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Abstract
This document summarises proposed searches for new physics accessible in
the heavy-ion mode at the CERN Large Hadron Collider (LHC), both through
hadronic and ultraperipheral γγinteractions, and that have a competitive or,
even, unique discovery potential compared to standard proton–proton collision
studies. Illustrative examples include searches for new particles—such as
axion-like pseudoscalars, radions, magnetic monopoles, new long-lived par-
ticles, dark photons, and sexaquarks as dark matter candidates—as well as new
interactions, such as nonlinear or non-commutative QED extensions. We
argue that such interesting possibilities constitute a well-justified scientific
motivation, complementing standard quark-gluon-plasma physics studies, to
continue running with ions at the LHC after the Run-4, i.e. beyond 2030,
including light and intermediate-mass ion species, accumulating nucleon–
nucleon integrated luminosities in the accessible fb−1 range per month.

Keywords: beyond standard model, heavy ions, LHC

(Some figures may appear in colour only in the online journal)

1. Introduction

Physics beyond the standard model (SM) is necessary in order to explain numerous unsolved
empirical and theoretical problems in high energy physics (see e.g. [1] for a recent review).
Prominent examples among them are the nature of dark matter (DM), the origin of matter-
antimatter asymmetry (baryogenesis), and finite neutrino masses, one the one hand, as well as
the Higgs mass fine-tuning, the null θQCD charge-parity (CP) violation term in quantum
chromodynamics (QCD), the origin of fermion families and mixings, charge quantisation, the
cosmological constant, and a consistent description of quantum gravity, on the other hand.
Most solutions to these problems require new particles—such as supersymmetric partners,
dark photons, right-handed neutrinos, axions, monopoles—and/or new interactions, which
have so far evaded observation due to their large masses and/or their small couplings to SM
particles. Two common complementary routes are followed at colliders in order to search for
beyond standard model (BSM) physics. If BSM appears at high masses, one needs to
maximise the centre-of-mass (c.m.) energy s . If BSM involves small couplings, one needs
to maximise the luminosity . At face value, both strategies present obvious drawbacks for
searches in heavy-ion (HI) compared to pp collisions at the Large Hadron Collider (LHC):
(i) PbPb collisions run at roughly 2.5 times lower nucleon–nucleon (NN) c.m. energies than
pp collisions ( =s 5.5 versus 14 TeVNN

), and (ii) the NN luminosities are about a factor 100

smaller (in 2018, = ´ ´ = ´- - - - A 6 10 cm s 2.5 10 cm sNN
2 27 2 1 32 2 1 for PbPb versus

= ´ - - 2 10 cm spp
34 2 1).

During the high-luminosity (HL)-LHC phase [2, 3], whose main focus is BSM searches,
the luminosity of pp collisions will be maximised, inevitably leading to a large number of
overlapping collisions per bunch crossing (pileup). Pileup translates into a rising difficulty to
record all interesting pp events, and thereby an unavoidable increase of the kinematical
thresholds for triggers and reconstruction objects in order to reduce unwanted backgrounds.
Pileup also leads to an intrinsic complication in the reconstruction of exclusive final-states
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(in particular neutral ones, such as X→γγdecays at not too high masses) and of displaced
vertices from e.g. long-lived-particles (LLPs) that appear in many BSM scenarios. In this
context, if BSM has low couplings with the SM and is ‘hiding well’ at relatively low masses
with moderately ‘soft’ final states, HI collisions—with negligible pileup, optimal primary
vertexing (thanks to the large number of primary tracks), reduced trigger thresholds (down to
zero pT, in some cases), plus unique and ‘clean’ γγexclusive final-states in ultraperipheral
interactions [4] with luminosities enhanced by factors of order gg gg ppPbPb( ) ( ) =

´ = ´ ´ ´ ´ » Z 4.5 10 6 10 2 10 10pp
4

PbPb
7 27 34( ) ( )/ / —present clear advantages

compared to pp.
The purpose of this document is to summarise various novel BSM search possibilities

accessible at the LHC in the HI mode, and thereby provide new arguments that strengthen the
motivations to prolong the HI programme beyond the LHC Run-4 (i.e. after 2029). A
selection of new physics (NP) searches that are competitive with (or, at least, complementary
to) pp studies at the LHC are listed in table 1, and succinctly presented hereafter. This list is
not comprehensive, but is representative of the type of processes that are attractive and
accessible with ions from the perspective of BSM searches. After a summary of the LHC HI
performance of current and future runs (section 2), the document is organised along the
following four BSM production mechanisms:

(1) Ultraperipheral γγcollisions (UPCs), producing, e.g. axion-like particles (ALPs),
section 3.

(2) ‘Schwinger’ production through strong classical EM fields, producing, e.g. monopoles,
section 4.

(3) Hard scattering processes, producing, e.g. displaced signals from new LLPs, section 5.
(4) Thermal production in the quark-gluon-plasma (QGP), producing, e.g. sexaquarks,

section 6.

Processes (1), (2), and (4) explicitly use a BSM production mechanism that is unique in HI
collisions (or significantly enhanced compared to the pp mode), whereas in processes of the

Table 1. Examples of new-physics particles and interactions accessible in searches with
HI collisions at the LHC, listed by production mechanism. Indicative competitive mass
ranges and/or the associated measurement advantages compared to the pp running
mode are given.

Production mode BSM particle/interaction Remarks

Ultraperipheral Axion-like particles γγ→a, ma≈0.5–100 GeV
Radion γγ→f, mf≈0.5–100 GeV

Born–Infeld QED Viaγγ→γγanomalies
Non-commutative

interactions
Viaγγ→γγanomalies

Schwinger process Magnetic monopole Only viable in HI collisions

Hard scattering Dark photon mA′1 GeV, advanced particle ID
Long-lived particles

(heavy ν)
mLLP10 GeV, improved

vertexing

Thermal QCD Sexaquarks DM candidate
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type (3), it is the comparatively reduced pileup backgrounds that renders HI collisions
interesting. In addition, detailed studies in proton-nucleus and light-ion collisions are needed
as a baseline for astrophysics BSM searches, as well as to explain several anomalies observed
in ultra-high-energy cosmic ray (UHECR) data (section 7).

2. Accelerator considerations

The nominal LHC operation schedule includes HI collisions during typically one month each
year, and even when accounting for the roughly ×10 lower integrated running time than pp,
several BSM searches appear more competitive with ions than with protons as shown below.
The performance of the HI runs up until the end of Run-2 has been very good, reaching
instantaneous PbPb luminosities six times higher than the design value of 1027 cm−2 s−1

(equivalent to a NN luminosity of = ´ - - 2.5 10 cm sNN
32 2 1). Four LHC experiments are

now taking data with HI collisions, and physics runs have also been carried out with a novel
mode of operation with pPb collisions that was not initially foreseen [5, 6]. The excellent
performance was made possible through many improvements in the LHC and the injector
chain. In particular, the average colliding bunch intensity in 2018 was up to about
2.3×108 Pb/bunch, which is more than three times higher than the LHC design value. For
the next PbPb run in 2021, it is planned to further increase the total LHC intensity through a
decrease of the smallest bunch spacing to 50 ns, in order to fit 1232 bunches in the LHC. A
further increase of the injected intensity seems difficult without additional hardware in the
injector chain [7]. In the LHC, any increase of ion luminosity is ultimately limited by the risk
of quenching magnets, either by secondary beams with the wrong magnetic rigidity created in
the collisions [8–12] or by leakage from the halo cleaning by the collimators [13–15].
Mitigation of the secondary beam losses around ATLAS and CMS, using an orbit-bump
technique, has been demonstrated [16] and additional collimators will be installed in the
current long shutdown of the LHC (2019–2020) to allow higher luminosity at IP2 [17]
and also to raise the total beam intensity limit from collimation losses [18, 19]. Using the
predicted beam and machine configuration, the future luminosity performance has been
estimated for PbPb and pPb [20]. During a one-month run, assuming that the instantaneous
luminosity is levelled at the current values around 6×1027 cm−2 s−1, the integrated
luminosity per experiment is estimated to be 3.1 nb−1 for PbPb and 700 nb−1 for pPb (without
levelling), equivalent to NN luminosities of » 0.15NN fb−1.

In the presently approved CERN planning, it is foreseen to perform another four and a half
PbPb runs before the end of LHC Run-4 in 2029, accumulating ∼13 nb−1 in total. Furthermore,
one short pPb run is planned, as well as one reference pp run. No further HI runs have so far
been planned after Run-4. These plans would not permit the full exploitation of the BSM
possibilities opened up in HI collisions, which require the largest possible integrated luminos-
ities. A revised proposal for Runs-3 and 4 and plans to extend the LHC nuclear programme
beyond Run-4 have been formulated [20]. The additional BSM physics possibilities summarised
here complement and reinforce that scientific case. These studies involve more time spent on pPb
runs and also collisions of lighter nuclei, e.g. Ar, O, or Kr [20, 21]. Table 2 shows estimated
beam parameters and luminosity performance for Pb as well as these lighter species. It can
be seen that the latter have the potential to reach ×(2–15) higher NN luminosities, which
would benefit any BSM search based on hard-scattering processes (section 5), although the
corresponding γγluminosities (section 3) would be (naively) reduced by a (ZPbPb/ZAA)

4 factor.
The estimated parameters for a range of lighter ions rely on the assumption that the achievable
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bunch intensity Nb for a nucleus with charge number Z and mass number A can be scaled from
the Pb bunch intensity as Nb(Z, A)=Nb(82, 208)×(Z/82)p, where the power p=1.5 is
estimated from previous experience of nuclear beams for the CERN fixed-target experiments and
the short run with Xe in the LHC in 2017 [22]. It should be noted that these estimates carry a
significant uncertainty, since there have been no opportunities to experimentally optimise these
beams for the LHC. Furthermore, the integrated luminosity per month in table 2 has been
calculated using a simplified model, and no levelling of luminosity, which gives slightly more
optimistic values for Pb than the 3.1 nb−1 stated above, that was simulated with a more detailed
and accurate model. Total integrated luminosities in the range 0.2–3 fb−1 are expected depending
on the ion–ion colliding system. We stress that, if BSM or other physics cases eventually justify
it, one can consider running a full ‘pp year’ with ions at the LHC, leading to roughly factors of
×10 larger integrated luminosities than those listed in table 2.

3. Ultraperipheral γγcollisions

In HI collisions, the highly relativistic ions act as a strong source of electromagnetic (EM)
radiation, enhanced by the large proton charge number Z [4]. This offers a natural environ-
ment in which to observe the photon-initiated production of BSM states with QED couplings.
The cross section for the γγproduction of any particle X can be calculated within the
equivalent photon approximation [23] as

ò òs s s= =gg gg
gg

gg  


x x n x n x m
m

d d d
d

d
, 1A A A XA X X1 2 1 2

eff
1 2 1 2

( ) ( ) ( ) 

Table 2. LHC beam parameters and performance for collisions from O up to Pb ions,
with a moderately optimistic value of the scaling parameter p=1.5 introduced in
[20, 21]. Here σhad is the hadronic cross section, òn the normalised emittance, and the Z4

factor is provided to indicate the order-of-magnitude enhancement in γγcross sections
expected in UPCs compared to pp collisions. Nucleus–nucleus (AA) and NN lumin-
osities  are given at the start of a fill (to simplify the comparison, it is assumed there is
no levelling), , and as time averages, ⟨ ⟩, with typical assumptions used to project
future LHC performance. Total integrated luminosities in typical one-month LHC runs
are given in the last two rows.

O8
16 Ar18

40 Ca20
40 Kr36

78 Xe54
129 Pb82

208

γ (103) 3.76 3.39 3.76 3.47 3.15 2.96
sNN (TeV) 7 6.3 7 6.46 5.86 5.52

σhad (b) 1.41 2.6 2.6 4.06 5.67 7.8
Nb (109) 6.24 1.85 1.58 0.653 0.356 0.19
òn (μm) 2 1.8 2 1.85 1.67 1.58
Z4 (106) 4.1×10−3 0.01 0.16 1.7 8.5 45

AA
 (1030 cm−2 s−1) 14.6 1.29 0.938 0.161 0.0476 0.0136
NN
 (1033 cm−2 s−1) 3.75 2.06 1.5 0.979 0.793 0.588
AA⟨ ⟩ (1027 cm−2 s−1) 8990 834 617 94.6 22.3 3.8
NN⟨ ⟩ (1033 cm−2 s−1) 2.3 1.33 0.987 0.576 0.371 0.164

ò  td
month AA (nb−1) 1.17×104 1080 799 123 28.9 4.92

ò  td
month NN (fb−1) 2.98 1.73 1.28 0.746 0.480 0.210
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where xi is the longitudinal momentum fraction of the photon emitted by ion Ai. This
factorises the result in terms of a s gg  X( ) subprocess cross section of a (BSM) system X,
and fluxes n(xi) of photons emitted by the ions. The latter are precisely determined in terms of
the ion EM form factors, and are in particular enhanced by ∝Z2 for each ion, leading to an
overall ∼Z4 enhanced production in ion–ion compared to pp collisions (i.e. a factor of
∼5×107 for PbPb). The experimental signal of UPC processes is very clean with the system
X and nothing else produced in the central detector. Moreover, since the virtuality of the
emitted photons is restricted to be very small Q2∼1/RA

2, where RA is the ion radius, the X
object is produced almost at rest [4]. The impact parameters b⊥ of UPCs with ions, with
b⊥?2RA beyond the range of additional strong interactions, are significantly larger than in
the pp case, and the associated gap survival probability is also significantly bigger than for
EM proton interactions. This latter effect can be accounted for precisely and enters at the
 10%( ) level in terms of corrections to γγinteractions, with rather small uncertainties [24].
In addition, the background from QCD-initiated production is essentially completely removed
by the requirement that the system X and nothing else is seen in the central detector [24].

A wide programme of photon-photon measurements and theoretical work is ongoing in the
context of pp collisions at the LHC [27], with dedicated proton taggers (Roman Pots, RP) installed
inside the LHC tunnel at ∼220m from the ATLAS [28] and CMS [29] interaction points. In
comparison to the pp mode, UPCs with HI offer the distinct advantage of studying such photon-
fusion processes in an environment where pileup is absent, forward tagging is unnecessary, and
considerably lower masses can be probed. Indeed, two-photon processes in pp collisions at high
luminosity can only be observed by tagging the forward protons inside the LHC tunnel with
geometrical acceptances that bound any central system to have, at least, mX100GeV. Figure 1
(left) compares the effective γγluminosity as a function of mγγ, defined in cross section(1), for pp
and PbPb collisions at their nominal c.m. energies and instantaneous luminosities. Even after
accounting for the reduced beam luminosity in PbPb collisions, the effective γγluminosity is a
factor of two higher in PbPb than the (purely theoretical) pp values at low masses. As a matter of
fact, taking into account the acceptance in the proton fractional momentum loss ξ of the RP
detectors at 220m (0.02<ξ<0.15) [28, 29] and even including proposed RPs at 420m
(0.0015<ξ<0.15) [30], only PbPb enables studies in the region below mX≈100GeV.

Figure 1. Left: effective γγluminosity versus photon-fusion mass in ultraperipheral
PbPb and pp collisions at the LHC. In the pp case, the actually ‘usable’ γγluminosity
is also shown with proton tagging at 220 m (currently installed) and 420 m (proposed).
Right: exclusion limits (95% confidence level) in the ALP-γ coupling (gaγ) versus ALP
mass (ma) plane [25, 26] currently set in pp and + -e e (shaded areas) compared to those
from PbPb UPC measurements (CMS result today [25, 26], orange curve; and
projections for 20 nb−1, bottom red curve).
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Running pp at low pileup would cover the low mass region albeit with significantly reduced
γγluminosities. Various relevant γγBSM processes are available in the SUPERCHIC [24] and
STARLIGHT [31] Monte Carlo (MC) generators, and ion fluxes are also available for any process
generated with MADGRAPH [32].

3.1. Axion-like particles

ALPs constitute a class of pseudoscalars with couplings to SM fermions or gauge bosons
through dimension-5 operators. In some cases, they may be Goldstone bosons of an approx-
imate, spontaneously broken, global symmetry. In this sense they are inspired by original axions
arising from the Peccei–Quinn mechanism to solve the absence of CP violation in QCD [33, 34],
but in general they do not have to solve the strong CP problem, and are therefore to be
understood as purely phenomenological extensions of the SM. An ALP couples to photons
through the operator É

~
mn

mn
F F ,a

f4
L where f is the decay constant of the ALP. They can be

produced through photon-fusion γγ→a or associated gff a¯ production, where the latter
tends to be the strongest production mode at electron or proton machines. In the mass range
below about 100GeV, photon fusion in ultraperipheral HI collisions is competitive thanks to the
huge Z4 enhancement in the photon luminosity [25] (figure 1, right).

A second key feature is that the only SM background is light-by-light (LbL) scattering, which
is notoriously tiny [35]. This means that it is crucial that the Lagrangian L above provides the
dominant coupling of the ALP to the SM: any competing branching ratios to leptons or jets would
degrade the reach, as the backgrounds in those final states are unsuppressed. Evidence and/or
observation for LbL scattering in PbPb UPCs has been reported by ATLAS [36, 37] and CMS
[26]. The latter one also provides the best current limits on ALPs in the mass range from ma=5
to 50GeV for coupling to photons only (figure 1 right), and ma=5 to 10 GeV for a scenario with
hypercharge coupling as well. For a recast of the ATLAS data to a limit on ALPs, see [20, 38].
Given that the higher mass ALPs will be well covered by the regular pp runs, PbPb collisions will
likely remain the only choice when searching for ALPs up to ma≈100GeV, though a com-
parison of the higher-mass reach for lighter ions would be interesting. Going below ma<5 GeV
is not possible for ATLAS and CMS, due to trigger and noise limitations in the calorimeters, but
the range ma≈0.5–5GeV can be covered by UPC measurements in ALICE and LHCb, com-
plementing a mass range that BelleII is also expected to measure reasonably well [39]. Finally, as
more data are gathered, the LbL background will become a limitation. The limits would therefore
benefit substantially if the diphoton invariant mass resolution could be improved, possibly by
making use of γ conversions.

3.2. Born–Infeld nonlinear QED, non-commutative QED

The possibility of nonlinear Born–Infeld (BI) extensions of QED has a long history, first
proposed in the 1930s [40], they appear naturally in string-theory models [41]. Remarkably,
however, the limit on the mass scale of such extensions has until recently been at most at the
level of 100MeV [42]. The first LHC measurement of LbL scattering in HI collisions [36] has
enabled to extend the upper limit of nonlinear QED modifications by 3 orders of magnitude,
up to scales ΛBI100 GeV, which in turn imposes a lower limit of 11 TeV on the magnetic
monopole mass in the case of a BI extension of the SM in which the U(1)Y hypercharge gauge
symmetry is realised nonlinearly [42]. Future LbL measurements in HI UPCs will offer the
possibility to further probe Born–Infeld and other nonlinear extensions of QED.

Non-commutative (NC) geometries also naturally appear within the context of string/M-
theory [43]. One consequence of this possibility is that QED takes on a non-Abelian nature
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due to the introduction of three- and four-point functions, leading to observable signatures in the
total and differential cross sections of QED processes. In [44] it has been demonstrated that NC
effects impact γγ→γγscattering at tree-level, and that a study of its differential cross sections
at a photon-collider in the few hundred of GeV range can bound NC scales of order a TeV.
Somewhat lower limits (in the few hundred GeV range for the NP scale) can be reached through
the detailed study of the LbL process accessible in UPCs with ions at the LHC.

3.3. Other BSM particles

There are several other possible BSM signals that couple to a pair of photons. It has been argued
e.g. that γγ→γγcollisions can be used to search for radions [45], gravitons [46, 47] and
unparticles [48]. The UPC signatures would be resonances and/or a non-trivial interference
pattern of these new contributions with the SM LbL background. The scalar radion would
behave identically to the pseudoscalar ALP example discussed in section 3.1. Evaluating the
search potential requires dedicated studies, in particular to compare with the reach of other
studies sensitive to these models, such as the mono-photon searches in standard pp collisions. In
the case of unparticles, unitarity and bootstrap bounds must be accounted for as well [49–51].

Charged supersymmetric (SUSY) particles like sleptons and charginos are also natural targets
for γγcollisions, especially in the squeezed regime where the standard lepton-plus-missing-ET
searches lose sensitivity. Although the parameter space accessible to HI collisions has already
been ruled out by LEP for simplified SUSY scenarios, it may be possible to extract a competitive
limit with γγcollisions from the proton beams [52, 53].

Magnetic monopoles necessarily couple strongly to photons [54]. Hence it has been suggested
that γγcollisions are a natural candidate for monopole searches, either by direct detection [55–58],
by the formation of monopolium bound-states [56, 57, 59] or via the contribution of virtual
monopole loops to LbL scattering [60–62]. However, these approaches have been criticised for
their reliance on perturbative loop expansions in the strong monopole coupling [63, 64]. Such
limitations are circumvented in the production mechanism from classical EM fields discussed next.

4. Strong EM fields

4.1. Magnetic monopoles

There are compelling theoretical reasons for the existence of magnetic monopoles
[54, 65, 66], such as providing a mechanism to explain charge quantisation in the SM.
Consequently, there have been many searches [67], including currently a dedicated LHC
experiment, MoEDAL [68]. Due to the Dirac quantisation condition, magnetic monopoles are
necessarily strongly coupled, hence perturbative loop expansions for their cross sections
cannot be trusted. In fact, it has been argued that the pair production cross section of semi-
classical monopoles [69, 70] in pp or elementary particle collisions suffers from an enormous
non-perturbative suppression [71–73], s µ =a- -e 10MM

4 238, independent of collision
energy. It is not known if the same suppression applies to point-like elementary monopoles,
but if it does [74], it implies that magnetic monopoles cannot realistically be produced in pp
collisions, irrespective of the energy and luminosity of the collider. The assumptions that led
to the exponential cross section suppression do not apply to HI collisions due to the non-
perturbatively large magnetic fields that are produced, which are strongest in UPCs [75].
These fields may produce magnetic monopoles by the EM dual of Schwinger pair production
[76], the calculation of which does not rely on perturbative expansions in the coupling. To
date, there has only been one search for magnetic monopoles in HI collisions, conducted at
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SPS [77], which has led to the strongest bounds on their mass [78]. Searches in HI collisions
at the LHC could in principle produce 2–3 orders of magnitude heavier monopoles, directly
testing their existence in the hundreds of GeV mass range for the first time (figure 2, left).

From the experimental point of view, triggering and tracking constitute challenges for the
LHC experiments. Magnetic monopoles would manifest as highly ionising particles, and their
trajectories in a uniform magnetic field are parabolic. These are striking features that, on the one
hand, help to reject background events to very small levels and, on the other, may cause
monopoles to be missed by standard reconstruction algorithms, as a basic assumption of
charged-particle tracking is that particle trajectories are helical. Given that their production by
strong magnetic fields is most likely in UPCs, the usual UPC signature of an almost empty
detector would be exploitable to select monopole events. Alternatively a monopole search can be
carried out using passive trapping detectors, exploiting the absolute stability of monopoles as
used in the MoEDAL experiment [68], during the HI running mode. Unlike active detectors, this
method gives no direct information about the process that produced the monopole, but it has the
advantage that there is no SM background and therefore no risk of a false positive event.

5. Hard scattering processes

5.1. Long-lived particles

Many BSM models predict the existence of LLPs that can travel macroscopic distances after
being produced, see e.g. [80, 81]. Their existence is in many cases linked to the solution of
fundamental problems in particle physics and cosmology, such as the origin of neutrino
masses, the DM puzzle, or baryogenesis. The LLPs usually owe their longevity to a (com-
parably) light mass, a feeble coupling to ordinary matter, or a combination of both. If such
particles are produced in HI collisions, the feeble interaction allows most of them to leave the
quark-gluon plasma unharmed. Due to the long lifetime, the tracks from their decay into SM
particles can easily be distinguished from the large number of tracks that originate from the
collision point (a single one, given the absence of pileup when running in the HI mode).
Hence, HI collisions can potentially provide a cleaner environment for LLP searches than pp.
The main obstacle is the considerably lower luminosity in HI compared to proton runs, which
means that the total number of LLPs produced in the former is always much smaller than in

Figure 2. Left: lower bounds for the magnetic monopole mass (m) versus units of
magnetic charge (e·g/2π) [78]. Right: estimated CMS reach for heavy neutrinos, with
mass Mi and muon-neutrino mixing angle Uμ, from B-meson decays in pp, ArAr, and
PbPb collisions with equal running time [79].
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the latter. However, there are at least three factors that can make the observable number of
LLP events competitive [79, 82].

First, due to the absence of pileup, the probability of misidentifying the primary vertex is
practically negligible for HI collisions because all tracks originate from a small (fm-sized)
region. This is in contrast to the HL-LHC pileup with proton beams, which leads to a
comparable number of tracks as a single PbPb collision [2, 3] originating from different points
in the same bunch crossing and thereby creating a considerable combinatorial track back-
ground for displaced signatures. HI collisions entirely remove the problem of identifying the
location of the primary vertex, which may be the key to trespass the ‘systematics wall’ due to
uncertainties in cases where background contamination mostly comes from real (as opposed
to misidentified or fake) SM particles. Although a large track multiplicity is expected to
degrade the reconstruction and identification of displaced vertices, the adverse effect of pileup
on vertex-finding performance is coming more from the presence of additional primary-
interaction vertices than from the sheer number of tracks, as demonstrated by the better
b-quark tagging performance in pPb compared to pp collisions in tt̄ studies [83].

Second, absence of pileup allows the detectors to be operated with minimal (zero bias)
triggers. This is an advantage e.g. in scenarios in which LLPs lead to low-pT final states.
Third, in addition to the hard scatterings that we focus on here, HI collisions can offer entirely
new production mechanisms that are absent in proton collisions, such as production in the
strong EM fields discussed in sections 3 and 4 or in the thermal processes mentioned in
section 6.

In [79, 82], it has been shown for the specific example of heavy neutrinos that the zero-
bias triggers alone can make searches for typical LLP signatures competitive in HI collisions.
Such heavy-ν could simultaneously explain the masses of the SM neutrinos and the baryon
asymmetry of the Universe [84]. For masses below 5 GeV, heavy neutrinos are primarily
produced in the decay of B-hadrons along with a charged lepton, but the lepton pT is too small
to be recorded by conventional pp triggers, making more than 99% of the events unobser-
vable. As a result, the observable number of events per running time in PbPb with low-pT
triggers is comparable to that in pp collisions with conventional triggers: 5 nb−1 of lead
collisions could improve the current limits by more than one order of magnitude in com-
parison to current bounds. For a small range of masses over 4 GeV the improvement would
even be of two orders of magnitude. If lighter nuclei are used, allowing for higher lumin-
osities (table 2), then HI collisions can yield a larger number of observable LLP events per
unit of running time than pp (figure 2, right) [79].

We should emphasise that we refer to the heavy neutrino example here because it is the
only case that has been studied in detail so far. It is a very conservative example because it
only takes advantage of one of the three factors mentioned above, namely the lower pT
triggers. In models that predict an event topology that suffers from backgrounds due to pileup,
or LLPs that can be produced through one of the new mechanisms mentioned above (such as
ALPs) HI data will have an even bigger impact.

5.2. Dark photons

The dark photon A′ is a hypothetical extra-U(1) gauge boson that acts as a messenger particle
between a dark sector, constituted of DM particles, and couples with a residual interaction g
to the SM particles. If the dark photon is the lightest state of the dark sector it can only decay
into SM particles. Typical experimental searches focus on A′ decays to dielectrons (if
mA′<2mμ), dimuons (for A′ masses above twice the muon mass) or dihadrons, and have so
far constrained its existence in the mixing parameter g2 versus mass ¢mA plane. Collider
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experiments search for the A′→ℓ+ℓ−in Dalitz meson decays π0, η, η′→γA′; meson
decays K→πA′, f→ηA′, and D*→D0A′; radiative decays of vector-meson resonances ϒ
(3S) in BaBar; and f→e+e−in KLOE in e+e−collisions [20]. HI experiments often feature
excellent capabilities for electron and muon identification at low transverse momenta, and for
vertexing, leading to competitive searches for low-mass A′ from large samples of meson
Dalitz decays (see e.g. [85] for PHENIX limits in pp and dAu collisions at the RHIC collider).
As an example of HI feasibility, ALICE is expected to reach a limit in g of about 10−4 at 90%
confidence level (CL) for A′ masses 20–90MeV with pp, pPb and PbPb collisions in Run-3
[20] (figure 3, left). Such limits may eventually be superseded by LHCb and fixed-target
experiments [86], although any increase in the total HI integrated luminosities, e.g. running
with lighter ions as advocated here, can render the former competitive.

6. Thermal processes

6.1. Sexaquarks

The sexaquark S is a hypothesised neutral stable dibaryon uuddss system that can account for
DM in the Universe. The S would likely have a mass in the range mS≈2mp±mπ, and
would have escaped detection to date [89]. The quark content of the sexaquark is the same as
that of the H-dibaryon proposed by Jaffe in 1977 [90]. However, the H-dibaryon was assumed
to be relatively loosely bound with a weak-interaction lifetime; such a particle has been
extensively searched for and not found, as discussed in [89]. Being a flavour singlet, the
lightest particle to which it could be significantly coupled is the flavour singlet superposition
of ω–f, leading to an estimated size of rS=0.1–0.2 fm [91]. If a stable sexaquark exists, it is
an attractive DM candidate because the sexaquark-to-baryon density ratio can be predicted by
simple statistical arguments in the QGP-hadronisation transition with known QCD parameters

Figure 3. Left: 90% CL exclusion limits of the dark photon mixing parameter g as a
function of its mass. Red and blue regions show updated projections from
measurements at ALICE and LHCb [20]. Light grey bands include results from
BABAR, KLOE, A1, APEX, NA48/2, E774, E141, E137, KEK, Orsay, BESIII,
CHARM, HPS, NA64, NOMAD, NuCAL, and PS191 [86]. Right: data-MC deviations
in the logarithm of the number of muons produced by a 1019eV CR shower versus its
maximum depth in the atmosphere (Xmax): data from Auger [87] are compared to MC
predictions for proton and Fe-ions CR primaries with varying values of the default MC
hadron multiplicity Nmult and the energy fraction α that goes into neutral pions. (Figure
taken from [88].)
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(quark masses and TQCD) to be ≈4.5±1, in agreement with the observed DM-to-baryon
ratio ΩDM/Ωb=5.3±0.1. This ratio is not modified during the subsequent universe
expansion as long as rS0.2 fm [91], thereby evading the counter-arguments against
dibaryon DM given in [92–94].

If a stable or weakly-decaying dibaryon exists, its production in HI collisions can be
completely predicted as a function of its mass, the temperature T, and the local baryon
chemical potential μb of the produced QGP. A rough estimate for the central rapidity region,
assuming mS=2mp, T=150MeV, and μb=0, gives {π:n:S}≈{1:0.01:10−4}. If the
entire rapidity range were to come into thermal equilibrium, so that the excess baryon number
B of the initial ions is uniformly distributed in rapidity over the final state, in analogy with
early universe conditions, it would imply - = W W -N N m m N NS S b p S B BDM ( )( )¯ ¯ . Measur-
ing the dependence of S and S̄ production on sNN

, colliding species, and rapidity would be
very revealing and could directly connect DM production in HI collisions to that in the early
universe.

Demonstrating that S and S̄ are produced and measuring their production rates is difficult
due to the vastly greater abundance of (anti)deuterons with similar mass to mS and larger
scattering and annihilation cross sections in the detector. Studies are underway to understand
the accuracy with which different techniques can identify the production of S and S̄ , either
exploiting the excellent hadron-identification capability over a wide momentum range in
ALICE and LHCb, or the larger acceptance of the multi-purpose ATLAS and CMS detectors.
Three basic approaches are being considered [89]:

• S particles produced in the primary collision can annihilate with a nucleon in the tracker
material and produce a final state with B=−1, S=+2. LHC detectors can search for

 L+Sp K 0¯ ¯ or  LSn K 0 0¯ ¯ . The L0¯ is readily identified; in the absence of an S̄ , L0¯
production is only consistent with baryon number conservation if the collision is initiated
by an antibaryon and the L0¯ is accompanied by a baryon. Due to the significant penalty
for producing a two-body final state, the rate could be several orders of magnitude greater
if the analysis could be extended to events with >2 final particles coming from the vertex.

• Given the - 10 2( ) production rate of S or S̄ relative to single baryons, there may be
comparable numbers of events with an SS̄ pair or with just a single S or S̄ produced, with
B and strangeness numbers balanced by two (anti)baryons and 0–2 kaons. It may be
possible to establish a systematic correlation of missing ΔB=m2; ΔS=±2 on a
statistical basis.

• A population of neutral interacting and/or annihilating particles, distinct from n and n̄ by
virtue of having different scattering and annihilation cross sections (and different final
states, if that is incorporated into the analysis), is in principle discernible by plotting the
rate of such reactions as a function of the tracker material grammage and searching for
additional exponential components.

6.2. Magnetic monopoles

For central collisions in which a thermal fireball is created, magnetic monopoles may, in
principle, be created thermally. Although their microphysical cross sections are not known
due to the strong coupling of magnetic monopoles, it seems reasonable to assume that there
would exist some production mechanism in a thermal bath containing particles that couple to
them (such as photons). Thus, if a temperature T is reached in a given HI collision, one would
expect to produce monopoles with masses mT, and an order of magnitude or so heavier
when integrated over the luminosity. Studies based on this production channel would provide
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an approach to monopole searches independent from, and complementary to, that of pro-
duction by strong fields (section 4.1). However, at LHC energies one would expect pro-
duction by strong fields to dominate as T2∼0.3 GeV2=gB∼100 GeV2, where g=2π/e
is the minimum magnetic charge [54] and B is the magnetic field produced in a typical UPC
[75]. The experimental signatures would be as for section 4.1, except that in this case more
central HI collisions are favoured.

6.3. Other NP searches in the QGP

Studies of other novel QCD phenomena benefit from the larger HI integrated luminosities
proposed here:

• Various forms of strange-quark matter proposed as DM candidates, such as strange-quark
nuggets [95] or magnetised quark nuggets [96], can form with enhanced rates through
thermal production and/or coalescence of partons. The production of any new
hypothesised stable multiparton states is therefore expected to be only possible or
significantly enhanced out of the hadronizing hot and dense QGP formed in HI collisions.

• The absence of CP violation in the QCD sector of the SM is a typical case of theoretical
fine-tuning that motivates the existence of new BSM particles, such as the axion [33, 34].
An alternative perspective to this problem is provided by finite-temperature studies of the
QCD vacuum, whose non-trivial topology leads to the presence of metastable domains
with properties determined by the discrete P/CP symmetries. Decays of such domains, or
classical transitions (sphalerons) among them, in the deconfined QGP phase with restored
chiral symmetry can result in local violation of P/CP invariance, leading e.g. to the so-
called ‘chiral magnetic effect’ in HI collisions [97].

7. HI input for NP searches with cosmic rays (CRs)

Beyond colliders, searches for NP are currently carried out also via CR measurements. There
are at least two concrete areas where HI data are needed in order to improve the SM
theoretical baseline and identify possible BSM signals: (i) precision measurements of anti-
proton and antinuclei production of relevance for DM searches in space experiments at
energies ECR≈1013–1015 eV, and (ii) precision measurements of nuclear effects of relevance
for muon production in CR interactions with nuclei in the atmosphere at energies (well) above
the LHC range19 (ECR≈1017–1020 eV).

7.1. Astrophysical DM searches

Cosmic-ray antiproton and antinuclei have long been considered as potential NP signals, as
products e.g. of DM annihilation, and their detection is a major goal of the AMS-02
experiment on-board the international space station [98]. Precise collider measurements of the
production cross sections of antiprotons and heavier secondaries in nuclear interactions are
crucial ingredients for probing the underlying space propagation [99, 100], and identifying the
origin of various excesses observed in the data [101] with respect to model predictions
[102–106]. For instance, a recent measurement of antiproton production in pHe collisions
with the SMOG device of the LHCb experiment [107] has significantly improved the

19 The LHC pp c.m. energy, =s 14 TeV, corresponds to UHECR of ECR≈1017 eV colliding with air nuclei at
rest in the upper atmosphere.
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antiproton cross-section parametrisation [108] used in the interpretation of AMS-02 data
[109]. In the absence of NP, the production of light anti(hyper)nuclei is thought to proceed via
thermal hadronisation and nucleon coalescence. The cross section for antinucleus production
can be parametrised from the ratio of antiproton cross sections in pA and pp collisions
combined with A-dependent coalescence factors BA, that need to be experimentally obtained
[20]. From the ratios of BA factors in pA and pp, one can predict CR flux ratios for a given
antinucleus of atomic number A. The current BA measurements [110] are confined to mid-
rapidity, and have uncertainties larger than the precision required on the CR flux for DM
astrophysical searches. Extended LHC running with various ion species is needed to reduce
such uncertainties in searches for astrophysical BSM signals via CR antiproton and antinuclei
measurements.

7.2. Anomalies in UHECR showers

The collisions in the upper atmosphere of the highest-energy CR ever detected, with
ECR≈1020 eV corresponding to »s 400 TeVNN , are well beyond the reach of foreseeable-
future colliders [111]. The flux of UHECRs impinging on the Earth is very scarce (less than 1
particle per km2 per century at the highest energies), and their detection is only possible in
dedicated observatories that reconstruct the huge extensive air showers (EAS) of secondary
particles that they produce in the atmosphere. Measurements of UHECR above LHC energies,
ECR≈1017–1020 eV, feature 30%–60% more muons produced at ground and at increasingly
larger transverse momenta from the EAS axis, than predicted by all UHECR MC models [87,
112–114]. Shown in figure 3 (right) is a representative measurement by the Pierre Auger
Observatory [87] showing the data-MC deviation in the number of muons from a 1019eV CR
shower versus the maximum depth of the shower in the atmosphere. The data point is
systematically above the EPOS-LHC MC predictions for varying values of relevant model
parameters [88]. Studies based on PYTHIA6 [115] indicate that additional muon production
from hard processes, such as from e.g. jets or heavy-quark decays, do not seem to account for
the data-model discrepancy. The possibility of an additional hard source of muons due to the
early production and decay of BSM particles, such as e.g. electroweak sphalerons [116],
remains an intriguing possibility. Solution of the ‘muon puzzle’ in UHECR physics requires
to reduce the uncertainties on the nuclear effects that remain in the dominant pAir (or FeAir)
interactions in the top atmosphere. Dedicated runs of pO [20] and light-ion collisions at the
LHC are therefore required in order to improve the modelling and tuning of all nuclear effects
in the current hadronic MC simulations, before one can consider any BSM interpretation of
UHECR anomalies.

8. Summary

The scientific case for exploiting HI collisions at the LHC in searches for BSM physics has
been summarised. A non-comprehensive but representative list of BSM processes accessible
with HI at the LHC has been presented based on four underlying mechanisms of production:
γγfusion in ultraperipheral collisions, ‘Schwinger’ production through strong classical EM
fields, hard scattering processes, and thermal production in the QGP. Such searches provide
additional motivations, beyond the traditional QGP physics case, to prolong the HI pro-
gramme past their currently scheduled end in 2029 (Run-4), in particular running with lighter
ion systems, a LHC operation mode that has not been considered so far. Despite the lower
nucleus–nucleus c.m. energies and beam luminosities compared to pp collisions, HI are more
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competitive than the latter in particular BSM scenarios, whereas in some others they can
complement or confirm searches (or discoveries) performed in the pp mode.

Ultraperipheral collisions (UPC) of ions offer, in particular, a unique way to exploit the
LHC as an intense γγcollider, profiting from the ∼Z4 enhancement factor in their cross
sections, providing a clean and well understood environment within which to search for BSM
states with QED couplings at masses mX�100 GeV that are otherwise not accessible in the
pp mode. The UPC discovery potential for new particles, such as axion-like pseudoscalar or
radions, and/or new interactions, such as nonlinear Born–Infeld or non-commutative QED
interactions, is unrivalled in this mass range. For magnetic monopoles, the huge EM fields
present in HI collisions lead to exponential enhancements of their cross sections and allow for
first-principles calculations that are otherwise hindered in similar pp analyses. Central HI
collisions provide also a propitious environment for searching for a possible stable sexaquark
(QCD DM candidate).

In the case of BSM signals produced through hard scatterings, the absence of pileup, the
improved primary and displaced vertexing, and the lower trigger thresholds of HI compared
to pp collisions, provide superior conditions for searches for BSM LLPs at low masses: an
illustrative case has been made based on right-handed neutrinos with mν5 GeV, where the
higher luminosities attainable with lighter ions lead to a larger number of observable LLP
events per unit of running time than in pp collisions. The improved particle identification
capabilities and lower pT thresholds of the ALICE and LHCb experiments make them also
competitive detectors for dark-photon searches. Both LLPs and dark photon searches would
benefit from the increased NN luminosity accessible in collisions with light- and intermediate-
ion species. Extrapolations based on the current LHC performance indicate that NN integrated
luminosities in the fb−1 range per month can be easily achieved with lighter ions after the
Run-4.
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