensions,676 using
second-order perturbation theory. For example, in 3D, one has

F1 ¼
8

5p2
ð7 ln 2� 1ÞðkF aÞ2; G1 ¼ �

8
5p2
ð2þ ln 2ÞðkF aÞ2; (103)

showing explicitly that fast spin drag is quadratic in the dimensionless
parameter kFa, where a is the s-wave scattering length and kF is the

Fermi wave vector. Similarly to the Andreev–Bashkin effect in inter-
acting superfluids,668,669 the fast spin drag exhibited by a normal
Fermi gas has consequently a typical beyond-mean-field nature.

The applicability of Landau theory of Fermi liquids, yielding
result (102) for the fast spin drag, holds for temperatures much smaller
than the Fermi temperature TF. At the same time, the temperatures
should be higher than the critical temperature for superfluidity. These
conditions can be well experimentally satisfied in the BCS regime of
small and negative scattering lengths. For larger values of kF jaj, when
the system approaches the unitary regime, its applicability is instead
questionable because the superfluid critical temperature is of the order
of the Fermi temperature. The experimental determination of the fast
spin drag effect along the BEC-BCS crossover would then complement
the measurements of the Leggett–Rice effect,663 providing a crucial test
of Landau’s theory and stimulating further theoretical work on spin
transport phenomena.

D. Concluding remarks and outlook

The investigation of transport and dissipation in Fermi gases has
only started recently, and many new directions are already emerging.
The available light-shaping techniques allow, in principle, for complex
geometries to be investigated.7,59 A particularly appealing situation is
the ring trap, which has been successfully explored for weakly interact-
ing bosons.390 Complex geometries are accessible using the concept of
synthetic dimensions,677 where multiterminal geometries are naturally
arising from two physical terminals.621 Transport of correlated fer-
mions in optical lattices has started recently in bulk lattice systems
with promising results on the quantum simulation of the Hubbard
model.666,678,679

The intrinsically low energy scales also implies that currents are
weak: translated into electronic scales, the typical currents of fermionic
particles in a single mode conductor amounts to fractions of femto-
amperes. Reaching a signal-to-noise ratio comparable with that
achieved in the condensed matter context, which would allow for a
direct validation of a quantum simulation approach to transport, calls
thus for new methods of detection. A practical route is the combina-
tion of existing transport systems with single atom sensitive methods
that have been demonstrated already, such as fluorescence based
counting680–682 or quantum-gas microscopy.683 These methods pro-
vide ultimate sensitivity, but still suffer from the technical effects of
sample-to-sample preparation noise that scales unfavorably with the
number of particles. Ultimately, the limit to signal-to-noise is set by
measurement back-action. Achieving this limit would then allow for
the reconstruction of the full counting statistics of transport process.
Several schemes interfacing atoms with photons in a cavity allow, in
principle, to achieve this limit either in the lattice context684 or for the
two-terminal configuration,685 and experiments directed at imple-
menting such methods have already started.

The physics of complex atomtronics devices featuring Fermi
gases with strong interactions opens many possibilities, also of interest
in the condensed matter community at large. An overarching goal is
the manipulation of topological superfluids,686 such as p-wave super-
fluids or Kitaev chains,687 which would provide an avenue to study
topological protection of quantum information, thus guiding the
development of topological quantum computers.
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XII. TRANSPORT IN BOSONIC CIRCUITS

T. Haug, R. Dumke, L.-C. Kwek, W. von Klitzing,
L. Amico

Atomtronics opens up a new approach to study fundamental
problems of transport of quantum matter in various settings with
widely different light-controlled atomic circuits.4 Of particular interest
is transport generated by attaching a circuit to reservoirs that induce a
directed current through the system. Transport between atomic reser-
voirs has been studied to realize fundamental condensed matter sys-
tems.498,629,649,652 Furthermore, precise control of the light potentials
allows one to transport bosonic fluids at hypersonic speeds in ring cir-
cuits117,128 and in a coherence preserving manner.688 Often these basic
atomic circuits can be understood by using a simplified lumped ele-
ment model that relies only on a few elements.29 From there, larger
circuits composed of many basic circuits could be constructed to real-
ize large scale atomtronic networks. To this end, there is a considerable
interest in understanding the transport through basic circuit elements.

Recent studies investigated the transport and dynamics in other
circuits like rings and Y-junctions.118,689–693 These systems have been
well studied in electronic setups. Surprising differences arise with
bosonic atoms instead of fermionic electrons: Andreev reflections,
known from superconductor–metal interfaces, can also occur at the
interface of two bosonic condensates: If the density wave excitation in
a one-dimensional condensate is transmitted from the first to second
condensate, a hole (an excitation with negative amplitude) is reflected
back into the first condensate.690,694–697 For ring circuits,
Aharonov–Bohm oscillations occur in the current for electronic sys-
tems when an a magnetic field is applied to the ring.698 For bosonic
rings, this Aharonov–Bohm effect does not occur.700,715 As a first step
to observe this effect in cold atoms, a recent experiment demonstrated
nonreciprocal transport mediated by artificial magnetic fields in closed
loops.699 Transport can also be achieved by driving the system param-
eter in time. Here, topological pumping has been shown to be a robust
way to generate transport.702,719 Here, the circuit parameters are
driven periodically in time such that a directed transport arises, which
is protected by topological features of the system.702–704 For ring sys-
tems with applied flux, the transmission becomes fractional in atom
number, and highly entangled states can be generated in the pro-
cess.691 This promises important applications in quantum-enhanced
sensing and quantum information.

First, we discuss recent advances in matter-waveguides, which
allow one to transport cold atoms over long distances (see Sec. XII and
Fig. 59). Then, we review the transport in two elemental Atomtronic
circuits (see Fig. 60): A ring attached to leads (see Figs. 61–63) and a
Y-junction (see Figs. 64 and 65). We investigate different limits:
Atoms prepared in a nonequilibrium initial state with all atoms on
one side of the system. Second, density wave excitations that propagate
through a system filled with atoms. Finally, we also shortly mention
topological pumping of atoms in atomtronic circuits (see Fig. 66).

A. Matterwave guides

A perfect waveguide allows the guided wave to travel undisturbed
over any distance. In practice, there are always imperfections such as
absorption and spatial variations of the guiding potential. For matter-
wave guides based on electro-magnetic potentials, absorption plays no

role. In most cases, the shapes of the guiding potentials are defined
either by a physical structure such as wires in the case of magnetic
potentials or by light-fields in the case of dipole traps. Examples
include, imperfections in the shapes of the wire,106 the grain size of the
copper705 and for the dipole finite amplitude control,32 diffraction and
speckles. There are a number of solutions to reduce the impact of the
imperfections of magnetic waveguides, such as improved manufactur-
ing techniques and periodic current reversal.106 Optical techniques
employ feedback to image the potential using cold atoms and then
correct the imperfections in a feedback loop.32 Nevertheless, since
some level of imperfection in the magnetic wire structure or in the
dipole imaging system is unavoidable, waveguides created by artificial
structures will always have a certain degree of roughness.

The effect of these imperfections is characterized by the spatial
wavelength k and amplitude a(k) of the modulation of the waveguide
potential: A tighter bend will have a stronger effect than a very smooth
one. For optical traps, this strength can be calculated directly by esti-
mating the level of control one has over the optical potential, e.g., by
imaging the speckles or by estimating the noise level in the feedback to
the shape of the waveguide. In the case of magnetic waveguides, the
variation of the potential can be imaging the break-up of a
Bose–Einstein condensate, which is brought close to the wires. An
absolute scale can be established from the resulting images via chemi-
cal potential of the BEC.

FIG. 59. Possible configurations for coupling of a TAAP ring (blue) to an optical
guide potential (red). In all cases the atoms are in a magnetically or rotational sensi-
tive state in the TAAP potential, which is then coupled to a magnetically or rotational
nonselective state by tunnel coupling or a spatially selective microwave transition.
(a) symmetric ring-lead system, (b) asymmetric ring-lead system. c) tangential con-
figuration, where dipole is coupled to only one direction of rotation in the ring. (d)
TAAP ring coupler between two dipole wave guides. Note that in (a) and (b) the
coupling on the two sides of the ring can be individually tuned.

FIG. 60. (a) General transport setup, composed of a source, system and drain.
Atoms flow from source, via the system to drain. The current flowing through the
system is the quantity of interest, that reveals fundamental features of the system.
Specific examples of this kind of setup studied here are a (b) ring-leads system or
a (c) Y-junction.

AVS Quantum Science ROADMAP scitation.org/journal/aqs

AVS Quantum Sci. 3, 039201 (2021); doi: 10.1116/5.0026178 3, 039201-72

VC Author(s) 2021

https://scitation.org/journal/aqs


Increasing the distance between the atoms and the current-
carrying conductor and decreasing the transverse trapping frequency
reduce the roughness of the waveguide. For distances (d) from the
waveguide much larger than the characteristic wavelength ðkÞ, this
reduction (K) in roughness can be estimated as a function of the spa-
tial frequency ðk ¼ 2p=kÞ as705

Kðd; kÞ ¼ ðkdÞ�1=2e�kd: (104)

By increasing d, it was possible to observe interference fringes between
two condensates after propagating them on a magnetic atomchip
waveguide for up to 120 lm, albeit reducing the transverse trapping
frequency from the kilohertz level down to x? ¼ 2p � 120 Hz.706 If no
propagation is required, even spatially modulated waveguides can
exhibit robust coherence.183

Very smooth optical dipole matterwave guides can be achieved
by weakly focusing a laser beam and taking care to avoid laser speckles.
If the imaging system is Fourier limited, then it cannot produce any
structure smaller than the focus, resulting in a perfectly smooth wave-
guide. By the same token, however, no structure other than a simple
linear waveguide can be produced by this method.

A different approach has been recently demonstrated, where the
shape of a ring-shaped waveguide is defined by modifying a simple
DC quadrupole field using only homogeneous audio-frequency and
radio-frequency fields.117 In the so-called time-averaged adiabatic
potentials, the radial and vertical confinement is limited to a ring and
the maximum spatial azimuthal frequency that can be addressed is
/ ¼ 4p. Since the field generating magnets only have to produce
homogeneous and quadrupole fields, they can be far away. Equation
(104) predicts a reduction of the field modulations down to a factor
10�138 of their strength at the magnets, thus practically eliminating
them. This has made it possible to propagate Bose–Einstein conden-
sates over distances of more than 10 cm without causing any addi-
tional heating.

FIG. 62. Current through the Aharonov–Bohm ring. (a)–(c) Evolution of source and
drain current toward the steady state with DMRG (solid line) and Lindblad formalism
(dashed) for hard-core bosons, K¼ 1 and LR ¼ 10. For DMRG, both reservoirs
and ring are solved with Schr€odinger equation as a closed system. Source and
drain are modeled as chains of hard-core bosons with equal length LS ¼ LD ¼ 30.
Initially, the source is prepared at half-filling (Np ¼ 15) in its ground state (ring and
drain are empty) decoupled from the ring [Kðt ¼ 0Þ ¼ 0]. For t> 0, the coupling is
suddenly switched on [Kðt > 0Þ ¼ J]. This setting creates highly nonequilibrium
dynamics. Due to numerical limitations, we analyze the short-time dynamics. For
the open system, the reservoirs obey Pauli-principle with r¼ 0.65 and C ¼ 1:5.
Reprinted with permission from Haug et al., Quantum Sci. Technol. 4, 045001
(2019). Copyright 2019, IOP Publishing Ltd. Reprinted with permission from Haug
et al., Phys. Rev. A 100, 041601 (2019). Copyright 2019, American Physical
Society.

FIG. 61. Time evolution of density in source (a) and (b), ring (c) and (d), and drain
(e) and (f) plotted against flux U. (a), (c), and (e) weak ring-lead coupling K=J
¼ 0:1 (on-site interaction U=J ¼ 5). (b), (d), and (f) strong ring-lead coupling
K=J ¼ 1 (U=J ¼ 0:2). Time is indicated tJ in units of inter-ring tunneling parame-
ter J. The number of ring sites is L¼ 14 with Np ¼ 4 particles initially in the source.
The density in the ring is nring ¼ 1� nsource � ndrain. Reprinted with permission
from Haug et al., Phys. Rev. A 100, 041601 (2019). Copyright 2019, American
Physical Society.

FIG. 63. Propagation of a small density excitation in a ring-lead system for hard-
core bosons and spinless fermions for zero and half-flux. Fermion transmission is
flux-dependent, while hard-core bosons are flux independent. The source and drain
lead has length LS ¼ LD ¼ 80 and the ring LR ¼ 40, the particle number N¼ 100,
strong coupling with K¼ J and eD ¼ 0:3J. The propagation of the density excita-
tion in time. The upper curves show the transmitted density wave into the drain
lead (integrated between site 130 and 135), and the lower curves the incoming and
reflected wave in the source lead (65 and 70). The background density is sub-
tracted. Curves stay constant in area shadowed by legend. Reprinted with permis-
sion from Haug et al., Quantum Sci. Technol. 4, 045001 (2019). Copyright 2019,
IOP Publishing Ltd.
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A very interesting perspective is to combine the TAAP rings with
optical potentials. The standard way to load atoms into the TAAP ring
is currently to transfer them from an optical dipole trap.117,118 Using
radio-frequency or microwaves, it would be possible to create a beam

splitter between the ring and the optical potential. This couples the
magnetically or rotational sensitive state in the ring to a magnetically
and rotational nonsensitive one in the optical guide. Possible configu-
rations would include, for example, a (a-)symmetric ring-lead system

FIG. 64. Propagation of small excitation in
a Y-junction for the hard-core boson
model. The source lead has length
LS ¼ 160, the drain lead each LD ¼ 50,
the particle number N¼ 130, initial dis-
tance of the excitation to the junction
d¼ 40 and eD ¼ 0:3J. The source lead is
from site 1 to 160, the first drain lead from
160 to 210, and the second one from site
210 to 260. The coupling at the junction
(site 160) is (a) K ¼ 1J, (b) K ¼ 0:5J, (c)
K ¼ 0:2J. (d) Current through the junction
[Eq. (108)] in time. (e) The propagation of
the density excitation in time. The upper
curves show the transmitted density wave
into the drain lead (integrated between
site 170 and 175), and the lower curves
the incoming and reflected wave in the
source lead (145 and 150). The back-
ground density is subtracted. For K ¼ 1J
(solid) we observe a negative reflection
(Andreev-like), K ¼ 0:5J (dashed) nearly
no reflection, K ¼ 0:2J (dots) a large pos-
itive reflection amplitude. Reprinted with
permission from Haug et al., Quantum
Sci. Technol. 4, 045001 (2019). Copyright
2019, IOP Publishing Ltd.

FIG. 65. Comparison between hard-core bosons and spinless fermions for the
transmission and reflection of a small density excitation in a Y-junction. Bosons
show clear negative Andreev-reflection (solid and dashed curve in center bottom),
in contrast to fermions. The source lead has length LS ¼ 160, the drain lead each
LD ¼ 50, the particle number N¼ 130, d¼ 40, K¼ J, initial half-filling and
eD ¼ 0:3J. The propagation of the density excitation in time. The upper curves

FIG. 66. Numerical simulation of fidelity of creating a NOON-like entangled state by
pumping N particles through a simplified ring-lead system of three lattice sites (see
the text). N particles are placed initially in the source lead, then pumping is switched
on, which transport particles into the ring. Then, fidelity of creating a NOON state
(particles are in an entangled state of being in either of the two paths of the ring).
Fidelity is plotted against interaction U in units of intersite hopping J. Reprinted with
permission from Haug et al., Commun. Phys. 2, 127 (2019). Copyright 2019,
Author(s) licensed under a Creative Commons Attribution 4.0 License.
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[Figs. 59(a) and 59(b)], a dipole guide coupled tangentially to the ring
[Fig. 59(c)]. Since the diameter of TAAP rings and, therefore, their res-
onant angular momentum is easily tuned, they could act as a velocity-
selective resonator. The waveguide could be used to read out the rota-
tional state of the ring.707 Finally, as shown in Fig. 59(d), one could use
a TAAP ring to couple two dipole waveguides to each other in a veloc-
ity selective fashion, much like wavelength selective multiplexing using
tunable whispering gallery resonators.708,709

B. Ring-leads system

A widely studied system within mesoscopic physics are rings
attached to leads with an applied magnetic field.698,710 This system fea-
tures the Aharonov–Bohm effect, where currents through the ring can
be modulated with an applied magnetic field. While extensively stud-
ied for fermions such as electrons, it is not well understood for bosonic
type of systems. Atomtronic setups allow for the study of these types
of systems in a controlled way for the first time. A theoretical study
has been performed in Refs. 690 and 690, which is reviewed in this sec-
tion. Atomtronic setups for transport can be modeled using the
Bose–Hubbard model.125 Here, circuits of ring-leads or Y-junctions as
seen in Fig. 60 are modeled as a lattice system. For example, for the
ring-leads system, the three individual components (source lead, ring,
and drain) are each modeled as one-dimensional chains with nearest-
neighbor tunneling interactions. The different components are then
coupled together via tunneling at specific lattice sites. A ring with an
even number of lattice sites L coupled to two leads [see Fig. 60(b)] is
given by the Hamiltonian H ¼Hr þHl. The ring part of the
Hamiltonian is given by

Hr ¼ �
XL�1

j¼0

Jei2pU=Lâ†
j âjþ1 þ h:c:

� 
þ U

2

XL�1

j¼0

n̂jðn̂j � 1Þ; (105)

where âj and â†
j are the annihilation and creation operator at site j,

n̂j ¼ â†
j âj is the particle number operator, J is the intra-ring hopping,

U is the on-site interaction between particles, and U is the total flux
through the ring. Periodic boundary conditions are applied: â†

L ¼ â†
0.

The two leads dubbed source (S) and drain (D) consist of a single site
each, which are coupled symmetrically at opposite sites to the ring
with coupling strength K. In both of them, local potential energy and
on-site interaction are set to zero as the leads are considered to be large
with low atom density. The lead Hamiltonian is Hl ¼ �Kðâ†

Sâ0

þâ†
DâL=2 þ h:c:Þ, where â†

S and â†
D are the creation operators of

source and drain, respectively.
The dynamics of transport within this system in various settings

is discussed in Refs. 689 and 690, which we now review. A way to
probe transport was studied in the case where the source and drain
consist of only one lattice site each. Here, the atoms are initially pre-
pared in the source with the ring and drain being empty of atoms.
During the time evolution, the atoms flow out of the source lead and
propagate via the ring to the drain. In the weak-coupling regime
K=J � 1, the lead-ring tunneling is slow compared to the dynamics
inside the ring [see Figs. 59(a), 59(c), and 59(e)]. In this regime, the
condensate mostly populates the drain and source, leaving the ring
nearly empty. As a result, the scattering due to the on-site interaction
U has a negligible influence on the dynamics. With increasing flux U,
the oscillation becomes faster and the ring populates, resulting in

increased scattering and washed-out density oscillations. In the
strong-coupling regime K=J � 1, the lead-ring and the intraring
dynamics are characterized by the same frequency and cannot be
treated separately. Here, a superposition of many oscillation frequen-
cies appears, and after a short time, the condensate is evenly spread in
both leads and ring [Figs. 59(b), 59(d), and 59(f)]. The density in the
ring is large and scattering affects the dynamics by washing out the
oscillations. Close to U ¼ 0:5, the oscillations slow down, especially
for weak interaction, due to destructive interference.711

The authors also studied the dynamics for the case where the
source and drain leads consists of many sites, probing the regime of
many atoms in an extended system. Here, the large source lead is filled
with atoms and then suddenly coupled to the ring to generate the
dynamics. The authors model this in two ways: In the first case, they
solve the full dynamics of leads and ring using DMRG.712,713 Then,
they study an approximate method, where the leads are approximated
as a large bath and are traced out. The resulting dynamics is described
using the Lindblad master equation,

@q
@t
¼ � i

�h
H;q½ � � 1

2

X
m

L̂
†
mL̂m;q

n o
þ
X

m

L̂mqL̂
†
m;

for the reduced density matrix714 within the Born–Markov approxi-
mation with L1 ¼

ffiffiffiffi
C
p

â†
S; L2 ¼

ffiffiffiffiffiffi
rC
p

âS, and L3 ¼
ffiffiffiffi
C
p

âD (r charac-
terizes the back-tunneling into the source reservoir). Then, the steady
state of the density matrix is solved @qSS=@t ¼ 0.715 The operator for
the current is j ¼ �iKðâ†

S â0 � â†
0âSÞ, and its expectation value is hji

¼ TrðjqSSÞ. In Figs. 62(a)–62(c), the authors compare the open system
Lindblad approach with a full simulation of both ring and reservoirs
using DMRG.712,713 Both methods yield similar results with the
Lindblad approximation smoothing out the oscillation found in
DMRG. This shows that leads modeled as Markovian bath without
memory are sufficient to describe the dynamics. Further, they investi-
gate the evolution of the current toward the steady-state. They find
that the initial dynamics depends on the flux, which is a sign of the
Aharonov–Bohm effect being initially present. However, the steady-
state reached after long times is nearly independent of flux, demon-
strating the absence of the Aharonov–Bohm effect in the steady state
for interacting bosons.

C. Y-junctions

The Y-junction is a system consisting of three one-dimensional
chains, which are coupled together at a single point [see Fig. 60(c)].
They have been of wide interest in mesoscopic physics for electronic
type systems.716 For cold atoms, such systems have been proposed and
realized experimentally.28,152,155,717–719 In Ref. 690, the authors studied
theoretically the dynamics of density wave excitations that are trans-
mitted and reflected in a cold atom Y-junction. They are interested in
how the system evolves for varying the coupling strength of the Y-
junction. They find characteristic regimes of transmission and
reflections.

The Hamiltonian for the Y-junction is HS þHD þHI with
the source lead Hamiltonian (analog for the two drain leads),

HS ¼ �
XLS�1

j¼1

J ŝ†
j ŝ jþ1 þ h:c:

� 
þ
XLS

j¼1

U
2

n̂s
jðn̂s

j � 1Þ; (106)
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where ŝ j and ŝ†
j are the annihilation and creation operators at site j in

the source lead, n̂s
j ¼ ŝ†

j ŝ j is the particle number operator of the
source, J is the intra-lead hopping, LS is the number of source lead
sites, and U is the on-site interaction between particles. All units are
rescaled in terms of the hopping term J. The Hamiltonian HD for the
two drain leads have similar Hamiltonians, where one replaces the
index s with respective d (for first drain) and f (second drain) and
defines the drain length LD. The coupling Hamiltonian between the
source lead and the two drain leads is

HI ¼ �Kŝ†
1 d̂1 þ f̂ 1

� 
þ h:c:; (107)

where K is the coupling strength between source and drain leads. The
current through the Y-junction is defined as

jY ¼ �iKŝ†
0d̂0 þ h:c: (108)

To study the propagation of a density excitation through the
setup, the authors prepare the system in the ground state of the full
Hamiltonian with initially a small local potential offset in the lead
Hamiltonian. This will create a localized density bump in the source
lead. Then, they add the following Hamiltonian for the offset potential
to the source Hamiltonian,

HP ¼ �eD

XLS

j¼1

exp �ðj� dÞ2

2r2

� �
n̂s

j ; (109)

where d is the distance of the initial excitation to the junction. At the
start of the time evolution, the offset potential is instantaneously
switched off. The density bump will propagate as a density excitation
in both positive and negative direction, where here only the forward
direction is regarded.

The authors develop a method to calculate the amount of trans-
mitted and reflected density waves. They calculate the total density of
the incoming wave by taking the first a sites of the source lead at a spe-
cific time tin when the density waves has entered this region, and sub-
tracting from it the density at time t¼ 0 before the wave has entered
the region,

Ninc ¼
X

i2a sites of source

niðtinÞ � nið0Þ½ �: (110)

Here, niðtÞ is the expectation value of the density at the i-th site of the
system at time t. The transmission coefficient is found by dividing the
change in the atom number in the drain density by the total density of
the incoming wave

T ¼

X
i2drain

niðtÞ � nið0Þ½ �

Ninc
; (111)

and the reflection coefficient as

R ¼ 1� T: (112)

The limiting cases of the infinitely strong on-site interaction with
hard-core bosons are presented in Fig. 64. In Figs. 64(a) and 64(c), the
authors study the propagation for different values of lead coupling K.

In the source lead, an initial excitation is prepared as a small patch of
increased density. At t¼ 0, the potential offset is quenched, and the
excitation starts moving in the forward and backward directions. The
forward moving part of the wave propagates from the source through
the junction to the two drain leads. At the junction between the chains
(site 160 in the graph), the wave is both transmitted and reflected. For
the reflection amplitude, three characteristic reflection regimes are
found, which are controlled by the junction coupling K.

First, look at the reflection peak as seen in Fig. 64(e) at time
tJ ¼ 27. In the strong coupling regime K ¼ 1J , a negative (Andreev-
like) reflection amplitude peak is found. For the intermediate coupling
regime K � 0:5, the back reflection amplitude is very small, and the
reflected wave consists of a small, first positive and then negative part,
of nearly equal weight. Finally, for the weak coupling regime with K
small, a large positive back-reflection with small transmission is
found. In Table II, the total transmitted and reflected density at time
t ¼ 31=J is calculated using Eqs. (110)–(112). This gives the transmis-
sion and reflection coefficient of the density wave packet. For strong
coupling K ¼ 1J with Andreev reflections, the transmission coefficient
is nearly T � 4=3, which corresponds to the theoretical value pre-
dicted for a Y-junction in the limit of weak interaction, within the
Gross–Pitaevskii equation.715 In this regime, the transmission is larger
than the initial density wave, owing to the negative reflection
R � �1=3. Similar dynamics is also found also for finite interaction U
within the Bose–Hubbard model.690

D. Differences between fermions and hard-core boson

Bosons and fermions differ fundamentally in their particle
exchange relations: The bosonic many-body wavefunction is symmet-
ric, while fermions are antisymmetric under exchange of two particles.
As a result of these properties, the Pauli principle is enforced for fer-
mions: at a single site, only zero or one fermion can exist, while nonin-
teracting bosons do not have this restriction. However, for strongly
interacting bosons in the hard-core limit, only one hard-core bosons
can be at a single site, mimicking the Pauli principle, while maintain-
ing a symmetric many-body wavefunction. In one dimension, hard-
core bosons and fermions are equivalent and a mapping between
fermions and hard-core bosons exists; however, this is not the case
beyond one-dimensional systems. The effect of this feature on trans-
port has been studied numerically in detail in Ref. 690.

In a Y-junction with the same setup as in Sec. XII C, fermions
and hard-core bosons show fundamentally different types of reflection
behavior. Figure 65 shows the density wave for transmission and
reflection for both types of particles. Hard-core bosons show a clear
Andreev-reflection with negative reflection, while spinless fermions
do not.

Similar differences arise in the ring-lead system. In a half-filled
system, a density wave is excited similar to procedure detailed earlier

TABLE II. Transmission and reflection coefficients calculated at t ¼ 31=J with Eqs.
(110)–(112) (tin ¼ 15, a¼ 30).

K¼ 1 K¼ 0.5 K¼ 0.2

Transmission 1.332 0.947 0.207
reflection –0.332 0.053 0.793
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introduced in Sec. XII C. The reflected and transmitted density wave
for zero and half-flux is shown in Fig. 63. First, the authors study the
properties of the reflected density wave. For zero flux, the reflected
density wave is different for fermions and bosons. For hard-core
bosons, the same characteristic Andreev-like negative reflection peak
as seen in the strongly coupled Y-junction. However, the reflection
dynamics for hard-core bosons is flux independent. Now, observe the
transmission (upper curve). Spinless fermions become flux dependent.
Here, the fermionic density waves are transmitted for zero flux, while
at half-flux, zero transmission is observed due to Aharonov–Bohm
interference. However, for hard-core bosons, the transmission is unaf-
fected by flux. This is again demonstrating the absence of the
Aharonov–Bohm effect for bosons. In short, density excitations for
fermions show the Aharonov-Bohm effect, while for interacting
bosons, the Aharonov–Bohm effect is absent.

E. Entangled state generation with topological
pumping in ring circuits

Directed transport can be also engineered by periodically driving
a system. Here, topological pumping, pioneered by Thouless,700,701

can transport excitations with the added feature that the transport is
protected against noise and imperfections due to the topological prop-
erties of the system. This has been successfully demonstrated with cold
atoms.702,720 Topological pumping is realized adiabatically by driving
the parameters of Hamiltonians with topological features periodically
in time. This idea can be extended to interacting many-body sys-
tems.703,704 This type of driving can be extended to transport atoms
through ring-lead circuits as shown in Ref. 691 with a similar setup as
introduced for the ring-lead circuit (see Sec. XII B). To enable pump-
ing, a time-dependent and spatially varying local potential is added to
the system, which is modulated periodically. If engineered correctly, it
pumps atoms from the source lead, through the ring, into the drain.
For the exact details on the procedure, refer to Ref. 691.

Here, we will shortly review a key result of this study: Applying
topological pumping to ring-lead systems can be used to create highly
entangled quantum states. N atoms are initially placed in the source
lead. The pumping is switched on, and the pumping transfers particles
into the ring. At the junction of source lead and ring, two possible
directions along the ring open up: Either going along the top or bot-
tom path of the ring. Here, the Bose–Hubbard interaction term U can
lead to the creation of NOON-like superposition states, where N atoms
either go along either of the two paths [jWNOONi ¼ 1ffiffi

2
p j0i � ðjN0i

þj0NiÞ]. This concept can be exemplified by a simplified three site
system, consisting of a single source lead site, which is coupled
two other sites which represents a part of the ring. The fidelity
F ¼ jhWNOONjWij2 of the creation of the NOON like entangled state
is plotted in Fig. 66. For a particular set of parameters, NOON states
of up to six particles with nearly unit fidelity can be created. For more
particles or higher interaction, the fidelity decreases due to an expo-
nential suppression of the energy gap. This setup is a powerful method
to prepare and study highly entangled states of cold atoms.

F. Concluding remarks and outlook

Transport in quantum many-body systems is a fundamental
problem important for quantum information and condensed matter
physics. Cold atoms can be used to simulate these transport problems

in novel regimes that are difficult to realize within other setup. With
recent technologies, transport with nearly no heating can be achieved
by extremely smooth atom waveguides. Further, new regimes of trans-
port can be studied by attaching reservoirs of atoms to the system that
induce a current through the system. Studying the current can reveal
properties of the system that are hard to extract otherwise.

TAAP rings and engineered waveguides made of light allow con-
struction of atomic circuits that can transport cold atoms in various
configurations. Here, we reviewed the properties of two particular
atomic circuits that are enabled by this technology, namely, ring-lead
systems and Y-junctions.689,690 The current through these circuits
holds some surprises: Bosonic Y-junctions show Andreev-reflections,
known from fermionic superconductor-metal interfaces. By tuning the
coupling of the Y-junction, the type of reflection can be tuned between
regular (positive) and negative Andreev reflections. These Andreev
reflection are well known from electronic-superconducting interfaces,
as such it is surprising to observe them in a bosonic system as well. For
transport through ring-lead systems, the current for interacting bosons
is independent of flux and the Aharonov–Bohm effect is absent. This
is in stark contrast to fermionic systems, which are highly flux depen-
dent as shown in electronic systems. This difference allows one to
study the fundamental difference between fermions and bosons due to
their antisymmetric and symmetric many-body wavefunction in a
transport experiment, simply by studying the current of the system.
Finally, by changing the circuit potential in time, topological pumping
can be realized to transport atoms in a robust fashion and create highly
entangled states of NOON-type. These states could become very useful
for quantum-enhanced sensing as the sensitivity of NOON-states
increases linearly with the number of entangled particles. For example,
the NOON states could be applied to sense rotation. While the atoms
are pumped through the ring, they pick up a phase that is proportional
to the rotation affecting the ring times the number of atoms.

In a very interesting future direction transport through nonstan-
dard type Hubbard models could be investigated. These types of
Hubbard models feature higher order tunneling and interactions terms
that create novel effects and phases. These types of Hamiltonians can
nowadays be realized within cold atoms experiments.721

The proposed setups can be realized in state-of-the art experi-
ments with both bosonic and fermionic cold atoms. The confinement
for the atoms in the form of the circuits can be constructed using
DMDs or other light-based potential painting techniques, allowing for
arbitrary potential shapes and even time-dependent modulation of the
potential. While engineering more complex potentials and driving
protocols may be a time-consuming task for humans, new machine
learning methods could help us to engineer improved potentials and
cold atom dynamics automatically without human intervention.722

XIII. ARTIFICIAL QUANTUM MATTER IN LADDER
GEOMETRIES

V. Ahufinger, R. Citro, S. De Palo, A. Minguzzi,
J. Mompart, E. Orignac, N. Victorin

The fractional quantum Hall effect723,724 is a striking example of
the interplay of interaction and topology in condensed matter physics.
It is characterized by many fascinating properties such as a precise
quantization of the Hall resistance depending only on fundamental
constants, excitations carrying fractional charges with anyonic
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statistics, and dissipationless chiral edge modes. While the effect has
been initially observed with fermions, bosonic analogs have been pro-
posed by Regnault and Jolicoeur in rotating clouds of ultracold
atoms.725 Recently, the realization in experiments of artificial gauge
fields591,726–728 has opened another route for observing quantum Hall
phases with ultracold atoms. As a first step toward the realization of
quantum Hall phases with ultracold atoms, it is interesting to consider
the so called ladder systems,729–753 i.e., two dimensional systems that
are of finite size along one of the dimensions. Such a deceptively sim-
ple system is already sensitive to the effect of the applied flux and can
exhibit analogs of the quantum Hall phase.737,738,747 Moreover, it
shows a wealth of phases, emerging from interplay of rung and leg
tunnel, interactions, artificial gauge field, filling.732,733,737,751,752 For
bosonic atoms, in low flux, an analog of the Meissner phase is
obtained.729,730 At high flux, a quasi-long range ordered vortex phase
is formed.729,730 Interleg interactions can stabilize an atomic density
wave at intermediate flux.752,753 For a flux commensurate with the
density, the analog of QHE is found.737,738,747 At a different commen-
suration between flux and density, an incommensuration driven by
interchain hopping is obtained.750 Furthermore, a variant of the ladder
in the form of a diamond chain has topological properties419 and
allows one to simulate quantum magnetism.754,755

A. A boson ring ladder at weak interactions

1. Model

We consider N bosons occupying two coupled one-dimensional
concentric lattice rings subjected to two artificial gauge fields ad orga-
nized on a planar geometry. The stacked geometry has also been thor-
oughly studied.580,692 This system could be experimentally realized,
e.g., using dressed potentials,111 or Laguerre–Gauss beams.140 The
Hamiltonian reads

Ĥ ¼ Ĥ 0 þ Ĥ int

¼ �J
XNs

l¼1;p¼1;2

b†
l;pblþ1;peiUp þ b†

lþ1;pbl;pe�iUp

� 

�X
2

XNs

l¼1

b†
l;1bl;2 þ b†

l;2bl;1

� 
þ U

2

XNs

l¼1;p¼1;2

b†
l;pb†

l;pbl;pbl;p; (113)

where bl;p are the bosonic field operators for the p-th ring, l indicates
the site position on each ring made of Ns sites, J is the tunneling ampli-
tude along each ring, threaded by the fluxes U1;2, respectively, and X is
the inter-ring tunneling amplitude. In the noninteracting regime
U¼ 0, this model is readily diagonalized, yielding a two-band excita-
tion spectrum

E6ðkÞ ¼ � 2J cos ðk=2Þ cos ðk� UÞ

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX=2Þ2 þ ð2JÞ2 sin ðk=2Þ2 sin ðk� UÞ2

q
; (114)

where we have set k ¼ U1 � U2 and average flux U ¼ ðU1 þ U2Þ=2.
Depending on the ratio X=J and on k, the lowest band of the excita-
tion spectrum has either one or two minima centered at k ¼ U. The
ground state of the Bose gas is a Bose–Einstein condensate occupying
the minima of such an excitation spectrum. In the case of a single min-
imum, the ground state corresponds to the Meissner phase, and in the

case of a coherent superposition of the occupancy of the two minima,
the ground state is in the vortex phase. The Meissner phase is charac-
terized by vanishing transverse current and homogeneous density pro-
file. The vortex phase has nonzero transverse current and density
modulations along the ring. The vortex to Meissner phase transition
has been experimentally observed in Ref. 756. The chiral current on
the ring, i.e., the difference of longitudinal currents among the two
rings, is characterized by subsequent jumps each time a vortex enters
into the system.

2. Ground state of weakly interacting ring

We assume large occupancy of the lattice sites and weak interac-
tions U=J � 1. In this regime, we describe the system by the mean-
field approximation. Setting Wl;pðtÞ ¼ hbl;pðtÞi, the condensate wave-
function, we solve the coupled discrete nonlinear Schroedinger equa-
tions (DNLSE)

i@tWl;1ðtÞ ¼ � JWlþ1;1ðtÞeiðUþk=2Þ � JWl�1;1ðtÞe�iðUþk=2Þ

�KWl;2ðtÞ þ U jWl;1ðtÞj2Wl;1ðtÞ; (115)

i@tWl;2ðtÞ ¼ � JWlþ1;2ðtÞeiðU�k=2Þ � JWl�1;2ðtÞe�iðU�k=2Þ

�KWl;1ðtÞ þ U jWl;2ðtÞj2Wl;2ðtÞ: (116)

We have also assumed that the interaction energy is smaller than the
bandgap such that the single-band approximation for each ring latice
holds. At varying UN=JNs and X=J , the ground state displays three
phases:419 the vortex (V) and Meissner (M) phases found in the nonin-
teracting regime as well as the biased-ladder phase characterized by
imbalanced density populations among the two rings and uniform
density profile. We denote the latter (BL-V) or (BL-M) as shown in
Fig. 67, depending whether for the same values of k and X=J , the cor-
responding noninteracting spectrum has one or two minima. Notice
that the BL phases are only found at weak interactions, while they are
disrupted as the interactions increase.757 For this reason, they are not
found in the DMRG calculations of Sec. XIII B.

3. Excitation spectrum of weakly interacting ring

We next present our results for the excitation spectrum of the
weakly interacting Bose gas on a ring lattice.758 Within the Bogoliubov
approximation, we set âl;p ¼ Wð0Þl;p þ dâl;p, where Wð0Þl;p is the ground
state solution with chemical potential l. we find the excitation spec-
trum using the expansion of the fluctuation operator dâl;p in normal
modes with energy x� , according to

db̂l;p ¼
X
�

hðpÞ�;l ĉ� � Q�ðpÞ�;l ĉ†
�: (117)

The solution Bogoliubov–de Gennes eigenvalue equations for the
mode amplitudes hðpÞ�;l ; and QðpÞ�;l yields the excitation spectrum. We use
both eigenvalues and eigenvectors of the Bogoliubov equations to
compute the dynamic structure factor

Sp;p0 ðq;xÞ ¼
X
s6¼0

jhsjq̂ðp;p0Þq j0ij2dðx� xsÞ: (118)

As an example, we show the results for the excitation spectrum in the
Meissner and in the vortex phase. The excitation spectrum is strongly
dependent on the phase of the underlying ground state. In the
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Meissner phase, a single Goldstone mode is found and corresponds to
the U(1) symmetry breaking associated with the formation of a
Bose–Einstein condensate. In the vortex phase, two Goldstone modes
are observed. Indeed in the vortex phase, a second symmetry is bro-
ken, i.e., the discrete translational symmetry. We have shown that this
is associated with the emergence of supersolidity of the gas and is cor-
roborated by the calculation of the static structure factor, displaying a
well-defined peak as shown in Fig. 68, and the first-order correlation
function, demonstrating phase coherence.

B. The boson ladder at strong interaction

Let us consider a spin-1/2 bosons with spin–orbit interaction
model,751 where X is the transverse magnetic field, k the spin–orbit
coupling, U"" ¼ U## ¼ U the repulsion between bosons of identical
spins, U#" ¼ U? the interaction between bosons of opposite spins. Its
Hamiltonian is745,747

H ¼� J
X

j;r

ðb†
j;reikrbjþ1;r þ b†

jþ1;re�ikrbj;rÞ

þX
2

X
j;a;b

b†
j;aðrxÞabbj;b þ

X
j;a;b

Uabnjanjb; (119)

where r ¼ 61=2 or r ¼"; # is the spin index677,759,760 and j is the site
index, nja ¼ b†

jabja The Hamiltonian [Eq. (119)] is mapped onto the
Hamiltonian of the two-leg ladder in flux [Eq. (113)] by making
p ¼ 3

2� r; Up ¼ ð�Þp�1k=2; U? ¼ 0.
The low-energy effective theory for the Hamiltonian [Eq. (119)],

treating X and U? as perturbations, can be obtained by using
Haldane’s bosonization of interacting bosons.761 Introducing761 the
fields /aðxÞ and PaðxÞ satisfying canonical commutation relations
½/aðxÞ;PbðyÞ� ¼ idðx � yÞ as well as the dual haðxÞ ¼ p

Ð xdyPaðyÞ
of /aðxÞ, and after introducing the respective combinations of opera-
tors /c;s ¼ ð/"6/#Þ=

ffiffiffi
2
p

, we can represent the low-energy
Hamiltonian as H ¼ Hc þ Hs, where

Hc ¼
ð

dx
2p

ucKcðpPcÞ2 þ
uc

Kc
ð@x/cÞ2

	 

(120)

describes the total density fluctuations for incommensurate filling
when umklapp terms are irrelevant, and

Hs ¼
ð

dx
2p

usKs pPs þ
k

a
ffiffiffi
2
p

� �2

þ us

Ks
ð@x/sÞ2

" #

�2XA2
0

ð
dx cos

ffiffiffi
2
p

hs þ
U?aB2

1

2

ð
dx cos

ffiffiffi
8
p

/s (121)

FIG. 67. Color map of the imbalance among particle numbers in each ring, in the
(X=J; UN=JNs) plane, for (upper panel) k ¼ p=2; U ¼ 6p=Ns and Ns¼ 20,
(lower panel) k ¼ p=2; U ¼ p=Ns and Ns¼ 20 The letters indicate the parameter
regimes where we find a biased-ladder phase (BL-V) where the single-particle
spectrum has a double minimum, a Meissner phase (M), a vortex phase (V) and a
biased-ladder phase (BL-M) where the single-particle spectrum has a single mini-
mum. White triangles represent the frontiers between biased-ladder phase the two
other phase, namely, vortex phase and Meissner phase as calculated with the vari-
ational ansatz including finite size effect.

FIG. 68. Dynamic structure factor in the frequency-wavevector plane in the
frequency-wavevector plane (color map, q in units of 1=a with a lattice spacing and
x in units of J) Upper panel: in the Meissner phase, for Un=J ¼ 0:2;
k ¼ p=2; K=J ¼ 3. Lower panel: in the vortex phase for X=J ¼ 1:6 k ¼ p=2;
Un=J ¼ 0:2. For both panels Ns¼ 80.
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describes the antisymmetric density fluctuations. In Eqs. (121) and
(120), us and uc are, respectively, the velocity of antisymmetric and
total density excitations, and A0 and B1 are nonuniversal coeffi-
cients,762 while Ks and Kc are the corresponding Tomonaga–Luttinger
(TL) exponents.753 They can be expressed as a function of the velocity
of excitations u and Tomonaga–Luttinger liquid exponent K of the iso-
lated chain.753

For an isolated chain of hard core bosons, we have
u ¼ 2J sin ðpq0

rÞ and K¼ 1. The phase diagram of the Hamiltonian
can be determined by looking at physical observables such as the
rung and leg current, momentum distribution, and correlation
functions. Physical observables can be all represented in bosoniza-
tion. The rung current, or the flow of bosons from the upper leg to
the lower leg, is

J?ðjÞ ¼ �iXðb†
j;"bj# � b†

j;#bj" Þ

¼ 2XA2
0 sin

ffiffiffi
2
p

hs þ � � � : (122)

The chiral current, i.e., the difference between the currents of upper
and lower leg, is defined as

Jkðj; kÞ ¼ �iJ
X

r

rðb†
j;reikrbjþ1;r � b†

jþ1;re�ikrbj;rÞ (123)

¼ usKs

p
ffiffiffi
2
p @xhs þ

k

a
ffiffiffi
2
p

� �
: (124)

The density difference between the chains Sz
j ¼ nj" � nj# is written in

bosonization as

Sz
j ¼ �

ffiffiffi
2
p

p
@x/s � 2B1 sin

ffiffiffi
2
p

/c � pqx
� 

sin
ffiffiffi
2
p

/s; (125)

while the density of particles per rung is

nj ¼ �
ffiffiffi
2
p

p
@x/c � 2B1 cos

ffiffiffi
2
p

/c � pqx
� 

cos
ffiffiffi
2
p

/s: (126)

When X 6¼ 0; U? ¼ 0, and k! 0, the antisymmetric modes
Hamiltonian Eq. (121) reduces to a quantum sine-Gordon
Hamiltonian. For Ks > 1=4, the spectrum of Hs is gapped and the sys-
tem is in the so-called Meissner state729,730 characterized by hhsi ¼ 0.
In such a state, the chiral current increases linearly with the applied
flux at small k, while the average rung current hJ?i ¼ 0 and its corre-
lations hJ?ðjÞJ?ð0Þi decay exponentially with distance. The transition
from the Meissner to the Vortex phase is signaled by the splitting
of the momentum distribution n(k) from k¼ 0 to a finite Q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

c

q
that depends on the spin–orbit interaction k. For this

reason, the transition falls into the universality class of the commen-
surate–incommensurate transitions (C–IC). The rung current correla-
tion function develops two symmetric peaks, and the spin static
structure is linear at low momentum. The phase diagram for a hard-
core bosonic ladder at n¼ 1, obtained using density renormalization
group (DMRG) technique,763,764 is shown in Fig. 69 together with the
momentum distribution n(k) as a function of lambda across the C–IC
transition. Compared to the noninteracting case, the phase diagram as
a function of X=J and k shows an enlargement of the Meissner phase
and its persistence above a certain value of X=J . Above a certain value

of k, a second incommensuration appears in the rung current correla-
tion functions and the static structure factor. Such incommensuration
is associated with the appearance of an extra peak in the rung current

correlation function at wavevectors P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ pðX2Þ

q
and p 6 P

with pðXÞ a function of the interchain tunneling. For k ¼ p, the corre-
lation functions show a tendency to a localized regime.

With X 6¼ 0;U? 6¼ 0, the C-IC transition is replaced by a
Meissner-to-incommensurate charge density wave (ICDW) which falls
into the Ising universality class, followed by a melting of the Vortex
phase at large enough k, going toward a BKT transition when entering
the Vortex phase.753 The melting of the Vortex phase is signaled by
the Lorentzian shape of the momentum distribution peaks preceded
by a Lifshitz point.765 In the phase diagram, see Fig. 70 for the case of
a hard-core bosonic ladder in the presence of an attractive interaction
U?, obtained using DMRG simulations, it is possible to trace these fea-
tures. As we increase the interaction strength [panel (a) in Fig. 70], the
charge structure factor develops peaks at k ¼ p=2 and k ¼ 3p=2 and
SsðkÞ has an almost quadratic behavior at small wave vectors. The qua-
dratic behavior indicates that spin excitations remain gapped, while
the presence of peaks at k ¼ p=2; 3p=2 in ScðkÞ is the signature of a
zigzag charge density wave. Going to panel (b), at increasing k, the
momentum distribution develops two broad maxima indicating a vor-
tex melted phase, while the rung current correlation function starts to
form two bumps. Increasing still k, in panel (c) both the momentum
distribution, as well the rung-current correlation function C(k),
develop two separate peaks,730 that show negligible size effects, indicat-
ing the presence of an incommensuration. Conversely both the charge
and spin structure factors have a linear behavior at small k indicating a
gapless phase.

C. Ultracold atoms carrying orbital angular
momentum (OAM) in a diamond chain

1. Topological edge states and Aharonov–Bohm caging

We consider a ladder with a diamond-chain shape with a unit
cell formed by three cylindrically symmetric potentials of radial fre-
quency x, forming a triangle with central angle H and nearest-
neighbor separation d (see Fig. 71). Noninteracting ultracold atoms of
mass m that may occupy the two degenerate OAM l¼ 1 states with
positive or negative circulation localized at each site are loaded into
the ladder. Such a system could be experimentally implemented, for
instance, by exciting the atoms to the p-band of a conventional optical
lattice766–769 or by optically transferring OAM770 to atoms confined to
an arrangement of ring-shaped potentials, which can be created by a
variety of techniques, as discussed in Sec. III. Three independent
tunneling amplitudes771 exist in the system: J1, which corresponds to
the self-coupling at each site between the two OAM states with differ-
ent circulations, and J2 and J3, which correspond to the cross-coupling
tunneling amplitudes between OAM states in different sites with equal
or different circulations, respectively. For H ¼ p=2, J1 and J3 acquire a
relative phase of p along one of the diagonals of the chain and, due to
destructive interference between neighboring sites, the self-coupling
vanishes everywhere except for the sites at the left edge. The model
possesses inversion and chiral symmetry but, due to the two-fold
degeneracy, Zak’s phases772 are ill-defined. Thus, a series of exact map-
pings are required to fully characterize topologically the system.
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In addition, the model here obtained corresponds to a square-root
topological insulator,773,774 i.e., the quantized values of the Zak’s
phases are recovered after taking the square of the bulk Hamiltonian.

Under periodic boundary conditions, the diagonalization of the
bulk Hamiltonian yields six energy bands in three degenerate pairs and
a gap appears in the spectrum. In the J2¼ J3 limit, all bands become
flat. Exact diagonalization, in the case of open boundary conditions,
shows the presence of four in-gap states localized at the right edge of
the chain, which persist as long as the energy gap is open (see Fig. 72).

We perform first a rotation into a basis of symmetric and anti-
symmetric states, which decouples the diamond chain with six states
per unit cell into two independent and identical diamond subchains
with three states per unit cell. This explains the two-fold degeneracy of
the spectrum and the presence of gaps in the band structure. A second
basis rotation maps each of the diamond subchains into a modified
Su–Schrieffer–Heeger (SSH) model775 with an extra dangling state per
unit cell, which allows us to understand the existence of in-gap edge
states localized at the right edge of the chain [Fig. 73(a)], the zero-
energy flat band states without population in the central sites

FIG. 69. Phase diagram for hard-core
bosons on the two-leg ladder and U? ¼ 0
as a function of flux per plaquette k and
the interchain hopping X. The boundaries
between the Meissner and the Vortex
phase are shown by the red and black
solid lines, respectively, for the noninter-
acting and the interacting case. At k ¼ p
the thick solid green-line shows the occur-
rence of the second incommensuration.
The three insets in the right panel show
intensity plots of nðk; kÞ for the three dif-
ferent values of X=J ¼ 0:25; 1:25 and 2.
In panels (b) and (c), the system enters
the Vortex phase for k > kc : the single
peak at k¼ 0 splits in two maxima sym-
metric around k¼ 0 at 6qðkÞ. At large
X=J ¼ 2, panel (a), the system stays
always in Meissner phase and in the vicin-
ity of k ¼ p, n(k) becomes independent
of k indicating the formation of a fully
localized state (thick solid dark-red line).

FIG. 70. Phase diagram at n¼ 0.5 for a fixed value of interchain hopping X=J
¼ 0:5 as a function of the applied flux k and as function of the strength of the inter-
chain interaction U?. The dashed black line is the boundary between the Meissner
phase and the Meissner-CDW phase (dark-red region). In the Melted vortex phase
(light-green region), the dot-dashed line indicates the Lifshitz point. At large k, the
Vortex phase is reestablished (light-blue region under the dotted black line). In the
shaded blue area, second-incommensuration occurs. The three insets in the right
panel show the behavior of n(k) (blue solid lines), the spin static structure factor
SsðkÞ (solid dark-green line), the charge static structure factor ScðkÞ (solid red line)
and the rung current-rung current correlation function C(k) (solid black lines), for the
three points A ¼ ðk ¼ 0:146p;U? ¼ �1:5Þ;B ¼ ðk ¼ 0:468p;U? ¼ �1:5Þ
and C ¼ ðk ¼ 0:75p;U? ¼ �0:25Þ shown in the phase diagram, respectively, for
the CDW-Meissner, melted vortex, and vortex phase. FIG. 71. Schematic representation of the considered diamond chain.
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[Fig. 73(b)] and the flattening of the bands in the J2¼ J3 limit. Figure
73(c) shows the two degenerate ground states of the system. The
decoupled subchains do not have inversion symmetry so that the
Zak’s phase can yield nonquantized values. Thus, a third mapping to
recover inversion symmetry has been introduced776 obtaining a dia-
mond chain with alternating tunneling amplitudes topologically char-
acterized in Refs. 777 and 778. A striking feature of the topology of
this model, directly carried over to the original OAM l¼ 1 model, is
that there is no topological transition across the gap closing point, as
can be seen by fixing either J2 or J3 and varying the other across zero.

Finally, we have also demonstrated that the system can exhibit
Aharonov–Bohm caging in the J2¼ J3 limit since, in this limit, the
states involving the central site of a unit cell can be expressed in terms
of flat-band states that occupy solely the four sites surrounding it.
Thus, an initial state prepared in an arbitrary superposition of the cen-
tral sites states will oscillate coherently to its four neighboring sites
with a frequency given by the absolute value of the energies of the top/
bottom flat-band states without leaving the cage formed by two con-
secutive unit cells.

2. Simulating quantum magnetism with strongly
interacting ultracold bosons

Up to here, we have neglected interactions among the ultracold
atoms. However, as discussed in Ref. 754 and 755, strongly interacting
ultracold bosons loaded into OAM states of lattices of side-coupled
cylindrically symmetric traps, e.g., a quasi-one-dimensional ladder of
ring potentials or a diamond chain, can realize a variety of spin 1

2 mod-
els, including the XYZ Heisenberg model with or without external
fields. In Ref. 755, we have focused on the Mott insulator regime at
unit filling, where each trap is occupied by a single boson and a direct
mapping between the degree of freedom corresponding to the two
opposite circulations 6l of the OAM states to a spin 1

2 can be per-
formed. Thus, by tuning the relative phases in the tunneling ampli-
tudes, which depend on the relative orientation between the traps, the
system can be used to simulate different spin 1

2 models of quantum
magnetism. To this aim, we have first computed the explicit depen-
dence of the effective tunneling couplings on the relative angle
between the traps by means of second-order perturbation theory.
Then, we have discussed for which particular geometries the XYZ
Heisenberg model with uniform or staggered external fields could be
obtained. As an example, for a quasi-one dimensional ladder of ring
potentials with central angle tuned to Hl ¼ ð2sþ 1Þp=ð2lÞ with
s 2N, single spin flips mediated by interactions do not take place and
only isotropic two-spin flips occur. In this situation, the effective
Hamiltonian of the system becomes a XYZ Heisenberg Hamiltonian
without the external field:755

Hl
eff ¼

XN

j¼1

J l
xxr

x
j r

x
jþ1 þ J l

yyr
y
j r

y
jþ1 þ J l

zzr
z
j r

z
jþ1; (127)

where J l
xx ¼ �ððJ l

2Þ
2 þ ðJ l

3Þ
2Þ=ð2UÞ, J l

yy ¼ �ððJ l
2Þ

2 � ðJ l
3Þ

2Þ=ð2UÞ,
and Jl

zz ¼ �3ððJl
2Þ

2 � ðJ l
3Þ

2Þ=ð2UÞ, in which J l
2 and J l

3 are the cross-
coupling tunneling amplitudes between states of OAM l possessing
equal and different circulations, respectively, while U is the nonlinear
interaction parameter.

FIG. 72. Exact diagonalization spectra of a diamond chain of Nc¼ 20 unit cells for
d ¼ 3:5r, corresponding to J3=J2 ¼ 1:67 (black solid line) and d ¼ 6r corre-
sponding to J3=J2 ¼ 1:13 (red dotted line), where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=ðmxÞ

p
.

FIG. 73. Density profiles of numerically obtained eigenstates for a diamond chain of Nc¼ 10 units cells and intersite separation d ¼ 6r, corresponding to J3=J2 ¼ 1:13. (a)
Two degenerate edge states. (b) Two states of the flat band. (c) The two degenerate ground states of the system.
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Worth highlighting that besides engineering different spin 1/2
models by tuning the geometry of the lattice, the system also allows
one to adjust the relative strength between the effective couplings by
changing the radius of the ring traps and their separation. In fact, we
have shown that this additional parameter of control can be exploited
in realistic experimental setups to explore distinct phases of the XYZ
model without external field. Moreover, we have analyzed the effect of
experimental imperfections, such as the influence on the tunneling
phases of the presence of small fluctuations in the relative angle
between the traps. Regarding the physical implementation of the pro-
posal, we have discussed several possibilities to realize a lattice of ring
potentials with a tunable geometry and have analyzed single-site
addressing techniques that could allow to retrieve the state of each
individual spin. Finally, we have also investigated the collisional stabil-
ity of the system and concluded that the anharmonic energy spacing
between OAM states introduced by the ring geometry allows extend-
ing the lifetime of the Mott state.

D. Concluding remarks and outlook

The examples detailed in this section show that the ring geometry
allows us to study both the phase diagram and the main features of the
excitation spectrum of the infinite ladder to large accuracy as well as to
highlight interesting parity and commensurability effects typical of
finite rings. Furthermore, the ring geometry allows for new probes of
the various phases, e.g., by the measurement of persistent currents or
via spiral interferometry. It also displays Josephson modes.

In outlook, one should develop suitable theoretical methods to
describe the crossover from the weak-interaction and large occupancy
regime down to the strongly correlated regime reached at large interac-
tions and small filling.779 To make contact with a real experimental sit-
uation, it is necessary to investigate how much the signatures of these
phases are robust against the finite temperature effects together with
the possibility of having long-ranged interactions between the atoms.
Also, the experimental realization of ring ladders seems close to reach
and would provide a benchmark of atomtronic devices.
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XIV. QUANTUM-ENHANCED ATOMTRONICS WITH
BRIGHT SOLITONS

P. Naldesi, J. Polo, S. A. Gardiner, M. Olshanii, A.
Minguzzi, L. Amico

Quantum coherent states of macroscopic degrees of freedom are
hard to achieve, due to decoherence. Attractive bosons are a very spe-
cial case study, completely different from repulsive bosons. In this

chapter we revise their properties in the quantum regime, such as the
chemical composition of its ground state, the transmission across a
barrier, the excitation spectrum and the response to rotation, showing
that they provide a new type of resource for atomtronics applications.

A. Scattering properties of attractive bosons against
a barrier

Cold bosonic systems tend to remain in a Bose-condensed state
that can be perfectly described by a mean-field theory. However, for
attractive condensates, there are points in the space of parameters
where the mean-field theory predicts sudden jumps for some macro-
scopic observables. The relevant example corresponds to a single one-
dimensional bosonic soliton780–782 or any other many-body bound
state that is scattered off a barrier in a typical scattering setup, where a
localized wavepacket is prepared and sent toward an obstacle.783–785 In
such scattering events, the nonlinearity of the mean field theory can
lead to some “unsettling” results. For instance, for incident kinetic
energies (per particle) below 1

4 of the magnitude of the soliton chemical
potential, a “forbidden window,” in the form of a discontinuity, on the
axis of the transmission coefficients must emerge786 (see also Refs. 547
and 787); it appears due to the fact thatthe amount of the incident
kinetic energy is insufficient to compensate for the loss of the interac-
tion energy in a 50%–50% splitting in this regime.

As we scan the barrier height from a lower value up, the trans-
mission coefficient increases and, at some barrier height, abruptly
jumps up.786 At the mean-field level, the jump is infinitely sharp.
Indeed, a dissociation of the soliton onto the transmitted and reflected
parts costs interaction energy, and the incident kinetic energy may not
be sufficient to pay for it (see Fig. 74).

Such a discontinuity is nonphysical. As has been shown in Refs.
549 and 788, the key to ensure the continuity of the transmission coef-
ficient curve is to recognize that at the apparent discontinuity point,
the condensate becomes fragmented and the transmission events
acquire a quantum randomness. This regime will soon be within
experimental reach.784 The good news is that a highly desirable
Schr€odinger cat is itself a fragmented state; the bad news is that if the
number of occupied one-body orbitals becomes large, the macroscopic
coherence becomes unusable. Referencce 532 suggests a secure way of
suppressing the undesirable fragments: the soliton kinetic energy must
be decreased even further to a point where the total kinetic energy
becomes less than the chemical potential, thus ensuring no relative
motion of the constituent atoms with only “cold soliton transmitted”
and “cold soliton reflected” allowed orbitals as the result. While con-
ceptually elegant, this method of generating a macroscopic coherence
requires center-of-mass kinetic energies N times lower than those cur-
rently used (N being the number of atoms in the soliton) and

FIG. 74. Scheme of a soliton scattered from a potential barrier.
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scattering regimes where the barrier becomes completely classical
from the soliton center-of-mass point of view. Accordingly, Ref. 549
suggests using extended center-of-mass coherent wavepackets with a
nonzero velocity width, where the barrier is used as a classical velocity
filter—see also Ref. 545. However, a private communication,789 and by
careful inspection of Figs. 2 and 3 in Ref. 788, indicates—based on
numerical evidence—that even at moderate kinetic energies, there
remain only two populated orbitals. If this is indeed the case, then it is
clear what these orbitals are: they are nothing else but the state of the
condensate just before and just after the mean-field jump in the trans-
mission coefficient.

Note that even in the favorable two-orbital case, the macroscopic
coherence may still remain unusable due to the entanglement between
the center-of-mass motion and possible excitations created during the
scattering event. Even if these excitations are small at the level of the
BEC wavefunction, the difference between the internal states of
the transmitted and reflected condensates may still be large due to the
orthogonality catastrophe. Nonetheless, the macroscopic coherence
may be potentially preserved if a limited number of atoms is used. The
upper bound for this number is yet an open question, which will
require an intensive numerical study.

While in the proposal,549,788 the center-of-mass of the incident
soliton is assumed to be in a coherent state prior to splitting, the cool-
ing of a macroscopic variable to that state is difficult per se. However
in Refs. 790 and 791, it is shown that in a factor of four quench of the
coupling constant, one can create, while at a finite temperature, an
exponentially cold quantum state of a relative distance between the
centers-of-mass of two solitons792–795 itself a macroscopic variable.
The theoretical estimates791 show that under realistic experimental
conditions, quantum fluctuations of the intersoliton velocity will lead
to an observable intersoliton separation after a time

s � 4:7 s :

Further beam-splitting of the intersoliton distance degree of free-
dom requires additional study, while its initial coherence is already
guaranteed. Classically, the above states would correspond to
Gross–Pitaevskii breathers796,797 with fluctuating parameters. These
have recently been experimentally realized, albeit in the classical
regime, as described in Ref. 798.

B. Creation and manipulation of quantum solitons

1. Quantum solitons in the Bose–Hubbard model

Attractive bosons confined in a one dimensional lattice system can
be described by the Bose–Hubbard model. Before moving to atom-
tronics applications, e.g., a ring lattice, we present here the properties of
the ground state and its excitations. For a mesoscopic sample, with the
limited number of bosons, higher band occupancies are negligible721

and, even at intermediate and strong attractions, the occupancies can be
integrated in the model by renormalizing the tunneling and interaction
parameters.799–801 In this regime, the Hamiltonian reads

Ĥ ¼ �J
XL

j¼1

a†
j ajþ1 þ h:c:

� 
� jU j

2

XL

j¼1

n̂j n̂j � 1
� �

; (128)

where the operators a†
i obey the canonical commutation relations

½ai; a†
j � ¼ dij; ni ¼ a†

i ai is the number operator at the site i, and the

operators ai and L is the number of sites in the chain. The parameters
J and U in Eq. (128) are the hopping amplitude and the strength of the
on-site interaction, respectively. Periodic boundary conditions are
implemented, requiring that a†

1aL ¼ a†
La1. The lattice is loaded with N

bosons. While some exact results are available for N ¼ 2711,802,803 and
an effictive model can be built to explain the spectrum for
N ¼ 3,804,805 for a larger number of particles, the system is not solv-
able and numerical simulations are necessary.806,807

a. 2-particle sector. The problem of two attracting bosons on a
lattice is exactly solvable �a la coordinate Bethe ansatz by transforming
the wave function in the center of mass and relative coordinates. This
solution is also valid in the presence of an synthetic gauge field.803 The
eigenstates of the system form two bands depending on the nature of
relative momentum. For imaginary solutions, we have the lowest
energy branch composed by the L bound-state (solitons), while the
real solutions correspond to scattering states that form the second
band at higher energy. The energy gap separating the two increases
with interactions, and it is found that for U=J  4, the two bands
completely detach for each momentum.803

b. N-particle sector. For a larger number of particles, the BHM
[Eq. (128)] is not solvable by the coordinate Bethe ansatz. The failure
results because of finite probabilities that a given site is occupied by
more than two particles, whose interaction cannot be factorized in
two-body scattering.808–810

Information on the available excitations in the system as a func-
tion of their momentum k and energy x is provided by the dynamical
structure factor Sðk;xÞ,

Sðk;xÞ ¼
X
a 6¼0

X
r

jhaje�ikrn̂rj0ij2dðx� xaÞ: (129)

where n̂r is the number operator acting on the site r and j0i is the
ground state and a labels the states with increasing energy (i.e., a ¼ 1
is the first excited state). The peaks of Sðk;xÞ reconstruct the energy
bands of the system804,805 and are shown in Fig. 75. Numerical results
show a scenario similar to the two-particle case with a low-energy
band that is separated from the rest of the spectrum. The nature of
such a band can be analyzed by the study of correlation functions,
CðrÞ ¼ hnL=2 nL=2þri. The numerical analysis shows that the lowest
energy band is composed of many-body bound states. In fact, all these
states are characterized by an exponential decaying of correlations
CðrÞ � exp ð�r=nÞ. The correlation length n is fixed only by the
interactions and decreases with increasing U. For states belonging to
the second branch C(r) approaches, at intermediate distances, a pla-
teau �nas ¼ ðN=LÞ2, before dropping down when approaching the
walls of the box. We, thus, can conclude that the higher branch con-
tains extended states. Notice that, at difference from the continuum
case, where a Bethe ansatz solution is available and one can tell the
nature of the state by checking whether the rapidities are real or com-
plex in the lattice case, there is no exact solution; hence, no way to tell
whether they are scattering states, N – 1-body bound states, etc. Thus,
the dynamical structure factor is very practical to visualize all types of
excitations. Also, in this case, the bands gap increases with interactions
and the critical interaction to have a complete detachment of the
bands scales like Uc � 1=N .
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c. Soliton stability. Finally, we devise a specific dynamical proto-
col to study the soliton stability and evidence the features of the band
structure.

By initially breaking the lattice translational symmetry with an
attractive potential Hiðl;UÞ ¼HðUÞ þ lðUÞni0 , a soliton is pinned
in a given site i0 of the lattice, and then, let it expand by removing the
pinning. In this way, while for small U, we populate both scattering
and bound states for U > Uc, when the gap separates the two bands,
mostly bound states are populated.

In Figs. 76(a) and 76(b), we show the expansion dynamics of
the density for two cases: U < Uc and U > Uc. Increasing the inter-
action strength, the density profile remains closer and closer to the
one of the initial state. Only a small fraction is spreading into
the chain leading to a higher stability of the soliton. This phenom-
enon can be studied more quantitatively by analyzing the expan-
sion velocity, vðtÞ ¼ ðd=dtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðtÞ � R2ð0Þ

p
, with R2ðtÞ

¼ ð1=NÞ
PL

i¼1 niðtÞði� i0Þ2 and its asymptotic value at large times
v1. The inspection of v1 in Fig. 76(c) further shows the difference

between the two regimes. While there is no criticality in the sys-
tem close to Uc, v1 displays a peculiar scaling behavior and acts
like an order parameters for the system.

2. Solitons in rotation

As an application to atomtronics, attracting bosons can be used
to devise a new type of interferometer, based on superposition of per-
sistent current states. The effect of an induced rotation, or more gener-
ally of a (syntethic) gauge field, on such a system has been extensively
studied.591 It is in fact well know that the quantum system in a ring
geometry displays a staircase response to an applied gauge field of
intensity X. The induced angular momentum increases in quantized
steps as a function of X,142,432 and the amplitude of persistent currents
displays periodic oscillations with X.811,812 The periodicity of such
oscillation is completely fixed by the effective flux quantum present in
the system and does not depend on the intensity of particle–particle
interactions.813 In the following, without loss of generality, we will

FIG. 75. Panel (a): dynamical structure factor Sðk;xÞ for a chain of L ¼ 30 sites. Numerical results for N ¼ 5 particles and interactions U ¼ 1:2. Panel (b): Density–density
correlation function C(R) for N ¼ 5 particles in a chain of L ¼ 30 sites and interactions U ¼ 0:6 < Uc . Correlations are computed over several excited states labeled by i (i-th
excited state, i ¼ 0 correspond to the ground state).

FIG. 76. Panels (a) and (b): expansion of a soliton composed by N ¼ 5 particles, pinned to the center of a chain with L ¼ 41 sites for interactions U ¼ 0:4 and U ¼ 1:8.
Panel (c): asymptotic expansion velocity v1 as a function of U � UcðNÞ and of ðU � UcðNÞÞ

ffiffiffi
N
p

.

AVS Quantum Science ROADMAP scitation.org/journal/aqs

AVS Quantum Sci. 3, 039201 (2021); doi: 10.1116/5.0026178 3, 039201-85

VC Author(s) 2021

https://scitation.org/journal/aqs


refer only to the case of an artificial gauge field induced by a global
rotation at angular frequency X. Our discussions can be applied to any
type of artificial gauge fields.

For strongly correlated one-dimensional bosons with attractive
interactions, as we discuss in the following, the nature of flux quantum
is nontrivial due to the formation of many-body bound states. This fea-
ture has dramatic effects on the persistent current that oscillates with a
periodicity N times smaller than in the standard case corresponding to
repulsive interactions. Remarkably, the periodicity depends on the inter-
action, which leads to an extension of the Leggett theorem.

a. Continuous ring. For a continuous ring, the system can be
described through the Bose-gas integrable theory, i.e., the Lieb–Liniger
model.814 This is the case when the density N/L of bosons, where N is
the particle number and L ¼ 2pR is the perimeter of the ring of radius
R, is small. A well established limiting procedure allows one to link the
lattice and continuous models (see, e.g., 803 and 814 for a discussion).
For such systems, exact results are well known.251 The Lieb–Liniger
Hamiltonian in the rotating frame reads

ĤLL ¼
XN

j¼1

1
2m
ðpj �mXRÞ2 þ g

X
j<l

dðxj � xlÞ � EX; (130)

where m and pi’s are the mass and the momentum of each particle,
respectively; Lz ¼

PN
j¼1 Lz;j is the total angular momentum of the N

particles; g is the interaction strength; and EX ¼ NmX2R2=2.
The solution of the model dramatically change according to the

sign of the interactions. For repulsive interactions, independently on
their strength, the ground state energy EGS is periodic in X with period
X0 ¼ �h=mR2. The persistent current in the rotating frame defined as
Ip ¼ �ðX0=�hÞ@EGS=@X displays a sawtooth behavior versus X,813

corresponding to a staircase behavior of angular momentum Lz.
For attractive interactions, the scenario changes completely; the

ground state is a many-body bound state, i.e., a “molecule” made of N
bosons, corresponding to the quantum analog of a bright soli-
ton.806,815,816 The ground state energy for arbitrary X then reads

EGS ¼
�h2

2MR2
‘� N

X
X0

� �2

� NðN2 � 1Þg2

12
; (131)

where the second term accounts for the interaction energy Eint and is
independent on the rotation frequency. This result clearly shows how,
under the effect of the artificial gauge field, attracting bosons effectively
behave as a single massive object of mass M ¼ Nm. The energy dis-
plays a 1=N-periodicity as a function of the artificial gauge field, X, in
units of X0 corresponding to fractionalization of angular momentum
per particle.

b. Lattice ring. When the density of particles is not small, the lat-
tice effects that break the integrability of the model start to be relevant.
In this situation, the system is well described by the Bose–Hubbard
model (BHM),

ĤBH ¼
XNs

j¼1

U
2

nj nj � 1ð Þ � J e�i~Xa†
j ajþ1 þ h:c:

� 
; (132)

where aj and a†
j are site j annihilation and creation Bose operators and

nj ¼ a†
j aj is the number operator. The parameters J, U< 0 in Eq.

(132) are the hopping amplitude and the strength of the on-site inter-
action, respectively; Ns being the number of sites in the lattice and
~X¼: 2pX=ðX0NsÞ for brevity.

In the lattice model [Eq. (132)], the center-of-mass and relative
coordinates, at any finite interaction, cannot be decouple. This feature
has a profound implication on the behavior of persistent current. As
we will discuss below, in contrast with the continuous theory, here the
persistent current periodicity does depend on interaction strength.

In Fig. 77, we show the numerical results of angular momentum:
also, in this case, the 1=N periodicity in X=X0 of the persistent cur-
rents as well as the fractionalization of angular momentum emerges.
While fractionalization always occurs, the 1=N periodicity is affected
by the interplay between the system size and interaction strength.

When interactions are sufficiently large, the “size of the many-
body bound state,” i.e., the decay length of the density–density correla-
tions,806 is much smaller than the size of the system. Upon decreasing
the interactions, the size of the many-body bound state increases more
and more over the chain and the solitonic nature of the state gets less

FIG. 77. Panel (a): average angular momentum per particle (inset: GP analysis) as
a function of the artificial gauge field for different particle number and for particular
values of interaction strength. Panel (b): time dependent current (in units of the hop-
ping constant J) following a quench from X=X0 ¼ 0 to X=X0 ¼ 1=2. Here we set
L¼ 28, N¼ 3, U=J ¼ �0:51 and D0=J ¼ 0:015. Panel (c): Quantum Fisher infor-
mation as a function of the particle number showing the Heinsenberg-limited behav-
ior FQ / N2.
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and less pronounced. All the observed features are purely quantum
many-body effects tracing back to specific quantum correlations since
they completely disappear in a mean-field Gross–Pitaevskii description
of the system.

Angular momentum fractionalization and the related persistent
current periodicity can be observed with standard time-of-flight
(TOF) techniques. Measuring the distributions of the atoms after
releasing the trap confinement and turning off interactions, we have
access to the momentum distribution defined as
nðkÞ ¼ jwðkÞj2

P
j;l eik�ðxj�xlÞha†

j ali. In fact, we find that the mean-
square radius of the distribution increases in fractional steps of for
X=X0 ¼ ‘=N .126

3. Entangling solitons with different Lz

We finally demonstrate how the scenario above can be harnessed
to create specific entangled states of persistent currents. Such
entangled states are characterized by an increased sensitivity to the
effective magnetic field that reaches the Heiseberg limit. In the follow-
ing, we propose a specific dynamical protocol that allows us to create
such type of state.

Since the Hamiltonians in Eqs. (130) and (132) commute with
the total angular momentum, dynamically mix entangle states with
different angular momentum, the rotational invariance of the system
needs to be broken. The ring is then interrupted with a potential bar-
rier of strength D0 localized in a single lattice site. Then, the artificial
gauge field is quenched from X ¼ 0 to X ¼ X0=2. This procedure is
capable of dynamically entangling the angular momentum state at
X ¼ 0, i.e., Lz ¼ 0, with the one at X ¼ X0, i.e., Lz ¼ N (see Fig. 77),
yielding jwiNOON ¼ 1ffiffi

2
p ðjLz ¼ 0i þ jLz ¼ NiÞ when the current

reaches the half of its maximum value.
The response of such a state to an external rotation is jwð/Þi

¼ ei/L̂z=�hjwiNOON , and the quantum Fisher information817,818 FQ

¼4ðhw0ð/Þjw0ð/Þi�jhw0ð/Þjwð/Þij2Þ, being jw0ð/Þi¼@jwð/Þi=@/.
For our state, we find FQ�N2, i.e., it reaches the Heisenberg limit—see
Fig. 77. The corresponding sensitivity d/, therefore, is

d/  1

ðFQÞ1=2
¼ 1

N
: (133)

This shows that entangled states of quantum solitons with different
angular momenta lead to a quantum advantage of the sensitivity for
rotation detection. Notice that this type of entangled state is
completely different from a superposition state obtained by splitting a
soliton by a barrier in real space, which could be used, e.g., as a gravi-
meter. In both cases, the main experimental limitation is due to
unwanted fluctuations (thermal, technical, etc.) and particle losses.
The latter are nevertheless expected to play a minor role for the small
particle numbers considered in this setup.

C. Concluding remarks and outlook

In this section, we studied attractive bosons in the quantum
regime. Its ground state is an N-body bound state, which on a lattice is
protected by a gap with respect to the first branch of excitations, corre-
sponding to scattering states. We have shown that this implies the sta-
bility of a soliton initially prepared in a pinning site. We have also
shown that quantum solitons on a ring display an enhanced response

to artificial gauge field X with a 1=N periodicity as a function of
X=X0. This corresponds to fractionalization of angular momentum
per particle, intrinsically due to the presence of many-body bound
states. Finally, we have identified a protocol to create a nonclassical
superposition of angular momentum states by a suitable quench of the
artificial gauge field based on angular momentum fractionalization.
The use of quantum coherent macroscopic superposition states in
atom interferometry devices can increase considerably the phase sensi-
tivity. The states studied in this section can yield an N-fold enhance-
ment in sensitivity to rotation in a ring-based gyroscope. In a typical
configuration, a localized barrier can split the solitons in two waves
propagating in clockwise and anticlockwise that can ultimately recom-
bine producing interference fringes with a specific npattern.
Controlling the effects of decoherence, losses, and the identification of
the optimal working parameters for bright solitons based interferome-
ters is important challenges to overcome.

XV. ATOMTRONICS WITH ALKALINE-EARTH-LIKE
METAL ATOMS

D. Wilkowski, W. J. Chetcuti, C. Miniatura, L.-C. Kwek,
L. Amico

A. Why alkaline-earth-like metal atoms?

Over the past two decades, the number of experiments using ultracold
alkaline-earth-like metal atoms have considerably increased. Indeed,
these atoms have singlet and triplet electronic spectra that offer inter-
esting alternatives over the usual doublet spectrum of the more com-
monly used alkali metal atoms. For the purpose of illustration, we
show the energy levels and transitions of interest for strontium atoms
(Sr) in Fig. 78(a). Laser cooling and magneto-optical traps are achieved
using the electric dipole-allowed singlet 1S0!1P1 transition. For heavy
elements (Sr, Yb, Hg), the singlet-triplet intercombination line is
strong enough to allow further cooling. For example, for Sr atoms,
reaching temperatures at the single photon recoil limit on large atomic
ensembles819 can be achieved simply with the usual Doppler cooling
technique.820 In addition, since multiple scattering is limited, large
space phase densities can be reached compared to alkali metal
atoms.821 Laser cooling on intercombination lines is then efficient and
provides a favorable starting point to reach quantum degeneracy with
evaporative cooling techniques. The latter was obtained for several iso-
topes of Yb and Sr, such as 84Sr (0.6%),822,823 86Sr (9.9%),824

87Sr (7.0%),825,826 174Yb (31.8%),827 173Yb (16.1%),828 176Yb
(12.8%),829 and also for 40Ca (96.9%).830 The percentage, given in
parentheses, is the relative abundance of the isotope.

Importantly, we note that the spin-singlet ground state is not sen-
sitive, or only weakly so (for nuclear spin of fermionic isotopes), to
magnetic fields. Magnetic trapping is, thus, excluded as well as the pos-
sibility of using magnetic Feshbach resonances to tune the scattering
length and, in turn, interactions. One has to rely on optical dipole traps
and zero-field interactions to implement evaporative cooling. There
have been attempts to control the scattering length by optically dress-
ing the ground state level to some molecular bound states in the
excited level831 but the lifetimes of such dressed states remain too short
to be of practical interest.832
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In addition to the electric-dipole transition and the intercombi-
naison lines, alkaline-earth-like metal atoms possess a clock transition
connecting the ground state 1S0 to the long-lived excited state 3P0.
Since these states are energetically well separated, their light shifts,
induced by a far-off-resonant laser light, can be engineered almost
with high control. An illustrative example is given in Fig. 78(b) for Sr.
For instance, in the so-called magic configuration, where light shifts
exactly compensate, the transition frequency becomes almost insensi-
tive to the trapping optical field leading to applications in precision
frequency and time measurements.833 Here, atoms are trapped in opti-
cal lattices to allow for long interrogation times in a massively parallel
configuration, giving the best clock uncertainty to date.834 Aside from
obvious metrological applications, the clock transitions are also suit-
able for strongly correlated many-body phenomena that may be diffi-
cult to be addressed elsewhere, such as the Kondo effect and the heavy
Fermion manifestation.835,836 These experiments can be performed in
an optical lattice with a wavelength corresponding to weak light shifts
in the excited state and a stronger confinement in the ground state
[�619 nm for Sr as shown in Fig. 78(b)]. Moreover, the fermionic iso-
topes (Sr and Yb) possess a nonzero nuclear spin. Thus, a spin
exchange interaction between two atoms is present in the cold collision
regime: one in the fundamental orbital 1S0 and the other in the excited
orbital 3P0.837 The resonant character of this Feshbach-type exchange
interaction has been shown for Yb838,839 and opens the door for quan-
tum simulation of strongly correlated 2-orbital quantum gases.836

The fermionic isotopes, 87Sr et 173Yb, have also the interesting
property of possessing a nuclear spin larger than 1

2 (I¼ 9/2 and I¼ 5/2,
respectively,) decoupled from the electronic orbital840,841 (in addition
to the above-mentioned spin exchange interaction). As a consequence,
the many-body Hamiltonian of these systems do not depend on the
nuclear spin orientation: They are invariant under the SU(N) symme-
try with a dimension N ¼ 2I þ 1 much larger than N¼ 2 (corre-
sponding to a spin-1/2 fermion), going thus beyond the usual SU(2)
symmetry. Numerous theoretical efforts have been pursued to better

understand such SU(N) systems, in particular, their magnetic840 and
topological properties and their quantum phase transitions.842 On the
experimental side, important results have been obtained on the Yb
Mott insulator.843,844 Ordered magnetic phases above the N�eel tem-
perature could be observed845 because the entropy per spin compo-
nent was reduced by the Pomeranchuk effect, relaxing the
temperature constraint on the gas.840,846

The Sr fermionic isotope has also been used to generate artificial
gauge fields. An effective spin–orbit coupling, mediated by the clock
transition has been studied in a one-dimensional lattice.847,848 The
goal here is to act on the ultracold gas to obtain many-body states of
metrological interest. In another work, non-Abelian gauge transforma-
tions have been reported using two dark states of a tripod laser
scheme.849 This configuration appears to be promising for atomtronics
and will be discussed in more detail in Sec. XV B.

B. Effective Abelian and non-Abelian gauge fields

We discuss here the implementation of effective gauge fields for
ultracold alkaline-earth metal atoms in the presence of a general atom-
tronics circuit. We require the spatial scales of the atomtronics circuit
to be larger than the laser wavelength used to create the gauge field
such that the adiabatic approximation always holds.591 State differ-
ently, the artificial gauge field should act in continuous bulk space and
be unaltered by the presence of the atomtronics circuit. This excludes
lattice-type structures but one can still implement the gauge field using
off-resonant coherent Raman beams as used by Spielman et al.727

Alternatively, SU(2) gauge fields can be generated within the dark-
state manifold of a four-level resonant tripod scheme.726 Using a dou-
ble tripod scheme, the symmetry can be further extended to SU(3).850

Since dark states are sensitive to ground state energy fluctuations, this
scheme is appropriate for alkaline-earth-like metal fermions, which
only possess a nuclear spin well protected from their environment
(magnetic fields, collisions).

FIG. 78. (a) Energy levels and transitions of interest for Strontium. The transitions linewidths and wavelengths are indicated in the figure. (b) Light shifts of the 1S0 and 3P0
states of Sr as a function of the wavelength of the dipole trap. The excited-state and ground state light shifts are exactly equal at the magic wavelength 813 nm. The light shifts
are calculated for a laser power of 600 mW and a beam waist of 65lm.
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Recently,849 we implemented a tripod scheme on a cold gas of
87Sr containing around 105 atoms using the Fg ¼ 9=2! Fe ¼ 9=2
intercombination line at 689 nm. The cold sample819 is prepared in a
crossed optical dipole trap where atoms are optically pumped in the
stretched m¼ Fg magnetic substate and Doppler cooled at a tempera-
ture around 0:5 lK. A magnetic bias field isolates a particular tripod
scheme among the excited and ground Zeeman substate manifolds.
The three coupling laser beams are set on resonance with their com-
mon jm ¼ 7=2; Fe ¼ 9=2i excited state [see Figs. 79(a) and 79(b)].

In the adiabatic approximation, the Hamiltonian describing the
quantum state evolution in the dark-state manifold591 reads

H ¼ 1
2M
ðp̂1� AÞ2 þW; (134)

where p̂ ¼ �i�hr is the momentum operator, 1 is the identity opera-
tor in the internal dark-state subspace, and M is the atom mass. With
equal and constant Rabi frequencies amplitudes, and for the orienta-
tion of our laser beams [see Fig. 79(a)], the vector and scalar potential
are849

A ¼ 2�hðk2 � k1Þ
3

M; W ¼ � 4ER

9
M; (135)

where ER ¼ �hxR ¼ �h2k2=ð2MÞ is the atomic recoil energy and kj is
the wavevector of laser beam j¼ 1, 2, 3 (with 1 � rþ; 2 � p, and
3 � r�). The matrix M reads

M ¼ 3=4 �
ffiffiffi
3
p

=4

�
ffiffiffi
3
p

=4 1=4

 !
: (136)

Since the components of the vector potential commute, this gauge field
is Abelian. In Fig. 79(c), we show the result of a ballistic expansion of
the cold atomic cloud on the bare state populations. The red stars,
green cubes, and blue triangles correspond to the jm ¼ 9=2i;
jm ¼ 7=2i, and jm ¼ 5=2i populations, respectively, whereas the
curves correspond to the evolution given by the Hamiltonian, Eq.
(134), with thermal averaging.849 The relaxation of the jm ¼ 9=2i and
jm ¼ 5=2i populations is due to the thermal averaging, and the tem-
perature is proportional to the characteristic relaxation time of the
system.849

Remarkably, since the gauge field is Abelian and homogeneous,
the field strength (or Berry curvature), i.e., the curl of the vector poten-
tial, is zero. Hence, there is no Lorentz forces acting on the system.
This result can be simply understood through a simple physical argu-
ment: Mechanical forces here come from photon redistribution among
the tripod lasers with different propagation directions. With our laser
configuration, such photon exchanges would induce a population
change only for state jm ¼ 7=2i. However, this population remains
constant, confirming the absence of light-assisted forces.

The situation becomes more complex if one flips the direction of
one of the laser along the x-axis. For instance, if the laser r� is flipped,
the gauge potential now reads

A ¼ 2�h
3

k1Nþ k2Mð Þ; (137)

where

N ¼ 9=4
ffiffiffi
3
p

=4ffiffiffi
3
p

=4 3=4

 !
: (138)

The two components of the vector potential do not commute, so the
gauge field becomes non-Abelian. In the context of atomtronics, spin
precession and related spin–orbit-like coupling can play an important
role. For instance, the spin precession leads to spatial oscillation of the
wave-packet (as in relativistic Zitterbewegung effect), whereas the
momentum operator still commutes with the Hamiltonian.68,851,852

Moreover, it was shown that the characteristic double-well energy dis-
persion of a spin–orbit coupled system leads to a Josephson effect in
momentum space with the presence of supercurrents.853 Further
applications and potential research objectives are give in Sec. XV C.

C. Persistent current of SU(N) fermions

Atomtronics can provide key contributions to mesoscopic phys-
ics, exploring physical situations that are hard, if not impossible, to
explore with standard implementations. One of the purest expressions
of mesoscopic behavior is the persistent current. There have been sev-
eral studies on the persistent current of bosonic systems in ring-
shaped circuits. In this article, these are summarized in Secs. VII
and IX. Atomtronic circuits comprised of ultracold fermions are much
less explored. In Ref. 854, the persistent current of interacting

FIG. 79. (a) Propagation directions of the tripod laser beams (full arrows) and their
polarizations along a magnetic field bias (B ¼ 67G). For the non-Abelian gauge
field discussed in the text, the r� laser beam direction is flipped (dashed arrow).
(b) Energy levels and experimentally relevant transitions. The magnetic bias field
lifts the degeneracy of the different Zeeman manifolds and allows to address each
transition individually. The Land�e g-factors are indicated for each hyperfine level.
The black arrows connecting the ground state to the excited states correspond to
the tripod beams. (c) Time evolution of the bare-state populations after the tripod
ignition. Red stars, green squares, and blue circles correspond to
jm ¼ 9=2i; jm ¼ 7=2i, and jm ¼ 5=2i states, respectively. Adapted with permis-
sion from Leroux et al., Nat. Commun. 9, 3580 (2018). Copyright 2018, Author(s)
licensed under a Creative Commons Attribution 4.0 License.
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multicomponent SU(N) fermions is studied. The system is modeled by
the SU(N) Hubbard model842 with the repulsive interaction; the par-
ticles are confined in a ring-shape circuit pierced by an effective mag-
netic field. As discussed in Sec. VII, the zero temperature persistent
current Ið/Þ is defined as

Ið/Þ ¼ � @E0

@/
: (139)

By applying a combination of Bethe ansatz842,855,856 and numeri-
cal analysis, it is demonstrated how the persistent current displays a
specific dependence on the parameters characterizing the physical
conditions of the system. A combination of spin correlations, effective
magnetic flux, and interaction brings about a peculiar phenomenon:
spinon creation in the ground state.

The creation of spinons in the ground state leads to a redefinition
of the elementary flux quantum /0, which fixes the periodicity of the
current. From Fig. 80, one can clearly observe how the profile of the
persistent current changes with increasing U, which reflects the peri-
odic 1=Np oscillations in the ground state energy that, in the large
interaction regime, results in Np parabolic cusps/segments.

Such fractionalization of the flux observed here is very different
from the one typically observed in bosonic system with attractive
interactions (see Sec. XIV): While the fractionalization in bosonic sys-
tems arises from the formation of bound states, for repulsing fermions,
the phenomenon is a direct manifestation of the coupling between the
spin and matter degrees of freedom.

Spinon creation in the ground state displays a marked depen-
dence on the number of spin components, highlighting and distin-
guishing features between SU(2) and SU(N) fermions for N> 2. In
particular, for integer fillings, at variance with their standard two spin
component fermions counterpart,857 SU(N) fermions with N> 2
undergo a Mott quantum phase transition for a finite value of the
interaction. Despite its mesoscopic nature, the persistent current is
able to detect the onset of the Mott transition marked by a clear finite
size scaling. Furthermore, the presence of a Mott gap suppresses spi-
non creation in the ground state. Finally, a specific SU(N) parity effect
is shown to hold whereby the current is diamagnetic (paramagnetic)
in nature for systems comprised of ð2nþ 1ÞN [ð2nÞN] number of fer-
mions, with n being an integer. This result generalizes a prediction by
Byers–Yang, Onsager, and Leggett.811–813

D. Concluding remarks and outlook

In Sec. XV A, we saw how to cool down alkaline-earth-like metal
atoms to degeneracy and how we can take advantage of the fermionic
isotopes and clock transition to address SU(N) Hamiltonian and
engineer the light shifts between two orbital states almost at will. In
Sec. XV B, we discussed the laser tripod scheme to implement (homo-
geneous) Abelian and non-Abelian gauge fields in the bulk [see Fig.
79(b)]. In this section, we discuss several potential research objectives
and applications in elementary atomtronics circuit in the presence of
SU(N) symmetry and/or gauge fields.

In the simplest instance, one can consider rectilinear and ring-
shaped quasi-1D guides. The practical implementation can be done
following methods discussed in Sec. II. Then, one can generate a non-
Abelian synthetic gauge field in which the atomic spin will also change
its orientation. This way, spin Hall current might be present even if
the gauge field is constant and uniform in space68,851,858 (see also Sec.
XV B). This system can be implemented with various gauge structures,
for example, uniform Abelian gauge field, spin–orbit configurations
(in uniform non-Abelian gauge field), and synthetic magnetic fields
such as a uniform or a monopole configuration. All these configura-
tions can be realized using the tripod scheme developed for SU(2) sys-
tems. A natural extension of the tripod scheme can also be used for
exploring the SU(3) symmetry.850 One can fabricate non-Abelian
Aharonov–Bohm matter-wave interferometers operating with a
SU(N) fermionic fluid. To this end, one shall attach source and drain
leads to the ring-shaped optical potential to inject and collect the
quantum gas (see Fig. 81). Alternatively, the wires can be suppressed

FIG. 80. Persistent current Ið/Þ at incommensurate filling for SU(3) fermions with
different interaction strengths U in the dilute filling regime of the Hubbard model.
The exact diagonalization L¼ 30, Np¼ 3 is monitored with the Bethe ansatz of the
Sutherland–Gaudin–Yang model. The Insets show how the Bethe ansatz energies
need to be characterized by spinon quantum numbers in order to be the actual
ground state. At U¼ 0, the ground state energy is a periodic sequence of parabo-
las meeting at degeneracy points /d (/d ¼ 1=2 for the case displayed in the fig-
ure). Figure is taken from Ref. 854.

FIG. 81. Sketch of a (non-Abelian) SU(N) Aharonov–Bohm matter-wave device.
The tripod laser beams illuminate the full ring structure. With a single tripod
scheme, we have N¼ 2. With a double tripod scheme, we have N¼ 3.

AVS Quantum Science ROADMAP scitation.org/journal/aqs

AVS Quantum Sci. 3, 039201 (2021); doi: 10.1116/5.0026178 3, 039201-90

VC Author(s) 2021

https://scitation.org/journal/aqs


and the out-of-equilibrium dynamic of the ultracold gas can be investi-
gated in the ring only. While the bosonic case has been largely studied
(see Secs. III, VII, and XII and reference therein), the interacting fermi-
onic case and the role of its spin internal structure remain largely
unexplored. A number of theoretical questions need to be tackled to
understand the dynamic of the system, for example, effects of the
quasi-1D geometry, the interplay between charge and spin degrees of
freedom at mesoscopic scales, the role of finite temperatures, and the
impact of quantum statistics (Pauli blocking). Interestingly, persistent
current states shall exist if pairing and superfluidity can occur and
becomes superfluid and reaches the antiferromagnetic regime at strong
repulsive interactions (Tonks regime). In the out-of-equilibrium
regime, one can study the response to a quench in an isolated system.
The integrable regimes could be explored by employing the machinery
discussed in Secs. V and VI. One can also add localized barriers inter-
rupting the ring (see Secs. III, VIII, IX, and X). Such a scheme would
provide the implementation of an AQUID operating with a fermionic
quantum fluid under a non-Abelian synthetic gauge field.

Based on the fermionic nature of the alkaline-earth atoms, it
would be interesting to transpose the standard electronic and/or spin-
tronics circuits to atomtronics circuits operating with neutral-atom
fermionic species with enhanced control and flexibility.

The primum mobile for circuits with flowing SU(N) matter was
theoretically analyzed recently.854 It would be interesting to study con-
figurations for atomic SQUIDs exploiting the SU(N) features. For
SU(N) atomtronics, it would be also interesting to generalize the
Datta-Das transistor (DDT), the fundamental building block of spin-
tronics circuits,859 to ultracold gas system. Major steps, toward that
goal, were done theoretically,860 and experimentally, on Rb BEC851

and recently on strontium ultracold gas using a tripod scheme.861

Among the possible specific added values of the latter implementation,
a fermionic atomic DDT operating with an ultracold alkaline-earth-
like gas can be extended to the gauge field with higher symmetry
[SU(3) at least], which can be generated using a double tripod laser
scheme.850 SU(N) fermionic systems have triggered a great interest to
explore their magnetic properties both theoretically840 and experimen-
tally.845 One can exploit atomtronics circuits to probe SU(N) matter.
For example, in the spirit of solid-state physics I-V characteristics, one
could define a new route for the diagnostic of the different many-body
quantum regimes in terms of the current flowing through the SU(N)
system. Specifically, one could focus on fermionic systems that realize
the SU(N) Heisenberg or Hubbard models in the rectilinear/ring-
shaped potentials attached to source and drain leads. In these struc-
tures, the transport coefficients can be derived by monitoring the
densities in the source and drain leads. One can consider investigating
transport in the SU(N) Kondo impurity model. The effect of disorder,
Anderson localization, and many-body localization862–865 could be
explored with fermionic atomtronics using SU(2) and SU(3) spin–
orbit coupling. A similar logic could be employed to study the BCS-
BEC crossover.866

XVI. MANIPULATING RYDBERG ATOMS

W. Li, O. Morsch

Atoms excited to high-lying energy states (with principal quan-
tum number n larger than�15) are known as Rydberg atoms.867 They
have considerably longer lifetimes than atoms in low-lying excited

states, and much larger (by several orders of mangnitude, with strong
scaling with n) electric polarizability as well as dipole and van der
Waals interactions. Rydberg atoms have been studied for several deca-
des with renewed interest sparked by the invention of laser cooling,
which made more accurate studies possible, and also due to the advent
of quantum computation and quantum simulation, for which Rydberg
atoms are a promising building block.572 Generally, the combination
of controllability, strong interactions and long coherence times make
Rydberg atoms promising candidates for the realization of future
quantum information technologies. In a broader context of quantum
technologies, Rydberg atoms have also been explored for sensitive
detection of electric fields and toward quantum state transfer between
microwave and optical domains.

For the purposes of atomtronics, Rydberg atoms are an interest-
ing system to study in regard to the propagation of excitations in dis-
ordered or ordered arrays. In fact, many transport properties in both
the quantum and semiclassical regimes can be studied using Rydberg
excitations. While Rydberg atoms have not been used for atomtronics
applications (as understood in this review) so far, they might represent
a valuable addition to the atomtronics toolbox in the future. In this
spirit, the present section presents a few recent results on percolation
phenomena studied in a gas of ultracold Rydberg atoms as well as on
microwave control of Rydberg atoms.

A. Driven-dissipative Rydberg systems

An important aspect of transport phenomena is the interplay
between an external drive and the natural dissipation of the system,
which has been investigated by several groups in recent years.868–872 In
samples of ultracold Rydberg atoms (with temperatures around
T � 120 lK, so on the timescales of typical experiments atomic
motion can be neglected), we can study this interplay by driving a
transition between the ground state of the atom (87-rubidium in our
case) and a high-lying Rydberg state with n � 70–80. In our experi-
ments, in Pisa, we use S states (zero angular momentum) for which
the van der Waals interaction is repulsive. This interaction leads to
two distinct many-body effects. For resonant driving, it prevents the
excitation of more than one Rydberg atom inside the “blockade
sphere”; this is known as the dipole blockade.873,874 On the other
hand, for off-resonant driving, the van der Waals interaction can lead
to the compensation of the detuning if a ground state atom is at a cer-
tain “facilitation distance” from a Rydberg atom.875,876 At that dis-
tance, the off-resonant driving is shifted into resonance and, thus, the
excitation of the ground state atom is “facilitated.”

It turns out that by adding the natural decay of a Rydberg state
due to spontaneous emission (with timescales of a few hundred ls), it
is possible to realize a paradigmatic model from statistical physics
called directed percolation,877 which can be used to study such diverse
processes as epidemic spreading, wildfires, or the onset of turbulence.
This model can characterized by two processes in a spin-1/2 example:
offspring production in which a “spin up” causes a nearby “spin
down” to flip its state at a certain rate and sudden death in which a
spin up spontaneously flips down. For our Rydberg system, these two
processes can be directly translated into facilitation with rate Cfac and
spontaneous decay with rate Cspon. We note here that both processes
are incoherent (in particular, we choose a Rabi frequency for Rydberg
excitation that is smaller than the decoherence rate). From statistical
physics, we know that this directed percolation model exhibits a phase
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transition between its absorbing state (all spins “down,” or all atoms in
the ground state) and an active state in which, on average, a macro-
scopic number of spins are “up” (i.e., atoms are in Rydberg states).

We realized this model using Rb Rydberg atoms in a magneto-
optical trap.878 By varying the Rabi frequency of the off-resonant laser
driving (a two-photon excitation via an intermediate 6P state was
used), we were able to scan the ratio Cfac=Cspon across the critical value
for the absorbing-state phase transition [Cfac is related to X via
Cfac ¼ ðX2=2cÞ, where c is the decoherence rate]. Figure 82 shows the
results of those experiments. In order to prepare the system away from
the absorbing state with all atoms in the ground state (from which, by
definition, the system cannot escape), we initially excited around 30
Rydberg atoms in the cloud and then allowed the system to evolve
under constant driving for 1:5 ms before measuring the number of
Rydberg excitations by field ionization. The directed percolation phase
transition is visible in both the plot of the number of excitations as a
function of X [Fig. 82(a)] and as a peak in the variance of the number
of excitations [Fig. 82(b)].

This is one example of a transport/percolation problem imple-
mented using cold Rydberg atoms. In future experiments, this concept
can be extended to (partially) coherent driving879,880 and/or ordered
arrays881,882 as well to tailored and controllable dissipation.

B. Microwave-optical conversion using Rydberg atoms

Rydberg atoms feature transitions of very large dipole moments
in the microwave frequency range,867 which has been utilized for sen-
sitive detection of microwave electric field883,884 and for efficient con-
version from microwave to optical photons.885 In quantum simulation
using Rydberg atoms, nearby Rydberg states are commonly encoded
as spin states, and their populations and dynamics can be conveniently
manipulated with microwave radiation.27,886

Here, we present a demonstration of coherent microwave-to-
optical conversion of classical fields via six-wave mixing in Rydberg
atoms. In the quantum regime, such coherent conversion is essential
for coupling superconducting qubits operating at microwave frequen-
cies to photonic qubits used in quantum communication over long
distances887 and, therefore, has been intensively pursued in quite a few
different physical systems.888

The principle of our conversion experiment using Rydberg atoms
is as follows. A cloud of cold polarized 87Rb atoms is illuminated by
four auxiliary electromagnetic fields P, C, A, and R as well as the
microwave field M to be converted. By nonlinear frequency mixing of
the six waves in the atomic medium, the field M is converted into the
optical field L. The chosen configuration of energy levels is displayed
in Fig. 83(a), where the six waves are near-resonant with the atomic
transitions shown in the figure with j1i � j5S1=2;F ¼ 2;mF ¼ 2i;
j2i� j5P3=2;F¼ 3;mF ¼ 3i; j3i� j30D3=2;mJ ¼ 1=2i; j4i� j31P3=2;
mJ ¼�1=2i; j5i� j30D5=2;mJ ¼ 1=2i, and j6i� j5P3=2; F¼ 2;
mF ¼ 1i. In the absence of the microwave field M, the system is in the
configuration of microwave dressed electromagnetically induced
transparency involving Rydberg states (Rydberg EIT), formed by the
two optical waves P and C, and the auxiliary microwave field A. Once
the M and R fields are added, the coherence induced between the
ground state j1i and the intermediate state j6i triggers the generation
of the converted optical field L.

A typical spectrum of the measured power PL of the generated L
field versus the input P field detuning DP is shown in Fig. 83(b). The
conversion is most efficient around DP ¼ 0, which is consistent with
the nonlinearity responsible for the frequency mixing being maximum
close to resonance. The behavior PL for DP ¼ 0 is approximately linear
as a function of the input intensity IM of field M, as shown in Fig.
83(c). Given PL � aIM , a linear fit to the data yields the photon con-
version efficiency of the process to be g ¼ 0:051. This conversion effi-
ciency is 17 times larger than the one reported in Ref. 885, and this
enhancement is due to an improved experimental configuration,
which makes the conversion occur over a longer distance. Our theoret-
ical study shows that by using a carefully selected energy level scheme
to minimize the absorption of the input P field when propagating
through the conversion medium, a conversion efficiency above 50%
can be reached even with all-resonance six-wave mixing similar to that
in Fig. 83(a).889

This conversion method is an application example from the
strong coupling between microwave and Rydberg atoms. To reach
near-unit conversion efficiency for quantum state transfer at the single
photon level, one may consider implementing stimulated Raman adia-
batic passage890 or tuning two of the fields (for example fields C and A)

FIG. 82. Evidence for an absorbing state phase transition in a Rydberg gas. (a) Number of excitations in the stationary state as a function of X (the solid line is a sliding aver-
age to guide the eye). The inset shows a power-law fit around the critical value Xc, indicated by the dashed line in the main figure. In (b), the peak in the variance plotted as a
function of X indicates the critical point. Adapted with permission from Guti�errez et al., Phys. Rev. A 96, 041602 (2017). Copyright 2017, American Physical Society.
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off-resonance to realize an effective two-photon transition in our sys-
tem.891,892 In addition to its potential for quantum state transfer, this
method of conversion into optical photons is also promising for the
sensitive real-time detection of microwave or THz fields.

C. Concluding remarks and outlook

While the experiments outlined in this section do not yet make a
direct contribution to atomtronics, it is likely that future studies of
transport phenomena could make use of the techniques presented
here. In the case of Rydberg atoms, Rydberg excitations coupled via
dipole–dipole and van der Waals interactions—rather than the atoms
themselves—are transported. Seed or source excitations can be injected
into a cloud (or ordered array) of atoms at well-defined positions. In
particular, using the recently developed patterning techniques based
on dipole trap arrays (either using micromirror devices, holographic
methods23 or custom-made microlens-arrays154), it will be possible to
conduct excitation-transport experiments using source–drain configu-
rations (exploiting the high spatial resolution for excitation and detec-
tion). In this way, ring-shaped circuits or other more complicated
transport topologies could be explored. Coupling of the Rydberg
atoms to laser or microwave sources could then be used to further tai-
lor the interaction between the Rydberg atoms or for inducing addi-
tional dissipation/dephasing in the system. This will allow one to study
the crossover between incoherent hopping and coherent transport.
Finally, it is conceivable that the studies of Rydberg excitation trans-
port could be combined with “regular” atomtronics, resulting in a
hybrid system in which both excitations and matter are transported
(either independently or possibly coupled to each other).
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